Generating Custom Real-World Activity Data to Train an Artificial Intelligence Cloud
Cybersecurity Model

A Technical Report
Submitted to the Department of Computer Science
Presented to
The Faculty of the
School of Engineering and Applied Science
University of Virginia
In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

By
Claire Williams

May 2, 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Rosanne Vrutgman, Department of Computer Science

Generating Custom Real-World Activity Data to Train an Artificial
Intelligence Cloud Cybersecurity Model

CS4991 Capstone Report, 2024

Claire Williams
Computer Science
The University of Virginia
School of Engineering and Applied Science
Charlottesville, Virginia USA
cmwbzug@virginia.edu

ABSTRACT

AWS Detective is a cloud security
service that allows the user to visualize and
analyze their activity to detect potential
security threats and the detection algorithms
need training data to develop and improve. To
facilitate this, I created a program to generate
custom activity data to model security threats
and a lack thereof on demand. Security
engineers can then use this tool to generate
training data for the algorithm. I implemented
a program that could read various formats of
JSON inputs and mock the activity data. The
major considerations in creating this tool
were embedding specific attacks in the
activity and creating data that appeared real at
a high volume. In terms of future work, I only
implemented the most important/common
actions, and some activity still cannot be
generated with this method. The tool can
continue to be developed to mock more
sophisticated scenarios. Also, the front end of
the tool can be made more usable for the
security engineers.

1. INTRODUCTION

AWS Detective is a cloud service that
processes a user’s activity data into a
graph-like data structure and uses this graph
to simplify the security investigation process.
In this graph, the nodes are called “entities”
and they are actors in the network activity,
such as individual users, IP addresses, EC2
instances (computing resources), and S3

buckets (storage resources), for example. The
edges between the entities are called
“relationships” and those are actions in the
activity. Some common examples are “put
file in bucket” as a relationship that connects
user and bucket entities or “user assumed
role” as a relationship connecting user and
role entities. Within this graph structure, each
entity and relationship has metadata
associated with it like “time created” or “arn
(Amazon Resource Name)”. Some of the
metadata is simple, like a text label or integer
number. Some metadata are more
complicated like time-series data of bytes
transmitted or a running total count that
updates. Entities and relationships have
various metadata based on whatever
information is relevant to them. Therefore,
the graph of these entities and relationships
provides a very holistic view of all of the
activity in an AWS account.

When there are security vulnerabilities
or potential cyberattacks, this graph data
structure helps investigators trace the attack
and identify corrupted resources or bad
actors. AWS Detective runs algorithms
against this graph data structure to help
identify points of interest and highlight
activity related to an attack. To refine these
algorithms, the security engineers working on
them need training activity data. However,
due to security concerns, they cannot use real
customer data. The goal of my project was to

generate custom activity graphs on demand
for use by security engineers.

This activity needed to range from
simple to extensive to represent various types
of customers, such as individual accounts
versus large corporate accounts. Engineers
also needed to be able to embed specific
attack sequences in the activity to see if their
algorithms could recognize the relevant
activity. Therefore, some of the activity
should be of a large volume and not be overly
specified, whereas some small volume of
activity should be able to be exactly specified.
The activity also needed to be as similar to
real data as possible to prevent the algorithms
from overfitting. For example, if the
algorithm learns to identify simulated activity
versus real activity, it may flag simulated
activity in training because it knows it is fake,
rather than actually identifying the
vulnerability. This would make the
algorithm's performance appear much better
than it actually is.

In summary, the main goal of the tool
is to synthesize data both on a large and
general scale and a small and specific one, as
realistically as possible. This was an
ambitious goal, so this tool was intended to
lay a foundation rather than fully achieve the
goal in the timeframe.

2. RELATED WORKS

Previous work in generating training
data for artificial intelligence (AI) models
stresses the importance of avoiding
overfitting. Overfitting is when a model
performs significantly better on the data it
was trained on versus new testing data. This
is because the classification model learned
something about the data it was trained on
rather than the problem it was seeking to
address. Previous research has presented
various validation techniques to test for
overfitting. One study showed that machine
learning models can predict remission of
Crohn’s disease better than multivariate

logistic regression models when the proper
validation techniques are used. Researchers
detail techniques such as cross-fold validation
and hyperparameter turning that help avoid
over-fitting and poor generalization [1]. This
provided some worthwhile considerations for
creating training data.

Another group of researchers did a
comparative study of machine learning
techniques in cybersecurity. They found that

machine learning can provide enhanced
security and help detect zero-day attacks
with less human intervention. These

researchers also suggest some valuable future
areas of research [2]. This result is promising
as it reinforces AWS Detective’s mission.

3. PROJECT DESIGN

This tool began with an extensive
design process, as there was no previous
existing work. The following sections delve
into major considerations chronologically.

3.1 Divide Problem into Description-to-JSON
and JSON-to-Graph

Since each element in this graph can
contain a significant amount of metadata, and
this project was intended to build the
foundation of a more sophisticated tool, we
approached this design with extensibility as a
major consideration. Early on, we decided to
split the problem of turning a description into
a graph into two main parts: creating a
detailed JSON from a description and
creating a graph from a detailed JSON. These
two subproblems are distinct and
all-encompassing.

The first subproblem is creating a
graph from a detailed JSON. This means that
all of the information contained in the graph
is listed in the JSON and this process parses
the JSON and creates it in the system. This
JSON must be able to represent all possible
manifestations of the activity data, as it
provides the foundation of the tool. The
second subproblem is generating these

descriptive JSONSs from a
human-understandable conception of what a
graph should look like. This problem is much
less defined. Separating the problem in this
manner disconnects the design of this tool
from many of the technical constraints such
as the existing definitions of the data.

3.2 Generating Fully Defined Entities and
Relationships

We started with creating a graph
knowing exactly what it should contain. To
do this, we reused testing infrastructure that
hardcoded some graphs to do more design
work and less infrastructure work early on.
This part of the program would read a large
JSON and put the information into a graph.

Next, we worked on creating these
graphs in a way that abstracts away as many
of the details as possible. For example, each
entity has many fields of metadata that need
to be explicitly established, so we wanted to
introduce defaults for these values such that
when they were created en masse we would
not have to worry about smaller details. We
did this using method overloading.

Method overloading is when there are
many methods with the same name but
different sets of arguments. The program runs
the method declaration with the correct set of
provided arguments. In this case, for
example, we create the createEntity method
which had a variety of arguments such as:
createEntity(String entityType)

- createEntity(String entity Type, String
idPrefix)
- createEntity(String entity Type, Feature[]
features)
- createEntity(String entity Type, String
idPrefix, Feature[] features)
This method existed for every permutation of
possible information about an entity such that
one could call the method with whatever
information they wanted specified and the
rest would be auto-populated. This was more
complicated than it seems because different

types of entities can have different fields so
the program has to do a reverse lookup to find
an appropriate default value, however, this
approach hides these idiosyncrasies at a
higher level of abstraction. The same concept
applied to relationships. All of this
information was kept track of and outputted
in a JSON fully specifying a graph.

For the first step, we reused existing
infrastructure to create graphs that were
entirely specified. Then, we used method
overloading to establish default values for
everything and abstract away many of the
details.

3.3 Generating Entities and Relationships
with Simple Features in Bulk

The next step was creating these
entities and relationships in bulk. This step
reused the previous method overloading such
that the user could still specify whatever
information about a group of entities and then
add a count of how many they wanted. This
also allowed for creating relationships en
masse and only specifying the type of entities
that should be connected.

This was only implemented for simple
features; if one wanted a more complicated
feature, it had to be created individually.
Extending this for complex features is an
important element of future work. Rather than
directly creating a graph from these
specifications, the program would create a
detailed JSON fully describing the graph, and
then create the graph from that JSON.

3.4 Injecting Specific Attack Patterns

Another major requirement of this
tool was to be able to inject specific attack
scenarios into the graph to see if the
algorithms could identify them. Since
cyberattacks follow certain methodologies,
security engineers have specific scenarios that
are examples of types of attacks. The program
can add pieces of activity one by one but one
can 1imagine a situation where security

engineers are reusing specific attack
scenarios. Therefore, we added the capability
to combine JSONs or inject a specific JSON
into a larger JSON. This way, engineers can
reuse attacks by saving them in files and
quickly injecting them.

3.5 User Interface to Combine Input Types
into Single Activity Output

After creating the main functionality
of the tool, we worked on a user interface.
The program has three main capabilities:
creating activity piece by piece with any
degree of specification, creating activity in
larger pieces by specifying counts of repeated
elements, and injecting specific activity from
other JSONs. For the user interface, we
settled on a sandbox-like model where users
can repeatedly do any of the three main types
of input for as long as they want. Then, when
the user is finished adding to the graph, they
can export all of the information to a single
JSON file. Then, they can input that JSON
into the graph generator.

4. RESULTS

The current implementation of the
tool provides the foundation for future work
and serves as a proof of concept for this idea.
The tool was designed with extensibility in
mind so the problem has been reduced from
making custom graphs on demand to making
custom JSONs on demand. Additionally, the
overloaded method headers provide tools to
make more sophisticated activity later on and
do more processing on the default values. The
current state of the tool is that it can generate
graphs and data at scale and model specific
attacks but it cannot generate a lot of
realistic-looking activity.

5. CONCLUSION

This project was implemented as the
foundation for automating test data
production. This is important because test
data is necessary to train AWS Detective’s

cybersecurity algorithms. The tool was built
with extensibility in mind so, as the platform
evolves, the tool will hopefully only need
simple modifications to be compatible. This
will indirectly benefit customers as it will
help improve the cybersecurity algorithms of
AWS Detective. This will provide the
customers with improved threat detection and
more relevant activity to investigate these
threats.

6. FUTURE WORK

This tool serves as a proof of concept,
and there is still future work to be done
before it can be used to train algorithms. The
tool’s capabilities should be expanded to
model complex features as well. For example,
the tool cannot automatically create time
series features, such as how many bytes of
data are transmitted over time. Additionally,
creating features en masse can currently only
be done randomly, but not modeled after
typical real-world activity. Therefore, the
algorithms may overfit on this random data.
Also, as the tool develops, continuous testing
must be done concurrently to detect
overfitting and other issues that the test data
may propagate to the algorithms.

REFERENCES

[1] Charilaou, P, & Battat, R. (2022).
Machine learning models and over-fitting
considerations. World journal of
gastroenterology, 28(5), 605-607.
https://doi.org/10.3748/wjg.v28.15.605

[2] Wazid, M., Das, A. K., Chamola, V., &
Park, Y. (2022). Uniting cyber security and
machine learning: Advantages, challenges
and future research. ICT Express, 8(3),
313-321.
https://doi.org/10.1016/j.icte.2022.04.007

