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Abstract— Anterior Cruciate Ligament (ACL) 
reconstructions are among the most common sports medicine 
procedures performed in the world. Over 100,000 patients in the 
United States annually elect to have ACL reconstruction 
(ACLR) in hopes of returning to pre-injury level of activity. In 
the first two years following an ACLR, patients are at their 
highest risk for re-injury to both the repaired and contralateral 
knee. The overall incidence rate of an ACLR patient having to 
go through a second repair in 24 months is six times greater than 
someone who has never had an ACL tear. Early detection of 
functional deficits is vital to optimize post-operative 
rehabilitation and to restore normal movement patterns in 
patients, especially in those who are young with continued risk 
exposure from competitive sports. The decision about when to 
return to unrestricted physical activity or competitive 
sports has come under much scrutiny due to the lack of 
evidence-based criteria that have sufficient predictive 
value. Current methods of detection require 
unconventional movements which cannot be done in the 
early stages of recovery in fear of damaging the newly 
repaired ligament. The need for a precise, objective, and 
whole-body approach to movement evaluation is essential 
for the health and safety of patients recovering from 
ACLR. The objective of our research is to leverage sensing 
technologies to monitor patients post ACLR and 
investigate how body sensors can be used to aid medical 
decision-making regarding rehabilitation progressions. In 
our study, patient data, extracted from wearable sensors 
during several functional assessments, was used for multi-
level analysis to extract features indicative of mobility and 
muscle activation. In conclusion of our pilot, we have 
identified key features effective in determining patient 
health post-ACLR and implemented these into a machine 
learning model to estimate the efficacy of lower-body 
wearable sensors as a means of assessing patient recovery. 

I. INTRODUCTION 

In the United States alone, approximately 150,000 anterior 
cruciate ligament (ACL) injuries occur every year, translating 
to over $500 million in healthcare costs [1]. These injuries can 
be especially detrimental to younger athletes, who must 
endure not only a 6–9-month recovery and rehabilitation 
period, but also encounter an increased risk of reinjuring their 
ACL once they return to competitive sports. One study 
reported that athletes who were less than 20 at the time of an 
initial ACL surgery had a subsequent reinjury rate of 28%, 
approximately six times higher than that of athletes who have 
not torn their ACL before [2]. 
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A major determinant of the likelihood of reinjury is the 
rehabilitation process after the initial surgery following an 
ACL injury. During rehabilitation, patients work with 
physicians to gradually advance toward walking, running, and 
eventually playing high-impact sports again. However, each 
recovery process is unique to the patient and circumstances of 
the injury, and an incomplete or improper rehabilitation may 
lead to greater risk of reinjury [3].  

Wearable sensors have significant potential for filling these 
gaps. Wearable sensors can be utilized to monitor 
rehabilitation progress and provide accurate data to assist in 
enhancing recovery and reducing reinjury rates. Because they 
are ubiquitous, they can potentially be leveraged to 
continuously monitor physical activity, provide more 
portability than in-clinic/lab instruments, and can be worn 
over an extended period of time in unrestricted environments. 

In our work, we propose to leverage wearable sensors 
attached to the legs of participants while they complete 
routine rehabilitation exercises to estimate recovery levels. 
We propose to analyze EMG and accelerometer sensor 
signals to isolate key features that can differentiate between 
healthy participants and patients who had recently undergone 
surgery. We specifically propose four key categories of 
features including force and strength, speed, stability, and 
symmetry.   

This research will make the rehabilitation process more 
ubiquitous. It will take individualized monitoring for 
rehabilitation purposes to the home. It can be used more 
continuously and passively for treatment, meaning patients no 
longer need to schedule appointments at doctors offices, 
clinics, or labs for testing and measurements. 
 
Our paper is organized as follows: Related work– 
highlighting some relevant studies done in the field of 
wearable sensors and ACL rehabilitation, study design– 
overview of the data collection process, proposed methods– 
detailing the data processing and statistical analysis of the 
results, and discussion and conclusion– addressing 
limitations, future work, and relating the overall findings to 
other studies. Findings from our study will serve as the initial 
step in determining feasibility of using body sensors to 
ubiquitously monitor recovery after ACL reconstruction.  

 A. Related Work 
Wearable sensors have been utilized as a protocol to analyze 
rehabilitation progress and return to activity assessment 
following ACL injury. The current post-operative system of 
rehabilitation has five phases, with the final phase being 
returning to pre-tear sports and activities. Only in phase four 
does the patient begin to be tested in more game-like scenarios 
with the focus on being able to fully return pain free. In the 
current system, the use of sensors is not incorporated until 
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phases three and four [4]. This is often too late in 
rehabilitation to catch and correct certain altered movement 
patterns.  

The integration of machine learning with wearable 
technology allows for the possibility to monitor real-time 
functional movements, workloads, and biometric markers 
during activities. For example, a 2020 study utilizing inertial 
measurement unit sensors (IMUs) analyzed six healthy 
patients and six reconstruction patients through time and 
frequency domain feature extraction and machine learning 
models following change of direction activities. A 73.07% 
accuracy was found in predicting between healthy and post-
ACL injury subjects. The results of our study demonstrate the 
ability of wearable sensors and machine learning approaches 
to predict post-ACL gait patterns in athletes [5]. 

Our study was conducted using electromyography (EMG) and 
accelerometer sensors. EMG signals measure the muscles 
response or electrical activity in response to nerve stimulation 
of the muscle. It is linearly related to the level of muscle 
contraction as well as the number or muscles contracted [6]. 
Previously conducted studies have utilized EMG-related 
assessments on ACLR patients, but they do not assess when a 
patient is deemed healthy for return to sports. For example, a 
2011 study establishes if there are EMG differences after two 
different surgical graft techniques were used for ACLR. The 
study found the difference between EMG signals of the two 
groups to be statistically significant and a predictive method 
for their analysis [7]. Due to external factors, however, the 
study was unable to conclude which graft technique is more 
appropriate.  

In addition to studying EMG signals, our study will also be 
analyzing peak 3-dimensional acceleration signals. This type 
of signal measures the linear acceleration of the subject along 
three mutually perpendicular axes. Due to acceleration being 
proportional to external force, measurement reflects both 
frequency and intensity of movement [8]. Since a common 
reason for ACL tears is sudden stopping or change of 
direction, analysis of knee acceleration in the X-Y-Z direction 
is very useful. A previous study performed in 2015 examines 
if biomechanical jumping differences existed between ACLR 
and non-ACLR subjects after collecting 3D acceleration data 
using inertial sensors [9]. Significant differences were 
demonstrated by ACLR patients in relation to the 3-
dimensional axis supported accelerations. Our paper will 
analyze the effectiveness and accuracy of the combination of 
electromyography, 3-dimensional acceleration, and machine 
learning approaches to assess overall patient health. 

II. STUDY DESIGN 

Twelve ACLR patients and ten healthy patients from the 
UVA Exercise and Sports Injury Laboratory were recruited to 
participate in data collection. There were three female ACLR 
patients and seven female healthy patients. Each participant 
was fitted with a Delsys Trigno Wireless electromyography 
and accelerometer sensor to their vastus lateralis on both the 
ipsilateral/ACLR and contralateral knees. For ACLR patients, 
the knee that had undergone ACL surgery was designated as 
the ‘involved’ leg, with the other knee being the ‘uninvolved’ 
leg. For healthy participants, their non-dominant leg was 
designated as their ‘involved’ leg. The sampling rate of the 

EMG and accelerometer was 1926 samples/sec and 148 
samples/sec, respectively. Sensor noise was limited by 
shaving and cleaning each participant at the sensor locations 
prior to placement, and each sensor was then wrapped with 
medical tape to ensure stability over the duration of testing.   

Figure 1. Sensor placement 

III. PROPOSED METHODS 

[2] Our methodology is summarized in Figure 2. We 
will first describe  the different activities performed, our data 
preprocessing and statistical analysis pipeline, and finally 
our feature importance analysis.   

Figure 2. Our  proposed framework 

 

The following five activities were performed by each 
participant in order. Based on the recovery time for ACLR 
participants, some patients were not able to participate in 
hopping activities for preventative measures. For each 
activity, an upper-sided two sample Wilcoxon signed-rank 
test was performed for each of the 18 features comparing the 
healthy and ACLR participants. The Wilcoxon test was 
chosen because, as a non-parametric method, it does not 
require a normality assumption. The resulting p-value from 
this test will show if there is a significant difference between 
healthy and ACLR participants. 

 A. Walking Activity 
The first activity measured was walking, where participants 
walked at a constant pace of three miles per hour on a 
treadmill for three minutes. This was done primarily as a 
warmup for the remaining activities but was also used for 
analysis to measure potential difference between the gait of 
healthy participants and patients. 

The EMG and acceleration values were normalized for each 
participant to allow for consistent comparisons between trials. 
Then, using peaks in the acceleration data, each alternating 
stride was shifted in the time domain, so the peak force values 
approximately lined up for both the uninvolved and involved 
legs. Following the time adjustment for strides and 
normalization of metrics, the walking data were combined 
into two tables, one for each type of participant.  



 
 

 B. ISO 90 & ISO 180 Activities 
Isokinetic testing was used to measure the strength of the 
involved leg versus the strength of the uninvolved leg. 
Isokinetic exercise occurs when limb movement velocity is 
held constant by a device. Participants conducted two tests 
while seated in the Biodex Multi-Joint System, one with each 
leg. The two tests, “ISO 90” and “ISO 180”, differed in the 
strength of the resistance applied to each leg, where “ISO 90” 
offered less resistance than “ISO 180”. The participants were 
instructed to perform 8 kicks per leg for each test. 

The raw EMG data for each patient for the two isokinetic 
movements, 90 and 180, contained one peak for each kick the 
patient performed during the test. Participants were instructed 
to perform 8 kicks, but, due to participant error, 61.3% of the 
participant trials included 9 kicks. The peaks in the EMG data 
were isolated in Python using the “biosignalsnotebooks” 
library, and each peak was summarized using 18 features as 
previously done in a previous EMG study [10]. The 18 
features are as follows: variance, root mean squared, integral, 
mean absolute value, log, wavelength, average amplitude 
change, difference absolute standard deviation value, zero-
crossing, Willison amplitude, myopulse percentage rate, 
frequency ratio, mean power, total power, mean frequency, 
median frequency, peak frequency. The median of each 
feature was calculated for each participant’s uninvolved and 
involved leg using all available peaks. The median was used 
because it is more resistant to outliers than an average in small 
sample sizes. Since the data for the participant’s involved and 
uninvolved leg could not be treated as independent, the 
difference between the uninvolved and involved leg was 
found for each of the median features of each participant.  

 C. Hold Activity 
The hold activity measured the muscle strength of the 
involved leg and uninvolved legs over a continuous period. 
Patients were seated in the Biodex Multi-Joint System and 
instructed to kick their leg at full force and hold for 30 seconds 
while the chair remained locked in place. 
 
To measure the strength of the involved and uninvolved legs 
during the hold activity, the first derivative was taken of the 
EMG data to measure the fatigue rates. Next, the variance of 
both the EMG and accelerometer data was extracted. For the 
accelerometer data, the variance in the X, Y, and Z directions 
was extracted to determine if the leg was shaking. The 
average across the three directions was taken to compare 
uninvolved vs. involved legs and healthy vs. unhealthy 
patients. To measure speed, EMG was utilized to determine 
the time it took for subjects to reach their peak EMG value.  

 D. Single Leg Hop Activity 
The single leg hop activity measured the horizontal distance 
a patient could jump and land on one leg. The patient used 
both legs to jump and landed on one leg. There were a total of 
6 recorded jumps in which the patient landed on the involved 
leg and uninvolved leg which were recorded in an alternating 
manner. If the patient were to improperly stick the landing, 
the activity would be redone on that given leg. 

The subject data was assessed taking into consideration the 
patient’s involved and uninvolved leg. For each leg, the EMG 
data was extracted from each of the 3 jumps so that additional 
activity recorded by the sensors was removed. Patients’ jumps 
were classified by the periods of significant increase in EMG 
values across the data collection period. This was 
accomplished by using the “biosignalsnotebooks” python 
notebook to detect EMG activation periods during activity 
peaks. The EMG values during muscle activation periods on 
a given leg were concatenated into a single vector for each 
patient. Feature extraction was then performed on each of 
these datasets and then merged into a dataset grouped by 
healthy/patient and involved/uninvolved legs. Averaging 
these peak feature values for each subject delivered the final 
feature values among the population groups. 

 E. Predictive Modeling 
Using both EMG and acceleration data extracted  from each 
patient for each activity, we propose to use a random forest 
algorithm to predict if a given segment of activity is being 
performed by the involved or uninvolved leg and healthy vs. 
ACL patients. 

IV. RESULTS 

 A. Walking Activity 
Out of the 20 walking features analyzed, four were found to 
have a statistically significant difference between healthy 
participants and ACL patients at a level of α=0.05: the median 
and mean of acceleration in the Z direction, the median of 
acceleration in the X direction, and the mean difference 
between normalized EMG values of a participant’s 
uninvolved and involved legs. These results are summarized 
in the table below.  

Table 1. Comparing walking activity data between healthy 
ACL vs. patients 

 
As the four significant features found during the walking 
activity - the median and mean of acceleration in the Z 
direction, the median of acceleration in the X direction, and 
the mean difference between normalized EMG values of a 
participant’s uninvolved and involved legs - appear to be the 
best predictors between healthy participants and patients. 
When developing a model to monitor the progress of a patient, 
these measures of speed, stability, and symmetry should be 



 
 

included. These features especially should be investigated in 
future studies, potentially with the addition of sensors on both 
the upper and lower half of patients’ legs to measure the full 
range of motion of their gait. 

 B. ISO 90 & ISO 180 Activities 
Zero crossing, median frequency, mean frequency, and 
wavelet energy all have the lowest p-values across both the 
isokinetic 90 and 180 movements. The complete results of the 
statistical tests are shown below. 

Table 2. Difference between uninvolved and involved legs 
between healthy ACL vs. patients 

  
 

Figure 3. Comparing healthy ACL vs. patients for iso180 
(A) and iso90 (B) activities 

 

Statistical testing revealed zero crossing (ZC), mean 
frequency (MNF), median frequency (MDF), and wavelet 
energy (WENT) to be the most relevant features for the 
isokinetic 90 and 180 movements. ZC was the most 
statistically significant feature across both exercises, as ZC 
was significant at the .05 and .005 significance level for the 
isokinetic 90 and 180 movements respectively. Based on our 
analysis, ZC, MNF, MDF, and WENT should be investigated 
further as potential reliable indicators of a patient’s recovery 
from ACLR when analyzing EMG data from isokinetic 
activities. 

 C. Hold Activity 
The p-values for the hold activity are shown in the table 
below. None of the statistical tests were significant at the α=.1 
significance level, but the lowest p-value came from the 
variance of sensor acceleration in the Y direction.  

Table 3. Significance of Hold Activity Features 

 
Following feature extraction and statistical analysis with the 
hold data, no features were found to be of any significance. 
Raw EMG data ultimately lacked sensitivity and led to no 
major findings. Therefore, EMG data from the hold activity 
was deemed to be a poor predictor of patient’s recovery from 
ACLR. 

 D. Single Leg Hop Activity 
The results are in the table below. Highlighted tests are 
significant at α=.05 
 

Table 4. Single leg hop activity significance 
 

 
Root mean squared, integral, mean absolute value, 
wavelength, mean power, and total power were shown to be 
the most relevant for the single leg hop activity. These 
differences were significant between the healthy and patient 
groups in their entirety.  However, no significant differences 
were found between healthy and patient groupings comparing 
involved and uninvolved legs. This suggests that the single 



 
 

leg hop activity is not an accurate representation of ACLR 
recovery. Furthermore, our data shows that there is a 
significant difference among all patients and an individual 
measure of performance. 
 
Only six of the twelve ACLR patients were able to perform 
the activity during data collection due to the recency of their 
operation. This limitation was likely a contributing factor to 
the failure of significance of the activity as well as its low 
validity. 

 E. Predictive Modeling 
Using leave one out cross validation (LOOCV) the 
classification model predicted the involved leg vs. uninvolved 
leg with an accuracy of 63% and an F1 score of 63% and 
accuracy of 63% and an F1 score of 58% when predicting 
healthy vs. unhealthy.  Using Random Forest feature 
importance, it was found that the two most important features 
were left leg EMG and right leg EMG in both prediction tasks. 
These two features predictive importance shows that the 
activation of the muscles is more important to predicting ACL 
tears than the acceleration of the leg in a given direction. 
 

Table 5. Feature Importance of  Machine Learning 
Algorithm 

 

 
Involved vs. 
Uninvolved 

Healthy vs. 
Unhealthy 

Feature 
Importance  
Value 

Importance  
Value 

Right Leg EMG 0.36 0.34 

Left Leg EMG 0.33 0.29 

Left Leg Acceleration X-direction 0.07 0.06 

Left Leg Acceleration Y-direction 0.06 0.07 

Right Leg Acceleration X-direction 0.06 0.05 

Right Leg Acceleration Y-direction 0.05 0.1 

Left Leg Acceleration Z-direction 0.04 0.03 

Right Leg Acceleration Z-direction 0.03 0.06 

 

V. DISCUSSION & CONCLUSION 

Though the results presented in our work are promising, few 
limitations still exist. The limited number of patients in our 
study likely contributed to the limited number of statistically 
significant results. The small sample size makes it difficult to 
generalize results and draw sustainable conclusions. In 
addition to having limited data, unequal class sizes also 
impact the ability to make generalizable claims across groups. 
Imbalance classes can lead to biased statistical models that 
favor certain groups. Future works should seek replications in 
a  larger sample size and while balancing the number of 
subjects in each group (gender, age, months post-surgery, 
etc.). Additionally, participants ranged from being 2 to 8 
months post-surgery. Differences in recovery time likely 
caused data discrepancies for the unhealthy patients, which 
would be exacerbated by the small sample size. External 
factors such as age, gender, strength, and dominant leg could 

have also resulted in skewed data. Although the researchers 
attempted to minimize noise through precise sensor 
placement and cleansing of the skin, noisy data still resulted 
due to motion artifact, cross-talk contamination, clipping, and 
physiological noise [11]. Another data collection 
inconsistency arose from the sensor attachment. Some 
subjects knocked the sensor and disturbed its placement, 
which could cause issues with data collection.  
 
Our work is best interpreted as an initial exploration of how 
EMG data can be used to assess patient recovery. With the 
features identified, future researchers can build solutions that 
incorporate these findings to reduce the time, effort, and 
inaccuracy associated with assessing patient ACLR recovery. 
One such solution to be investigated is an at-home wearable 
EMG sensor capable of detecting patient recovery by 
leveraging the insights and framework from our paper. 
Another extension of our research could be in a clinical 
setting, where future researchers can work to develop an 
EMG solution to predict patient recovery that leverages our 
paper’s proposed framework and the significant features 
identified. 
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