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Abstract 

The amount of epigenomic data generated through experiments such as ATAC-seq and ChIP-seq has 
exponentially increased due to advanced sequencing technologies. These data are summarized  in the form 
of Browser Extensible Data (BED) files, which are text files where each line represents a specific genomic 
region. These data are challenging to analyze  due to their high dimensionality and structure. Promising 
approaches to extract relationships from these data and determine which genomic regions are similar across 
many different studies are deep learning models and natural language processing. We sought to generate a 
set of genomic regions in the form of a BED file based on a user-entered query. Four deep learning models 
were developed: a Text2BED, direct encoder, diffusion model, and transformer. Each was trained on BED 
files and associated text files from publicly available databases. All models successfully generated an output 
consisting of or relating to a BED file; however, more training data is needed. Once trained on more data 
and further validated, these models will inform researchers on which genomic regions are closely related 
to a disease or cell type they are interested in, expediting the research process. 

Keywords: Deep learning, natural language processing, genomics, ATAC-seq, ChIP-seq

Introduction 

The amount of data from ATAC-seq and ChIP-seq experiments has 
exploded over the past 10 years, increasing exponentially as sequencing 
technologies continue to improve. This has created a clear demand for 
complex models to understand the genomic relationships encoded in this 
large volume of data 1. One factor driving the increase in sequencing data 
is that cells with the same DNA can have vastly different phenotypes. 
Sequencing can be used not just for sequencing a human genome, but to 
measure these phenotypes. The study of external modifications to DNA 
that create these various phenotypes is known as epigenomics. 
Epigenomic signals vary based on cell type and there are important 
considerations to be made in analyzing epigenomic data. Failing to adjust 
studies for cell-type heterogeneity can limit the accuracy and sensitivity 
to locate these modifications 2. 

Multimodality representation learning is a deep learning approach that 
embeds information from two or more input types into a low dimensional 
vector representation3. This practice of embedding information in a 
vector space is used in natural language processing applications. One 

example is in search engines where embeddings are used to map search 
queries to images or webpages4. The Word2Vec model developed by 
Google engineers learns vector representations of words. The vectors 
represent the meaning of each word based on surrounding words5.  

Deep learning and natural language processing techniques have been 
successfully applied to genomics data. One model, called Region2Vec, 
creates vector representations of genomic regions6. This is an adapted 
Word2Vec approach where genomic data is considered as a text 
document and each region represents a word. Another model called 
StarSpace embeds genomic regions with associated metadata for use in 
information retrieval tasks1.  

The focus of this project is to build generative models using prior models 
to embed both natural language and genomic regions. Generative models 
are increasingly being integrated into search engines and have many 
applications in image and text generation7. These models can be used to 
generate new genomic data that reflect relationships based on original 
data. Four different models were developed: a Text2BED neural network, 
direct encoder, diffusion model, and transformer. Each model creates 
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vector representations of BED files and associated text descriptions and 
outputs a set of genomic regions. The use of both BED and text 
embeddings allow models to predict genomic regions from text. It is 
hypothesized the implementation of four deep multimodal representation 
learning algorithms, including Text2BED, direct encoder, diffusion 
model, and a transformer, will greatly enhance the efficiency of 
generating relevant genomic region sets from biomedical data. These 
models can enable a more holistic approach to epigenomic analysis and 
research. Through further comparison between models, one can be 
focused on to deepen its accuracy and performance.  

Certain design constraints must be taken into account during this project. 
First, running these models locally on computers requires significant 
computational resources, like power and memory. To mitigate this issue, 
models will be trained using Rivanna, a High-Performance Computing 
(HPC) system from the University of Virginia. This gives access to more 
memory and computing power, which will decrease the time required to 
train the model. There still exists some storage issues within Rivanna 
though, which is important to consider. While there is a plethora of data 
provided from the Sheffield Lab, there is limited time to train models on 
all of this data. It is assumed that this data is of good quality and chose 
significant file pairs for the most accurate model training possible in the 
given time span. Lastly, each approach taken during this project is 
complex, which can limit the ability to interpret results. The models 
produce outputs in different forms, which is important to consider.  

Model Architectures 

Text2BED 

The Text2BED model is composed of two functions: create_backend and 
generate_bed_file. In the first function, create_backend, the inputs are: 1) 
the path to the region2vec model previously designed and fully trained 
by the DataBio lab on Hugging Face and 2) an index path from the user’s 
local environment. The region2vec model is loaded and the tokenized 
region embeddings from the universe are imported. The universe 
imported consists of 1,063,880 embedded regions. The region 
embeddings are then accessed through a PyTorch tensor and thus 
converted from the embedding variable type to a NumPy array for 
computation. The Hierarchical Navigable Small World (HNSW) backend 
is then created using the local index path to prepare to store the region 
embeddings in a backend so that the hierarchical kNN search can be 
performed. The create_backend function then returns the subsequently 
generated HNSW backend to be used in searching for the closest regions 
to a given NL text query.  

The HNSW algorithm is a method used in machine learning for efficient 
nearest neighbor search in high-dimensional spaces. HNSW organizes 
these points into a hierarchical graph structure where each point is 
connected to other nearby points and levels representing levels of 
resolution. When given a query, HNSW efficiently navigates through this 
graph, starting from coarse levels and gradually refining the search at 
finer levels until the nearest neighbors are found8.  

In the backend, payloads are created that keep track of the original NL 
region representations (chr number, start bp, and end bp) from the 
universe. This backend is then taken as an input into the second function, 
generate_bed_file, along with the previously mentioned NL text query, a 
path to a desired pre-trained NN to use to compare similarities between 
embedding vectors, and an integer value for the desired length of the 
resulting generated BED file. The function imports a popularly used pre-

trained sentence transformer in order to convert the NL text query into a 
text embedding, representing the text as a vector of numbers. The vector 
to vector comparison NN and the HNSW backend outputted by the 
previous function are then used to build a search interface to perform the 
kNN search. So, taking the NL text query, the embedding of this text is 
compared to the region embeddings of the Region2Vec universe and then 
the previously user-specified number of regions to be returned are found 
using HNSW in order of most to least close in similarity to the text query. 
From the returned N closest region embeddings, the information 
contained in their corresponding payload is then written to a new, 
generated BED file. 

Direct Encoder 

The Direct Encoder is a neural network for representation learning. The 
data must be represented numerically to be fed as input to the model. To 
achieve this, term frequency-inverse document (TF-IDF) frequency is 
used to transform text vectors into usable input. This is a statistical 
measure that finds the significance of a word with respect to a large text 
corpus9. For use in this 
model, the text corpus used 
was provided by the 
Sheffield lab to ensure 
consistent training amongst 
all models. The text data 
includes the descriptions of 
correlated BED files. These 
text-BED pairs are used to 
train the model. The text 
descriptions are vectorized 
using the tfidf vectorizer 
from Scikit Learn in Python10.   Figure 1. Architecture of Direct Encoder 

The actual model definition includes an encoder and decoder portion. The 
encoder layer compresses the vectorized text input data to highlight its 
most relevant features. This encoder is made of five linear layers. The 
decoder then decompresses the data by reconstructing it to fit the size as 
the genomic vocabulary. This structure is visualized in Figure 111.   

The vector output from the direct encoder model serves as a numerical 
representation for genomic regions relevant to the text entered.  

To test the efficiency of the model, the loss is calculated by measuring 
the mean squared error between the predicted and actual values using 
Pytorch. The actual values were found using the ITTokenizer, which 
tokenizes genomic regions found in BED files.  

Lastly, the model is trained using an optimizer. A dataset class is created 
that is designed to hold text vectors and bed bit vectors. Next, a data 
loader is created from the data set to handle batching and shuffling of the 
data set. Throughout 10 epochs, the data is fed through the data loader to 
create varying batches of data, which is then passed through the model. 
The MSE loss is calculated for each batch and the optimizer adjusts 
model parameters to improve this loss over time. The loss is tracked to 
ensure model accuracy is improving.  

Diffusion Model 

Diffusion models are the current state of the art for new image 
generation12. These models work by adding Gaussian noise to the training 
data until it is unrecognizable from pure noise, and then learning to 
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predict the noise and remove it to recover the data. After training, 
randomly sampled noise can be passed to the model and noise will be 
removed resulting in new data according to an input or the training 
examples12. This general structure can be seen in Supplementary Figure 
1 below. These types of models are the basis for the most popular image 
generation models today such as DALL-E and Stable Diffusion13. 

Data Transformation 

Diffusion models are used to generate images and as such require images 
to train on. However, the goal of this model is to generate region sets and 
as such the data being used to train the model are BED files. In order to 
adapt diffusion models to work with BED files, there needs to be a 
method for converting between BED files and images and vice versa. In 
order to accomplish this, the ITTokenizer from the geniml package is 
used to tokenize the region sets according to a universe comprised of 
1,063,878 candidate cis-Regulatory Elements (cCREs) in the GRCh38 
reference genome from the      ENCODE project14,15. This tokenizer will 
return which of the regions in the universe are contained in the specific 
BED file. This is then transformed into a 1,063,878 dimensional binary 
NumPy array where each value corresponds to a region in the universe. 
If the index contains a 0 then the BED file does not contain the associated 
region, and if it contains a 1, then that region is present in the BED file. 
This array is reshaped into a 761 by 1398 matrix to represent the first 
channel of a 3-channel image. The other channels are made up of matrices 
of the same size containing all zeros. These 3 channels are together 
transformed into a PIL image to be used in the model. This process is 
performed in reverse for the output images from the model. The images 
are transformed into a 3-channel matrix where the first channel is the 
target data. This matrix is transformed into an array and the indexes of 
each 1 value are stored in a separate list. The corresponding region of 
each index is then compiled into a new BED file. 

In order for the model to be able to generate new data according to user 
input, it must also account for the associated text descriptions of each 
region set. To do this, the text description of the files are turned into text 
embeddings using the all-MiniLM-L6-v2 sentence transformer found on 
HuggingFace16. These text embeddings are then paired with the 
corresponding transformed images. Once the data has been transformed 
into image-embedding pairs as seen in supplementary Figure 2, it is ready 
to be used in the training of the model. 

Forward Process/Addition of Noise 

Now that the data is ready, the first step in the model is to add noise to 
the training images. This is done iteratively across multiple steps 
according to a noise schedule. This is a Markov process where each step 
depends only on the one immediately preceding it. The noise schedule 
determines how much sampled Gaussian noise is added to the image at 
each time step and it ensures that an appropriate amount of noise is added 
so that the final image ends as a Gaussian distribution with a mean of 
zero and a fixed variance. This model utilizes a linear noise schedule 
where the same amount of noise is added at each step. This process of 
adding noise can be seen below in Figure 2. The specific noise for each 
time step can actually be computed independently, if the closed form of 
the mean and variance is precomputed based on the cumulative process. 

 

Figure 2: Diagram of the iterative addition of Gaussian noise to the data 
images to prepare for model training. 

Backward Process/Noise Removal 

The backward process of the model works to predict the noise and 
iteratively remove it. It does this through the use of a U-net architecture. 
This architecture utilizes a series of convolutional, down sampling, and 
up sampling layers that mimic the shape of the letter “U” where the output 
is the same dimension as the input. The model follows an encoder-
decoder structure. The encoder portion performs repeated convolutional 
layers on the input image, and then down sampling using a max pooling 
layer. This process is repeated for a total of 5 downsamplings where at 
each layer the image becomes smaller, but has more channels. After the 
encoder layer, the decoder conducts the reverse operation. It performs 
repeated convolutional layers followed by an upsampling layer where the 
dimension of the image is increased and the number of channels is 
decreased. This is also repeated for a total of five up samples to result in 
a new image that is the same dimension of the input. Each layer of the 
encoder and the decoder are connected by concatenating some of the 
encoder features with the decoder features to capture more information. 
An overview of the U-net model structure can be seen in Figure 3 below. 
This whole process is done at each step of the iterative addition of noise 
so that the model is able to perform denoising across various noise levels. 

 

 

Figure 3: Diagram showing the general structure of the U-net architecture, 
where the green arrows represent convolutional layers, the orange arrows 
represent max pooling down sampling, and the purple arrows represent up 
sampling. 

Training and Loss Function 

This model was trained using BED files and associated text descriptions 
from the ENCODE project15. This data was collected into a data loader 
as associated pairs. The model was then trained over 10 epochs using the 
Adam optimizer and l1 loss. 10 epochs was chosen by determining when 
the loss naturally plateaued and stopped noticeable decreasing. 
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Transformer 

The transformer model is a neural network model first proposed as an 
improvement to the recurrent neural network, which was the prior state-
of-the-art for sequence modeling problems17. It has an encoder-decoder 
structure with both blocks using attention mechanisms to capture context 
of sequences. The general structure is shown in Figure 4. This model has 
previously been used for text data and is the primary model used in 
ChatGPT18. 

Attention Mechanism 

The primary innovation of the 
transformer model is its use of an 
attention mechanism to 
determine the relative context for 
each token in a sequence. Self-
attention is used so the model can 
capture the context of each word 
it receives as input. To do this, 
the tokenized input is converted 
into three separate vectors: a 
query, key, and value19. The 
query vector is the word whose 
attention is being calculated, the 
key is used to represent every 
other word in a sequence to 
match against the query, and the 
value is the result of calculating 
the attention between query and 
key vectors. These calculations 
can be parallelized. Using self-
attention preserves the meaning 
of each word throughout a 
sequence, whereas RNNs cannot preserve this meaning across a lengthy 
sequence. 

Positional Encoding 

The attention mechanism does not include positional information, 
meaning different tokens can be scrambled and the output of the model 
would be the same. Sinusoidal positional encodings are added to the 
original tokens to the input embeddings to reflect relative distances 
between tokens. A sinusoidal function is used to give higher values for 
nearby tokens and a smooth decay of values for tokens that are further 
away20. 

In a typical transformer architecture, positional encoding is present below 
both the encoder and decoder blocks to preserve sequence information. 
For this application, only the natural language text input positional 
encoding was included. No positional encoding was used for the BED 
files because the order of regions does not matter, only their presence 
does.  

 

This transformer model is designed to encode a text query and decode it 
into a series of genomic regions in the form of a BED file. BED files and 
associated JSON metadata files were retrieved from the ENCODE 
project, a publicly-available repository that holds ATAC-seq and ChIP-

seq data21. JSON files were parsed to retrieve the description field, which 
contained a paragraph about the study the data was generated from. 

Both BED and JSON files were tokenized separately. The BED files were 
tokenized using the ITTokenizer method available in geniml22. This 
tokenizer uses a universe file, or a set of all possible genomic regions, to 
assign an index to each genomic region in the BED file. The focus of this 
project is epigenomic signals, therefore the universe file used here was 
the set of all human cCREs available through the ENCODE project15. 
This contained all possible sites involved in histone modification or 
CTCF-binding. Unknown tokens were filtered out by excluding the token 
number "1063878" to further reduce dimensionality.  

JSON files were tokenized using the pretrained BERT base-cased model 
available on HuggingFace23. This model was pretrained on a large corpus 
of English text data and uses WordPiece tokenization to break up natural 
language into piecewise components24 (Figure 5).  

 

Both the BED and text input tokens were padded to a fixed value of 512 
so input size would be consistent. Transformer models often use 
dimensions of either 512 or 1024 because of performance issues; the time 
complexity of the self-attention mechanism is quadratic based on input 
length, creating a bottleneck in training25. Because of this, only 512 
regions from each BED file were sampled to begin preliminary training. 
The transformer was trained using the Adam optimizer and cross entropy 
loss. 

Methods and Materials 

All models were implemented using libraries provided by PyTorch, 
HuggingFace, and the geniml package developed by the DataBio lab at 
the University of Virginia26–28. The code for this project is available in 
the following  repository: https://github.com/databio/bme-capstone-
2023.  

Results 

Each of the four models generated different output data relevant to 
specific genomic regions based on a text query. Specifics are detailed 
below.  

Text2BED 

The original goal of this model is achieved, a NL text query is inputted 
into the model and a new, generated BED file is returned. The validation 
of this model proved to be a challenge, as there are no current methods 

 

Figure 5: Example of WordPiece tokenization from 
BERT tokenizer. Figure 4. 

Transformer 
Architecture. Text 
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for a numerical or more empirical method of proving the validity of the 
model's results. What was decided on, however, was to test out a few 
example queries. The queries: “kidney, human, cancer”, “pediatric, lung, 
inflammation”, “lymphoma, human, prognosis” were passed through the 
model and the resulting BED files were assessed by then entering some 
of the top regions in the file into IGV. The gene corresponding to the 
region outputted in the BED file was then searched in PubMed for 
relevant literature associated with the gene. Important findings and 
associations with the gene were noted in a table, indicating whether or 
not they were relevant to the original NL query (Table 1). This gives a 
foundational indication of the model’s ability to create a BED file that 
actually is related to a text query but future steps for this model primarily 
include finding a less brute-force and more computational way of 
assessing the model’s performance. 

Table 1. Validation of regions outputted in generative BED file created 
from the NL query: “human, kidney, cancer” 

Region from 
Generative BED 

File 

Corresponding 
Gene Notes 

chr8 70054387-
70054650 PRDM14 

Promotes 
malignant 
phenotype in cells, 

Tumorigenicity, 
cancer initiation 
(lung, testis, 
kidney, breast) 

chr19
 16894195
-16894531 

CPAMD8 Glaucoma 

chr16 1981418-
1981735 

TBL3 

Polycystic kidney 
disease, 

Chronic kidney 
disease 

 

NOXO1 
Tumorigenesis, 
Cancer 
progression 

chr18
 13279033
-13279208 

LDLRAD4 

Gastrointestinal 
stromal tumors, 
Polycystic kidney 
disease, Chronic 
kidney disease 

chr17
 63694673
-63695005 

MAP3K3 

Promotes tumor 
growth, 
Carcinoma 
progression 

chr19 6662730-
6663080 TNFSF14 

Reversing 
immunosuppressiv
e tumor 
microenvironment 

Direct Encoder 

The model generates numerical representations of genomic regions based 
on text input. Quantitative results showing the model's accuracy is shown 
through the progression of the loss function outputs. There was a general 
downward trend in loss, indicating that the model performance got better 
through the parameter adjustments made by the optimizer. The more 
epochs run through the training loop, the better the model performed. 
This is also represented by the loss curve seen in Figure 6.   

 

 

 

 

 

 

 

 

 

                  Figure 6. Loss curve of direct encoder mode 

When run with ten epochs and a batch size of 5, the model expressed a 
loss closer to 0.25001. This MSE score indicates that the average squared 
difference between the predicted and actual values is relatively low, 
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indicating a fairly accurate model. This also means it has further potential 
for improvement with further training.  

Diffusion Model 

After training, the diffusion model experienced a large reduction in loss 
as seen in the loss curve shown in Figure 7 below. The loss leveled out at 
a value of around 0.1 which means the model was accurately able to 
reproduce training data to a relatively high level.  

 

Figure 7: Loss curve for the diffusion model 

 

The model is able to generate novel images from user text input that 
resemble the original training images. These images are converted into 
region sets contained in BED files. Through the process of training it can 
be qualitatively observed that the quality of the output images is 
becoming closer to the original training data as seen in Figure 8 below. 
The accuracy and biological relevance of these new region sets is yet to 
be further evaluated. Due to the large computational complexity of the 
model, only a small number of training examples were able to be used in 
this project. For further, more improved work, the number of training 
instances could be increased which would likely result in higher quality 
data generation. It would also be beneficial to determine a numerical 
metric to determine the accuracy and biological relevance of the 
generated region sets. 

 

Figure 8: Visualization of the removal of noise for epoch 1, epoch 5, and 
epoch 10. 

Transformer 

Each component of the model architecture was unit tested to verify 
whether data was being passed correctly from the encoder to the decoder 
portion. The encoded output resulted in a tensor of size 100 by 512 by 
512 (sample number by input dimension by model dimension). Initially, 
entire BED files were passed to the decoder model, however resulted in 
a dimensionality mismatch between the encoder and decoder portions.   

After passing the first training example, the output of the model resulted 
in a set of output probabilities in the shape 100 by 512 by 1063879 
(sample number by model dimension by total number of genomic 
regions), where the probabilities represent how likely a certain genomic 
region is present. Future work is required to train the model on Rivanna 
using more training examples. 

Discussion 

The goal of this study was to create four distinct deep-learning models 
that generate relevant genomic region sets to a user-entered search that 
can then be used in experiments for novel biomedical analysis. While 
four models have been developed, there are limitations and future work 
that can be done on them. The main limitation of the text2BED model is 
although it is functioning properly and can produce a novel BED file, 
there is no quantitative way of validating if the resulting BED file is 
clinically associated with the initial user NL query. On the other hand, 
the main limitation of the other three models is limited training data. Only 
100 BED files were used in model training, so future training with more 
text-BED pairs would increase their accuracy. While the direct encoder 
showed promising results through its small loss metric, the model 
currently outputs a number representation of genomic regions. Future 
work should focus on translating these numeric outputs into newly 
generated BED files. The diffusion model appears to work efficiently, 
but this model type is not typically used for data types other than images. 
This limits the model as its architecture may not efficiently capture 
patterns on data that are not images. The transformer decoder is greatly 
limited by the length of the input sequence due to the computational 
complexity of the self-attention mechanism. This is an active area of 
research, and transformer-based models are currently being optimized for 
memory usage. One such approach is called Flash Attention, which 
restructures how query, key, and value vectors are calculated5.  

Though preliminary training has been conducted on these models, more 
rigorous validation is needed. The next step after increasing the amount 
of training data is to verify whether generated genomic regions are valid. 
We propose the usage of a Jaccard index for preliminary verification to 
determine similarities probabilistically between an actual and a generated 
BED file29. To conduct this analysis, a BED file will be chosen as the 
ground truth set. A query matching this BED file will be given to the 
model, and a Jaccard score will be found by taking the ratio of the number 
of genomic regions in both files to the total regions in the union of both 
files.  

Conclusion 

All model architectures were successfully implemented and some 
generated BED files, however more training and optimization is needed. 
Future directions include expanding the training data to all data on the 
ENCODE database and validating generated BED files using a Jaccard 
score or other quantitative metric. The development of these models 
could have a significant impact on biomedical research. Each model 
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offers a tool for analyzing epigenomic data with respect to text-entered 
queries. This allows for the investigation of specific regions that have 
proven to be associated with specific biological processes. Using tools 
such as this can perpetuate the advancement of biomedical research by 
leading to more targeted studies and treatment options.  
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Supplementary Materials 

 

Supplementary Figure 1: General overview of diffusion model architecture. 

 

 

 

Supplementary Figure 2: Diagram showing the data transformation from BED and text files to image and embeddings

 

 

 

 


