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Abstract

The Internet-of-Things (IoT) has the potential to revolutionize our understanding and real-time

awareness about the world around us, to make our lives simpler, safer, and healthier. However,

the growth of the IoT depends greatly on how efficient and cost effective the technology is.

Many battery-based systems suffer from their restricted power supply lifetime, which cause

regular maintenance, replacement, and downtime costs. Energy-harvesting systems can suffer

from poor dependability when environmental sources supply insufficient power for their

operation, which leads to poor application quality. In general, when the system’s power

consumption is lowered, both the lifetime and the dependability are increased. Therefore, to

support the ever growing scale of IoT device deployment, dominating factors of system power

consumption must be addressed.

The goal of this work is to highlight some capabilities of modeling with respect to

self-powered systems, and to illustrate the need for modeling to be further developed to aid in

system design. The scale and impact of IoT devices are largely limited by the lifetime or

longevity of the systems in their respective environments. From a systems perspective,

modeling can aid in the realization of the design space that restricts a designer's boundaries by

addressing individual components' contributions to overall system power. Further, test modes

and models can be paired with statistical representations of environments to determine the

functionality of a system when it is being supported solely by the environment. This is useful to

help maximize the reliability and availability of deployed sensor nodes. From a sensing

perspective, this work calls attention to the impact of physiology in on-body sensing. A

three-part model is presented to encapsulate the impact of human-electronic interaction on ULP

sensing and its accuracy. Modeling is an extremely powerful tool to aid designers in the

exploration of the boundaries of current technology. When customized to specific applications,

models can lend powerful insight to the design knobs that can and need to be explored for

optimal solutions.
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1. Fundamentals of Self-Powered Systems

To create a model to provide insight into the relationship between power consuming devices,

and the energy for which they consume from the environment, fundamentals of these devices

must be defined. Energy is a property of matter, which allows it to perform work. Energy

harvesting is the process of collecting and storing small amounts of energy from ambient

sources, such as light, or heat, which can then be used to do work. In the context of electrical

sensor nodes, work is the performance of an operation. An operation for a sensor typically

includes the conversion of a physical quantity into an electrical signal, typically done with a

transducer, that can then be used to make a calculation, and be further transmitted. When a

sensor performs an operation, it consumes energy. Power is the rate at which energy is used,

transferred, or generated. Power usage in sensor nodes can be continuous or intermittent. In

the continuous state, power is consumed at a constant rate and therefore energy is directly

proportional to time. If the system is intermittent, power is consumed in bursts, and the total

energy is found by the duration of the burst. Energy harvesting sensors known as self-powered

systems (SPS) use energy from the local environment to fuel the operations that they perform.

This energy is either directly consumed for operations, or stored by the device to later be

utilized.

Figure 1: The flow of energy in a Energy Harvesting system

The sensor that performs operations can exist in two fundamental states, 1. Available, in which

the environment can provide sufficient energy for the system to operate as desired, and 2.
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Unavailable, in which there is not enough energy to perform an operation. In a typical

battery-powered sensor, the lifetime of the device is synonymous with the runtime, or the

amount of time remaining for a device to perform operations until the device has no further

energy to expend. In general, these sensing nodes will operate from some stored and finite

quantity of energy Estore, and if we temporarily take a simplified approach to assume that the

node will consume energy at a constant rate Pnode, then the lifetime of the node will follow the

relationship

Lifetime∝ (1)
𝐸𝑠𝑡𝑜𝑟𝑒𝑃𝑛𝑜𝑑𝑒

Naturally, using a larger battery to provide more Estore or making the node more energy-efficient

to decrease Pnode will increase the lifetime of the overall system. Energy harvesting is an

increasingly popular method to effectively increase Estore by harvesting freely-available ambient

energy to supplement the original finite amount of stored energy. In an energy harvesting

system, the lifetime of the device is effectively limitless as long as it continues to properly

harvest energy and perform operations. The runtime is the same as in a battery supplied

system, the time until an available sensor becomes unavailable. However, with an energy

harvesting system, the device has the opportunity to repair, or recharge.

Perpetual operation for a self-powered system requires that the following inequality be

satisfied which dictates the relationships between harvesting and consumption of energy over

time. The variables and are the instantaneous harvesting and effective load powers. It is𝑃𝐻 𝑃𝐿
assumed that any DC-DC efficiency losses are lumped into . The harvesting efficiency factor,𝑃𝐿

, is a function of numerous variables from the harvesting circuit which will consume someη(𝑥)
amount of quiescent current, which is a design concern to maximize the harvested power, .𝑃𝐻

(2)η(𝑥)𝑃𝐻(𝑡) − 𝑃𝐿(𝑡) >  0
In this representation, it is important to understand that no energy storage devices have been

deployed, and that in order to satisfy the requirement, the load must consume less than what is
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available in the environment after the harvesting efficiency hit. The harvested power can also be

used to recharge a battery, however the nature of batteries to store energy chemically leads to

decreased cycle life (endurance) that causes their maximum capacity to deteriorate the more

times that it is charged and discharged. Batteries also suffer from self-discharge that would

cause a fully-charged battery to eventually lose its stored energy over an extended period of

time, even if no load is attached. Super-capacitors offer a more robust means for storing energy

that behave more ideally over time and are therefore a common energy storage mechanism for

long-lifetime IoT nodes. If an energy storage device is utilized, the system can consume the

capacity of the stored energy beyond what the environment could instantaneously provide,

given that the storage node is fully charged. The following inequality introduces the effects of the

storage node.

(3)𝐸𝑇2 = 𝑇1
𝑇2∫  η(𝑥)𝑃𝐻(𝑡)[ ]+ − 𝑃𝐿(𝑡)⎡⎢⎣ ⎤⎥⎦ 𝑑𝑡 − 𝑇1

𝑇2∫ 𝑃𝐸,𝑙𝑒𝑎𝑘𝑎𝑔𝑒(𝑡)𝑑𝑡 + 𝐸𝑇1 >  0
is the initial energy stored at the beginning of the time period, and the upper bound of the𝐸𝑇1

storage device is given by (4).

(4)

Similar to the system without a storage device, the integral on the left represents the amount of

energy that is effectively harvested, or consumed over time. If the storage device reaches

capacity, the system will not be able to harvest until it drops below the threshold. The integral on

the right represents the inevitable leakage that all energy storage devices experience. If the

system can satisfy the above equation continuously over a period of time, then it may be

deemed energy neutral, or energy positive. Energy neutral describes a system where the

inequality is satisfied and , which means that the system does not die, and its final𝐸𝑇1 = 𝐸𝑇2
energy state is the same as its initial energy state or there is no net energy gain/loss. An energy

positive system is where the inequality is satisfied and . An energy negative system𝐸𝑇1 < 𝐸𝑇2
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must fail . A SPS will not always belong to one type. Depending on the period of time,𝐸𝑇1 ≤ 𝐸𝑇2
a SPS may be neutral, positive, or negative. However, in generality, the goal for a SPS is to

remain energy neutral and positive as much as possible. Self-powered system failure due to

lack of energy is related to either or both; poor harvesting conditions, and excess power

consumption by the system. If these happen regularly, then the self-powered system can’t

perform its desired function, and might not be a worthwhile application. Figure 2 illustrates the

changing states of a SPS with respect to the energy that is available to be consumed. When the

available energy drops below the minimum operational energy, the system fails and remains in

this failure state until there is enough energy for start-up.

Figure 2: Example of a time-domain energy trace for a SPS and the subsequent operational

modes(LowPower, MidPower, and HighPower) based on the available energy for consumption

The reliability of a SPS, or the degree to which the SPS can perform operations, is

dependent on the environment that it is harvesting from, and the power consuming

characteristics of the system, or the load. If a SPS is considered as a repairable system, or a

system that is designed to be returned to its original state following “breaking-down”, the
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reliability is simply probability that the system will perform its desired operation over time. In a

repairable system, a common metric is mean-time-between-failure (MTBF), which denotes how

quickly the system will fail after a start-up. MTBF is calculated by taking the difference in time

between each system failure, and the previous recovery and dividing it by the number of

failures.

(5)𝑀𝑇𝐵𝐹 =  𝑛=1
𝑁∑ (τ𝐹𝑛−τ𝑅𝑛−1)𝑁

Conversely, maintainability describes how easy it is for a system to repair. In SPS, this is the

time that it takes to harvest the energy required for operation, defined by mean-time-to-repair

(MTTR). MTTR calculates the time difference with failure states.

(6)𝑀𝑇𝑇𝑅 =  𝑛=1
𝑁∑ (τ𝑅𝑛−τ𝑇𝑛)𝑁

A modulating environmental supply will cause a change in the load’s ability to carry out

operations; and a variable operation will change the energy demand from the environment.

Reliability and maintainability combine to a third SPS metric, availability, which refers to the

system’s capability to be used without constraint in time, or the probability that a system will be

able to fully operate at a given point in time. Availability is found by combining reliability and

maintainability to quantify the percentage of time that the system will be accessible.

(7)𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  𝑀𝑇𝐵𝐹𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
Together, reliability, maintainability and availability can quantify the success a specific SPS will

have when deployed in a specific environment. To help realize reliability and availability, a virtual

prototyping framework for modeling systems composed of power consuming components will be

paired with statistical models for environments generated from sampled data sets.

2. Background

In the past there have been modeling efforts to optimize energy harvesting system methods for

self-powered systems, but none that encapsulate whole system tradeoffs as well as
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environmental variability. Dondi et al. presents a method for optimizing a solar harvester with

maximum power point tracking for SPS by focusing on maximizing the harvester’s efficiency in

the transfer of energy from solar panel to energy storage device. In this case, a detailed model

of just the photovoltaic panel and the harvester is used to understand the interaction between

these components through simulation. This model is valuable to encapsulate the efficiency

losses that occur in these specific components but it does not provide any insight into how the

efficiency impacts the performance of the SPS. Castalia is a discrete event simulator built on

OMNeT++ which uses unit models to represent the connection of sensor nodes over a common

wireless channel model [2]. This tool is particularly useful in creating a testbed for distributed

algorithms or protocols in dynamic changing wireless channels. Again, the tool lacks the

capability to understand the impacts of design changes within the components of these unit

models on the performance of the overall system, and further, it has no ability to connect the

system to any sort of dynamic energy source as different environments provide. GreenCastalia

is an extension of the Castalia simulator which provides an energy harvesting simulation

framework [3]. It allows designers to simulate networks of unit models with heterogeneous

harvesting capabilities by defining energy harvesters, energy storage devices, and energy

management algorithms. However, both Castalia and GreenCastalia can only report on

network-related system characteristics, and not component-level considerations. Other

modeling simulators also provide network level tools such as Contiki and TinyOS, which

emulate networks of communicating nodes [4,5]. Again, representations of hardware power

consuming characteristics are lacking and there is no capability of enabling a SPS model.

Outside of hardware modeling, data collection and modeling of the environment is a

large task that requires ample time to fully characterize. A few efforts have been made in this

area of research, including the characterization of indoor office environments through long-term

indoor radiant energy measurements [6]. In this study, the transient indoor radiant light energy is

used to generate algorithms for optimizing energy consumption based on the predictability of

the environment. The limit of this work in informed SPS design, is the interaction between the

energy consuming device and the energy supply. The optimization of consumption is also
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dependent on the state of the system which is typically dynamic. Thermo-electric energy

harvesting is also a widely explored area due to the demand for on-body wearable medical

sensing devices. A comprehensive model for thermoelectric body heat was developed using

measurements of a TEG during a variety of physical activities [7]. This work takes into account

the metabolic processes of the body as well as the body’s interaction with the environment

during activity.

Each of these modeling efforts have provided insight into specific areas that contribute to

the design of self-powered systems. But in each case, there is a missing link between circuit

and hardware definition and simulation in real life environments. The resulting design tool

research gap for effective deployment and analysis of devices dynamically consuming energy

from the environment is the focus of this work.

3. Modeling Self-Powered Systems

3.1 Load Modeling

Deployable self-powered systems have the potential to revolutionize our real-time awareness of

the world around us, provided the cost of deployment and maintenance does not outweigh the

sensing benefits. This cost-analysis of SPS deployment is largely application specific, given

different use cases for different sensing modalities. However, a generalized modeling tool that

can provide a user, or prospective user, with the capability to analyze the overall quality and

performance of their specific application, enables design decisions to optimize system efficacy.

There are a few major facets of a self-powered system. The first is the system itself, or the

energy consuming components that carry out the operations of data collection. In order to define

the characteristics of a system as a whole, the model allows the user to build up a hierarchy of

power consuming components that define the system as a whole [8]. There are three major

element types that are used to define the hierarchy, Components, ComponentGroups, and

VoltageRegulators, as shown in Figure 3.



8

Figure 3: The three major component-like elements used to model the connection of power consuming

devices in a self-powered system.

A Component is the only leaf node, when the system is considered as a tree structure,

which provides the user with the most atomic level of power consumption modeling. This class

assuming a universal duty cycle type model for power consumption of every object, represented

by:

(8)𝑃𝐶 =  𝑓𝑐(𝑣1, 𝑣2,  ...  ) ≈  α𝐶 (𝑃𝑎𝑐𝑡𝑖𝑣𝑒,𝐶 − 𝑃𝑖𝑛−𝑎𝑐𝑡𝑖𝑣𝑒, 𝐶) + 𝑃𝑖𝑛−𝑎𝑐𝑡𝑖𝑣𝑒, 𝐶
where represents user defined variables that impact a particular components power𝑣𝑖
consumption, . This modeling method allows the designer to see the impact of changing𝑃𝐶
variables, to their own degree of granularity, depending on the complexity of the models they

employed. Once all of the Components have been modeled, the designer can specify how they

link together through ComponentGroups. ComponentGroups allow for an arbitrary number of

component-like objects to exist “beneath them” in order to abstract sections of the system away

and to check for consistency in operation voltage for connected devices. A tool in the model

recursively traverses through the hierarchy to sum the total power, or current, of the particular

ComponentGroup. The total power for a specific ComponentGroup is given by the sum of all the

component-like objects that fall under that specific ComponentGroup, as illustrated in Figure 3.

The VoltageRegulator is similar to the ComponentGroup class in that it groups component-like
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objects that exist under it, but it also takes into account specific aspects of supply regulation.

The VoltageRegulator accounts for inefficiencies in supply regulation as well as the static power

consumption as a result of the regulator circuit. Efficiency and regulator power are parameters

which can be controlled by custom user models, or look up tables. Figure 3 illustrates the

summation of power for a particular regulator, including the power loss due to regulation

inefficiency and the quiescent power consumption of the regulator itself. In general to use this

modeling framework, a designer would start with defining the leaf-components, and work their

way back up the tree grouping components with ComponentGroups and Regulators, until they

have successfully created one top level ComponentGroup that all other branches stem from.

3.2 Load Tools

Once a system has been defined, various modeling tools can be used to evaluate the

constraints of its operating space. By building the system in a hierarchical fashion, complex

systems can be plotted in a ‘sunburst’ plot which graphically displays the weight of each block's

power consumption with respect to the tree structure. An example of this is shown in Figure 4,

where you can identify the component groups via the color they are grouped with,

corresponding to a specific regulator. This visual is useful to a designer to determine which

block should be targeted most highly for power reduction when aiming for ultra low power

designs. As is obvious with the visual, in this example system, it would be most advantageous

to reduce the power of the BLE RX because that is currently the highest percentage consumer

in the system, which leads to the next tool of duty cycle visualization. However, by defining the

duty-cycling characteristics of each block we can plot their power consumption across duty cycle

and the total system power to determine the overall impact, as shown in Figure 5. Many times,

this method of characterization of the whole system by “sum of parts” makes sense, and can

fully define the operation of the system. In other cases, individual components will have different

operation points with respect to each other, which requires another modeling tool enabled by

the definition of operational modes. The Mode class is used to group components at varying

operation points to be evaluated. Figure 2 illustrates a system that has 3 discrete modes; HP,
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Mid-Power, and LP, where each of these modes is composed of the same components but at

different combinations of operating points to achieve different degrees of system performance.

Once modes are defined, further abstraction can be gained by defining a system operation,

which is a sequence of modes that the system will move through in a period of time. Operations

are base units of performance for a SPS which are used to evaluate the performance of a

system when deployed in an environment. A user might define a few operations for a given

system to evaluate what degree of performance, by the number of operations that can be

performed by a system as an environment changes. Other metrics such as the minimum,

maximum, and average system power can also be used to consider the reliability of the

deployment.

Figure 4: Sunburst plot of a system hierarchy weighted at each layer relative to power consumption.
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Figure 5: System Power consumption with the duty-cycling of components

3.3 Environmental Characterization

To evaluate the performance of a SPS, it is necessary to define the environment’s energy

availability characteristics that will supply the power to drive operations.Tiny battery-less nodes

deployed in different settings will experience relatively unpredictable energy availability. The aim

of implementing modeling tools is to quantify statistical characteristics, as well as analytical

models of environments to allow for informed design of self powered systems. One of the

greatest challenges with this goal is the lack of available information regarding energy in

environments. In order to fully realize these characteristics, months or even years of continuous

data collection, in different domains, in specific environments, is necessary. For the purposes of

this analysis, we will evaluate two environments that are of general interest to deployable self

powered systems. The first of which is the energy available from lights in a conference room,

and the second is available heat energy from the human body’s thermoregulation. These two

mediums are particularly interesting because of their prospects for future device deployment,

the monitoring of air quality, room occupancy, and usage are of interest in conference rooms,

and medical wearables are driving interest in on-body sensing.

A 2011 study at Columbia University aimed to characterize the energy availability of

indoor environments by conducting a 16-month long indoor radiant energy measurement
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campaign, resulting in a data set of energy measurements that will be used in the following

discussion [6]. The dataset provides irradiance (I), or the radiant energy incident onto a surface

in W/cm2. The first step in characterizing these measurements for the purpose of powering

deployable systems is to determine the quantity of energy available to the circuit from the

irradiance. Irradiation (HT) in J/cm2 is the integral of irradiance over a specific time period, T.

Generally for light energy, we will recognize a diurnal profile when T = 24 hours, and denote this

daily irradiation as HD. The amount of energy that a device has access to, D, is dependent on

the characteristics of its PV cell. For a cell of area A and efficiency η, D = AηH. A schematic of

these energy relationships is found in Figure 6, where a capacitor is introduced as energy

storage, with capacity C. The energy that is able to be harvested by the PV cell can be stored

and used by the main device, or used directly by the main device depending on the needs of the

system at the time.

Figure 6: The relationships between irradiance (I), irradiation (H), energy available to a device (D), and

energy collected in storage (Q).

Figure 7 shows the measured values of daily energy (Ed ) in two different locations over 15

days, as you can see, there are significant differences at different locations: on average in Office

A, 2.9 J/cm2/day is received by the testing boards, Office B receives only 1.1 J/cm2/day. The

difference likely stems from different office locations and layouts, and even occupant behavior

such as raising and lowering the blinds. It should also be noted that there is a significant

difference day to day at the same testing site. Office A’s standard deviation is 0.8 and Office B’s

is 0.56. In addition to temporal differences between days, there may be significant variation

within a day itself, with the quantity of variation dependent on the location as shown by the right
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side plot in Figure 7. The shapes of the curves in this plot are quite different. We can extrapolate

that it is likely in Office C, that the testing board gets the most energy from sunlight, as we can

observe diurnal variations. Office D suggests that the source of energy is more artificial in nature

because of the flatness in the curve during most of the working day. The diversity in energy

availability across similar but varying locations leads to a necessity for modeling environments

through statistical models that can be varied based on the specific deployment application that

the designer has in mind.

Figure 7: Indoor energy availability measurements: left; total energy available per day in two different

locations over 15 days and right; irradiance in two different locations over 7 days

A 2020 study at North Carolina State University worked to characterize the energy the

thermoelectric generators (TEG) are capable of harvesting from body heat. By taking

measurements across a variety of individuals during different levels of activity, they aimed to

create a comprehensive model combining an analytical TEG model with biological models for

the human body, rather than relying on statistical conclusions from data analysis as suggested

in the office space study [7]. The results from this model can be observed in Figure 8 where the

TEG output voltage is measured with a test subject and modeled over time.
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Figure 8: TEG output voltage measured on a treadmill during walking or running at different speeds,

dashed lines correspond to modeled output.

4. Modeling PPG Sensing

4.1 Background

Wearable health monitoring is a fast growing industry with devices like the Apple Watch, Fitbit,

and Oura Smart Ring offering health related data during everyday life. Previously, acquiring

these metrics would require much larger, inconvenient systems that aren't available outside of

hospitals and other facilities. Wearables also offer healthy individuals information about their

heart rate during exercise and other fitness related metrics that help them optimize their health.

Continuous blood oxygen sensing is also crucial in monitoring COVID-19 symptoms such as

silent hypoxemia [9], a condition where blood oxygen saturation(SpO2) drops suddenly, and

other conditions such as sleep apnea, chronic obstructive pulmonary disease (COPD), anemia,

and lung cancer [10]. PPG has become a standard sensing technique for detecting heart rate
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and SpO2 of the individuals using wearable health systems. PPG sensors use LEDs to

illuminate a user's skin and then measure changes in the reflected light that occur due to the

presence of varying hemoglobin levels through the cycle of a heartbeat. Signal strength is

dependent on the current produced by the photodiode in the PPG sensor which is in turn

dependent on the quantity of light reflected by the subject’s skin. PPG sensing uses an

analog-front end (AFE) and microcontroller (MCU) to interface with the sensor. The level of

noise in the AFE must be smaller than the signal in order for the PPG waveform to be usable.

This requirement is examined by calculating the signal-to-noise ratio. Due to its optical nature,

PPG is heavily dependent on the optical properties of the user's skin but very limited research

has been done on the effect of skin type, melanin concentration and BMI on this type of sensing

[13,14,15]. Only within the last few years have researchers tried to quantify these effects on the

accuracy of PPG signals. In commercial systems, this is addressed by increasing LED current

and dynamic range which increases the power consumption. Still, some users with darker skin

tones and/or tattoos, referred to in this work as "less reflective", have reported inaccurate heart

rate when using these systems. A 2022 cohort study of patients admitted to hospitals with

COVID-19 found that, in a clinical setting, PPG based SpO2 overestimated the actual blood

oxygen saturation of Asian, Black and non-black Hispanic patients as compared to white

patients. This overestimation led to unrecognized eligibility or delay in administration of

COVID-19 therapies[17,18].

4.2 Self-Powered Sensing

Another challenge with popular wearable devices is that they are largely limited by battery

power, creating a limited lifetime of use between charge cycles. They may be sufficient for

intermittent monitoring on healthy users, but they cannot provide long term and/or continuous

monitoring that is required for more critical wearable health applications. A better long-term

solution is the implementation of self-powered systems (SPS) for wearable health. Due to the

natural thermoregulation of the human body, wearable systems have the potential to be

powered by on-body thermo-electric generators (TEG). The available power from these on-body
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TEGs (4–21 µW/cm2 at best) is far too low to power current commercial devices [12]. Custom

systems-on-chip (SoCs) targeting biomedical applications have been shown to achieve ultra-low

power (ULP) consumption (<1 µ W) which indicates they can function as self-powered systems

(SPS) [13]. As shown in Figure 9, many photoplethysmography (PPG) sensing channels do not

operate at a low enough power for self-powered operation. Some of these references have the

potential to operate as self-powered systems, but not reliably and only in certain configurations

that may affect the quality of a signal output, measured by signal to noise ratio (SNR). It is

important to note that none of the cited works discuss the performance across different skin

phototypes or the impact of physiological variation [15], [21]–[26], a main focus of this

publication. In ULP designs, increasing the LED current is not an effective strategy because this

resultant increase in overall system power further limits SPS capability. Therefore, other

variables must be adjusted to design an ULP PPG sensor that can operate as a self-powered

system and maintain accuracy for skin that reflects less light and those with higher BMIs.

Figure 9: Power for state of the art PPG systems, which is often higher than what can be supported by

on-body TEG or indoor PV.
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This chapter introduces a novel model that uses both physiological data related to skin

tone and BMI and circuit metrics to determine the effect of both skin tone and BMI on low-power

PPG sensing. Previously, these physiological factors have been examined independently, but an

understanding of how their combined effect can reduce the SNR of a PPG signal has not been

determined. Understanding the relationship between physiological factors and circuit

performance, specifically, quantifying the impact these factors have, through a model allows

designers to make decisions without expensive on-body testing. This work utilizes an

application-driven model and on-body measured results to show how metrics like LED current,

transimpediance amplifier (TIA) gain and sampling frequency can be scaled to reduce the power

consumption while still producing a viable PPG signal for all skin phototypes and BMIs. It also

compares the model of the custom PPG AFE chip from the RLP-VLSI group at UVA [24]to a

commercially available one and compares the results from both to measured results from 23

participants. This work demonstrates the potential for low-power (13µW) PPG sensing at

fingertip with an SNR of 65 dB for all skin phototypes using a model based on the custom AFE

chip and the SFH7060 PPG sensor from Osram [27]. These results are confirmed through

preliminary on-body testing with this same hardware. This supports accurate, personalized PPG

sensing that can be powered by on-body TEG harvesting. The trade offs between power and

accuracy are examined across a range of skin phototypes and BMI for the purpose of

determining which design variables can lower power and achieve accurate operation for all

individuals. This work also demonstrates the necessity of examining performance across skin

phototype and BMI for inclusive SPS operation. It specifically seeks to show how skin phototype

and BMI affect photodiode current (Ipd) and, as a result, SNR. It then examines techniques for

compensating for this drop in SNR and the resulting power consumption.

4.3 Model Description

A three-part model is used to examine the relationship between PPG sensing accuracy, system

power consumption, skin tone and BMI. This model consists of a human skin reflectance
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model, a PPG sensor (LED and Photodiode) based on a commercial SFH7060 PPG sensor [26]

and an AFE model. The two versions of the AFE model are based on a custom low-power AFE

from [16] and the TI AFE4404 [27]. The green, red, or infrared emitter of the PPG sensor

illuminates the skin of the user drawing current ILED from voltage supply VLED. This light is then

reflected by the physical composition of the user, with varying quantities dependent on

physiological factors, including skin phototype, dermal thickness, dermal blood content and

more. The photodiode measures the reflected light, producing ac current iac which represents

the pulse and DC offset current IDC, as illustrated in Figure 10.

Figure 10: An overview of the PPG sensing mechanism and the resulting signal in the photodiode,

composed of ac and DC current.

The AFE processes this waveform to produce a voltage which can be used to determine blood

oxygen saturation. Two metrics of interest in these AFEs are gain and dynamic range. Dynamic

range is the ratio of the highest signal level a system, in this case the AFE, can handle to the

lowest signal level it can handle. Gain can be used to maximize the AC component but doing so

also increases the DC component. This becomes a problem when the gain is so high that the

DC component of a signal saturates the amplifier and an AC signal can not be measured. If the
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AC component of a signal is increased by too much, the dynamic range may need to be

expanded to accommodate it. The custom AFE reports a dynamic range of 102dB and the TI

AFE reports a dynamic range of 100dB. Both the custom and TI AFE have DC offset

cancellation (DCOC) capabilities that allows them to reduce the DC component of the signal

while maintaining the amplitude and integrity of the AC component. Though different DCOC

settings are not explicitly examined in this model, their value is clearly shown and discussed in

the results. The goal of this research is to identify strategies that lower the power consumption

of PPG sensors while maintaining SNR values that indicate effective sensing across all skin

phototypes and BMIs. The three-part model, as shown in Figure 11, demonstrates the

relationships between skin phototype and BMI and SNR and power in a PPG sensing AFE

system and provides bounds for the available design space.

Figure 11: Three part model structure including skin reflectance model, PPG sensor model, and AFE

model. A custom ULP AFE and a COTS TI AFE were both modeled and used interchangeably in order to

observe the impact of various design knobs.

4.3.1 Human Skin Reflectance



20

The first portion of this work models reflectance of human skin, a major factor in the accuracy of

PPG sensing on different skin tones and for people with different BMIs. To start, it is important to

understand the physiology behind a PPG signal. As light from the LED enters the skin, it passes

through the epidermis and dermis and reaches the artery. The pulsatile nature of blood in the

artery causes changes in the light reflected back to the photodiode. In this model, two ways to

quantify these effects are used; reflectance, meaning the amount of light reflected by the user's

finger, and the AC/DC ratio of the photodiode current. This further simplifies the effect of

different physiological factors by focusing on skin tone and BMI. In dermatology and related

fields, researchers quantify skin tone and determine melanin concentration using the Fitzpatrick

scale [22]. The melanin concentration directly impacts how much light from the LED is reflected

back to the photodiode in the PPG sensor. This thesis uses “skin phototype” to discuss the

different skin tones and resulting differences in reflectance. It is also important to note that the

visible appearance of human skin does not necessarily relate to its reflectance [15]. Factors

such as dermal thickness, blood content, radial artery depth and trans-epidemal water loss are

strongly correlated with BMI and encapsulated by the BMI metric in this work. We start by

quantifying the range of reflectances of human skin. The Monte-Carlo model of skin reflectance

follows the path of individual randomly scattered photons and how they are absorbed in different

layers of material [15]. In 2017, researchers used a spectrophotometer to collect 400 reflectance

data points for green, red, and IR light across a range of human skin tones [16]. The frequency

of reflectance values for those 400 measurements shown in Figure 12.
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Figure 12: Impact of skin reflectance on photodiode current with frequency of skin reflectance values for

each LED color.

This data set did not state that it included subjects with tattoos. Because the ink from a tattoo

sits at the same layer of the skin as melanin, it affects the reflectance of human skin in a similar

manner [28]. An informal test found that red and black solid tattoos had the greatest effect on

PPG sensing [24] The effect of tattoos on PPG sensing has not been quantified, so we will view

tattoos as less reflective than the least reflective natural skin phototype in this model. Next, we

discuss the effects of skin tone and BMI on the AC/DC ratio of a PPG signal. AC/DC ratio shows

how the PPG signal degrades with respect to BMI and skin tone. If the AC/DC ratio is too low,

the PPG output will not contain a usable waveform. [16] shows the AC/DC ratio for different skin

type, measurement locations (wrist and fingertip) and LED color. Of the physiological effects

high BMI has, dermal thickness has the largest effect on the PPG signal causing up to a 41.4%

decrease in the AC/DC ratio [15]. Boonya - Ananta et al. report the AC/DC ratio of a modeled

PPG signal for 5 different BMIs. 8.1% for 25 BMI, 6.6% for 35 BMI, 6.25% for 37 BMI, 5.9% for

40 BMI and 4.6% for 45 BMI. Linear regression was then used to find the AC/DC ratio for 20 to
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45 BMI. The effect of skin tone and BMI on the AC to DC ratio have been discussed and

quantified individually but these factors can not be looked at independently. This model uses a

novel “superscore” that takes into account the reflectance caused by melanin in the skin as well

as AC signal strength and degradation as a factor of both skin tone and BMI. We use the

reflectance and change in AC/DC ratio to determine the resulting light reflected to the

photodiode in the PPG sensor in the next section. It is important to note that mechanical

properties such as the distance between the user’s skin and the sensor also affect the amount

of light reflected. This portion of the model focuses specifically on the physiological factors, but

the potential effects of these mechanical properties are discussed further in the following results

section.

4.3.2 PPG Sensor Model

The sensor model is based on the SFH7060 PPG sensor from Osram, which includes a green,

red and IR LED for PPG sensing [26]. In order to model the AC component of the PPG signal,

we must first determine the total current from the photodiode and its relationship to the LED

current. TI refers to this value as the current transfer ratio (CTR) and reports a CTR of .025

µA/mA. This was used to find IPDmax as shown in (9). For the custom system, this value was

determined experimentally by measuring IDC on a group of users while applying 2.74 V, 1.8 V,

and 1.2 V supply voltages to the green, red, and IR LEDs inside the PPG sensor. The measured

average conversion factor across users and LED colors is 0.00162x. Then this conversion factor

value was related to the average reflectance value (32% for green, 56% for red and 53% for IR)

as shown in Figure 11 to find the maximum photodiode current (IPDmax) as shown in (10) that

could be used to find the IDC for all skin reflectance.This value is then multiplied by the AC/DC

ratio given in [26, 15]. This AC/DC ratio also varied based on skin reflectance, measurement

location (wrist or fingertip) and LED color. The photodiode current produced with the green, red,

and IR LEDs have comparable AC components but the red and IR LEDs have a DC component

almost 10x higher than green, which requires higher AFE dynamic range. This is one reason

that green is used more widely in commercial devices and is the LED color considered in model
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tests and validation for the remainder of this paper. The AC/DC and reflectance values are

multiplied by the maximum expected photodiode current to determine the ac current in the

photodiode (11). This will later be used to determine SNR. The power of the sensor is shown in

(12) where t accounts for the startup and settling time of the AFE. The power of the PPG sensor

is also affected by the sampling frequency (fs) and LED current ILED.

. (9)𝐼𝑃𝐷𝑚𝑎𝑥𝑇1 =  𝐶𝑇𝑅 ∗ 𝐼𝐿𝐸𝐷 1𝑚𝑒𝑎𝑛 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒
. (10)𝐼𝑃𝐷𝑚𝑎𝑥𝑈𝐿𝑃 =  0. 00162 ∗ 𝐼𝐿𝐸𝐷 1𝑚𝑒𝑎𝑛 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒

. (11)𝑖𝑎𝑐 =  𝐼𝑃𝐷𝑚𝑎𝑥 ∗ 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 ∗ 𝐴𝐶𝐷𝐶
. (12)𝑃𝐿𝐸𝐷 =  𝑉𝐿𝐸𝐷𝐼𝐿𝐸𝐷 ∗ 𝑡 ∗ 𝑓𝑠

4.3.3 Custom AFE Model

This portion of the model looks at the noise and power consumption of the custom ULP AFE.

This AFE is composed of a (TIA), programmable gain amplifier (PGA), low pass filter (LPF) and

an analog-to- digital converter (ADC) [12]. The power is a function of constant voltage (VAFE) and

total current (IAFE) which scales with the bias current (Ib) of the system, the sampling frequency

(fs) also referred to as the pulse repetition frequency (PRF), and the associated timing (t), shown

in (13). The startup and settling time are also important metrics that contribute to the overall

power of the AFE and PPG sensor and scale with Ib.The scaling factor between IAFE and Ib is

determined by the TIA architecture and is obtained through SPICE simulations. It is important to

note that the power consumption of the TIA is orders of magnitude larger than the power of the

components in the rest of the AFE so this model excludes the other components in the power

calculation.
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The current noise, (irms), is necessary to later calculate SNR, a key metric in this model.

irms is a function of the voltage (Vrms) and the TIA gain. The noise at the output of the TIA (Vrms)

changes slightly across (Ib) and the transimpedance gain drops as Ib increases. Therefore, the

total input-referred current noise (irms) increases as Ib increases. The current noise across the full

range of Ib was determined through simulation. irms is used to calculate SNR in a later section.

. (13)𝑃𝐴𝐹𝐸 =  𝑉𝐴𝐹𝐸 ∗ 𝐼𝐴𝐹𝐸 ∗ 𝑓𝑠 ∗ 𝑡
4.3.4 TI AFE Model

The second part of this model is based on the TI AFE4404 Ultra-small, Integrated AFE [27].

This AFE is composed of a TIA, noise filter and an ADC with a fully integrated LED driver. This

AFE has an LED current range of 0 to 50 mA and 10kΩ to 2MΩ gain. This model looks at 1.6,

3.8 and 4.8 mA and 10kΩ, 25kΩ, 50kΩ and 100kΩ TIA gain. The ILED values were selected

because they were the lowest available for the system and would allow for the closest

comparison to the ULP systems. The gain values selected made it easy to acquire a signal for

every participant during the on-body measurements. From the data sheet, the irms was

determined to be 850pA for 10kΩ gain, 325pA for 25kΩ gain, 175pA for 50kΩ gain and 90pA for

100kΩ gain. The power of the TIAFE4404 is the power consumed by the LED, Tx and Rx

stages. The receiver operates at 2V and TI provides the Rx current consumption for different

pulse repetition frequencies. This model uses a 100 Hz pulse repetition frequency (PRF) which

results in a 250µA receiver current. The equations below model the power for the custom AFE.

The transmitter operates at 3 V and consumes 5 µA independent of the LED.

(14)𝑃𝑅𝑥 = 2𝑉 ∗ 𝐼𝑟𝑥.
(15)𝑃𝑇𝑥 = 3𝑉 ∗ 𝐼𝑟𝑥 + 𝐼𝐿𝐸𝐷.
(16)𝑃𝑇𝐼𝐴𝐹𝐸 = 𝑃𝑅𝑥 + 𝑃𝑇𝑥.
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4.3.5 System Level Metrics

The two metrics that affect design level decisions in PPG sensors for wearable health are total

system power given by (17) and SNR shown in (18) With constant voltage, AFE power is

dependent on Ib, and sampling frequency(fs). PPG sensor power is dependent on ILED, Ib, and fs.

SNR is determined by irms given in (19), as well as the ac component of the photodiode current

iac which, in turn, is dependent on human skin reflectance and LED color. Therefore, design

knobs such as the AFE biasing current Ib, and the LED current ILED are swept to examine how

they will affect the system power and SNR with different human skin reflectance, with results

shown in the next section. In an effort to focus on the effect of physiological factors, the

sampling frequency, also referred to as the pulse repetition frequency, is held constant at 30 Hz.

(17)𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝐴𝐹𝐸 + 𝑃𝐿𝐸𝐷.
(18)𝑆𝑁𝑅 =  20𝑙𝑜𝑔10 𝑖𝑎𝑐𝑖𝑟𝑚𝑠2 .

. (19)𝑖𝑟𝑚𝑠 = 𝑣𝑟𝑚𝑠𝑔𝑎𝑖𝑛
4.4 Modeling Results

The first focus is on the power of the system with the custom ULP AFE. Figure 13 shows

the relationship between bias current Ib, startup and settling time and the total AFE power. In

this system, the AFE is duty-cycled with the LED but the AFE requires some settling and startup

time before a signal can be acquired. As Ib is reduced, the required startup and settling time

must be increased. This startup and settling time is represented as t(us) in Figure 13. As can be

observed in the figure, the AFE power is orders of magnitude lower than the power consumed

by the LED in the PPG sensor. As a result, the total system power closely follows the power

consumption of the LED. Because the LED is the dominating factor in power, designers should

aim to choose the lowest LED power possible and adjust other design knobs to compensate.

The AFE and LED power trends are also consistent across ILED values. Figure 13 also

demonstrates that the lowest Ib value does not result in the lowest power value. The power of

the TI AFE sensing system is also dependent on the LED current. The pulse repetition
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frequency affects the power but on a much smaller scale, so we focus on the power as a result

of the LED current. The TI AFE power was found to be 500µW for the LED and PRF discussed.

Figure 13: The relationship between the bias current Ib, resulting required startup and settling time (t)

and the total AFE power. These metrics are shown alongside the LED power which closely matches the

total system power. The minimum power for the total system is 11.49µW.

Figure 14 shows the SNR and power tradeoff for the custom ultra low power AFE for the most

and least reflective skin phototypes at “normal” and “obese” BMIs, (20, 35 and 45). Every skin

type/BMI combination can reach the 60-70 dB SNR range using this system which is acceptable

for SpO2 sensing using PPG. It shows that this is possible at less than 20µW when using the

lowest LED current. It also shows a significant increase in SNR as the LED current is increased.

Contrary to the claims of Ajmal et al., the skin phototype has a larger effect on SNR than the

BMI. We examine the effect of increasing the power on the SNR for the non-obese, most

reflective skin and the obese, least reflective skin. For the non-obese, highly reflective case, a

50% increase in power leads to a 5% or 4 dB change in SNR and a 600% increase in power

results in a 27% or 16 dB increase in SNR. For the obese, least reflective case, a 50% increase
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in power leads to a 3.7% or 9 dB change in SNR and a 600% increase in power leads to a 17%

or 16 dB increase in SNR.

Figure 14: SNR and power design space tradeoffs for the custom AFE. Three ILED settings are used

across BMI and skin tone. The curves on the left side of the figure show the power/SNR tradeoff for

subjects with the least reflective skin across 3 BMIs. The right side of the image shows the same tradeoff

for the users with the most reflective skin tone.

Figure 15 shows this same power, SNR trade off for the TI AFE system for the most and least

reflective skin phototypes at 20, 30, 35, 40, and 45 BMI. In contrast to the results from the ULP

AFE, the increase in SNR when using higher LED current is insignificant. As expected, this

model also shows that the skin phototype has a stronger effect on the SNR than the BMI does,

and that the higher the BMI is, the more of an effect it has on the SNR. The lower BMIs are

grouped more closely together whereas 40 and 45 BMI have a larger decrease in SNR.
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Figure 15: SNR and power design space tradeoffs for the COTS TI AFE. Three ILED settings are used

across BMI and skin tone. Similar to Figure 14, the power/SNR tradeoff is shown for the most and least

reflective skin types at different BMIs.

4.5 On Body Measurements

4.5.1 Methods

After acquiring IRB approval for a human study, we collected fingertip PPG signals, skin type

and BMI data from 23 individuals, in accordance with the Helsinki Declaration of 1975 as

revised in 2000 to further study the relationship between power, BMI, skin tone and SNR. This

study used both the custom AFE discussed above and the TI AFE4404 to collect PPG signals

from every participant. The ULP system was tested on a benchtop with the AFE chip in one

PCB connected to the SFH7060 sensor on another, smaller PCB. The PPG signal output from

the AFE was viewed in an oscilloscope. The TI system was set up on the same benchtop with

the main TIAFE4404 board connected to a laptop and the sensor PCB connected to the main TI

AFE board. The PPG sensor board used with the TI system had an SFH7050 sensor. This SFH

7050 sensor has fewer emitters than the SFH7060 used with the ULP system but in both cases
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only the green emitter was used. The signals were recorded using the software provided by TI.

Testing in the same environment allowed the ambient light to be constant. For both the ULP and

TI systems the PPG signal data was recorded over a few seconds to show at least five systolic

peaks and recorded in a CSV file. In the first portion of the study, researchers used the

eight-question Fitzpatrick Skin Type Quiz [29] to determine participant’s skin type and a

standard BMI chart for participants to self-report their BMI. Participants then sat at the lab bench

and held the PCB containing the sensor attached to the ULP system in their left hand and

placed their right index finger over the sensor covering both the LED and photodiode

completely. Researchers recorded several seconds of data using an oscilloscope at LED

voltages 2.6 to 3 mV corresponding to. 234 to 8.5 mA and TIA biasing voltages 130 mV, 112 mV

and 70 mV. 130 mV bias corresponds to a 5.6MΩ gain, 112 mV corresponds to a 4.7MΩ gain

and 70 mV corresponds to a 2.5MΩ gain. These points were selected to cover a range of

settings across power from 15-225 µW of power consumption. Participants then switched to the

TI system. They again held the sensor PCB in their left hand and placed their right index finger

completely covering the LED and photodiode of the sensor. Researchers recorded several

seconds of data at 10kΩ, 25kΩ, 50kΩ, and 100kΩ gain and 1.6 A, 3.2 A, 4.8 A LED. These

values allow for the most direct comparison between the custom and TI measured results. The

purpose of these measurements was to compare the data collected from the ULP system to the

UPL system model and the data from the TI system to the TI system model. In an effort to

control the ambient conditions not accounted for in the model, participants were seated in the

same position for every study and the same sensors and AFEs were used in every study. The

recorded signals were processed in MATLAB to determine the ac amplitude and calculate the

SNR as discussed in the modeling section.

4.5.2 Results

The results from the on-body measurements are reported in this section to compare the SNR of

the signal obtained across different physiological factors. In this section, SNR is examined

across skin tone without considering BMI, BMI without considering skin tone and when
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considering SNR and BMI together. For the combined skin tone/BMI plots, “most ideal”

candidate is one with low BMI and highly reflective skin and the “least ideal” is an individual with

higher BMI and less reflective skin. Figure 16 shows measured points as well as trend lines for

SNR vs the combined skin tone/BMI score at the 4 different gain settings in the TI system.

Figure 17 shows the same for the custom ULP AFE at 3 gain settings. These trends are further

examined and compared to the ULP system in Figure 18. This figure shows the best-fit

relationship between SNR and skin phototype, SNR and BMI and SNR and the combined BMI,

SNR score for the custom AFE and the TI system. In every case for the UPL AFE, the lowest

gain setting resulted in the highest SNR. This is likely because the increased gain increased the

DC component of the signal and the dynamic range was not large enough to handle the AC

component. In general the range for the gain of the TI system is smaller than the gain for the

ULP system, 10 kΩ - 100 kΩ vs 2.5 MΩ to 5.6 MΩ, but the two systems have a similar dynamic

range. The higher gain in the TI system, 100 kΩ, effectively amplifies the AC component of the

signal without the amplified DC component overwhelming the AC component or causing the TIA

to saturate. In the case of the ULP system, the lower gain, 2.5 MΩ, has the same effect,

amplifying the AC signal without saturating the amplifier, but the higher gains, 4.7 MΩ and 5.6

MΩ, provide enough amplification to saturate the amplifier so the ac component of the signal is

no longer distinguishable This motivates the need for DCOC.
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Figure 16: Measured data points and trend lines from 23 participants using the TI AFE system at 4

different gain settings. “Most Ideal” refers to candidates with the most reflective skin tone and lowest BMI

which should result in the largest AC component of the photodiode current. “Least Ideal” refers to the

participants with the least reflective skin tone and the highest BMI.
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Figure 17: Measured data points and trend lines from 23 participants using the custom ULP system at 3

different gain settings.

Figure 18:Trends in measured results from 23 participants showing the relationship between SNR of the

measured PPG signal and physiological factors. Data was collected using the commercial TI AFE system

at 4 gain settings shown in black and the custom AFE system at 3 different gain settings shown in blue.

(a) SNR vs skin phototype, (b) SNR vs BMI, and (c) SNR vs the physiological superscore.
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Another interesting trend arises when looking at the individual skin tone and BMI charts vs. the

chart that combines these into a superscore. It is expected that SNR will decrease as skin

becomes less reflective or BMI increases but this is not the case at every gain setting when

SNR is plotted against skin tone and BMI separately. This is the case for every gain setting

when we examine SNR vs the superscore. For the TI system the highest gain, 100 kΩ, yielded

the highest SNR. The increased gain effectively increased the AC component of the signal

without overwhelming the system with the resulting increase in the DC component. The

expected trend discussed above is only shown at the 10 k gain setting. The fact that the high

gain effectively increases the SNR and reduces the impact of the skin phototype and BMI on the

SNR indicates that there is a way to balance gain, LED current and dynamic range to make

system metrics more consistent for all users. Figure 19 shows the PPG waveform after it was

processed using a low pass filter. The waveforms in this figure have SNR values of 58 dB, 62

dB, and 64 dB. These preliminary results demonstrate that it is possible to acquire a strong PPG

signal from the fingertip of a subject at ultra-low power.

Figure 19: PPG waveforms measured using the custom ULP AFE and the SFH7060 PPG sensor from

Oshram.
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4.6 Discussion of Results and Conclusions

Two main challenges occurred during on-body measurements. The first was the lack of range in

skin tone and BMI of the participants. There were no obese or underweight individuals and the

skin types represented were not representative of the population in the US. In a study [29],

18.1% of people had skin type 3, 22.2% had skin type 4 and 25% had skin type 5. In this study,

50% were type 3, 45% were type 4 and 5% were type 5. Skin types 1, 2 and 6 were not

represented in this study. The other main challenge was the lack of a clear PPG signal on some

participants and the effect of pressure on the measurements and the inability to get a signal for

some participants. Most participants applied light pressure to get a signal at setting and could

hold that same pressure during all measurements. Other participants saturated the amplifier

with very little pressure while others could not get enough reflectance even with large amounts

of pressure applied. The ability to measure this pressure would allow for a more controlled

study. This was not a problem when using the TI system. All participants could apply the same

pressure and get a clear signal. The ambient light in the lab where the tests was conducted was

constant overhead light so there should be no variation in the ambient light but it is difficult to

know how much of the photodiode current is a result of the ambient light. Another factor that

affects PPG sensing is the measurement location. This work focuses on measurements at the

fingertip, but measurements taken at the chest or wrist would result in an even lower AC/DC

ratio [30]. This would require a larger dynamic range which may affect the power of the PPG

system.

The main comparison of the modeled results and the measured results focuses on the

achievable SNR for each user. For the custom AFE, the model showed a possible range of 30

dB for each individual depending on the gain settings and LED current and the measured

results showed a range closer to 6 dB. The range of SNR in the measured results spans 66 dB

to 73 dB. This is in the SNR range identified in the model as being achievable for every user

regardless of skin phototype or BMI. It is important to recall that the sample size for the

measured results are limited, so despite remaining in the achievable range, the modeled results

indicate that further outlying samples would not. This is one of the major points that emphasizes
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the importance of modeling because the collection of data will always be limited by the sample

size. The custom AFE model clearly shows that skin type rather than BMI has the most effect on

the achievable SNR, which was determined by the impact on the AC/DC ratio. It was found that

this is only the case at 2 gain settings in the measured results, indicating that there may be a

more complicated relationship between gain and the AC/DC ratio resulting from skin type and

BMI than is captured in the model. Benchmarking Table I emphasizes the importance of

understanding the limitations in models, and how modeled results compare to existing deployed

systems.

Table I: Comparison of Modeled and Measured Results to Previous Work

[12] [13] [14] [19] [29] [30] This

Work

Modeled

This Work

Measured

Supply

Voltage

3.3V 1.2/3.3V 1.2V 1.5V 0.5V 5V 0.6V 0.6V

AFE Power

Consumption

29.1µW 89µW 54µW 69µW 3µW 400µW 115nW 14.8nW

LED Power

Consumption

90-480µW 196µW 121µW 102µW 1.103mW 4.8mW 11.38µW 5.085µW

Total Power

Consumption

38.1-489µW 196µW 12µW 102µW 1.103mW 4.8mW 11.49µW 5.1µW

As observed, the model predicts a total power consumption of 5.1µW where the measured

system consumes 11.49µW. This discrepancy can be attributed to the differences in modeling

assumptions and physical implementation, but the model provides a good target range for

designers. The distance between the user’s skin and LED varies depending on the pressure
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applied. This is true in a real use scenario and difficult to control. Though we intend to examine

the relationship between the physiological factors, skin tone and BMI, it should be noted that

these results are also dependent on the distance between the user and the LED which was not

quantified in this study. Each user was in contact with the LED and photodiode but their finger

width and pressure can cause small variations in this distance. The practical considerations

discussed in the previous section likely contribute to the discrepancies between the modeled

and measured results. In order to commercialize ULP PPG sensing devices, researchers would

need to conduct extensive studies around the effect of packaging, pressure on the device,

ambient light and other effects not captured in the model. The complex nature of human skin

reflectance and vasculature makes it difficult to capture in a model designed to examine more

straightforward tradeoffs. Extensive models that incorporate human physiological and optical

models could come closer to matching measured results and be a valuable tool for examining

the accuracy of these devices for a diverse population before starting expensive and

time-consuming on-body testing and trials.

This modeling effort The main comparison of the modeled results and the measured results

focuses on the achievable SNR for each user. For the custom AFE, the model showed a

possible range of 30 dB for each individual depending on the gain settings and LED current and

the measured results showed a range closer to 6 dB. The range of SNR in the measured results

spans 66 dB to 73 dB. This is in the SNR range identified in the model as being achievable for

every user regardless of skin phototype or BMI. It is important to recall that the sample size for

the measured results are limited, so despite remaining in the achievable range, the modeled

results indicate that further outlying samples would not. This is one of the major points that

emphasizes the importance of modeling because the collection of data will always be limited by

the sample size. The custom AFE model clearly shows that skin type rather than BMI has the

most effect on the achievable SNR, which was determined by the impact on the AC/DC ratio. It

was found that this is only the case at 2 gain settings in the measured results, indicating that

there may be a more complicated relationship between gain and the AC/DC ratio resulting from

skin type and BMI than is captured in the model. Benchmarking Table I emphasizes the
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importance of understanding the limitations in models, and how modeled results compare to

existing deployed systems. As observed, the model predicts a total power consumption of

5.1µW where the measured system consumes 11.49µW. This discrepancy can be attributed to

the differences in modeling assumptions and physical implementation, but the model provides a

good target range for designers. The distance between the user’s skin and LED varies

depending on the pressure applied. This is true in a real use scenario and difficult to control.

Though we intend to examine the relationship between the physiological factors, skin tone and

BMI, it should be noted that these results are also dependent on the distance between the user

and the LED which was not quantified in this study. Each user was in contact with the LED and

photodiode but their finger width and pressure can cause small variations in this distance. The

practical considerations discussed in the previous section likely contribute to the discrepancies

between the modeled and measured results. In order to commercialize ULP PPG sensing

devices, researchers would need to conduct extensive studies around the effect of packaging,

pressure on the device, ambient light and other effects not captured in the model. The complex

nature of human skin reflectance and vasculature makes it difficult to capture in a model

designed to examine more straightforward tradeoffs. Extensive models that incorporate human

physiological and optical models could come closer to matching measured results and be a

valuable tool for examining the accuracy of these devices for a diverse population before

starting expensive and time-consuming on-body testing and trials.

5. Conclusion

The IoT is an ever growing technological revolution that is a powerful system but has also

created many new problems for designers to solve. The goal of this work is to highlight some of

the capabilities of modeling with respect to self-powered systems, and to also illustrate the need

for modeling to be further developed to aid in system design. The scale and impact of IoT

devices are largely limited by the lifetime or longevity of the systems in their respective

environments. From a systems perspective, modeling can aid in the realization of the design

space that restricts a designer's boundaries by addressing individual components' contributions
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to overall system power. Further, test modes and models can be used with statistical

representations of environments to determine the functionality of a system when it is being

supported solely by the environment. This is useful to help maximize the reliability and

availability of deployed sensor nodes. From a sensing perspective, this work presents a

three-part model to encapsulate the impact of physiological factors on ULP sensing and its

accuracy. Modeling is an extremely powerful tool to aid designers in the exploration of the

boundaries of current technology. When customized to specific applications, models can lend

powerful insight to the design knobs that can and need to be explored for optimal solutions.
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