

1

Deep Multimodal Representation Learning to Integrate Natural Language Processing with
Genomic Interval Data for Tailored Biomedical Discovery

A Technical Report submitted to the Department of Biomedical Engineering

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Peneeta Ann Wojcik

Spring, 2024

Technical Project Team Members

Caitlyn Fay

Lilian Jones

Zachary Mills

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Timothy Allen, Ph.D., Department of Biomedical Engineering,

Nathan Sheffield, Ph.D., Center for Public Health Genomics

Deep Multimodal Representation Learning to Integrate Natural
Language Processing with Genomic Interval Data for Tailored

Biomedical Discovery

Caitlyn Fay, Lilian Jones, Zachary Mills, Peneeta Wojcik, Nathan LeRoy1,2, Nathan Sheffield1,2

1 Department of Biomedical Engineering

2 Center for Public Health Genomics

Abstract

The amount of epigenomic data generated through experiments such as ATAC-seq and ChIP-seq has
exponentially increased due to advanced sequencing technologies. These data are summarized in the form
of Browser Extensible Data (BED) files, which are text files where each line represents a specific genomic
region. These data are challenging to analyze due to their high dimensionality and structure. Promising
approaches to extract relationships from these data and determine which genomic regions are similar across
many different studies are deep learning models and natural language processing. We sought to generate a
set of genomic regions in the form of a BED file based on a user-entered query. Four deep learning models
were developed: a Text2BED, direct encoder, diffusion model, and transformer. Each was trained on BED
files and associated text files from publicly available databases. All models successfully generated an output
consisting of or relating to a BED file; however, more training data is needed. Once trained on more data
and further validated, these models will inform researchers on which genomic regions are closely related
to a disease or cell type they are interested in, expediting the research process.

Keywords: Deep learning, natural language processing, genomics, ATAC-seq, ChIP-seq

Introduction

The amount of data from ATAC-seq and ChIP-seq experiments has
exploded over the past 10 years, increasing exponentially as sequencing
technologies continue to improve. This has created a clear demand for
complex models to understand the genomic relationships encoded in this
large volume of data 1. One factor driving the increase in sequencing data
is that cells with the same DNA can have vastly different phenotypes.
Sequencing can be used not just for sequencing a human genome, but to
measure these phenotypes. The study of external modifications to DNA
that create these various phenotypes is known as epigenomics.
Epigenomic signals vary based on cell type and there are important
considerations to be made in analyzing epigenomic data. Failing to adjust
studies for cell-type heterogeneity can limit the accuracy and sensitivity
to locate these modifications 2.

Multimodality representation learning is a deep learning approach that
embeds information from two or more input types into a low dimensional
vector representation3. This practice of embedding information in a
vector space is used in natural language processing applications. One

example is in search engines where embeddings are used to map search
queries to images or webpages4. The Word2Vec model developed by
Google engineers learns vector representations of words. The vectors
represent the meaning of each word based on surrounding words5.

Deep learning and natural language processing techniques have been
successfully applied to genomics data. One model, called Region2Vec,
creates vector representations of genomic regions6. This is an adapted
Word2Vec approach where genomic data is considered as a text
document and each region represents a word. Another model called
StarSpace embeds genomic regions with associated metadata for use in
information retrieval tasks1.

The focus of this project is to build generative models using prior models
to embed both natural language and genomic regions. Generative models
are increasingly being integrated into search engines and have many
applications in image and text generation7. These models can be used to
generate new genomic data that reflect relationships based on original
data. Four different models were developed: a Text2BED neural network,
direct encoder, diffusion model, and transformer. Each model creates

3

vector representations of BED files and associated text descriptions and
outputs a set of genomic regions. The use of both BED and text
embeddings allow models to predict genomic regions from text. It is
hypothesized the implementation of four deep multimodal representation
learning algorithms, including Text2BED, direct encoder, diffusion
model, and a transformer, will greatly enhance the efficiency of
generating relevant genomic region sets from biomedical data. These
models can enable a more holistic approach to epigenomic analysis and
research. Through further comparison between models, one can be
focused on to deepen its accuracy and performance.

Certain design constraints must be taken into account during this project.
First, running these models locally on computers requires significant
computational resources, like power and memory. To mitigate this issue,
models will be trained using Rivanna, a High-Performance Computing
(HPC) system from the University of Virginia. This gives access to more
memory and computing power, which will decrease the time required to
train the model. There still exists some storage issues within Rivanna
though, which is important to consider. While there is a plethora of data
provided from the Sheffield Lab, there is limited time to train models on
all of this data. It is assumed that this data is of good quality and chose
significant file pairs for the most accurate model training possible in the
given time span. Lastly, each approach taken during this project is
complex, which can limit the ability to interpret results. The models
produce outputs in different forms, which is important to consider.

Model Architectures

Text2BED

The Text2BED model is composed of two functions: create_backend and
generate_bed_file. In the first function, create_backend, the inputs are: 1)
the path to the region2vec model previously designed and fully trained
by the DataBio lab on Hugging Face and 2) an index path from the user’s
local environment. The region2vec model is loaded and the tokenized
region embeddings from the universe are imported. The universe
imported consists of 1,063,880 embedded regions. The region
embeddings are then accessed through a PyTorch tensor and thus
converted from the embedding variable type to a NumPy array for
computation. The Hierarchical Navigable Small World (HNSW) backend
is then created using the local index path to prepare to store the region
embeddings in a backend so that the hierarchical kNN search can be
performed. The create_backend function then returns the subsequently
generated HNSW backend to be used in searching for the closest regions
to a given NL text query.

The HNSW algorithm is a method used in machine learning for efficient
nearest neighbor search in high-dimensional spaces. HNSW organizes
these points into a hierarchical graph structure where each point is
connected to other nearby points and levels representing levels of
resolution. When given a query, HNSW efficiently navigates through this
graph, starting from coarse levels and gradually refining the search at
finer levels until the nearest neighbors are found8.

In the backend, payloads are created that keep track of the original NL
region representations (chr number, start bp, and end bp) from the
universe. This backend is then taken as an input into the second function,
generate_bed_file, along with the previously mentioned NL text query, a
path to a desired pre-trained NN to use to compare similarities between
embedding vectors, and an integer value for the desired length of the
resulting generated BED file. The function imports a popularly used pre-

trained sentence transformer in order to convert the NL text query into a
text embedding, representing the text as a vector of numbers. The vector
to vector comparison NN and the HNSW backend outputted by the
previous function are then used to build a search interface to perform the
kNN search. So, taking the NL text query, the embedding of this text is
compared to the region embeddings of the Region2Vec universe and then
the previously user-specified number of regions to be returned are found
using HNSW in order of most to least close in similarity to the text query.
From the returned N closest region embeddings, the information
contained in their corresponding payload is then written to a new,
generated BED file.

Direct Encoder

The Direct Encoder is a neural network for representation learning. The
data must be represented numerically to be fed as input to the model. To
achieve this, term frequency-inverse document (TF-IDF) frequency is
used to transform text vectors into usable input. This is a statistical
measure that finds the significance of a word with respect to a large text
corpus9. For use in this
model, the text corpus used
was provided by the
Sheffield lab to ensure
consistent training amongst
all models. The text data
includes the descriptions of
correlated BED files. These
text-BED pairs are used to
train the model. The text
descriptions are vectorized
using the tfidf vectorizer
from Scikit Learn in Python10. Figure 1. Architecture of Direct Encoder

The actual model definition includes an encoder and decoder portion. The
encoder layer compresses the vectorized text input data to highlight its
most relevant features. This encoder is made of five linear layers. The
decoder then decompresses the data by reconstructing it to fit the size as
the genomic vocabulary. This structure is visualized in Figure 111.

The vector output from the direct encoder model serves as a numerical
representation for genomic regions relevant to the text entered.

To test the efficiency of the model, the loss is calculated by measuring
the mean squared error between the predicted and actual values using
Pytorch. The actual values were found using the ITTokenizer, which
tokenizes genomic regions found in BED files.

Lastly, the model is trained using an optimizer. A dataset class is created
that is designed to hold text vectors and bed bit vectors. Next, a data
loader is created from the data set to handle batching and shuffling of the
data set. Throughout 10 epochs, the data is fed through the data loader to
create varying batches of data, which is then passed through the model.
The MSE loss is calculated for each batch and the optimizer adjusts
model parameters to improve this loss over time. The loss is tracked to
ensure model accuracy is improving.

Diffusion Model

Diffusion models are the current state of the art for new image
generation12. These models work by adding Gaussian noise to the training
data until it is unrecognizable from pure noise, and then learning to

4

predict the noise and remove it to recover the data. After training,
randomly sampled noise can be passed to the model and noise will be
removed resulting in new data according to an input or the training
examples12. This general structure can be seen in Supplementary Figure
1 below. These types of models are the basis for the most popular image
generation models today such as DALL-E and Stable Diffusion13.

Data Transformation

Diffusion models are used to generate images and as such require images
to train on. However, the goal of this model is to generate region sets and
as such the data being used to train the model are BED files. In order to
adapt diffusion models to work with BED files, there needs to be a
method for converting between BED files and images and vice versa. In
order to accomplish this, the ITTokenizer from the geniml package is
used to tokenize the region sets according to a universe comprised of
1,063,878 candidate cis-Regulatory Elements (cCREs) in the GRCh38
reference genome from the ENCODE project14,15. This tokenizer will
return which of the regions in the universe are contained in the specific
BED file. This is then transformed into a 1,063,878 dimensional binary
NumPy array where each value corresponds to a region in the universe.
If the index contains a 0 then the BED file does not contain the associated
region, and if it contains a 1, then that region is present in the BED file.
This array is reshaped into a 761 by 1398 matrix to represent the first
channel of a 3-channel image. The other channels are made up of matrices
of the same size containing all zeros. These 3 channels are together
transformed into a PIL image to be used in the model. This process is
performed in reverse for the output images from the model. The images
are transformed into a 3-channel matrix where the first channel is the
target data. This matrix is transformed into an array and the indexes of
each 1 value are stored in a separate list. The corresponding region of
each index is then compiled into a new BED file.

In order for the model to be able to generate new data according to user
input, it must also account for the associated text descriptions of each
region set. To do this, the text description of the files are turned into text
embeddings using the all-MiniLM-L6-v2 sentence transformer found on
HuggingFace16. These text embeddings are then paired with the
corresponding transformed images. Once the data has been transformed
into image-embedding pairs as seen in supplementary Figure 2, it is ready
to be used in the training of the model.

Forward Process/Addition of Noise

Now that the data is ready, the first step in the model is to add noise to
the training images. This is done iteratively across multiple steps
according to a noise schedule. This is a Markov process where each step
depends only on the one immediately preceding it. The noise schedule
determines how much sampled Gaussian noise is added to the image at
each time step and it ensures that an appropriate amount of noise is added
so that the final image ends as a Gaussian distribution with a mean of
zero and a fixed variance. This model utilizes a linear noise schedule
where the same amount of noise is added at each step. This process of
adding noise can be seen below in Figure 2. The specific noise for each
time step can actually be computed independently, if the closed form of
the mean and variance is precomputed based on the cumulative process.

Figure 2: Diagram of the iterative addition of Gaussian noise to the data
images to prepare for model training.

Backward Process/Noise Removal

The backward process of the model works to predict the noise and
iteratively remove it. It does this through the use of a U-net architecture.
This architecture utilizes a series of convolutional, down sampling, and
up sampling layers that mimic the shape of the letter “U” where the output
is the same dimension as the input. The model follows an encoder-
decoder structure. The encoder portion performs repeated convolutional
layers on the input image, and then down sampling using a max pooling
layer. This process is repeated for a total of 5 downsamplings where at
each layer the image becomes smaller, but has more channels. After the
encoder layer, the decoder conducts the reverse operation. It performs
repeated convolutional layers followed by an upsampling layer where the
dimension of the image is increased and the number of channels is
decreased. This is also repeated for a total of five up samples to result in
a new image that is the same dimension of the input. Each layer of the
encoder and the decoder are connected by concatenating some of the
encoder features with the decoder features to capture more information.
An overview of the U-net model structure can be seen in Figure 3 below.
This whole process is done at each step of the iterative addition of noise
so that the model is able to perform denoising across various noise levels.

Figure 3: Diagram showing the general structure of the U-net architecture,
where the green arrows represent convolutional layers, the orange arrows
represent max pooling down sampling, and the purple arrows represent up
sampling.

Training and Loss Function

This model was trained using BED files and associated text descriptions
from the ENCODE project15. This data was collected into a data loader
as associated pairs. The model was then trained over 10 epochs using the
Adam optimizer and l1 loss. 10 epochs was chosen by determining when
the loss naturally plateaued and stopped noticeable decreasing.

5

Transformer

The transformer model is a neural network model first proposed as an
improvement to the recurrent neural network, which was the prior state-
of-the-art for sequence modeling problems17. It has an encoder-decoder
structure with both blocks using attention mechanisms to capture context
of sequences. The general structure is shown in Figure 4. This model has
previously been used for text data and is the primary model used in
ChatGPT18.

Attention Mechanism

The primary innovation of the
transformer model is its use of an
attention mechanism to
determine the relative context for
each token in a sequence. Self-
attention is used so the model can
capture the context of each word
it receives as input. To do this,
the tokenized input is converted
into three separate vectors: a
query, key, and value19. The
query vector is the word whose
attention is being calculated, the
key is used to represent every
other word in a sequence to
match against the query, and the
value is the result of calculating
the attention between query and
key vectors. These calculations
can be parallelized. Using self-
attention preserves the meaning
of each word throughout a
sequence, whereas RNNs cannot preserve this meaning across a lengthy
sequence.

Positional Encoding

The attention mechanism does not include positional information,
meaning different tokens can be scrambled and the output of the model
would be the same. Sinusoidal positional encodings are added to the
original tokens to the input embeddings to reflect relative distances
between tokens. A sinusoidal function is used to give higher values for
nearby tokens and a smooth decay of values for tokens that are further
away20.

In a typical transformer architecture, positional encoding is present below
both the encoder and decoder blocks to preserve sequence information.
For this application, only the natural language text input positional
encoding was included. No positional encoding was used for the BED
files because the order of regions does not matter, only their presence
does.

This transformer model is designed to encode a text query and decode it
into a series of genomic regions in the form of a BED file. BED files and
associated JSON metadata files were retrieved from the ENCODE
project, a publicly-available repository that holds ATAC-seq and ChIP-

seq data21. JSON files were parsed to retrieve the description field, which
contained a paragraph about the study the data was generated from.

Both BED and JSON files were tokenized separately. The BED files were
tokenized using the ITTokenizer method available in geniml22. This
tokenizer uses a universe file, or a set of all possible genomic regions, to
assign an index to each genomic region in the BED file. The focus of this
project is epigenomic signals, therefore the universe file used here was
the set of all human cCREs available through the ENCODE project15.
This contained all possible sites involved in histone modification or
CTCF-binding. Unknown tokens were filtered out by excluding the token
number "1063878" to further reduce dimensionality.

JSON files were tokenized using the pretrained BERT base-cased model
available on HuggingFace23. This model was pretrained on a large corpus
of English text data and uses WordPiece tokenization to break up natural
language into piecewise components24 (Figure 5).

Both the BED and text input tokens were padded to a fixed value of 512
so input size would be consistent. Transformer models often use
dimensions of either 512 or 1024 because of performance issues; the time
complexity of the self-attention mechanism is quadratic based on input
length, creating a bottleneck in training25. Because of this, only 512
regions from each BED file were sampled to begin preliminary training.
The transformer was trained using the Adam optimizer and cross entropy
loss.

Methods and Materials

All models were implemented using libraries provided by PyTorch,
HuggingFace, and the geniml package developed by the DataBio lab at
the University of Virginia26–28. The code for this project is available in
the following repository: https://github.com/databio/bme-capstone-
2023.

Results

Each of the four models generated different output data relevant to
specific genomic regions based on a text query. Specifics are detailed
below.

Text2BED

The original goal of this model is achieved, a NL text query is inputted
into the model and a new, generated BED file is returned. The validation
of this model proved to be a challenge, as there are no current methods

Figure 5: Example of WordPiece tokenization from
BERT tokenizer. Figure 4.

Transformer
Architecture. Text

6

for a numerical or more empirical method of proving the validity of the
model's results. What was decided on, however, was to test out a few
example queries. The queries: “kidney, human, cancer”, “pediatric, lung,
inflammation”, “lymphoma, human, prognosis” were passed through the
model and the resulting BED files were assessed by then entering some
of the top regions in the file into IGV. The gene corresponding to the
region outputted in the BED file was then searched in PubMed for
relevant literature associated with the gene. Important findings and
associations with the gene were noted in a table, indicating whether or
not they were relevant to the original NL query (Table 1). This gives a
foundational indication of the model’s ability to create a BED file that
actually is related to a text query but future steps for this model primarily
include finding a less brute-force and more computational way of
assessing the model’s performance.

Table 1. Validation of regions outputted in generative BED file created
from the NL query: “human, kidney, cancer”

Region from
Generative BED

File

Corresponding
Gene Notes

chr8 70054387-
70054650 PRDM14

Promotes
malignant
phenotype in cells,

Tumorigenicity,
cancer initiation
(lung, testis,
kidney, breast)

chr19
 16894195
-16894531

CPAMD8 Glaucoma

chr16 1981418-
1981735

TBL3

Polycystic kidney
disease,

Chronic kidney
disease

NOXO1
Tumorigenesis,
Cancer
progression

chr18
 13279033
-13279208

LDLRAD4

Gastrointestinal
stromal tumors,
Polycystic kidney
disease, Chronic
kidney disease

chr17
 63694673
-63695005

MAP3K3

Promotes tumor
growth,
Carcinoma
progression

chr19 6662730-
6663080 TNFSF14

Reversing
immunosuppressiv
e tumor
microenvironment

Direct Encoder

The model generates numerical representations of genomic regions based
on text input. Quantitative results showing the model's accuracy is shown
through the progression of the loss function outputs. There was a general
downward trend in loss, indicating that the model performance got better
through the parameter adjustments made by the optimizer. The more
epochs run through the training loop, the better the model performed.
This is also represented by the loss curve seen in Figure 6.

 Figure 6. Loss curve of direct encoder mode

When run with ten epochs and a batch size of 5, the model expressed a
loss closer to 0.25001. This MSE score indicates that the average squared
difference between the predicted and actual values is relatively low,

7

indicating a fairly accurate model. This also means it has further potential
for improvement with further training.

Diffusion Model

After training, the diffusion model experienced a large reduction in loss
as seen in the loss curve shown in Figure 7 below. The loss leveled out at
a value of around 0.1 which means the model was accurately able to
reproduce training data to a relatively high level.

Figure 7: Loss curve for the diffusion model

The model is able to generate novel images from user text input that
resemble the original training images. These images are converted into
region sets contained in BED files. Through the process of training it can
be qualitatively observed that the quality of the output images is
becoming closer to the original training data as seen in Figure 8 below.
The accuracy and biological relevance of these new region sets is yet to
be further evaluated. Due to the large computational complexity of the
model, only a small number of training examples were able to be used in
this project. For further, more improved work, the number of training
instances could be increased which would likely result in higher quality
data generation. It would also be beneficial to determine a numerical
metric to determine the accuracy and biological relevance of the
generated region sets.

Figure 8: Visualization of the removal of noise for epoch 1, epoch 5, and
epoch 10.

Transformer

Each component of the model architecture was unit tested to verify
whether data was being passed correctly from the encoder to the decoder
portion. The encoded output resulted in a tensor of size 100 by 512 by
512 (sample number by input dimension by model dimension). Initially,
entire BED files were passed to the decoder model, however resulted in
a dimensionality mismatch between the encoder and decoder portions.

After passing the first training example, the output of the model resulted
in a set of output probabilities in the shape 100 by 512 by 1063879
(sample number by model dimension by total number of genomic
regions), where the probabilities represent how likely a certain genomic
region is present. Future work is required to train the model on Rivanna
using more training examples.

Discussion

The goal of this study was to create four distinct deep-learning models
that generate relevant genomic region sets to a user-entered search that
can then be used in experiments for novel biomedical analysis. While
four models have been developed, there are limitations and future work
that can be done on them. The main limitation of the text2BED model is
although it is functioning properly and can produce a novel BED file,
there is no quantitative way of validating if the resulting BED file is
clinically associated with the initial user NL query. On the other hand,
the main limitation of the other three models is limited training data. Only
100 BED files were used in model training, so future training with more
text-BED pairs would increase their accuracy. While the direct encoder
showed promising results through its small loss metric, the model
currently outputs a number representation of genomic regions. Future
work should focus on translating these numeric outputs into newly
generated BED files. The diffusion model appears to work efficiently,
but this model type is not typically used for data types other than images.
This limits the model as its architecture may not efficiently capture
patterns on data that are not images. The transformer decoder is greatly
limited by the length of the input sequence due to the computational
complexity of the self-attention mechanism. This is an active area of
research, and transformer-based models are currently being optimized for
memory usage. One such approach is called Flash Attention, which
restructures how query, key, and value vectors are calculated5.

Though preliminary training has been conducted on these models, more
rigorous validation is needed. The next step after increasing the amount
of training data is to verify whether generated genomic regions are valid.
We propose the usage of a Jaccard index for preliminary verification to
determine similarities probabilistically between an actual and a generated
BED file29. To conduct this analysis, a BED file will be chosen as the
ground truth set. A query matching this BED file will be given to the
model, and a Jaccard score will be found by taking the ratio of the number
of genomic regions in both files to the total regions in the union of both
files.

Conclusion

All model architectures were successfully implemented and some
generated BED files, however more training and optimization is needed.
Future directions include expanding the training data to all data on the
ENCODE database and validating generated BED files using a Jaccard
score or other quantitative metric. The development of these models
could have a significant impact on biomedical research. Each model

8

offers a tool for analyzing epigenomic data with respect to text-entered
queries. This allows for the investigation of specific regions that have
proven to be associated with specific biological processes. Using tools
such as this can perpetuate the advancement of biomedical research by
leading to more targeted studies and treatment options.

Acknowledgments

We thank Dr. Nathan Sheffield, Nathan LeRoy, and Claude Hu for their
mentorship during this project.

References

1. Gharavi, E. et al. Joint representation learning for retrieval and
annotation of genomic interval sets. 2023.08.21.554131 Preprint at
https://doi.org/10.1101/2023.08.21.554131 (2023).

2. Qi, L. & Teschendorff, A. E. Cell-type heterogeneity: Why we
should adjust for it in epigenome and biomarker studies. Clin.
Epigenetics 14, 31 (2022).

3. Manzoor, M. A. et al. Multimodality Representation Learning: A
Survey on Evolution, Pretraining and Its Applications. ACM Trans.
Multimed. Comput. Commun. Appl. 20, 1–34 (2024).

4. Bengio, Y., Courville, A. & Vincent, P. Representation Learning:
A Review and New Perspectives. Preprint at
http://arxiv.org/abs/1206.5538 (2014).

5. Dao, T., Fu, D. Y., Ermon, S., Rudra, A. & Ré, C. FlashAttention:
Fast and Memory-Efficient Exact Attention with IO-Awareness.
(2022) doi:10.48550/ARXIV.2205.14135.

6. Gharavi, E. et al. Embeddings of genomic region sets capture rich
biological associations in lower dimensions. Bioinformatics 37,
4299–4306 (2021).

7. Deep Generative Modelling: A Comparative Review of VAEs,
GANs, Normalizing Flows, Energy-Based and Autoregressive
Models. https://arxiv.org/abs/2103.04922.

8. Hierarchical Navigable Small Worlds (HNSW) | Pinecone.
https://www.pinecone.io/learn/series/faiss/hnsw/.

9. Simha, A. Understanding TF-IDF for Machine Learning. Capital
One https://www.capitalone.com/tech/machine-
learning/understanding-tf-idf/ (2021).

10. sklearn.feature_extraction.text.TfidfVectorizer. scikit-learn
https://scikit-
learn/stable/modules/generated/sklearn.feature_extraction.text.Tfid
fVectorizer.html.

11. Autoencoders & Variational Autoencoders.
https://www.andrew.cmu.edu/user/xihuang/blog/ae_vae/ae_vae.ht
ml.

12. Dhariwal, P. & Nichol, A. Diffusion Models Beat GANs on Image
Synthesis. Preprint at http://arxiv.org/abs/2105.05233 (2021).

13. Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B.
High-Resolution Image Synthesis with Latent Diffusion Models.
Preprint at http://arxiv.org/abs/2112.10752 (2022).

14. Rymuza, J. et al. Methods for constructing and evaluating
consensus genomic interval sets. Preprint at
https://doi.org/10.1101/2023.08.03.551899 (2023).

15. The ENCODE Project Consortium et al. Expanded encyclopaedias
of DNA elements in the human and mouse genomes. Nature 583,
699–710 (2020).

16. sentence-transformers/all-MiniLM-L6-v2 · Hugging Face.
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
(2024).

17. Vaswani, A. et al. Attention Is All You Need. Preprint at
http://arxiv.org/abs/1706.03762 (2023).

18. Radford, A. et al. Language Models are Unsupervised Multitask
Learners.

19. Helene_k. Attention and Transformer Models. Medium
https://towardsdatascience.com/attention-and-transformer-models-
fe667f958378 (2022).

20. Ellmen, I. Understanding positional encoding in Transformers |
Oxford Protein Informatics Group.
https://www.blopig.com/blog/2023/10/understanding-positional-
encoding-in-transformers/ (2023).

21. Luo, Y. et al. New developments on the Encyclopedia of DNA
Elements (ENCODE) data portal. Nucleic Acids Res. 48, D882–
D889 (2020).

22. Tokenization - BEDbase: a unified platform for genomic regions.
https://docs.bedbase.org/geniml/tutorials/tokenization/.

23. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-
training of Deep Bidirectional Transformers for Language
Understanding. (2018) doi:10.48550/ARXIV.1810.04805.

24. google-bert/bert-base-cased · Hugging Face.
https://huggingface.co/google-bert/bert-base-cased (2024).

25. Keles, F. D., Wijewardena, P. M. & Hegde, C. On The
Computational Complexity of Self-Attention. (2022)
doi:10.48550/ARXIV.2209.04881.

26. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. (2019) doi:10.48550/ARXIV.1912.01703.

27. Wolf, T. et al. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. (2019)
doi:10.48550/ARXIV.1910.03771.

28. Geniml - BEDbase: a unified platform for genomic regions.

https://docs.bedbase.org/geniml/.

9

29. Chandra, N. K. & Bhattacharya, S. Dependent Bayesian multiple

hypothesis testing. in Handbook of Statistics vol. 47 67–81

(Elsevier, 2022).

10

Supplementary Materials

Supplementary Figure 1: General overview of diffusion model architecture.

Supplementary Figure 2: Diagram showing the data transformation from BED and text files to image and embeddings

