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Empirical Model Relating Chloride Loading Density and

Conductance for Prediction of Galvanic Corrosion

EXECUTIVE SUMMARY

The research presented investigates and develops a correlation model in which
chloride loading density (LD) may be determined from relative humidity (RH) and
conductance (G) data in the context of galvanic corrosion in outdoor environments.
In real applications, the water layer created by the deliquescence of salt on a metal
surface at high RH may have non-uniform distribution and thickness, causing
significant variability in G for a given LD. In order to create a model that reflects
realistic water layer geometries, laboratory data of conductance as a function of
relative humidity at 30oC was examined for known LD values.

Hysteresis-like loops were observed in the graph of G(RH) as RH increased and
decreased periodically. The wetting (increasing RH) and drying (decreasing RH)
halves of these loops were split. For low LD values, a logistic function was fit to each
half and the coefficients corresponding to the best fit were noted. For high LD
values, the linear region of the drying curves were fit to a line and the x-intercept
was recorded. For each case, the parameters were then correlated to the known LD
value. Finally, experiments were conducted in an outdoor environment by applying a
known LD to the same sensors as those from the laboratory tests and measuring G,
RH, and temperature. These experiments showed that temperature also plays a
significant role in this system by changing the activity of salt in the water layer,
resulting in different conductance values than those predicted by our model created
from isothermal conditions.

The technical project concluded with a successful model predicting LD using the
x-intercept from the linear-fit method. However, the isothermal conditions presented
by the lab data proved insufficient for fully predicting LD from conductance and
relative humidity data in a complex real environment. By using our procedure for the
outdoor experiment to collect more data, the modeling approach used here could be
used to more accurately quantify LD from temperature, conductance, and relative
humidity data.
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Empirical Model Relating Chloride Loading Density and

Conductance for Prediction of Galvanic Corrosion

INTRODUCTION

Modern engineered systems have optimized cost, efficiency, and mechanical properties
through multi-material systems. In the aerospace industry, aluminum alloys and carbon
fiber reinforced polymers are often used for structural components on an aircraft due to
their strength-to-weight ratio. Aircraft components which are subject to higher stresses
are often made from high strength materials such as steels and titanium alloys[1]. When
these unlike materials are in electrical contact, galvanic corrosion can occur.

To better study galvanic corrosion, Luna Labs developed the Acuity LS Sensor. This
device measures both environmental parameters and galvanic corrosion rates during
laboratory and outdoor exposure tests. Corrosion measurements taken by the Acuity
Sensor can be used to directly estimate the corrosion magnitude of a system, while
environmental parameters can be used to further understand and predict corrosion
distributions. Currently, there have been studies conducted which used thermodynamic
models to determine an equilibrium molarity and conductivity of salt water as a function
of the relative humidity [2]. However, not all correlations between the parameters that
the Acuity measures exist.

The problem being explored in this project is the fact that only a preliminary analysis
has been conducted to quantify the correlation between conductance and chloride
loading density. The objective of this capstone project then became to analyze
previously collected Acuity and chloride density data to find empirical and quantitative
correlations. The benefits of finding this relation would be far reaching. The most
obvious benefit would be the creation of a finite element method model which could be
used to predict corrosion rates through deployments of the Acuity LS Sensor in a wide
range of environments. Better material performance testing and material selection as
well as condition monitoring would all be possible with this model. Marine infrastructure,
offshore energy, automotive, aerospace and other industries would all benefit from such
a development. The benefits do not extend just to industry; with this relation, it would be
possible to better correlate laboratory accelerated corrosion tests and outdoor exposure
tests.

There are a few key known concepts we used to aid our project. The first is known as a
deliquescence point, where there is enough humidity for droplets to form on the surface
of a material [3]. Humidity cycles were used in laboratory experiments to gain the most
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information from critical points such as these. This is also why conductance increases
with relative humidity [4]. It is also important to know that conductance increases with
temperature [5]. As a result, the laboratory environment was held to a constant
temperature. Lastly, it is important to define our two key terms: conductance and
chloride loading density. Conductance is the degree of ease of electric flow [6]. Chloride
loading density is the mass of salt per unit area [7].

Problem Statement

The design challenge given by Luna Labs is to create an empirical model that can
predict the instantaneous chloride loading density of a surface in an outdoor
environment from the conductance of the solution on said surface. Conductance is
similar to conductivity, but it is scaled by a geometric factor that is composed of the area
of the solution surface divided by the characteristic depth of the water layer. By
analyzing data collected by the sensor, we should be able to predict the chloride loading
density independent of the wetting geometry of the corroding surface. The supplied data
is in the form of Acuity sensor data in both laboratory and in situ tests. Following model
creation, experiments of our own design were conducted in order to verify the accuracy
of the model we have created, alongside attempting to identify a temperature
dependence.

RESEARCH

Conductance and Relative Humidity vs. Time

The first model the group attempted to create was based on previous work conducted
by Luna Labs. Luna Labs had looked into constructing a model which could relate
conductance and relative humidity with time. Using this previous work, we looked at
correlating conductance and relative humidity by analyzing the slope of the conductance
data between 76% and 85% relative humidity. Figure 1 below shows the typical pattern
for the laboratory data with the relative humidity alternating between 30 and 90% and
the conductance increasing at 76% relative humidity, which is the deliquescence point
of sodium chloride.
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Figure 1. Two charts of conductance and relative humidity versus time for two
different loading densities.

Our hope with this model was to determine if any differences in slope could be
attributed to different chloride loading densities. For instance, we hypothesized that a
higher chloride loading density might result in steeper conductance slope when
compared to lower loading densities. From this, we hoped to find that unique slopes
could be paired with the different loading densities. From the given laboratory data, we
would be able to extrapolate slopes for loading densities which were not within the
laboratory data set giving us slopes for all possible loading densities. A model could
then be constructed to return a predicted chloride loading density based on the slope of
the conductance data between certain relative humidity values.

Upon analyzing the laboratory data, it became clear that the slope of the conductance
values between 76% and 85% relative humidity were similar regardless of the loading
density. From this discovery, we were able to conclusively say that conductance and
relative humidity have no time dependence and that there was no use developing this
model any further.

Conductance vs. Relative Humidity

Initial Graphical Investigation

The principal relationship within the data that we decided to use in our model was the
relationship between the conductance (G) data and the relative humidity (RH) data.
This choice had quasi-theoretical backing, and there were promising trends in the data
that indicated a relationship to chloride loading density (LD). Since conductance values
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for a given area (the area of our sensor surface) changes with changing ion
concentration in a solution, we hypothesized that the conductance would be related to
the relative humidity, the source of liquid on the sensor surface, and chloride loading
density, the source of ions in the solution. Since the sensor outputs conductance data
and relative humidity data, we hoped to use the change in relationship between these
two variables to model a change in the loading density.

We began by graphing G vs. RH for a single cycle of relative humidity (30%-90%-30%)
at a single loading density from sensor 588. We noticed that the curve resembled a
hysteresis loop, and further discussion with Luna labs revealed the physical meaning of
the graph shown in Figure 2:

Figure 2. Conductance versus relative humidity for a single wetting and drying cycle

The minimum values at low RH are explained by the minimum recordable conductance
value of 5 μS. At the deliquescence point of NaCl, 76% RH, we saw conductance
increase as the humidity became high enough to create a solution on the surface. G
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asymptotically increases to the maximum RH value, and continues to increase in the
early stages of drying. This increase is due to the evaporation of the water while the
amount of salt in solution stays the same, increasing the concentration of the solution
and its conductance. Once RH decreases back to the deliquescence point, G begins to
sharply decrease to below the sensor minimum. Seeing this relationship was
instrumental in choosing how we would go about modeling the data as accurately as
possible within our design constraints of accuracy, simplicity, and ease of use.

Next, we graphed G versus RH for a single sensor, color-coding each separate LD:

Figure 3. Conductance vs. relative humidity for all wetting and drying cycles of a
collected by one sensor, color coded by loading density

Through visual analysis, we noticed a few things. Firstly, for the four loading densities
tested on each of the six sensors, only the lowest LD showed the full hysteresis loop of
data; the other LDs had a maximum G value above the sensor maximum of 10,000 μS.
Based on the data collected by the sensor, it was reasonable to assume that the other
loading densities followed the same hysteresis loop, but much of this shape was not
recordable by the range of the sensor. This would eventually make it difficult to develop
a comprehensive model that portrayed the full relationship. We also noticed that the
decreasing portion of the graph seemed to happen at lower RH values for higher LDs.
We hypothesized that this was a result of a larger maximum G value creating a wider
hysteresis loop, but without the maximum values recorded, this could not be confirmed.
Still, this relationship did reflect the change in loading density, as we had predicted, and
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we would be able to quantify the change for use in a predictive model. With this in mind,
we decided to focus on the drying portion of the data.

Data Analysis Methods Investigation: Curve Fitting

Our next task was to investigate the best method for modeling the relationship we had
identified; we began with the low LD data, since we had the full loop of values. After
testing a few different mathematical functions, we found that using two logistic functions
(one for the “wetting portion” of increasing RH, one for the “drying portion” of decreasing
RH) modeled the data quite well and took into account the initial increase of the drying
portion. Once we fit the data to a logistic curve, we would be able to use the coefficients
of the fitted function to predict the loading density.

The higher LD data with incomplete loops, posed some issues with our methods. The
inherent noisiness of the data and the lack of a full shape of the graph made it very
difficult to automatically fit the data with a curve fit program; the noise seemed to
confuse the fit and would result in clearly poor fits. We made several attempts to
address this issue.

Our first attempt was to transform the data to be linear. Our reasoning was that if the
data was linear, then there would be no missing features of the graph and our curve fit
program would have less trouble recognizing the shape. There is no easy way to
linearize a logistic curve, but there is a method called Hubbert linearization, which plots
logistic data against the ratio of the data to its derivative to yield a linear graph whose
intercepts are the coefficients of the logistic curve:

While we did not have data corresponding to the derivative of instantaneous
conductance, we developed a method to find the coefficients. First, we generated a
column of data by inputting G and RH data into the derivative function of a logistic
curve, dG/dRH of our logistic equation. Then, we adjusted the coefficients of the new
function until our hubbert graph exhibited maximum linearity. Plugging these coefficients
into our original logistic function gave a very good fit for the data (Appendix A).
Unfortunately, for some reason, the lack of a complete loop still interfered with this
method, and we were not satisfied with the additional increase in complexity that our
model’s input would need.
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Our chosen method to model the high LD data was a simple linear fit to the middle of
the logistic curve. Unlike the low LD curves, the high LD data exhibited a steep enough
increase and decrease that a linear fit could be used to model that portion of the data.
We developed a way to crop the data to achieve a realistic fit. The upper portion was
sufficiently linear to not need a cutoff. The lower cutoff was determined by finding the
lowest value of G before the correlation coefficient of a linear fit began to decrease,
which was at 1000 mg/m2 (Appendix B). The relationship to loading density was found
by looking at trends in the coefficients of the linear fits. Although this model yields less
information about the data as a whole, we thought it to be easy to use and understand,
while still providing information about the loading density.

Code for Implementing Solutions Description

The code used to analyze the laboratory data was composed of several Python
modules. All lab data was stored in an SQLite3 database called AcuityLabData.db.
Several important Python packages were used, including pandas for data management,
scipy for statistical analysis, and numpy for numerical operations. The datahandler.py
module contains several functions for pre-processing the data before applying any
statistical methods. First, load_test() takes in a sensor ID as an argument and simply
reads in all data from one sensor contained in the SQL database and transforms it into
a pandas dataframe object. The wet_dry_split() function takes in this dataframe and a
specified LD value for which to split the data into its wetting and drying halves. This is
accomplished by using a Savitzky-Golay filter on the RH vs. time data to smooth the
data, then calculating the slope of this RH(time) curve at each point. Where the slope is
positive, the data associated with that slope is added to a dataframe containing only
wetting cycle data; where the slope is negative, the associated data is added to a
dataframe containing only drying data. Next, cycle_split() is able to split the data frames
containing only wetting or drying data into their individual cycles so that each one can
be analyzed individually. This is done by measuring the time change between two data
points and splitting the data where this time change is larger than 2 hours and putting
that cycle's data into its own dataframe. The function then returns a list of dataframes
containing the data of each cycle. Finally, clean_data() performs a variety of data
cleanup tasks, such as removing data that is outside of the conductance sensor's range.

The actual analysis was primarily done in either logmod_single.py, which is capable of
fitting low LD data to a logistic curve and returning the fitting parameters using scipy's
curvefit(), as well as performing the linear approximation for higher LD data using
scipy's linregress(). These fits are done on each cycle of each loading density for each
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test and returns four CSVs containing by-cycle data: files for linear model fitting
parameters for the wetting data and the drying data, and files for the logistic model
fitting parameters for the wetting data and the drying data. Another module,
logmod_combined.py, does the same things as logmod_single.py, but does curve fitting
on the aggregate of all cycles for a given loading density. Finally, mlmod.py contains
some work performed with machine learning applied to the aggregate of all drying cycle
data, such as a multiple layer perceptron neural network and random forest regression,
but this module was not developed as extensively as the other two analysis modules.
Further documentation on the workings of all modules can be found in the code that will
be supplied to Luna Labs.

Error Analysis Method

One of our principal design factors was a reported range of confidence for our predicted
loading density as a means to express the noise we observed in the data. We decided
to include a 95% confidence interval in our final model to accomplish this goal. First, we
needed to confirm that the spread of linear fit parameter values for each loading density
were normally distributed in order to use the standard confidence interval calculations.
We verified the normality assumption by creating Q-Q plots for our fit parameters, as
well as performing the Kolmogorov–Smirnov test for normality. The Q-Q plots showed a
linear trend, which indicates normally distributed data (Appendix C). Assuming normal
distribution, we would be able to easily calculate the 95% confidence interval to include
in our model.

Experimental Data Collection

Luna Labs Real Environment Data

Luna Labs provided us with Acuity data with three locations. Two were on opposite
sides of Battelle, FL. Representative data for one of the Battelle tests is shown in Figure
4. The third location was in El Segundo, CA. A final goal of Luna Labs is to be able to
use a computer model to predict loading density in the real environment. As a result, we
had some aspirations to verify our model with this data.

Unfortunately, environmental data has more noise and has more confounding variables
than the lab data, which is illustrated in Figure 4.. Additionally, weather does not cycle
through different humidities neatly unlike a controlled environment. Therefore, although
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it was never quantitatively tabulated, it is clear our confidence interval would have been
even larger than in our lab data.

Figure 4. Conductance vs. RH for Acuity data at Battelle Ocean Site. This data shows
much more variability and has fewer apparent trends than the lab experiments.

Capstone Experiment: Goals

The goal of this experiment is to conduct Acuity deployments in an outdoor environment
with known loading densities. From the deployment, information about how relative
humidity and temperature impact conductance for a known loading density can be
discovered. This information can be compared to laboratory experiments to get a better
picture of how environmental factors impact conductance.

Capstone Experiment: Acuity Sensor Preparation

The three Acuity devices used during our experimentation were labeled 00460, 00462,
and 00463. Before electrolyte application, the Acuity devices had new batteries
installed, the sensor surfaces were cleaned using isopropyl alcohol on a Scotch-Brite
pad, and the data logging was started at approximately 1:45 p.m. on Friday March 31st,
2023.
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Capstone Experiment: Electrolyte Application

The electrolyte was applied to the sensor surface using the HVLP gravity feed air spray
gun located at Luna Labs. The spray gun has a nozzle size of 0.8mm, the air pressure
was set to 40 psi, and the adjustment for spray pattern was turned fully clockwise to
create a circular pattern for uniform distribution. During application, the spray gun was
located between four (1.2m) and five (1.5m) feet away from the Acuity devices
depending on the test. Similarly, the application time was between 2 and 4 seconds,
depending on the test, with the goal of achieving a loading density of 500 mg/m². The
electrolyte being applied was a 0.6 molar sodium chloride solution. A glass witness slide
was mounted beside each Acuity device to measure the amount of deposited solution
during each test. The glass witness slides were weighed before application to get a
baseline measurement to compare to after application.

Capstone Experiment: First Application

The first electrolyte application occurred on March 31st at approximately 2:30 p.m. Each
Acuity device was sprayed for 2 seconds at a distance of five feet. Promptly after
electrolyte application, the three witness slides corresponding to each Acuity device
were removed and placed in the Thermotron 8200 at a humidity of 20% and a
temperature of 40°C and allowed to dry. The mass of these slides was then taken to
compare to the mass before salt application. The difference in masses gave us the total
amount of salt deposited and we could then calculate the loading density of the sensor
based on a given area. The results of the first application are given in Table 1 below.

Table 1: Slide Masses using Five Feet Two Second Method

Slide Number Averaged Slide
Mass Pre Spray (g)

Averaged Slide
Mass Post Spray

(g)
Mass Difference (g)

00460 10.1213 10.1215 0.0002
00462 10.0900 10.0903 0.0003
00463 10.0765 10.0769 0.0004
Control 10.1027 10.1027 0.0000

The first attempt using the five feet two second method did not yield enough deposited
salt to be statistically significant and therefore no loading density was calculated from
this data. Given the time constraints, the sensors were not resprayed that day and we
returned at a later date with new methods

Capstone Experiment: Second Application and Deployment
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Prior to the second application attempt, the sensor faces were cleaned using isopropyl
alcohol and the Scotch-Brite pads to ensure no residual salt was left on the sensors. For
our second attempt, we changed the spray time to four seconds and the spray distance
to four feet. The results are displayed in Table 2 below.

Table 2: Slide Masses and Loading Densities using Four Feet Four Second
Method

Slide Number
Averaged Slide
Mass Pre Spray

(g)

Averaged Slide
Mass Post
Spray (g)

Mass Difference
(g)

Calculated
Loading
Density
(mg/m²)

00460 10.1213 10.1218 0.0005 362
00462 10.0900 10.0907 0.0007 517
00463 10.0765 10.0782 0.0017 1292
Control 10.1027 10.1028 0.0001 62

After salt application and loading density measurement, the sensors were deployed in
an outdoor environment under a covered patio. This covering ensured the sensors were
exposed to varying humidity and temperature levels while minimizing the impacts of
other environmental factors such as wind and rain. The tests ran for one week before
the measurements were checked. Upon looking at the measurements, we decided to
leave the sensors out for another week due to the low humidity levels experienced
during the first week. After the second week, we returned to Luna Labs after discovering
Acuity 00460 was not collecting any data. Device 00460 had the previous data removed
and logging was restarted before respraying. While at Luna Labs, we cleaned the
sensor surface using isopropyl alcohol and the Scotch-Brite pad at 9:27 a.m. on April
20th. We resprayed 00460 while leaving the other two Acuity devices running.

Capstone Experiment: Respraying 00460 and Final Deployment

Acuity device 00460 was resprayed using a four foot and two second spray method to
ensure the loading density would be similar to our first attempt. The results of this
respray combined with the other two devices is displayed in Table 3 below.

Table 3: Final Slide Masses and Loading Densities using Mixed 4 and 2 Second
Methods

Slide
Number

Averaged
Slide Mass
Pre Spray

(g)

Averaged
Slide Mass
Post Spray

(g)

Mass
Difference

(g)

Calculated
Loading
Density
(mg/m²)

Spray
Time
(s)

Spray
Distanc
e (ft)

00460 10.1190 10.1194 0.0004 310 2 4
00462 10.0900 10.0907 0.0007 517 4 4
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00463 10.0765 10.0782 0.0017 1292 4 4
Control 10.1017 10.1018 0.0001 52 0 0

The devices were then redeployed under the covered patio and data was collected for
an additional week from April 20th to April 27th before the results were analyzed.

RESULTS AND DISCUSSION

Low Loading Density Model: Logistic Curve

Among the low LD data, where full drying curves were available, there was large
variability in the data. Not only was there variability between the drying curves
associated with different LDs, but there was large variability in the characteristic
parameters of the drying curves for individual cycles of the same LD. Within each cycle,
the logistic curves fit to the data fairly well for most of the tests. However, the
parameters of these logistic curve fits did not show to be a reliable predictor for chloride
loading density at low LDs.

A graph for the relationship between LD and the average curve steepness of the logistic
curve is shown below in Figure 5 (the same graphs for curve maximum and midpoint
are in Appendix D). It is clear to see graphically and from the very low R2 for each
correlation drawn between LD and the parameters that this model does not work well, at
least for when applied to only low LD data. If the full drying curves for intermediate and
high loading density conditions and more drying cycles for low LDs were available, this
model may show better performance.
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Figure 5. Relationship between logistic curve steepness and LD

High LD Model: Linear Approximation

In contrast to the logistic curve model, the x-intercept (x0) of the line fitting the steep
linear portion of the high LD drying curves did prove to be a good predictor for chloride
loading density. When plotting x0 against the natural logarithm of the corresponding LD,
a linear graph was realized with R2 = 0.86 after performing a simple linear regression.
By solving the equation of this linear regression line for x0, the equation predicting LD as
a function of x0 was found to be:

.

The graph of ln(LD) vs. x0, which shows this relationship can be found in Appendix E.
Figure 6 shows the same relationship with the axes flipped (xo vs. ln(LD)) to
demonstrate a more detailed error analysis of the x0 calculation. Error bars on each data
point correspond to the 95% confidence interval in the x0 for each corresponding LD.
While two of the data points show very large error bars, it should be noted that these x0
values were created from the average of two x-intercepts observed for the
corresponding LDs. The drying cycles for these LDs often featured large tails in their
G(RH) curves that broke the linear fits or contained few data points in the linear region
of interest. Thus, those cycles were not useful for this analysis.
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Figure 6. Relationship between x0 and ln(LD) with best fit line and confidence interval

In this form, our model for predicting chloride loading density satisfies all of our primary
design goals, which will now be described in detail. Judging by the high R2 value, we
can reasonably conclude that our model is accurate. While there are larger error
margins that we had hoped for due to the two variable data points, we believe this can
easily be rectified with generating more data at the loading densities with the largest
confidence intervals. Our model is also quite simple, being a simple exponential
equation with an input (x0) that can be determined easily with a simple linear fit to one
region of a drying cycle. This allows the model to be easily incorporated in the future
using more extensive analysis software. While the model does not include temperature,
performing lab experiments at different temperatures would allow for a temperature
dependence to be added into the current model. We have also concluded that time was
not a major factor in the current model as long as the wetting and drying halves are
divided. Finally, our model is based on relationships found in the drying data for G(RH)
relationships, which contains curves with characteristics that we believe correspond to
the evolution of the water layer. Thus, our model includes latent information about the
water layer.

A negative linear relationship of moderate strength was found between the slopes of the
linear fits and LD, shown in Figure 7 below. While we initially did not expect the
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relationship to be negative, further inspection reveals that this observation lends
evidence to our hypothesis that the hysteresis-like behavior of G(RH) also extends to
high LDs. High LDs result in the real conductance values increasing past the maximum
possible observation of the conductance sensor (10,000 µS). We hypothesize that as
LD continues to rise in the high LD regime, the logistic curves corresponding to the
drying cycles grow in scale by some factor. When these curves grow, the portion of the
logistic curves under the 10,000 µS sensor maximum (the portion from which we can
draw relationships) exhibit a lower slope. This is because, as the logistic curve is scaled
in size, the conductance corresponding to the curve's inflection point also continues to
rise. As a result, the portion of the total curve that is able to be observed resides in an
"earlier" stage of the logistic curve where the instantaneous slope is lower. This is
illustrated in Appendix F. We therefore consider the relationship between slope of the
linear region and LD to be an artifact of the sensor's limitations and not the result of any
physical phenomenon.

Figure 7. Relationship between slope of linear fit of high LD drying cycles and LD

Results of Verification Experiment
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Due to our experiment depending on outdoor conditions, it was difficult to get enough
usable data to compare to the laboratory data. Namely, the experiment depended on
the relative humidity being above the deliquescence point of 76% to ensure that
conductance occurred. Over the course of the three week outdoor exposure there were
only a few instances where the relative humidity was above the deliquescence point. As
a result, there were not enough data points with which to make a conclusive argument
for the impact of environmental data. Figure 8 below gives a representation of the data
we were able to collect over the course of three weeks. It can be seen from this chart
that there are few instances when the relative humidity was high enough to cause
conductance.

Figure 8. Conductance and relative humidity for an outdoor exposure with a loading
density of 517 mg/m²

CONCLUSIONS

Laboratory data from the Luna Labs Acuity sensor was analyzed in an effort to
determine and quantify a correlation between surface solution conductance and chloride
loading density. A curve fit model based on changes in the relationship between
conductance and relative humidity was used to develop a predictive model for chloride
loading density at a constant temperature. Additionally, an outdoor experiment was
performed with a known loading density at varied temperatures to gather more
information about the effect of temperature on the conductance-relative humidity
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relationship. Based on this research, several major conclusions may be made and are
shown below:

• The logistic model appears to fit the data for cycles individually, but the
parameters of the fit do not correlate well to LD.

• The x-intercepts of the linear portion of high LD drying curves show a strong
quantifiable relationship to LD based on the R2 value of the model (0.86)

• The outdoor experiments showed possible evidence for temperature
dependence of conductance, though many factors could result in the observed
discrepancies.

These conclusions support the design goals, as we have developed a statistically
accurate model that may be made more precise with further experiments as described
in the recommendations. Further, our model takes into account latent information about
the water layer through the use of G(RH) data divided by wetting and drying cycles, and
it is also time independent. Finally, our model is a relatively simple one that can be
translated in many ways for implementation in more complex corrosion analysis
software.

RECOMMENDATIONS

From our investigation, we have several recommendations for future work, which can be
organized as recommendations for future data collection and recommendations for
future analysis.

Recommendations: Future Data Collection

The two main issues that we ran into related to data collection were that the data from
the tests often reached the maximum of the sensor and made it very difficult to deploy a
consistent loading density for our own experiments. Firstly, we recommend that the
sensor maximum be taken into consideration for future data collection, whether that be
through altering the sensitivity of the sensor itself, a much more involved process, or by
choosing known loading densities that should not exceed the sensor maximum. The
choice between these two proposals relies entirely on how the sensor is to be used. If
the sensor will be used in lower loading density environments, then changing the sensor
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range is counterproductive, and the experimental methods should be changed to reflect
its intended use case. However, if the sensor needs to operate at higher loading
densities, it may be worthwhile to investigate an appropriate conductance sensitivity
range. We hope that the results of our investigation help to determine in which direction
is the best to proceed. Additionally from our investigation, we recommend that data
points be taken more often at areas of rapid change, such as the increasing and
decreasing portions of the G vs. RH curves. We had to omit several relative humidity
cycles from our High LD linear fit because there were two or less data points for the
entire curve between the sensor maximum and minimum, so having more data points
would have been useful in developing a more robust model. Finally, as a third
alternative, we hypothesize that using a lower temperature for laboratory tests would
also lower the maximum observed conductance value, giving a more complete curve for
the same loading density.

When we were conducting our own experiment, the most difficult step in the setup was
getting a consistent loading density across our repeat tests. We found that even slightly
altering the position of the sprayer could drastically change the amount of solution
deposited on the sensor. From our experience, we recommend a more automated spray
method for future experiments to eliminate the variation due to human interference.
Towards the end of the project, we investigated automated sprayers for reptile
enclosures as a possible solution or basis for design. With a more automated spray
method, the spray time, distance, and direction can be much more consistent among
repeat samples, increasing the amount of data available for given loading density to use
in analysis.

Recommendations: Future Analysis

There are several directions of analysis that we came up with but were unable to
investigate, mainly due to having the idea later on in the course of the project. Our first
recommendation is to try other mathematical functions to fit the data. From our
investigation, we found the logistic model to be the best choice: it had high correlation
and was the simplest to understand, as each coefficient adjusted a specific feature of
the graph (height, midpoint, and curvature). However, we had the idea later on to try a
hyperbolic tangent function or a differential function. We did not have time to investigate
these choices and thought them to be less simplistic, but future analysis could
investigate whether they are a more accurate representation of the data.

We were unable to successfully implement Hubbert linearization in our model for high
loading densities. However, it did work quite well for lower loading densities. Data
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transformation methods such as Hubbert linearization could be a useful tool for
simplifying a curve fit model to be easier to use, or as a means to work around some
artifacts or missing sections of the data.

One area of great interest that we came across too late in our project was the source of
increasing conductance at the beginning of the drying portion, immediately after the
relative humidity began to decrease from its maximum. In a talk with Dr.
Charles-Granville, a postdoctoral researcher at UVA, we discerned that the increase is
most likely caused by the decrease in solvent as water evaporates while the amount of
solute remains the same. We thought that further investigation could give us more
information about the water layer present on the sensor surface. With enough
information about the water layer, analysis can take a completely different approach by
determining conductivity from conductance and water layer information, which is directly
related to loading density.

In addition to the completed model provided to Luna Labs, we have provided materials
that can be used as a framework for future analysis. We built the program used for
automatically curve fitting the data in such a way that the function used for fitting can be
easily changed, in case future analysis required us to try different functions to fit the
data. The program can also look at the wetting data, which did not prove to be the most
valuable direction for us but is available to anyone who wishes to use it in the future. We
worked to make our program easy to understand, change, and translate to other
platforms so that the tools we developed could be used in the future.
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APPENDIX

APPENDIX A: Example Graph of Hubbert Linearization Method for Curve Fitting

APPENDIX B: Graph of R2 values for Linear Fit vs. Conductance Cutoff Value for
High LD data
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APPENDIX C: Example Q-Q plot Showing Normal Distribution for Linear Fit
Parameters

APPENDIX D: Low LD Logistic Curve Parameters vs. LD
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APPENDIX E: Graphical Representation of Final Linear Fit Model for High LD Data
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APPENDIX F: Demonstration of Sampling Range Effect on Slope of Linear Fit
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