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Sequence control in synthetic copolymers remains a tantalizing objective in polymer
science, as the phase behavior, self-organization, and bulk material properties of copoly-
mers are intrinsically dependent on their primary comonomer sequences. Achieving precise
control over monomer sequence in synthetic copolymerizations is challenging, as sequence
determination is influenced not only by the reaction conditions and the properties of the re-
actants, but also by the statistical nature of the copolymerization process itself. Further,
characterizing the primary sequence of a synthetic copolymer is a significant challenge,
making the experimental study of sequence development intractable with current meth-
ods. Despite these difficulties, greater understanding of sequence development throughout
the polymerization process will aid the design of simple, generalizable methods to con-
trol sequence and tune supramolecular assembly. To this end, this dissertation utilizes a
reactive, Langevin dynamics model of copolymerization to directly observe sequence de-
velopment in silico throughout the reaction. This allows for direct comparison to standard
statistical theories of copolymerization processes, as well as direct control over system pa-
rameters which may influence the reaction. We particularly target conditions in which re-
action driven phase change behaviors occur, which lead to reactant organization and emer-
gent heterogeneity not accounted for in traditional theories. We find that differences in
non-bonded attraction strengths between comonomers on the order of thermal fluctuations
drive a reactant assembly process, leading to a shift in reaction kinetics, molecular weight
distribution, and primary sequence that is not captured by Mayo-Lewis and Flory-Schulz
theories. We further explore how differences in solvent selectivity may give rise to such
self-organization, leading to sequence biasing and the formation of polymer structures with
a wide range of morphologies and composition distributions. Additionally, we examine the
influence of chain stiffness in concert with these self-assembly behaviors, exploring a tran-
sition to nematic ordering that occurs for oligomers of sufficient persistence length. Such
liquid crystalline ordering introduces a characteristic length scale into the system, which



both significantly enriches the formation of specific chain and sequence repeat lengths and
shifts in response to the relative diffusive and reactive timescales within the system. This
work provides new fundamental insights into the impacts of collective and emergent re-
actant behaviors on the kinetics and sequence development of copolymers which are not
captured by current theories. It develops provides greater understanding of reaction condi-
tions which produce particular sequence behaviors, allowing for the informed design of a
sequence-controlled copolymerization in a simple one-pot synthetic method.
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Chapter 1

Introduction

1.1 Synthetic copolymers and sequence control

Since the landmark discovery of Staudinger1,2 positing the existence of polymeric macro-
molecules, the study of polymers has seen enormous attention and tremendous advance-
ment. More than a century of polymer science has led to the widespread adoption of poly-
meric materials, first as synthetic polymer rubbers and thermoplastics replaced organic
rubbers or other materials in an industrial context, then as more tailored applications of
properties unique to advanced polymer materials.3–5 A particularly notable development
was the introduction of copolymers, polymers composed of multiple monomer species.5

Block copolymers, copolymers in which each comonomer species is isolated into repeated
“block” regions along the chain, have seen a wealth of application in fields ranging from
microelectronics manufacture6–8 to targeted drug delivery9–11 thanks to their propensity to
self assemble into ordered structures on the nanoscale.8,12 Block copolymers, however, re-
quire specific synthetic strategies to generate, as simultaneous polymerization of a mixture
of comonomers results in “random”, or more properly, “statistical” copolymers, in which
comonomer sequence and composition varies in a fashion related to known statistical laws
and dependent on characteristics of the reaction kinetics and conditions.5,13,14 It is the be-
havior of such polymerizations which we now explore.

Nature has evolved highly-tuned, molecular machinery to control the sequence of bi-
ological copolymers, from proteins to nucleic acids, and well-established methodologies
exist for the controlled synthesis of such molecules.15 By contrast, developing general
synthetic methodologies for sequence regulation and sequence control in non-biological
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copolymers remains an open challenge.14,16–19 Throughout the last few decades, signifi-
cant effort has gone into developing sequence controlled polymers – synthetic copolymers
in which the primary sequence of monomer types along the chain are intentionally bi-
ased or controlled.14,16,19 These efforts have led to a number of notable approaches that
control or bias sequence, such as iterative synthesis with suitable deprotection/protection
cycles for specific functional groups,20–22 controlled radical polymerizations (CRP) that
tune comonomer reactivities,23–27 or switchable catalysts.28 Despite these efforts, devel-
oping general synthetic methodologies for sequence biasing remains an open challenge in
polymer science, as current methods for sequence control in synthetic copolymers lack the
high degree of specificity or, crucially, the ease of application found in their biological
counterparts.14,16,17,19,29,30

1.2 Copolymer sequence influences material properties and
behaviors

Sequence control in synthetic polymers opens up a host of potential applications, both
as macromolecular carriers of information, providing a route for developments in non-
biological molecular information storage and synthetic biology,14,31–33 and as highly func-
tional materials due to the direct dependence of material properties and macromolecular
morphologies on the polymer sequence. The unique material properties and self-assembly
behaviors of copolymers, crucial to their numerous applications, are intrinsically related
to their comonomer sequences and sequence distributions, and sequence defined polymers
show tremendous potential for advanced materials design.29,30 Various studies have shown
that mechanical and rheological properties,24,34 thermal and ionic conductivity,35–38 glass
transition and crystallinity,39–41 morphology and phase behavior,24,37,42–47 coacervation
and electrostatic interactions,48,49 optoelectronic properties,50–52 and even sound and vi-
brational damping53,54 are influenced by the primary monomer sequence, as evidenced by
comparisons between polymers with different sequences but the same overall fractional
monomer content. Further work has demonstrated the potential for targeted additions of
specific monomers to a polymer sequence in order to obtain specific properties of interest.36

The ability to synthetically control or bias copolymer sequences and their supramolecular
organization will enable the informed design of novel and tunable materials for numerous
applications.
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1.3 Sequence influencing effects in copolymerization

In spite of the growing understanding of the fundamental relationship between sequence
and material behaviors, sequences in non-biological copolymers are often not well-characterized.
This is due to the dispersity introduced by standard synthetic methods,55 as well as to lim-
ited understanding of factors that determine sequence development throughout the reac-
tion.14

Though there has been marked progress made in developing specialized synthetic meth-
ods for sequence controlled polymers, progress towards a generalized methodology is ham-
pered by the complexities inherent in even simple one-pot synthetic approaches.56,57 Due
to these complexities, the factors influencing sequence during these reactions are still not
fully understood, limiting the extent to which they might be exploited to regulate sequence
in these more "traditional" polymerizations.14,16,58 Some previous work has explored such
sequence influencing effects in a simplified model of a solvated step-growth polymeriza-
tion among two monomer types, demonstrating that the presence of even relatively weak
non-bonding attractions between monomers can induce an emergent microphase separation
as the reaction proceeds.58 When this happens, the self-assembly of the growing oligomers
can locally enrich the concentration of certain species at the reaction site, thereby altering
reaction kinetics and copolymer sequence. The resulting non-standard reaction kinetics can
be further altered by the alignment of nascent oligomers with longer persistence lengths.59

This type of local concentration enrichment has previously been reported in both ex-
perimental and computational observations of the “bootstrap” effect,57,60–65 in which an in-
crease in the local availability of one monomer type shifts the relative kinetics of comonomer
pairs during a reaction. Analogous behavior occurs in polymerization induced self-assembly
(PISA), a widely studied synthetic approach in which a controlled radical polymerization
drives self-assembly among nascent oligomers consisting of a growing block of one type
of monomer attached to a pre-formed oligomer of a different type.66–68 In these PISA for-
mulations, an emergent phase separation driven by the polymerization reaction itself can
locally enrich monomer concentrations, and thereby speed reaction rates, while also yield-
ing desirable supramolecular morphologies.66,69–72 Non-bonding interactions are a primary
driver of assembly in PISA formulations, making the collective behaviors of monomer and
oligomer species of particular relevance to the reaction product in such cases. While poly-
merization induced self-assembly has been intensively studied,66 those studies are typi-
cally restricted to the chain extension of one monomer species onto a seed chain of another
species. Less is known about how assembly behaviors impact the development of sequence
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when more than one monomer species may be incorporated, particularly in the context of
a step-growth reaction mechanism.

Despite the importance of such effects in the mesoscale behavior of copolymerization
reactions, direct theoretical calculations of reaction kinetics often make fundamental as-
sumptions that run counter to these observations of self-assembly and collective behaviors,
assumptions such as truly homogeneous solutions with monomer diffusivity and reactiv-
ities independent of chain formation.73–75 This is further complicated by the difficulty in
experimentally characterizing the sequence of a non-biological polymer:14,16,55,76 copoly-
mers are often characterized by fractional composition alone, and even when some de-
gree of sequence determination can be made, the development of sequence throughout the
reaction presents further challenge to characterization. Molecular simulations provide a
powerful tool to more quantitatively explore behaviors that run counter to current theoret-
ical models, by removing many of these simplifying assumptions, and directly observing
sequence development at a molecular level.42,58,63,77–80 Reactive molecular dynamics sim-
ulations81–85 in particular can allow for both observing sequence development throughout
a reaction, as well as taking into account the influence of the reaction environment at a sys-
tem level, producing realistic dynamics by directly calculating the trajectories of reactants
from intermolecular potentials. Employing these simulation strategies will improve our
understanding of emergent collective behaviors in polymerization, and would allow us to
recognize the factors which enhance or minimize their effects, leading to new and broadly
applicable avenues with which to approach the problem of controlling synthetic copolymer
sequence and morphology.

1.4 Dissertation overview

This dissertation utilizes a reactive, coarse-grained molecular simulation approach to ex-
plore the development of primary sequence during a simultaneous, two-component, step-
growth copolymerization. A particular target of this exploration is the emergent collective
behavior of monomers and oligomer chains during polymerization due to non-bonding in-
teractions or environmental effects. Through the model and simulation approach employed,
we seek to understand the complex interplay between reaction driven assembly, polymer-
ization kinetics, and sequence development, with an eye towards exploiting facets of this
interdependence to develop new synthetic strategies for sequence controlled polymeric ma-
terials.
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In Chapter 2, we describe the details of our coarse-grained model, including descrip-
tions of the basic reactant constituents of our simulations and all non-bonded and bonded
interaction potentials between our reactants. Further we describe the initial configuration
and time-evolution sampling of our model, and the logic which determines how the re-
action proceeds. Additionally, we describe some metrics for simulation analysis that are
commonly utilized throughout the subsequent Chapters.†

In Chapter 3, we develop the fundamental kinetic theory of our model system from
first principles of classical polymerization kinetics. We connect this ideal kinetic model to
our simulation approach, and utilize this connection to explore how the heterogeneity pro-
duced by polymerization driven ordering and demixing causes a breakdown in the idealized
homogeneity assumptions of standard kinetic theories of step-growth polymerizations.

In Chapter 4, we examine the impact of asymmetry in non-bonded intermolecular in-
teractions, such as would be introduced by the presence of a solvent selective for one of
the reacting species. Such a solubility preference alters the collective organization and
polymerization driven demixing of the reactants, causing assembly to occur at different
stages for the respective comonomer species. This change to assembly alters, in-turn, the
kinetic and sequence impacts we have identified, as well as the composition profiles of the
resulting assembled structures.

In Chapter 5, we examine in detail the impact of chain stiffness and nematic alignment
on kinetic and sequence development in our reaction, an effect hinted at in the earlier
Chapters. We explore how nematic ordering emerges in time, and how this coincides with
the development of a characteristic block length within the system. We further examine
how this characteristic block length shifts in response to changes in system parameters
which alter the characteristic timescales of reaction and diffusion in the system. We then
explore how this characteristic length arises from length-dependent bonding behaviors in
oligomer aggregates, and how the structure and formation of these aggregates alters chain
and block length statistics in a manner that differs between chains of different stiffness.

In Chapter 6 we provide a summary of our results, connecting them to the broader con-
text of work in the study of copolymeric materials, sequence control, and polymerization
induced phase separation and assembly. We then propose future routes of study, including
both experimental methods targetting the observation and exploitation of the phenomenon
we observe in our simulations, as well as extensions of our simulation model to other
copolymerization schemes. Finally, we conclude with some brief thoughts regarding the

† We note here that some simulation or analysis details unique to work in specific Chapters are provided
in the Chapters themselves or their respective Appendices.



CHAPTER 1. INTRODUCTION 6

potential for further study and utilization of self-assembly and self-organization principles
to advance the field of sequence controlled polymers and thereby aid in the design and
broad application of advanced polymeric materials.
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Chapter 2

Methods

2.1 Model details

2.1.1 Monomer structure and interactions

To simulate an irreversible, step-growth polymerization, we make use of a coarse-grained,
reactive representation of a step-growth copolymerization, a model previously developed
in Ref. [58] and expanded in subsequent works.59,86,87 It is based on common “bead and
spring” models for polymers, which have been employed in the study of a wide variety
of material properties and have yielded well-validated results.88,89 A single bifunctional
monomer is represented as a simplified “bead.” Each bead is composed of three particles:
a central particle connected to two external particles via harmonic bonds. These harmonic
bonds control the spatial and angular separation of the three particles in the bead, modeling
the internal configuration of the monomer and determining the chain stiffness. The cen-
tral particle of each monomer bead contains the majority of the mass and determines the
monomer species, denoted either A or B to represent the two comonomers taking part in
the copolymerization. The external particles represent the reactive functional groups and
form bonds with the external particles of other monomers when the reaction conditions are
met.

Portions of the model described in this Chapter were initially developed in Ref. [58], and have been
further developed by the author and coworkers in Ref. [59, 86, 87].
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Unbound monomers interact with one another via two potentials, each associated with
one of the particle types within the monomer bead. The central, type 1 particle deter-
mines the primary non-bonding intermolecular interactions within the system, by means of
a modified Lennard-Jones (LJ) potential:58

ELJ(1,1′) =


4εatt(1,1′)[(

σ

r(1,1′)
)12− ( σ

r(1,1′)
)6] r0 ≤ r(1,1′) < 2.5σ

4εrep[(
σ

r(1,1′)
)12− ( σ

r(1,1′)
)6]+ c r(1,1′) < r0,

(2.1)

where r(1,1′) is the distance between the two interacting monomer centers 1 and 1′, r0 is the

separation at the minimum of the potential (r0 = 2
1
6 σ ), and c is a constant which ensures

continuity between the attractive and repulsive portions of the potential. The repulsive
portion, controlled by the well depth εrep is kept constant regardless of monomer identity,
while the attractive portion changes in strength based on monomer identity, as governed by
the well depth εatt(1,1′). This has the advantage of allowing attractive interactions to depend
upon monomer identity – i.e., by setting εatt(1,1′) = εAA, εatt(1,1′) = εAB, εatt(1,1′) = εBB for
A to A, A to B, and B to B monomer interactions, respectively – while simultaneously
maintaining fixed steric repulsions for each species. The model can therefore explore cases
with zero attractive interactions, while maintaining fixed monomer size-exclusion afforded
by the repulsive interactions of εrep. For notational simplicity, we denote the attractive
interaction strengths between monomers of species i and j as εi j throughout this work.

The type 2 interaction particles of each monomer bead represent the reactive functional
groups of the monomer. In order to model a reactive process with a tunable activation
energy, we define an additional, soft and very short-ranged repulsive potential between
type-2 particles via:

E2,2′
soft =

E i j
barr
2 cos

π(r2,2′−dbond)

don−dbond
+

E i j
barr
2 dbond < r2,2′ < don

0 r2,2′ ≥ don,
(2.2)

in which don is the cutoff distance for the potential and E i j
barr is the height of this contribution

to the reaction barrier, which can be adjusted across different i j monomer pairs. Additional
details on the use of this potential in modeling reaction activation energy is provided in
Sec. 2.2 below.
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Figure 2.1: Coarse-grained model schematic and reaction visualization. (a) A
schematic and associated visualization of each monomer type in the copolymerization sim-
ulation. Monomers are represented as coarse-grained spherical beads containing three par-
ticles as shown. Central particles define the monomer type, either A or B, while the external
particles represent reactive moieties. Both the center to center distance ri j, which controls
the intermolecular interactions via the LJ potential, and the interaction particle distance di j,
which determines the activation energy and bonding events, are shown. When di j ≤ 0.2σ ,
an irreversible bond is formed. (b) A growing oligomer chain. Within the schematic, the
intra-monomer angle α and the inter-monomer angle β are shown, each with associated an-
gular harmonic potentials. The strength of the α angular potential determines the stiffness
of the chain. (c) A visualization of the initial and final system states for a single step-growth
copolymerization simulation.
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2.1.2 Symmetric and asymmetric effective inter-monomer interactions

For the majority of simulations performed in this work we model what we term “symmet-
ric” attractive interactions, where attractions between like monomer species are equivalent
and εAA = εBB ≡ εAA,BB. With this symmetric constraint, we consider situations where
all monomer attractions are equivalent, i.e., εAA,BB = εAB ≡ εall, and those in which at-
tractions between like monomers are different than those between unlike monomers, i.e.,
εAA,BB 6= εAB. In Chapters 3&5 we employ such symmetric attractive interactions, and
examine emergent kinetic and phase behaviors of the system in such cases. The precise
values of εAA,BB and εAB used are described in these Chapters (Ch. 3&5) and their associ-
ated Appendices (Appx. A&C).

In Chapter 4, we explore copolymerizations in which monomers have asymmetric non-
bonded interaction strengths, by imposing the condition εAA > εBB. This choice of attrac-
tive interaction strengths provides a stronger driving force for A monomers to self-associate
than for B monomers – although we note that even at the maximum attraction strengths in-
vestigated here, all monomers remain well dissolved and do not begin to aggregate until
a significant number of nascent oligomers form. This alteration to the attractive interac-
tions for each monomer species is akin to that produced by a difference in solvent affinity,
wherein one monomer, more solvophobic than the other, has a greater propensity for self-
association. As solvent molecules are not explicitly represented in our system, the relative
solvent affinities of the monomers are captured through these asymmetric LJ interactions
between each monomer pair: the stronger like-monomer attractive interactions of species
A make it the more solvophobic species as compared to species B, where weaker self-
attractions produce a more solvophilic character. In order to determine the interactions
between A and B, we define εAB =

√
εAAεBB, making use of standard Lorentz-Berthelot

combining rules for LJ interactions (which is equivalent to the Kong combining rules for
our system).90,91 With these conditions, a range of attraction strengths were chosen such
that the maximum εAA value was set to 1kBT , where signs of self-assembly and sequence
altering effects were observed in prior work,58 while the maximum εBB value remained
much lower at 0.5kBT . The chosen values for εAA and εBB, and the associated Lorentz-
Berthelot values for εAB, are presented in Table 2.1. For each set of attraction strengths
explored, persistence lengths of lp = 3.5 and lp = 16.5 were tested, corresponding to flex-
ible and stiff polymer chains as controlled by the angular harmonic potential. A detailed
discussion of the persistence length calculation is available in prior work.59
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εAA (kBT ) εAB (kBT ) εBB (kBT )
1.0 0.32 0.1
1.0 0.55 0.3
1.0 0.71 0.5

0.75 0.27 0.1
0.75 0.47 0.3
0.75 0.61 0.5
0.5 0.22 0.1
0.5 0.39 0.3
0.5 0.5 0.5

Table 2.1: Lennard-Jones attractions. Columns show εAA, εAB, and εBB, which are the
well-depths for the attractive portion of the LJ interactions (see Eq. 1 in the main text)
for A to A, A to B and B to B monomers, respectively. Values for εAA and εBB were
chosen to reflect a copolymerization in which monomer species A is more solvophobic
than species B. From the values of εAA and εBB, εAB values were calculated according
to Lorentz-Berthelot rules.92 For all combination of attraction strengths, the strength of
repulsive interactions, εrep, is kept at a constant value of 1.33 kBT , irrespective of monomer
identity.
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2.1.3 Radial and angular harmonic potentials describe bonded inter-
actions

Bonded interactions in the model, the “springs” of our bead and spring model, are described
through the use of harmonic potentials. The harmonic functional form of these potentials
describes all bonds in the system, both within monomer beads and between two bonded
monomers once a reaction occurs, with differences in the parameters used distinguishing
the intramonomer and intermonomer bond types. Two harmonic bonds control the inter-
particle spatial separation and angular structure of the particles, which together model the
internal configuration of the monomer. Adjusting the strength of the angular harmonic
potential alters the rigidity of the monomer and can be used to control the persistence
length of the associated polymer.

Intramolecular and intermolecular angles are governed via the harmonic potential:

Eangle(θi jk) = Kangle
i jk (θi jk−θ0)

2 (2.3)

in which θi jk is the angle between particles i, j and k, θ0 is the equilibrium angle, and Kangle
i jk

is the spring constant for the angle. For the intramonomer angle between particle 2-1-2′,
angle α in Fig. 2.1b, θ0 = 180◦ and the spring constant is set to Kangle

212′ = 5 ε rad−2 and Kangle
212′

= 50 ε rad−2 for the flexible chains and stiff chains, respectively. For the intermonomer
angle between particles 1-2-2′, angle β in Fig. 2.1b, θ0 = 180◦ and Kangle

212′ = 100 ε rad−2 for
both flexible chains and stiff chains.

Similarly, both intramonomer and intermonomer distances are governed via the har-
monic potential:

Ebond(ri j) = Kbond
i j (ri j− r0)

2, (2.4)

in which ri j is the distance between particles i and j, θ0 is the equilibrium distance, and
Kbond

i j is the spring constant for the bond. For the intramonomer bond between particles
1 and 2, r0 = 0.4σ , and the spring constant is set to Kbond

12 = 2000 ε σ−2. For the inter-
monomer bond between particles 2 and 2′, r0 = 0.15σ , and the spring constant is set to
Kbond

22′ = 6000 ε σ−2.
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2.2 Simulation progression and bond formation

2.2.1 Sampling via Langevin dynamics

Simulations begin with equal numbers of A and B monomers distributed randomly through-
out the simulation volume. Time evolution occurs according to Langevin dynamics.93 Sam-
pling the system via the Langevin equation not only produces realistic dynamics from the
potentials in the system, but also incorporates a viscous drag force and random collision
forces characteristic of the solution-state and serves as a thermostat for the system. Adjust-
ing the parameters of the Langevin equation allows us to reproduce solution-state dynamics
for a range of different solution viscosities (see Appendix C Sec. C.1.1 for details). The
system is first allowed to equilibrate with only non-bonded interactions before bonding is
turned on. It is important to note that, for all simulation parameters explored in this work,
monomers remain well-dispersed in the solution phase prior to polymerization, only begin-
ning to aggregate as the reaction proceeds and oligomers lengthen due to the change to the
associated free energy of mixing of longer chains, as described by Flory-Huggins theory.73

After the equilibration period, attractive interactions and bond formation are switched on,
and the system is progressed to a reaction extent of p = 0.9, i.e., to the point where 90%
of bond formation has occurred. Fig. 2.1c shows the initial and final system state for a
representative simulation under these conditions.

2.2.2 Modeling a step-growth reaction mechanism

Reaction events are modeled by defining a specific cutoff distance dbond. When the exter-
nal particles of two monomers cross within this distance, overcoming both the fixed steric
repulsions from the central particles and the additional repulsions between the external re-
active particles, an irreversible harmonic bond is formed (Fig. 2.1a). Any two unreacted
functional groups may form a bond with each other and each functional group is capa-
ble of forming one such new bond, and the reaction thus proceeds through a step-growth
mechanism to produce unbranched, linear polymers. Similar reaction cutoff approaches
have been used in a variety of polymerization simulations, and have been shown in coarse
grained models to successfully capture key reaction characteristics from fully atomistic
molecular simulations.81,82,94

The potential defined in Eq. 2.2 is designed to serve as an additional, adjustable reaction
barrier to bond formation. When any two type 2 particles overcome this barrier, as well as



CHAPTER 2. METHODS 14

the repulsive LJ interactions between their respective monomer centers, and come within a
defined distance dbond, an irreversible bond is formed.Upon bond formation, all non-bonded
interactions between directly bound monomers are switched off. The total activation energy
for a reaction, E i j

a , is then composed of contributions from the non-bonded interactions
between the reactants – which depend upon the monomer identities i and j of the two
reacting species – and from geometric constraints arising from the intramonomer harmonic
bonds of the respective reacting monomers. Specifically, both the steric repulsions between
1 - 1′ particles from Eq. 2.1 (the strength of which is fixed via εrep and is held constant
across all simulations) and the very short-range repulsions between 2 - 2′ particles from
Eq. 2.2 (which we vary) contribute to the overall magnitude of the activation energy for
polymer bond formation. If this energetic barrier is overcome, and the distance between 2 -
2′ is less than dbond , the bonding distance, an irreversible bond will be formed as governed
via a harmonic potential. Due to the irreversible nature of the polymerization modeled,
bond breakage does not occur and simulations are inherently non-equilibrium, representing
the behavior at the limit of strong bond formation. Unless otherwise noted, the attractions
and activation energies of monomer A and B throughout this work are set to be symmetric
so that εAA,BB = εAA = εBB and EAA,BB

a = EAA
a = EBB

a . As discussed in Sec. 2.1 above, the
εAA,BB and εAB that are varied refer to the strength of the LJ attractions, εatt, while the LJ
repulsion term, specified by εrep, is held constant in all cases to maintain appropriate steric
repulsion.

2.2.3 Reaction activation energies

Throughout this work we make use of the concept of activation energy,95 which we define
here as the maximum total potential energy experienced by two monomers during bond for-
mation. This definition allows us to utilize the Arrhenius formalism in kinetic analyses of
our system, as discussed in Ch. 3, while also leveraging the advantages of a particle-based,
dynamical model to measure the activation energy directly observed in our simulations in
a straightforward manner. Activation energies are therefore calculated from the total po-
tential energy of the two bonding monomers arising from the LJ potential between type 1
particles, the soft repulsive potential between type 2 particles, and the intramonomer bond
lengths and angles. The values of each of these contributions above their minimum energy
are summed at the time of bond formation to obtain the total activation energy for the bond-
ing event. This calculation can be repeated for a large ensemble of bonding events across
multiple simulations for a given set of reaction conditions, providing an effective measure
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of the ensemble averaged activation energy.
In previous work,58,59 and in Ch. 4&5, we maintained a fixed activation energy across

different monomer species combinations in order to isolate and investigate the effects of
relative non-bonded attractions on polymerization. In Chapter 3, we seek to understand the
combined effects of non-bonded attractions and relative activation energy on copolymer-
ization by investigating the kinetic and sequence behaviors of our model over a range of
non-bonded attractions and activation energies. Therefore, we vary εatt and Ea values to
explore the systems at different attraction strengths over a range of Ea values. To vary the
activation energy in this study, only the additional repulsions between type-2 particles are
varied (by adjusting the value of E i j

barr in Eq. 2.2), while the other two components are kept
fixed. Additional details on the measurement of activation energy for each of the conditions
explored in these Chapters are available in the Appendices for the respective Chapters. In
summary, we find that adjusting the strength of the repulsive potential defined in Eq. 2.2
successfully alters the total activation energy experienced during a bond formation in a
species dependent manner. Further, we confirm that the activation energy is not affected
by other factors varied in our simulations in Ch. 4&5: that changes to attractive interaction
strengths do not impact the activation energy for different monomer species combinations,
and that activation energies are consistent for oligomer chains of different stiffnesses. That
the activation energy behaves in the manner expected allows us to distinguish the impact
these variations have: altering the structure of the system and reactants in the case of at-
tractive interactions and chain stiffness variation, or changing the reaction pathway itself in
the case of a change to the activation energy directly.

2.3 System descriptors and simulation analysis metrics

2.3.1 Chain length and block length statistics

In characterizing the results of our simulation, two critical metrics are the chain length
and block length distributions. These probability distributions describe, respectively, the
probability of observing a chain of a given length within the system, or a block of repeated
monomers of the same type of some length within the oligomer chain in the system. One of
the key advantages of our model is that it allows us to collect these distributions from direct
observation of simulation results: simply counting the length of chains and blocks in the
system over an ensemble of simulations and generating a histogram directly. This allows
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us to compare our observations to commonly used descriptive statistical theories of poly-
merization, to better understand conditions under which the assumptions underlying these
theories begin to break down.73 Here we describe the theoretical underpinnings of such
statistical descriptions, describing the concepts behind the Flory-Schulz theory for chain
length distribution, and deriving an associated prediction for the block length distribution
among the oligomers based on a Markovian statistical model.

We begin with the probability distribution for chain lengths in a step-growth polymer-
ization, which is given by the Flory-Schulz distribution.73 The Flory-Schulz distribution is
a well-studied and validated distribution which describes the probability, P(x) of obtaining
chains of length x in a step-growth polymerization reaction in terms of the reaction extent,
p, as:

P(x) = (1− p)px−1. (2.5)

Distributions calculated from Eq. 2.5 are shown throughout the text for comparison to
the observed distributions of oligomer chain lengths.

Under Flory’s assumption of equal reactivity, the probability of having a like or unlike
bond is only based on the identities of the two bonding monomers, as reactivity does not
depend on the length or properties of a molecular chain attached to either of the two reacting
monomers. This dependence of reactivity and bond formation on only the identities of
the most recent monomer and next monomer to be added means that the sequence can
be treated as a Markov chain. To obtain an expression for the probability distribution
of contiguous blocks of either A or B, we define analogous equations to Equation 2.5,
but specific to A or B. Just as p in Eq. 2.5 is the probability that a given monomer has
reacted with any other given monomer, we now define pA as the probability that a given
monomer of A has reacted with another A monomer. Similarly, pB the probability that a
given monomer of B has reacted with another B monomer. Then, for the distributions of A
blocks of length nA and B blocks of length nB, we obtain:

P(nA) = (1− pA)pnA−1
A ;

P(nB) = (1− pB)pnB−1
B .

(2.6)

The resulting Markovian expression, Eq. 2.6, is used as a point of comparison for our
observed sequence behavior throughout this work, and holds regardless of the symmetry of
interactions between A and B. In the case of symmetric interactions, we can additionally
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consider the probability of observing a repeat block of length n, independent of the type of
block. In this case, we may use symmetry to calculate pA = pB = ppAA,BB, where pAA,BB

is the frequency of nearest neighbor pairs of AA or BB for sequences in the system. This
results in the expression in Eq. 2.6 being equivalently expressed as:

P(nA) = (1− ppAA,BB)ppn−1
AA,BB. (2.7)

From the Flory-Schulz distribution it is possible5,73 to derive a corresponding expres-
sion for the system dispersity, Ð, for a given reaction extent p, which also provides an
important comparison for the simulation results. We start with Ð defined as:

Ð =
Mw

Mn
, (2.8)

which is the ratio of the weight-averaged molar mass, Mw, to the number-averaged molar
mass, Mn. These are each obtainable from the Flory-Schulz distribution, P(n) in Eq. 2.5,
using the definitions:5,73

Mn = M0 ∑
n

nP(n); (2.9)

Mw = ∑
n

wnMn = M0 ∑
n

wnnP(n). (2.10)

Here wn is the weight-fraction of n-mers given by:

wn =
(nM0)Nn

M0N0
=

nNn

N0
, (2.11)

for Nn total n-mers and N0 initial monomers with a molar mass of M0. From these defini-
tions the following identities are used:

∑
x

xpx−1 = (1− p)−2 for p < 1; (2.12)

∑
x

x2 px−1 = (1+ p)(1− p)−3 for p < 1. (2.13)

Using the expressions in Eq. 2.12 and 2.13, the mass-averaged and weight-averaged molar
mass expressions reduce to:

Mn = M0
1

1− p
; (2.14)
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Mw = M0
1+ p
1− p

. (2.15)

Finally, combining Eq. 2.14&2.15 with the definition of Ð in Eq. 2.8 we obtain the expres-
sion:

Ð = 1+ p. (2.16)

The resulting expression5,73 in Eq. 2.16 is utilized throughout the text and is compared to
the observed dispersities in our simulations.

For the derivation of Eq. 2.16 we made use of the Flory-Schulz distribution for the entire
chain given in 2.5. To obtain an expression for the expected dispersity in block lengths, we
replace the Flory-Schulz distribution for chain lengths with the expected distribution of
block lengths using a Markovian model, namely P(nA) or P(nB) as defined in Eq. 2.6. This
leads to the following expressions for block length dispersity:

ÐA = 1+ pA;

ÐB = 1+ pB.
(2.17)

2.3.2 Quantifying deviations from Flory-Schulz and Markovian pre-
dictions

To quantitatively explore the deviation from Flory-Schulz and Markov statistics in our sys-
tem, we compared the predicted chain and block length distribution with the results of our
simulations. We calculated the Wasserstein metric,96,97 W1, as a measure of the statistical
distance between the Markovian distributions and our observed block length distributions.
For two discrete, univariate probability distributions p(x) and q(x) with cumulative distri-
bution functions P(x) and Q(x), the first-order Wasserstein distance, W1 may be defined
as:

W1(p(x),q(x)) =
∫

∞

−∞

|P(x)−Q(x)|dx. (2.18)

2.3.3 Chain length dependence of bonding statistics

The fundamental simplifying assumption at the heart of the Flory-Schulz expression in
Eq. 2.5 is the so-called “Flory’s equal reactivity principle” which supposes that the likeli-
hood of reaction between two polymerizing species is completely independent of the chain
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length of either reactant. Though Flory himself acknowledged that this principle would
breakdown under heterogeneous reaction conditions,73 such as those caused by the emer-
gent demixing in the system studied in this work, this assumption serves as a worthwhile
starting point for the purposes of highlighting the chain-length dependence in bonding
which we observe.

In order to translate this assumption into probabilities of particular chain length pairs
forming a bond at each stage of the reaction, allowing us to thereby compare our simulation
results to those expected from the equal reactivity case, we performed a series of simple
Monte Carlo simulations. Each simulation begins with a collection of 7200 monomers, just
as in the full Langevin dynamics simulation of our system. We then choose two monomers,
with uniform probability, and cause them to react. This process is performed iteratively,
maintaining a uniform selection probability for all reactants, until a reaction extent of p =

0.9 is reached. This was repeated over a series of 250 Monte Carlo simulation trials. The
resulting bonding events were tabulated and split into three stages of the reaction p≤ 0.3,
0.3 < p ≤ 0.6, and 0.6 < p ≤ 0.9, corresponding to the early, middle, and late stages
of the reaction respectively. The histogram of the resulting bonding events is provided
and discussed in Fig. 5.4a in Chapter 5. The chain length distribution we obtain from
this Monte Carlo simulation process matches the Flory-Schulz prediction from Eq. 2.5
nearly identically, as shown in Fig. 2.2 below. We note here that this precise matching of
Flory-Schulz predictions is also seen in Langevin dynamics simulations of our full model
under conditions with sufficiently weak non-bonded attractions, as reported in our previous
works.58,86,87

2.3.4 Quantifying chain stiffness and nematic alignment

As a quantitative measure of the chain stiffness, we consider the persistence length lp de-
fined as:

〈cosθ〉= exp(−l/lp), (2.19)

where l is the contour length distance between two points on the polymer chain, and θ is
the angle between the tangent lines drawn at each of these two points. An average is taken
over an equilibrium ensemble of configurations at each contour length distance of l. All
simulations in this work were run with an angular potential chosen to produce persistence
lengths of lp = 3.5 monomer units for “flexible” chains or lp = 16.5 monomer units for
“stiff” chains. These persistence lengths correspond to the lowest and highest values of lp
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Figure 2.2: Chain length distribution from Monte Carlo simulation of equal reactivity.
The observed chain length distribution at p= 0.9 for 250 Monte Carlo simulation trials with
uniform reaction probability. The predicted distribution from Flory-Schulz theory is also
shown.

explored in our previous work.59

Persistence length determination was previously presented in Ref. [59]. Single chains
of purely repulsive 100mers at several chain stiffnesses were simulated in order to calculate
the persistence length, lp, that corresponds to each value of Kangle

212 . The value of lp in each
case was calculated using the relation 〈cosθ〉 = exp(−l/lp). Here, l is the contour length
distance between two points on the polymer chain, and θ is the angle between the tangent
lines drawn at each of these two points. Persistence lengths are tabulated in monomer units,
l=∆n, where n is simply the ordinal number of each monomer in the chain. An average is
taken over an equilibrium ensemble of configurations at each contour length distance of l.

In order to characterize the local alignment of oligomer chains, we define a local ne-
matic ordering parameter Slocal as shown:

Slocal = 〈
3cos2 θ −1

2
·1aggregates〉. (2.20)

Here θ is the angle between the orientation of a single monomer within the aggregate
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and its local director, a vector taken as the average of all monomer orientations within the
aggregate. The ensemble average, over each monomer in the system, is taken of the second
order Legendre polynomial P2(cos(θ)) multiplied by an indicator function 1aggregates. The
function 1aggregates takes the value 1 for monomers in aggregates and 0 elsewhere. For this
calculation a monomer is considered to be within an aggregate if there are twelve or more
neighboring monomers within a distance of 2.5σ .
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Chapter 3

Collective Reactant Behaviors and
Kinetic Impacts

3.1 Introduction

Within a simple, one-pot copolymerization, the key sequence-influencing factors can be
captured by the various rate constants of polymer bond formation between the monomer
species, provided that Flory’s principle of equal reactivity holds.73 In this case, as the re-
action proceeds, rate constants remain unchanged and the reacting species remain hetero-
geneously distributed. The dominant factor in these rate constants is the activation energy
for bond formation between two specific monomers, and its influence can be modelled us-
ing the Arrhenius equation. Mayo-Lewis theory states that ratios of these rate constants,
which are referred to as reactivity ratios, govern how different monomers are statistically
incorporated into the copolymer chains.74 For instance, in a system composed of A and B
monomers, reactions between A-A, B-B, A-B, and B-A are governed by their respective
rate constants, kAA, kBB, kAB and kBA. Their reactivity ratios, rA and rB, are defined as
rA = (kAA/kAB) and rB = (kBB/kBA). The product rArB can then be used to predict se-
quence: rArB << 1 yields alternating copolymers; rArB >> 1 yields block copolymers;
and rArB = 1 yields a fully random copolymer. Reactivity ratios can even be used to

This Chapter has been adapted with minor alterations, with permission, from Ref. [87]. Copyright 2022
American Chemical Society. Ryan L. Hamblin contributed to the investigation, software, formal analysis,
visualization, and writing. Nhu Q. Nguyen contributed to the investigation, software, formal analysis, visual-
ization, and writing. Kateri H. DuBay contributed to the conceptualization, methodology, supervision, formal
analysis, and writing.
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predict more complex sequence statistics, such as the composition drift that occurs in a
chain-growth mechanism when one species is consumed more rapidly than another.98–100

However, under certain conditions, ratios of static reaction constants are not sufficient
to describe the polymerization kinetics that determine sequence. As Flory recognized,
reaction kinetics become more complicated when there are inhomogeneities in the concen-
trations of the reacting species.73 Under these circumstances, reaction rates cannot be mod-
elled using static reaction constants and bulk concentration. Such conditions occur in the
bootstrap effect60,61,65,101 and in polymerization induced self-assembly (PISA).66,102,103 In
these cases, the local chemical composition at the reaction site differs from bulk concen-
trations, thereby altering the kinetics of bond formation.

Prior work on step-growth copolymerizations has demonstrated that relatively low ef-
fective intermonomer attractions gave rise to concentration heterogeneities as the nascent
chains lengthen,58 a trend predicted by Flory-Huggins theory.104,105 These nascent chain
assemblies led to an increase in the polymerization rate and a shift in the dispersity away
from the ideal behaviors predicted by Flory.73 These results demonstrated that even small
variations (≤ 1kBT ) in the effective inter-monomer attractions can influence sequence statis-
tics in a way that cannot be accounted for by static reactivity ratios.

While these previous findings suggest a promising route to bias copolymer sequence
within a one-pot step-growth reaction, activation energies are rarely the same across dif-
ferent combinations of comonomers. In this Chapter, we investigate the combined ef-
fects of differing non-bonded attractions and differing activation energies on sequence and
self-assembly within our previously developed model of an irreversible A,B step-growth
copolymerization.

We first detail the kinetic behavior of our system under the "ideal" conditions of Flory73

and Carothers,75 and work out the dependence of the effective rate constants within the
model on both the non-bonded attractions and the activation energies. In Section 3.3, we
relate these effective rate constants to the expected sequence statistics and investigate how
the sequence statistics from our copolymerizations compare for cases with varying attrac-
tions and activation energies. In Section 3.4, we demonstrate evidence of sequence biasing
that persists beyond nearest neighbors, showcasing how the emergent reorganization of re-
actants leads to long-range sequence effects. In Section 3.5, we examine chain length and
block length statistics for our system, describing how the combined effect of differences
in inter-monomer attractions and activation energies lead to marked deviations from Flory-
Schulz and Markov chain descriptions. Finally, in Section 3.6, we briefly summarize the
results of this Chapter, and discuss how these emergent phase behaviors could be utilized
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to bias comonomer sequence.

3.2 Ideal second-order kinetics of step-growth copolymer-
ization

We begin by examining the kinetics of our model reaction in the interaction regime of εatt≤
0.25kBT , where we have previously observed ideal step-growth kinetics, such that the equal
reactivity principle holds throughout the polymerization and the reaction kinetics can thus
be modeled via a static rate constant and bulk reactant concentrations.58 Specifically, we
employ the Flory-Carothers73,75 and Arrhenius95 equations to work out, under these ideal
conditions, the dependence of our simulated reaction rates on the non-bonded attractions
and activation energies in the model.

Xn should increase linearly with time, with a slope that depends on the model’s
effective rate constant. In the copolymerization of monomers A and B, reactions occur
between the unreacted functional groups, denoted A and B respectively. We consider the
case in which each of the reactive moieties of our bifunctional monomer species are equiv-
alent, that is both reactive end groups of a given monomer A are denoted A and react
equivalently, and similarly for end groups of monomer B denoted B. As such, reactions
may occur as follows:

A + A kAA−−→ A – A,
A + B kAB−−→ A – B,
B + A kBA−−→ B – A,
B + B kBB−−→ B – B,

in which ki j is the rate of reactions between the functional groups of monomer species i
and j. We consider here only the irreversible regime, where the rate of bond breakage is
negligible in comparison to the rate of bond formation. The step-growth copolymeriza-
tion of monomers A and B is a second-order, bimolecular mechanism with reaction rates
described respectively as:

−d[A]

dt
= 2kAA[A][A]+ (kAB + kBA)[A][B], (3.1)

−d[B]
dt

= 2kBB[B][B]+ (kAB + kBA)[A][B], (3.2)
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where [A] and [B] are the instantaneous concentrations of unreacted binding moieties of A
and B.

If we define [N] to be the total instantaneous concentration of unreacted binding moi-
eties, such that [N]≡ [A]+ [B], and take kAB = kBA by symmetry then we can combine
Eq. 3.1 and Eq. 3.2 to yield:

−d[N]

dt
= 2kAA[A][A]+4kAB[A][B]+2kBB[B][B]. (3.3)

In the case where the reaction starts with equal concentrations of monomer A and B,
and the non-bonded attractions (εi j) and activation energies (E i j

a ) between A and A and
between B and B are symmetric, then binding moieties A and B will be consumed at the
same rate throughout the reaction. Accordingly, no composition drift is expected to occur
under these conditions, and [N] = 2[A] = 2[B] will hold, on average, at any time during
the polymerization. We note here that in working out the ideal kinetics behavior for the
model in this section, we must limit our analysis to this symmetric interaction case, since
EAA

a 6= EBB
a or εAA 6= εBB would impact the rate constants of the associated reaction path-

ways, leading to conditions where [A]t 6=[B]t . The resulting kinetics would require a more
complex analysis and limit our ability to make comparisons with the numerical simulation
results.

The change in the concentration of unreacted binding moieties can then be expressed
as:

− d[N]

dt
= k′[N][N], (3.4)

where the effective rate constant for bond formation events in the system is:

k′ =
1
2
(kAA +2kAB + kBB). (3.5)

The expression in Eq. 3.4 may be integrated to obtain:

[N0]

[N]
= [N0]k′t +1, (3.6)

where [N] and [N0] are the unreacted monomer binding moiety concentrations at time t
and time t0, respectively.

In terms of the concentrations of unreacted bonding moieties, the number average de-
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Figure 3.1: Polymerization kinetics for low attraction strengths. (a) Degree of poly-
merization, Xn, as a function of time at εall = 0.25kBT for different combinations of ac-
tivation energy between like-monomer reactions, EAA,BB

a , and unlike-monomer reactions,
EAB

a . Coloration indicates the value of {exp(−βEAA,BB
a )+ exp(−βEAB

a )} for each case,
and the solid and dashed line represent cases in which EAA,BB

a ≥ EAB
a and EAA,BB

a < EAB
a ,

respectively. The exact set of E i j
a combinations can be found in Table A.1 in Appendix

A. (b) The effective rate constants k′, determined from the slope of each Xn curve in (a)
via Eq. 3.8, are plotted as a function of {exp(−βEAA,BB

a )+ exp(−βEAB
a )}. Least-squares

regression on the resulting values yields a linear relationship with a slope of 0.776 and a
y-intercept of 6e-7. The Arrhenius pre-exponential factor, Aall, may be determined from
the slope of this regression line, according to Eq. 3.12. (c) The determined values of Aij
obtained from the process described in (a) and (b) are shown for several values of εi j. Each
simulation data point corresponds to the result obtained from five simulation trials where
εall was set equal to that value of εi j, with the error bars corresponding to the standard
deviations between the trials. The resulting values were fit to the expected functional rela-
tionship of Ai j(εi j) (blue line). The blue shaded region corresponds to the standard error in
the predicted relationship of Ai j(εi j).

gree of polymerization, Xn, may be defined75 as:

Xn ≡
[N0]

[N]
, (3.7)
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making Eq. 3.6:
Xn = [N0]k′t +1. (3.8)

As a result, we see that, for our simulated copolymerization, Xn is expected to grow linearly
over time, as predicted by equal reactivity,73 with the static rate constant of k′ from Eq. 3.5.

In simulations with low εatt values, Xn does increase linearly with reaction time,
with a slope that depends on the activation energies. Having obtained an expression for
the growth of Xn within our model under ideal conditions, we next sought to compare our
model to this expected behavior. To this end, we ran a series of simulations at low attraction
strengths (εall ≤ 0.25kBT ) – where in previous simulations we observed only ideal step-
growth kinetics58,59,86 – with different activation energy values for EAA,BB

a and EAB
a . [Note:

EAA,BB
a ≡ EAA

a = EBB
a at the symmetric limit where like monomers (A:A or B:B) interact

equivalently, as discussed above.] The difference in the activation energies between like and
unlike monomers spanned the range −4kBT ≤ ∆ Ea ≤ 4kBT , where ∆Ea ≡ EAA,BB

a −EAB
a .

Figure 3.1a plots the development of Xn over time and shows that, for the full set of E i j
a

values explored, Xn increases linearly with reaction time, as expected from Eq. 3.8. These
results show that, at low attraction strengths, our step-growth simulations behave ideally
for a wide range of EAA,BB

a and EAB
a values, obeying second-order kinetics with a rate

constant that is independent of the reaction progress.73 Fig. 3.1a also shows that this rate
behavior appears independent of the relative values of EAA,BB

a and EAB
a , as both cases with

EAA,BB
a ≥ EAB

a (solid lines) and cases with EAA,BB
a < EAB

a (dashed lines) show nearly iden-
tical rate behavior when the value of the quantity, {exp(−βEAA,BB

a )+exp(−βEAB
a )}, indi-

cated by the colorbar, is equal for both cases. In addition, the clear correspondence between
the slopes of the lines in Fig. 3.1a and this quantity, {exp(−βEAA,BB

a )+ exp(−βEAB
a )},

suggests a connection between the effective rate constant in the system, k′, and this particu-
lar functional form of the activation energies between various monomer species. To explain
this correspondence and the importance of this particular functional form, we will need to
introduce the Arrhenius equation.

At low εatt values, the dependence of the effective rate constant, k′, on the activation
energies in the model can be fully explained using the Arrhenius formalism. According
to the Arrhenius equation,95 the reaction rate constant depends on the activation energy, Ea,
as follows:

ki j = Ai jexp(−βE i j
a ) (3.9)

where β is the inverse temperature, 1/(kBT ), where T is the temperature and kB is the
Boltzmann constant, and Ai j is the Arrhenius pre-exponential factor between monomer
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species i and j. Within collision theory Ai j depends upon the collisional cross-section,
the reduced mass, and the steric factor for the specific pair of reacting species. Although
the polymerization takes place in the solution phase, collision theory provides guidance on
the factors that may influence Ai j in our simulations, especially given our lack of explicit
solvent. In our model, both monomer species A and B have the same mass and are present
in equal number. Further, they possess the same geometric structure, meaning there is no
difference between them in terms of the orientational alignment needed for polymer bond
formation. The only difference between A and B that can influence the value of Ai j lies in
the strength of the pairwise attractive interactions between them, εi j.

Plugging the Arrhenius equation into Eq. 3.5, we obtain an expression for the effective
rate constant, k′, in terms of the activation energies, E i j

a , for each reaction pathway:

k′ =
1
2
[AAAexp(−βEAA

a )+2AABexp(−βEAB
a )+ABBexp(−βEBB

a )]. (3.10)

When interactions and relative activation energies between like monomers are sym-
metric, as discussed above, then εAA = εBB. Given the equivalent A and B geometries and
masses discussed above, this also means that AAA = ABB, which we term AAA,BB Therefore,
at this symmetric limit, Eq. 3.10 simplifies to:

k′ = AAA,BBexp(−βEAA,BB
a )+AABexp(−βEAB

a ). (3.11)

From this point, we would like to determine how well the above equation holds in
our simulations, while also determining the dependence of the Arrhenius pre-factor, Ai j,
on the non-bonded attractions, εi j, within our model. The simplest way to do so empiri-
cally is to run the polymerizations with the same non-bonded attractions acting between all
monomer pairs, so that εAA,BB = εAB, which we will refer to as εall. Since the prefactor Ai j

only depends upon the monomer identities of i and j through its dependence on εi j, then
AAA,BB(εall) = AAB(εall), which we will refer to as Aall(εall). Eq. 3.11 then becomes:

k′ = Aall(εall)[exp(−βEAA,BB
a )+ exp(−βEAB

a )]. (3.12)

Although the polymerizations in Figure 3.1a were run at a range of E i j
a values, εall =

0.25kBT for all cases, fixing the value of Aall. As a result, we now see from Eq. 3.12 that
the slopes of the lines in Figure 3.1a ([N0]k′, see Eq. 3.8) should increase linearly with
the previously described quantity, {exp(−βEAA,BB

a ) +exp(−βEAB
a )}, as indicated by the
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colorbar, given that [N0] is held constant across the various simulation runs.
To test this prediction, in Figure 3.1b, we extract k′ values from the results in Figure 3.1a

by calculating the slopes of the Xn versus time lines there and dividing out the constant
[N0]. We then plot k′ directly vs. the quantity {exp(−βEAA,BB

a )+ exp(−βEAB
a )} to obtain

Ai j(εi j = 0.25kBT ). The results demonstrate a clear linear relationship, with an intercept
of zero, in good agreement with the prediction of Eq. 3.12, indicating the validity of the
Arrhenius formalism in describing the kinetic behavior of our model under ideal conditions.

Determining the dependence of Ai j on εi j. According to Eq. 3.12, the slope of the line
in Figure 3.1b provides the value of Aall at εall = 0.25kBT . Moreover, now that this linear
relationship has been established, validating the applicability of Eq. 3.12 in our system, we
calculate Ai j(εi j) in the same way for a series of εi j values less than 0.25kBT , so that the
non-bonded interactions between the monomers in these simulations are too weak to induce
aggregation at the simulated oligomer lengths. Figure 3.1c shows our simulation results for
these Arrhenius pre-expentional factors and how they change with εi j under ideal second-
order reaction conditions. Although the points in Figure 3.1c appear to follow a straight
line, we do not expect the dependence of Ai j on εi j to be linear. Since in the next section,
we plan to use values of Ai j where εi j > 0.25kBT , we must be careful in extrapolating from
the points we can calculate here under ideal kinetics conditions to those larger εi j values
where emergent oligomer assemblies alter those ideal kinetics. Determining the expected
functional form involves considering the effect of εi j on the relative number of closely
interacting pairs of monomers within the system through a numerical integration of the
radial distribution function and its dependence on εi j through the inter-particle potential.
Here we present an approach to identify the expected functional form of Ai j(εi j) based
on the use of the radial distribution function g(r), as adapted from the method outlined in
Ref. [106].

We first consider the polymer bond formation process between monomers Xi and X j un-
der ideal conditions with a total effective rate constant of k(poly)

i j . We describe the formation
of the polymer bond in two steps: (1) the formation of an interaction pair

[
Xi +X j

]
, which

is at equilibrium with its unpaired monomers, and (2) a subsequent irreversible reaction
from a non-bonded interacting monomer pair to the bonded product with a rate constant of
k(rxn)

i j :

Xi + X j −−⇀↽−−
[
Xi +X j

] k(rxn)
i j−−−→ Xi – X j.

The formation of the bonded end product, and thus the consumption of the monomer
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species, depends entirely on the second step, enabling us to write the associated rate equa-
tion for the polymer bond formation as:

d
[
Xi – X j

]
dt

= k(rxn)
i j

[
Xi +X j

]
= k(poly)

i j [Xi]
[
X j
]
, (3.13)

where
d[Xi – X j]

dt is the rate of formation of Xi – X j, the polymerized product.
From Eq. 3.13, we can obtain an alternative expression for the effective rate constant

k(poly)
i j for the pathway as:

k(poly)
i j =

k(rxn)
i j

[
Xi +X j

]
[Xi]

[
X j
] . (3.14)

The effective concentration of interacting pairs,
[
Xi +X j

]
, can then be written106 in

terms of the radial distribution function between species i and j, g(i j)(r;εi j), as:

[
Xi +X j

]
≈ 2πρiρ j

∫ r′

0
g(i j)(r;εi j)r2dr, (3.15)

where ρi and ρ j are the number densities of species i and j respectively, and r′ is the
distance at which interactions between i and j become negligible. In our system, taking
r′ = rcut = 2.5σ covers the full range of the modified Lennard-Jones potential (see Eq. 2.1
in Ch. 2). Eq. 3.15 therefore represents an approximation which captures the impact on the
density of interacting pairs arising from the spatial correlations induced by the Lennard-
Jones interaction. Combining Eq. 3.14&3.15, we obtain:

k(poly)
i j = 2πk(rxn)

i j

∫ r′

0
g(i j)(r;εi j)r2dr, (3.16)

which is an expression for the effective rate constant for the pathway in terms of the inte-
grated radial distribution function, which depends on εi j, and the rate constant k(rxn). As
the rate determining step in the overall process, we expect k(rxn) to follow an Arrhenius
relationship, that is:

k(rxn)
i j = Ak(rxn)e−βE i j

a , (3.17)

where Ak(rxn) is the Arrhenius pre-exponential factor associated with this step. It is important
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to note here that this definition considers the bond-formation rate from a collision complex,[
Xi +X j

]
, at an effective separation of r0 =

6
√

2σ , the minimum of the modified Lennard-
Jones potential. At this distance, the activation energy depends only on the fixed parameter,
εrep, and not on the strength of the attractive portion, εi j. We have therefore defined E i j

a as
the total potential energy of the reacting species above the minima at this distance, i.e.,
from the bottom of the LJ potential well. Given these definitions, Ak(rxn) is independent of
εi j.

Further, as in Eq. 3.9, we assume that the the overall rate constant k(poly)
i j is also Arrhe-

nius, such that:
k(poly)

i j = Ai j(εi j)e−βE i j
a , (3.18)

which contains our sought-after term Ai j(εi j). Substituting the expressions of Eq. 3.17 into
Eq. 3.16, and combining the result with Eq. 3.18 we obtain:

Ai j(εi j) = 2πAkbond

∫ r′

0
g(i j)(r;εi j)r2dr. (3.19)

The expression in Eq. 3.19 gives the desired value of Ai j in terms of constants in-
dependent of εi j, and an integral of the radial distribution function, which contains the
dependence on εi j for Ai j.

The radial distribution function is a conditional probability distribution which describes
the average density at a distance r from a given particle, relative to the bulk density.[107]
It is related[107] to the potential of mean force w(r) as:

g(r) = e−βw(r), (3.20)

where β = (kBT )−1 is the inverse temperature for temperature T and Boltzamnn constant
kB. The potential of mean force can be described as a combination of the pair potential
governing the interactions between particles 1 and 1′ (Eq. 2.1 in Ch. 2), and the reversible
work done on the surrounding species when particles 1 and 1′ are brought from r(1,1′) =∞

to r(1,1′) = r. In the dilute limit the reversible work is identically zero, and therefore for
our system, we set:

g(i j)(r)≈ e−βuLJ(r(1,1′),εi j), (3.21)

where g(i j)(r) is the radial distribution function for particle 1 of species i and particle 1′ of
species j.

Utilizing the radial distribution function, based on the expression in Eq. 3.21, and com-
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bining with Eq. 3.19 we obtain:

Ai j(εi j) =C1

∫ rcut

0
e−βULJ(r;εi j)r2dr =C1σi j(εi j), (3.22)

where rcut = 2.5σ is the cutoff for the modified Lennard-Jones potential in our system, C1

is a collection of constants such that C1 = 2πAkbond , and σi j(εi j) is a notational shorthand
for the integral which we introduce for simplicity.

With Eq. 3.22 we have an expression which relates the Arrhenius pre-exponential factor
Ai j to the strength of attractive Lennard-Jones interactions, εi j, through the integral term
σi j(εi j). Our final step is to then determine the exact relationship between σi j(εi j) and
Ai j(εi j) for our system.

Based on the arguments presented above, we expect that the functional dependence of
Ai j(εi j) should be a simple linear transformation of the dependence of σi j(εi j). In order to
determine the correct dependence for our system, and thereby our sought after relationship
for Ai j(εi j), we compare values of σi j(εi j) calculated from Eq. 3.22 and values of Ai j(εi j)

determined from simulation (see Eq. 3.12 and Fig. 3.1). We therefore perform simulations
at small and fully equivalent values of εi j = εall� kBT , where ideal kinetics hold and we
may directly measure Ai j from the effective rate constant k′ and the activation energies E i j

a .
For these same values of εi j, values of σi j(εi j) were obtained via numerical integration
of this term in Eq. 3.22, utilizing an adaptive Gaussian quadrature method.108 Absolute
error estimate for the obtained values were ∼ 10−9 for all values of εi j explored. A linear
regression was then performed between the values of Ai j obtained from simulation and the
values σi j obtained from integration at the same εi j.

Fig. 3.2 shows the results of this analysis. The regression between σi j from Eq. 3.22 and
Ai j from simulation are shown in the inset of Fig. 3.2 and clearly demonstrate the expected
linear relationship between the two. The transformation between σi j(εi j) and Ai j(εi j), as
characterized by the regression equation in the inset, may be used for cases with higher
εi j in which ideal kinetic assumptions break down and Ai j is no longer directly measurable
from the effective rate constant k′. In these cases, we can now determine the expected value
for Ai j – had ideal kinetics still held – by calculating σi j(εi j) via numerical integration and
applying the linear transformation obtained. The main plot of Fig. 3.2 shows the theoretical
values of Ai j(εi j) obtained in this fashion, alongside those values obtained from simulation
results. The theoretical values of Ai j shown here are utilized in Fig. 3.3 below for analyzing
cases with attraction values for which ideal kinetics do not hold and Ai j cannot therefore
be measured directly from simulation.
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Figure 3.2: Arrhenius pre-exponential factor as a function of εi j. The relationship between the pre-
exponential Arrhenius factor Ai j and the attractive interaction strength εi j is shown. Simulation data (black
points) shows the mean value of Ai j(εi j) obtained from the observed effective rate constant k′ for five separate
simulation trials at chosen εi j, with the error bars indicating standard deviation between the trials. The
theoretical value (blue line) was obtained by calculating σi j from Eq. 3.22 and mapping the resulting σi j(εi j)
to Ai j(εi j) using a linear regression. The shaded region indicates the standard error in the prediction obtained
from the regression (see inset). Inset: A linear regression relating σi j(εi j) and Ai j(εi j). Each point shows the
mean value of Ai j(εi j) obtained from the effective rate constant k′ (see Eq. 3.12) for five separate simulation
trials at εi j ≤ 0.25kBT , with the error bars indicating standard deviation between the trials. For each of
these values of εi j, the term σi j was obtained from Eq. 3.22 through a numerical integration. The resulting
regression equation and fit parameters are shown.

As a result, we have now fully worked out the dependence of the effective rate con-
stants in our model on both the non-bonded attractions, governed by εi j, and the activation
energies, governed by E i j

a , such that we can write

ki j = Ai j(εi j)exp(−βE i j
a ), (3.23)
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and use this to calculate the actual values of ki j under conditions where the kinetics remain
well-described by static reaction constants – that is, for εi j ≤ 0.25kBT .

3.3 Local sequence statistics depend on non-bonded at-
tractions, activation energies, and emergent assemblies

In the preceding section, we showed how variations in non-bonded attractions and activa-
tion energies impact the polymerization kinetics in our model at low attractions via stan-
dard kinetics equations,73,75 demonstrating that these simulations successfully reproduce
such ideal kinetic behaviors under the relevant conditions. In this section, we examine
how the combined effects of increased non-bonded attractions and varying activation ener-
gies can impact the sequences of the resulting co-oligomers – both under conditions where
those standard kinetics hold and under conditions where emergent assemblies of nascent
oligomers alter the reaction kinetics.

Enabled by our findings in the preceding section, we first determine an expression for
the probability, pAA,BB, of a having a bound, adjacent pair of like monomers (-A-A- or
-B-B-) within the copolymer sequences under ideal kinetics. We then use this expression
to investigate how our results align with or deviate from these predictions under conditions
in which non-bonded attractions foster emergent heterogeneities in the reactant concentra-
tions, as observed in our prior work for εi j values of about 1kBT .58,59,86

Determining sequence pair probabilities as a function of εi j and E i j
a . We first con-

sider the probability of a given A monomer in a chain subsequently binding to another A
monomer. This conditional bonding probability, P(A|A), may be defined in terms of the
rate constants of the accessible reaction pathways, namely kAA and kAB; and may therefore
be predicted98,109,110 using:

P(A|A) =
kAA[A][A]

kAA[A][A]+ kAB[A][B]
. (3.24)

Dividing both the numerator and denominator by kAB[A][B] yields:

P(A|A) =

kAA
kAB

[A]
[B]

kAA
kAB

[A]
[B] +1

. (3.25)

As previously discussed, when interaction strengths and activation energies are sym-
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metric between monomer species, no significant composition drift is expected to occur,
and we can assume [A]t = [B]t for all time t. It is important to note here that this condition
also implies that the probability of having an A or B monomer in the chain is equal. As a
result, when no composition drift occurs, then equation 3.25 simplifies to:

P(A|A) =

kAA
kAB

kAA
kAB

+1
. (3.26)

Similarly, the conditional probability of forming a B-B bond can be written as:

P(B|B) =
kBB
kBA

kBB
kBA

+1
. (3.27)

Here it is helpful to make use of the reactivity ratios of Mayo-Lewis theory,74 defining
rA ≡ kAA

kAB
and rB ≡ kBB

kBA
, which allow Eq. 3.26&3.27 to be rewritten as:

P(A|A) =
rA

rA +1
; (3.28)

P(B|B) = rB

rB +1
. (3.29)

Using the previously discussed Arrhenius95 formalism for the relevant reaction rate
constants, the reactivity ratios, rA and rB, can be related to the non-bonded attractions and
the activation energies via:

rA =
AAA

AAB
e−β (EAA

a −EAB
a ); (3.30)

rB =
ABB

ABA
e−β (EBB

a −EBA
a ), (3.31)

where Ai j depends on εi j as discussed in the previous section.
Here we again note that, because we have restricted our focus to cases where activation

energies and Arrhenius pre-exponential factors are symmetric between like-monomer pairs
AA and BB, then AAA = ABB ≡ AAA,BB and EAA

a = EBB
a ≡ EAA,BB

a . Similarly, for unlike
monomer pairs AB and BA, we have, by symmetry, AAB = ABA and EAB

a = EBA
a . As a
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result, we can write:

rA = rB =
AAA,BB(εAA,BB)

AAB(εAB)
e−β (EAA,BB

a −EAB
a ). (3.32)

We now consider a random monomer within an oligomer sequence. The lack of compo-
sition drift, as discussed previously, means there is an equal probability that this monomer
is either A or B. Thus the probability pAA,BB of having a pair of like monomers next to one
another in the sequence can be written as:

pAA,BB =
1
2

P(A|A)+
1
2

P(B|B), (3.33)

where the factor of one-half accounts for the probability that the conditional prior of having
an A or B in the chain occurs.

Finally, by combining the expression in Eq. 3.33 with the relations in Eq. 3.28- 3.32,
we obtain:

pAA,BB =

AAA,BB(εAA,BB)
AAB(εAB)

e−β (EAA,BB
a −EAB

a )

AAA,BB(εAA,BB)
AAB(εAB)

e−β (EAA,BB
a −EAB

a )+1
. (3.34)

This expression allows us to directly predict the probability of sequence pairs in the result-
ing copolymers generated at the ideal kinetics limit based on the difference in activation
energies, EAA,BB

a −EAB
a , and the ratio of Arrhenius pre-exponential factors, AAA,BB and

AAB, between like and unlike monomer species pairs in our system. These quantities are
controlled through the model parameters E i j

barr and εi j, respectively, according to the depen-
dencies outlined in Eq. 2.2 and Fig. 3.1c.

The emergent assembly of nascent oligomers alters sequence when it alters the
local concentration ratio of the comonomers. Having obtained an expression for the
probability of observing sequence pairs in the limit of ideal kinetic behavior, we now use
this equation to investigate the combined effects of non-bonded attractions and activation
energies on the sequence. We first validate the expression in Eq. 3.34 for systems which
display the ideal kinetic behaviors under which it was derived. We then use it to explore the
impact on the sequence of the emergent collective behaviors that cause these ideal kinetics
assumptions to break down.

To this end, we explored four non-bonded attraction cases over a range of activation
energies from −4kBT ≤ ∆ Ea ≤ 4kBT . The first, εall = 0.25kBT , is the same weak and
symmetric attraction case for which we observed ideal kinetic behaviors in Fig. 3.1, and it
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Figure 3.3: System structures and sequence probabilities. The probability of a matching
sequence neighbor pair, pAA,BB, is shown as a function of the activation energy difference
EAA,BB

a - EAB
a for each of four different attraction strength combinations, as distinguished

via marker style and coloration. Each point represents the value of pAA,BB observed in
simulation, averaged over three separate simulation trials for the associated simulation pa-
rameters. The dashed lines show the theoretical values of pAA,BB which are obtained from
Eq. 3.34, in which Aii/Ai j is obtained from the relationship of Ai j(εi j) shown in Fig. 3.1c.
The four structures shown on the right are representative system images taken at p = 0.9.
These structures correspond to each of the four attraction strength combinations, at the
points indicated by Roman numerals in the plot, with the colors corresponding to the data
for each specific set of attractions.

thus serves as our validation case. We then explore the effect of higher attraction strengths
for all monomers, setting εall = kBT . Finally, we examine cases of attractions strengths
which differ between like and unlike monomers, testing both εAA,BB = kBT , εAB = 0 and
εAA,BB = 0, εAB = kBT combinations. For each attraction strength and E i j

a combination, we
simulated the copolymerization for three independent trials, collected the final sequences
across these trials at reaction extent p = 0.9, and used them to calculate pAA,BB, the prob-
ability of having a like neighbor (A-A or B-B) in the resulting sequence. Fig. 3.3 shows
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the resulting values of pAA,BB plotted as a function of ∆Ea ≡ EAA,BB
a −EAB

a and compared
these values (indicated with the points) to those predicted from the bonding probability
calculated from Eq. 3.34 (indicated by the dashed lines).

For the two cases in which all monomers possess equal attraction strength, i.e., εAA,BB

= εAB, shown in red stars for εall = 0.25kBT and in blue circles for εall = 1.0kBT , there is
nearly perfect agreement between these values and the predictions from Eq. 3.34 (dashed
purple line). For these attractions, at EAA,BB

a −EAB
a = 0, there is an identical likelihood

of finding like and unlike nearest neighbors in the resultant sequences, such that pAA,BB

= pAB,BA = 0.5. The sequences which result under these conditions are fully random, as
expected when there is no difference in either monomer interactions or activation ener-
gies across different monomer pairs. Decreasing EAA,BB

a −EAB
a increases pAA,BB, and vice

versa, and the changes in bonding probability with ∆Ea agree with what is predicted via
the Arrhenius formalism in Eq. 3.34. Notably, the sequence neighbor probability is inde-
pendent of the value of εall, as there is no discernible difference in pAA,BB between the low
attraction case (red stars) and the higher attraction case (blue circles) despite the fact that,
at the higher attractions, when εAA,BB = εAB = kBT , nascent oligomers aggregate into a
more condensed phase – see Fig. 3.3, snapshot II.

For the case in which attractions act only between unlike monomers, namely εAA,BB =
0, εAB = kBT , we also observe sequence statistics (cyan, left-facing triangles) that are well
predicted by Eq. 3.34 (cyan dashed line). Under these conditions, the bias in monomer
attractions promotes the formation of unmatched pairs, lowering pAA,BB as compared to
the case where εAA,BB = εAB. This reduction is an expected consequence of Eq. 3.34,
and the observed values of pAA,BB are consistently well predicted across the full range of
activation energy values explored.

In contrast, when attractions act only between like monomers in Fig. 3.3, the predicted
sequence pair probabilities (orange dashed line) significantly underestimate the observed
proportion of sequence pairs (orange, right-facing triangles). Under these conditions, as
polymerization proceeds, like-monomer attractions drive an emergent phase separation into
A-rich and B-rich regions (Fig. 3.3, snapshot III). This phase separation locally enriches
like-monomer concentrations and produces a significant increase in the likelihood of like
sequence pairs compared to the prediction from Eq. 3.34, which does not take into account
emergent concentration heterogeneities and, as a result, underestimates pAA,BB by > 0.14
in some cases.

The distinct effects of attraction-biasing on phase behavior in each of these cases is
crucial to their respective influence on sequence. For non-bonded attractions between only
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unlike monomers, the system condenses into an aggregate phase as the polymerization
proceeds, however, the comonomers within the aggregated phase remain well-mixed. Thus,
though the local concentration of reactants is higher than the initial bulk concentrations
from which the predictive kinetics were derived, it remains homogeneous with respect to
the comonomer reactant species. In contrast, when attractions occur between only like
monomers, the comonomers segregate into different regions of the aggregated phase, and
it is the resulting heterogeneity that causes the breakdown in the predictive capability of
Eq. 3.34.

It is important to note, however, that, as predicted, both the attractive interactions and
activation energies are key to the final sequence statistics. In all four attraction combina-
tions explored, a sufficient imbalance in the activation energies will drive the formation of
predominantly "blocky" (EAA,BB

a < EAB
a ) or predominantly alternating (EAA,BB

a > EAB
a ) se-

quences, even when the attractive interactions alone would promote the opposite sequence
statistics. The impact of the emergent assembly behaviors driven by non-bonded attrac-
tions on sequence is most apparent in cases where EAA,BB

a ≈ EAB
a , when the biasing due

to activation energy is minimal and sequences would otherwise be nearly random. The
results in Fig. 3.3 demonstrate that non-bonded attractions and activation energies yield
combined effects on sequence in a manner than cannot be fully captured by conditional
bonding probabilities derived from ideal kinetic behaviors.

3.4 Differing attraction strengths and activation energies
can drive long-range sequence biasing

In our discussion of sequence biasing to this point, we have considered only the statistics of
nearest neighbors in sequence space through the observed probabilities of specific sequence
pairs. We now consider the extent to which the biasing we observe extends throughout the
sequence and how it is impacted by activation energies and attractive interactions.

To examine long-range correlations in the final oligomer sequences, we employ a pre-
viously developed metric111 which maps the copolymer sequence to a 1D random walk,
with steps of +1 and -1 for the A or B monomers, respectively. The root-mean-square
fluctuation, F(l), is defined as:

F(l)≡
√

x(l)2− x(l)
2
, (3.35)
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where x(l) is the total displacement along a sequence walk of l steps, and the overbars
represent an averaging over all sequences in the system and all starting points within a
sequence. In general, F(l) ∝ lα , with α = 0.5 for a random walk. A fluctuation metric
that scales with α > 0.5 indicates correlation between monomers in the sequence, corre-
sponding to "blocky" sequences, while scaling of α < 0.5 indicates anti-correlation, cor-
responding to alternating sequences. Such correlations persist over a range R, such that,
when l > R, the random scaling behavior (α = 0.5) is recovered. Thus, by comparing the
scaling behavior of F(l) for a set of sequences from the simulated copolymerizations to
the known scaling of F(l) for a fully random walk, it is possible to determine not only
the presence of long-range correlations and anti-correlations in the sequence, but also the
sequential distance over which these correlations persist.

Fig. 3.4 shows the results of this metric applied to each of the four εi j combinations
presented in Fig. 3.3 over the full range of activation energies, such that −4kBT ≤ ∆Ea ≤
4kBT . In each case, the scaling for a random sequence walk where F(l) ∝ l1/2 is shown
by the dashed black line. For attractive interactions where εAA,BB = εAB (Fig. 3.4, top
row), the behavior of F(l) depends strictly upon ∆Ea, the difference between the activation
energies in the system, as the results for εall = 0.25kBT are indistinguishable from the
results for εall = kBT . In both of these cases, the sequences at ∆Ea = 0 (red line) reproduce
the expected random sequence scaling with α = 0.5.

As this balance shifts and EAA,BB
a < EAB

a , the slope of F(l) increases noticeably, show-
casing the bias towards blocky sequences induced by these combinations of activation en-
ergies. Importantly the magnitude of ∆Ea impacts not only the extent of the biasing, but
also the range over which it is observed. For small differences in the activation energies
between species pairs, the increase in α is comparably small, and persists only for the first
few monomers along the chain before the α = 0.5 behavior returns. As this difference
in activation energy decreases further and ∆Ea = −4kBT , sequence correlation is larger
and persists beyond l = 10, the average degree of polymerization in the system, indicative
of highly blocky sequences that are correlated throughout. Analogous behaviors are seen
when the activation energies instead bias the system towards alternating sequences, i.e.,
when EAA,BB

a > EAB
a . Small positive ∆Ea values yield an anti-correlation only for their

nearest neighbors (l = 1) before reverting to the random sequence scaling. Further increas-
ing ∆Ea results in sequences that are almost entirely alternating, and the corresponding
oscillation in F(l) is readily apparent, persisting beyond l = 10.

The interplay between the effects of non-bonded attractions and activation energies in
influencing sequence behavior may be seen in cases for which εAA,BB 6= εAB in Fig. 3.4,
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bottom row. As in the cases with equivalent attractions between all monomers, sequence
statistics ranging from predominantly alternating to predominantly blocky may be induced
by the balance of activation energies in the system. Unlike the equivalent attraction cases,
however, the activation energy combinations required to reach each of these regimes dif-
fers, as the bias arising from activation energy may act contrary to, or in concert with, the
sequence biasing caused by the differences in attraction. When attractions act only between

Figure 3.4: Long-range sequence statistics. The root-mean-square fluctuation in se-
quence, F(l), as a function of monomer distance l, is shown for four different attractions:
εall = 0.25 kBT ; εall = kBT ; εAA,BB = kBT , εAB = 0; and εAA,BB = 0, εAB = kBT . Coloration
indicate the values of βEAA,BB

a −βEAB
a for each curve. The sequence fluctuation metric is

calculated via F2(l) = x(l)2−x(l)
2
, where x(l) is the displacement in a sequence walk of l

steps away from the initial sequence position.111 The dashed black line indicates the fluctu-
ation metrics expected for random sequences, where F(l) = lα and α = 0.5. The sequences
were obtained from three independent simulations trials for each parameter combination.
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like monomers (Fig. 3.4, bottom left), the case where ∆Ea = 0 (red line) shows significant
and long-range sequence correlation. In addition, for some cases where EAA,BB

a > EAB
a

the effect of the non-bonded attractions overpowers the competing influence of ∆Ea, re-
sulting in correlated, blocky sequences. Only when the activation energy difference is
sufficiently large, ∆Ea & 2kBT , do the anti-correlations and F(l) oscillations indicative of
predominantly alternating sequences emerge, and even then not to the extent seen for the
εAA,BB = εAB cases. For attractions only between unlike monomers, (Fig. 3.4, bottom
right), the opposing effect is observed, where the ∆Ea = 0 case (red line) shows short-
range anti-correlation, with long-range correlation and blocky sequences only emerging
for ∆EAA,BB

a . −2kBT . Thus, both the relative attractions and activation energies con-
tribute to the sequence development of oligomers, and imbalances in either or both of these
quantities can lead to a broad range of sequence statistics spanning the spectrum between
alternating and blocky copolymers.

3.5 Activation energies and non-bonded attractions influ-
ence block and chain length distributions

In the preceding sections we have demonstrated how differences in non-bonded attrac-
tions and activation energies between monomer species can lead to changes to the kinetic
and sequence behaviors, producing features not predicted or observed under ideal kinetics
conditions. Here we consider how the combined influence of the altered kinetics and se-
quence biasing impacts the structure of the resulting oligomers. To this end, we examine
the distribution of chain lengths and block lengths within our system and compare these to
expected distributions from Flory-Schulz and Markovian statistics under select combina-
tions of monomer attractions and activation energies. Additionally, we consider how these
distributions may be further impacted by the stiffness of the resulting oligomer chain.

The expected distribution of chain lengths for a step-growth polymerization under ideal
conditions follows the well-known Flory-Schulz distribution,112 given by:

P(x) = (1− p)px−1, (3.36)

where p is the reaction extent and x is the length of the chain. If the sequences within
these chains develop according to a Markov chain model, in which only the influence of
the preceding monomer impacts the probability of the next monomer in sequence, then the
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Figure 3.5: Chain-length distributions and system structures. The distribution of chain
lengths are shown for four different attraction strengths at EAA,BB

a - EAB
a = 2 kBT . Each

row corresponds to a different attraction strength combination, as indicated by the label.
The left column shows the results for flexible chains (lp = 3.5) and the right column for
stiffer chains (lp = 16.5). The solid back lines show the predicted Flory-Schulz distribution
at p = 0.9, as calculated from Eq. 3.36. For each combination of system parameters, a
representative system structure taken at p = 0.9 is inset alongside the distribution.
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expected block length distribution can be written58 analogously as:

P(n) = (1− pAA,BB p)(pAA,BB p)n−1, (3.37)

where p is the reaction extent, n the block length, and pAA,BB the probability of an AA
or BB sequence pair occurring. The expression in Eq. 3.36 depends on the condition of a
fixed monomer reactivity throughout the reaction, and that of Eq. 3.37 on the condition that
there are no long-range effects influencing sequence development. Both these conditions
break down under certain activation energies and monomer attractions in our simulations,
and the degree to which the ideal distributions in Eq. 3.36&3.37 are reproduced reports on
how well these underlying assumptions hold for specific cases.

Fig. 3.5 shows chain length distributions observed at p = 0.9 for each of the attractive
interaction cases previously explored, when ∆Ea = 2kBT . In each of these cases, additional
simulations were run with increased chain stiffness, corresponding in an increased persis-
tence length from lp = 3.5 to lp = 16.5, which are shown alongside the standard, flexible
chain conditions. In all cases, the Flory-Schulz distribution (black line) and a representa-
tive system structure for each case at p = 0.9 are also shown. The top row of Fig. 3.5 shows
the case of εall = 0.25kBT , which reproduces ideal kinetic behaviors in Fig. 3.1. For both
flexible and stiff chains, the chain length distribution observed is in good agreement with
the predicted Flory-Schulz distribution, and no sign of oligomer aggregation is apparent
in the resulting structure. As the attractions are increased to εall = kBT in the second row
of Fig. 3.5, there is a clear formation of aggregates which coincides with a deviation from
the Flory-Schulz distribution. Notably, the type of deviation observed is also influenced by
the chain stiffness, with flexible chains showcasing a general broadening of the distribution
towards greater chain lengths, while stiff chains demonstrate a sharply peaked distribution.
This type of peaked distribution for stiff chains was observed in prior work59 and is indica-
tive of a characteristic chain length which emerges as the reaction proceeds, a consequence
of nematic alignment in the system.

The peaked nature of the distribution for stiff chains is a consequence of increased
chain stiffness leading to nematic alignment in neighboring oligomer chains,59 increasing
the collective effect of the non-bonding attractions within such aligned chains. The con-
sequences can be seen in the trend in peak behavior for stiff chains down the right-hand
column of Fig. 3.5. When attractions are strong enough for emergent aggregates to form,
differences in interaction strengths between monomer species have important effects on
both the structure of the aggregates and the associated shift in chain length distribution.
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When εall = kBT , nascent chains can readily align irrespective of the sequence properties
of neighboring chains, which produces more numerous and smaller aggregates, with al-
most complete monomer incorporation by the time 90% of functional groups have reacted,
since monomers can readily incorporate anywhere, regardless of the nearby aggregate com-
position. This ease of monomer incorporation results in a distribution that has almost no
monomers and dimers and is sharply peaked. In contrast, when attractions act only be-
tween like-monomers (εAA,BB = kBT ,εAB = 0), monomers do not incorporate as easily into
aggregate regions enriched in the other monomer species. As a result, the chain length dis-
tribution and structural snapshot show more free monomers, dimers, and other short chains
at p = 90%, coupled with a smaller number of larger aggregates with a wider chain length
distribution. When attractions act only between unlike monomers (εAA,BB = 0,εAB = kBT ),
this effect is even stronger, with an even greater proportion of the distribution shifting to-
wards short chains, less complete aggregation in the snapshot, and an even broader tail of
longer chains.

It should be noted that these trends do not operate independently of activation en-
ergy. While Fig. 3.5 shows results for cases where EAA,BB

a > EAB
a , the relative abun-

dance of matched pairs in the sequences will be increased when activation energies are
instead balanced (∆Ea = 0) or imbalanced so as to promote the formation of matched pairs
(EAA,BB

a < EAB
a ). As the relative abundance of like sequential pairs increases, the capacity

of collective monomer attractions to drive chain alignment increases and thereby strength-
ens the peaked nature of the chain length distribution (see Fig. A.5 in Appendix A).

The results in Fig. 3.5 confirm that the predictions of the Flory-Schulz distribution
in Eq. 3.36 only hold for cases that remain homogeneous throughout the reaction. They
demonstrate that emergent heterogeneity, caused by polymerization induced aggregation
due to non-bonded attractions, causes a breakdown in the founding assumptions in Flory-
Schulz and fundamentally alters the distribution of chain lengths. For all cases in which
aggregates form upon polymerization, we observe non-standard kinetic behaviors and shifts
in the chain length distributions away from the ideal Flory-Schulz behavior. The precise
nature of the shift depends upon the nature of this aggregated phase and how it is im-
pacted by both the stiffness of the nascent oligomer chain, which impacts the morphology
of the aggregate structures, and the relative non-bonded attractions and activation energies
between the comonomer species, which determines the relative ability of monomers and
small oligomers to incorporate into the aggregate phase.

For the analogous expression for the distribution of block lengths in Eq. 3.37, a similar
shift away from the Markovian distribution occurs when the emergent assembly produces
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the type of long-range sequence correlation seen in Fig. 3.4. These correlation are strongest
when attractions are only between like monomers (εAA,BB = kBT,εAB = 0), which pro-
motes the formation of blocky sequences. In Fig. 3.6, we show the block length distribu-
tions for contiguous all-A or all-B blocks at select conditions with these attractions. Three
different activation energy combinations are shown, which, from top to bottom, bias the
sequences towards alternating, random, and blocky sequences, respectively. Results are
shown for both flexible and stiff chain cases. In each case, the block length distribution
(purple) is shown atop the chain length distribution (grey). The Markovian predicted dis-
tribution of block lengths from Eq. 3.37 (black line) is also plotted in each case. This
distribution is calculated using values for pAA,BB that are predicted based on the ideal ki-
netic behavior (Fig. 3.3 dashed lines), which allows us to characterize the shift in block
distribution due to both the nearest neighbor (Fig. 3.3) and long-range (Fig. 3.4) sequence
biasing arising from a breakdown in ideal kinetic behaviors.

When ∆Ea = 2kBT (Fig. 3.6, top row) the bias in activation energy towards unlike
monomer pairs is sufficient to overcome the biasing of attractions towards like monomer
pairs, and only very short sequence blocks are observed. For this case, the only sign of
sequence biasing was an anti-correlation in nearest sequence neighbors (Fig.3.4 lower-
left panel). The underlying presumption of Markov statistics, that only nearest sequence
neighbors impact the probability of the next monomer in the sequence, therefore holds.
Indeed, the expression in Eq. 3.37 derived from this assumption shows good agreement
with our observed block length distribution in this case.

For both ∆Ea = 0 (Fig. 3.6, middle row) and ∆Ea = −2kBT (Fig. 3.6, bottom row),
we observed long-range correlations in sequence statistics in Fig.3.4 (lower-left panel),
and here the underlying assumption of a Markov chain and the associated prediction from
Eq. 3.37 clearly break down. In these cases, the activation energy biasing is either neutral
(∆Ea = 0) or works in concert with attraction biasing (∆Ea = −2kBT ), producing blocky
sequences with contiguous segments well beyond what is predicted from the Markovian
assumption.

For stiff chains, the same type of sharply peaked behavior seen in the chain length distri-
bution is reflected in the block length distribution, suggesting that the characteristic length
scale of stiff chain aggregates is impacting block length. For flexible chains no such peaks
are observed, and the distribution is generally broadened towards greater block lengths,
matching the behavior of the chain length distribution. Notably, for flexible chains with
∆Ea = −2kBT , the combined biasing of activation energy and like monomer attractions
becomes so extreme that the block distribution shows a near complete correspondence to
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the chain length distribution – that is the resulting oligomers are largely homopolymers of
A or B, with A–B contacts primarily occurring at chain ends or at the block interface of
the longest chains, similar to structure III in Fig. 3.3. These conditions may be regarded as
nearing an “incompatibility” limit for the copolymerization of A and B, beyond which the
system behaves analogously to separate, but simultaneous, homopolymerizations of A and
B.
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Figure 3.6: Block-length distributions. The distributions of block lengths are shown here
for systems where εAA,BB = kBT and εAB = 0. Each row corresponds to a different combi-
nation of activation energies, ∆Ea, as indicated by the label. The left column shows results
for flexible chains (lp = 3.5) and the right column for stiffer chains (lp = 16.5). For each
combination of system parameters shown, the block length distribution (purple) is shown
against the chain length distribution (grey). The solid black lines indicate the expected
Markovian statistics (from Eq. 3.37) calculated from the predicted sequence neighbor prob-
ability pAA,BB (from Eq.3.34 and Fig. 3.3).
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3.6 Summary and conclusions

In this Chapter, we have examined the change in kinetic behaviors in a solution based A,B-
copolymerization in response to changes in inter-monomer attractions and in the activation
energies of the different reaction pathways. Comparing the results to standard kinetic the-
ories of step-growth polymerization, we find that such theories are effective in describing
the kinetics of reactions which remain homogeneous throughout. However, in keeping
with previous studies,58 we find that standard kinetics break down when non-bonded at-
tractions between reactants lead to an emergent concentration heterogeneity in the solution.
The polymerization-driven assembly of nascent oligomers alters the kinetics and sequence
development of the reaction by altering the local concentration ratio of the comonomers.
When this emergent concentration heterogeneity happens in polymerizations with differing
comonomer attractions and reactivities, a diverse set of sequence statistics results, ranging
from highly block-like to almost exclusively alternating sequences. Depending on the non-
bonded attractions between different comonomer pairs in the system, the bias introduced by
assembly may act to reduce sequence biasing arising from reactivity differences, yielding
more random sequences, or to further reinforce reactivity biasing, yielding more ordered se-
quences. Thus, the sequence statistics which result when emergent phase separation occurs
depends on a complex interplay between non-bonding interactions, comonomer reactivity,
and even the geometric properties of the resulting oligomers.

Limiting our kinetic analysis to symmetric interaction cases that proceed without com-
position drift enables us to demonstrate the magnitude of the deviations from standard
kinetic behaviors that can result from the emergent phase separation we observe. Under
asymmetric interaction conditions in which compositional drift does occur, similar assem-
bly phenomenon are also expected to occur and influence reaction kinetics and sequence,86

which will be explored in Chapter 4. The degree of this deviation is also sensitive to both
the extent of the reaction and the magnitude of the attractions driving assembly, with at-
tractions > kBT leading to an earlier emergence of concentration heterogeneity, and even
very weak < kBT attractions capable of producing phase separation later in the reaction
once oligomers reach sufficient length.58,86 Thus, the emergence of collective behaviors
among the comonomers and nascent oligomers is expected to influence the resulting se-
quences of statistical copolymers for a wide variety of effective comonomer attractions and
reactivities. These results showcase the potential to exploit polymerization induced assem-
bly behaviors for sequence control in the design of advanced copolymeric materials. They
also suggest that the informed management of the relative non-bonded interactions and
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activation energies between different comonomers, through comonomer selection, chemi-
cal modification, or solvent choice, is a potential avenue for efficiently biasing sequences
within one-pot syntheses.
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Chapter 4

Reactant Assembly In Selective Solvent
Conditions

4.1 Introduction

In prior work,58,59 and in the preceding Chapter,87 we investigated only monomer attrac-
tions that act symmetrically between “like” monomers (i.e., between all monomers of the
same type) and showed that these can give rise to polymerization-induced aggregation and
demixing between the monomer types, which then biases additional bond formation and
shifts the overall copolymer sequence. However, many monomer combinations would be
expected to have asymmetric interactions, where one type of monomer has a stronger or
weaker effective self-attraction than the other type, due either to the nature of the monomer-
monomer interactions themselves, or to the influence of a solvent selective for one of the
monomer species.113–115 Indeed, such an asymmetry in the effective monomer-monomer
interactions, as mediated through a selective solvent, is a crucial feature of PISA formula-
tions. The solvophilic stabilizing blocks in these chain growth polymerizations allow for
the addition of a solvophobic monomer at concentrations that would otherwise not be well
solvated.66,67

In this Chapter, we consider the case of a selective solvent, utilizing an extension of

This Chapter has been adapted with minor alterations from Ref. [86] with permission from the Royal
Society of Chemistry. Ryan L. Hamblin contributed to the investigation, software, formal analysis, visual-
ization, and writing. Nhu Q. Nguyen contributed to the data curation, visualization, and editing. Kateri H.
DuBay contributed to the conceptualization, methodology, supervision, formal analysis, and writing.
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our coarse-grained, reactive model for step-growth polymerization. The copolymeriza-
tion between solvophobic and solvophilic species is modeled by assigning stronger effec-
tive attractions for the more solvophobic monomer and weaker attractions for the more
solvophilic monomer, as discussed in Chapter 2. In Section 4.2 we examine the kinetic
behaviors of copolymerization under such asymmetric attractions. In Section 4.3 we inves-
tigate the sequences of the resulting oligomers, and the influence of attraction asymmetry
on sequence. We analyze the impact of chain stiffness in Section 4.4 and discuss the aggre-
gation behavior of the resultant oligomers in Section 4.5. We find that selective solvation
during polymerization can drive an emergent phase separation, yielding a complex inter-
play between the sequence and supramolecular assembly of the nascent oligomers.

4.2 Solvent mediated attractions can drive an emergent
assembly process, altering reaction kinetics

We first aim to explore whether collective monomer and nascent oligomer behaviors would
lead to changes in the local solution environment in cases with asymmetric solvent affini-
ties, analogous to the interactions that give rise to bootstrap effects and PISA syntheses. To
this end we initially sought to understand how well the self-association of the more strongly
self attractive A monomers and less self attractive B monomers drives the formation of local
regions of concentration enrichment and how those associations influence reaction kinetics
and the resulting system dispersity. We observe that for effective attractive interactions
of sufficient strength, an emergent self organization of monomers and oligomers occurs,
which alters the solution structure and produces unconventional kinetic features. Fig. 4.1a
shows the number-averaged degree of polymerization, Xn, as a function of reaction time
for the full range of attractive interaction strengths studied. There are two important ob-
servations regarding the reaction kinetics displayed. First, at lower attraction strengths,
Xn increases linearly at a rate that is independent of the reaction progress. This linear-
ity is expected for a second-order reaction scheme and has been experimentally observed
in step-growth polymerizations.73 Thus, for these lower attraction strengths, our model
successfully captures the kinetics of a step-growth polymerization based on Flory’s equal
reactivity principle,73 and we observe a fixed reaction rate irrespective of oligomer length.
Second, we note that the reaction rate actually increases over time for cases with stronger
solvent-mediated interactions, i.e., higher values of Σεi j ≡ εAA+εAB+εBB. In these cases,
a transition occurs at some point when the rate of the reaction increases, after which Xn
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Figure 4.1: Local monomer density and polymerization kinetics. (a) Number averaged
degree of polymerization Xn vs. simulation time for each combination of attractive inter-
action strengths explored. Dotted lines indicate simulations with εAA = 0.5kBT , dashed
lines indicate εAA = 0.75kBT , and solid lines indicate simulations with εAA = kBT , while
the coloration indicates the total attraction strength Σεi j for the simulation. The vertical
dotted line shows a reference time of interest t = 20,000 τ , at which the calculations in
(b-c) and the inset structures were determined. Inset: A representative system structure
for simulations with εAA = kBT , εBB = 0.5kBT , and with εAA = 0.5kBT , εBB = 0.1kBT
as indicated, taken at the reference time t = 20,000 τ . Type A monomers are shown
in red, and type B monomers in blue. (b-c) Radial distribution functions gi j(r) for (b)
εAA = kBT , εBB = 0.5kBT and (c) εAA = 0.5kBT , εBB = 0.1kBT . The gi j(r) function was
calculated by monomer species pair and excluded nearest bonded neighbors. Indices i and
j indicate the monomer species pair considered and are colored red for i j = AA, blue for
i j = BB, and purple for i j = AB or i j = BA. (d) First coordination number, ni j

1 , vs. εi j is
shown by monomer type pairs for each attraction strength explored.

progresses approximately linearly at this new rate for the remainder of the reaction.
The mechanism behind this emergent rate change can be seen in the configuration of
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Figure 4.2: Chain length distribution and dispersity. (a) System dispersity, Ð, as a
function of reaction extent, p, for the full range of attractive interaction strengths explored.
Dotted lines indicate simulations with εAA = 0.5kBT , dashed lines indicate εAA = 0.75kBT ,
and solid lines indicate simulations with εAA = kBT . The coloration indicates the total
attraction strength Σεi j for the simulation, where i j are indices which correspond to each
possible monomer species pair, namely AA, AB, and BB. The dashed black line shows the
predicted Ð from Flory-Schulz statistics of Ð = 1+ p. (b-c) The chain length distribution
at p = 0.9 for (b) εAA = 0.5kBT , εBB = 0.1kBT and (c) εAA = kBT , εBB = 0.5kBT . The
solid black lines show the expected Flory-Schulz distribution for p = 0.9. All results were
averaged over three simulation trials for each parameter set.

the solution environment during the transition, as quantified by the radial distribution func-
tion between different monomer species, gi j(r), shown in Fig. 4.1b&c. Here i j is an index
which correspond to the possible monomer type pairs within the system, namely AA, AB,
or BB. For the cases in which attractive interactions are sufficient to drive the observed rate
transition, there is a noticeable enrichment in the gi j(r) for the associated monomer type
pairs at the time when the rate change occurs – see Fig. 4.1b. By contrast, such an enrich-
ment in local monomer type concentration is not present in the cases with lower overall
inter-monomer attractions – no significant spatial correlation between the monomer type
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pairs is observed in the gi j(r) in Fig. 4.1c. To further quantify this behavior, we calculated
the first coordination number, ni j

1 , for each set of attraction strengths and monomer species
pair i j by integrating gi j(r) over the first coordination shell (see Sec. B.2 in Appendix B
for calculation details). The values obtained for ni j

1 , taken at t = 20,000τ where the rate
transition occurs for the strongest attraction case, are presented as a function of the gov-
erning attraction strength, εi j, in Fig. 4.1d. The results clearly demonstrate the relationship
between the first coordination number and the associated attractive interactions for each
monomer type pair. For lower attraction strengths, which have not yet undergone a rate
transition and for which standard kinetics still hold, there is a small but robust positive
correlation between ni j

1 and εi j. However, at the highest attraction strengths (star markers),
which are in the midst of the rate transition at t = 20,000τ , there is a sharp increase in
ni j

1 , greater than that expected from the trend due to attraction strengths alone. This tran-
sition to a more aggregated phase is expected as a consequence of Flory-Huggins solution
theory,73 which explains that the entropic cost of forming a more condensed or demixed
phase is reduced by the formation or lengthening of oligomers. The initial formation of
oligomers shifts the balance of entropic and enthalpic contributions and favors the forma-
tion of an aggregated phase once chains are long enough so that the attractive interactions
outweigh the entropic cost of demixing. The resulting increase in the local availability of
reacting species in the aggregated phase accelerates the reaction, producing the change in
rate behavior observed.

The distribution of chain lengths within the system is also affected by the alteration
of the local solution environment produced by attractive interactions of sufficient strength.
The Flory-Schulz distribution gives the ideal distribution of chain-lengths for a step-growth
polymerization that proceeds with a constant rate.73 Flory-Schulz theory also predicts a
linear relationship between the dispersity, Ð, and the reaction extent, p, such that Ð = 1+ p
for ideal polymerizations that proceed at a constant rate.73 Figure 4.2a shows the observed
Ð as a function of the reaction extent, p. For combinations of attraction strengths that
showed a transition in the kinetics such as that seen in the solid lines in Fig. 4.1a, there is
an associated shift away from the linear Flory-Schulz prediction (dashed black line) to a
non-linear Ð behavior. Although not all transitions in rate occur within the time-window
shown in Fig. 4.1a, we find that the rate increase coincides with the onset of non-linear
oligomer dispersity in all such cases. The progression of Ð and Xn with time and reaction
extent over the full polymerization are available in Figures B.5 and B.6 in Appendix B.

As with the kinetic transition, the magnitude of the shift of this chain-length distribu-
tion away from ideal behavior depends on the magnitude of the attractions in the system,
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with minimal attractions leading to a good agreement with the Flory-Schulz prediction,
while progressively higher attractions show increasingly non-linear Ð. The chain length
distributions at p = 0.9 for the highest and lowest total attraction strengths explored in this
work are shown in Fig. 4.2b&c. For the lowest attraction strength in Fig. 4.2c, the expected
Flory-Schulz distribution (solid black line) matches the observed chain length distribu-
tion. However, for the higher attraction strength shown in Fig. 4.2b, the observed chain
length distribution is noticeably shifted towards longer chain lengths. Overall, Fig. 4.2
clearly demonstrates the breakdown in Flory-Schulz predictions caused by increased inter-
monomer attraction, which broadens the chain length distribution and results in non-linear
growth in Ð.

4.3 Oligomer sequences depend on solvent selectivity

We have shown above how solvent-mediated asymmetric attractions between two monomer
species can elicit collective behaviors that drive assembly, yielding non-standard kinetics
and oligomer dispersities. We now examine the features of copolymer sequence that are
directly impacted by this emergent aggregation process in order to probe if and how it alters
the statistics of nearest neighbor monomers and yields long range correlations in oligomer
sequences. Further, we examine how these sequence effects change as the difference in the
solvent-mediated self-attractions between the two monomer species grows.

The direct sequence impact of the emergent co-localization of reacting species can be
seen in the observed probabilities of sequential neighbors in the resultant oligomers. We de-
note these pAA and pBB for the probability of finding an AA or BB sequence, respectively,
or pAB for the probability of finding an AB or BA sequence. The analysis of the sequential
neighbor probabilities, as determined at reaction extent p = 0.9, is shown in Fig. 4.3a-c
for each of the attraction strengths explored in this study. Values are presented in terms
of the deviation, ∆pi j, from the expected value for a truly random sequence, prandom

i j , i.e.,
∆pi j ≡ pi j− prandom

i j for monomer type indices i and j. It should be noted that the values
presented in Fig. 4.3 for pi j change throughout the reaction as the sequences develop, as
can be seen in Figures B.5 and B.6 in Appendix B.

For lower overall attraction strengths, where εAA = 0.5kBT (bottom row), the sequences
show minimal deviations from random behavior, such that ∆pi j ≈ 0 and there is a nearly
equal probability of finding AA, AB, BA, or BB pairs within the resulting sequences.
Where the difference between A to A and B to B attractions, ∆ε ≡ εAA− εBB, increases
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there is only a slight, ∼ 2% biasing towards AA pairs (bottom left corner). For the sym-
metric attraction case, where εAA = εAB = εBB = 0.5kBT and ∆ε = 0, the deviation from
random sequences is negligible (∼ 10−3) for each sequence pair (bottom right corners).
These random sequences are expected in the fully symmetric case, since the monomer
species behave identically, differing only in their identifying label as A or B. For higher
attraction strengths, a distinct trend emerges – as the attraction asymmetry increases, the
sequence biasing of neighboring monomers also increases. For cases with εAA > 0.5kBT
(top two rows), where the emergent kinetic shift and concentration enrichment occurs, se-
quences deviate markedly from random as biasing becomes much more significant. At
the highest εAA and ∆ε explored in this study (top left corner), AA pairs become the most
likely sequence combination in the system, representing a ∼ 15% biasing away from ran-
dom sequence behavior. Thus the strength and the relative balance of attractions between
comonomer pairs are both integral to determining the resulting nearest neighbor probabili-
ties.

The copolymer sequences obtained show evidence of long-range ordering as well, indi-
cating that the sequence biasing effects extend beyond the nearest sequential neighbors. To
explore this behavior, we make use of a metric developed for quantifying the extent of long
range sequence correlations in DNA, which we adapted to the two-component copolymer-
ization studied here.58,59,111 This approach considers the sequence as a 1D random walk,
with steps of +1 or -1 corresponding to A or B monomers, respectively. The metric, F(l),
then calculates the root-mean-square fluctuation of the sequence walk as a function of the
distance l along the sequence. For a completely random sequence, F(l) ∼

√
l, and devia-

tions from this scaling reflect a biasing in sequence over the length scale, l, where the devi-
ation is observed. Fig. 4.3d shows F(l) vs. l for each set of attractive interactions explored.
For cases with minimal difference in monomer self-attractions, for which ∆ε ≤ 0.2kBT ,
we observe no signs of longer-range sequence fluctuations. Here F(l) closely follows the
scaling behavior predicted for a random sequence, which is expected given the minimal
nearest neighbor sequence biasing seen in these combinations. However, as ∆ε increases,
long-range sequence correlations appear, as indicated by the increased slope of F(l) for
these cases. These correlations persist over a length scale greater than Xn ≈ 10, the average
chain length within the system.

The result of these long-range correlations in sequence may be seen in the length distri-
butions of contiguous blocks of either A or B monomers within the oligomers. Fig. 4.3e-g
shows the block length distributions for a fixed εAA = kBT and an increasing ∆ε . Similar
to the Flory-Schulz distribution for chain lengths, both the block length distribution and
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the dispersity expected from Markovian statistics can be calculated. In this calculation, the
identity of each monomer only depends on the preceding monomer in the sequence and the
observed nearest-neighbor bonding probabilities for that system – pAA, pAB, and pBB (see
Chapter 2). The predicted Markovian distributions are then plotted along with the observed
block length distributions for each monomer type. As ∆ε increases, the block distribution
of the more self-attractive A monomer shifts to noticeably greater lengths than predicted
by Markov statistics, displaying a broadening in the distribution analogous to that seen in
the overall chain lengths at higher Σεi j values (see Fig. 4.2b). Interestingly, these shifts
in block lengths are isolated to the A blocks, as the B block distributions are still well de-
scribed by Markovian statistics. At larger ∆ε , the A monomers can be sufficiently attractive
to condense into an A-enriched phase as polymerization proceeds and the oligomer chains
lengthen, while the less attractive B monomers incorporate less into oligomers (see Fig. S4)
and then less readily aggregate once in the oligomer phase. This incorporation bias results
in the long-range correlations we observe in Fig. 4.3d and causes a breakdown in Marko-
vian statistics, which promotes the formation of longer A blocks than can be explained
by a Markovian model alone. In such cases, the self organization of reactants produces
“blockier” oligomers, with block regions ordered along the oligomer chain by the relative
self-attractions of their respective monomer species and the influence of the local environ-
ment. The ordering of block regions results in separate domains rich in A blocks and B
blocks, analogous to the biased, but mixed, sequences found in gradient copolymers.
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Figure 4.3: Nearest neighbor and long-range sequence statistics. (a-c) Heatmaps show-
ing nearest neighbor bonding probabilities for (a) AA, (b) AB, and (c) BB pairs, for the full
set of attractive interactions explored. Values shown are the differences, ∆pi j, between the
observed probabilities and the probabilities expected for random sequences, prandom

i j , where
indices i and j specify the monomer species pair. (d) Sequence fluctuations metric, F(l), for
all attraction strength combinations. The dotted black line shows the l1/2 scaling expected
for a random sequence. Other dotted lines indicate simulations with εAA = 0.5kBT , dashed
lines indicate εAA = 0.75kBT , and solid lines indicate simulations with εAA = kBT , while
the coloration indicates the ∆ε value for the simulation set. Inset: Representative system
structures for systems with ∆ε = 0 and ∆ε = 0.9kBT . Type A monomers are shown in red,
and type B monomers are shown in blue. (e-g) Block length distributions for systems with
εAA = kBT and (e) εBB = 0.5kBT , (f) εBB = 0.3kBT , and (g) εBB = 0.1kBT . The expected
distribution for Markovian statistics for the A and B blocks are plotted as red and blue lines
respectively, on top of the observed distribution of block lengths of each type as histograms
in the same color. Analyzed sequences and block length distributions were collected from
three independent trials for each parameter set, all at reaction extent p = 0.9.
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4.4 Oligomer persistence length impacts both sequence and
aggregate structure

Figure 4.4: Localized chain alignments in stiff-chain oligomers. (a) The local nematic
ordering parameter, Slocal, is plotted here as a function of reaction extent, p, over the range
of attraction strengths explored for stiff-chain, lp = 16.5, polymers. Dotted lines indicate
simulations with εAA = 0.5kBT , dashed lines indicate εAA = 0.75kBT , and solid lines in-
dicate εAA = kBT , while the coloration indicates the total attraction strength, Σεi j, for the
simulation. The dashed horizontal black line indicates the highest value for Slocal seen for
the flexible-chain, lp = 3.5, polymers (see Fig. S3), and is used as a threshold to determine
early emergence of chain alignment. Inset: A representative system structure at p = 0.9 for
simulations with εAA = kBT , εBB = 0.5kBT . Type A monomers are shown in red, and type
B monomers in blue. (b) The reaction extent at which Slocal exceeds the threshold value
is shown for each parameter set as a function of εAA. (c) The peak value of Slocal reached
for each simulation parameter set as a function of Σεi j. For both (b) and (c), coloration
indicates εAA value and marker style indicates εBB value. Results were averaged over three
simulation trials for each parameter set.

Previously, we have observed the formation of pseudo-crystalline nematic alignment
in oligomers with sufficiently high persistence lengths and symmetric A to A and B to B
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attractive interactions.59 This alignment impacted both the dispersities and the oligomer
chain and block length distributions within the system, in a manner dependent on oligomer
stiffness. We now discuss this emergent transition to nematic alignment and examine its
impact on oligomer chain and block lengths in stiff oligomers under the conditions of asym-
metric attractive interactions.

In order to quantify the formation of these aligned structures, we use an order parameter,
Slocal, which is an ensemble averaged measure of the local orientational ordering within
regions of sufficient density (see Sec. B.3 in Appendix B for details). Like other common
ordering parameters used in the study of nematic phases in liquid crystals, Slocal transitions
from Slocal = 0 for an isotropic system to Slocal = 1 for a perfectly aligned system. The
introduction of a density criteria and the restriction to measuring local alignment focuses
this parameter on alignment within individual oligomer aggregates, allowing for high Slocal

values in systems with internally aligned aggregates, even if independent aggregates do not
share the same orientation. Slocal therefore captures the extent of local alignment among
nascent oligomers but does not describe a system-wide preferred orientation as in a true
liquid crystal nematic phase.

Fig. 4.4a shows the progression of Slocal as a function of the reaction extent, p, for stiff
chain oligomers of lp = 16.5 at each of the attractive interaction strengths explored in this
work. Orientationally ordered aggregates are clearly observed for Σεi j & 1.2kBT , where
Slocal reaches values ≥ 0.5, indicating significant alignment amongst neighboring chains.
For the highest value of Σεi j at p = 0.9, shown in the inset of of Fig. 4.4a, nearly all of the
condensed oligomers are orientationally-ordered. The observed nematic alignment is sen-
sitive to both polymer attraction strengths and chain stiffness. For flexible polymers, Slocal

values remain close to zero (see Fig. B.3 in Appendix B), and even higher attractions dis-
play only a marginal increase in Slocal. By contrast, at all but the lowest attraction strengths,
stiff polymer alignment surpasses the highest alignment seen in any flexible chain system,
a threshold value indicated by the dashed black line in Fig. 4.4a. Though higher attraction
strengths promote the formation of the condensed aggregates, it is the higher persistence
length that restricts the accessible conformations of chains in those aggregates, leading to
their orientational ordering. A notable feature of the ordering behavior is that the onset of
nematic alignment and the final peak value for Slocal are sensitive to different aspects of the
attractive interactions. Fig. 4.4b&c show the trend in these properties as a function of εAA

and Σεi j respectively. Fig. 4.4b shows that the point at which Slocal exceeds the threshold
established by the flexible chain case is predominantly controlled by εAA. For εAA = kBT
in particular, this onset of ordering is largely independent of the value of εBB and thus
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∆ε . In this case, when εBB is small, A to A attractions are sufficient to drive alignment
of A-enriched oligomers, which form earlier in the reaction when the incorporation of B
monomers into the polymer phase is significantly less than that of A (see Fig. S3). The
Slocal values obtained from early alignment are surpassed later in the reaction, however, by
cases with higher total attractions, Σεi j, once more B monomers have been incorporated
into the oligomers. The Slocal values at p = 0.9 are thus predominantly controlled by Σεi j

as seen in Fig. 4.4c. The variations in these two stages of nematic ordering further demon-
strate how differences in non-bonded attractive interactions can alter the formation of the
aggregate phase as the reaction proceeds.

Figure 4.5: Chain and block length distributions and their variation with persistence
length. (a) Chain length distributions are shown here at p = 0.9 for systems with εAA =
kBT , εBB = 0.5kBT . Distributions of both flexible chains of lp = 3.5 (blue) and stiff chains
of lp = 16.5 (green) are plotted. The solid black line shows the expected Flory-Schulz
distribution for p = 0.9. (b) Block length distributions for contiguous A monomer blocks
are plotted at p = 0.9 for systems with εAA = kBT , εBB = 0.1kBT for both flexible chains
(lp = 3.5, blue) and stiff chains (lp = 16.5, green). The solid black line shows the expected
distribution from Markovian statistics. (NB: pAA is approximately the same for both stiff
and flexible chains at these attraction strengths, so the associated Markovian prediction is
equivalent.) Distributions in (a) and (b) were collected from three independent trials for
each persistence length.

The impact of chain stiffness and nematic alignment on chain and block lengths is sig-
nificant. Fig. 4.5 shows the chain and block length distributions at p = 0.9 for systems with
two different persistence lengths but the same set of attractive interactions. In both cases,
attractive interactions strong enough to promote aggregation show a deviation from Flory-
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Schulz and Markovian statistics, but the nature of this deviation differs significantly. As
previously discussed, flexible chains show an increased dispersity and a broadened block
length distribution, due to the general promotion of longer chain and block lengths in the
system. By contrast, stiff chains show a truncation in both chain and block length distribu-
tions and an enrichment at specific chain lengths, indicative of a characteristic length intro-
duced to the system by the persistence length and associated orientational ordering. These
results are similar to what was previously seen in the case of symmetric attractions.59 How-
ever, with the asymmetric attractions explored in this work, the non-Markovian sequence
behavior is isolated to the A block lengths (Fig. S5& S6), which can also be seen in the
flexible chain case (Fig. 4.3). These results illustrate the complex interplay between the at-
tractive interactions and the chain stiffness. This interplay governs the phase behavior and
accessible conformations of oligomers and, in turn, influences the sequence of the resulting
chains as well as the morphology of their aggregates.

4.5 Nascent sequence and selective solvation influence the
composition of different regions within the aggregates

The alterations to the ideal reaction kinetics and sequences described above are associated
with the formation of a condensed, aggregated phase driven by oligomer formation. Here
we explore the composition and structure of these oligomer aggregates.

Nascent chain aggregation, the emergence of which was described in Fig. 4.1 for the
early stages of the reaction, continues throughout the reaction with the continued growth
of oligomer chains, an expected consequence of Flory-Huggins theory.73 After 90% of
possible bonds in the simulation have formed, this aggregated phase has developed into
clearly distinct structures of clustered oligomers. The nematic alignment observed at high
persistence lengths is fundamentally driven by the formation of dense oligomer aggregates.
To identify properties of this aggregate phase in the late stage of the reaction, we make use
of a local neighbor metric, nlocal, which is defined as the number of neighboring monomers
that are within a distance of 2.5σ . Threshold values for this metric were chosen both to
distinguish aggregated structures from the surrounding dilute phase and to delineate regions
within these structures that broadly correspond to their exteriors and interiors. The nlocal

metric also reports on the relative solvent accessibility of each region within the aggregate.
We set two threshold values for nlocal at 12 and 36 neighboring monomers. The interior
of the aggregates are then defined by monomers with nlocal ≥ 36, while the exterior of the
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aggregates are defined by monomers with 12≤ nlocal < 36. Monomers with nlocal < 12 are
not considered to be part of the aggregated phase. According to these criteria, the densities
of the exterior regions of an aggregate are at least three times the initial bulk density for
monomers in the simulation box, while the densities of the interior regions are at least nine
times the initial bulk density.

Figure 4.6: Aggregate compositions and representative structures. (a) fagg, the fraction
of all monomers in the system that are located within an aggregate (as defined by nlocal ≥
12), is shown as a function of the total attraction strength, Σεi j. (b) f A

agg, the fraction of A
monomers within an aggregate, is plotted as a function of ∆ε . Monomers with nlocal ≥ 36
were identified as “interior” (filled markers), and monomers with 12 ≤ nlocal < 36 were
identified as “exterior” (hollow markers). For both (a) and (b), persistence length is indi-
cated by marker shape while coloration indicates the value of εAA. Aggregate populations
were collected from three independent simulation trials per parameter set. (c-f) Repre-
sentative aggregate structures identified by the neighboring criteria employed in (a&b) for
simulations with (c) ∆ε = 0, lp = 3.5, (d) ∆ε = 0.9, lp = 3.5, (e) ∆ε = 0, lp = 16.5, and
(f) ∆ε = 0.9, lp = 16.5. The first column shows a single aggregate structure along with
orthogonal cross-section planes. The second and third columns show the interior of each
aggregate structure, as viewed from each of the shaded cross-sections. Type A monomers
are shown in red, with type B monomers in blue. All results are shown at p = 0.9.

Fig. 4.6 shows the results of the application of these local neighbor criteria to our system
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at p = 0.9. Notably, for systems with εAA = 0.5kBT and εBB < 0.5kBT , we do not find
regions for which nlocal ≥ 12. At these attractions, the reaction kinetics (Fig. 4.1a) and
dispersities (Fig. 4.2) are as expected for an ideal step-growth process, the g(r) function
shows no concentration enrichment early in the reaction (see Fig. 4.1c), and no aggregates
are visible in the system at p = 0.9. The correspondence among these results suggests
that the nlocal criterion is appropriately delineating the aggregated phase. In Fig. 4.6a, the
total fraction of all monomers in the aggregated phase, fagg, is shown as a function of the
total attraction strength, Σεi j. As with the aggregation and the associated rate change that
occurs earlier in the polymerization (see Fig. 4.1), we find that the total incorporation into
aggregates at the late stage of the reaction predominantly depends on the total strength of
the intermonomer attractions.

Having established criteria for identifying the interior and exterior regions of the ag-
gregates, we next sought to quantify the incorporation of each monomer species into these
regions, examining the fraction of A monomers within the aggregate, f A

agg, within each
region. The results for f A

agg are shown in Fig. 4.6b for all simulation parameters where
aggregates form. For the symmetric attraction case, ∆ε = 0, both monomer species are
equally incorporated into the interior and exterior regions of the aggregates. Representa-
tive aggregate structures under symmetric attractions (Fig. 4.6c&e) clearly show the even
incorporation of both monomer species throughout the entire aggregate. At the onset of at-
traction strength asymmetry, however, a distinct enrichment of A monomers in the interior
regions is apparent. For modest attraction asymmetries, this enrichment of A in the interior
is associated with a depletion of A in the exterior. As the attraction asymmetries increase
further, however, this depletion of A in the exterior is actually lessened, because fewer B
monomers are incorporated into the aggregates, remaining instead in the surrounding dilute
phase (see Fig. S4). In the maximally asymmetric case, B monomers are significantly less
incorporated and almost entirely located in the aggregate’s exterior, as can be seen in the
representative structures in Fig. 4.6d&f.

The impact of increased chain stiffness on the formation and structure of aggregates
is also apparent from the results in Fig. 4.6. Increased chain stiffness has been shown to
influence the phase behavior of polymers, and greater stiffness further promotes the forma-
tion of an aggregated phase.116–120 This behavior is borne out in our system, as stiff chain
oligomers show greater incorporation into the aggregated phase than flexible oligomers
for all attraction strength combinations explored (Fig. 4.6a). Further, the interiors of stiff
oligomer aggregates are less enriched in A than in the corresponding flexible oligomer ag-
gregates with the same inter-monomer attractions – see Fig. 4.6b. This reduction of interior
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f A
agg at increased persistence length is a consequence of two features of the increased chain

stiffness. First, the increased total aggregation which stiff chains promote (Fig. 4.6a) nec-
essarily increases the incorporation of B throughout aggregates. Secondly, greater chain
stiffness restricts the accessible conformations of the oligomers within the aggregate. Flex-
ible chains may readily adopt conformations that position incorporated B monomers in the
exterior of an aggregate, even when an isolated B monomer is located within a stretch of
A monomers in the chain. In stiff chains, however, such bent conformations are restricted,
and B monomers incorporated within the interior of a chain are likely to be located in the
interior of the aggregate as well. Such conformational restrictions also control the mor-
phology of the aggregate in a manner largely independent of the attraction strengths, with
flexible chains forming loosely spherical, globule structures (Fig. 4.6c&d), and stiff chains
forming elongated, rod-like aggregates (Fig. 4.6e&f).

It is important to note that the extent to which each monomer species is incorporated
into the growing oligomers changes throughout the reaction in a manner dependent on the
balance of attraction strengths between the monomer species. For high attraction strength
asymmetry, we observe an enrichment in the more attractive A monomers earlier in the
reaction and an increased incorporation of B later on. Additional data on the polymerized
fraction of each monomer species and its variation with p is shown in Fig. S4.

4.6 Summary and conclusions

In this Chapter, we have explored the influence of differing solvent affinities in step-growth
copolymerization by modulating the effective inter-monomer attractions acting between
each monomer combination. We find that, in cases with even mild solvent-mediated attrac-
tions, an emergent co-localization of reacting species occurs which promotes the formation
of an aggregate phase as the reaction proceeds. This spatial heterogeneity produces non-
standard kinetic effects, changing both the reaction rate and the resulting dispersity. The
self-assembly of the reacting species also influences the sequence of the oligomers formed,
in a manner dependent on the selectivity of the solvent interactions. The complexities
arising from these collective behaviors lead to associated kinetic and sequence effects that
cannot be fully captured by standard Flory-Schulz or Markovian statistical descriptions.

Understanding the impact of solvent affinities on sequence development and phase be-
haviors in solution-based copolymerizations is an important step towards developing gen-
eralizable synthetic approaches to sequence controlled or sequence-biased polymers for
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targeted supramolecular assemblies. A greater comprehension of the collective behavior,
biased bond formation, and nascent chain self-assembly that can arise during the copoly-
merization of monomers with differing solvent affinities will improve our capacity to har-
ness these effects towards the design and development of advanced copolymeric materials.
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Chapter 5

Nematic Ordering and Emergent
Characteristic Block Length

5.1 Introduction

In the preceding Chapters,86,87 we have shown that differences in non-bonded attractive in-
teractions that approach the strength of thermal fluctuations (∼ kBT ), such as those arising
from differences in monomer-solvent affinities, can significantly influence the sequences
obtained from a solution-based step-growth polymerization. This sequence influence is
due to the growth of nascent oligomers, which alters the free energy of mixing as explained
by Flory-Huggins solution theory, leading to a microphase separation of reactants as the
reaction proceeds.73 Due to this local demixing, as oligomers lengthen, attractive inter-
actions drive the formation of emergent concentration heterogeneities in the local reaction
environment, altering the likelihood of sequence additions. The chain stiffness of the grow-
ing oligomers, as characterized by the persistence length, also influences both the sequence
development and the self-assembly of the resulting aggregates, by altering the behavior of
the emergent demixed microphases.59,86,87 Oligomers with higher persistence length can
form highly ordered, nematically aligned phases as the reaction proceeds, giving rise to

The work in this Chapter is has been adapted with minor alterations from a manuscript in develop-
ment. Ryan L. Hamblin contributed to the investigation, software, formal analysis, visualization, and writing.
Zhongmin Zhang contributed to the investigation, software, formal analysis, and visualization. Kateri H.
DuBay contributed to the conceptualization, methodology, supervision, formal analysis, and editing.
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what we term a self-templating effect that alters subsequent chain growth. Both the length
of the chains formed and their “blockiness”, i.e., the relative lengths of sequences of re-
peated monomer additions of a single type, are influenced by this effect. Such templating
behaviors lead to the development of characteristic lengths, in which the reaction is biased
towards the formation of particular chain and block lengths. In this Chapter, we investigate
the emergence of these characteristic lengths in time, examining how the bonding behaviors
of stiff-chained copolymers differ from those with more flexible chains leading to altered
sequence ensembles. Further, we explore how features of the system which influence reac-
tion kinetics and the relevant characteristic timescales within the system alter these bonding
behaviors at different stages of the reaction, thereby impacting the chain and block length
statistics. To this end, we vary the activation energy of the reaction, the solution viscosity,
and the initial monomer density, to examine their effects on the kinetics of the reaction,
the alignment of the growing oligomers, and the resulting chain and sequence statistics.
We find that the characteristic length scale we observe shifts in a predictable fashion in
response to the characteristic system timescales defined by diffusion and reaction kinetics
in the system.

We begin, in Section 5.2, by examining how the sequence self-templating phenomenon
we observe responds to changes in the reaction conditions, including the non-bonded in-
teraction strength, reactant concentration, monomer reactivity, and solvent viscosity. In
Section 5.3 we relate these reaction conditions to characteristic timescales of the system,
noting the variation in the onset of sequence templating and the resulting characteristic
length scale shifts predictably in response to changes to the rates of reaction and monomer
diffusion. In Section 5.4 we describe how this self-templating sequence behavior emerges
in time, arising as a consequence of the simultaneous impact of emergent demixing and ne-
matic ordering, with an associated change in bonding behaviors in the system. In Section
5.5 we explore the nucleation and growth of oligomer aggregates, examining how aggre-
gate morphology drives these changes to bonding behavior within the aggregated phase in
a manner that depends on the length and stiffness of the reacting chains. We then briefly
conclude in Section 5.6, discussing the potential for exploiting the observed phenomenon
to influence the sequence development of stiff-chain copolymers in the context of simple,
one-pot reaction schemes.
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Figure 5.1: Block length distributions vary with attraction strength, monomer den-
sity, and viscosity. (a-d) Block length distributions of all-A or all-B blocks are shown for
the copolymerization of stiff chains (lp = 16.5) at a reaction extent of p = 0.9. Results
are shown here for variations in (a) like-monomer attraction strength, (b) initial monomer
density, (c) activation energy, and (d) solvent viscosity. The gray, dashed lines in each
plot are identical and display the block length distribution found under the standard condi-
tions described in Ref. [59]. These conditions are indicated with * in the legends, which
also specify the values of the conditions held constant in (a-d). Each distribution is ob-
tained from three independent simulation trials at a reaction extent p = 0.9. The shaded
purple region corresponds to the results expected from Markov statistics for the case with
εAA,BB = 0.7kBT pictured in (e), where we observe the onset of polymerization driven as-
sembly behaviors. (e-h) Visualization of representative structures under select conditions
from (a-d). Each column corresponds to changes in the same property. The center row
showcases conditions with the minimal block length distribution shift, while the bottom
row shows conditions with maximum shift in the block length distribution. Specific pa-
rameters for the visualizations are indicated by the inset legend, which correspond to block
length distributions in (a-d).
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5.2 Reaction conditions shift characteristic block length

In our previous work, we showed how copolymer chains of sufficient stiffness and non-
bonded attractions yield an emergent characteristic block length, which alters the distribu-
tion of block and chain lengths and reduces their dispersity.59 Here we begin by considering
the extent to which this sequence biasing phenomenon may be influenced by other proper-
ties of the reaction independent of the chain stiffness.

To investigate the dependence of the observed emergent characteristic all-A or all-B
block length on factors other than the persistence length, we varied the initial bulk density
of the monomers, the viscosity of the implicit solvent, the strength of non-bonded attrac-
tions, and the activation energy of bond formation. We therefore ran a series of simulations
which modified one of each of these variables over a range of plausible values, while keep-
ing the other variables fixed. For additional details on how these variable were adjusted
in the simulation, refer to Sec. C.1.1 & C.1.2 in Appendix C. Fig. 5.1 shows the results
of these simulations, examining the response of the block length distribution to changes in
each of these parameters in Fig. 5.1(a-d) and showcasing sample structures for two condi-
tions in each case in Fig. 5.1(e-h). In the plots shown in Fig. 5.1(a-d), the results for our set
of standard conditions in previous studies58,59 are the same across plots and indicated with
a gray dashed line. Additional results showing the relative proportion of oligomer bond-
ing, namely bonding involving oligomers of length ≥ 3 monomers, alongside block length
distributions under the conditions shown in Fig. 5.1, are provided in Fig. C.8 in Appendix
C.

The dependence of the emergent block length on each of these variables differs, and
broadly falls into three categories. The first of these is the behavior of the system in re-
sponse to a reduction in the strength of non-bonded attractions, namely, to a reduced value
of εAA,BB, which governs the strength of inter-monomer attractions. Here we see that the
characteristic block length (Fig. 5.1a) rapidly disappears from the system with a reduction
of the like-monomer attractions of only 0.3kBT . This result highlights the absolute de-
pendence of the observed phenomenon on the emergent aggregation and assembly driven
by effective non-bonded like-monomer attractions. The reduction in attraction strength
modifies the phase behavior so that the cohesive energies are insufficient to overcome the
entropic cost of aggregation until very late stages of the reaction when chains of sufficient
length have formed (Fig. 5.1e, top). With the impact of the emergent aggregation and phase
separation thus greatly reduced, the resulting block length distribution collapses towards
the purple-shaded distribution expected from Markovian statistics, which describes the se-
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quence behavior when the probability of each additional monomer in the chain depends
only on the identity of the preceding monomer (Fig. 5.1a). By contrast, increased attrac-
tions result in aggregation and assembly occurring much earlier in the reaction, meaning a
greater proportion of bond formation and sequence development occurs after oligomers be-
gin to assemble. In such instances, the impact of collective behaviors on sequence is more
robust, and the associated block distribution shift away from the Markovian distribution is
more pronounced.

In contrast to the dramatic onset of new phase and sequence behaviors seen in response
to small variations in attractive energies, the response to variation in the initial monomer
density is minute. Even at a 50% reduction in the initial monomer density, the distribu-
tion of block lengths (Fig. 5.1b) remains largely unchanged, with the peaked distribution
indicative of a characteristic block length remaining (Fig. 5.1f). It should be noted that
polymerization induced phase separation as a whole depends upon reactant density, and
we therefore necessarily restrict our exploration of density values to be low enough that
reactants are initially well solvated, but large enough to undergo sufficient aggregation at
oligomer lengths reached in the simulation as the reaction proceeds. Within this density
regime, however, the aggregation behavior and emergence of the observed characteristic
block length is not sensitive to the absolute rate of the reaction, a reactant density depen-
dent property.

The third type of dependence we observe in Fig. 5.1 is in response to variations in the
relative, rather than absolute, kinetic rates within the system, through changes to the acti-
vation energy of the reaction (Fig. 5.1c) and the viscosity of the implicit solvent (Fig. 5.1d).
While a characteristic block length remains in evidence across variations in these timescales,
changes to these variables shift its length. Changing these conditions also alters the timing
and extent of oligomer bond formation, i.e., the bonding that involves at least one chain of
length ≥ 3 monomers in the system (see Fig. C.8 in Appendix C for oligomer bonding de-
tails). Not only do the block length distributions show similar shifts under variation to each
of these quantities, but changes to the structure and morphology of the aggregates appear
analogous as well. Conditions leading to a shorter characteristic length show smaller and
more numerous aggregates (Fig. 5.1g&h, top), while single large aggregates dominate the
systems in which conditions lead to a longer block length (Fig. 5.1g&h, bottom).
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5.3 Block length distribution shifts correspond to changes
in relative kinetic timescales

To better quantify the observed changes in characteristic block length biasing, we now con-
sider the effective reaction and diffusion timescales in the system in terms of the activation
energy of the reaction and the solvent viscosity.

In order to define a characteristic timescale for the reaction, τR, we consider the inverse
of the effective rate constant for polymerization in the absence of aggregation behaviors,
keff, taking τR≡ k−1

eff .121 The kinetics for our model system have been worked out in detail in
previous work,87 allowing us to connect the measured activation energy, Ea, to our effective
rate constant and thus our reactive timescale, τR.

To characterize the impact of solvent viscosity on the diffusional timescale of the reac-
tants, we make use of the Stokes-Einstein relation to determine a diffusion coefficient, D,
in terms of the solvent viscosity, η , and the size of an individual monomer, σ . Specifically,
we define the timescale of diffusional motion using τD ≡ σ2/D, i.e., the time needed for a
monomer to diffuse its own length.

It should be noted that we expect the behaviors we observe to depend on the relative
balance of these two timescales, τD/τR, and not on the values of the timescales themselves.
As such, the trends we observe should not be influenced by constant factors that alternative
definitions of τD and τR might introduce, so long as the functional forms of their depen-
dence on the tunable parameters in our model, τD(η) and τR(Ea), remain consistent.

With the chosen definitions of τD and τR in hand, we are able to map our variations
in activation energy and solvent viscosity to the relative balance of diffusional and reac-
tive timescales in our system. Fig. 5.2 shows the combined results of simulations from
Fig. 5.1c&d, in which either solvent viscosity or reaction activation energy was varied, as
quantified by the ratio of timescales, τD/τR, indicated by line coloration. The extent of
the block distribution shift in Fig. 5.2a clearly corresponds to a shift in the ratio of these
characteristic timescales, τD/τR, as can be seen in the color progression from left to right.

To quantify the observed shift in the block length distribution, we make use of the first-
order Wasserstein distance,96,97 W1, as a measure of the statistical distance between our
observed block length distribution and the block length distribution expected if sequence
development obeyed Markovian statistics.58,86 Utilizing this statistical distance, W1, we
find a direct quantitative relationship (Fig. 5.2a inset) between the degree of distribution
shift and the ratio of characteristic timescales in the system. Alongside the clear correspon-
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dence between block length distributions and coloration in the main panel of Fig. 5.2a,
this quantitative relationship suggests that the effect of changes to both activation energy
(Fig. 5.1c) and solvent viscosity (Fig. 5.1d) can be captured in a unified way through τD/τR.

The onset of nematic ordering, characterized by Slocal in Fig. 5.2b, is similarly impacted
by changes to the balance of characteristic timescales – as are the chain and block length
dispersities shown in Fig. 5.2c. Each of these features develop earlier or later in the reac-
tion, and to a greater or lesser extent, at lower or higher τD/τR, respectively. This shared
response to the value of τD/τR highlights the connection between the onset of nematic or-
dering, the non-monotonic progression of dispersity, and the block length distribution, and
indicates the importance of the balance of the reaction and diffusion timescales to each of
these features.

The trends observed with respect to the reaction barrier and the diffusion rate can be
readily explained if we consider that a small nucleus of nascent chains grows into a crystal-
lite by reacting with other monomers and oligomers that match the growing nuclei, both in
terms of its monomer identities and in terms of its overall length. If the reaction is slowed
down, relative to the relaxation time of oligomers tumbling about in the system, then the
system has more time to settle into energetically favorable pre-reaction aggregates before
the formation of additional polymer bonds, leading to an impressive alignment in terms
of the overall oligomer length and the block lengths within each crystallite. This relative
slowing of the reaction time, as compared to the system’s relaxation time, can be achieved
by increasing the reaction barrier or by increasing the diffusion rate, and the block length
distributions shown in Fig. 5.1c&d and Fig. 5.2a clearly show these trends. As the reac-
tion rate slows with respect to the rate of reactant diffusion, the system has additional time
to relax towards lower energy configurations as chains extend. As a result, phase separa-
tion, aggregation, and nematic alignment happen earlier with respect to the reaction extent
(Fig. 5.2b). This earlier aggregation and ordering leads to an earlier emergence of bonding
involving longer than average chains, and a greater reduction in long chains bonding with
other long chains late in the reaction (see Fig. C.7 in Appendix C for details). Such varia-
tions in bonding behaviors at different reaction extents lead to the non-monotonic dispersity
behavior (Fig. 5.2c).

Together, the results in Fig. 5.1&5.2 demonstrate a sequence biasing behavior which
arises from phase changes driven by the reaction itself, producing a characteristic block
length which may be directly influenced through changes to the diffusivity and reactivity of
the reacting species. Subsequent sections will explore the precise relationship between the
chain length dependent bonding behaviors and the development of nematic and sequence
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ordering in the system.

5.4 Characteristic block length arises from emergent changes
in bonding behaviors

We now investigate the development of this sequence biasing in time, exploring how the
characteristic block length arises as a consequence of a nematic ordering transition that
changes the bonding behavior of oligomers within aggregates that are nucleated early in
the reaction. We begin by examining, in Fig. 5.3, the time evolution of both structural snap-
shots and block length distributions for the reaction of stiff and flexible A,B-copolymers
under our standard simulation conditions (shown in gray dashed lines in Fig. 5.1a-d and
the dashed line in Fig. 5.2a).

Early stage (p ≤ 0.4). The simulation snapshots in Fig. 5.3a clearly demonstrate the
gradual onset of aggregation, coupled with a microphase separation into A-rich and B-rich
domains. The concurrent impact of these emergent aggregation processes on sequence can
be seen in the time progression of the block length distribution, shown in Fig. 5.3b. At
early times, the distribution of block lengths closely matches the geometric distribution
expected for a polymerization process governed by Markovian statistics. However, by the
time aggregates appear in Fig. 5.3a at 20×103 τ (p≈ 0.4), a longer tail is observed in the
distribution in Fig. 5.3b, indicating the presence of longer-range ordering in the oligomer
sequences – ordering that persists past the nearest sequence neighbors.

Other properties of the reaction kinetics, shown in Fig. 5.3c, are also impacted by the
emergent aggregation that happens around 20×103 τ (p≈ 0.4): both chain-length disper-
sity (solid green line) and degree of polymerization (black line) increase in a non-linear
manner – a sign of the breakdown in standard kinetic behaviors driven by this emergent re-
actant heterogeneity.58,87 Longer-than-average oligomers are more prone to aggregate and
therefore to encounter and react with other long oligomers, which increases dispersity and
speeds chain growth. Aggregation also noticeably alters the observed probability, pAA,BB,
of a repeat sequence pair in the ensemble of oligomer sequences (either AA or BB). The
value of pAA,BB (red line) remains relatively consistent prior to aggregation, increases upon
aggregation, and remains consistent at the increased value for the rest of the reaction. The
impact on the sequence pair probability is a consequence of the emergence of the A,B mi-
crophase separation, which enriches the concentration of the like-monomer species within
the local environment and leads to an increased likelihood of encounter and reaction be-
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Figure 5.2: Block length distribution shift and characteristic timescales. (a) Block
length distributions of all-A or all-B blocks observed at a reaction extent of p = 0.9, col-
ored according to the value of log(τD/τR), the logarithm of the ratio of the characteristic
diffusive and reactive timescales for the simulation. Inset: A log-log plot of the Wasser-
stein distance, W1, vs. the ratio τD/τR. The Wasserstein distance was calculated between
the observed distribution of block lengths and the distribution expected from Markov statis-
tics (see SI for details). The result from standard simulation conditions, i.e., those used in
Ref. [59] and the gray dashed lines in Fig. 5.1 above, is shown in gray with a star marker.
Simulations in which viscosity was varied are shown in blue, and simulations in which ac-
tivation energy was varied are shown in green. A linear regression was performed, and the
resulting regression equation and fit-line are shown. (b) Local nematic ordering parameter,
Slocal, as a function of reaction extent. (c) Chain length (solid line) and block length (dot-
ted line) dispersity, Ð, as a function of reaction extent. All data was obtained from three
independent simulation trials for each parameter set.
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Figure 5.3: System structures and block length distributions during copolymerization
of semi-flexible polymers. Results from reactive simulation of two different persistence
lengths, lp, for εAA,BB = kBT and εAB = 0. In (a-c) lp = 16.5 monomers and in (d-e) lp = 3.5
monomers. (a) Characteristic snapshots of structures forming within a single simulation are
shown at five different points in the reaction. (b,d) The block length distributions for (b)
stiff chains and (d) flexible chains are plotted at twelve different time points in the reaction.
(c,e) The change of sequence neighbor probability pAA, BB (red line), order parameter Slocal
(blue line), degree of polymerization Xn (black line), and chain (solid green line) and block
length (dashed green line) dispersity Ð are shown as functions of reaction extent, p, for
(c) stiff chains and (e) flexible chains. The chosen times presented in (a), (b), and (d), are
indicated with vertical dotted lines, with coloration corresponding to the simulation time.



CHAPTER 5. NEMATIC ORDERING AND EMERGENT CHARACTERISTIC
BLOCK LENGTH 78

tween monomers of the same type.58

Middle stage (0.4 < p ≤ 0.7). Up to this point in the reaction, both stiff chains
(Fig. 5.3a-c) and flexible chains (Fig. 5.3d-e) behave in largely the same fashion, with
one notable exception. For stiff chains, orientational alignment of oligomers, character-
ized by the order parameter Slocal, begins to increase with the onset of aggregation and
increases continuously throughout the remainder of the reaction (Fig. 5.3c), indicating a
nematic transition that is absent among the flexible chains (Fig. 5.3e). Early stiff chain
aggregates are predominantly isotropic at 20×103 τ (Fig. 5.3a), as can be seen in the low
value of Slocal at that time (Fig. 5.3c, p≈ 0.4). By 30×103 τ (p≈ 0.6), however, the chains
within each aggregate show signs of significant ordering (Fig. 5.3a), with Slocal continuing
to increase as chains align and the crystallites grow.

Concurrent with this nematic ordering, between 20×103 τ and 30×103 τ , a peak forms
in the block length distribution of the stiff chains (Fig. 5.3b), indicating the emergence
of a characteristic block length, which remains absent from the equivalent distribution of
flexible chains (Fig. 5.3d). This distributional peak shifts to the right and becomes more
distinct as the reaction proceeds, and by 40×103 τ (p≈ 0.7) the characteristic block length
observed at the end of the reaction is well established.

Late stage (0.7 < p ≤ 0.9). Additional bonding past this stage generally forms more
sequences of that characteristic length rather than increasing it, so that the distribution
curves begin to coalesce. Importantly, the decrease in dispersity shown in Fig. 5.3c, also
occurs at this point, arising as a consequence of the nematic alignment once sufficient or-
dering occurs in the system (Slocal & 0.5). This decrease indicates that chains that are longer
than average are preferentially reacting with chains that are shorter than average, reducing
the overall dispersity. This two-stage, length dependent bonding behavior is unique to the
aggregates formed from stiff chains. Flexible chains demonstrate no such decrease in dis-
persity, and the preference for long oligomers to bond other long oligomers, which spurred
the initial non-linear increase in dispersity, continues throughout the reaction (Fig. 5.3e).

Chain length dependent bonding. To further quantify the length dependent bonding
behavior we observe, we present in Fig. 5.4 histograms of the likelihood of bonding be-
tween chains of different lengths over the early (p≤ 0.4, top row), middle (0.4 < p≤ 0.7,
middle row), and late (0.7 < p ≤ 0.9, bottom row) stages of the reaction. Fig. 5.4a shows
the results from trials of a simple, idealized Monte Carlo calculation designed to reproduce
the sequence statistics expected under conditions where Flory’s equal reactivity principle73

holds – namely, where all extant chains are equally likely to form a bond (see Chapter 2 for
details). While such a calculation fundamentally cannot account for spatial heterogeneities
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of reactants or the stiffness and orientations of the nascent chain, it is nevertheless an effec-
tive implementation of the assumptions of the equal reactivity principle, which similarly
does not capture these details. Fig. 5.4b shows the results for our model system under both
flexible (upper-left diagonal) and stiff (lower-right diagonal) cases. Fig. 5.4c shows the dif-
ference, ∆pF ≡ pobserved− pF, in bonding probability between our observations, pobserved,
and the ideal Flory behavior, pF.

Under equal reactivity (Fig. 5.4a), early stage bonding is dominated by monomer-
monomer reactions, and only late in the reaction do longer chains begin to emerge. Even
late in the reaction, the majority of bonding involves short chains of length ≤ 3, and only
very rarely do two longer oligomers react. It should be noted here that there is no difference
in bonding probabilities arising from differences in chain stiffness, as by definition equal
reactivity, which is taken as the basis of these Monte Carlo calculation, does not permit
such properties of the larger chain to affect the bonding behavior. The chain persistence
length therefore does not enter into this calculation, and the equivalent behavior of each
side of the diagonal line in these plots is axiomatic.

The ideal Flory bonding behavior in Fig. 5.4a contrasts sharply with the results from our
reactive Langevin simulations in Fig. 5.4b, and the difference is quantified in Fig. 5.4c. In
the dynamical simulations, early stages of the reaction show increased formation of longer
chains and reduced monomer-monomer bonding as compared to the ideal behavior, a con-
sequence of the aggregation spurred by chain lengthening. The propensity of longer chains
to aggregate causes them to more readily encounter and react with longer chains and pro-
duces the length dependent increase to bonding, deviating from Flory’s ideal behavior. For
the early stage of the reaction (p ≤ 0.4), these behaviors are largely independent of chain
stiffness, as chain lengths well below the persistence length are insufficient to drive the
nematic ordering transition which occurs later in the reaction for stiff chains. As the reac-
tion proceeds further (0.4 < p≤ 0.7), the chain length dependence of bonding probabilities
begins to differ between chains of different persistence length, as chains with sufficient
stiffness begin to nematically align. Over this reaction extent range the difference is small,
with flexible chains showing only a slight increase in the likelihood of bonding between
longer chains. It is only in the late stage of the reaction (0.7 < p ≤ 0.9), when substantial
nematic ordering has occurred, that greater differences in the bonding behaviors between
flexible and stiff chains are observed. For flexible chains at this stage, there is an increased
likelihood of reaction as compared to the ideal Flory behavior for a wide range of oligomer
chain length combinations. Flexible chains also have a particularly noticeable enrichment
of bonding events that involve very long oligomers (length ≥ 50 monomers), as seen in the
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band of green along the top of the bottom plot in Fig. 5.4c. By contrast, stiff chains show
a marked increase of short chains (length ≤ 3 monomers) bonding with longer chains over
this reaction extent, as visualized by the band of green along the x-axis. Both flexible and
stiff chains also show a marked reduction in the bonding between shorter oligomers, visible
in the purple region in the lower left. To further quantify these differences and how they
develop as a function of reaction extent, in Fig. C.2 in Appendix B we report the relative
proportion of bonding involving at least one chain of length ≥ 3 monomers and of bonding
between both chains of length ≥ 3 monomers, for both flexible and stiff chains.

Taken together, the results in Fig. 5.4 show that the transition to nematic ordering among
the stiff chains, seen in the increase of the Slocal metric near p = 0.4 in Fig. 5.3c, occurs
concomitantly with a change in chain-length dependent bonding behavior: a transition from
longer chains preferentially reacting with longer chains, to longer chains preferentially re-
acting with shorter chains. It is this shift in bonding behavior which results in the non-
monotonic dispersity we see in Fig. 5.3c. When this nematic ordering and the associated
reduction in dispersity occurs alongside the polymerization driven phase separation into
A-rich and B-rich domains, peaked block length distributions emerge with a characteris-
tic block length (Fig. 5.3). Once chains have aligned, it becomes energetically favorable
for oligomers shorter than the length of the growing crystallite to orient themselves such
that their combined length spans the crystalline domain. Once in that position, a reaction
between these aligned oligomers becomes more likely. We term this class of kinetics self-
templating growth, and examine it in the context of the bonding behaviors of nucleated
oligomers in the following section.
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Figure 5.4: Chain-length dependence of bond formation. These plots show the probabil-
ity that chains of different lengths will form a bond during different periods of the reaction.
Each row corresponds to bond events sampled during a different range of the simulated
reaction extent: p≤ 0.4; 0.4 < p≤ 0.7; and 0.7 < p≤ 0.9. Within each plot in (b) and (c),
the upper-left half shows the values for flexible chain systems (lp = 3.5) and the lower-right
half shows the values for stiff chains (lp = 16.5). Probabilities in Column (a), pF, were de-
termined from 250 simple Monte Carlo calculations of the ideal Flory behavior, in which
no spatial or stiffness information is taken into account, and thus all chains have an equal
probability of reacting at each step in the reaction and the two halves are therefore mirror
images. Probabilities in Column (b), pobserved, were determined from actual bonding events
observed in our reactive Langevin dynamics simulations from three independent trials for
both flexible and stiff chains. In Column (c), the difference, ∆pF, is shown between the
observed probability in (b) and the probability which occurs under ideal, Flory behavior in
(a). All probabilities are normalized by the the number of bonding events within the stated
reaction extent range.
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5.5 Oligomer aggregate structures and bonding behaviors
depend on chain stiffness

Quantitative identification of oligomer aggregates. In order to examine this self-templating
growth further, we now consider the initial aggregation, alignment, and growth of individ-
ual crystallites in the system. To this end, we first develop a consistent method of identi-
fication of aggregated regions in which the transition to nematic order and self-templated
growth may occur. We therefore make use of a modification of the HDBSCAN clustering
algorithm,122 which identifies spatially distinct oligomer clusters based on a local density
criteria (see Sec. C.4 in Appendix C for details). Clusters are initially identified as regions
with a minimum of twelve monomers within a distance of 2.5 σ . In addition, when one or
more monomers of a chain are identified as belonging to a cluster, the entire chain is then
added to that cluster. These conditions for cluster identification were chosen so that both
small nucleated regions forming early in the reaction, as well as larger, spatially separated
aggregates occurring later in the reaction, can be identified via consistent clustering criteria.

Aggregate growth and composition. The results of the density based clustering anal-
ysis are presented in Fig. 5.5. In Fig. 5.5a, the growth of clusters identified within the
simulation is visualized at different points throughout the reaction for both stiff and flexi-
ble chains. Irrespective of chain stiffness, no clusters are identified early in the simulation.
Only at times ≥ 10× 103τ , where sufficient polymerization has occurred to drive assem-
bly, do the first small clusters form. From 15×103τ to 20×103τ (p≈ 0.3 to p≈ 0.4) the
number of identified clusters increases rapidly, as the reaction proceeds further and multi-
ple oligomer clusters nucleate. Further aggregation proceeds through two pathways, with
aggregates growing both from the addition of unaggregated chains from the surrounding,
dilute phase, as well as from the merging of separately nucleated clusters. This process of
aggregate nucleation and subsequent growth and merger is quantified in Fig. 5.5b, in which
the number of distinct aggregates increases sharply during the initial nucleation phase be-
fore steadily decreasing throughout the remainder of the reaction as aggregates merge.
Meanwhile, the total proportion of all monomers belonging to an aggregate increases con-
tinuously, as monomers and chains not belonging to aggregates bond and join with existing
aggregates. Notably, this behavior appears independent of persistence length, as both flexi-
ble and stiff chains show nearly identical aggregate nucleation, growth, and cluster merging
dynamics.

In Fig. 5.5c, we consider the fractional comonomer composition of the clusters through-
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out the reaction. Due to the influence of the non-bonded attractions between like-monomer
species, almost all aggregates are initially dominated by one comonomer species (Fig. 5.5c).
Of course, due to the relatively small size of clusters in the early stages of formation, some
outliers in cluster composition occur early on where the comparatively rare the inclusion of
few monomers of the non-dominant species in a cluster will have a disproportionate impact
on the cluster composition as a whole. As the reaction continues and mergers between A-
rich and B-rich aggregates become more frequent, the composition fraction starts to even
out.

As seen in prior work58,86 and discussed in Section 5.2, the combination of local den-
sity increase and composition shift leads to a shift towards longer sequence block lengths
than would be present in a copolymerization which remains homogeneous throughout the
reaction. This phenomenon is borne out within the individual aggregates, which possess
peak block lengths (Fig. 5.5d) which correspond to the largest block lengths observed in
the system as a whole (Fig. 5.3b), much longer than that of the unaggregated sequences in
the system. Block lengths of unaggregated chains remain≤ 3 monomers in length through-
out the reaction (see Fig. C.5 in Appendix C), confirming that the increased block lengths
observed in the system are isolated to the aggregated regions we identify. Significantly,
although the initial nucleation, growth rate, and composition of aggregates are largely in-
dependent of chain stiffness (Fig. 5.5b&c) the growth of contiguous sequence blocks within
the aggregates differs between chains of different persistence lengths (Fig. 5.5d).

Chain stiffness influences bonding within and between aggregates. In order to better
understand this apparent contrast between similar aggregate growth pathways and dissimi-
lar sequence development, we now consider the source of additions to growing aggregates.
To this end, we consider three distinct populations of bond formation events for a given
aggregate: (1) “unclustered” bonds, where a bond forms between a chain in the aggregate
and a chain that is not part of any aggregate; (2) “self” bonds, where a bond forms be-
tween two chains that have been part of the same aggregate for at least 5× 103τ; and (3)
“merge” bonds, where a bond forms between two chains that are part of separate, distinct
aggregates.

Fig. 5.6 shows the results of this bonding population analysis, performed on the same
flexible and stiff chain systems shown in Fig. 5.5. The most readily observable difference
in bonding behavior between flexible and stiff chain aggregates lies in the number of un-
clustered bonding events (Fig. 5.6a), as the stiff chain aggregates form more bonds with
the unclustered population of chains than the flexible chain aggregates do. This change
in bonding behavior is critical: unclustered chains have shorter chain and block lengths
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than those in aggregated regions (Fig. C.4&C.5 in Appendix C), since they have not been
influenced by the emerging phase-separation and assembly effects. The unclustered chains
with shorter than average chain and block lengths bond with aggregated chains with longer
than average chain and block lengths, narrowing the respective distributions towards the
mean. Increased incorporation of these unclustered chains in the stiff chain case therefore
serves to reduce the dispersity of both chain and block lengths and slow the distribution
broadening caused by aggregation. For bonding occurring between chains within the same
cluster (Fig. 5.6b), the opposite relationship with persistence length is observed. Here,
stiff chain aggregates demonstrate reduced self bonding behavior as compared to flexible
chain aggregates after the transition to nematic ordering has begun (p > 0.4). Thus, for
flexible chains, bond formation continues to occur preferentially between chains within the
aggregated population. Due to the longer chain and block lengths of that population, this
propensity towards self bonding causes chain length and block length dispersities to con-
tinue to increase. Notably, this difference in bonding behaviors of aggregates of different
chain stiffness is not seen in bonding events associated with the merger of separate clusters
(Fig. 5.6c). Bonds from merging clusters make up a smaller portion of the total bonding
events observed, and the quantities of these events, and the timing of their occurrence is
relatively consistent between both stiff and flexible chains.

Aggregate structure alters accessibility of reactive chain ends. In considering the
impact of chain stiffness on bonding within and between aggregates, we hypothesized that
both of the above observations of altered aggregate bonding behavior are related to the rel-
ative positioning of chain ends within aggregate structures. In flexible chains, and in stiff
chains prior to nematic ordering, chain ends may be isolated in the interior of an aggregate,
where they are less readily accessible to chains which are not a part of the same aggregate.
In contrast, the ordering transition that stiff chain aggregates undergo positions chain ends
in the exterior of the aggregated structure. This positioning not only increases the accessi-
bility of chain ends to the surrounding local environment of the aggregate, but also limits
the contact between the inflexible chains of the same aggregate, simultaneously promot-
ing bonding from outside the aggregate and limiting bonding from within it. The timing
of this ordering transition for stiff chains is therefore critical, as early aggregation first
promotes distribution broadening by increasing bonding between the longer chains within
an aggregate, before then promoting bonding with the shorter chains of the surrounding
environment after nematic alignment occurs.

In Fig. 5.7, we quantify the accessibility of all monomers and chain end monomers,
within aggregates of both stiff and flexible chains. When considering all aggregated monomers
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in Fig. 5.7a, we see that the fraction of monomers belonging to either the interior or exte-
rior of an aggregate increases with reaction extent. The largely spherical aggregates pro-
duced by flexible chains have more of their aggregated monomers in the interior, as com-
pared to the more extended aggregates of stiff chains, which have more of their aggregated
monomers in the exterior. The average number of local (within 2.5σ ) neighbors, nlocal,
in the system is plotted in Fig. 5.7b for all monomers. As expected, the local density in-
creases monotonically with reaction extent due to the polymerization driven aggregation.
Despite their more extended character, however, the stiff chains demonstrate a higher av-
erage density after nematically ordering – a consequence of the closely packed structures
such alignment produces.

When considering the fraction of chain end monomers in aggregate exteriors and in-
teriors in Fig. 5.7c, we find that chain ends are found exclusively in the exteriors of stiff
chain aggregates. In contrast, an appreciable number of chain ends remain in the interior
region of flexible aggregates, and this number grows steadily as the reaction proceeds and
the interior volume increases. These differences can also be seen in the nlocal of the chain
ends in Fig. 5.7d. Although the curves initially look the same as those for all monomers
(Fig. 5.7b), a cross-over occurs at p ≈ 0.4, when the stiff chains begin to nematically or-
der, after which the flexible chain ends show greater neighbor density than their stiff chain
counterparts. Only very late in the reaction, p & 0.8, does the local density near stiff chain
ends again surpass those of flexible chains.

Overall, the nematic ordering in stiff chains ensures that chain ends, where new bond
formation can occur, are restricted to the less dense exterior region of aggregates (Fig. 5.7c&d)
where they are more readily accessible for bond formation with shorter, unaggregated
chains (Fig. 5.6, Fig. C.4 in Appendix C).
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Figure 5.5: Identification of spatially clustered aggregates and their growth. (a) Ag-
gregated structures identified by clustering analysis for both flexible (lp = 3.5) and stiff
(lp = 16.5) chains. Monomers belonging to identified clusters are shown in color, with
species A in red and species B in blue, while all other monomers are shown in transparent
gray. (b) The number of separate clusters (points, left axis) and the fraction of all monomers
belonging to a cluster (lines, right axis), are plotted vs. the reaction extent, p. (c) The com-
position fraction of the dominant monomer species within a cluster is plotted as a function
of the reaction extent, p. Each point corresponds to a single identified cluster at that reac-
tion extent. Lines show the average value over all identified clusters. (d) The longest block
length among all the sequences belonging to a single cluster is plotted here as a function
of reaction extent, p. Each point corresponds to a single identified cluster at that reaction
extent. Lines show the average longest block value over all identified clusters. In (b-d)
marker coloration indicates simulation time, while marker style indicates chain stiffness.
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Figure 5.6: Oligomer bonding in spatially clustered aggregates. The number of oligomer
bonding events occurring within aggregates identified by clustering analysis as a function
of reaction extent for both flexible (lp = 3.5) and stiff (lp = 16.5) chains. Bonding events
were split into three populations: (a) bonding with unclustered reactants, (b) bonding within
a single cluster, and (c) bonding between separate clusters. Each data point corresponds
to the total number of bonding events of each type among all clusters in the system at the
indicated reaction extent. Time is indicated by marker coloration and chain stiffness is
indicated by marker style.
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Figure 5.7: Distribution of chain ends within aggregates. (a) The fractions of all
monomers in the system that belong to an interior or exterior region of an aggregate are
plotted as a function of the reaction extent, p, for both flexible (lp = 3.5) and stiff (lp = 16.5)
chains. Aggregate regions were identified by a local density criteria using nlocal to quan-
tify the number of neighboring monomers within 2.5σ . Monomers with nlocal ≥ 36 were
identified as belonging to the interior of aggregates (filled markers), while monomers with
12 ≤ nlocal < 36 were identified as belonging to the exterior of aggregates (hollow mark-
ers). Marker style indicates chain stiffness, and coloration indicates simulation time. (b)
nlocal, the average number of local neighbors for all monomers in the system, is plotted
vs. reaction extent for flexible and stiff chains. (c) The fractions of all chain ends in the
system that are located within an aggregate’s interior and exterior regions are plotted as a
function of reaction extent, p, for both flexible and stiff chains. (d) The average number of
neighbors in the local environment, nlocal, is plotted here for all chain ends in the system
for both flexible and stiff chains.



CHAPTER 5. NEMATIC ORDERING AND EMERGENT CHARACTERISTIC
BLOCK LENGTH 89

5.6 Summary and conclusions

In this work we have investigated a previously reported59 templating effect in step-growth
copolymerizations of monomer species with sufficient chain stiffness and non-bonded in-
teractions between like species, an effect which results in a characteristic block length of
sequence repeats. Here, we have examined the response of this characteristic block length
to changes in reaction condition, demonstrating its sensitivity to changes to the relative
timescales of diffusion and reaction, such as those introduced by changes to solution vis-
cosity or reaction activation energy. We have shown, in Fig. 5.2, that the characteristic
block length shifts in response to changes in these timescales in a quantifiable fashion,
suggesting a pathway for biasing copolymer sequences towards a particular block length
through understanding this effect.

Exploring the development of the templating effect in time shows that the emergence
of the characteristic length coincides with a phase separation and nematic ordering in the
system unique to stiff chains (Fig. 5.3), and that this drives changes in length dependent
bonding behavior associated with these transitions (Fig. 5.4). It is the simultaneous impact
of these effects which together produce the unique characteristic block length behavior
we observe. These results further contextualize and reinforce the impact of characteristic
system timescales described in Fig. 5.2. Because the characteristic block length develops
as a consequence of both phase separation and nematic ordering, changes to the relative
timescales of diffusion and reaction which govern the rates of these processes necessarily
alter the point at which self-templating growth begins, the extent to which it influences
sequences, and thereby the characteristic block length that emerges.

To further understand how the combination of nematic ordering and phase separation
introduces length dependent bonding behaviors in stiff chained oligomers, we have con-
trasted the growth pathways of aggregated oligomer structures of flexible and stiff chains
(Fig. 5.5). We have highlighted the differences in bonding behaviors of these aggregates in
terms of the reactant populations which spur their growth (Fig. 5.6, and motivated this in
terms of the relative accessibility of unreacted chain ends to these populations (Fig. 5.7).
Together, these results explain the unique chain stiffness and chain length dependence of
bonding described in the previous sections (Fig. 5.4), and suppport our description of the
impact of characteristic system timescales on the phenomenon of a characteristic block
lengths that we observe (Fig. 5.2). The structure of aggregates and their growth in time is
what is fundamentally altered by nematic ordering, and it is this change, in concert with the
ongoing phase separation in the system, that leads to the unique bonding behaviors we ob-
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serve. Changes to characteristic timescales in the system alter when these aggregates form
and when they order, relative to the rate at which polymerization proceeds and sequences
and chain lengths develop, promoting or truncating the impacts of aggregation and ordering
on these features.

Our results have demonstrated how the templating effect arises from the simultaneous
impacts of polymerization-driven phase separation and nematic transition which alter the
bonding behavior of nascent chains in a length-dependent fashion. These length-dependent
bonding behaviors depend on the formation, growth, and structural ordering of oligomer
aggregates, which changes the accessibility of the aggregated oligomers to other popula-
tions of reactants. Altering the characteristic reactive and diffusive timescales in the sys-
tem changes the timing of formation of aggregates and their ordering with respect to the
progress of the reaction, changing the extent to which the chain-length and chain-stiffness
dependent bonding behaviors may influence sequence development, and thereby shifting
the resultant characteristic sequence development that emerges.
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Chapter 6

Conclusions

6.1 Summary of results

We have utilized a particle based, bead-spring model, sampled via a reactive Langevin
dynamics approach, to simulate a two component, step-growth copolymerization under a
variety of reaction conditions. This method has allowed us to directly observe the develop-
ment of oligomer sequences, and correlate them to reaction kinetics and emergent reactant
heterogeneity, in a fashion not possible with current experimental characterization tech-
niques for polymerization reactions. With this approach, we have investigated interaction
regimes which lead to emergent self-assembly and microphase separation of reactants, and
studied the associated impacts on reaction kinetics, oligomer sequence, and end product
dispersity and morphology.

In Chapter 3, we explored the combined effects on copolymerization kinetics of dif-
ferences in both activation energies and non-bonded attractions between monomers and
examine the sequences produced within this same step-growth copolymerization model,
connecting our results to classical kinetic theories of copolymerization. We have demon-
strated that our model successfully reproduces kinetic and sequence behaviors predicted by
current theories and that we can quantitatively predict how altering activation energies and
non-bonded attractions influences the kinetics and sequences. Critically, we also demon-
strated a regime in which non-bonded attractions are sufficient for polymerization induced
assembly, leading to non-standard kinetic behaviors and long-range sequence biasing, with
the extent of each clearly shifting as the reaction proceeds. We showcased how these im-
pacts of reactant assembly are not captured by existing theories and that they depend on
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both non-bonded attraction strength and reaction activation energies, exhibiting that the in-
fluence of each of these energies may work in concert or in opposition to one another to
bias the sequences formed.

In Chapter 4 we explored the emergent assembly phenomenon further, examining how
effective attractive interactions, mediated by a solvent selective for one of the reacting
species, impact the development of sequence and the supramolecular assembly in a simple
A-B copolymerization. We found that as the effective attractions between monomers in-
crease, an emergent self-organization of the reactants causes a shift in reaction kinetics and
sequence development. When the solvent-mediated interactions are selective enough, the
simple mixture of A and B monomers oligomerize and self-assemble into structures char-
acteristic of amphiphilic copolymers. The composition and morphology of these structures
and the sequences of their chains are sensitive to the relative balance of affinities between
the comonomer species.

In Chapters 3&4, and in previous work,58,86,87 we have observed that polymer chains
with sufficient stiffness and intermolecular attractions can undergo an emergent, polymerization-
driven nematic alignment of nascent oligomers during a step-growth polymerization pro-
cess. Both the extent of alignment and the point in the reaction at which alignment occurs
impacts the kinetics and the sequence development of the growing polymer. Of particular
interest is the emergence of a characteristic block length in the ensemble of sequences, re-
sulting in unusually peaked block length distributions. In Chapter 5 we explored the emer-
gence of this characteristic block length and investigate how changes in activation energy,
solution viscosity, and monomer density influence the sequence and block length distribu-
tions of stiff copolymers undergoing step-growth polymerization. We found that emergent
aggregation and nematic ordering restricts the availability of longer chains to form bonds,
altering the propensity of chains to react in a length dependent fashion which changes as
the reaction progresses, promoting the formation of chains and blocks of a characteris-
tic length. Further, we demonstrated that the characteristic length scale which emerges is
sensitive to the relative timescales of reaction kinetics and reactant diffusion, shifting in
response to changes in the activation energy of the reaction and the viscosity of the solvent.

6.2 Impact and applications

These results presented in this work extend previous observations of kinetic alteration and
sequence biasing effects in step-growth polymerizations58,59 to cases where effective in-
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termonomer attractions or reaction activation energies are asymmetric, such as would arise
when solvent affinities differ between reactants or when the chemical identity of a monomer
influences its reactivity. These conditions relate to what is generally expected for real-world
polymerizations, where such differences in reactant affinities and monomer reactivities ex-
ist.113–115,123–125 Localized concentration enrichment arising from solvent selectivity, of
the kind we observe here, has been proposed as a mechanism for the “bootstrap” effects
discussed previously57,60,61 and for the reaction rate increases in PISA formulations.66,69,70

Our analysis of oligomer sequences shows that, for the more attractive (i.e., solvopho-
bic) A monomers, the contiguous A-block length distributions show a comparable shift to
that of the overall chain length distributions, demonstrating that conditions which foster
concentration inhomogeneities also impact the resulting oligomer sequences. For condi-
tions in which monomer affinities differ sufficiently, even the relative incorporation of A
and B species into the aggregated phase is altered. This alteration changes the development
of sequences, promoting the formation of longer block lengths of the more aggregated
monomer species.

The differential incorporation of monomer species into the aggregate phase highlights
another important consequence of solvent selectivity. In systems with equivalent attrac-
tions between all monomer species, both species have the same propensity for aggregate
formation, however asymmetry in the attractions affecting the different species leads to
aggregates with distinct domains of altered composition. Aggregates of monomers with
sufficiently asymmetric attractions show compositions comparable to micellar or core-shell
structures common in supramolecular self-assembly and emulsion polymerizations.66,126,127

This behavior demonstrates how the balance of attractive interactions between reactants can
impact not only the sequence of oligomers and the morphology of aggregates, but also the
inclusion and distribution of species throughout the aggregate structures. The combined
influence of sequence and solvent quality on copolymer aggregates has also been shown in
computational studies of block, statistical, and gradient copolymers.128–130 Our results re-
inforce this connection, further demonstrating how solvent interactions may also influence
the early development of sequence. In addition, we find that these effects are altered by the
geometric constraints associated with stiffer chains – as expected given prior studies on the
solvent-dependent phase behavior of stiff and liquid crystalline polymers.120,131–133

The balance of solvophobic and solvophilic interactions is a critical component in PISA,
which provides a notable example of both the importance and utility of the dynamic inter-
play between the relative affinities of reactants and solvent, as well as a multi-step assembly
pathway which is initiated by the formation of strong anisotropic bonds. Recent extensions
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of PISA processes to sequence controlled polymers suggest the opportunity for improved
morphological control, highlighting the potential for additional development and the need
for greater understanding in this area.134,135 Further work has suggested that supramolecu-
lar morphologies accessible through PISA may be impacted by the addition of grafted side
chains, which can alter morphology in a sequence-dependent manner.136,137 Other poly-
merization induced microphase separations have been shown to promote desirable material
properties as well,138,139 and there is continued interest in the use of solvent interactions to
tune supramolecular polymer structures.123

Alongside our own results, these observations of the importance of solvent interactions
to copolymer phase behavior highlight the potential to simultaneously bias sequence and
tune aggregate morphology and composition through the intentional alteration of monomer-
solvent affinities. Even the strongest set of attractions explored in this work, εatt = kBT
(which is ∼ 2.5 kJ/mol at 300 K), are readily accessible interaction energies for a variety
of supramolecular interactions,140–142 making it feasible to select or modify comonomers
and solvent to obtain desired interaction profiles. The persistence lengths we explore are
also well within the range observed in flexible and semi-flexible chains of both biological
and synthetic polymers.143–147 Interestingly, according to Flory-Huggins theory,73 even the
milder attractions of ∼ 0.3kBT , which do not exhibit an emergent phase separation in our
simulations, would still be expected to spur aggregation at some longer length. Tailoring
the length of the copolymers at the onset of this behavior could provide another way to
modify sequence and assembly.

The interplay between solvent interaction, sequence, and aggregation behavior suggests
the possibility of tuning the relative solvent affinities of the reactants in order to intention-
ally bias the resulting copolymer sequence and assembly. The control of solvent interac-
tions may be a feasible route to control phase behavior and material properties of copoly-
mers. One recent study of note148 makes use of precisely such phenomenon, tuning the
pH in an aqueous dispersion minima to produce populations of copolymers with a distinct
composition profile, and noting a strong associated impact on their thermoresponsiveness.

More generally, the assembly processes we observe in this work belong to the broad
class of non-classical self-assembly pathways.149–153 In many of these non-classical as-
sembly processes, weaker isotropic interactions drive the formation of a condensed, but still
disordered, phase, after which anisotropic interactions among the condensed particles give
rise to further ordering, as seen for instance in models of protein crystallization and in the
formation of "shish-kebab" polymer crystallites around a fiber-like core.154–157 This "two-
step" assembly pathway describes well what we observe in these polymerizations, once
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the reaction has yielded oligomers of sufficient length to aggregate. After reaching this
threshold length, the nascent oligomers condense and the interplay between the isotropic
selective solvent-mediated interactions and the orientationally-dependent oligomer bonds
can give rise to additional nematic and sequence ordering. However, in our system this
"two-step" pathway is itself initiated by the formation of the strong anisotropic polymer
bonds that act to reduce the entropic cost associated with monomer aggregation and thus
shift the thermodynamics of the system towards the formation of an initially less-ordered
condensed phase.73

Previous work has posited similar length matching or length homogenizing effects in
aligned polymers with non-bonded attractions between neighboring chains, and we observe
such a cooperative aggregation effect in our own system, biasing the formation of structures
with fewer “loose ends”.158 Though distinct in mechanism, the “gel effect”159,160 also pro-
duces autocatalytic kinetics and length dependent bonding behaviors161 in radical polymer-
izations analogous to the behaviors we see here, through emergent and length-dependent
changes to the diffusion of reactants. In the gel effect, reduced diffusion of longer chains
slows the rate of the termination step, allowing the competing propagation step to occur
more rapidly and increasing the polymerization rate. By contrast, in our system, autoaccel-
eration and length dependent bonding arise instead from non-bonded interactions and the
associated aggregation and demixing of chains of sufficient length. It is in the subsequent
growth of the aggregated phase in which templating behavior occurs and the characteristic
block length emerges.

The results presented in this work are of particular interest in the context of rod-rod con-
jugated copolymers,162,163 in which both comonomer species exhibit backbone rigidities
analogous to the stiff chain copolymers explored here.164 Rod-rod conjugated copolymers
have demonstrated a number of optoelectronic material properties of interest,162,165–167

and crucially, these properties have been shown to be strongly influenced by the primary
monomer sequence and the size of respective blocks.168–170 Further, these types of “all
conjugated” copolymers are frequently developed through step-growth polymerization pro-
cesses,171–174 the same reaction schema we model throughout this work. The collective
development of characteristic sequence repeats we observe provide a potential avenue for
directly biasing copolymer sequence in a wide range of chemical systems through the in-
formed modification of the balance of reactive and diffusive timescales of the reaction. Fur-
ther, the behavior of oligomeric aggregates of conjugated polymers have attracted attention
as an avenue to both improve solvent processability and to tune material properties through
mesoscale structure.175–178 Our results provide insight into the development of oligomeric
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aggregates in stiff chained copolymer systems, showcasing the interplay between aggre-
gate structure and ordering and the resulting sequence and molecular weight distributions
of growing oligomers.

Finally, though the motivations of this work aimed to explore sequence development
and sequence influencing effects in non-biological polymers, there are some relevant con-
nections to biopolymers as well. These connections arise from the particular observation
of collective reactant behaviors and emergent reaction heterogeneity caused by polymer-
ization in an initially homogeneous system leading to a breakdown in the expected Flory-
Schulz chain length statistics and the development of longer than expected chains at a given
reaction extent. Such an observation may be of particular interest in the context of the so-
called “Flory length problem”179 in the study of the chemistry to biology transition of
prebiotic polymers. Previous work has demonstrated that RNA,180 peptides,181,182 or other
model prebiotic polymers,183–185 can form autocatalytic or self-templating sets, groups of
molecules that can catalyze or template their own formation, but these results require the
prebiotic polymers to be of sufficient length, generally of at least 30 monomers.179,186 Ex-
perimental work has demonstrated the formation of short peptide or nucleic acid multimers
through step-growth mechanisms under prebiotic conditions,187–190 but the statistical ten-
dency of Flory-Schulz towards the formation of short chains imposes a significant barrier to
the natural formation of chains of sufficient length to autocatalyze and self-template. Our
results provide insight into a plausible mechanism by which this limitation could be over-
come, in which initial oligomerization could produce reactant heterogeneity which biases
the formation of longer chains. Such a polymerization driven length biasing away from
Flory-Schulz behavior could have contributed to the initial formation of prebiotic poly-
mers of length sufficient to autocatalyze, a crucial step on the pathway to biological life.
Additionally, the sequence biasing and characteristic block length emergence we observe
under similar conditions hints at the possibility of this same mechanism contributing to
sequence templating and reproduction behaviors also critical to the functioning of life as it
has subsequently evolved.
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6.3 Future work

6.3.1 Experimental exploration of simulation results

The results presented in this work have demonstrated, in silico, that emergent assembly be-
haviors can alter the reaction kinetics and products of a polymerization process in ways not
predicted by classical theories based on static reaction constants and bulk concentrations.
However, several important questions need to be addressed regarding the translation of
these results into ex silico copolymerizations. Can we observe, in an experimental copoly-
merization under appropriate conditions, polymerization-driven collective reactant behav-
iors that alter the solution environment and thereby alter polymer reaction kinetics? Can
such polymerization-induced heterogeneities be employed experimentally to selectively
bias copolymer sequences? How does emergent copolymer sequence biasing impact the
dispersity, morphology, and phase behavior of the end reaction products? To address each
of these questions, future work could utilize in situ sequence characterization techniques in
a flow-based polymerization process to observe the sequence development within a model
copolymerization at multiple stages of the reaction. Such an approach could determine the
influence of reactant assembly and emergent heterogeneity on copolymer sequences and
thereby test predictions made in the computational studies of this work.86,87

In order to better understand sequence development in copolymerization and to test
the predictions from our computational and theoretical models, future work may employ
NMR and LC-MS/MS sequence characterization techniques, alongside a combination of
standard optical and chromatography diagnostic techniques to obtain kinetic and molecular
weight information of a model system.5,191–193 Such an approach could be further am-
plified by the use of flow-based polymerization setups, with on flow-line instrumentation
allowing the in situ application191,193 of the proposed characterization methods at various
stages of the reaction in a straightforward manner through flow-fractioning. Such an ap-
proach would uniquely allow for the facile sampling of the reaction products at various
reaction coordinates and monomer conversions, through fractioning off of the products at
different flow times, as well as providing greater control over solution composition and re-
action temperature.194 Characterization of sequence development throughout the reactions
could be performed using ex situ NMR capabilities for the identification of diad, triad,
and pentad sequence fractions,55 as well as LC-MS/MS characterization of flow-fractioned
sample, utilizing the computational OLIGOSS method for ensemble sequencing.76 The re-
sulting sequence fractions, molecular weight distributions, and polymerization kinetics can
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be compared directly to our molecular simulations to validate our model and obtain reactant
level information on morphology and assembly during polymerization.

Additional possibilities for direct connection of the results in this work to experiment
lie in the prediction of aggregate formation, composition, structure and ordering, as dis-
cussed in Chapters 4&5. The scale of these aggregates are more readily accessible to
experimental measure than the species differentiation at the individual monomer required
for sequence determination.5,14,55 The formation of aggregates of sufficient size could be
identified through a variety of different methods, with connections made to simulation
results to support the model description or to refine the parameter space to more accu-
rately reflect a particular system of interest. Static light scattering (SLS) and dynamic
light scattering (DLS) are commonly used in tandem as a non-destructive approach, al-
lowing for the determination of the scattering structure factor, which may be related to
the radial distribution function calculated from simulation, as well as in the determining
the effective hydrodynamic radius of polymeric aggregates.5,195,196 Structural information
of aggregates may also be investigated via a labeling approach, through the introduction
of fluorescent197,198 or electron spin199 tags to the polymers themselves. Fluorescent la-
bels could provide access to Förster resonance energy transfer (FRET) or fluorescence
correlation spectroscopy (FCS), techniques commonly employed in the study of the ag-
gregation and binding of biopolymers and which show promise in similar explorations for
non-biological polymers.200,201 Very recent work has even shown the potential for fluo-
rescence coupled polymerization techniques to explore sequence information, albeit under
significant constraint to the polymerization chemistry involved.202 Similarly, the introduc-
tion of spin-tagged monomers would allow for electron paramagnetic resonance (EPR)
measurements, which have been used to study polymer aggregation,203,204 local structure
and heterogeneity,205,206 and even chain mobility within interfaces and aggregates.207,208

A potential candidate reaction for the explorations described is shown in Fig. 6.1, as
adapted from work in Ref. [209]. This polymerization reaction relies on an alkene thiol
“click chemistry” approach, and has been shown209 to proceed in a step-growth fashion.
Further, the reaction is photoinitiated, which would allow thorough mixing of reactants
prior to initiation, and adapts well to flow-polymerization approaches, allowing for simul-
taneous initiation of the reaction and well-controlled reaction times via controlling dwell
time in the photo-excited region of the reactor.172,194 Modification of reactant affinities
could be performed by appropriate selection of R groups for each of the monomer species,
alongside appropriate solvent selection. For example, as the reaction is in DMSO, choos-
ing a sulfonamide for the more solvophillic210 species and a non-polar group such as a
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phenyl group for the more solvophobic species, would allow for the type of selective sol-
vent interactions we explore in Chapter 4. Further, these interactions could be adjusted by
blending the solvent with either a less polar or more polar solvent than DMSO210 to tune
the effective attractive interactions experienced by the monomer species.

The simulations performed in this work, examining sequence biasing and kinetic impli-
cations of emergent assembly behaviors over a range of plausible non-bonded interaction
strengths, comonomer reactivities, and backbone rigidities, could therefore be used to guide
the design and execution of proposed experiments.58,86,87 To facilitate direct comparisons
between the experimental and computational work, new simulations may be performed
under parameters corresponding to the synthetic conditions employed.

Figure 6.1: Potential experimental reaction scheme. A potential reaction scheme for
future experimental exploration of results presented in this work is shown. Comonomer
species would utilize the same thiol-allylamine backbone, with differing R groups.
Monomers are photopolymerized by 365 nm light in the presence of DMPA (2,2-
Dimethoxy-2-phenylacetophenone) photoinitiator. Adapted from a polymerization scheme
presented in Ref. [209].

6.3.2 Simulation of additional polymerization schemes

While this work has focused on step-growth polymerization methods, many polymeriza-
tion schemes of interest instead follow chain-growth kinetics.5 Of particular interest are
a family of radical based polymerization schemes, known as controlled radical polymer-
izations211,212 (CRP), which include such commonly employed reaction methods as atom
transfer radical polymerization26,213 (ATRP), reversible addition fragmentation chain trans-
fer (RAFT) polymerization,214 and nitroxide-mediated poltmerization215 (NMP). While the
precise nature of radical initiation and propogation mechanisms of each of these methods
differ, each relies on generating a radical on growing chain through which the reaction
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proceeds, and crucially, provides a mechanism for these radicals to be transferred between
so-called “living” and “dormant” chains. This has the advantage of causing propagation
to proceed more evenly throughout all chains in the system, reducing the chain-length and
molecular weight dispersity of the end product. Further, there has been significant inter-
est in using CRP from functionalized surfaces in “surface initiated” polymerizations216–219

to generate functionalized surfaces and interfaces. The behavior of polymer-nanoparticle
hybrid materials generated by such approaches have shown material properties of signif-
icant interest, and have been identified as having a number of open theoretical questions
related to their solvation and self-assembly.219–222 Such systems have attracted computa-
tional studies using both Monte Carlo80,223–225 and molecular dynamics78,79 approaches,
but questions of sequence development and the impact of sequence on material properties
in these systems are less explored.

Future work could utilize an adaptation of the model presented in this work to explore
sequence development and self-assembly behaviors for CRP polymerization schemes, both
in solution and in bulk or nanoparticle surface initiated systems. The author and coworkers
have begun such adaptation with an eye towards answering a number of research ques-
tions. Analogous to the step-growth observations in this work, do non-bonded interactions,
chain stiffness, and collective monomer behaviors impact the sequence and composition
of a copolymer generated via CRP in a fashion not predicted by standard Mayo-Lewis5,74

theory? Recent simulation work63,226 has suggested breakdowns in Mayo-Lewis behavior
in some CRP chemistries from analogous non-bonded interaction mechanisms, and these
behaviors could be explored with more realistic and detailed dynamics with our model.
Further, how might such behaviors differ in the presence of a surface, and do the geomet-
ric properties of the surface such as curvature, faceting, or grafted initiator density change
these behaviors? A discussion of the preliminary work towards adapting the model herein
to exploring such systems and answering these questions is presented as follows.

Modeling a chain-growth, controlled radical polymerization. The primary structure
of the model follows closely with that of the step-growth copolymer work, with monomer
units represented as three-particle beads, with a central particle and two linking particles
all connected by intramonomer bonds represented via angular and linear harmonic poten-
tials. Our standard A and B monomer types are included, along with new types of particles
which represent the nanoparticle or surface, and the graft sites from which polymeriza-
tion can be initiated. Graft sites are similarly represented as a three particle beads in an
equivalent fashion to monomer beads, while nanoparticles are represented as single atoms.
The nanoparticle is anchored at the origin, and nanoparticle beads are frozen in place, but
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can interact with other particles. Graft beads placed randomly on the surface, and interact
with the surface via a deep well Morse potential which affixes the graft site close to the
surface but allows for dynamics at the point chains are grafted to the surface. Just as in our
step-growth simulations, all unreacted monomers are randomly dispersed in the remaining
volume, and all bonded and non-bonded interactions between graft beads and monomer
beads centers are governed through the same interactions utilized in the step-growth work
(see Ch. 2).

For simplicity, in modeling our CRP reaction scheme, we do not explicitly model the
initiator agent, such as a photoinitiator or some other radical generating agent, and instead
presume that the initiation step is sufficiently faster than the propagation step that initiation
occurs approximately simultaneously in our system. Similarly, we do not explicitly model
the chain-transfer agent, i.e., the RAFT agent or ATRP catalyst which passes active radicals
between chains. Instead, we represent this important feature of CRP schemes by rapidly
switching sites where polymerization can occur, namely the graft bead ends or polymer
chain ends, between the active and inactive states. This switching is done at random every
thousand simulation timesteps, 103dt, which is very fast with respect to the actual reaction
rate in our simulation. That radical initiation and transport occurs much more rapidly than
propagation is a key feature of CRP, helping to ensure chains are more likely to grow at the
same rate. With such a model, the fraction of living versus dormant chains may be chosen
in a straightforward fashion, allowing for the exploration of the impact of various living
chain fractions on the reaction behavior. Further development could consider the relative
accessibility of a particular site to a chain transfer agent. This could entail assigning a
weighted probability to sites being made active or inactive based on some sort of local
neighboring criteria, or on the identity of the central bead of the active site, i.e., an A
monomer, B monomer, or graft site.

With the location of active radicals, and therefore living chains, determined as indicated
above, the propagation step occurs in a similar fashion to our step-growth model. When a
linking particle of an unbound monomer comes within 0.2σ of an active site, a new bond
is formed, and the radical propagates down the chain, with the end of the newly bound
monomer becoming the new active site.

Preliminary results of a chain-growth copolymerization model. To examine the
efficacy of the model described above in capturing features of a chain-growth copolymer-
ization, as well as consider the potential of the model to explore the questions we propose,
a small set of simulations were performed and analyzed. Fig. 6.2 shows preliminary re-
sults obtained from one such simulation trial, in which monomer attractions were set to
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εAA,BB = kBT and εAB = 0, with chain stiffness set to a semiflexible value of lp = 9.9
(recall the step-growth cases explored in this work were lp = 3.5 for flexible chains and
lp = 16.5 for stiff chains). Initiator concentration was set to fI = 0.1 as a fraction of ini-
tial monomer concentration, and the fraction of living initiators or chains was fliving = 0.2.
Notably, the resultant chain length distribution (Fig. 6.2a) closely matches that of a Pois-
son distribution, with mean, λ , equal to the observed average degree of polymerization,
Xn. This result matches the predicted chain length distribution for a polymerization which
proceeds with chain growth kinetics.5,73 Further, in Fig. 6.2c, we observe that a semi-log
plot of the degree of polymerization, Xn, is linear in reaction time, suggesting that we
are capturing first-order reaction kinetics expected for the propagation step of a chain-
growth radical method.5,73 Importantly, the chain length dispersity, Ð remains within the
bound of Ð / 1.1, a value commonly identified as being a threshold for a “well controlled”
radical polymerization.225 Further, it both approaches and remains bounded by the theo-
retical prediction73,227 of Ð ≈ 1+Xn/(1+Xn)

2, an expected dispersity for CRPs at high
degree of polymerization. Taken together, these results suggest that our model successfully
captures key kinetic features of a chain growth mechanism expected for a CRP scheme.
Interestingly, we do not note the emergent increase to reaction rate or a breakdown of pre-
dicted chain length statistics that we observe in the step-growth case, though we do see
the impacts of the attractive interactions on the sequence neighbor probabilities shown in
Fig. 6.2d. Though this may be due to the fundamental difference in the reaction schema,
given the very early occurrence of phase separation with respect to the reaction progres-
sion, it is also possible that these impacts could still be observed in other regimes. Future
work would require careful consideration and refinement of relevant system timescales,
attraction strengths, and system density in order to make this determination.

Another observation of interest in early explorations of this model is the impact of sur-
faces on the composition of the resultant polymers, shown in Fig. 6.3. These preliminary re-
sults show surface dependent changes to copolymer composition at the same monomer feed
ratio, potentially indicating deviations from Mayo-Lewis theory during surface-initiated
radical copolymerizations. The addition of surface interactions and the associated com-
plexities of surface size, geometry, faceting, and grafting density create a wealth of oppor-
tunities for further study on the impact of these variables on sequence development and
reaction kinetics in a CRP process. Further study is needed to understand this interplay, in
order to both better predict the outcome of surface initiated CRP processes, and to poten-
tially exploit behaviors of interest in informed materials design.
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Figure 6.2: Preliminary results for a single CRP simulation trial. (a) Chain length dis-
tribution observed at 90% monomer conversion. The chain length distribution is plotted
alongside a Poisson distribution with a mean, λ , equal to the observed average degree of
polymerization, Xn. (b) The block length distribution observed at 90% monomer conver-
sion. (c) The natural log of the average degree of polymerization, Xn (black line), as a
function of simulation time. Also shown is the observed chain length dispersity, Ð (solid
green line), as a function of simulation time. The theoretical dispersity (dashed green
line) is shown as predicted from the observed Xn at the simulation time indicated. (d)
Sequence neighbor probabilities pAA,BB (red line) and pAB (purple line), as a function of
simulation time. The black dashed line shows the value expected for a random sequence,
pAA,BB = pAB = 0.5.
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Figure 6.3: Surface initiated CRP simulations. (a) Visualization of a controlled radical
copolymerization initiated from an icosahedron nanoparticle surface. Yellow spheres rep-
resent the nanoparticle, purple the surface initiators, red and blue the monomer types, and
white the reactive end groups. (b)
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6.4 Closing remarks

Synthetic polymers form the backbone of countless materials and are ubiquitous in scien-
tific and engineering developments of the last century. This versatility arises, in part, from
the ability to tailor polymers for specific applications, through informed design strategies
which exploit chemical modification and structural variations. Control over the primary
monomer sequence would open a vast space for further design refinement by exploiting
the intrinsic connection between sequence, morphology, and bulk material properties. This
potential for bespoke molecular design could lead to synthetic polymeric materials with
improved mechanical strength, enhanced conductivity, unique optical characteristics, and
even biomimetic assembly and information storage.

In order to harness this vast potential, further work is needed to advance the under-
standing of sequence development in polymerizations processes. Particular focus is needed
on ways in which environmental factors in a reaction can control or bias sequence in a
chemically agnostic fashion. The reactant heterogeneity, self-assembly, and self-templating
behaviors we discuss herein apply to a broad class of polymerization processes, and the in-
sight we have gleaned represents further progress towards unlocking generalized sequence
control methods for synthetic polymer design and synthesis.
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Appendix A

Chapter 3 Supplemental Details and
Results

A.1 Simulation details

The model we use here was described and discussed in detail in Chapter 2. All simulations
were performed in LAMMPS.228 Additional details specific to Chapter 3 are described
below.

Dimensionless units All simulations used dimensionless LJ units within LAMMPS and
are defined in terms of a chosen mass, m, length, σ , and energy, ε . From these parameters, a

characteristic time scale τ ≡
√

mσ2

ε
is defined. In this work, we take m = 200 Da, σ = 5 Å,

and ε = 100 K ·kB = 1.38×10−21 J, resulting in τ = 7.75 ps. For every monomer, the two
linking particles have a mass of 0.25 m and the central particle has a mass of 0.5 m. The total
monomer mass is then 1.0 m, which is roughly the mass of a benzene ring with a 9-carbon
alkyl substituent. The temperature for all simulations was set to 300 K. All simulations
were run within a 50σ × 50σ × 50σ cubic box with periodic boundary conditions. Each
simulation contained 7200 monomers, yielding an overall density of ρ = 0.0576 σ−3.

Angular potential Intramolecular and intermolecular angles are governed via the har-
monic potential:

Eangle(θi jk) = Kangle
i jk (θi jk−θ0)

2,

in which θi jk is the angle between particles i, j and k, θ is the equilibrium angle and Kangle
i jk

is the spring constant for the angle. For the intramonomer angle between particle 2-1-2′,
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θ0 = 180◦ and the spring constant is set to Kangle
212′ = 5 ε rad−1 and Kangle

212′ = 50 ε rad−1 for
the flexible chains and stiff chains, respectively. For the intermonomer angle, 1-2-2′, θ0 =
180◦, Kangle

122′ = 100 ε rad−1 for both flexible chains and stiff chains.

A.1.1 Activation energy

In Chapter 3, we explore a combination of activation energy such that ∆Ea = EAA,BB
a - EAB

a
ranges from -4 kBT to 4 kBT in 0.5 kBT increments. Activation energies are composed of
LJ repulsions between central particles, geometric constraints arising from intramonomer
bonding between central and linking particles, and short-ranged repulsion between linking
particles. Central LJ repulsions and geometric constraints are kept constant at a total value
of 5.3 kBT for both flexible chains and stiff chains (Fig.A.1). The actual activation energy
therefore will be equal to Ea = 5.3 + Ebarr, where Ebarr is the short-range repulsion between
linking particles and is varied from 0 to 4 kBT as listed in Table A.1.

Figure A.1: Measured activation energy. The activation energies observed in bonding events sampled
from simulations. Sample populations were drawn from all four attractions cases explored in this work, and
are shown for three activation energy cases: EAA,BB

barr = 3kBT , EAB
barr = 1kBT ; EAA,BB

barr = EAB
barr = 3kBT ; and

EAA,BB
barr = 1kBT , EAB

barr = 3kBT . Sample populations are further separated by monomer pair, and both flexible
(left) and stiff chain (right) results are shown. Mean values of the measured activation energies for each
combination are shown, with the error bars representing the standard deviation. The dark shades of colors
represent the constant component of activation energy, which is composed of LJ repulsions and geometric
constraints, and has an average value of 5.3 kBT for both flexible and stiff chains. The lighter shaded region
represents the short-ranged repulsion between type-2 particles from Ebarr, which is varied across simulations
as described in Table A.1 to control the total activation energy.



APPENDIX A. CHAPTER 3 SUPPLEMENTAL DETAILS AND RESULTS 108

EAA,BB
barr (kBT) EAB

barr(kBT) EAA,BB
barr - EAB

barr(kBT)
4.0 0.0 4.0
3.5 0.0 3.5
3.0 0.0 3.0
3.0 0.5 2.5
3.0 1.0 2.0
2.0 0.0 2.0
3.0 1.5 1.5
2.0 0.5 1.5
3.0 2.0 1.0
2.0 1.0 1.0
3.0 2.5 0.5
2.0 1.5 0.5
3.0 3.0 0.0
2.0 2.0 0.0
2.5 3.0 -0.5
1.5 2.0 -0.5
2.0 3.0 -1.0
1.0 2.0 -1.0
1.5 3.0 -1.5
0.5 2.0 -1.5
1.0 3.0 -2.0
0.0 2.0 -2.0
0.5 3.0 -2.5
0.0 3.0 -3.0
0.0 3.5 -3.5
0.0 4.0 -4.0

Table A.1: Short-range repulsion between linking particles. Simulations were done with these values of
EAA,BB

barr and EAB
barr, which define the height the the short-range repulsion (see Eq. 2 in the main text), as well

as their difference EAA,BB
barr - EAB

barr. For all combination of activation energies, the strength of the LJ repulsion
and the geometric constrains are kept constant irrespective of monomer pair identities.
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A.2 Polymerization kinetics and chain length distribution.

We examined the kinetics of the polymerization via the growth of degree of polymerization,
Xn, and the dispersity, Ð, throughout the polymerization. Flory-Schulz theory predicts a
linear relationship between Ð and p via the equation Ð = 1 + p in ideal conditions.73 As a
result, Ð approaches a plateau of Ð = 2 as the reaction proceeds. In Fig. A.2, we plot Xn over
time (Fig. A.2, top row) and Ð as a function of reaction extent p (Fig. A.2, bottom row).
We observe non-linear growth of Xn over time in the case of higher attractions (Fig. A.2,
a - d), suggesting altered rate behavior as the reaction proceeds, indicating a departure
from kinetics governed by Flory’s principle of equal reactivity.73 Moreover, in these higher
attraction cases we also observed non-linear growth of Ð, reaching values Ð > 2 (Fig. A.2
e-h), indicating the increased presence of longer chains in the system as compared to that
predicted under ideal polymerization kinetics.

Figure A.2: Polymerization kinetics including degree of polymerization Xn and Dispersity Ð. Xn (top
row) and Ð (bottom row) are shown for four different attraction cases. Solid lines represent cases of EAA,BB

a
- EAB

a ≥ 0, with colors corresponding to Fig. 3 in the main text, and black dashed lines represent cases of
EAA,BB

a - EAB
a < 0. The results for Xn at εall = 0.25 kBT have been previously shown in Fig. 2(a) in the main

text and are included here again for ease of comparison. The results plotted here were averaged over three
independent simulation trials for each parameter set.

In Fig. A.3, we plot the chain length distributions for flexible chains. Under ideal
kinetics, the Flory-Schultz distribution predicts the probability of finding a chain length n
via

Pn = (1− p)pn−1,
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where p is the reaction extent. The expected Flory-Schultz distributions is plotted in each
case with a black line. In the case of low inter-monomer attraction strengths, shown in
the first column of Fig. A.3, the chain length distributions show good agreement with the
predicted Flory-Schulz distribution. By contrast, other higher attraction cases deviate from
the expected Flory-Schulz statistics. These observation are consistent with the non-ideal
kinetics observed in Fig. A.2.

A.3 Markovian block length distribution

In Markovian statistics, where the probability of having a monomer type in the chain de-
pends solely on the identity of the preceding monomer, the expected probability of having
of a continuous block of A or B in the copolymer sequence can be calculated via:

P(n) = (1− ppAA,BB)(ppAA,BB)
n−1,

where p is the reaction extent and pAA,BB is the probability of having a like nearest neighbor
in the sequence. The block length distribution have been shown for the case of εAA,BB =
kBT , εAB = 0 in the main text of Chapter 3 and additional results for flexible chains are also
shown here in Fig. A.4.

A.4 Supplemental results for stiff chains

In Fig. A.5 and Fig. A.6 , we show additional chain length distributions and block length
distributions for stiff chains. Note that, as previously observed in Ref. [59], EAA,BB

a - EAB
a

are nearly identical for both flexible and stiff chains, therefore the bonding probability
as predicted by equation Eq. 26 in the main text remains the same in each case. The
chain length distributions for the higher attraction cases (Fig. A.5, columns 2-4) and the
block length distributions in the case of 1kBT of attractions between only like monomers
at ∆Ea ≥ 0 (Fig. A.6, column 3) deviate from the ideal predictions.

A.5 Selective solvent results

In addition, we have performed simulations in the condition that A and B are asymmetric
so that εAA 6= εBB and EAA

a 6= EBB
a . In these cases, the bonding probability of having A-A
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Figure A.3: Chain-length distributions for flexible chains. The chain length distributions (blue his-
tograms) for four attraction cases and three combinations of activation energy. Columns represent each
attraction strength combination as follows: εall = 0.25 kBT (first column); εall = kBT (second column); εAA,BB
= kBT , εAA,BB = 0 (third column); and εAA,BB = 0, εAA,BB = kBT (fourth column). Rows represent the ac-
tivation energy combinations as follows: EAA,BB

a = 8.3, EAB
a = 6.3 kBT (top row); EAA,BB

a = 8.3, EAB
a = 8.3

kBT (middle row); and EAA,BB
a = 6.3, EAB

a = 8.3 kBT (bottom row). The black solid line shows the expected
Flory-Schulz distribution in each case.

and B-B in the sequence is no longer equivalent.
Specifically, we ran simulations at εAA = kBT , εBB = 0.1kBT , and εAB =

√
εAAεBB ≈

0.3kBT via Lorentz-Berthlot combining rules. The choice of LJ attractions is described in
more detail in Ref. [86]. To explore the combined effects of activation energy and selective
solvent conditions, we examined the system at EAA

a > EAB
a > EBB

a , EAA
a = EAB

a = EBB
a , and

EAA
a < EAB

a < EBB
a .

In Figure. A.7, we show the block length distributions separately for A blocks (in red)
and B blocks (in blue) atop the chain length distributions (in grey shaded histogram). Sam-
ple resulting structures are also included on the top-right corner of the figures.

In all cases that are explored, the block length distributions of B agree with what is pre-
dicted from Markovian statistics while the block length length distributions of A deviate
from predictions. Though the degree of deviation from Markovian predictions is similar in
each case shown, due to the equivalent attraction strengths in each, the overall shift towards
longer A-blocks depends on the relative activation energy of EAA

a to EAB
a ; reducing the en-
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Figure A.4: Block length distributions for flexible chains. The block length distributions for A and B
block are shown in purple histograms for four attraction cases and three combinations of activation energy.
Columns represent each attraction strength combination as follows: εall = 0.25 kBT (first column); εall = kBT
(second column); εAA,BB = kBT , εAA,BB = 0 (third column); and εAA,BB = 0, εAA,BB = kBT (fourth column).
Rows represent the activation energy combinations as follows: EAA,BB

a = 8.3 kBT , EAB
a = 6.3 kBT (top row);

EAA,BB
a = 8.3 kBT , EAB

a = 8.3 kBT (mid row); and EAA,BB
a = 6.3 kBT , EAB

a = 8.3 kBT (bottom row). The
black solid line shows the expected Markovian distribution in each case.

ergy barrier for A–A bond formation resulting in a shift towards greater lengths, and vice
versa. From the corresponding structures that are included on the top-right corner of the
figures, the effective self-attraction of monomer A are sufficient to drive their condensation
into an A-rich phase, resulting in the shift in block length distributions from the Markovian
statistics. In contrast, monomer B has a weaker effective self-attraction and remains dis-
persed. As a result, their block length distribution are still well described by the Markovian
statistics.
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Figure A.5: Chain-length distributions for stiff chains. The chain length distributions (blue histograms)
for four attraction cases and three combinations of activation energy. Columns represent each attraction
strength combination as follows: εall = 0.25 kBT (first column); εall = kBT (second column); εAA,BB = kBT ,
εAA,BB = 0 (third column); and εAA,BB = 0, εAA,BB = kBT (fourth column). Rows represent the activation
energy combinations as follows: EAA,BB

a = 8.3, EAB
a = 6.3 kBT (top row); EAA,BB

a = 8.3, EAB
a = 8.3 kBT (mid

row); and EAA,BB
a = 6.3, EAB

a = 8.3 kBT (bottom row). The black solid line shows the expected Flory-Schulz
distribution in each case.
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Figure A.6: Block length distributions for stiff chains. Block length distributions for flexible chains.
The block length distributions for A and B block are shown in purple histograms for four attraction cases and
three combinations of activation energy. Columns represent each attraction strength combination as follows:
εall = 0.25 kBT (first column); εall = kBT (second column); εAA,BB = kBT , εAA,BB = 0 (third column); and
εAA,BB = 0, εAA,BB = kBT (fourth column). Rows represent the activation energy combinations as follows:
EAA,BB

a = 8.3 kBT , EAB
a = 6.3 kBT (top row); EAA,BB

a = 8.3 kBT , EAB
a = 8.3 kBT (mid row); and EAA,BB

a = 6.3
kBT , EAB

a = 8.3 kBT (bottom row). The black solid line shows the expected Markovian distribution in each
case.
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Figure A.7: Block length distributions for selective solvent conditions. Block length distributions ob-
served under attraction strengths modeling selective solvent conditions where εAA = kBT , εAB = 0.3kBT , and
εBB = 0.1kBT . The block length distributions for A blocks (shown in red) and B blocks (shown in blue) are
presented separately. Three combinations of activation energy are shown: EAA

a = 8.3 kBT , EAB
a = 7.3 kBT ,

EBB
a = 6.3 kBT (left column); EAA

a = 7.3 kBT , EAB
a = 7.3 kBT , EBB

a = 7.3 kBT (middle column); and EAA
a =

6.3 kBT , EAB
a = 7.3 kBT , EBB

a = 8.3 kBT (right column). The solid red and blue lines represent the predicted
Markovian statistics for A and B blocks, respectively, as calculated from the observed bonding probabilities
of pAA and pBB and the reaction extent p. For each case, a representative system structure, taken at p = 0.9,
is inset, with A monomers shown in red and B monomers shown in blue.
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Appendix B

Chapter 4 Supplemental Details and
Results

B.1 Simulation details

The model we use here was described and discussed in detail in Chapter 2. All simulations
were performed in LAMMPS.228 Additional details specific to Chapter 4 are described
below.

Dimensionless units All simulations used dimensionless LJ units within LAMMPS and
are defined in terms of a chosen mass, m, length, σ , and energy, ε . From these parameters, a

characteristic time scale τ ≡
√

mσ2

ε
is defined. In this work, we take m = 200 Da, σ = 5 Å,

and ε = 100 K ·kB = 1.38×10−21 J, resulting in τ = 7.75 ps. For every monomer, the two
linking particles have a mass of 0.25 m and the central particle has a mass of 0.5 m. The total
monomer mass is then 1.0 m, which is roughly the mass of a benzene ring with a 9-carbon
alkyl substituent. The temperature for all simulations was set to 300 K. All simulations
were run within a 50σ × 50σ × 50σ cubic box with periodic boundary conditions. Each
simulation contained 7200 monomers, yielding an overall density of ρ = 0.0576 σ−3.

Persistence length and the angular potential Intramolecular angles are governed by
the harmonic potential:

Eangle(θi jk) = Kangle
i jk (θi jk−θ0)

2, (B.1)

where θi jk is the angle between particles i, j, and k, θ0 is the value at the minimum of the
angular potential, and the constant, Kangle

i jk , is the spring constant for that angle. For the
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intramonomer angle, 2–1–2, θ0 = 180◦ and Kangle
212 was set to 5 ε · rad−2 for flexible chains

and 50 ε · rad−2 for stiff chains. Previous work with this model has determined that these
values correspond to persistence lengths of lp = 3.5 for flexible chains and lp = 16.5 for
stiff chains.59 For the intermonomer angle, 1–2–2′, θ0 = 180◦ and Kangle

122′ = 100 ε · rad−2 in
all cases.

Langevin dynamics Langevin dynamics was implemented in LAMMPS using the “fix
langevin” command. A damp parameter is used to control the diffusion rate and the relax-
ation rate of the temperature, which is discussed in detail in the Supplemental Information
of Ref. [3]. In the simulations in this work, the damp parameter is set to 0.1 τ , resulting in
a viscosity of γ = 0.1 mPa · s. For further discussion of this parameter, see Ref. [59].

B.1.1 Attractive interaction strengths and Lorentz-Berthelot combin-
ing

After choosing εAA and εBB as described in Methods, we utilized Lorentz-Berthelot com-
bining rules92 to define an attraction strength between our more and less solvophobic
monomers, A and B, respectively, setting εAB =

√
εAAεBB. As we are utilizing dimen-

sionless, reduced unit values for σAA and σBB, this expression is also equivalent to Kong
combining rules.91 Table B.1 shows all combinations of the εatt values explored in this
work.

B.1.2 Activation energies

To ensure that having a fixed value for εrep, plus the additional soft repulsive potential
between type 2 particles, was maintaining a consistent activation energy across monomer
type pairs for our range of simulation parameters, we tabulated the activation energies for
successful bond formations for a set of ∼ 52000 bonding events drawn from the full range
of simulation parameters explored in this work. Activation energies are calculated from the
total potential energy of the two bonding monomers arising from the LJ potential between
type 1 particles, the soft repulsive potential between type 2 particles, and the intramonomer
bond lengths and angles. The values of each of these contributions above their minimum
energy are summed at the time of bond formation to obtain the total activation energy for the
bonding event. Figure B.1 shows the results of this comparison, broken down by monomer
type pairs, demonstrating consistent activation energies across monomer type pairing.
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εAA (kBT ) εAB (kBT ) εBB (kBT )
1.0 0.32 0.1
1.0 0.55 0.3
1.0 0.71 0.5

0.75 0.27 0.1
0.75 0.47 0.3
0.75 0.61 0.5
0.5 0.22 0.1
0.5 0.39 0.3
0.5 0.5 0.5

Table B.1: Lennard-Jones attractions. Columns show εAA, εAB, and εBB, which are the
well-depths for the attractive portion of the LJ interactions (see Eq. 2.1 in the main text of
Chapter 2) for A to A, A to B and B to B monomers, respectively. Values for εAA and εBB
were chosen to reflect a copolymerization in which monomer species A is more solvopho-
bic than species B. From the values of εAA and εBB, εAB values were calculated according
to Lorentz-Berthelot rules.92 For all combination of attraction strengths, the strength of re-
pulsive interactions, εrep, is kept at a constant value of 1.33 kBT , irrespective of monomer
identity.
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Figure B.1: Observed activation Energies. The average activation energies for bond for-
mation events of A to A, A to B, and B to B monomer pairs for the full range of simulation
parameters explored. Error bars represent the standard deviation in the recorded values for
each monomer type pairing.

B.2 Calculation of the first coordination number from g(r)

In liquids the first coordination number is commonly defined in terms of the radial dis-
tribution function, g(r), and is taken as the number of atoms within the first coordina-
tion shell.107 With this definition, we calculate the first coordination number for a given
monomer species combination as:

ni j
1 = 4πρ

∫ r′

0
r2gi j(r)dr, (B.2)

where ρ is the number density of the system, r is the radial distance from the center of a
fixed reference particle, and r′ is the value of r at which gi j(r) reaches the first minimum
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after the initial peak. Indices i and j correspond to the possible monomer species pairs
within the system, namely AA, AB, and BB.

B.3 Quantifying deviations from Markovian block statis-
tics

To quantitatively explore the deviation from Markov statistics in our system, we compared
the Markovian predictions for dispersity and block length distribution with the results of our
simulations. We determined the mean standard error (MSE) between the observed and pre-
dicted block dispersities (Equation 2.17) and calculated the Wasserstein metric,96,97 Wp, as
a measure of the statistical distance between the Markovian distributions and our observed
block length distributions. Fig. B.2 shows the results of each of these metrics, as a function
of ∆ε . With the increase in attraction asymmetry between A and B species, characterized
by ∆ε , the difference between the Markovian distribution and the observed distribution of
A block lengths also increases. This deviation demonstrates the non-Markovian nature of
A-block formation under conditions in which attractive interactions drive monomer self-
assembly. Notably, however, the Markovian distribution is a better match to the observed
distribution of B block lengths, as Wp for the B blocks is lower than that for the A blocks
and also largely independent of ∆ε . Indeed, the dispersities and length distributions of the
B blocks are still well described by Markovian chain statistics for each interaction strength
combination explored in this work.

The predicted block dispersities from Equation 2.17 are utilized to examine the devi-
ation from Markovian behavior in our system, as described in Section B.3 and shown in
Fig. B.2a below.

B.4 Local nematic order parameter for flexible chains

The local nematic order parameter was calculated as described in Chapter 2. Fig. B.3 shows
the value of the order parameter, Slocal, for flexible chains throughout the reaction at each of
the attractive interactions explored in this work. Flexible polymers do not show significant
nematic ordering regardless of attraction strength. Thus, the peak value for Slocal observed
in Fig. B.3 is used a threshold value for nematic ordering in stiff chains, as shown in Fig. 4.4
and described in the main text of Chapter 4.
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Figure B.2: Error metrics for the predicted and observed block dispersities and block
length distributions. (a) The mean standard error (MSE) between the observed dispersity,
Ð, in block lengths, and the associated prediction for block length Ð based on Markovian
statistics. (b) The Wasserstein metric, Wp, a statistical distance between our observed block
distribution and the Markovian distribution. In both (a) and (b), the block type, A or B, is
shown by marker coloration. The marker shape indicates the value of attractions – εAA for
A blocks and εBB for B blocks. Dashed lines show trends in the values for A blocks for
cases with equal εAA, with the value of εAA indicated by line coloration. The black line
is the trend in B block values for all simulation parameters. Observed distributions were
collected from three independent trials for each simulation parameter set.
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Figure B.3: Local nematic order parameter for flexible chains. Local nematic order
parameter, Slocal, as a function of reaction extent, p, over the range of attraction strengths
explored for flexible-chain, lp = 3.5, polymers. The dashed horizontal line indicates the
highest value for Slocal seen in this case. This line is reproduced in Fig. 4.4 in the main text
of Chapter 4.
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B.5 Polymerized fraction

Asymmetric attractive interactions produce different rates of polymerization between monomer
species. The fraction of each monomer type that has undergone polymerization depends
on the balance of these interactions as well as the development of the emergent aggregate
phase. We simulate a fixed quantity of monomers with an equal amount of A and B. With-
out a continuous reactant feed, the polymerized fractions of the monomer species are also
impacted by the total availability of each monomer species. This impact is particularly
notable late in the reaction, where the more rapidly polymerizing monomers near complete
conversion. As such, the polymerized fractions of the two monomer species varies in a
complex fashion throughout the reaction. This variation can be seen in Fig. B.4 below.

Figure B.4: Polymerized fraction of monomer species. (a) The fraction of A and B
monomers which have polymerized as a function of the reaction extent, p, for stiff chains
of lp = 16.5 and select attraction values. Monomer species is indicated by line color, and
line styles indicate the set of attractive interactions. (b) The fraction of B monomers which
have polymerized as a function of the reaction extent, p, for stiff chains of lp = 16.5 at all
attraction combinations. Color indicates the degree of attraction asymmetry, ∆ε , and line
styles indicate εAA value. All data was obtained from three independent simulation trials
for each parameter set. In each case, similar results were observed for flexible chains.
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B.6 Supplemental kinetics and length distributions

Additional figures providing kinetic parameters, chain and block length distributions, and
characteristic snapshots of the final system state for select ε and lp parameter sets are shown
in Fig. B.5 and Fig. B.6 below.
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Figure B.5: Length distributions and kinetic parameters for flexible-chain copolymer-
izations. Columns from left to right: the final system snapshot, chain length distribution,
block length distributions, and several kinetic parameters versus reaction extent and simu-
lation time. The chain length and block length distributions are represented as histograms,
with the predicted distributions from Flory-Schulz and Markovian statistics plotted as lines.
Kinetic plots include the pairwise bonding probabilities (pAA, pAB, and pBB), Slocal, Xn, and
Ð. For Ð a dashed line is calculated for blocks, while the solid line is calculated for the
entire chain. Rows represent different attraction strengths, as indicated, with flexible chains
of lp = 3.5. All data is collected from three independent simulation trials at each parameter
set.
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Figure B.6: Length distributions and kinetic parameters for stiff-chain copolymeriza-
tions. Columns from left to right: the final system snapshot, chain length distribution,
block length distributions, and several kinetic parameters versus reaction extent and simu-
lation time. The chain length and block length distributions are represented as histograms,
with the predicted distributions from Flory-Schulz and Markovian statistics plotted as lines.
Kinetic plots include the pairwise bonding probabilities (pAA, pAB, and pBB), Slocal, Xn, and
Ð. For Ð a dashed line is calculated for blocks, while the solid line is calculated for the
entire chain. Rows represent different attraction strengths, as indicated, with stiff chains of
lp = 16.5. All data is collected from three independent simulation trials at each parameter
set.
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Appendix C

Chapter 5 Supplemental Details and
Results

C.1 Simulation details

The model we use here was described and discussed in detail in Chapter 2. All simulations
were performed in LAMMPS.228 Additional details specific to Chapter 5 are described
below.

C.1.1 Langevin dynamics and viscosity

Langevin dynamics was implemented in LAMMPS using the “fix langevin” command. A
damp parameter is used to control the diffusion rate and the relaxation rate of the tempera-
ture, which is discussed in detail in the Supplemental Information of Ref. [59]. The values
of damp and the associated viscosities explored in this work are shown in Table C.1. In
the "standard" simulations in this work (marked with a ∗ in Table C.1, the damp parameter
is set to 0.1 τ , resulting in a viscosity of γ = 0.1 mPa · s. For further discussion of this
parameter, see Ref. [59].

C.1.2 Activation energies

To ensure that having a fixed value for εrep, plus the additional soft repulsive potential
between type 2 particles, was maintaining a consistent activation energy across monomer
type pairs for our range of simulation parameters, we tabulated the activation energies for
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damp (τ) Viscosity (mPa·s)
0.01 1.00
0.03 0.3
0.05 0.2
0.1∗ 0.1∗

0.3 0.03
0.5 0.02
1.0 0.01

Table C.1: Simulation viscosity. The first column shows the value of the Langevin pa-
rameter, damp, and the second the associated viscosity in units of mPa·s. The "standard"
conditions are marked with a ∗.

successful bond formations for a set of ∼60000 bonding events drawn from the full range
of simulation parameters explored in this work. Activation energies are calculated from the
total potential energy of the two bonding monomers arising from the LJ potential between
type 1 particles, the soft repulsive potential between type 2 particles, and the intramonomer
bond lengths and angles. The values of each of these contributions above their minimum
energy are summed at the time of bond formation to obtain the total activation energy for
the bonding event. Fig. C.1 shows the results of this comparison, broken down by monomer
type pairs and attraction strength combination, demonstrating consistent activation energies
across monomer type pairing and simulation parameters.

C.2 Chain length dependence of bonding statistics

The chain-length dependent bonding behavior and its sensitivity to chain stiffness, dis-
cussed in Fig. 5.4 in the main text of Chapter 5, is further demonstrated in Fig. C.2. Fig. C.2
shows the proportion of new bond formation involving oligomers, which we define to be
chains of length≥ 3. Both the nematic ordering transition and the reduction in chain length
dispersity are unique features of chains with sufficient stiffness. Flexible chains remain
disordered throughout the reaction, and dispersity continues to increase monotonically. As
such, while the fraction of oligomers participating in bond formation is similar between
flexible and stiff chains (Fig. C.2a), bond formation in which both of the reacting chains
are oligomers are significantly less likely for stiff chains after nematic alignment occurs
(Fig. C.2b).
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Figure C.1: Activation energies. The activation energies, Ea, encountered during the poly-
merization reaction. Bonding events were sampled from simulations under standard condi-
tions and are shown here for two attraction strength combinations: εAA,BB = kBT,εAB = 0
and εAA,BB = 0 , εAB = kBT ). Sample populations are further separated by monomer pair,
namely AA, AB, and BB. In total, ∼60000 bonding events were sampled. Mean values
of the measured activation energies for each combination are shown, with the error bars
representing the standard deviation. The dark shades of colors represent the constant com-
ponent of activation energy, composed of LJ repulsions and geometric constraints, which
has an average value of ∼ 5.3kBT . The lighter shaded region represents the short-ranged
repulsion between type-2 particles from Ebarr, which is varied across simulations to control
the total activation energy.
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Figure C.2: Proportion of oligomers reacting. (a) Local nematic ordering parameter,
Slocal, as a function of reaction extent. (b) Chain length dispersity, Ð, as a function of
reaction extent. (c,d) The fractions of all bonding events occurring in which (c) one of
the reacting chains is an oligomer and (d) both of the reacting chains are oligomers, are
shown as a function of reaction extent p. Oligomers are defined as chains of three or more
monomers. All results in (a-d) are shown for both flexible (lp = 3.5) and stiff (lp = 16.5)
chains, and are obtained from three independent simulation trials for each chain stiffness.
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C.3 Deviations from Markovian predictions develop in time

To quantitatively explore the deviation from Markov statistics in our system, we compared
the Markovian predictions for dispersity and block length distribution with the results of our
simulations. We calculated the Wasserstein metric,96,97 W1, as a measure of the statistical
distance between the Markovian distributions and our observed block length distributions.

C.4 Clustering analysis

Identification of aggregates was performed via the use of the HDBSCAN122,229 algorithm,
which uses a density based criteria for cluster identification. At each time point chosen for
analysis, HDBSCAN clustering was performed on the spatial coordinates of all monomer
centers in the system, with a minimum cluster size of twelve monomers, chosen for con-
sistency with our definition of Slocal. To ensure copolymer chains had consistent cluster
definition, all monomers within a chain where assigned to a cluster in which any member
of the chain was assigned. When any given chain had monomers belonging to more than
one cluster, those clusters were merged and all members of each cluster where assigned to
the new, merged cluster.

Additionally, the distribution of chain lengths and block lengths for both flexible and
stiff chains were calculated for all chains belonging to a cluster, and all chains which re-
mained unclustered. These distributions are shown in Fig. C.4&C.5 below, alongside the
Wasserstein distance between the observed and predicted distributions.

To explore spatial differences in A,B-interface formation between flexible and stiff
chains, we again employed a density based clustering approach, this time identifying the
extent of clustering of bond types, namely AA, AB, and BB bonds. The proportions of spa-
tially clustered bonds by bond type are shown in Fig. C.6, alongside the sequence neigh-
bor probabilities, pAA, pAB, and pBB, i.e., the proportion of AA, AB, and BB bonds re-
spectively. Notably, in both flexible (Fig. C.6a) and stiff (Fig. C.6b) chains, the sequence
neighbor probabilities, pi j, behave nearly identically for p > 0.2, the range in which bond
clustering begins and for which sufficient bonding has occurred for pi j values to be well
sampled. Likewise, the proportion of AA and BB bonds which are clustered behaves simi-
larly for both flexible and stiff chains, demonstrating nearly complete spatial clustering as
a consequence of the emergent phase-separation. In stiff chains, however, AB bonds show
an earlier emergence of clustering, concomitant with the ordering transition, which reaches
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Figure C.3: Block distribution deviation from Markovian statistics in time. The ob-
served block length distribution (discussed in Fig. 5.3b in the main text) at (a) 5×103τ and
(b) 100× 103τ are plotted alongside the distribution expected from Markov statistics. (c)
The Wasserstein distance, W1, is calculated between the observed block length distribution
and the Markovian distribution and plotted as function of time, for points corresponding to
the block distributions shown in Fig. 5.3b in the main text.
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a significantly higher extent than that seen for flexible chains. This is a clear indication of
the formation of densely co-located AB interfaces created when nematically ordered A-rich
and B-rich aggregates merge.

C.5 System parameters and characteristic timescale

Additional results obtained from variations to initial monomer density, non-bonded attrac-
tion strength, solvent viscosity, and activation energy are provided in Fig. C.8 below. In
order to map these results to the characteristic timescales as discussed in Fig. 5.2 in the
main text of Chapter 5, we first expressed these characteristic timescales in terms of the
viscosity and activation energy parameters varied.

For the reactive timescale, τR, we take the simplest definition121 of τR ≡ 1
keff

, where
keff is the effective polymerization rate constant. In previous work,87 we have worked out
an expression for keff for our system in terms of the relative activation energies, E i j

A , and
the Arrhenius pre-exponential factors, Ai j, between each of the i, j monomer species pairs,
namely:

keff = AAA,BBexp(−βEAA,BB
a )+AABexp(−βEAB

a ). (C.1)

To define a diffusive timescale, τD, we make use of the diffusion coefficient, D, obtained
via the Stokes-Einstein relation along with the viscosity implicit in the Langevin equation
we employ (discussed in Section C.1.1 above), taking

D =
kBT

3πηd
. (C.2)

Here kT is the thermal energy, η is the solvent viscosity, and d is the diameter of a
single monomer unit (namely d = 1σ in our reduced LJ unit system). From the diffusion
coefficient, we define the characteristic diffusive timescale, τD, in terms of the time for a
monomer to diffuse it’s own diameter, that is:

τD ≡
d2

D
=

3πηd3

kBT
. (C.3)

In addition to the response of block length distribution, nematic ordering, and dispersity
to the timescales defined above, Fig. C.7 shows similar shifts in the extent and progres-
sion of oligomer and oligomer-oligomer bonding behaviors of systems in response to these
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Figure C.4: Chain distribution statistics for clustered and unclustered populations.
The observed chain length distribution at p = 0.9 for (a) flexible chains (lp = 3.5) and (b)
stiff chains (lp = 16.5) are plotted alongside the Flory-Schulz distribution. Chains were
separated into clustered and unclustered populations based on the clustering analysis de-
scribed above, with a corresponding reaction extent, p, within each population. The ob-
served chain distribution is separated into clustered (blue) and unclustered (gray) portions,
with the associated Flory-Schulz prediction obtained from the specific reaction extent of
the population. (c) The Wasserstein distance, W1, is calculated between the observed chain
length distribution and the Flory-Schulz distribution and plotted as function of time, for
points corresponding to the block distributions shown in Fig. 5.3b in the main text of Chap-
ter 5. Results for both clustered and unclustered populations of both flexible (lp = 3.5) and
stiff (lp = 16.5) chains are shown, as indicated by marker coloration and style.
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Figure C.5: Block distribution statistics for clustered and unclustered populations. The
observed block length distribution at p = 0.9 for (a) flexible chains (lp = 3.5) and (b) stiff
chains (lp = 16.5) are plotted alongside the distribution expected from Markov statistics.
Sequences were separated into clustered and unclustered populations based on the cluster-
ing analysis described above, with a corresponding reaction extent, p, and value of pAA,BB
within each population. The observed block distribution is separated into clustered (purple)
and unclustered (gray) portions, with the associated Markovian prediction obtained from
the specific reaction extent and pAA,BB of the population. (c) The Wasserstein distance, W1,
is calculated between the observed chain length distribution and the Markovian distribution
and plotted as function of time, for points corresponding to the block distributions shown
in Fig. 5.3b in the main text of Chapter 5. Results for both clustered and unclustered pop-
ulations of both flexible (lp = 3.5) and stiff (lp = 16.5) chains are shown, as indicated by
marker coloration and style.
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Figure C.6: Spatial clustering of bonds by type. Fractions of bonds formed that satisfy
clustering criteria as a function of reaction extent for (a) flexible chains (lp = 3.5) and (b)
stiff chains (lp = 16.5). Bonds were identified as clustered if there were at least 6 other
bonds of the same type within 2.5σ . Also shown are the sequence neighbor probabilities,
pAA, pAB, and pBB: respectively, the probabilities of observing an AA, AB, or BB pair
within all sequences in the system. Coloration indicates the bond type: red for AA, purple
for AB, and blue for BB. Dotted lines are sequence neighbor probabilities and solid lines
are the fraction of bonds clustered.
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timescales.

C.6 Characteristic length in homopolymer system

In order to verify that the characteristic length behavior we observed occurred irrespective
of the phase-separation of comonomer species, we also ran homopolymer simulations un-
der the same conditions as our standard copolymer simulation trials. The resulting chain
length distributions, sampled from three independent simulation trials, are shown alongside
the standard copolymer simulation in Fig. C.9.
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Figure C.7: Oligomer bonding and characteristic timescales. Oligomer bond formation
for the simulations explored in Fig. 5.2 in the main text of Chapter 5. (a) Fraction of total
new bond formation which is the result of oligomer bonding, i.e., of any chain of length≥ 3
forming a bond, as a function of reaction extent. (b) Fraction of total new bond formation
which is the result of oligomer-oligomer bonding, namely both reacting chains are of length
≥ 3 forming a bond, as a function of reaction extent. In both (a) and (b), coloration indicates
the value of log(τD/τR) the logarithm of the ratio of diffusive and reactive timescales for
the simulation, with the dashed line indicating standard simulation conditions.
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Figure C.8: Block length distributions and bonding populations vary with activation
energy, viscosity, monomer density, and attraction strength. (a-d) Block length dis-
tributions of all-A or all-B blocks are shown for the copolymerization of stiff chains (lp
= 16.5) at a reaction extent of p = 0.9. (e-h) Fraction of total new bond formation in-
volving oligomers, as a function of reaction extent. Oligomers are defined here as chains
of length three or longer. (i-l) Fraction of total new bond formation which is the result
of oligomer-oligomer bonding, as a function of reaction extent. Results are shown here
for variations in (a,e,i) activation energy, (b,f,j) solvent viscosity, (c,g,k) initial monomer
densities, and (d,h,l) like-monomer attraction strengths. The gray, dashed lines in each
plot, indicated with * in the legends, are identical and display the block length distribution
or oligomer-oligomer bonding fraction found under the standard conditions described in
Ref. [59]. Bonding events are taken from three independent simulation trials per parameter
set, and each distribution is obtained from three independent simulation trials at a reaction
extent p = 0.9.
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Figure C.9: Chain length distribution shift persists throughout polymer composition
changes. The observed chain length distribution at p = 0.9 for polymers with lp = 16.5
where εAA,BB = kBT and εAB = 0, for (a) copolymer with equal fraction of monomer
species A and B, and (b) a homopolymer of species A (equivalent to a homopolymer of
B by symmetry). In both (a) and (b) the expected Flory-Schulz distribution is also shown.
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