

Software Architectural Patterns: A Performance Analysis

A Technical Research Paper
In STS 4600
Presented to

The Faculty of the
School of Engineering and Applied Science

University of Virginia
In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

By

Vineeth Gaddam

April 30, 2020

On my honor as a University student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Signed: ______________Vineeth Gaddam_________________________________

Approved: _______________________________________ Date ________________________
Nada Basit, Department of Computer Science

Software Architectural Patterns: A Performance
Analysis

Nada Basit
Research Supervisor

UVa Department of C.S

Sai Konuri
UVa Class of 2020

B.S. Computer Science

Aman Garg
UVa Class of 2020

B.S. Computer Science

Vineeth Gaddam
UVa Class of 2020

B.S. Computer Science

Abstract—A rise in demand for speed and reliability in websites
has focused performance as a pivotal factor in the development
of applications across the IT industry. This document is a
compare and contrast analysis of how four different architec-
tural patterns perform with respect to pre-defined metrics. The
architectural patterns under study are the following: Model-
View-controller (MVC), Layered, Microservice, and Command
Query Responsibility Segregation (CQRS). The findings suggest
that the MVC pattern performs the most efficiently for the
sample application used. However, they also suggest that when
considering performance, there are other factors such as ease of
development that are equally as important as performance.

Index Terms—architecture, performance, metrics

I. INTRODUCTION

The digital world has undergone a revolution and demand
for internet services of all aspects in daily life have pushed
the boundaries of the software industry. People’s attention
spans have dwindled and it is more important than ever for
software businesses to adapt to such demands from their users
[4]. The need for real time data requires enhancing speed,
computational resources, and distribution. Some methods that
the industry has developed in order to sufficiently meet these
demands include: caching, vertical and horizontal scaling,
content distribution networks (CDN’s), compression, sharding,
etc [4]. These are all effective methods of improving the per-
formance of an application, but they fail to consider whether
the underlying software architecture could possibly have an
effect on the performance. This is what this documents aims
to explore and find any suggestions that architecture could
be a factor affecting the performance of thousands of web
applications running around the world.

The team selected four different architectures: MVC
(Model-View-Controller), Layered, Microservice, and CQRS
(Command Query Responsibility Separation). These are all
common patterns used by developers, which convinced the
team to explore them. The application that was chosen to be
implemented in each of these architectures separately was a
simple textbook catalog service. This was chosen due to the
availability of public data at the institution. Each architecture
used a replica of the same database in order to ensure that
the database did not have an impact on the performance.
The goal of this compare and contrast analysis of these
architectures is to get more insight on whether an architecture
could potentially impact the performance of an application.

II. ARCHITECTURAL PATTERNS

A software architectural pattern is the layout of a software
application with respect to both the codebase and the higher
level tools. It helps to define the basic characteristics and
behavior of an application [1]. Although it is common practice
in the industry to use architecture patterns, selecting one
that meets the different needs required by their application
is a difficult task. These requirements include scalability,
reliability, development, and testability [1]. For this research,
the team focuses on the performance needs of an application.
Performance requirements may not seem important at first
glance, but they can negatively impact user experience of a
product which, in turn, can hurt customer trust and brand
loyalty.

A. Model View Controller

In the Model View Controller (MVC) architecture, there
primarily exists three main layers; model, view, and controller.
The MVC architecture is mostly used to develop web-based
programs. The three layers are further described below: [2]

• Model - The logic used to interact with the data. The
model helps in creating, retrieving, and modifying data
in the database [2].

• View - Allows the user to interact with the application
[2].

• Controller - Works with the model layer to determine
which view should be displayed based on the users
requests [2].

The application that was made for the analysis was devel-
oped by utilizing Ruby on Rails, which is a framework that
contains structures for web pages and web services. [3] The
chosen database was SQLITE due to its simplicity (a replica
of the same database is used in the other architectures). While
working on the application, it was assumed that the application
was based on requirements created by the team and not a
client. The MVC framework could be further explored by
using different frameworks such as Spring MVC, Django, and
ASP.NET, which could potentially have different degrees of
performance and reliability.

B. Layered

In the layered architecture pattern, different components
are organized into horizontal layers [1]. A typical layered
architecture has 4 layers which are described as follows:

• Presentation - Handles user interface and browser com-
munication logic [1].

• Business - Responsible for handling specific business
rules associated with the request [1].

• Persistence - Responsible for communicating directly
with the database.

• Database - All the data pertaining to the application is
stored in this layer.

Smaller applications may only utilize 3 layers and combine
the business and persistence layers into a one business layer
if persistence logic is inherently a part of the business logic
[1].

The application developed by the team consisted of all 4
layers and each layer was implemented using the following
technologies:

• Presentation Layer - ReactJS
• Business Layer - ExpressJS
• Persistence Layer - Python
• Database Layer - SQLite

While developing the application, the team had to make as-
sumptions about what technologies to use in the development
process. Since there were no external or client requirements,
the technologies used to develop the app were ones the team
was previously familiar with. It is possible that there were
better alternatives to the technologies chosen, for example if a
different framework had been used for the presentation layer
instead of ReactJS, there could have been performance benefits
but the team assumed that those differences were negligible.

C. Microservice

The microservice architecture is one that emphasizes many
small, decoupled units as opposed to large components that
handle a variety of functions [1]. The granulated structure
provides for a more streamlined production and reduces the
need for application-wide changes when one component of the
application is changed [1]. Multiple service components will
interact with the user interface layer to allow the application
to function as a whole [1].

The sample application created by the research team was
monolithic in nature and did not need many services. Thus,
the team opted to build the application with docker rather
than develop a true microservices application. Docker pro-
vides a method of virtualization that simplifies the com-
plexity of dependencies by packaging components and their
dependencies into containers. [7]. It is a lightweight virtual
machine that virtualizes at the operating system level rather
than at the hardware level and is popular in microservice
architecture because containers allow the developer to spin
up many small services [7]. In reality, this application served
to test the enhancements or limitations of docker rather than a
truly microservice architecture. Other than the use of docker
containers, this application was built to be the same as the
application developed using the layered architecture.

D. Command-Query Responsibility Segregation

The Command-Query Responsibility Segregation (CQRS)
architecture is a complex architecture that serves a niche
programming audience. The primary function of CQRS is
the notion of having operations that are able to read data
be segregated from the operations that update data. This
segregation of data is significant in certain situations. For
example, when there is a scenario where there are a lot of
writes occurring, the segregation will allow the operations to
go into only one part of the database which is the write and
not worry about the reads. Having the operations be split will
allow the requests to the database to be more streamlined since
they are being handled by the write or the read. A single
operation cannot be both a read from the database and write to
the database. [3] CQRS also utilizes models to manage data,
controllers to process requests, and views for the interface.
CQRS utilizes a database for the read and the write. The
textbook application was once again used with the CQRS
implementation in mind. The team created a read and write
database. [3]

The application was made by using React js, Python Flask,
and SQLite. When a request was made if the command was a
write operation it communicated with the write file and then
was put on a queue called the event bus. The event bus then
gradually also updated the read database. Read operations
went directly to the read database. It was assumed that the
user would be performing more read tasks than write tasks,
which may have had an impact on the effectiveness of the
architecture.

III. TESTING

A. Performance Testing with Jmeter

Jmeter is an open source project used for performance
testing web applications [5]. It provides features such as thread
groups, iterations, HTTP samplers, and Chrome drivers. The
team set up three scenarios:

• A user searches for their university, their department, a
specific course, and its textbooks.

• The same as the above scenario but the user makes an
order for a specific textbook.

• A user makes an order and checks the past orders.

This combination was used in order to use a balance of
read heavy, mixed, and write heavy processes. Due to the
limitations of the hardware that the team had, the maximum
number of threads hitting the application was set to 25. In a
more perfect scenario, multiple machines with a large amount
of threads would be used to mirror real usage. JMeter was
configured to report on the response time (total scenario time)
and the size of the data received. The connection time was
near 0 ms for all the architecture, so this was left out of the
report.

The key components to interpreting the data collected from
JMeter are the following:

• Response Time - A measurement of how long the archi-
tecture takes to return a response. (measured in millisec-
onds)

• Data Size - The number of bytes that are in the response
provided by the architecture.

• CPU Usage - The percentage representing how much of
the machine’s CPU is utilized by the application

• Memory Usage - The percentage representing how much
of the machine’s memory is utilized by the application

B. Testing Environment

• CPU: 2.3 GHz 8-Core Intel Core i9
• Memory: 16 GB 2400 MHz DDR4
• Number of Threads used for Scenarios: 25
• Number of Threads used to measure CPU usage and

memory usage: 100

IV. RESULTS

A. Response Time

Scenario 1

Scenario 2

Scenario 3

Based on the data gathered for response time, MVC per-
forms the best for the read heavy scenario (Scenario 1),
CQRS performs the best for the mixed scenario (Scenario 2),

and Layered/CQRS perform equally well for the write heavy
scenario (Scenario 3). Microservice performs the worst for all
the scenarios except Scenario 3.

The microservice data demonstrates one of the key limita-
tions of the microservice architecture. The textbook catalog
application is not complex, and does not require various
services as one might see on a heavier website like Amazon.
Services such as search indexing, advertising, and recom-
mendations all would benefit from application separation due
to the loose coupling to the underlying database schema.
However, given the simplicity of the textbook catalog, this was
unnecessary. By introducing Docker there is an extra layer
of networking required for the components to communicate
with each other, thus increasing the average response time
immensely. Docker, though lightweight, serves the purpose of
virtual machines. Since other architectures that did not utilize
docker ran natively, they did not require as many resources
from the computer. The microservice architecture, however,
leveraged docker and needed many more resources from the
computer and, as a result, slowed down the performance of
the application in Scenario 1. Since Docker utilizes so many
computer resources, it does not seem that it is likely to speed
up an application.

MVC performed considerably well compared to the other
architectures in the read heavy scenario. This potentially
could be influenced by the high coupling of the architecture.
Although MVC emphasizes separation of concerns between
the model, view, and controller, the application as a whole
is modulated tightly. The controller directly sends function
calls to the model and template calls to the view, limiting the
need for expensive network calls. In a client server model,
as opposed to MVC, the controller is not as tightly coupled
with the other components. Communication requires the use
of HTTP requests, data parsing, and frequent cycles to the
database. This also lends an explanation for the poor response
time of the layered/CQRS architecture when compared with
MVC. In the layered pattern, communication between the
business logic, the persistence layer, and the presentation
layer is done through HTTP calls to each other. Since each
one is a web server, the only method of communication is
the HTTP protocol. While MVC uses one process for the
entire application, the layered pattern required three separate
servers each passing JSON data to each other. MVC has
an internal communication method that doesn’t require cross
server requests.

One interesting finding is that MVC performed relatively
poorly in Scenario 2 and Scenario 3, both of which have
writes to the database. MVC, specifically the Ruby on Rails
framework, generates SQL queries through a class called the
ActiveRecord [8]. Query optimization is more difficult due
to this layer above each model. The database access layer in
the layered architecture used a Python module called Peewee
which is more lightweight as opposed to ActiveRecord.

B. Performance vs Data

Scenario 1

Scenario 2

Scenario 3

In all three scenarios, the MVC architecture consistently
preformed the best by far. The gap in performance is due
to the fact that the team developed the applications for the
other architectures using ReactJS which inherently sends back
large amounts of data to the browser because it has many
components to manage and has to package all of the JavaScript
files whenever it sends information back. A different, lighter
framework like PHP or AJAX could have been leveraged, but
the performance benefits from such a framework would still
not bring the architectures anywhere near the performance of
the MVC architecture. Had the application been developed
strictly HTML and CSS, it would have been much faster, but
most real life applications use a framework like ReactJS. The
team wanted to model a practical web application instead of
building an impractical product that had the sole purpose of
performing well against the team’s metrics.

MVC, on the other hand, uses templates and creates the
HTML before sending data back to the browser. As a result,
since it does not need JavaScript to keep track of things like
application state, opposite to ReactJS, it is able to send back an
HTML page which is more lightweight and requires much less

data than its ReactJS counterpart in this case. In this test, the
performance benefits of an MVC application shine through,
but that does not provide conclusive evidence that MVC as
an architecture is superior to the other three. It simply shows
that the applications built in this case suffered in performance
because they incorporated a framework that MVC did not.

C. Architecture vs CPU Usage

The performance of the architectures are summarized in the
chart below1:

MVC

Layered

Looking at the two graphs, it is evident that the MVC
architecture had a smaller CPU usage throughout the length of
the tests than the layered architecture. The layered architecture
is generally hovering around 16% of the CPU while the
MVC architecture initially is at 18%, it then normalizes and
stays around 12% for the duration of the time. The layered
architecture depends on a decoupled system of primarily
independent servers, which quickly increases the burden on
the CPU. [1] In the application that was created by the team,
the layered architecture had four layers and was built by
using the ReactJS framework, which relies on HTTP requests
and communication with server components. These additional
HTTP requests add to the increased CPU usage.

For the MVC framework on the other hand there are some
attributes that helped the architecture have a lower CPU usage.
MVC allows for the models to work directly with the database.
MVC also utilizes templates and does not need the JavaScript
as much as ReactJS does. The MVC architecture for the
project was built using the Ruby on Rails, which is a more

1Measurements for the Layered architecture are representative of the
Microservices and CQRS architectures

coupled framework than the layered architecture. There is
less communication across multiple servers and the request
handling system based on user actions flows directly from
one part of the framework to the other since coupling is
high. [9] Overall, one cannot say definitively that MVC is the
superior architecture for every scenario. Another factor that
heavily impacts the architecture’s CPU usage is the constant
accessing and utilization of the database. In any given instance
the database handling is the bottleneck for the architectures as
there are many requests that have to be handled.

D. Architecture vs Memory Usage

The performance of the architectures are summarized in the
chart below1:

MVC

Layered

In the graphs of the memory usage of each architecture, it
can be seen that both architecture patterns level out around
66%. The memory usage for the MVC architecture levels
out at approximately 65.5% while the memory usage for the
Layered architecture levels out at approximately 66%. One
potential reason for both architectures using nearly the same
percentage of memory could be the fact that the database
access is often the bottle neck of many processes. So, since
both architectures are accessing the same database, which in
the current case is stored in the computer’s local memory,
both are showing approximately the same amount of memory
usage. The database, which is approximately 5GB in size, puts
stress on the memory usage of the computer. When load testing
was performed, the stress was amplified and a majority of the
computer’s memory resources were required to perform the
operations. Since the test only considered a ”read” scenario,
it was expected that all of architectures would have a similar
percent of memory usage. If the test was changed to a ”write”

scenario and the databases were stored on separate machines,
it would have been expected that the CQRS architecture saw
better performance in terms of memory usage than the other
architectures. In that case, the machine would experience a
lighter load from the memory access and could still perform
reads while the writes were happening. Both databases for
the CQRS architecture, however, were stored on the same
machine. For this reason the team was not able to test the
scenario. Another obstacle that arose from testing the archi-
tectures on one machine was the limitations in testing ability.
Due to relatively small amount of resources available on the
single machine, the team was unable to perform load testing
of more than 100 threads. Therefore, it was assumed that the
results seen in the memory usage graphs were comparable to
what would have been seen in a production environment, but
that cannot be confirmed without testing the applications in an
actual production environment.

V. DISCUSSION

One of the key ideas extracted from the gathered data is
the concept of coupling. Particular to reads, MVC (which
has highly coupled modules) responded noticeably faster to
client requests. In the layered architecture, the response time
was longer due to network latency from multiple HTTP
requests across servers. As a result, the first consideration
when choosing an architectural pattern should be the network
latency. More services and servers that deliver content also
means more layers to pass through to get to the client. One
business request could require multiple sub requests [1]. If one
were to use layered architecture, increasing response time is
also possible through load balancing and replicating each of
the servers at every layer. Although this would require more
computational resources, the lower load on each individual
server decreases, so the client will receive a response faster.

Another key idea gathered is the choice of technology
and its usage. For the microservice, layered, and CQRS, the
response time could have been different if they utilized differ-
ent frameworks. In this research, the team’s implementation
involved ReactJS, ExpressJS, Flask, and SQLITE. Each of
these frameworks have benefits but cause additional overhead
for simpler applications like a textbook catalog. For example,
ReactJS comes with state management which can speed up
many business processes by allowing the client itself to bear
the load of computation in dynamic websites [10]. Flask and
ExpressJS have multi-threading and asynchronous processing
features [11]. In MVC, the N+1 query problem could be solved
by eager loading ActiveRecord associations [13]. MVC also
provides profilers which report on latencies in different areas
of the code in order to allow the developer identify bottlenecks.
Databases, which are typically the bottlenecks in a CRUD
heavy application, also provide features such as indexing,
sharding, and scaling [12]. Choosing a database that meets
the needs of a website could improve response time as well.
Therefore, the second consideration when improving response
time is choosing the right technology or framework within an
architectural pattern.

Performance is not necessarily a measure of how fast the
website responds to the user. It also includes processing load
and the managing the health of the website. This requires
that a website is not only responding fast, but is also not
overloading the processor that could eventually lead to a crash.
The results suggest that MVC requires less CPU and memory
resources, however, not by much. The layered architecture,
while offering the flexibility to choose separate technologies in
each layer, actually uses similar resources. A machine (several
machines) with high processing power would allow a layered
architecture to perform similar to the MVC. Therefore, the
third consideration for improving the performance of a website
is analyzing how an increase in computational resources could
help. This includes both the vertical and horizontal scaling of
the application servers and the database.

The final consideration for improving performance is how
easily the architecture can be expanded to a distributed system.
Distributed systems allow websites to manage the different
processes and services of a website through message com-
munication between the different components [1]. Using a
messaging system allows for asynchronous processing, sep-
aration of jobs, useful redundancy, and scalability. With the
rise in data processing, running multiple programs and jobs at
different machines helps solve the load problem. The website
can potentially respond faster and maintain its availability. In
consideration with the architectures discussed in this docu-
ment, MVC proves to be the most inflexible in allowing for
expansion to distributed computing. The tight coupling of the
MVC makes it difficult to spread the website’s services across
multiple machines outside of simple replication. CQRS is an
example of a simple distributed system. By separating the
writes and reads, the load is partitioned across different ma-
chines. Communication is maintained between the read store
and the write store through an event messaging bus. CQRS
is not a method of increasing the computational resources,
rather it is an effective method of separating work into different
components.

A. Summary of Analysis

Consider the following factors when deciding on an archi-
tectural pattern:

• Does the architecture have high network latency? Could
this be solved using methods such as caching, CDN’s,
load balancing, and prefetching?

• Does the architecture have different options for technolo-
gies that implement it? If so, one can weigh the options
to suit the type of website being developed. For example,
a real time application might require multithreading and
a technology which offers that could help.

• Can the architecture respond well to more computational
resources? Does it allow the database to scale vertically
or horizontally?

• Can the architecture adapt well to distributed computing
if needed?

VI. CONCLUSIONS AND IMPROVEMENTS

The project could be improved for the next iteration in
several ways. The first is to choose an application that is much
broader to allow us to test several architectures thoroughly
without having to make many assumptions. Although the
analysis primarily focuses on MVC, Microservice, CQRS,
and layered architectures there exist many other services that
could be deemed beneficial for different scenarios. With the
team deciding to implement a textbook ordering application,
the types of architectures that were feasible for the program
also differed so some patterns were not considered. Another
improvement is to expand the testing environment used to test
the architectures. Having a testing environment that would be
able to handle a variety of tests and handle many threads
could reveal new information. A proper testing infrastructure
would allow the team to test thousands of concurrent users in
isolation.

In a real software development setting there can be many
other factors that can determine the successful implementation
of a software pattern. These include the following: agility, ease
of deployment, scalability, testability, and ease of development
[1]. One should keep in mind the technologies a team has
access to, the type of coding knowledge the team has, and
the adaptability of the pattern. These are some of the many
outlying factors that exist in choosing a successful architecture.
The team has gained valuable knowledge not only about soft-
ware architectural patterns, but also about general engineering
research. In the future, the goal is to expand this project further
to other architectures, other metrics, and technologies.

REFERENCES

[1] M. Richards, Software Architecture Patterns. Sebastopol, CA: O’Reilly
Media, Inc., 2015.

[2] : Abdul Majeed, Ibtisam Rauf. MVC Architecture: A Detailed Insight to
the Modern Web Applications Development Peer Rev J Sol Photoen Sys

[3] dragon119, “CQRS pattern - Azure Architecture Center,” CQRS pattern
- Azure Architecture Center — Microsoft Docs. [Online]. Available:
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs.
[Accessed: 27-Apr-2020].

[4] J. Hall, “Council Post: Speed Matters: How Your Website’s Page Speed
Can Affect Your Marketing Efforts” Forbes, 14-May-2019. Available:
https://www.forbes.com/sites/forbesagencycouncil/2019/05/14/speed-
matters-how-your-websites-page-speed-can-affect-your-marketing-
efforts. Accessed: 27-Apr-2020

[5] “What is JMeter? Introduction and Uses” Guru99. Available:
https://www.guru99.com/introduction-to-jmeter.html. Accessed: 27-Apr-
2020

[6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, “Electron spectroscopy
studies on magneto-optical media and plastic substrate interface,” IEEE
Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th
Annual Conf. Magnetics Japan, p. 301, 1982].

[7] D. Merkel, “Docker: lightweight Linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, pp. 76–91,
Mar. 2014.

[8] Urbanek, “Fix Slow Active Record SQL Queries in Rails” Paweł U.
— Ruby on Rails Web Development Consultant Full Stack Blog,
12-Mar-2018. Online. Available: https://pawelurbanek.com/slow-rails-
queries. Accessed: 27-Apr-2020.

[9] A. Majeed and I. Rauf, “MVC Architecture: A Detailed Insight to
the Modern Web Applications Development,” Peer Review Journal of
Solar & Photoenergy Systems, 26-Sep-2018. [Online]. Available:
https://crimsonpublishers.com/prsp/fulltext/PRSP.000505.php.
[Accessed: 26-Apr-2020].

[10] “React – A JavaScript library for building user interfaces,” – A
JavaScript library for building user interfaces. [Online]. Available:
https://reactjs.org/. [Accessed: 27-Apr-2020].

[11] “Welcome to AIOHTTP,” Welcome to AIOHTTP - aiohttp 3.6.2 doc-
umentation. [Online]. Available: https://docs.aiohttp.org/en/stable/. [Ac-
cessed: 28-Apr-2020].

[12] “Database Bottlenecks: The Hidden Cause of App Slow
Downs?,” DevOps.com, 02-Mar-2020. [Online]. Available:
https://devops.com/database-bottlenecks-hidden-cause-app-slow-downs/.
[Accessed: 28-Apr-2020].

[13] “Active Record Query Interface.” Ruby on Rails Guides,
guides.rubyonrails.org/active record querying.html.

