
Abstract

The availability of wearable and ambient sensors allows more information to be

captured for human activity recognition. However, noises and signal disconnections

are common in complicated environment. Resolving noise and variability from dif-

ferent inputs, as well as accounting for the human-object interactions is challenging

under complex settings. To address the challenge, I present a novel Hidden Markov

Model variant that includes both coupled and factorized states for estimation and

learning problems.

In this thesis, I provide the detailed formulation of selective factorized coupled

hidden markov model (SFCHMM), including its model definition, forward-backward

procedure for conditional observation probabilities, optimal state path decoding and

parameter estimation. In addition to the algorithmic discussion, I also test the model

by simulating on synthetic CHMM processes and applying to a real world sensor-rich

benchmark dataset that recorded human daily activities. The performance analysis

based on the experiments demonstrates that this model is capable of consolidating

the fuzzy information from a collective pool of sensors and improving human activity

recognition in interactive context, which is highly applicable to real world settings

such as surveillance, smart home and multimedia games.
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Chapter 1

Introduction

Early works on human activity recognition are mostly done using explicit models

where features are hard coded. An example is Hogg’s early work of modeling human

walking with spatio-temporal constraints on the movement patterns [14]. While the

explicit models are useful for providing solution to particular applications, it might

require way too much manual labor to conduct specification of model parameters

for a task that involves a huge input, which is more often than not the common

case. Human intervention such as designing example temporal, deciding what irrel-

evant information to leave out and what distance metric to choose is also required

for exemplar-based models. Modeling a complex scene, the inherent structure and

semantics of complex activities require higher level representation and methods.

Statistical approach has been applied to activity recognition [22] [35]. One advan-

tage is that they scale up well for real world applications compared to methods that

rely on spatio-temporal or sliding-window search. However this approach is mostly

restricted to applications of discriminative models and anomaly detection.

The development of parametric machine learning models makes automatic learning

possible. Furthermore, these models allow some knowledge of the complexity of the

problems, such as dimensions of hidden state space to be built in and let the models

to adapt to di↵erent types of inputs required by specific application. Roweis and

Ghahramani provided an example list of such generative models with the relationships

explained [31].
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Table 1.1: Generative Model Relationships

Initial Extension Final

Gaussian Mixture GM

Gaussian Reduced Dimension PCA

GM Dynamic HMM

HMM Coupling CHMM

HMM Variable Length VLMM

HMM Hierarchy DBN

DBN Utility DDN

Its comparable counterpart, such as deep learning, shares some of these advantages

and is in an even more automated fashion [1] [17] [18]. A disadvantage of deep learn-

ing though is that it normally su↵ers from poorer interpretability than the former.

Probabilistic graphical models combine both probability theory and graph theory and

are able to detect both complex human activities and simple human actions [27].

Most recently vision-based human activity recognition [29] has attracted a lot of

research interest. This type of human activity tasks is very challenging in that it

involves large visual inputs and activity categories. Unsupervised learning method

such as deep learning proves its strong power in achieving good results in such tasks.

Ji Shuiwang et al developed a novel 3D convolutional neural network that can act

directly on raw 3D inputs and automatically perform feature construction for activity

recognition [18]. Quoc V. Le et al presented an extension of Independent Subspace

Analysis algorithm (ISA) for unsupervised motion feature learning from video [19].

This method performs surprisingly well when combined with deep learning techniques

such as stacking and convolution to learn hierarchical representation.

We study the human activity recognition problem in a specific application context

where there are human-object interactions involved. And the activities are captured

by a rich pool of sensors targeted at both human and the object. Due to compli-

cated environment setting, significant sensor information variance among same and

di↵erent sources, or even failure inevitably happens. Our goal is to develop a learning

algorithm that preserves as much temporal and human-object interaction informa-
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tion as possible. At the same time, it should be relatively resistant to the situation

of partial information loss.

The basis of our algorithm is Hidden Markov Models. As we can see from the in-

vestigation that follows, this kind of model is not only good at recognition tasks that

involve temporal sequences, but is flexible in taking di↵erent types of inputs as well.

More importantly, it is powerful in modeling complicated activities by using some

sophisticated structure derived from the basic form. Also when compared with dis-

criminative models with proven excellence in performance, such as deep learning, this

kind of model enjoys the advantage of being easily adaptive to di↵erent applications

and requires much less time in training.

This thesis begins with an overview of various kinds of machine learning algorithms

for human activity recognition in Chapter 2, where the trade-o↵ between di↵erent ap-

proaches is also discussed. In addition, we look at existing variants of hidden Markov

models and the motivation for our model. In Chapter 3, we present the formal defi-

nition and derivation of our model, followed by Chapter 4, where we illustrate how to

solve inference and learning problems by using our selective factorized coupled hidden

Markov model. The details of synthetic and empirical experiments are included in

Chapter 5. Finally we conclude our discussion in Chapter 6.
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Chapter 2

Background and Existing

Methodologies

2.1 Hidden Markov Model

2.1.1 Standard Form and Conditional Independence

A Hidden Markov Models (HMM) is a generative model of the joint probability of

a collection of random variables [30]. Graphically, it can be represented as an unfolded

mixture model whose states at time t are conditioned on those at time t � 1, also

known as the first-order Markov property. The first-order Hidden Markov Models

can be extended to n-th order, where n is greater than one.

A standard first-order HMM with N hidden states, M possible observations and

length T is defined by the parameter set ✓ = {A,B, ⇡}. ⇡ is the initial state probabil-

ity parameter set, which is also called prior. A is a set of state transition probabilities.

And B is the set of observation probabilities conditioned on the hidden states. Sup-

pose we have the observation and hidden state at time t denoted as ot and qt, the

independence assumptions can be concluded as follows:

P (qt | qt�1, ot�1, ..., q1, o1) = P (qt | qt�1)

9



P (ot | ot, qt, ot�1, qt�1, ..., o1, q1) = P (ot | qt)

where the t-th hidden state only depends on the previous hidden state, and the t-th

observation is independent of other variables except for the current hidden state. Note

that the observations or emissions can be either discrete or continuous. Meanwhile,

the probability constraints also apply. The initial state probabilities and elements in

A and B must satisfy:

PN
i=1 ⇡i = 1,

PN
j=1 aij = 1,

PM
k=1 bi(k) = 1

In the continuous case, the pdf’s of observations ot at time t is often parameterized

by a multivariate Gaussian distribution [2]. A single multivariate Gaussian output

distribution is:

bi(k) = P (O|si) = N (O;µi,⌃i)

And can be extended to the case of M-component Gaussian mixture model:

bi(k) = P (O|si) =
MX

m=1

cimN (O;µim,⌃im)

2.1.2 Scope of Usage

There are mainly three types of problems to solve for HMM’s [4]. The first one is to

find the forward probability that the model generates a given sequence, i.e. to estimate

P (O | ✓) given an observation sequence O = o1, o2, ..., oT and a model parameter set

✓ = {A,B, ⇡}. The second one is to find the best state path given both observations

and a model parameter set ✓ = {A,B, ⇡}. This problem can be solved e�ciently by

Viterbi algorithm, which is a type of dynamic programming algorithm. The last one
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Table 2.1: Three Important Problems of HMM

Problem Algorithm Computation Complexity

estimation ( P (O | ✓) ) forward, backward algorithm O(TN2)

inference( Q⇤ = argmaxQP (Q | O) ) Viterbi algorithm O(TN2)

learning ( ✓⇤ = argmax✓P (Q | ✓) ) EM (Baum-Welch) O(TN2)

is to find the best ✓ = {A,B, ⇡} that maximizes P (O | ✓). This problem can be

framed as a constrained optimization problem of finding ✓⇤ = argmax✓P (O | ✓). It

can be solved by using Baum-Welch, which is essentially a type of EM algorithm.

We can summarize the scope of applying HMM models along with typical asymp-

totic computation cost in the table.

2.2 Hidden Markov Model Variations

2.2.1 Forms of Variations

Variations of HMM’s develop more sophisticated structure upon the most basic

Hidden Markov Models. There can be temporal relaxation such as Hidden semi

Markov Model (HSMM) [11] [15] [23] or hierarchical structure [13], such as Layered

Hidden Markov Models (LHMMs) and Hierarchical Hidden Markov Models (HH-

MMs).

A dynamically multi-linked hidden Markov model with the structure determined

by Bayesian information criterion was also proposed. Local and global features are

used for representation and to have a uniform distribution for modeling the global

activity, a duration state is added in the DBN model, which is similar to hidden semi

Markov Model [10].

Each of the models has its own strengths and weaknesses in terms of perfor-

mance in di↵erent applications and computation cost. If the underlying process does

not have a geometrically distributed duration, hidden semi Markov model is more
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appropriate for modeling the process. However, statistical inference for hidden semi-

Markov models is more di�cult than in hidden Markov models since algorithms like

the Baum-Welch algorithm are not directly applicable, and must be adapted requir-

ing more resources. The hierarchical hidden Markov models utilize its structure to

solve a subset of the problems more e�ciently and can be used to extract higher-level

semantic meanings. However, the methods for estimating the HHMM parameters and

model structure are more complex than for the HMM.

For the interest of our investigation, coupled Hidden Marko Models (CHMM) [36],

[5] is a more relevant variation. It has been compared to HMM to model activities

that involve interactions among multi-agents, and has been shown to generate better

recognition results [28]. In order to account for the varied sub-event duration and

states, a coupled hidden semi Markov model (CHSMM) has been proposed which

allows composition states for both of the channels in the CHMM model. The algo-

rithmic complexity can be reduced to O(C2NT ), where C is the number of channels,

N is the number of states and T is the number of time steps. The CHSMM model has

produced 20% to 30% increase in performance on simulated test and 50% increase

in real data [24]. The main focus of our work is not on temporal variance in the

hidden states, but rather to address the issues with observations variance or miss-

ing. Thus the model is developed upon CHMM, though it can be further adapted to

semi-Markovian processes too.

2.2.2 An Architectural Perspective

Following is a collection of hidden Markov models that researchers have been us-

ing for multi-agent activities recognition. The hidden semi Markov models (HSMM’s)

allow the hidden state to extend more than a single time step and the parallel hid-

den markov models (PaHMM’s) develop multi-chains for multiple agents. Parallel

hidden semi Markov models (PaHSMM’s) combine the merits of both HSMM’s and

PaHMM’s. The hierarchical semi parallel hidden Markov models extract higher-level

semantic meanings from observations whereas the hierarchical parallel hidden semi

Markov models encode lower-level hidden state variables.
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Figure 2-1: An Illustration of HMM Variants Structures [25]: a)HMM b)HSMM
c)PaHMM d)PaHSMM e)HSPaHMM f)HPaHSMM

HSPaHMM and HPaHSMM [25] combine the features of all these 3 classes (hier-

archical, semi, multi-channel) of extensions. And they are able to derive higher level

sematic concepts from raw observation inputs, avoid significant variance in low-level

feature variance and reduce the variance in observations where di↵erent people per-

form activities in slightly di↵erent style. Pradeep Natarajan et al also provided a

graphical representation of these of models.

2.2.3 Coupled Hidden Markov Models

Coupled Hidden Markov Models (CHMM’s) can be viewed as HMM extended to

multi-dimensional forms [5]. Here the current state is dependent on the states of its

own chain and that of the neighboring chain at the previous time step. In addition

to the parameter set established in the hidden Markov Models, the cross-chain state

transitional probabilities are introduced. The posterior state probability for CHMM’s

is expressed as:

P (S | O) =
Ps1ps1(o1)Ps01ps01(o

0
1)

P (O)
⇥

TY

t=2

Pst|st�1Ps0t|s0t�1Ps0t|st�1Pst|s0t�1pst(ot)ps0t(o
0
t)
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where st s0t ot ot0 denote the state and observations for each of the Markov chains

that the CHMM is consist of.

Figure 2-2: Graphical Representation of a CHMM

In a coupled hidden Markov model, the agents engaged in an activity are no longer

isolated and a proper choice of CHMM can significantly improve the recognition

e↵ectiveness. Due to its nice property of being able to model interaction, CHMM has

been combined with hierarchical or semi structure for complex activity recognition

[33] [25]. Besides the area of human activity recognition, CHMM has also been

applied to a wide range of applications including molecular sciences [33], tool-ware

classifications [7] and speech recognition [20] [26] [9].

Figure 2-3: An example of a CHMM sequence with missing observations
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However there’s still an unaddressed gap. In situations where there are conditional

dependencies between the agents in the activities, we need a model that considers the

interactions across the chains. In another type of situations where partial observations

are missing/of poor quality, or only one of the agents is engaged in the activity at

certain time steps, we need a model that can factorize or collapse coupled states

at certain transitions. This is where the selective factorized hidden markov model

(SFCHMM) comes to fill in the gap.
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Chapter 3

Selective Factorized Coupled

Hidden Markov Models

The CHMM has already been shown as a powerful machine to model interactions

among agents [5]. To further cater to situations where there should be partial in-

formation missing or sensor inputs quality deterioration, we present a HMM variant

that has similar architecture as CHMM but includes both coupled as well as selective

factorized states. It captures the interactions overall but also makes sure to utilize

the available input set to its best.

3.1 Notations

The model definition will be extended based on the notations of standard hidden

Markov models. In a standard HMM with a parameter set ✓ = {A,B, ⇡}, where

there are N hidden states S = {s1, s2..., sN}, and M observations V = {v1, v2..., vM}.

A and B are conditional state transition probabilities and conditional observation

transitional probabilities respectively.

For any given sequence with observations O = o1, o2, ..., oT and hidden states

Q = q1, q2, ..., qT , the initial state distribution ⇡, and each entry of A,B are calculated

16



as follows:

⇡i = P (q1 = si)

aij = P (qt = sj | qt�1 = si)

bj(k) = P (ot = vk | qt = sj)

where 1  i, j  N ,1  k  M and t  T

In a standard CHMM model, suppose the state space sizes of the two individual

chains are N (1) and N (2), then the complete coupled state space is the Cartesian

product of the two. Some of the coupled hidden states are likely to be obsolete

or redundant, causing the computation cost to be unnecessarily high. Instead of

exhausting all the possible coupled hidden state, we use a I parameter to indicate

whether two states from the coupled chains are related to each other, thus reducing

the size of the state space.

So now we have a new set of model parameters for our selective factorized coupled

hidden Markov model ✓ = (A,B, ⇡, I). Under the new definition of selective factorized

coupled hidden markov model, the parameter set is ✓ = (A,B, ⇡, I), where A, B, ⇡

are the transition probabilities, emission probabilities, initial probabilities and hidden

state interaction set. In addition superscript of a variable indicates whether it belongs

to a specific chain of the coupled model or it comes from a selective factorized term.

The prior probabilities and conditional observation transition probabilities be-

come:

⇡(c)
i = P (q(c)1 = si)

b(c)i (k) = P (o(c)t = vk | q(c)t = si)

17



where 1  i, j  N (c), t  T and c = 1, 2. There are two types of transition

probabilities. One type is for transitions on the same chain and the other is for

transitions across the two chains:

a(c,c
0)

ij = P (q(c
0)

t = sj | q(c)t�1 = si)

where 1  i  N (c), 1  j  N (c0) t  T and c, c0 2 {1, 2}.

In actual computation, we can use maximum-entropy factoring [5], [21] to project

the coupled parameter back into its components:

â(c,c)ij /
sX

l

X

k

a(c,c
0)

ik a(c,c
0)

jl

â(c,c
0)

ij /
sX

j

X

k

a(c,c
0)

ik a(c,c
0)

jl

where the â(c,c)ij is the transition probability along the same chain and â(c,c
0)

ij is the

transitional probability between the two chains. With the projected values, we can

reduce the computation of using (N (c) · N (c0)) ⇥ (N (c) · N (c0)) dimension matrix to

(N (c) ⇥N (c)) and (N (c) ⇥N (c0)) dimension matrices.

3.2 Forward and Backward Procedures

3.2.1 Forward and Backward Procedures in basic HMM’s

To solve for the probability of an observation sequence give the model, i.e. P (O |

✓), the naive way to compute is according to definition, which requires enumerating

joint probability over all possible state sequence. It would lead to O(TNT ) compu-

tation since for every time step there are N possible states. For a simple example

of N = 10 and T = 100, the order of computation is 10101. The forward-backward
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procedure helps solve this computation infeasibility of the naive approach.

We first define the forward probability as ↵t(i) = P (o1, o2, ..., qt = si | ✓). In other

words, ↵t(i) is the probability of observing o1 till ot and hidden state si at time t,

given the model parameters ✓.

The computation using induction is as follows:

• Initialization

↵1 = ⇡ibi(o1) for 1  i  N , where ↵1 is initialized as the joint probability of

state Si and initial observation o1.

• Induction Step

↵t+1(j) = [
PN

i=1 ↵t(i)aij]bj(ot+1), where 1  t  T � 1 and 1  j  N .

• Termination

P (O | ✓) =
PN

i=1 ↵T (i).

The complexity under this scheme is O(N2T ), which is significantly less than the

naive approach. Also the forward probability induction is su�cient to solve for our

first question, which is finding out how likely a sequence of observations is generated

by a given model.

Figure 3-1: An Illustration of forward, backward procedures
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In essence, the forward probabilities ↵i’s can be viewed as a trellis data structure,

where the probabilities of previous sequence are summarized to N nodes at the current

step.

Its counterpart backward probability �t(i) is calculated by induction in a similar

fashion, except that it is derived from backwards. �t(i) is the probability of observing

ot+1 till oT , given the hidden state si at time t and the model parameters ✓. As

initialization values:

�T (i) = 1

for all �t(i) = P (ot+1, ot+2, ...oT | qt = si, ✓), where 1  i  N . In the induction step,

the backward probability of a sequence having hidden state si, the probabilities at

time t+ 1 and the transition probabilities are considered:

�t(i) =
NX

j=1

aijbj(ot+1)�t+1(j)

where t = T � 1, T � 2, ..., 1 and 1  i  N . Likewise, the complexity of computing

�t(i) is O(N2T ).

A couple more useful variables are introduced here. The first one is �t(i), repre-

senting the probability of being in state si at time t, given the observation sequence

and model parameters. Following the previous derivation, �t(i) can also be expressed

in terms of ↵t(i) and �t(i):

�t(i) = P (qt = si | O, ✓)

=
↵t(i)�t(i)

P (O | ✓) =
↵t(i)�t(i)PN
i=1 ↵t(i)�t(i)

The other variable ⇠t(i, j) = P (qt = si, qt+1 | O, ✓) is used for representing the

probability of being in state si at time t, and being in state sj at time t + 1, given

observation O and model parameters ✓. Again ⇠ can be expressed by the other terms
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introduced earlier:

⇠t(i, j) =
↵t(i)aijbj(ot+1)�t+1(j)

P (O | ✓)

=
↵t(i)aijbj(ot+1)�t+1(j)PN

i=1

PN
j=1 ↵t(i)aijbj(ot+1)�t+1(j)

And according to the definitions, summation of ⇠t(i, j) over j gives �t(i)

�t(i) =
NX

j=1

⇠t(i, j)

3.2.2 A New Formation for Selective Factorial CHMM

In our SFCHMM model, we define the forward probabilities ↵(c)
t (i) and �(c)

t (i).

Forward probability ↵(c)
t (i) is the probability at chain c, observation o(c)t is observed

at time t given the model parameters ✓. And �(c)
t (i) is the probability at chain c that

observations o(c)t+1 through o(c)T are observed, given the model parameters ✓ and the

hidden state at time t. The formal notations for ↵ and � are as follows:

↵(c)
t (i) = P (o(1)1 , o(2)1 , ..., o(1)t , o(2)t , q(c)t = si | ✓, I)

�(c)
t (i) = P (o(1)t+1, o

(2)
t+1, ..., o

(1)
T , o(2)T | q(c)t = si, ✓, I)

where 1  i  N (c) and c = 1, 2. Again rather than naively compute P (O | ✓)

according to definition, calculation by induction caches the result of previous iteration

and significantly improves the computation e�ciency. The asymptotic complexity

reduces from O(TNT ) to O(N2T ), where hidden N is the state space size and the

length of the sequence.

In addition, We impose triggers on the transitions so that the coupled state col-

lapse to a single chain state when there is a missing observation at either one of the
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chain. The triggers are generated by a simple step function H:

H(o(c)t ) =

8
><

>:

1 o(c)t is present

0 o(c)t otherwise

When the current observation is missing from one party of the coupled chain, the

model selectively factorize or merge to the hidden state of the other chain, creating

a knot in the path.

Figure 3-2: Selective Factorized CHMM

Now we will go through the derivation of forward procedure under the new for-

mation.

• Initialization

↵(c)
1 (i) = ⇡(c)

i b(c)i (o1)

• Induction Step

↵(c)
t+1(j) = b(c)j (ot+1)H(o(c)t+1)

X

c0=1,2

[I(c,c0)

N(c0)X

i=1

(↵(c0)
t (i) · a(c,c

0)
ij )] + (1�H(o(c)t+1)) · w(c)
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• Termination

P (O | ✓) =
Y

c=1,2

� N(c)X

i=1

↵(c)
T (i)

�

=
Y

c=1,2

� N(c)X

i=1

↵(c)
t (i) · �(c)

t (i)
�

More specifically in the induction step, we not only consider within-chain and

cross-chain transition probabilities, but also factor in the H function. When an

absence of an observation from one chain is detected, the H function causes the ↵

and � at current iteration to be factorized with w(c). Weight w(c) is of the same

dimension of ↵(c). And w(c) can be randomly sampled from a normal distribution or

be set to zeroes. If set to be zero, the model collapses to a single chain, creating a

knot at the chain at that time step. In fact, the choice of w(c) allows us to choose

from strict factorization or some random guesses to be included.

Alternatively, we can use the backward probabilities, or forward-backward prob-

abilities for calculation:

P (O | ✓) =
Y

c=1,2

� N(c)X

i=1

↵(c)
T (i)

�

=
Y

c=1,2

� N(c)X

i=1

↵(c)
t (i) · �(c)

t (i)
�

=
Y

c=1,2

� N(c)X

j=1

�(c)
T (j)⇡jbj(o1)

�

In addition, if we are interested in knowing the state probability at time t give

the observations and model parameters, we can introduce an extra variable �t(i) and

23



calculate it with ↵t(i) and �t(i):

�t(i) = P (q(c)t = si | O, ✓)

=
↵t(i)(c)�t(i)(c)

P (O | ✓)

=
↵t(i)(c)�t(i)(c)Q

c=1,2

�PNc

i=1 ↵
(c)
t (i) · �(c)

t (i)
�

An obvious use of the modified forward, backward and forward-backward proce-

dures is to accommodate for our new model itself. But it can also be used as an

approximation technique for standard CHMM. Suppose we have an observance se-

quence coming in and we would like to calculate P (O | ✓) given an underlying model.

Without a complete observation sequence, the forward and backward procedures have

to fill in guesses or skip the calculation, whereas the selective factorization strategy

can be used to approach the problem with computation e�ciency. We will see in the

experiment chapter how the estimation performs.
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Chapter 4

Decoding and Parameter

Estimation

4.1 Decoding Optimal Path for SFCHMM

4.1.1 Viterbi Algorithm

Viterbi [34] algorithm is widely used to find the best hidden state sequence, given

both observations and the model parameters ✓. In order to find the optimal hidden

state path that optimize P (Q0, O | ✓), where Q0 is our estimated hidden state, we first

define the highest probability of a sequence up till time t and ending at hidden state

si as �t(i):

�t(i) = maxq1,q2,...,qt�1P (q1, q2, ..., qt�1, qt = si, o1, o2, ..., ot | ✓)

By induction, the best path merged at each possible hidden state is dependent

only on the previous best state path and the conditional probabilities:

�t+1(i) = maxi[✓t(i)aij]bj(ot+1)

The e�ciency of Viterbi lies in its dynamic programming strategy for keeping

track of the best �t(i) at every time step t for all possible state si’s.
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An extra array  t(j) is used for this purpose. The steps of implementing the

algorithm can be summarized as follows:

Figure 4-1: A simple Viterbi path

• Initialization

�1(i) = ⇡ibi(O1),

 1(i) = (0)N⇥1, where 1  i  N

• Recursion

�t(j) = maxN
i=1[�t�1(i)aij]bj(ot),

 t+1(j) = argmaxN
i=1[✓t�1(i)aij], where 2  t  T and 1  j  N

• Termination

P ⇤ = maxN
i=1�T (i),

q⇤T = argmaxN
i=1�T (i)

• Backtracking

q⇤t =  t+1q⇤t+1, where t = T � 1, T � 2, ..., 1

4.1.2 A Modified Viterbi Algorithm for SFCHMM

Now we will present the new formation of best state path finding algorithm for

selective factorized CHMM. To adapt Viterbi to our model, we need to track best path

according to transitional probabilities not only on a single chain but on cross-chain

as well.
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Figure 4-2: Modified Viterbi Path for Selective Factorized CHMM

We first define �t(i, j), a joint path probability till time t ending at hidden state

s(1)i , s(2)j given the model parameters. Another variable  is used keep track of current

best state. Note that the new state space s0(1)i , s0(2)j are mapped from s(1)i , s(2)j , but

each has an extra null state added to account for the coupled state that selective

factorization happens. The memory space of  is in accordance with s0(1)i , s0(2)j . The

basic initialization, induction and termination scheme is similar but with the dimen-

sion expanded. In each of the iterations, we maximize the path probabilities to each

of the possible state at current time step. However, the augmented Viterbi algorithm

implementation also takes into consideration the coupled transitional probabilities.

The final result, i.e. our optimal hidden state path is collected by backtracking  .

• Initialization

�(c,c
0)

1 (i) = �(c,c)1 (i) = ⇡(c)
i b(c)i (o1)

 (c,c)
1 (i) = (0)(N(c)+1)⇥1 where 1  i  N (c)

 (c,c0)
1 (i) = (0)(N(c0)+1)⇥1 where 1  i  N (c0)

• Recursion

�(c,c)t (j) = maxN(c)

i=1 [�t�1(i)a
(c,c)
ij ]bj(ot)

�(c,c
0)

t (j) = maxN(c0)
i=1 [�t�1(i)a

(c,c0)
ij ]bj(ot)
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 (c,c)
t+1 (j) = argmaxN(c)

i=1 [�(c,c)t�1 (i)a
(c,c)
ij ]

 (c,c0)
t+1 (j) = argmaxN(c)

i=1 [�(c,c
0)

t�1 (i)a(c,c
0)

ij ] where 2  t  T and 1  j  N

• Termination

P (c,c)⇤ = maxN(c)

i=1 �(c,c)T (i)

P (c,c0)⇤ = maxN(c0)
i=1 �(c,c

0)
T (i)

q(c,c)⇤T = argmaxN(c)

i=1 �(c,c)T (i)

q(c,c
0)⇤

T = argmaxN(c0)
i=1 �(c,c

0)
T (i)

• Backtracking

q(c,c)⇤t =  (c,c)
t+1 · q(c,c)⇤t+1

q(c,c
0)⇤

t =  (c,c0)
t+1 · q(c,c

0)⇤
t+1 where t = T � 1, T � 2, ..., 1

Notice that when an observation is missing from one chain, the hidden state at

that time step at that chat is decoded to be null state. The forward induction and

backtracking both take linear time and now the memory requirement more than

double the case with single chain hidden Markov model.

4.2 Learning Model Parameters

Learning the model parameters ✓ = {A,B, ⇡} is the more di�cult problem related

to HMM’s. Most recently, there has been a breakthrough in developing analytic

solver using spectral method [16]. But we will focus on the well-established iterative

methods such as Baum-Welch method (a type of EM algorithm), which is guaranteed

to generate locally-optimized solution.

4.2.1 EM and GEM Algorithm

EM and generalized EM (GEM) algorithm has been the most popular method for

estimating HMM [12], [3]. Since the Baum-Welch is a form of EM algorithm, we will

first provide a description of the algorithm listed as below:
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• Estimation step

Given observation O, parameters to estimate ✓ and the objective function

L(✓;O, S), an auxiliary function is constructed:

Q(✓, ✓0) = E[L(✓;O, S) | O, ✓]

which is the expectation of the objective over all possible state sequences, give

observations O and the current estimate of the parameter ✓0. Note that in

Baum-Welch the objective function is logarithmic form L = logP (O, S | ✓)

• Maximization step

The new estimate is solve by:

✓ = argmaxQ(✓; ✓0)

Solve for ✓ that maximizes Q(✓; ✓0) is hard. More often, we use self-mapping

transformation defined ⌧ as ✓new = ⌧(✓0) such that:

Q(⌧(✓0); ✓) � Q(✓; ✓0)

4.2.2 Baum-Welch Algorithm

For an HMM with discrete observations, the model parameter estimations can be

summarized as follows:

⇡i = �1(i)

aij =

PT�1
i=1 ⇠t(i, j)PT�1
i=1 �t(i)
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bj(k) =

PN
t=1 �tOt=vk

(j)
PT

t=1 �t(j)

where ⇡i is the expected frequency in state si at time t = 1, aij is the expected number

of transition from state si to sj with respect to the total number of transitions away

from si, and bj(k) is the expected number of occurrences of state sj observing vk with

respect to the total number of times in state sj.

We further define an objective function L for our maximization step:

L(✓, ✓0) =
X

q2Q

logP (O, q | ✓)P (O, q | ✓0)

where ✓0 is the estimated model parameter set and ✓0 is the true model parameter set.

And L can be rewritten as with substitution of P (O, q, | ✓):

P (O, q, | ✓) = ⇡i

TY

t=1

aqt�1qtbqt(ot)

L(✓, ✓0) =
NX

i=1

log ⇡iP (O, q0 = si, | ✓0) +
X

q2Q

(
TX

t=1

log aqt�1qt)P (O, q, | ✓0)

+
X

q2Q

(
TX

t=1

log bqt(ot))P (O, q, | ✓0)

The new estimates will be calculated from the three independent parts of the

summation in L(✓, ✓0). We can take the derivative, add a Lagrange multiplier for

each, and compute the result with derivative set to zero for each part. We get the

new estimations are as follows:

⇡i =
P (O, q0 = si | ✓0)

P (O | ✓0)

aij =

PT
t=1 P (O, qt�1 = si, qt = sj | ✓0)PT

t=1 P (O, qt�1 = si | ✓0)
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bi(k) =

PT
t=1 P (O, qt | ✓0)I(ot = vk)PT

t=1 P (O, qt | ✓0)

Note that I(ot = vk) is just an indicator that only observations equal to vk contribute

to the backward probability bi(k).

Now we will extend the Baum-Welch algorithm for SHCHMM. For selective fac-

torized coupled hidden Markov models, the objective function is defined as:

L(✓, ✓0) =
X

q2Q

logP (O, q | ✓)P (O, q | ✓0)

where ✓ is the set of true values of model parameters, ✓’ is the estimation. The

constraints now become:

X
⇡(c)
i = 1

X
a(c,c

0)
ij = 1

X
b(c)j (k) = 1

.

In each of the iteration, we solve it as a constrained optimization problem by

adding the constraint multiplied by the Lagrange multiplier � and taking the deriva-

tive.

The estimation of parameters gets updated until they converge according to a

threshold. The following calculation is used in both estimation and optimization

steps:

⇡(c)
i =

⇡(c)
i

@L

@⇡
(c)
iPN(c)

k=1 ⇡k
@L

@⇡
(c)
k
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a(c,c
0)

ij =
a(c,c

0)
ij

@L

@a
(c,c0)
ij

PN(c0)

k=1 a(c,c
0)

ik
@L

@a
(c,c0)
ik

b(c)j (k) =
b(c)j (k) @L

@b
(c)
j (k)

PM(c)

v=1 b(c)j (v) @L

@b
(c)
j (v)

It is worth noting that Baum-Welch algorithm, like all other EM algorithms,

we are guaranteed to find the local optimal but not guaranteed to hit the global

optimal. One way to avoid to be stuck at a bad local optimal solution is using

multiple initializations.
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Chapter 5

Synthetic and Empirical

Experiment

The experiments consist of two parts, including synthetic simulations and an empirical

test on a real world dataset. The results demonstrate the usefulness of selective

factorization in three cases. One is as an approximation method of learning a discrete

CHMM sequences when partial observations are missing. Another is as a method to

address issues with unknown or missing observations in a continuous CHMM. And

the last one is as an original learning model for human activity recognition.

5.1 Synthetic Simulation

5.1.1 Simulation Description

In the first synthetic experiment, we generate random CHMM processes with 5⇥5

hidden states for the coupled chains, 4 and 6 observations associated with each chain

respectively. We assume equal initial probabilities for each hidden state as prior. The

observational probabilities and transitional probabilities are randomly generated for

every instance in our simulations.

In a graphical visualization of one simulated sequence, the sequence of the couple

states are represented by two step functions, and the observations are represented
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by nodes of two regular polygons, the weighted connections of which indicate the

occurrences of observational transitions.

Figure 5-1: A sample of 5⇥5 hidden state CHMM process simulation

We mask 1% up to 50% of the observations of the simulated sequences to be

unknown, keeping the non-masked sequence for base-line comparison. And then we

use selective factorization in forward, backward procedures introduced earlier to es-

timate the P (O0 | ✓), where O0 is the observations transformed after omission. We

repeatedly test it on 30 independent instances of CHMM processes of length 1000 at

di↵erent unknown observation percentage levels. The process is repeated for 4 ⇥ 4

-hidden-state and 5⇥ 5 -hidden-state CHMM as well for additional comparisons.

In the second synthetic experiment, we generate coupled models with continu-

ous observations. The hidden state space is 3 ⇥ 3. For each of the chains, there

are two sets of independent continuous observations. Each set is parameterized by

2-component multivariate normal distributions. We generate noises by randomly

sampling from a uniform distribution. In order to compare di↵erent strategies to

address unknown/missing observations, a random subset of observations generated

by a CHMM is replaced by noisy observations. And the noise is randomly sam-

pled from a uniform distribution. As a convention of solving for outlier detection of
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Figure 5-2: An example noisy observation simulation on one of the coupled chains.

multivariate Gaussian distributions, Mahalanobis distance, which takes into account

the covariance among the variables, will be used. An observations is classified as

unknown/missing when the Mahalanobis distance exceeds a threshold.

In the second experiment, some methods will consider unknown/missing obser-

vations as a special observation and recalculate the emissions accordingly whereas

others won’t anticipate the occurrences of noise thus using the original CHMM model

parameters for estimations. As for the case of recalculating emission probabilities, we

assume equal conditional probabilities of current unknown/missing state depending

on hidden state q(c)i to be equal for all components of the parameterized observation

components.

5.1.2 Method and Result Analysis

In the first experiment, we generated 30 randomly simulated CHMM models. For

each of the CHMM model, a complete observation sequence was also simulated. We

used forward-backward procedure to estimate P (O | ✓) with complete observation

sequence. And then 1% up to 50% of observation sequences were randomly removed.

We estimate the new P (O | ✓)’s with the forward procedure defined under selec-

tive factorized coupled hidden markov models. The result shown in the graph was
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aggregated over the 30 samples.

Figure 5-3: Estimation results using selective factorization on 30 samples of 5⇥5
hidden state CHMM with missing observations

The probability of observing the sequence given the underlying model with missing

observations drops, but the negative relationship is non-linear. As we can see from

the graph, if less than 7.5% of the observations are missing, selective factorization

helps approximate the result well. They are close to the results generated by the

normal CHMM estimation methods when there is no missing observation. However,

from that point on, the drop of probabilities are steep and have greater variance,

until the unstable curve flattens out at around 30%. We repeated the process for

di↵erent CHMM’s with di↵erent hidden state spaces and get similar results in terms

of degradation trend.

To conclude the findings based on synthetic data simulation of using SFCHMM for

approximating CHMM sequence, the performance of selective factorization is a↵ected

by the size of missing observations with respect to the total supposedly observed

population. As long as it is below a critical value, selective factorization is a close

estimation to the true model. The result becomes unstable and deteriorates beyond

that point.

In the second part of synthetic experiment, we compare the performance of using
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Figure 5-4: Estimation results using selective factorization on 30 samples of 4⇥4 and
6⇥6 hidden state CHMM with missing observations

selective factorization against other possible ways of dealing with unknown/missing

observation for CHMM.

The result is based on simulations of 30 independent CHMM sequence of length

1000 with continuous observations and partial observations replaced by random noises

sampled from a uniform distribution. There are two type of observations generated by

the simulations, one type is observations identified as belonging to one of the compo-

nent of continuous observations parameterized by multivariate normal distributions,

the other type is outliers to any of the observation components.

We use selective factorization for continuous sequence estimation in a similar fash-

ion as we do in the discrete case. We deploy selective factorizaton and adjust the

probability dependency whenever an observation is classified as unknown/missing.

There are four other alternatives we could possibly use to estimate the sequence

in addition to selective factorization.

In the first one, without modification on the existing model, we infer the most

likely state from transition probabilities at the time step where the observation on

one of the chain is classified as unknown/missing. In the second one, we adjust the

model to include an extra state (null) associated with missing observation, where we

include additional transition probabilities related to null state and the transitional

probabilities of the original model are therefore di↵used.
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Figure 5-5: comparison between di↵erent strategies of dealing with unknown/missing
observations

The first two alternatives and SFCHMM don’t change the emission probabilities.

And they displays a common trend of degrading estimation result after the percentage

of unknown/missing observations hits below certain level, which is illustrated on drop

in the curves. Among the three approaches, SFCHMM shows the best estimation re-

sult regardless to the percentage of unknown/missing observations. The replacement

with most likely state yields better result than including an extra null hidden state.

In the third and fourth approaches, we will include anticipations of the occur-

rences of noises in the adjusted models. In the third one, we expand the emission

probabilities to include missing observation probabilities proportional to the num-

ber of unknown/missing observations. And in the last model, we include both the

unknown/missing emission probabilities and the transition probabilities of an extra

hidden state.

Now that we’ve adjusted the emission probabilities, the third and fourth ap-

proaches have di↵erent trending properties with regard to percentage of unknown/missing

observations. The curves stay relatively stable around the same value at di↵erent per-

centages.

In conclusion for the second part of synthetic experiment, when we take into

account unknown/missing observations in the emission probabilities, the results don’t

correlate to the percentage of known/missing observations. However, for selective

factorization and the two alternatives that don’t adjust the emissions, they display a
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Figure 5-6: comparison between di↵erent strategies of dealing with unknown/missing
observations

degrading feature after certain threshold.

As for the overall result, when the percentage of unknown/missing value exceeds

around 15%, SFCHMM isn’t as competitive as the fourth alternative. That is the

case where we use a model that has well estimated emissions, and adjusted transition

probabilities associated with unknown/missing cases. But in real applications, it

is hard to anticipate the actual occurrence of unknown/missing observations and

generating such a model with extra hidden state transitions and emissions is hard.

5.2 Experiment on a Real World Problem

5.2.1 Dataset Description and Measurement

To empirically test our method, we use the Opportunity human activity recog-

nition dataset generated by researchers from Wearable Computing Laboratory ETH

Zurich [32]. The dataset was acquired from 12 subjects while they were performing

morning activities and included 72 sensors of 10 modalities in 15 wireless and wired

networked sensor systems in the environment, objects and the body. For each subject

there are 5 daily activity sessions and one drill session which has about 20 repetitions
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Table 5.1: Benchmark Result of Modes of Locomotion
Classifier Accuracy F-measure F-measure (without null class)

Linear discriminant analysis 0.60 0.60 0.68
Quadratic discriminant analysis 0.64 0.62 0.73

1-Nearest neighbors 0.82 0.82 0.83
3-Nearest neighbors classifier 0.83 0.83 0.84

Nearest cluster classifier 0.54 0.54 0.62

of some pre-defined actions. Data was manually labeled for modes of locomotion,

gestures and high-level activities by at least two di↵erent persons.

Figure 5-7: (a) Recording environment of the Opportunity dataset. (b) Location of
the on-body IMU sensors. (c) Location of the bluetooth accelerometers. [32]

The Opportunity dataset is relatively ideal for the problem of investigation, for

it incorporates human-object interaction as well as multi-channel sensor inputs. In

addition, the benchmarking results using other methods including both discriminant

models and generative models are publically available to compare against. There are

two types of activity recognition tasks, the lower-level locomotion classification and

the higher-level gesture classification. We are targeting at the latter.

As for the winning team of the Opportunity challenge, Hong Cao et al. proposed

an integrated framework for human recognition [6], where preprocessing, balanced

sampling are defined in addition to using non-sequential classifier such as Support

Vector Machine (SVM) or K-Nearest Neighbors (KNN). They proved on a couple real

world recognition problems that by using state-of-the-art non-sequential combined

40



Table 5.2: Benchmark Result of Gestures Recognition
Classifier Accuracy F-measure F-measure (without null class)

Linear discriminant analysis 0.53 0.62 0.28
Quadratic discriminant analysis 0.49 0.56 0.29
1-Nearest neighbors classifier 0.83 0.83 0.52
3-Nearest neighbors classifier 0.84 0.83 0.53

Nearest cluster classifier 0.39 0.46 0.24

with pre- and post- classification techniques, this framework is able to achieve good

performance for activity recognition.

As for measurement, we will use the performance measures suggested by the bench-

marks, namely the weighted F-measure [8]:

F1 =
X

i

2wi
precisioni ⇤ recalli
precisioni + recalli

,

where i is the index for activity class ci and weights i’s are calculated from the

proportion of class ci samples out of all N samples, wi = ni/N . More specifically,

precision is defined as TP
TP+FP and recall is defined as TP

TP+FN and can be calculated

from the confusion matrix. Due to ambiguity of onset and o↵set of an action within

a continuous activity sequence, misalignment measures are also considered.

5.2.2 Method and Result Analysis

Our data preprocessing includes removing rows that include only null values and

discretizing input features. Then a selectively factorized CHMM is generated for each

of the 5 daily activity categories, excluding the null activity class. We used locomotion

and middle-level upper-arm gesture labels as our hidden states for the coupled chains.

The associated observations are encoded by lower-level gestures and object labels.

One observation after constructing the models is that in activity categories where

the upper-body is mostly idle and the human object is not actively interacting with

objects, there are more factorized states. The opposite is true for activities that

engage both human body and objects, for instance drinking from co↵ee cups, eating

salami, and closing dish washers.
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Table 5.3: Summary of Training Result

high-level activity label % of samples % of selective factorized states

relaxing 7.7% 46.2%

clean up 13.8% 34.2%

sandwich time 29.3% 26.7%

early morning 29.6% 34.2%

co↵ee time 19.6% 18.2%

We set aside about two-third of the total dataset as our training data to calculate

model parameter estimations and then apply on the rest for gesture recognition test.

The test data is first segmented to smaller sequences according to the high-level

activity categories. We use the augmented Viterbi algorithm modified based on our

selective factorized CHMM model to learn the optimal hidden state path, which

consists our gesture labels.

With discretization, the consecutive samples with same set of observations and

state labels are combined to a single one and thus the number of sequence doesn’t

correspond to the exact length of the original dataset. The overall weighted F-measure

excluding the null class is 0.69. The result is comparable to other top models such

as KNN, which is between 0.53 and 0.58 and mixture of SVM and KNN, which is

between 0.72 and 0.80, depending on the subset the model is tested [32]. Although

the result doesn’t stand out as the best performer in terms of F-measure, it has

an advantage of preserving temporal information, which will be very useful in more

complicated problems where transitions between gestures and activities need to be

investigated.
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Table 5.4: Summary of Test Result

gesture (# of samples tested) Individual F-measure

Open Door 1 (25) 0.62

Open Door 2 (23) 0.55

Close Door 1 (25) 0.64

Close Door 2 (22) 0.56

Open Fridge (41) 0.78

Close Fridge (41) 0.79

Open Dishwasher (20) 0.68

Close Dishwasher (20) 0.62

Open Drawer 1 (17) 0.66

Close Drawer 1 (17) 0.63

Open Drawer 2 (26) 0.65

Close Drawer 2 (26) 0.62

Open Drawer 3 (32) 0.58

Close Drawer 3 (32) 0.63

Clean Table (10) 0.86

Drink from Cup (43) 0.88

Toggle Switch (21) 0.91
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Chapter 6

Conclusion and Future Work

In conclusion, we introduce selective factorization as a complimentary technique

for coupled hidden markov models and demonstrate how it can be incorporated to

CHMM to solve inference and prediction problems. Both the theoretical derivations

and experimental investigation are presented.

In cases where there are observational features absent from a standard coupled

hidden markov process, we can apply selective factorization as an approximation

method. We’ve shown through our synthetic experiment that the result is close to

what one would obtain with the complete observations, as long as the portion of miss-

ing features is below certain limit. We’ve also compared selective factorization against

other methods used to dealing with unknown or missing observations in CHMM. Se-

lective factorized coupled hidden markov model can also be used to solve activity

recognition problems that involve human-object interaction and noisy, multi-channel

sensor inputs. The model is able to both produce competitive result and preserve

important temporal information. It would be interesting to see our method to be

applied to more real-world datasets to see how it performs under di↵erent conditions.

Currently the factorization trigger function H is defined according to the presence

of observations. However, if H can be generalized and embed a mechanism to select

observation instance for selective factorization, this method be more widely used.

The other aspect of future investigation is to develop unsupervised learning that can

automatically generate an optimal selective factorized coupled Markov models. And

44



the learning model should also be able to address the complexity due to large state

space and factorization conditions.
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