
Addition of JSON Schema Keyword “allOf” in OPA Type Checker and the Overall

Importance of Open-Source Projects

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Julia Friedman

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

Addition of JSON Schema Keyword “allOf” in OPA Type Checker and the

Overall Importance of Open-Source Projects

CS4991 Capstone Report, 2022

Julia Friedman

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

jaf9zd@virginia.edu

Abstract

While Open Policy Agent (OPA) provides an

open-source engine that unifies policy

enforcement across the cloud native stack,

one of the limitations of its Rego type checker

was the absence of the keyword “allOf.” The

addition of this keyword enhanced OPA’s

type checker, as users now receive detailed

error messages regarding the use of this

keyword. The “allOf” keyword, when

included in an inputted JSON schema,

implies that all of the fields immediately

following it must be included in the policy

being created. The addition of support for this

keyword allows the type checker to recognize

it and subsequently inform users if there is a

mistake in their policy having to do with

“allOf.” This extension eliminated a

limitation of OPA’s type checker, and it was

done via open-source code contributions.

Future work could involve adding support for

other keywords that are not yet implemented.

1. Introduction

OPA provides a declarative language that

allows for specification of policy as code. A

policy is essentially a set of rules that dictates

the behavior of a software service. Policies

may outline important details regarding

names of trusted servers, how to comply with

technical requirements, how to work within

technical constraints, among many others.

For example, a policy for a banking system

could describe which accounts a user can

withdraw money from.

Policy management across an organization is

beneficial in that an administrator can

manage different aspects of a system in a

flexible and centralized way, thus increasing

efficiency and convenience. Policy

management systems allow an organization

to regulate and update rules without having to

alter the original implementation code

because policy is managed separately from

application code.

In particular, OPA is an example of a policy

management service that allows for the

decoupling of policy from a software service.

OPA allows an organization to edit, read,

write, analyze, distribute, and manage policy

separately from the service itself (creating no

need to recompile or redeploy any

application code). The independence of

policy helps ensure that software services can

be built at scale, and makes them adaptable to

changing business requirements.

2. Related Works

As explained by Corrado (2009), open-

source projects are very important and

beneficial for developers and organizations

alike because they provide source code that is

free and may be copied or altered by anyone

[1]. Because OPA is an open-source project,

it could be improved through the addition of

support for the “allOf” keyword as

previously described. In the future, OPA (and

all other open-source projects) can undergo

mailto:jaf9zd@virginia.edu

perpetual enhancement by developers

anywhere and at any time.

Von Krogh and Spaeth (2007) present the

advantages of the accessibility provided by

open-source projects, including its value in

promoting research. Essentially, it opens the

door to an abundance of data for researchers

and opportunities for developer improvement

of code [2]. Open-source also allows for

continuous improvement of products and

services, and for an open conversation about

the functionality and enhancement of these

software. A well-known example of an open-

source product is the programming language,

Python. Python is available for all users for

free, allowing it to be easily distributed and

broadly accessible. A user can download any

source code within Python and further

modify and distribute their version of that

code. Overall, open-source encourages

collaboration, community, and transparency

among developers.

Since OPA is an open-source project, it is

readily available and free to those

organizations who want to use it for their

needs, whether for personal or commercial

application policy management. In fact,

many well-recognized companies use OPA,

including Google, Netflix, Atlassian, and

Capital One [3].

3. Process Design

The three main components of the design of

this project were comprehension of OPA’s

code base and its limitations, using JSON

schemas for code structure validation, and

understanding the relationship between

OPA’s Rego type checker and its error

messages.

3.1. Code Base

Completion of this project required a strong

understanding of OPA’s code base that is

publicly available on GitHub. The first steps

of this project were reading through and

determining what each part of the code does.

The limitations of the code were already

defined in the Issues tab within the OPA

GitHub repository, and one of these issues

was the absence of implementation for

several keywords in the type checker. The

goal of this project then became adding

support for the “allOf” keyword.

3.2. JSON Schemas

In order to implement a new keyword, it was

necessary to understand how the other

keywords are defined and tested and further

to understand in what location in the code

itself keyword definition and testing was

implemented; achieving this understanding

relied on coupling the use of JSON schemas

and OPA’s type checker. Schemas are a

helpful feature of policy management

systems in order to perform type checking. A

JSON (JavaScript Object Notation) schema is

a tool for validating the structure of data,

outlining what input should look like.

Schemas are typically passed in as input

when evaluating a piece of policy code, and

the associated type checker will use that

schema as a blueprint to authenticate the

structure of the code and inputs. In the case

of OPA, the JSON schemas passed in as input

during evaluation can interact with code

written in Rego, which is a declarative

language utilized by OPA for policy writing.

When these schemas are included in the

evaluation input, the Rego type checker uses

them as a guideline for the intended code

structure.

3.3. Type Checker

With a JSON schema as a guideline, the type

checker can subsequently give more detailed

and helpful error messages, as it can compare

the usage in the actual policy code to that

defined in the schema. As implementation is

added for additional keywords in the Rego

type checker, the type checker gains the

ability to give specific error messages that

indicate if the user has made a mistake

involving those particular keywords. For

example, if a developer made a typo

involving the use of “allOf” in their inputted

schema, the type checker could tell them that

the root of that error relates to “allOf”,

instead of generally telling them that there

was an error. Developers leveraging OPA can

still use keywords that are not yet

implemented in the type checker, but any

type errors that they make in using such

keywords would result in difficult-to-debug

output.

3.4. Incorporation

The final steps of this project were to

combine the knowledge of the code base,

JSON schemas, and OPA’s type checker in

order to create a solution and add code for

implementation of “allOf.” After testing, this

code was submitted as a Pull Request into the

main branch of the OPA GitHub repository;

this Pull Request was approved by the

maintainers of OPA and was thus

incorporated into the open-source, publicly

available code base.

4. Results

The results of this project included a

contribution into the OPA open-source

project that enhanced its type checker by

adding support for an additional keyword.

The completion of this project helps OPA as

an organization because it is an instance of

the continuous improvement that is possible

because OPA is open-source. The creators of

OPA did not have to do any work (aside from

approving the Pull Request in GitHub) in

order to improve their product.

This work is also important for the many

organizations that utilize OPA for their

policy management needs. Companies such

as Google, Netflix, Atlassian, and Capital

One all use OPA for their business needs;

these companies benefit because the software

that they are using has now been enhanced.

The specific realized improvement allows for

easier and more immediate type checking

regarding the use of “allOf,” and thus

provides more precise and informative error

messages for users in these organizations

who write policy using this keyword. This

saves developers time and effort in

debugging, and saves their employers money.

This project was done as part of an internship

at IBM. Note that although IBM does not yet

use OPA for policy management, the direct

benefit of this work will emerge if and when

IBM initiates OPA use in the future.

5. Conclusion

This technical work made meaningful

contributions to the open-source community

as well as the potential users of open-source

products such as OPA. This work will benefit

companies that utilize OPA for their policy

management needs; they will have a more

efficient debugging process, as

implementation was added for an

enhancement to the type checker that

improves the quality of error messages.

Improvements to OPA are made possible

because of OPA’s open-source nature. It is

important to recognize the value in

developers being able to freely contribute

relevant enhancements to any open-source

code base and associated product or service.

6. Future Work

Future work could involve adding support for

additional keywords in the OPA type

checker. For example, the “with” keyword is

still unimplemented. Additionally, there are

many more limitations of the code base listed

under the Issues tab in the OPA GitHub

repository. Because open-source code is

freely available and editable, any developer

can make a contribution (pending Pull

Request approval by code maintainers) in

order to eliminate more existing limitations

of OPA.

REFERENCES

[1] Corrado, E.M. 2009. The importance of

open access, open source, and open standards

(June 2009). Retrieved September 22, 2022

from http://codabox.org/15/1/istl.pdf

[2] Von Krogh, G. and Spaeth, S. 2007. The

open-source software phenomenon:

Characteristics that promote research.

(August 2007). Retrieved September 22,

2022 from

https://www.sciencedirect.com/science/articl

e/abs/pii/S096386870700025X

[3] Open-Policy-Agent. 2022.

OPA/adopters.md at main · open-policy-

agent/OPA. (August 2022). Retrieved

September 22, 2022 from

https://github.com/open-policy-

agent/opa/blob/main/ADOPTERS.md

