
Super-Scalable Algorithms

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment

of the requirements for the degree

Doctor of Philosophy

by

Nathan James Brunelle

December 2017

APPROVAL SHEET

This Dissertation

is submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Author Signature:

This Dissertation has been read and approved by the examining committee:

Advisor: Gabriel Robins

Committee Member: James Cohoon

Committee Member: Kevin Skadron

Committee Member: Mircea Stan

Committee Member: Ke Wang

Committee Member:

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, School of Engineering and Applied Science

December 2017

c� 2017 Nathan Brunelle

Abstract

We propose two new highly-scalable approaches to effectively process massive data sets in the

post- Moore’s Law era, namely (1) designing algorithms to operate directly on highly compressed

data, and (2) leveraging massively parallel finite automata-based architectures for specific problem

domains. The former method extends scalability by exploiting regularity in highly-compressible

data, while also avoiding expensive decompression and re-compression. The latter hardware

succinctly encapsulates complex behaviors via simulation of non-deterministic finite-state automata.

We evaluate the efficiency, extensibility, and generality of these non-traditional approaches in big

data environments. By presenting both promising experimental results and theoretical impossibility

arguments, we provide more comprehensive frameworks for future research in these areas.

i

To all of my mentors, collaborators, and supporters:
To Gabriel Robins, my adviser, for providing wisdom, guidance, and conversation. You inspire all of

those around you to ascend to a higher level of rigorous and creative thought. I aspire to your nobility.
To Kevin Skadron. Your input into my research and career have been invaluable. Your guidance

directs others to become formidable intellectuals, scientists, and educators. You deserve highest esteem for
your service in nurturing high-quality academics.

To Jack Wadden and Tommy Tracy, my two most significant research collaborators. Your technical
insights have inspired this research and broadened my understanding of computing immeasurably.

To the UVA CAP research group. You all have created a thriving research community. I am proud to
have struggled among you in this endless pursuit lofty goals that we call research.

To Tommy Tracy, Cameron Blandford, Alyson Irizarry, Jack Wadden, and Robbie Hott. I am
profoundly appreciative of your efforts in helping me to edit various papers I have written over the years. I
especially thank you for your feedback on this dissertation.

To James Cohoon, Gabriel Robins, Kevin Skadron, Mircea Stan, and Ke Wang. I greatly
appreciate the feedback you have given as members of my Ph.D. committee. Your suggestions, criticisms, and
(especially) praises fell on welcoming ears.

To my father, James Brunelle. To my mother, Janet Brunelle. To my grandmother, Elouise Schultz.
To my siblings Justin Brunelle, Collin Brunelle, and June Brunelle. To the rest of my extended family
who I have no space to mention here. I could not begin to thank you for your influence on my life and
education, as your influences are too grand for anyone to comprehend. I can only offer a vague “thank you”,
as no utterance can satisfactorily encapsulate my appreciation.

ii

Contents

Contents iii
List of Tables . vi
List of Figures . vii

1 Super-Scalable Algorithms 1
1.1 Compression-Aware Algorithms . 2
1.2 Automata Processing . 4
1.3 Lessons and Future Directions . 5

2 Compression-Aware Algorithms 7
2.1 Introduction to Compression-Aware Computation . 7
2.2 Case study: Compressed Lists . 9

2.2.1 Arithmetic Sequences Compression . 11
2.2.2 Context Free Grammar Compression . 12
2.2.3 Lempel-Ziv ’77 Compression . 14
2.2.4 Lempel-Ziv ’78 Compression . 16
2.2.5 Lessons . 17

2.3 Problem Statement and Results . 18
2.4 Related Work . 19
2.5 Set-of-Lines Compression Scheme . 20

2.5.1 Compression Algorithm . 20
2.5.2 Nearest Neighbor Queries . 24
2.5.3 Range Queries . 27
2.5.4 Convex Hull . 31
2.5.5 Experimental Comparison . 31

2.6 Re-Pair for Graphs . 32
2.6.1 Topological Sort . 35
2.6.2 Bipartite Assignment . 36

2.7 Component-Based Compression . 36
2.7.1 Topological Sort . 36
2.7.2 Single Source Shortest Path . 37
2.7.3 Minimum Spanning Tree . 38

2.8 Boldi and Vigna: WebGraph Compression . 39
2.8.1 Bipartite Assignment . 40

2.9 Summary . 41
2.A Lemmas and Theorems . 42
2.B Algorithms Pseudocode . 50

3 Overview and Complexity-Theoretic Analysis of Automata Processing 57
3.1 Finite State Automata . 58
3.2 Micron’s Automata Processor . 59

3.2.1 Homogeneous Finite Automata . 59
3.2.2 Bit-parallel Algorithm . 62

iii

Contents iv

3.2.3 Hardware Specifications . 62
3.3 Characterizing the Computational Power of the AP 64

3.3.1 Alternating Finite Automata . 65
3.4 Micron’s AP Accepts the Regular Languages . 68

3.4.1 Eliminating Counter Elements . 69
3.4.2 Eliminating Boolean Gates . 70

3.5 Comparison to Circuit Complexity . 71
3.5.1 Circuit Complexity . 71
3.5.2 Nick’s Class . 72
3.5.3 Circuit Complexity of the AP . 72

3.6 Summary . 73

4 Pseudorandom Number Generation using Parallel Automata 74
4.1 Motivation . 75
4.2 Pseudorandom Number Generation . 76

4.2.1 Previous Work on PRNGs . 77
4.2.2 Markov Chains as Automata . 78

4.3 AP-PRNG Algorithm . 78
4.4 Hardness Assumption . 80

4.4.1 Hardness Problem Statement . 82
4.4.2 Prior Art in Automata Learning . 84

4.5 Theoretical Performance analysis . 85
4.5.1 Stretch . 86
4.5.2 Complexity . 87

4.6 AP-PRNG in Practice . 87
4.6.1 Hardware Constraints . 88
4.6.2 Sensitivity Analyses . 89
4.6.3 AP-PRNG Performance Model . 93

4.7 Sensitivity to Weakly Random Input . 96
4.7.1 Entropy Extractors . 97
4.7.2 Min-Entropy . 98
4.7.3 Striding APPRNG . 98
4.7.4 Experimental Results . 100

4.8 Automata-based Bloom Filtering . 102
4.8.1 Bloom Filters . 102
4.8.2 Automata-based Bloom filters . 104

4.9 Summary . 111

5 Conclusions and Future Directions 112
5.1 Compression-Aware Algorithms . 113

5.1.1 Contributions . 113
5.1.2 Future Directions . 113

5.2 Automata Computing . 116
5.2.1 Contributions . 116
5.2.2 Future Directions . 117

5.3 Automata-based Compression-Aware Algorithms . 118

Bibliography 121

A Compression-Aware Algorithms implementations 127
1.1 Lossless Set of Lines Python Code . 127
1.2 Lossy Set of Lines Python Code . 132
1.3 Set-of-Lines Nearest Neighbor and Range Searches 143

B Poster DCC 2013 150

Contents v

C Poster DCC 2015 153

D APPRNG Patent Application 156

E APPRNG Python Implementation 172
5.1 Moore Machine Simulator . 172
5.2 APPRNG Creation . 173
5.3 Sample Usage . 174

F AP Bloom Filter Python Implementation 177
6.1 Finite Automata Simulator . 177
6.2 Bloom Filter Data Structure Implementation . 178
6.3 Experiment Implementation . 180

G PhD Defense Presentation Video and Slides 183

List of Tables

1.1 Overview of techniques for parallelism in computing according to Flynn’s Taxonomy 4

3.1 Constrained vs. Unconstrained resources available on the AP 68

4.1 It is statistically harder to identify correlation between chains with more states. . . 90
4.2 First Generation AP Architectural Parameters . 94
4.3 AP PRNG Parameters . 94
4.4 AP PRNG Performance Model . 94
4.5 AP PRNG performance modeled on different memory technologies. AP PRNG

throughput is limited by peak memory throughput for DDR3 and DDR4 technologies. 95
4.6 Striding APPRNG mitigating weakly random input for 571 parallel 8-state automata

over 550,000 6-bit inputs. 102
4.7 Minimum Stride needed by Fixing Period in for 571 parallel 8-state automata over

550,000 6-bit inputs to pass all Small Crush tests. 102
4.8 Stochastic Transition Matrix of each Markov Chan used for Automata-Based Bloom

Filtering . 106

5.1 Letter frequency and corresponding Huffman code for the Huffman Tree shown in
Figure 5.1. 119

vi

List of Figures

1.1 Actual buildings (left), and a corresponding highly compressible / regular CAD
model (right). 3

2.1 Running an algorithm on raw data should always be faster than compressing then
running a compression-aware algorithm. We claim performance benefits when data
is already compressed. 9

2.2 An example of a set of arithmetic sequences representing a set of numbers. The
circular points represent the arithmetic sequence starting at 0 and extending every
5 points to 50, {0, 5, 10, 15, 20, ...}. The triangular points represent the arithmetic
sequence starting at 0 and extending every 12 points to 48, A2 = {0, 12, 24, 36, 48, ...}.
The combined sequence is the union of the two, {0, 5, 10, 12, 15, 20, 24, ...}. 11

2.3 An example of a 5th order statistic query on arithmetic sequences representation
of a set of numbers. The circular points represent the arithmetic sequence starting
at 0 and extending every 5 points to 50, {0, 5, 10, 15, 20, ...}. The triangular points
represent the arithmetic sequence starting at 0 and extending every 12 points to
48, A2 = {0, 12, 24, 36, 48, ...}. The combined sequence is the union of the two,
{0, 5, 10, 12, 15, 20, 24, ...}. The combines arrival rate of the two sequences is L =
1
5 + 1

12 = 17
60 , this means the guess point is 5

L = 5 · 60
17 = 300

17 ⇡ 17.65, we mark this
with a square. 13

2.4 The dependency graph for a given context free grammar (this is the same grammar
as is given in Section 2.2.2). 13

2.5 An example of a set of lines representing a pointset. The dashed bold line is defined
by y = � 5

12 x + 4.25. Each point is ⇠6.34 units apart along this line, with the left-most
point occurring at (1.2, 3.75). 21

2.6 An example of an #-regular point set (solid dots) whose points are within # of the
corresponding points of a regular point set (hollow dots). This figure appears in [1]. 24

2.7 If all pre-compression points on one edge of compression-aware convex hull follow
an arc extending no more than # from that edge, the discrepancy in the number of
points between the lossy-compressed convex hull result, and the non-compressed
result could be arbitrarily large. 31

2.8 Runtime of compression-aware range queries do not depend on point count. Tests
were performed on sets of 100 lines in 8 dimensions. Number of points per line was
varied to vary total number of points. 32

2.9 Runtime of Compression-aware range queries do not depend on number of points
returned. Tests performed on sets of 10, 000, 000 points in 3 Dimensions. We varied
the size of the query range in order to change the number of points returned in each
query. 33

2.10 The query time for compression-aware range queries is linear by number of lines.
Tests performed on sets of 1, 000, 000 points in 8 Dimensions. 33

2.11 Set-up time for traditional range queries. The higher line represents total initializa-
tion overhead required (decompression time plus tree-building time). The lower line
shows time required for building the KD-tree. 34

vii

List of Figures viii

2.12 A sample graph (a) and its representation as a Re-Pair compressed graph (b). The
dot-circled vertices are dictionary keys and the destination their outgoing edges are
the edges which they replace in the adjacency lists. The dotted edges have 0 weight. 35

2.13 Example graph (a) and its hierarchical compression (b). Capital-lettered vertices
represent super nodes, lowercase-lettered vertices represent terminal nodes. The
graph labeled S is the highest in the hierarchy. 37

2.14 This figure shows that to merge two minimum spanning trees, simply applying the
cut property between the two subsets of vertices is not sufficient 39

3.1 A photograph of the Micron Automata Processor (AP) hardware, manufactured by
the Micron Technology corporation in 2016, which can be plugged into commodity
PCs. 60

3.2 An example of homogeneous vs. non-homogeneous finite automata. In the au-
tomaton on the left all incoming transitions of all states match on the same symbol
set, making it homogeneous. In the automaton on the right there is an incoming
transition for state “H” which matches on the symbol ‘a’, and another that matches
on the symbol ‘b’, thus this automaton is not homogeneous. 61

3.3 Eliminating non-homogeneity in automata by splitting states. 62
3.4 A simplified model of an STE’s construction. The STE decodes each 8-bit symbol to

perform a row lookup. If the lookup returns a 1, and the enable signal is active, then
the STE propagates its enable signal to the routing matrix. 63

3.5 Examples of accepting DFA, NFA, and AFA paths. Each circle represents an active
existential state, each square represents an active universal state. They are arranged
left-to-right to demonstrate a sequence of 2 transitions. Note that the DFA is only in
one state at a time, whereas NFAs and AFAs may be in multiple 67

3.6 Converting a counter with threshold 3 to states and AND gates. All states match on
all inputs in this construction. 69

4.1 An example Markov Chain of a biased coin which lands heads with probability 1
3

and tails with probability 2
3 . 78

4.2 An example construction of an automaton which, when given a sequence of random
input characters, emulates the behavior of the Markov Chain shown in Figure 4.1. . 79

4.3 Overview of the AP-PRNG algorithm for M total machines with N states each.
Each machine simulates a Markov chain representing an N-sided fair die. The
N-permutations are used to define the matching symbols on each of the outgoing
transitions on each state and requires N log N! bits of randomness. The random
input string requires log N random bits per symbol. The output will contain M
pseudorandom bits per each input bit. 81

4.4 Example execution of an instance of APPRNG for 4 states, 2 machines, and 11 input
symbols. 82

4.5 Each bar represents the average number of Crush failures over four trials for parallel
8-state Markov chains with a reconfiguration threshold of 200,000. The darker bars
represent failure rates when interleaving output bits. Spikes in failure rates occur
when the same Markov chains always contribute to the same bits in output integers.
The lighter bars represent failure rates when successive output from a single Markov
chain contributes to a single output integer. This eliminates the spike in failures, but
reduced overall performance. 91

4.6 As the reconfiguration threshold increases, it is becomes easier for statistical tests to
identify non-random behavior. 92

4.7 Output quality of AP PRNG with output permutation greatly increases quality
of random output. AP PRNG passes all tests in BigCrush with a reconfiguration
threshold of at least 1, 000, 000, and at most 2, 000, 000 93

List of Figures ix

4.8 Percentage of runtime spent reconfiguring vs. AP PRNG throughput with different
reconfiguration thresholds. Performance increases dramatically if AP PRNG is able
to reconfigure less frequently. 94

4.9 AP PRNG is up to 6.8⇥ more power efficient than the highest-throughput reported
GPU PRNG depending on the deployment scenario. 96

4.10 An example of a 2-state automaton that is 2-strided. 98
4.11 An illustration of how automata-based bloom filtering decreases false-positive rates

via increased numbers of automata. Each gray circle represents the set of elements
accepted by an automaton, with all automata rejecting every element in the set S. A
query on any string that falls outside of all the gray circles will result in the response
x 2 S. The more automata running against x, the smaller the probability that x falls
in neither the circle for the set S nor any of the gray circles (which would be a false
positive). 105

5.1 Huffman Tree for the letter frequencies shown in Table 5.1. This tree could also be
viewed as a Moore machine, where once the computation reaches one of the leaves
of the tree, it will output its label as the corresponding character. 119

Chapter 1

Super-Scalable Algorithms

Big datasets are emerging in all sectors of society, including industry, government, and academia

[2]. Achieving the full transformative potential of the current data deluge requires addressing

new and open questions, especially with respect to the scalability of data creation, storage, and

processing. The explosive increase in the volume of big data is even overtaking the exponential

growth of Moore’s Law.

Moore’s Law, named for Intel’s co-founder Gordon Moore, states that transistor density (and

consequently computing power) doubles roughly every 18 months. This trend has enabled an

ongoing computing golden age for the past half-century. Clearly no exponential growth can be

sustained indefinitely, and we therefore must look beyond transistor counts in order to realize

future enhancements in computing resources.

While transistor density in silicon has continued to increase, manufacturing costs have also

commensurately increased with the higher precision required for high-density chips. These trends

have recently forced Intel to slow the rate at which it decreases its transistor size [3], implying

that we need to find new ways to satisfy the ever-increasing demand for computing resources.

Thus, future advances in computing must rely more heavily on application-side optimization and

resourcefulness, rather than on raw transistor counts. Even without smaller transistors, CPUs can

be improved through better design, and applications can be written to better utilize the underlying

hardware.

In this dissertation, we identify and explore two techniques for designing super-scalable data

processing algorithms, that are able to maintain the aggressive performance improvements pre-

dicted by Moore’s Law, despite the slowing pace of transistor shrinkage. In other words, our work

1

1.1 Compression-Aware Algorithms 2

provides life-extension strategies for Moore’s Law.

Our contributions span both the algorithms domain and the hardware domain. First, we

develop new compression-aware algorithmic techniques that achieve better scaling of computing

resources by operating directly on compressed data. Second, we utilize specialized automata-based

architectures that yield substantial acceleration on targeted classes of problems.

This research can help algorithm developers as well as hardware designers to increase the

practicality and efficacy of next-generation big data processing techniques. This will enable

the design of more sophisticated and efficient algorithms and specialized hardware, and could

fundamentally change the way in which organizations and governments collect, process, and utilize

large datasets. Algorithms permeate all areas of technology, engineering and computer science, and

they serve as a promising approach to grappling with issues that arise with processing and mining

large datasets. The compression-aware algorithms and automata-based algorithms framework

developed here can therefore help usher in the next generation of new super-scalable methods for

practical and realistic big-data scenarios.

1.1 Compression-Aware Algorithms
Data compression is typically used in storing and managing massive data sets. Yet, while much

data is stored in compressed format, very few classical algorithms are able to process compressed

data. We see this disconnect as an opportunity to mitigate the growing gap between dataset sizes

and processing capability [4, 5].

In Chapter 2 we investigate a general framework for compression-aware algorithms which

operate directly on compressed data sets. Previous approaches either require decompressing

the data before operation, or else require the compression to include metadata. The former

technique forfeits potential efficiency benefits offered by the compression, while the latter imposition

diminishes the benefit of compression and constrains the applicable algorithmic approaches.

To overcome these problems we design algorithms to operate directly on compressed data,

without the need for metadata. Each algorithm’s speed and memory space performance dramat-

ically improve with the input’s compressibility (i.e., descriptive complexity). This improvement

derives from leveraging highly repetitive or parametrically specified input structures, leading to

much smaller inputs (and outputs), and enabling algorithms to manipulate very large composite

objects while interacting only with their succinct descriptions. For example, Figure 1.1 shows

highly repetitive real-world structures, which are well-suited for a compression-aware approach.

1.1 Compression-Aware Algorithms 3

Figure 1.1: Actual buildings (left), and a corresponding highly compressible / regular CAD model
(right).

By way of analogy, one can intuitively appreciate the benefit of operating on compressed data

(rather than on raw data), by considering the benefits of shipping unpopped popcorn (rather than

popped corn). Transporting unpopped corn is much more efficient, since it takes up significantly

less space. A typical popcorn kernel expands by 40⇥ when popped, thus transferring unpopped

kernels requires 1/40th the “effort” required to transport the popped kernels. The advantage

gained here is twofold: (1) by shipping the unpopped corn we could use a smaller truck, and (2) it

takes less time to load and unload the truck because every crate of popcorn contains more kernels.

Similarly, operating on compressed data yields analogous benefits. Because the data is in its

compressed form, the memory requirements of our algorithm will be greatly reduced (our truck

can be smaller). Also, operations on the compressed data have greater impact, since the increased

entropy of the data means that the algorithm makes more progress with each bit that it observes or

manipulates (i.e., each crate stores and moves more kernels).

Moreover, the advantage of operating on compressed data could extend far beyond a constant-

factor improvement (i.e., the 40⇥ advantage of shipping unpopped corn). In fact, highly-

compressible data can sometimes be compressed by an exponential amount relative to its original

size (e.g. highly repetitive circuit diagrams such as memories). This means that even if Moore’s

Law slows down to a polynomial growth (rather than exponential growth), a compression-aware

algorithm leveraging this polynomial speedup can still achieve exponential speedup on highly-

compressible data, relative to computing on the equivalent uncompressed raw data.

1.2 Automata Processing 4

Instruction
Single Multiple

Data Single SISD (CPU) MISD (AP)
Multiple SIMD (GPU) MIMD (Multi-core)

Table 1.1: Overview of techniques for parallelism in computing according to Flynn’s Taxonomy

1.2 Automata Processing
The ubiquity of web connectivity has caused runaway increases in the size and number of

massive data sets as well as epic volumes of web traffic. Meanwhile, the computer architecture

community has partially shifted away from serial von Neumann CPU designs toward adopt-

ing heterogeneous computing models, using multiple types of architectures as accelerators for

performance-critical tasks. Typical single-core CPUs are ill-suited for the efficient computation of

many tasks, as they are only able to operate sequentially over a single piece of data at a time. This

means that a CPU’s efficiency tends to be bottlenecked by the speed of it’s slowest operation. Many

applications can gain dramatic performance benefits through parallel execution, motivating the

design of parallel architectures.

There are several different approaches to achieving parallel computation, typically arranged

into a taxonomy originally outlined by Michael Flynn [6], as summarized in Table 1.1. Graphics

processing units (GPUs), which process a single instruction in parallel across multiple data points,

can perform vector-parallel floating point arithmetic to yield sizable speedups on appropriately

parallelizable tasks. We call this technique for parallelism “single instruction multiple data” (SIMD).

Many-core CPU designs, such as Xeon Phi, utilize a massive number of parallel tandem CPUs to

achieve performance benefits by their ability to perform multiple independent tasks in parallel. We

call this parallelism technique “multiple instruction multiple data” (MIMD). Field programmable

gates arrays (FPGAs) and application-specific integrated circuits (ASICs) enable highly specialized

hardware designs to optimize domain-specific tasks.

We are currently seeing an increasing interest in automata-based architecture designs as

a new addition to the pantheon of specialized co-processors, such as the Micron Automata

Processor (AP) [7]. The promise of these architectures lies in their ability to efficiently simulate

non-deterministic computations (in the form of non-deterministic finite automata) in hardware,

thus providing acceleration in a “multiple instruction single data” (MISD) manner, corresponding

to the upper-right cell in Table 1.1.

These new automata-based architectures have shown only a limited range of applications thus

1.3 Lessons and Future Directions 5

far, mostly restricted to pattern matching tasks. In this dissertation we argue that this limitation

stems from the relative newness of the architecture and the still-fledgling progress in application

development, rather than inherent restrictions in the capabilities of the architecture itself. In other

words, our work provides new hope that automata-based architectures have a potentially bright

future in addressing important problems in big data.

Historically, GPUs required substantial development before they earned their current position

as critical subcomponents for supercomputing. In fact, GPUs were initially introduced exclusively

to accelerate only specific graphics-related tasks. It was only some time later that researchers

discovered that GPUs were able to accelerate much larger categories of problems (e.g. in genomics,

machine learning, self-driving cars, etc.), so long as these tasks could be adapted for SIMD -type

parallelism. Similarly, automata-based architectures deserve similar diligence in order to identify

and investigate the breadth of problems that can be optimized by automata-based MISD -type

acceleration.

In Chapter 3 of this dissertation we help to refine the properties of automata-based computation

and compare how it measures up to existing parallel processing techniques. Our theoretical analysis

reveals an upper bound on the capabilities of the architecture, namely showing that it cannot

computationally decide any language that is non-regular. We also show that these architectures are

likely to be more efficient for certain problems beyond non-deterministic finite automata (NFA)

simulations, due to their more-complex transition behavior.

In Chapter 4 we investigate an important practical application, namely an automata-based

pseudorandom number generator, which can be implemented on an automata-based processor

such as the Micron AP [8] (this work also resulted in a Patent Application [9] which is included in

Appendix D). This result suggests that our current applications for automata-based processors are

still incomplete in their exploration and full utilization of the new hardware’s promising capabilities.

Interestingly, whereas all previous applications have used automata processing for pattern discovery,

our pseudorandom number generator uses automata processing to obscure patterns. This counter-

intuitive mismatch should encourage expanding our exploration of applications for automata

computing to additional new domains.

1.3 Lessons and Future Directions
This dissertation explores super-scalable big data processing approaches through the design

of compression-aware algorithms and hardware-accelerated automata-based implementations.

We give several examples of each of these proposed techniques and apply them to particular

1.3 Lessons and Future Directions 6

application areas. Many additional application domains could benefit from these general algorith-

mic approaches, and Chapter 5 enumerates some of these. We encourage the reader to use this

dissertation as a guide to further investigate the capabilities and limitations of designing future

super-scalable algorithms using such techniques.1

1The PhD defense presentation video is available at https://www.youtube.com/watch?v=GP2rmOz3ebI. The PhD
defense presentation slides are available at http://www.cs.virginia.edu/~njb2b, and are also reproduced below in
Appendix G.

https://www.youtube.com/watch?v=GP2rmOz3ebI
http://www.cs.virginia.edu/~njb2b

Chapter 2

Compression-Aware Algorithms

While massive datasets are often stored in compressed format, most algorithms are designed to

operate on uncompressed data. We address this growing disconnect by developing a framework

for compression-aware algorithms that operate directly on compressed datasets. Synergistically, we

also propose new algorithmically-aware compression schemes that enable algorithms to efficiently

process the compressed data. In particular, we apply this general methodology to geometric /

CAD datasets that are ubiquitous in areas such as graphics, VLSI, and geographic information

systems. We develop example algorithms and corresponding compression schemes that address

different types of datasets, including strings, pointsets and graphs. Our methods are more efficient

than their classical counterparts, and they extend to both lossless and lossy compression scenarios.

This motivates further investigation of how this approach can enable algorithms to process ever-

increasing big data volumes.

2.1 Introduction to Compression-Aware Computation
The potential benefits of the technique are four-fold. First, by operating on compressed data

an algorithm may easily take advantage of the data regularity utilized to gain time and space

benefits commensurate with the input compression. Second, an algorithm is generally measured

by its performance on some worst case or average case analysis. By designing algorithms to run

on compressed data we are able to express resource consumption in terms of the size of the input

compression, a greater indicator of its success in exploiting the data’s regularity. Third, algorithms

on compressed data gain benefits from simply dealing with less data. This allows for a direct

translation from the space benefits achieved by the compression into time benefits for an algorithm.

Fourth, the size of the compression grows much more slowly than the volume of the data it

7

2.1 Introduction to Compression-Aware Computation 8

represents. Therefore as the amount of data to process increases, the trend of benefit gained by

operating on compressions outpaces the growth of the data, causing a net decrease in the average

amount of computation required per bit of raw data.

When designing compression scheme without consideration for the operations that are expected

to run efficiently on the compressed data, the exclusive metrics for success are the compression

run time, and the resulting compression ratio. However, when considering compression-aware

algorithms, those metrics seem too miopic. As compression schemes aggressively pursue the

maximization of compression ratios, this typically results in more cryptic forms for the compressed

data (as is intuitively predictable). Unfortunately, such extremely cryptic compressions are typically

ill-suited for efficient compression-aware manipulations.

For this reason, maximizing the potential for developing efficient compression-aware solutions

requires the co-design of compression schemes and the algorithms to be run on the compressed data.

The result may be compression schemes which trade-off mild sacrifices in compression ratio in

favor of major improvements in terms of algorithmic complexity. In this era of ubiquitous massive

data sets which grow faster than the available computing resources, maximizing the usefulness of

these large data sets necessitates higher awareness and careful tuning of the trade-offs between

compression ratio and overall algorithmic efficiency.

In this work, we devise compression-aware algorithms in numerous classical domains, namely

sequence data, geometric data and graph-based data. To further bolster the efficacy of compression-

aware algorithms, we also explore the design of algorithmically-aware compression schemes. These

schemes are specifically designed to support a broad range of operations on compressed data.

In other words, we propose to co-develop the compression schemes along with the corresponding

algorithms, in order to further enhance the overall performance gains when they are used in

tandem.

The intention is to run these compression-aware algorithms on already compressed data. We

do not predict speedups by (1) taking raw data, (2) compressing it, then (3) running a compression-

aware algorithm relative to running a standard algorithm on the raw data. Getting a benefit in

this way would violate a “triangle inequality” of sorts, with this triangle being as in Figure 2.1. If

compressing then running the compression-aware algorithm became faster than operating directly

on compressed data, then that line from input to output could become the compression-aware

approach. Instead, we gain performance benefits when data is already compressed. In this case

we begin at the top of the triangle (compression), and go directly to output, and observe that this

path is often shorter than the input-output path. A traditional approach must decompress the

2.2 Case study: Compressed Lists 9

Figure 2.1: Running an algorithm on raw data should always be faster than compressing then
running a compression-aware algorithm. We claim performance benefits when data is already
compressed.

data before running a standard algorithm, thus it must traverse two edges in this triangle, from

compression to input to output.

We begin in Section 2.2 discussing algorithms on compressed lists, given both accelerated

compression-aware algorithms as well as an impossibility result. Next in Section 2.3 we give an

overview of all problems and results considered in this chapter. Section 2.4 discusses prior art of

compression-aware algorithms. Section 2.5 presents compression-aware algorithms for geometric

data. Sections 2.6-2.8 discuss compression-aware algorithms for graphs. In the interest of readability

of this chapter, all Lemmas and Theorems are left to Appendix 2.A, and all algorithm pseudocode

is left to Appendix 2.B.

2.2 Case study: Compressed Lists
The prior art most similar to the contributions in this work relate to compression schemes and

compression-aware algorithms for string data (these will be discussed in Section 2.4). In this section

we explore these pre-existing well-understood compression schemes applied to the best-understood

algorithmic domain (list comprehension) in order to demonstrate the cases where time/space

benefits are attainable by these techniques, and cases where such gains are impossible. These

results illustrate the necessity to wisely select compression schemes based on the algorithms one

2.2 Case study: Compressed Lists 10

wishes to run on the compressed data, and also the importance of compression scheme/algorithm

co-design.

The first four schemes presented explore operations on numerical data and consider the classic

problem of sorting and statistics. To begin, we consider sorting algorithms under the following four

compression schemes: The first scheme represents a sequence in terms of a union of embedded

arithmetic sequences, the second is Lempel-Ziv ’77 (called LZ77 throughout), the third is Lempel-

Ziv ’78 (called LZ78 throughout), and the fourth represents an array as a context free grammar

(called CFG throughout). In all cases below, the items being compressed are considered atomic, that

is their representation cannot be split across terms in the compression. At the end of the section we

show that this assumption is necessary to obtain any compression-aware speedup of sorting.

For sorting a list compressed by its arithmetic sequences, we present an algorithm which uses

priority queues and runs in O(n log C) time, where n is the number of points to be sorted, and

C is the number of sequences in the compression. This compares with the standard approach

which would require decompression in time O(n) and sorting in time O(n log n). We also present

an algorithm which finds the kth order statistic in O(C log C) time. The classical approach would

require at least O(k) to decompress, and O(k) to find the kth order statistic.

For sorting a list compressed by a context-free grammar we present an algorithm which finds

the sorted sequence in O(C · |S|) time. Here, C is the size of the compression, which in this case

is the total number of symbols in all of the grammar’s substitution rules. This result has the

advantage of being independent of the size of the uncompressed list. From here, we can produce a

grammar for the sorted list which has size O(|S| log n), where n is the length of the decompressed

list. The classical approach would require O(n log n) time to decompress and then sort.

For sorting a LZ77-compressed sequence, we present a sorting algorithm which operates in

O(C+ |S| log |S|+ n). Where C is the compression size, n is the length of the sequence, and S is the

set of all values in the list. In most instances C ⌧ n, thus our algorithm in practice achieves linear

sorting as compared to the classical algorithm’s O(n log n) worst-case performance. Additionally,

at no cost to its asymptotic time complexity, the output can be expressed in LZ77-compressed form.

We also present a way of indexing into the sequence in O(C) time. By combining these two, we

have a method for obtaining the kth order statistic in O(C + |S| log |S|+ n) time.

Sorting lists compressed using LZ78 is very similar to sorting context-free grammars. We

present an adaptation of those results for LZ78 with the same running time: O(C · |S|) for the

compression-aware algorithm as compared with O(n log n) for the classical approach.

2.2 Case study: Compressed Lists 11

0 5 10 15 20 25 30 35 40 45 50

Figure 2.2: An example of a set of arithmetic sequences representing a set of numbers. The
circular points represent the arithmetic sequence starting at 0 and extending every 5 points to
50, {0, 5, 10, 15, 20, ...}. The triangular points represent the arithmetic sequence starting at 0 and
extending every 12 points to 48, A2 = {0, 12, 24, 36, 48, ...}. The combined sequence is the union of
the two, {0, 5, 10, 12, 15, 20, 24, ...}.

2.2.1 Arithmetic Sequences Compression

Under this model of compression, a set of natural numbers S ✓ N is represented by a union of

underlying arithmetic sequences. That is, we say that S = A1 [A2 [. . . [AC for some number of

arithmetic sequences C. Here, we will assume for the sake of simplicity that all arithmetic sequences

start at 0, and subsequent values in arithmetic sequence Ai are all di apart. So, for example, if

C = 2 we may have arithmetic sequences A1 = {0, 5, 10, 15, 20, ...} and A2 = {0, 12, 24, 36, 48, ...}

thus giving S = A1 [A2 = {0, 5, 10, 12, 15, 20, 24, ...}, this example is illustrated in Figure 2.2. We

will denote an arithmetic sequence with interval d as A(d). Additionally, to simplify notation, we

will say that Ai = A(di).

This representation may find use in representing building schematics. For example, an apart-

ment complex may have in a wall: a stud every 500 centimeters, a window every 2000 centimeters,

and a sewage pipe every 5000 centimeters. Rather than explicitly list the location of each of these

objects, we may simply maintain a list of the intervals.

Priority Queue Sorting

The method we present for sorting an arithmetic sequences array uses priority queues. This

method, called Arith sort shown in Algorithm 1, begins by adding the first element of each

sequence to a priority queue. The priority queue is therefore built in O(C log C) time. We then

extract and output the minimum priority element from the queue, call this v.

Since it is possible for two points from the same sequence to be consecutive in the sorted list,

we must maintain the invariant that the smallest element from each sequence always be present in

the priority queue.

To accomplish this we first check from which sequence the extracted point came. Then, assume v

came from A(d0), we insert the next point from the sequence (v + d0) into the queue. We repeatedly

query the queue n times, until the n smallest elements are found in sorted order. By Theorems 2.A.1

and 2.A.2 this procedure runs in time O(n log C) time and with O(n) space.

2.2 Case study: Compressed Lists 12

kth Order Statistic

The regularity of the data under arithmetic-sequences compression allows for fast computation

of the kth order statistic. The intuition used for performing this calculation is that an arithmetic

sequence acts similarly to a Poisson arrival process, which is the approach presented in Algorithm 2

called Arith Index. We describe the action of this algorithm as guess, check, count. To begin,

we consider each sequence as a Poisson process with rate l = 1
d , where d is the interval of the

arithmetic sequence. Conceptually, this is a shift from saying that “all points are d units apart” to

“ 1
d points appear every unit”.

We must now combine all of the processes (sequences) into a single process (sequence). The

combined process can be seen as a single process with rate L where each event has one of C types.

If the probability of a point being of type i is pi, and ÂC
i=1 pi = 1, then the combined process is

equivalent to the combination of C slower concurrent processes, each having rate L · pi. Therefore

we say that L = ÂC
i=1 li = ÂC

i=1
1
di

. Conceptually, we are summing together all the sequences’

arrival rates to L such that on average points appear every L units, or equivalently, on average

points are 1
L units apart.

We can now find the location of position k in the combined sequence using this process. The

expected arrival time of the kth event is k
L , or conceptually if points are an average of 1

L units apart

the kth point is near position k
L . We label this guess of k

L as g. We now must check the actual number

of points which occur in [0, g], which by Lemma 2.A.1 is between k and k � C. An illustration of

the guessing is illustrated in Figure 2.3.

From here we use a method similar to Arith sort presented in Section 2.2.1 in order to count

up the remaining points to k. We add the next element from each sequence into a priority queue.

Then we remove the lowest priority point, calculate the next point from that sequence and insert it

into the queue, then repeat until we have reached k � ÂC
i=1b

g
di
c points. Theorem 2.A.3 shows this

algorithm’s running time to be O(C log C), theorem 2.A.4 shows the space complexity to be O(C).

Note that since Poisson processes require that there be 0 events at time 0, we must actually find

event k � C in the Poisson process to get the kth point in the sequence. More details on Poisson

processes as well as proofs to the claims mentioned can be found in [10].

2.2.2 Context Free Grammar Compression

Context free grammar compression serves as a generalization of many forms of dictionary-

based string compression (e.g. LZ77, LZ78) [11], whereby a string is represented by a context free

grammar which parses to a language containing exactly one string. A context free grammar (CFG)

2.2 Case study: Compressed Lists 13

0 5 10 15 20 25 30 35 40 45 50

Figure 2.3: An example of a 5th order statistic query on arithmetic sequences representation of a set
of numbers. The circular points represent the arithmetic sequence starting at 0 and extending every
5 points to 50, {0, 5, 10, 15, 20, ...}. The triangular points represent the arithmetic sequence starting
at 0 and extending every 12 points to 48, A2 = {0, 12, 24, 36, 48, ...}. The combined sequence is
the union of the two, {0, 5, 10, 12, 15, 20, 24, ...}. The combines arrival rate of the two sequences is
L = 1

5 + 1
12 = 17

60 , this means the guess point is 5
L = 5 · 60

17 = 300
17 ⇡ 17.65, we mark this with a

square.

A0 A3 A2 A1//
%%

77
// //

A0 ! aA1 A2 A3, A1 ! ab, A2 ! A1b, A3 ! A2b

Figure 2.4: The dependency graph for a given context free grammar (this is the same grammar as
is given in Section 2.2.2).

is a 4-tuple (S, V, S, D), where S is a finite set of values called terminals, V is a set of variables,

S 2 V is a special start variable, and D is a set of rules (for our purposes only one rule is permitted

per variable, otherwise the language of the CFG will be of size greater than one). A rule is of

the form v ! s where v 2 V and s 2 (V [S)⇤ is a sequence of terminals and variables called

the definition of v. The grammar is read by iteratively substituting variables for their definitions

(starting with S) until only terminals remain. Using a CFG one is able to express a long string as a

smaller set of these rules. For example, consider the string aababbabbb. This can be translated

into the CFG:

A0 ! aA1 A2 A3, A1 ! ab, A2 ! A1b, A3 ! A2b

Sorting

Similar to LZ77 Sort for sorting LZ77 compressed arrays, Algorithm 5 (CFG Sort) exploits the

fact that all literals in the uncompressed list occur in the compression. Therefore we begin by first

finding and sorting S. Next we turn the CFG into a dependency graph. For this, we say that if

the variable v0 2 V has in its substitution rule v1 2 V, then v0 depends on v1. The dependency

graph for the above context free grammar is shown in Figure 2.4. This graph must be acyclic (since

otherwise the grammar would produce more than one string), thus a topological sort exists.

We then consider each literal as a vector of |S| dimensions such that for the minimal element

s1 2 S, s1 7! (1, 0, ..., 0), and the next smallest element s2 7! (0, 1, 0, ..., 0), and so on. As a

2.2 Case study: Compressed Lists 14

notational convenience we say that hsi refers to the respective vector for symbol s.

The final step is to follow backwards through the topological sort and sum up each symbol’s

respective vector upon discovery. In the example given we begin with a = (1, 0) and b = (0, 1). We

then calculate the vector hA1i = hai+ hbi = (1, 0) + (0, 1) = (1, 1). We can then calculate A2 =

(1, 2). Eventually we calculate the start symbol A0 = (4, 6), which says that in the decompressed

string there are 4 a’s and 6 b’s.

We are now able to return to the user a context free grammar of size |S| log n. This is done by

writing a grammar in which for each value in S, we have log n variables, where each doubles the

number of that letter represented. So, for example, if we wanted a grammar which represents the

string a8b16, our grammar would be:

S ! A0B0 A0 ! A1 A1 A1 ! A2 A2 A2 ! aa

B0 ! B1B1 B1 ! B2B2 B2 ! B3B3

B3 ! bb

The time complexity of this sorting algorithm is shown by theorem 2.A.9 to be O(C · |S|). By

theorem 2.A.10 the space complexity is O(C).

2.2.3 Lempel-Ziv ’77 Compression

With the LZ77 scheme [12], a compression is a sequence of terms each as one of two types:

terminals and back pointers. A terminal is a character from the original set of values S of the array,

and a back pointer is of the form (back, length) where back is the index (in the uncompressed array)

from which to start a subsequence and length is the number of characters to copy starting from

back. As an example, consider the sequence (with spaces added for clarity): a b (1, 2) (2, 3) c (1, 5).

The term (1,2) gives instruction to start at index 1 and copy 2 characters, giving (1,2) = a b. This

decompresses into a b ab bab c ababb. A back pointer may have length larger than the depth of

back (that is back � current location). In this case the referenced string is repeated to fill in the gap.

For example, if we have the compression a b (1,6), this would decompress into: a b ab ab ab.

Sorting

The intuition behind Algorithm 3 called LZ77 Sort, which sorts a LZ77 compressed array, is

that for any sequence s, where lz(s) is a LZ77-compression of s, the set of terminals present in s is

equal to those in lz(s). This means that to sort the decompressed array it suffices to sort all of S,

then count the number of each character appearing in the decompression. Therefore we begin by

first copying all literals to a list and sorting this list.

2.2 Case study: Compressed Lists 15

The next step is to count the number of each type of literal in the decompressed array. To do this,

we count characters while mimicking the action of the decompression. First we scan through the

compression to find the length of the deepest back pointer (the maximum back � current location).

We then create a circular buffer of this size (call this variable size). Now we perform a decompression

of the string, except whenever we would append a character to the decompression we instead

write that character to the next space in the buffer, and iterate a counter for that character. When

reading a back pointer we begin copying from that location in the circular buffer. Since the length

of the circular buffer is the depth of the deepest back pointer, we are guaranteed the reference

is in the circular buffer. Theorem 2.A.5 shows that the time complexity of this algorithm is

O(C + |S| log |S|+ n). The circular buffer allows this algorithm be run in space O(C + size), as

shown is theorem 2.A.6. Note that in most practical implementations of LZ77 compression, the

variable size is a fixed constant.

With the multiplicity of each character we can then return a LZ77 compressed sorted string

in time O(|S|). Assume S = {s1, s2, ...s|S|}, and that si has multiplicity mi in the string. Then the

compressed string becomes:

s1 (1, m1 � 1) s2 (m1 + 1, m2 � 1) ... s|S| (n � m|S|, m|S|).

Indexing

Algorithm 4, called LZ77 Index gives a method for finding the character at index i of a LZ77

compressed array. The algorithm keeps track of two read heads. The one labeled j reads the current

location in the compressed list, the one labeled count represents the location in the decompressed

string if all terms up to j were decompressed.

The first step in the algorithm is to scan the compression until we reach or pass the index i.

This is done by advancing count by 1 if LZ[j] is a literal (the term at position j in the compression),

and by LZ[j].length otherwise. If we reach index i on a literal then we simply output that

literal and terminate. If we end on a back pointer then we update the query index i to become

LZ[j].back + lz[j].length � (count � i)� 1, then scan backward in the compression to find it. Again,

if we end on a literal then we output that literal. Otherwise we repeat until we reach a literal. As

an example, consider the compression a b (2,1) (1,3) (4,3) at index i = 8. The back pointer (4,3)

occupies positions 7, 8, and 9 in the uncompressed string. Therefore to find position 8 we look

backward for position 5 in the uncompressed string. Position 5 is within the (1,3) term, which is

not a literal. Therefore we again look backward to position 2, which is b.

The most difficult step in the algorithm deals with those back pointers where the depth of the

reference is less than the number of characters to be copied. This condition is handled in lines 11

2.2 Case study: Compressed Lists 16

and 12 of Algorithm 4. We know that we are this situation if i > count � LZ[j].length, as this says

that our new index is still within the back pointer referenced by j. If we are in such a situation we

first figure out the depth into the copy (given by i � LZ[j].back). We then must find the length of

the string copied (given by count � LZ[j].length � LZ[j].back + 1). We are then able to figure out

how far to go into the copied string by performing

(i � LZ[j].back) mod (count � LZ[j].length � LZ[j].back + 1)

This new number is the distance we must go from the location of the back reference (LZ[j].back),

thus our new index becomes

�
(i � LZ[j].back) mod (count � LZ[j].length � LZ[j].back + 1)

�
+ LZ[j].back

Theorems 2.A.7 and 2.A.8 show that the time and space complexity of this algorithm as described

are both O(C).

2.2.4 Lempel-Ziv ’78 Compression

In addition to the LZ77 compression scheme presented above, Lempel and Ziv in 1978 presented

a secondary compression scheme (here on out called LZ78) [13]. Each term in this scheme is a

pair of a natural numbers i 2 N and a character s 2 S. The rule for decompression is to copy the

sublist represented by term i in the compression (i = 0 represents the empty string), then append

s. For example (0,a) (1,b) (0,b) (2,a) (3,a) (2,b) becomes a ab b aba ba abb.

Sorting

Algorithm 6 (LZ78 Sort) acts similarly to CFG Sort in that we sort the symbols, and then

accumulate vectors representing symbol multiplicity. As before we sort S. We then define hsii,

where si is the ith symbol in sorted order, to be a |S|-dimensional vector where all terms are 0,

save the ith term which is 1. Thus hs1i = (1, 0, 0, ...).

LZ78 compression behaves as a context-free grammar compression with the restriction that only

a single variable and a single literal be present in each rule. The example above can be expressed

as CFG as follows:

2.2 Case study: Compressed Lists 17

A0 ! A1 A2 A3 A4 A5 A6 A1 ! a A2 ! A1b

(0,a) (1,b) (0,b) (2,a) (3,a) (2,b) ⌘ A3 ! b A4 ! A2a A5 ! A3a

A6 ! A2b

With this construction all variables in this CFG are already in topological-sorted order. Therefore

the algorithm for sorting such a compression is a simplified version of Sort CFG.

We first create a second list of terms to parallel the compression. In this list, instead of pairs,

we use the |S|-dimensional vectors as described above. Next we scan through the compressed

sequence. For each term we first check if back = 0. If so then we know that this term in the

compression represents a single character, call this s, and add into the array at this index the vector

hsi. Otherwise if back > 1 we add together map[back], the count for the referenced string, and hsi,

where s is the character to append for this term. Similar to CFG Sort this algorithm has running

time O(C · |S|) and space O(C), by theorems 2.A.11 and 2.A.12.

2.2.5 Lessons

This case study shows that in certain circumstances we can get asymptotic reductions in run

time even for problems with well-known worst case lower bounds, such as sorting and statistics.

As can be seen in these cases, however, these bounds are restricted to the case where each term

in our list is compressed atomically (meaning a single list item’s description is not allowed to be

broken for the purposes of compression, so they may be sorted a priori). Without this restriction,

dictionary compression schemes cannot attain any asymptotic speedup over the n log n worst case

lower bound for sorting. In other words, it is impossible to improve the worst-case n log n time

complexity of sorting by using a compression-aware sorting algorithm on a string representation

of a list that has been compressed by a dictionary compression (such as LZ77, LZ78, or CFG).

Comparison-based sorting of a dictionary-compressed list is W(n log n).

Theorem 2.2.1. Sorting a CFG-compressed list of length n with non-atomic items requires n log n time.

Proof. We will show that the required run time of sorting (in terms of list length) is independent of

the size of the list’s CFG compression.

Consider the case where we have a start variable A0 ! A1 . . . An such that each of the variables

A1, . . . , An produces a unique string (no two variables resolve to the same string), and ends with

the list delimiter (e.g. ‘,‘). This means that any arbitrary reordering of the concatenation of A1 . . . An

produces a unique string in the list. Since there are n! different orderings, this means that by a

2.3 Problem Statement and Results 18

standard decision tree argument for any algorithm there will be at least one list requiring Q(n log n)

time to sort.

This theorem provides an important lesson about any attempt to analyze algorithms on

compressed data, it is sometimes impossible to realize acceleration using a compression-aware

algorithm relative a naive decompress-first approach.

In other words, if one wishes to compress data in a way that allows for compression-aware

techniques, the algorithms to be run must be considered when making a choice of compression

scheme, as a mismatch may provide no benefit. For this reason, simply using string compression

techniques from the prior art and applying them to non-string data (e.g. graphs) is unlikely to

provide for speedups, making the prior art (see Section 2.4) unsuitable for compression-aware

approaches for non-string data. This is why we consider graph-specific compressions for graph

data, and pointset-specific compressions for geometric data. Furthermore, this trend highlights the

importance of algorithm-compression co-design, as we demonstrate in our discussion of pointset

data.

2.3 Problem Statement and Results
Algorithms for Compressed Graphs We consider the graph problems of topological sort and

bipartite assignment performed over compressed graphs. For one scheme (hierarchical compression)

we also cover single source shortest path, as this is the only scheme we present which operates

on weighted graphs. We consider algorithms under the following four compression schemes: The

first is a graph interpretation of the Re-Pair compression scheme, the second is a hierarchical

compression scheme, and the third is the compression scheme presented by Boldi and Vigna as

part of the WebGraph Framework (called BV throughout).

For a graph compressed using Re-Pair we perform bipartite checking and topological sort in

O(C) time (Section 2.6). We use the fact that a Re-Pair compression of a graph can also very easily

be conceptualized as a graph and be operated on directly. The improvement we obtain for both

algorithms is over the O(|V|+ |E|) time for the classical approach.

For a graph compressed using hierarchical compression we perform topological sort and single

source shortest path in O(C + |V|) and O(Âcomponent c |Vc|3 + |V|) respectively (Section 2.7). The

former is an improvement over the O(|V|+ |E|) running time of the classical approach. The latter

usually gives a benefit over the classical approach which runs in O(|E|+ |V| log |V|).

We present an algorithm which performs bipartite checking on a BV compressed graph using

disjoint set data structures. This algorithm runs in O(|V|+ s) where |V| is the number of vertices

2.4 Related Work 19

in the graph, and s is the total number of sequences given in the compression scheme (Section 2.8).

This is a benefit over the running time of the classical approach of O(|V|+ |E|).

The performance of the web graph compressions is limited by the inability for the schemes to

reduce vertex size. For this reason we believe our results for Re-Pair and BV compression to be

near optimal. We believe that there are improvements to be made on the hierarchical compression

results.

Algorithms for compressed pointsets Finally, we explore algorithms and compressions over

geometric (Cartesian pointset) data. To begin, we present a novel compression scheme which

represents points of arbitrary dimension by embedded regular and collinear subsets. We give

both lossy as well as lossless algorithms for compressing pointsets in this way. In both cases

we provide an algorithm to compute the convex hull of the points in T(L) time where T is the

runtime of a traditional convex hull algorithm and L is the number of lines in the compression,

perform nearest neighbor queries in O(L) time where L is the number of lines in the compression,

perform Manhattan and Euclidean range queries in O(L · d) time where L is the number of lines in

the compression and d is the dimensionality of the pointset, and query for polytope (the many-

dimensional analog of a polygon) membership in O(L · F) time where L is the number of lines in

the compression and F is the number of faces on the polytope. For each algorithm we also provide

error bounds in the case the points were lossy compressed.

2.4 Related Work
There has already been limited research on compression aware algorithms, and it is well-known

that there is a time and space benefit in the previously studied applications. One of the most well-

explored areas is pattern matching on compressed strings, including both exact pattern matching

[14, 15, 16, 17, 18], and approximate pattern matching [19, 20, 21, 22, 15, 23, 24]. Others have

studied compression-aware edit-distance algorithms [25, 26, 27, 28, 29]. Computational biologists

have also written genomics-specific algorithms to run on compressed human genomic data [30].

There have also been algorithms presented which act directly on JPEG-compressed images [31, 32].

Initial steps have been made in compression-aware algorithms on graph compressions by [33, 34].

In this work we seek to show that general-purpose algorithms can receive a benefit when run

on compressed data. The following are the original bodies describing the schemes used:

Sequence Compressions Algorithms for detecting hidden arithmetic sequences have been pre-

sented in [1, 35, 36, 37]. Lempel-Ziv ’77 was first presented in [12]. Lempel-Ziv ’78 was first

2.5 Set-of-Lines Compression Scheme 20

presented in [13]. The third compression scheme considered, one in which a string is represented

as a context free grammar, is presented in [17].

Graph Compressions The first scheme performs Re-Pair on a graph’s adjacency list, an approach

first suggested in [38]. We next consider a hierarchical compression scheme similar to those used in

VSLI design [39, 40]. Finally, we study a method presented by Boldi and Vigna in The WebGraph

Framework [41].

2.5 Set-of-Lines Compression Scheme
We present lossy and lossless versions of the set-of-lines compression scheme for arbitrary-

dimensional Cartesian pointsets. Our scheme compresses the data by searching for embedded

arithmetic progressions of collinear points (i.e., equally-spaced) within the pointset (we call such

a set a regular line). The compression algorithm then returns the set of equations of these lines,

the distance between points, and the locations of their initial points, as illustrated in Figure 2.5.

Alternative representations are possible without loss of efficiency.

We define the first point to be that on the line segment whose coordinates are greatest in

lexicographic order. Define points pa = (a1, . . . , an) and pb = (b1, . . . , bn) where the coordinates

are listed based on a fixed arbitrary ranking of the axes. Let pa > pb in the lexicographic ordering

provided that for m = min{i|ai 6= bi} it holds that am > bm. Given the equation for the line and the

first point lexicographically this definition unambiguously determines the direction the remaining

points must progress, as they must go toward �• along the most significant axis which is not

parallel to the line.

2.5.1 Compression Algorithm

We adapt the set-of-lines compression algorithm from two previously studied problems– the

maximal regular subsequences problem [36] for the lossless compression, and the maximal #-regular

subsequence problem [1] for the lossy compression. At a high level, both algorithms will exhibit the

same procedure. First we find all regular subsequences of the input pointset P . Second we extend

each to a maximal regular subsequence. Finally we select an approximately minimal set of these

subsequences which fully cover the point set. The only difference between the lossy and lossless

versions of the scheme will be whether the points required to be exactly regular subsequences to

be group together, or only must be sufficiently close to being a regular subsequence.

2.5 Set-of-Lines Compression Scheme 21

1 2 3 4 5

1

2

3

4

5

Figure 2.5: An example of a set of lines representing a pointset. The dashed bold line is defined by
y = � 5

12 x + 4.25. Each point is ⇠6.34 units apart along this line, with the left-most point occurring
at (1.2, 3.75).

Lossless Compression

The basis for this scheme follows from the solving the all maximal equally spaced collinear subsets

problem, which is solvable in O(n2) where n is the number of points [36]. The problem states that

given a set of d-dimensional Cartesian points P , find the smallest set of regular collinear subsets

which contain all the points. An equally-spaced collinear set is a set of collinear points where each

point on the line is distance d from the point before it, in other words it is an arithmetic progression

of points along a line. From an equally-spaced collinear subset, a maximal equally-spaced collinear

subset can be constructed by extending the line and gathering all points along that line in the same

arithmetic progression.

Finding the Maximal Regular Subsequences We provide a summary of O(n2) algorithm for

solving the all maximal equally spaced collinear subsets problem here. First consider the one-dimensional

case for this problem, which is to find all maximal arithmetic sequences in a set of numbers

P = p1, p2, . . . pn. Let p1, p2, . . . , pn be sorted. We maintain three pointers into the list, A, B, C,

where pA, for example, represents the value which A references. Assume A = i, let B = i + 1 and

C = i + 2. If pB � pA > pC � pB then increment C, otherwise increment B. After exhausting all

choices of B and C, move A one to the right.

2.5 Set-of-Lines Compression Scheme 22

If the left hand side and the right hand side above are equal, then the triple (pA, pB, pC)

represents an equally-spaced triple. This procedure is repeated for each 1 i n � 2, and each

iteration takes linear time, thus the algorithm runs in O(n2).

If this algorithm produces a triple (pi, pj, pk) then we say (pi, pj) ⇠reg (pj, pk) ((pi, pj) “relates

to” (pj, pk)). The maximal equally-spaced subsequence containing (pi, pj, pk) is therefore all points

in the transitive closure of (pi, pj) under relation ⇠reg. To generalize this algorithm for collinearity

to arbitrary dimension the only addition is to verify the collinearity of (pA, pB, pC), so we now say

that (pi, pj) ⇠reg,coll (pj, pk) provided (pi, pj, pk) are equally spaced and collinear. This gives the

final run time as O(d · n2).

Lossy Compression

Here we present a lossy version of the set of lines compression scheme. This scheme is lossy in

the sense that points may be nearly collinear and at nearly regular intervals (with # Manhattan

distance). An #-regular set is a set of points which are all within # of a regular line. More formally,

an #-regular subsequence of a point set is a subsequence P = (p1, p2, . . . , pn) of points such that

there exists a regular subsequence R = (r1, r2, . . . , rn) of points where 8i, D(pi, ri) #, with D being

Manhattan distance. This definition is illustrated in Figure 2.6. A maximal #-regular subsequence

is a regular subsequence such that 8p 2 P � R neither (p, p1, p2, . . . , pn) nor (p1, p2, . . . , pn, p) are

#-regular subsequences. The all maximal #-regular collinear subsets problem states that given a set of

d-dimension Cartesian points P , find the smallest set of #-regular collinear subsets which contain

all the points. This problem is the basis for the lossy compression scheme.

Finding the Maximal Regular Subsequences We provide a summary of a O(n
5
2) time solution

to the all maximal #-regular collinear subsets problem [1]. Note that this solution requires no pair of

points be within 8# distance of each other, otherwise the problem is intractable, as there would be

an exponential number of maximal #-regular collinear subsets. The first step is to generate all pairs

of points from the point set, (pi, pj). From here, find an additional point which is #-regular with a

pair of points (pi, pj). Note that given the two points (pi, pj) there is a square region of size 8 · # in

which a point may belong.

Thus by partitioning the plane into a grid of size 8 · # membership of a point in such a region

for any pair of lines may be determined in O(n log n) time. From here, a marching procedure is

performed whereby a pair of points is extended to a #-regular triple to the right, then the leftmost

point is dropped to form another pair. This is continued until the sequence cannot be extended

further, and then repeated in the opposite direction. All points visited in this procedure define the

2.5 Set-of-Lines Compression Scheme 23

maximal #-regular subequence containing points pi and pj. In total this algorithm is shown to run

in O(n
5
2) time.

From Maximal Regular Subsequences to Set-of-Lines

The output of the algorithms finding maximal (#-)regular subsequences described above output

sets of points representing all maximal (#-)regular subsequences. Our goal is to use this output to

produce a set-of-lines compression of the point set. Doing this will involve two steps: the first is

to find an approximately minimal set of the subsequences which cover the point set, then (in the

lossy case) we must compute the best fit line for the point set.

Given a set of maximal (#-)regular subequences M, we seek to find a minimal set C ✓ M such

that
S

C2C = P . Recall the definition of the set cover problem (which is famously NP-Hard): given

a set of elements X and a family of subsets of X called F ✓ 2X , find a minimal set C ✓ F such that
S

C2C = X . In order to pick the minimal set of (#)-regular subsequences, we must solve a version

of the set cover problem which has the mild restriction that 8Ci, Cj 2 C we have that |Ci \ Cj| 1.

This restricted problem remains NP-Hard, so we employ a greedy heuristic to approximate (this

heuristic is asymptotically optimal provided P 6=NP) [42]. The greedy heuristic is to always choose

the set of points which contains the largest number of unselected points.

Finding a Fit Line for Lossy Case With a set of #-regular subequences covering the whole point

set we now wish to find the equation of the line which approximates each set. To accomplish this it

suffices to find the line of best fit in the Chebyshev sense, the line which minimizes the maximum

distance to each point in a particular dimension (L•-norm of the distance of the line to each point).

Consider a two dimensional case where we pick the line which minimizes the maximum distance

any point has from the fit line in the y dimension, call this d. First we consider the point closest to

the origin to be at (0, 0) and shift all other points accordingly. We then find some line y = m · x

which minimizes d = maxi |yi � m · xi| for all points (yi, xi). Alternatively, we seek to find the c

which yields the minimum d satisfying 8i, d � |yi � m · xi|. This is solved by the linear program:

AT =

2

64
�1 �1 · · · �1 �1

�x1 x1 · · · �xn xn

3

75 , bT =

�y1 y1 · · · �yn yn

�
, x =

2

64
d

m

3

75

Maximize:

1 0
�
· x, Subject to: A · x b

This linear program is run for each subsequence, and its output will give the equation for the best

fit line which is to be used as the lossy compression of that point set. Note that this linear program

2.5 Set-of-Lines Compression Scheme 24

Figure 2.6: An example of an #-regular point set (solid dots) whose points are within # of the
corresponding points of a regular point set (hollow dots). This figure appears in [1].

could be decomposed into several disjoint linear programs, one for each dimension. This fixes

the dimensionality of the matrices, meaning this linear program runs in linear time relative to the

number of points in the sequence [43].

2.5.2 Nearest Neighbor Queries

One natural problem to solve over any point set is, given a set of points P = {p1, . . . , pn} ✓ Rd

from a d-dimensional Cartesian space and a query point pq 2 Rd, find pi 2 P with minimum

Euclidean distance to pq. In the case that the points are compressed via set-of-lines the input given

to the algorithm is a set of lines

L = {(a1, . . . , ad, b), (p01, . . . , p0d), n, d} ⇢ Rd+1 ⇥ Rd ⇥ N ⇥ R

where (a1, . . . , ad, b) represents a line in d dimensions by the equation Âd
i=1 ai · xi = b, (p01, . . . , p0d)

represents the first point on the line, and n represents the number of regular collinear points on the

line.

The operation of this algorithm relies on two steps for each line in l 2 L, both computable

in constant time. First, we find the nearest point on the continuous line (a1, . . . , ad, b) for l to pq,

next we perform a rounding procedure to the nearest point on l. This will yield the nearest point

contained in l to pq. After repeating this procedure for each l 2 L we have a new set of points of

size 2 · |L| which must contain the nearest point in P to pq. In the end, we will have an algorithm

which runs in time O(|L|).

Without loss of generality we will assume that no line in L is perpendicular to the x1 axis, as

otherwise we can repeat this process according to the x2 axis (or minutely rotate about the query

point). We project each line onto this axis, this will give us a new line equation of x1 = 0 and a

new gap d0, the new first point will be the x1 coordinate of the original first point. Project the point

on (a1, . . . , ad, b) which is nearest to pq onto the x1 axis, call this p0. We need to find the point on

the new line (incident the axis) nearest to p0.

Our first step toward this end is to “left justify” the points on the line. That is, if the first

2.5 Set-of-Lines Compression Scheme 25

point on the line occurs at t, then we shift p0 to p0 � t. Now we need to find m 2 N such that

m · d p0 (x + 1)d. This can be done quickly as we get m p
d m + 1. This means that, going

back to the original line l, the nearest point to pq is either the b p
d cth or d p

d eth point. We will add

both points to a new point set, and run a nearest neighbor search on this new set of size 2 · L.

Lossy Error

In the case that the data was lossy-compressed, the nearest neighbor algorithm will remain the

same, but errors in the results become unavoidable. Here, we look at three ways to quantify the

magnitude of this error. The first two measure how “wrong” the response might be: Distance of

the actual nearest point from the point returned by the query, and difference in distance from the

query point to the returned point and the actual nearest neighbor. In the third case we analyze

a modification to the above algorithm which, instead of returning a single point, returns a set of

points, guaranteeing that the nearest neighbor is among them.

For this analysis we consider pq to be the query point pr to be the (post compression) returned

point, and rn to be the actual nearest neighbor (pre-compression). With d being the distance from

pq to pr, and # being the lossy error. In the following discussion we will make heavy use of this

lemma:

Lemma 2.5.1. For a lossy-compressed set-of-lines pointset with error #, a pre-compression point p will be

within # of the corresponding post-compression point, p0.

Proof. This trivially follows from the definition of the compression scheme. If point p was further

than # from p0, then p could not have compressed to p0 (note that the same bound holds in the case

that we compress by Manhattan distance for similar reason, the generalization will extend to all

the following results).

Distance from pr to pn We wish to answer: how far is the actual nearest neighbor (pn) from the

returned point (pr)?

Theorem 2.5.1. For a For a lossy-compressed set-of-lines pointset with error #, a nearest neighbor query

on point pq will return a point pr that is at most 2d + # from the true nearest neighbor pn, where d is the

distance from pq to pr.

Proof. The post-compression returned point pr is d from the query point. This implies that the

post-compression distance of the actual nearest neighbor pn is at least d from pq, as otherwise the

point pn would be equal to pr and the distance would be 0. The point pn cannot be more than d + #

from pq, as otherwise pn could not possibly be the nearest neighbor, as any pre-compression for

2.5 Set-of-Lines Compression Scheme 26

the point pr would be closer than pn. Thus the actual nearest neighbor pn is at most 2d + # from

the returned point pr.

Distance from pr to pq vs pn to pq We wish to answer: How much farther could the returned

point (pr) be from the query point (pq) than the actual nearest neighbor (pn) is from the query

point (pq)?

Theorem 2.5.2. For a lossy-compressed set-of-lines pointset with error #, a nearest neighbor query on point

pq will return a point pr that is at most 2# farther from pq than is the true nearest neighbor pn.

Proof. Let d be the distance from pq to pr. The the pre-compressed version of returned point pr is

at most d + # from the query point. The post-compression of the true nearest neighbor pn must

be more than d from the query point, as otherwise the post-compressed nearest neighbor would

have been the returned point). This means that the actual nearest neighbor is at least d � # from the

query point. Thus the maximum difference in their distances is at most d + # � (d � #) = 2#.

Returning a set of candidate nearest neighbors In this case we consider a modification to the

above algorithm which, instead of returning a single nearest neighbor, it returns a set of candidate

nearest neighbor points such that the actual nearest neighbor must be among these points. To

achieve this we will return all points within a certain range of the query point pq, where that range

depends on the distance from pq to the post-compression nearest neighbor (pr) and the lossy error

#. Once this range is defined we must simply use the range query algorithm presented in the

immediately following section (Section 2.5.3).

Theorem 2.5.3. For a lossy-compressed set-of-lines pointset with error #, the nearest neighbor pn to a query

point pq must have a post-compression point that falls within distance d + 2# of pq, where d is the distance

from pq to its post-compression nearest neighbor pr.

Proof. In the worst case the post-compression returned point pr may be # away from its correspond-

ing pre-compression point. This means that some post-compression point p0 that is 2# farther from

the query point could have a corresponding pre-compression point that is closer to pq than the

pre-compression point corresponding to pr, i.e. it is possible for p0 to be pn. This could occur in the

case that the corresponding pre-compression point for p0 is # closer to pq, while the corresponding

pre-compression point for pr is # farther from pq.

As mentioned above, finding the optimal compression for a pointset is intractable in the case

that there are any points within distance 8# apart. In the case that the pre-compression pointset

2.5 Set-of-Lines Compression Scheme 27

satisfies the requirement that no two points appear within any particular hypersphere of radius

4# we can provide an upper bound on the number of points which belong to the range given in

Theorem 2.5.3, in terms of d, #, and dimensionality.

This upper bound is given by the number of hyperspheres of radius 4# can be packed within the

hollowed hypersphere formed between radii d � # and d + 3#. Unfortunately, these sphere-packing

problems have not been solved in the general case, but only for dimensions 1, 2, 3, 8, and 24 [44].

The upper bound of the number of points, in the limit, will be the ratio of the volume of hollowed

hypersphere and that of a 4 � # hypersphere (V(d + 3#)� V(d � #)).

2.5.3 Range Queries

Here we present two styles of range queries, Manhattan and Euclidean, on which the set-of-lines

compression scheme allows for more efficient computation compared to an explicitly represented

set of points. In the case where the data is not compressed each query will take linear time by

number of points. Alternatively, in an application where repeated queries will be made a kd-tree

data structure may be built on the points and each query will then take nearly linear time for high

dimension, specifically it requires O(n1� 1
d) per query.

Manhattan Range Given a point and a range, we seek to find all points within the given range

rm by Manhattan distance, that is to give all points within a (45-degree axis-misaligned) hypercube

of edge length r =
p

2r2
m.

To begin, for ease of exposition, we shift all points so that this hypercube becomes axis-aligned.

From there, this algorithm behaves similarly to the nearest neighbor algorithm. Consider the

Manhattan range query on one particular line. As before, our first step will be to project all the

points onto an axis xi and “left-align”. The query hypercube will also be shifted left by the same

margin, we will say that post left-alignment the query hypercube contains points within the range

(a, a + 2r).

From here we perform nearest neighbor-style queries on a and a + 2r where we return the

smallest point larger than a and the largest point smaller than a + 2r. This narrows down the

range of the line to only that segment which is within the queried range on xi. We then repeat this

process for all lines on this dimension xi and obtain a new set of “trimmed” lines from L. In the

end all the trimmed segments will be completely contained by the query hypercube.

The point projection, left alignment, and nearest neighbor queries on each line can be computed

in O(d) time, where d is the number of dimensions of the points. This implies that the time required

to trim all the lines for a particular dimension is O(|L| · d). This gives a final run time of O(|L| · d).

2.5 Set-of-Lines Compression Scheme 28

Euclidean Range Given a point and a range, we seek to find all points within the given range

by Euclidean distance, that is all points within a hypersphere with radius r. For each line we

can find which subset of points fit inside the sphere in O(d) time. The size of the range is given

by the length of the chord formed by intersecting the line with the sphere. The length of this

region is given by 2 ·
p

r2 � d2 (where d is the distance from the center of the query region to the

nearest point on the line). With the slope of the line we can then find the radius of the region

after projecting onto axis xi to be
p

r2 � d2 · cos(q) where q is the angle of the line with the xi axis,

call this r0. We can then use the Manhattan distance subroutine on this range, as it is only one

dimension, and return the trimmed lines. The run time of this algorithm is O(|L| · d).

Convex Polytope Membership The Manhattan distance procedure can be generalized to do

inclusion queries on an arbitrary multi-dimensional convex polytope with F faces. We can find

membership by, for each line segment in L and for each face of the polytope, projecting the segment

onto the line defined by an orthonormal vector to the halfspace of the face, and then performing

the Manhattan distance subroutine. This allows for queries to be done in O(|L| · F) time.

Lossy Error

For each of the membership queries above (Manhattan range, Euclidean range, and polytope

membership) we modify the algorithm for the lossy case by returning two sets of points rather

than one:

• G, a set of post-compression points whose corresponding pre-compression point is guaranteed

to be included in the query

• M, a set of post-compression points whose corresponding pre-compression point may be

included in the query

We find set G by shrinking the query region to exclude any points whose position allows for

the possibility that its corresponding pre-compression point falls outside the query region. We find

U by expanding the query region to include any points whose position allows for the possibility

that its corresponding pre-compression point falls inside the query region. We now show how to

shrink/expand the query region for each of the above algorithms.

Theorem 2.5.4. For a Manhattan range query of distance d, the set G of post-compression points whose

corresponding pre-compression point is guaranteed to be included in the query is obtained by finding all

pre-compression points within radius d � #, where # is the lossy error.

2.5 Set-of-Lines Compression Scheme 29

Proof. By Lemma 2.5.1, G is obtained by excluding any point within # Manhattan distance of a face

of the query’s hypercube. This implies that we must simply shrink the hypercube by moving every

face toward its center by #. Thus G is obtained by performing a standard Set-of-Lines query for

distance d � #.

Theorem 2.5.5. For a Manhattan range query of distance d, the set M of post-compression points whose

corresponding pre-compression point may be included in the query is obtained by finding all pre-compression

points within radius d + # and subtracting off the points in set G, where # is the lossy error.

Proof. By Lemma 2.5.1, G is obtained by including any point within # Manhattan distance of a face

of the query’s hypercube. This implies that we must simply expand the hypercube by moving

every face away from its center by #. Thus M is obtained by performing a standard Set-of-Lines

query for distance d + # and removing all points found in set U.

Theorem 2.5.6. For a Euclidean range query of distance d, the set M of post-compression points whose

corresponding pre-compression point may be included in the query is obtained by finding all pre-compression

points within radius d + # and subtracting off the points in set G, where # is the lossy error.

Proof. Follows from Lemma 2.5.1 similar to the Manhattan case. This time we shrink the radius of

the hypersphere defined by the query to d � #.

Theorem 2.5.7. For a Euclidean range query of distance d, the set G of post-compression points whose

corresponding pre-compression point is guaranteed to be included in the query is obtained by finding all

pre-compression points of radius d � #, where # is the lossy error.

Proof. Follows from Lemma 2.5.1 similar to the Manhattan case. This time we expand the radius of

the hypersphere defined by the query to d � #.

Theorem 2.5.8. For a pointset lossy compressed using Set-of-Lines with Euclidean error #, the set of points

G for a Convex polytope membership query may be found by shifting each half space by # in the direction of

its orthonormal vector.

Proof. Follows from Lemma 2.5.1 similar to the range query cases. This time we shrink the query

polytope by moving in each face by varepsilon in order to exclude any post-compression points

whose corresponding pre-compression point may fall on the opposite side of the face.

Theorem 2.5.9. For a pointset lossy compressed using Set-of-Lines with Euclidean error #, the set of points

M for a Convex polytope membership query may be found by shifting each half space by # in the direction

opposite its orthonormal vector, then removing all points found in G.

2.5 Set-of-Lines Compression Scheme 30

Proof. Follows from Lemma 2.5.1 similar to the range query cases. This time we expand the query

polytope by moving in each face by varepsilon in order to include any post-compression points

whose corresponding pre-compression point may within the halfspace defined by that face.

Theorem 2.5.10. For a pointset lossy compressed using Set-of-Lines with Manhattan error #, the set of

points G for a Convex polytope membership query may be found by shifting each half space, with orthonormal

given by < x1, . . . xd >, by #
|x1|+...|xd |

in the direction of its orthonormal vector.

Proof. We must move each hyperplane defining the half-spaces in the direction parallel to its

orthonormal by sufficient distance in order to exclude all points within Mahnattan distance #, as

per Lemma 2.5.1. To do this, consider a hypercube defining a region of fixed Manhattan distance

that is tangential just to the inside of the hyperplane. The hyperplane must be shifted so that the

center point of this hypercube now falls exactly on the hyperplane.

Assume, without loss of generality, that the hyperplane’s orthonormal vector < x1, . . . , xd >

begins at the origin. We need to find a point (x01, . . . x0d) which has Manhattan distance # from the

origin and lies along the vector < x1, . . . xd >.

The Manhattan distance for point (x01, . . . x0d) is given by |x01|+ . . . + |x0d|. For (x01, . . . x0d) to fall

along vector < x1, . . . , xd > there must be some constant c such that (x01, . . . x0d) = (c · x1, . . . , c · xd).

Thus we must simply solve (note that c must be positive):

= |x01|+ . . . + |x0d|

= |c · x1|+ . . . + |c · xd|

= c|x1|+ . . . + c|xd|

= c(|x1|+ . . . + |xd|)
#

(|x1|+ . . . + |xd|)
= c

Theorem 2.5.11. For a pointset lossy compressed using Set-of-Lines with Manhattan error #, the set of

points M for a Convex polytope membership query may be found by shifting each half space, with orthonormal

given by < x1, . . . xd >, by #
|x1|+...|xd |

in the direction opposite its orthonormal vector, then removing the

points found in G.

2.5 Set-of-Lines Compression Scheme 31

Figure 2.7: If all pre-compression points on one edge of compression-aware convex hull follow an
arc extending no more than # from that edge, the discrepancy in the number of points between the
lossy-compressed convex hull result, and the non-compressed result could be arbitrarily large.

Proof. This follows similarly from the case for finding the set G, except now we must include any

post-compression point which might fall within Manhattan distance # of each plane defining a

halfspace in the polytope.

2.5.4 Convex Hull

The convex hull problem asks that, given a set of n points P = {p1, . . . pn}, find the smallest

convex polygon which contains all the points. If the point set P has three or more collinear points

then only the extreme points may be vertices on the convex hull. This implies that to find the

convex hull when P is represented in set-of-lines compressed format with L line segments one

must simply compute the convex hull on the endpoints of each line segment. Thus if there is

a convex hull algorithm used which runs in time T(n) then it may trivially be converted into

an algorithm for convex hull on L by extracting the endpoints in worst case O(d) time and then

computing the convex hull in time T(|L|).

Lossy Error

In the lossy case, error for Convex Hull may be arbitrarily bad in number of vertices. One could

imagine a set of points which follow an arc, all rounding to an #-regular line, as shown if Figure 2.7.

2.5.5 Experimental Comparison

We implemented set-of-lines Range searches in Python, and evaluate the performance of set-of-

lines over a traditional kd-tree approach. Tests were run on a randomly-perturbed grid of points

(the grid was set slightly askew from axis-aligned by a random value), generated as a compressed

point set. We varied number of lines by changing the number of columns, the number of points

per line by varying the number of rows, and the dimensionality by varying the dimensionality of

the perturbation. Next we decompressed the point set, constructed a KD-Tree from the resulting

set of points, and then ran many range queries of varying daimeter.

The tests were run on a 2016 Macbook Pro running MacOS 10.12.5, with a 3.1GHz dual-core

Intel Core i5 processor, with 64MB of eDRAM, 8GB of 2133MHz LPDDR3 memory, and a 256GB

PCIe-based SSD. We note that the kd-tree approach gains some performance benefit due to the kd-

2.6 Re-Pair for Graphs 32

Figure 2.8: Runtime of compression-aware range queries do not depend on point count. Tests were
performed on sets of 100 lines in 8 dimensions. Number of points per line was varied to vary total
number of points.

tree implementation on Python being a wrapper for compiled C code, while the compression-aware

approach is interpreted.

From these results we can see that the runtime of the compression-aware approach is indepen-

dent of both point count (Figure 2.8) and number of returned points (Figure 2.9), but rather its run

time depends exclusively on number of lines (Figure 2.10).

Also note that we obtain speedups over the KD-tree algorithm in many scenarios, in spite of

the KD-tree implementation being compiled and our compression-aware queries implementation

being interpreted. This time benefit is especially pronounced when one considers the time required

to build the KD-tree, and decompress the data (Figure 2.11)

2.6 Re-Pair for Graphs
Much of the existing work in graph compression schemes has been done on web graphs. In

these graphs vertices represent web pages, and edges represent hyperlinks from one page to

another. Web graphs are therefore directed graphs with unit-weight edges.

In [45] the authors introduce a graph adaptation of the Re-Pair dictionary compression scheme

originally designed for strings [38]. In this scheme (as well as the Boldi-Vigna scheme to be

2.6 Re-Pair for Graphs 33

Figure 2.9: Runtime of Compression-aware range queries do not depend on number of points
returned. Tests performed on sets of 10, 000, 000 points in 3 Dimensions. We varied the size of the
query range in order to change the number of points returned in each query.

Figure 2.10: The query time for compression-aware range queries is linear by number of lines. Tests
performed on sets of 1, 000, 000 points in 8 Dimensions.

2.6 Re-Pair for Graphs 34

Figure 2.11: Set-up time for traditional range queries. The higher line represents total initialization
overhead required (decompression time plus tree-building time). The lower line shows time
required for building the KD-tree.

discussed) each vertex is assigned an index i 2 N. The graph is then represented in adjacency

list form, and is sorted by index. This can be done using a list of lists, where list i contains the

destinations of all edges from vertex i. Next the method finds the k most common pairs, and

introduces a special symbol to represent each.

Afterwards, each appearance of each pair is replaced by its respective special character. This is

repeated to satisfy one of two conditions: each pair in the adjacency list appears exactly once, or

some pre-defined number of passes is reached.

The assignment of the indices for the vertices is done in such a way that the resulting graph has

high locality and similarity. Locality is the property that edges from a given vertex are likely to

end at another with a nearby vertex. Similarity is the property that vertices close to each other will

share many vertices in their adjacency lists. This compression scheme is designed to exploit these

properties.

Once complete we represent the compressed data itself as a graph. Each dictionary variable

appears as a vertex in the graph with an edge to each vertex it represents, an edge whose

destination is a dictionary vertex is assigned zero weight. This reveals the interesting advantage of

this compression scheme. Since the compressed graph can itself be represented as a graph many

2.6 Re-Pair for Graphs 35

3 5

2 1 4 6//

11

33
✓✓

??

//
##

//
cc

YY
11

??

qq

__

(a)

2 9 3 7 5

1 8 4 6

??
// //

OO

oo //

OO

��

//

oo

??

77

✏✏ ��

(b)

Figure 2.12: A sample graph (a) and its representation as a Re-Pair compressed graph (b). The
dot-circled vertices are dictionary keys and the destination their outgoing edges are the edges
which they replace in the adjacency lists. The dotted edges have 0 weight.

classical algorithms require only minor adjustment to operate on the compressed data. However,

this compression scheme only serves to reduce the number of edges in the compressed graph, the

number of vertices is larger than those in the original. For VC and EC the sets of vertices and edges

in the compressed graph respectively , |VC| � |V| and |EC| ⌧ |E|. Intuitively, the compression may

be seen as a trade-off from a dense graph with fewer vertices in favor of a much more sparse graph

with more vertices. Thus there may be no benefit to operating on the compressed data versus the

uncompressed if the algorithm requires high time complexity in terms of number of vertices. In

general the running time of graph algorithms is expressed in terms of some function of the number

of vertices, |V|, and the number of edges, |E|. An algorithm run on Re-Pair compression should

run faster than its uncompressed counterpart for any algorithm A, with running time f (|V|, |E|),

where f (|V|, 1) 2 O(f (1, |E|)). Additionally, being a virtual node compression scheme, algorithms

run on the Re-Pair graph compression scheme could utilize the technique shown by Karande,

Chellapilla, and Andersen [34] for fast multiplication of adjacency matrices by a vector.

2.6.1 Topological Sort

The method in Algorithm 7 (RePair Topological), given a Re-Pair compressed directed acyclic

graph, returns a topological sort of its uncompressed graph. The topological sort of the uncom-

pressed graph is embedded in that of the compressed graph. This follows since all vertices in

the uncompressed graph are present in the compressed, and for any two vertices u, v where u

appears before v topologically in the compression u must also appear before v topologically in the

uncompressed counterpart. Thus we may perform a topological sort on the compressed graph, then

remove the dictionary terms from the sort. This procedure takes time O(|VC|) (by theorem 2.A.13).

It requires space O(C) (by theorem 2.A.14).

2.7 Component-Based Compression 36

2.6.2 Bipartite Assignment

Many of the algorithms performed on unweighted directed graphs, as web graphs are, can be

written with minor modifications of breadth-first search (BFS) or depth-first search. To demonstrate

the ability to perform meaningful applications of breadth first search we present an algorithm

which determines whether or not a given compressed graph is bipartite, and if it is, gives the

appropriate vertex colors. A bipartite graph is one that can be 2-colored, i.e., there is some way

to give each vertex one of two colors such that there is no edge between two nodes of the same

color. The classical algorithm for this problem performs a modified BFS which, when a vertex is

discovered, assigns that vertex a color opposite of its parent’s. If a vertex is already discovered and

is the same color as its parent then the procedure terminates and returns false.

We modify this algorithm to work on Re-Pair compressed graphs. A similarly-modified BFS

to run on the compressed graph is shown in Algorithm 8 (RePair Bipartite). As before, when

a vertex is first discovered it is given the color opposite its parent’s. Additionally, we do a check

if the discovered vertex is a dictionary variable. If so then the vertex is instead given its parent’s

color, as the dictionary variable acts as a “stand-in” for the parent vertex. This algorithm is shown

in theorem 2.A.15 to have time complexity O(C), and in theorem 2.A.16 to use space O(C).

2.7 Component-Based Compression
Very large-scale integrated circuits (VLSI) are composed of a large number of hierarchically

nested components, which may be compressed as a collection of graphs composed of yet smaller

subgraphs. This hierarchy continues until some simplest set of graphs is reached (see Figure 2.13).

The numerous graphs involved in this compression form a strict partially ordered set, with an

irreflexive partial ordering. If a graph G0 has a supervertex for another graph G1 then we say that

G0 > G1, or that G0 is greater in the hierarchy than G1. This relation is irreflexive since no graph

may have a supervertex representing itself. Similarly the relation is asymmetric; G0 > G1 ^ G1 > G0

also implies a recursive definition. For a component graph Gc we say its set of edges is EC and

vertices is Vc.

2.7.1 Topological Sort

Our topological sort algorithm utilizes the subgraph-consistency of topological sort for hierar-

chical compressions. Subgraph consistency results from the observation that if a (super)vertex v0 in

a component graph G0 appears before v1 in a topological sort of G0, then it follows that all vertices

in the graph defined by v0 must appear before those in v1 in a topological sort of the uncompressed

2.7 Component-Based Compression 37

b1 a b2

c1 d1 c2 d2

4oo 8 //

3

��

5
//

3

OO
3
✏✏

5
//

3
__

(a)

S: A B

B

a,b,4
//

a,b,8
✏✏

A: a B: b

c d

3
✏✏

5
//

3
__

(b)

Figure 2.13: Example graph (a) and its hierarchical compression (b). Capital-lettered vertices
represent super nodes, lowercase-lettered vertices represent terminal nodes. The graph labeled S is
the highest in the hierarchy.

graph.

We begin by doing a topological sort of the graph highest in the hierarchy. For every (su-

per)vertex v of this graph’s topological sort we then perform a topological sort on the subgraph it

represents. We continue this substitution until we reach only terminals. After we perform a topo-

logical sort on each component, the list of sorts behaves as a dictionary compression. Every time a

supervertex v appears in a topological sort of a component, we substitute v for the topological sort

of the component which it represents. The time and space complexity for this algorithm with this

dictionary compression is O(C), and without to be O(C + |V|).

2.7.2 Single Source Shortest Path

The single source shortest paths problem requires, given a graph and a vertex start, compute

the shortest path from start to all other vertices. Our first step is to use an all-pairs shortest path

algorithm, like Floyd-Warshall [46], to compute every path (y, x) such that:

• vertex y (we call this an entry vertex) is a vertex within the component which is the destination

of an edge whose source (we call this the input vertex) is outside of the component. I.e. is

there is some edge (input, y)

• vertex x (we call this an exit vertex) is a vertex which is the source of an edge whose

destination is outside of the component (call this the output vertex). I.e. there is some edge

(x, output).

We then remove all vertices from each component except entry and exit vertices. Now each

entry-exit shortest path is represented by a single edge with weight equal that of the shortest path.

This repeats on all components, except for the hierarchically topmost component.

Next we use a single source shortest path algorithm, such as Dijkstra’s, to find the shortest path

lengths from start to each of the exit vertices in its component. We then correspondingly substitute

this graph for that above it in the hierarchy by substituting the component with start and the exit

2.7 Component-Based Compression 38

vertices in start’s component. The edges from this component are all those from an exit vertex in

start’s component to an output vertex in other components. This procedure is repeated, expanding

from start, up to the top of the hierarchy. The final step is compute the single source shortest path

by determining the path length from the start vertex to each of the entry vertices. To determine the

distance from start to a vertex central in a component (a vertex that is neither an entry vertex nor

an exit) we look up the length of the shortest path from the start vertex to an entry vertex of this

component, then from the entry vertex to the queried vertex.

The total time complexity of this algorithm is O(Âcomponent c |Vc|3 + |V|). The algorithm requires

space O(Âcomponent c |Vc|2 + |V|). The uncompressed approach requires time O(|E|+ |V| log |V|).

The compression-aware algorithm performs better when all components are small, and certainly

runs faster than the uncompressed version when Âcomponent c |Vc|3 |E|. The uncompressed

approach will require space O(|V|+ |E|) as well.

2.7.3 Minimum Spanning Tree

Given a graph G = (V, E) the minimum spanning tree (MST)of G is a subset of edges EMST ✓ E

such that the graph GMST = (V, EMST) is a tree connecting all of V, and the sum of all edge weights

Âe2EMST
w(e) is minimal. We compute the MST on the compressed graph by first computing the

MSTs for each component and then combining components by using a merge procedure. First

a topological sort will be computed to show the dependency among components. We then

compute the MST in topological order with later components added by merging the trees of smaller

components. The MST of the largest component is then returned by the algorithm.

In order to find the MST of a graph compressed by its components we will first discuss MST

merging: given two graphs G1 = (V1, E1) and G2 = (V2, E2) and their minimum spanning trees

EMST1 and EMST2 respectively, find the MST of the graph G⇤ = (V⇤, E⇤) where V⇤ = V1 [V2 and

E⇤ = E1 [E2 [E0 with E0 ✓ (V1 ⇥ V2) [(V2 ⇥ V1). At a high level, this problem asks that given

two disjoint graphs G1 and G2, their MSTs, and a set of edges E0 which cross these graphs, produce

the MST of the new graph G⇤ which results from combining G1, G2, and E0.

To solve this we exploit the cut property of minimum spanning trees, this states that the smallest

edge which spans any partition of vertices must be included in the minimum spanning tree. More

formally, for any partition Vc ⇢ V of vertices in graph G = (V, E), the minimum edge (v1, v2) such

that v1 2 Vc , v2 62 Vc must be included in G’s minimum spanning tree.

By this property the smallest-weight edge emin 2 E0 must be in the minimum spanning tree of

G⇤. Taking EMST1 [EMST2 [{emin} is sufficient to produce a spanning tree of G⇤, it is not sufficient

2.8 Boldi and Vigna: WebGraph Compression 39

v1 v2 va vb

v3 v4 vc vd

8

4

9

1

5
13

2

Figure 2.14: This figure shows that to merge two minimum spanning trees, simply applying the
cut property between the two subsets of vertices is not sufficient

for a minimum spanning tree. Consider the example demonstrated in Figure 2.14. In this example

G1 = {v1, v2, v3, v4} and G2 = {va, vb, vc, vd}. The minimum spanning trees for each are shown in

solid edges, and the dotted edges give E0. Simply adding the edge (V2, Va) to the graph as dictated

by the cut property does not give the minimum spanning tree. Instead, the minimum spanning

tree contains edge (V2, Vc) rather than (Va, Vc).

To merge the two MSTs we remove, from both, all of the edges which share a vertex with

any edge in E0. Call these new graphs G0
1 and G0

2 and the removed edges E00. We can now view

the state of the graph as a partial solution of Kruskal’s MST Algorithm where F = {G0
1, G0

2} [
S
(va ,vb)2E0{({va}, ∆), ({vb}, ∆)} denotes the forest in this partial solution and E0 [E00 denotes the

set of edges. Kruskal’s Algorithm can then “resume” from this partial solution to produce the new

MST.

The run time of MST Merging will be dominated by the use of Kruskal’s Algorithm, which

runs in O(E log V) time (the run time will be O(Ea(V)) if a disjoint set data structure is used). The

cost of Kruskal’s can alternatively be written as O(E log T) (or O(Ea(T))) where T is the number

of trees in the forest, and E is the number of edges which cross trees. This implies that the run

time of the partial solution will be O(|E0| log |E0|) since there are at most 2 · |E0| edges crossing the

trees G1 and G2, at most |E0| edges removed from G1 and G2 to construct G0
1 and G0

2, and at most

|E0|+ 2 trees in the forest.

2.8 Boldi and Vigna: WebGraph Compression
Boldi and Vigna in [41] presented a compression technique for web graphs as part of their

WebGraph Framework. This scheme first requires that all vertices be given a unique index. The

graph is represented in its adjacency list form, with the vertices ordered according to their index.

The adjacency list is compressed by representing destination vertices in three ways: copy blocks,

intervals, and residuals.

Each element in the adjacency list has a reference element. The copy blocks field gives an

2.8 Boldi and Vigna: WebGraph Compression 40

encoding of which vertices in the current element’s adjacency list are shared with those in the

referenced element’s. The intervals field gives a list of sequential blocks such that all vertices in the

block are in the adjacency list. For example it may state that “all vertices 1-5 and 13-24 are in this

element’s adjacency list”. The residuals are the nodes which cannot be expressed in any of the

other two ways. For simplicity we consider residuals as intervals of length 1.

2.8.1 Bipartite Assignment

The advantage of the BV compression comes from the representation of the copy blocks and the

sequences, thus any algorithm which effectively utilizes the compression must take advantage of

this representation. While performing bipartite checking we know that at a given vertex the color of

the back reference must match that of the current node, as otherwise there would be conflict with

the destination nodes they share. We exploit this property in order to skip the copy block nodes.

At a given node we mark the back reference as the same color, but indicate it is still unvisited to be

processed later.

We use a disjoint-set forest data structure like that presented in chapter 21 of [46]. As a sequence

is visited we create a set for each element in that sequence then union all together. If there is another

set with nonempty intersection with this sequence, we union both sets together. We maintain

four instances of this data structure: two for red vertices and two for blue. For each of these we

maintain identical copies, with the maximum vertex as the set representative in one instance and

the minimum vertex in the other. We call these forests max red, min red, max blue, and min blue.

By stating red or blue we imply that the same operation be done on both max red and min red or

max blue and min blue.

Algorithm 11 (BV Bipartite) for bipartite checking a BV-compressed graph operates as follows.

We begin with vertex 1 and color it RED. Note that vertex 1 does not have a back pointer in this

form of compression. We then add vertex 1 to a list of visited nodes (called visited) and red. Next

we add each of the sequences in vertex 1’s adjacency list to blue. We also add these vertices to a

buffer.

Next we remove an element from the buffer and add that element to visited. We then check the

color of this element by doing a FIND operation in red and blue. After this we check the color of the

back reference vertex by doing a find operation in red and blue. If the color of the back reference

does not match that of the current vertex then return false. Otherwise if the back reference vertex

is uncolored we add it to either red or blue, whichever the current vertex is in (assume that the

current node is blue). We then process each sequence in the vertex’s adjacency list. We traverse

2.9 Summary 41

parent vertices in both the max blue and min blue forests to see if any subset has a representative

within the sequence. If so then we return false. Otherwise we operate similarly in red, and for any

sets not disjoint with the sequence we perform a union of all these sets with any additional vertices

from the sequence which must be added. We then add all yet unvisited vertices in each sequence

to the buffer. We repeat until the buffer is empty.

In total, this algorithm requires time O
�
(|V|+ s) · a(|V|)

�
(theorem 2.A.21), and space O(C)

(theorem 2.A.22). The uncompressed approach requires O(|V| + |E|) time and space. Since

s << |E| and for any V of practical size we can consider a(|V|) to be a small constant, this

algorithm is much faster than the uncompressed approach, and requires less space.

2.9 Summary
The primary contribution of this chapter is its presentation of various sorting algorithms,

graph algorithms, and geometric algorithms which operate on compressed data. Not only does

this save the user time from decompressing and then recompressing data, but operating on the

compressed data may give a performance benefit over even the traditional raw-data analog. In fact,

the algorithms presented guarantee a time complexity improvement over the classical approach

whenever C ⌧ n for numerical sorting, or in most occasions where C ⌧ |V| + |E| for graph

algorithms.

Algorithm 1 (priority queue sorting on data compressed by arithmetic sequences) runs in

O(n log C) time, and are therefore no worse than a decompression followed by a sort, even for

inputs with a poor compression ratio. Algorithm 3 (sorting on data compressed by LZ77), by

running in O(C + |S| log |S|+ n), effectively gives linear sorting time in n. Finally, Algorithm 5

(sorting on data compressed by a context free grammar), by running in O(C · |S|), gives a sorting

time independent of n.

We also present other noteworthy algorithms for indexing and finding kth order statistics.

Algorithm 2 provides O(C log C) running time for computing the kth order statistic of a set of

data compressed by arithmetic sequences. Algorithm 4 provides a method for indexing into data

compressed by LZ77 in O(C) time. If this indexing is done into a sorted LZ77 compressed data

then this gives the kth order statistic. One could use previous work done on random access on

sorted grammar-compressed data, such as the method presented in [47], in order to find the kth

order statistic for grammar-compressed data.

Next we give a compression scheme for pointset data which is defined for arbitrary dimension-

ality, and can be used in either a lossy or a lossless way. We give algorithms for nearest neighbor,

2.A Lemmas and Theorems 42

range searches, and polytope membership, all of which run faster while requiring less memory

than their traditional counterparts. Nearest neighbor and range queries each require O(L · d) time,

where L is the number of lines in the compressed pointset. Polytope membership runs in time

O(L · d · F), where F is the number of faces on the convex polytope.

Finally we provide fast algorithms on compressed graphs under a Re-Pair compression, hier-

archical compression, and BV compression, which each running asymptotically faster than the

equivalent algorithms on uncompressed data. We present algorithms for topological sort and

bipartite checking on Re-Pair compressed graphs which run in time O(C) rather than O(|V|+ |E|)

by the uncompressed graph size. Under a hierarchical compression model we can perform topo-

logical sort in O(C + |V|) and single source shortest path in O(Âcomponentc |Vc|3 + |V|), compared

to O(|V|+ |E|) and O(|E|+ |V| log |V|) for the uncompressed approaches respectively. In the BV

model we perform bipartite checking in O(C · (|V|)), which for all practical purposes is linear in C.

Most importantly this work introduces a novel extension on the aforementioned results on

compressed pattern matching and edit-distance: that general-purpose algorithms can be performed

on compressed data. We broaden the scope of these results in order to show wide-spread application

of these techniques across many problem domains. This demonstrates the necessity of developing

new theory and techniques for compression-aware algorithms to unlock this potential.

2.A Lemmas and Theorems
In order to enhance the readability of this dissertation chapter, we collected the proofs of the

various lemmas and theorems into a single section below.

Theorem 2.A.1. When Algorithm 1 (Arith Sort) is run an arithmetic-sequences compressed array of

compression size C and uncompressed size n, it terminates in time O(n log C).

Proof. The algorithm en-queues and de-queues n total points be inserted into and removed from

the queue. The invariant requires that exactly one element be in the priority queue at any give

time. The time to insert/delete one item into a priority queue is O(log m) where m is the size of the

queue. Due to the invariant m = C, the total time taken to perform the n insertions and deletions

gives a time complexity of O(n log C).

Theorem 2.A.2. When Algorithm 1 (Arith Sort) is run on an arithmetic-sequences compressed array of

compression size C and uncompressed size n, it requires O(n) space.

2.A Lemmas and Theorems 43

Proof. The only relevant variables are the compression (size C), the output data structure (size n),

and the priority queue (which due to the invariant must be size C). Is is assumed that in practice

C ⌧ n, giving a final space complexity of O(n).

Lemma 2.A.1. The number of points in [0, g], given by ÂC
i=1b

g
di
c and g = k

L , is between k and k � C

Proof. By construction ÂC
i=1

g
di
= k. It is clear that for any sum of positive rationals

j

Â
i=1

ai
bi

�
j

Â
i=1

b ai
bi
c j

since for any rational

0 a
b
� b a

b
c 1

This implies that
C

Â
i=1

g
di

�
C

Â
i=1

b g
di
c = k �

C

Â
i=1

b g
di
c C) k � C

C

Â
i=1

b g
di
c

We also know that for any rational

b a
b
c a

b
)

C

Â
i=1

b g
di
c

C

Â
i=1

g
di

= k

Thus

k � C
C

Â
i=1

b g
di
c k

Theorem 2.A.3. When Algorithm 2 (Index Arith) is run on an arithmetic-sequences compressed array of

compression size C, it terminates in time O(C log C).

Proof. We break up the time complexity of this analysis by the guess, check, count processes.

guess:

For this step we must calculate

L =
C

Â
i=1

li =
C

Â
i=1

1
di

This calculation requires C additions, thus giving time complexity O(C).

Next we find the value of g = k
L , which can be done in constant time.

check:

For this step we check the number of points in [0, g], given by

2.A Lemmas and Theorems 44

C

Â
i=1

b g
di
c

This calculation requires C additions, thus giving time complexity O(C).

count:

For this step we must count the remaining points in the sequence, the number of these is given

by

C

Â
i=1

g
di

�
C

Â
i=1

b g
di
c = m

By Lemma 2.A.1 this value is no greater than C.

We then find the smallest element in the sequence after g, given by (for sequence A(di))

di + g � (g mod di)

This can be calculated in constant time.

These smallest elements in each sequence are then put into a priority queue, and then the

remaining m C points are found as in Arith sort. This gives a final running time of this step to

be O(C log C), which is of higher complexity than the guess and check steps.

Theorem 2.A.4. When Algorithm 2 (Index Arith) is run on an arithmetic-sequences compressed array of

compression size C , it requires O(C) space.

Proof. In this algorithm there is only one variable-sized data structure used: the priority queue.

Similar to Arith sort this priority queue has a data structure that restricts its size complexity to

be no more than C. Therefore the total space used by this algorithm is O(C).

Theorem 2.A.5. When Algorithm 3 (LZ77 Sort) is run a LZ77 compressed array of compression size C,

uncompressed size n, and a set of values S, it terminates in time O(C + |S| log |S|+ n).

Proof. The action of this algorithm can be broken into two components: scan and simulated decom-

pression.

scan:

This step does a search through the compression to build up S, then sorts the characters in S.

To scan through the compression requires O(C) time. Whenever a terminal is encountered it can

2.A Lemmas and Theorems 45

then be added to a priority queue, if repeated the terminal can be removed. The cost to maintain

the priority queue is O(|S| log |S|). This gives a final time complexity of O(C + |S| log |S|).

simulated decompression:

This step acts similarly to a decompression of the LZ77 compressed array, which runs in time

O(n). The only difference between this step and a true decompression is that this step must keep

count of the multiplicity of each element in S, and it uses a circular buffer rather than an array.

Since we have a static sorted list of elements in S we can iterate the counter for any character

in constant time. A circular buffer, in this case, can be implemented as an array where every

query to index i of the array is actually an index to i mod size, where size is the capacity of the

circular buffer, which still allows for constant access time into the array. Therefore the simulated

decompression takes no more time than actual decompression, so this step takes time O(n).

This gives a final time complexity of O(C + |S| log |S|+ n)

Theorem 2.A.6. When Algorithm 3 (LZ77 Sort) is run on a LZ77 compressed array of compression size C

with maximum back pointer length size, it requires O(C + size) space.

Proof. There are three data structures at use in this algorithm: the original compression, S, and the

circular buffer. The size of the compression is defined to be C, and we know that C |S|. The size

of the circular buffer has been defined as the depth of the deepest back pointer in the compression,

which is called size. This implies that our final time complexity is O(C + size).

Theorem 2.A.7. When Algorithm 4 (LZ77 Index) is run on a LZ77 compressed array of compression size

C it terminates in time O(C)

Proof. This algorithm requires two scans through the compression: One in the forward direction,

one in the backward. The forward scan iterates through each element in the compression to find

which one contains the query index i. In this scan each element in the compression is viewed no

more than once, giving time complexity O(C). If this element is not a terminal the value of i is

updated by a constant time calculation to a new i0 < i.

Next the backward scan begins, searching for the element which contains i0, if this again is

not a terminal we perform a constant time update of i0 and continue scanning backwards. In

the backwards scan we never index any element in the compression more than once, thus giving

running time O(C).

2.A Lemmas and Theorems 46

Theorem 2.A.8. When Algorithm 4 (LZ77 Index) is run on a LZ77 compressed array of compression size

C it requires O(C) space.

Proof. The only data required for this algorithm is the original compression, the index i, and some

additional counters. Therefore the asymptotic space complexity is given by O(C).

Theorem 2.A.9. When Algorithm 5 (CFG Sort) is run on a context free grammar compression of size C

with a set of values S, it terminates in time O(C · |S|)

Proof. The first step of this algorithm behaves much the same as the first step of LZ77 Sort,

there is a scan through the compression which sorts the characters. This has time complexity

O(C + |S| log |S|).

The dependency graph construction step takes time O(C), as by simply removing terminals

from the substitution rules the grammar resembles an adjacency list. This resulting graph has a

vertex for every variable in the grammar, and an edge for every term in the compression. This

means that a topological sort of the graph can be completed in time O(C).

The final step of summing the vectors for each term in total takes O(C) vector additions. Each

addition takes O(|S|) time, giving a time complexity of O(C · |S|) for this step.

Since C > |S| > log |S| the dominating term is O(C · |S|).

Theorem 2.A.10. When Algorithm 5 (CFG Sort) is run on a context free grammar compression of size C

with a set of values S, it requires O(C · |S|) space.

Proof. The data structures used in this algorithm are the original compression, the dependency

graph representation of this compression (with its topological sorted list of vertices), and the list

of vectors used during the final summation. The original compression has size C, and its graph

representation also has size C since by removing terminals from the compression we create the

graph’s adjacency list representation. The list of vectors has size O((|V|+ |S|) · |S|), where V is

the set of variables in the grammar, since each term in the grammar requires a vector of size |S|.

Since |V|+ |S| C we simplify this by giving space complexity O(C · |S|).

Theorem 2.A.11. When Algorithm 6 (LZ78 Sort) is run on a LZ78 compression of size C with a set of

values S, it terminates in time O(C · |S|).

Proof. The proof for this statement is similar to that for CFG Sort. Additionally, a LZ78-compressed

array can be converted to a CFG-compressed array in time O(C). Thus CFG Sort can be run with

no asymptotic increase in time complexity.

2.A Lemmas and Theorems 47

Theorem 2.A.12. When Algorithm 6 (LZ78 Sort) is run on a LZ78 compression of size C with a set of

values S, it requires O(C · |S|) space.

Proof. The proof for this statement is similar to that for CFG Sort. Additionally, a LZ78-compressed

array can be converted to a CFG-compressed array with space O(C). Thus Sort CFG can be run

with no asymptotic increase in space complexity.

Theorem 2.A.13. When Algorithm 7 (RePair Topological)is run on a Re-Pair compressed graph of size

C, it terminates in time O(C).

Proof. The Re-Pair compression is itself a graph of size |VC|+ |EC| = C by definition, where VC is

the set of vertices in this graph, and EC is the set of edges. A topological sort on this graph requires

time O(|VC|+ |EC|) = O(C).

Once the topological sort is done the dictionary vertices are removed, taking time O(|VC|). This

gives a final time complexity of O(C).

Theorem 2.A.14. When Algorithm 7 (RePair Topological) is run on a Re-Pair compressed graph of

size C, it requires O(C) space.

Proof. The only data structures involved with this algorithm are the original compression, and

its topological sort. The compression is defined to have size C, and the topological sort has size

|VC| C. Thus the asymptotic space complexity of the algorithm is given by O(C).

Theorem 2.A.15. When Algorithm 8 (RePair Bipartite) is run on a Re-Pair compressed graph of size

C, it terminates in time O(C).

Proof. This algorithm is a modification of a breadth first search. The modification made is simply

the procedure for color checking done while processing each node, which for each node is a

constant time overhead. This means that there is no asymptotic time penalty for running this

algorithm over breadth first search, giving the time complexity to be O(|VC|+ |EC|) = O(C).

Theorem 2.A.16. When Algorithm 8 (RePair Bipartite) is run on a Re-Pair compressed graph of size

C, it terminates in time O(C).

Proof. The only data structure needed for this algorithm is the original compression plus auxiliary

data to keep track of vertex color. This auxiliary information comes at no additional asymptotic

space cost since it requires only constant size additional information for each vertex, therefore the

space complexity is O(C).

2.A Lemmas and Theorems 48

Theorem 2.A.17. When Algorithm 9 (Hierarchical Topological) is run on a hierarchy compressed

graph of compression size C, and V vertices uncompressed, it terminates in time O(C + |V|).

Proof. The first step in this algorithm is to perform a topological sort of each component. For

each component with |V| vertices and |E| edges this takes O(|V|+ |E|). Therefore the total time

complexity of this step is (where k is the number of components in the compression)

k�1

Â
i=0

O(|Vi|+ |Ei|) = O(C)

Left as-is the output of these topological sorts is a dictionary-compressed topological sort of the

original uncompressed graph. However, this can be expanded into the uncompressed topological

sort in O(|V|) time, where V is the set of vertices in the uncompressed graph. Thus the total time

complexity is O(|V|+ C).

Theorem 2.A.18. When Algorithm 9 (Hierarchical Topological) is run on a hierarchy compressed

graph of compression size C, and V vertices uncompressed, it requires O(C + |V|) space.

Proof. The data structures used in this algorithm are the compression (which is defined to have

size C), and the topological sorts. Similar to the time complexity, if the topological sorts of each

component are left in a dictionary compressed form we achieve space

O
� k�1

Â
i=0

O(|Vi|)
�
 O(C)

for the topological sorts. If these are decompressed we use space O(|V|). This gives an overall

complexity of O(C + |V|).

Theorem 2.A.19. When Algorithm 10 (Hierarchical SSSP) is run on a hierarchy compressed graph

where a component c has vertices Vc and the uncompressed graph has vertices V, it terminates in time

O(Âcomponent c |Vc|3 + |V|).

Proof. The first step of this algorithm is to perform Floyd-Warshall on each component, this gives

overall time complexity

O
�

Â
component c

|Vc|3
�

The time to run Dijkstra’s algorithm on the component with start is

O(|Estart|+ |Vstart| log |Vstart|) < O(|Vstart|3)

2.A Lemmas and Theorems 49

The final step requires Dijkstra’s algorithm be run on the graph atop the hierarchy (call this G0),

which takes time

O(|E0|+ |V0| log |V0|) < O(|V0|3)

The output path table takes time O(|V|) to compute because the shortest path from start to any

other vertex v can be computed in constant time once the distance from start to the entry vertex in

v’s component is known. Therefore the final running time is O(Âcomponent c |Vc|3 + |V|).

Theorem 2.A.20. When Algorithm 10 (Hierarchical SSSP) is run on a hierarchy compressed graph where

a component c has vertices Vc and the uncompressed graph has vertices V, it requires O(Âcomponent c |Vc|2 +

|V|) space.

Proof. The space required for all of the all-pairs shortest path tables is

O
�

Â
component c

|Vc|2
�

The space required to maintain the single-source shortest path table is O(|V|). These combined

give the overall asymptotic space complexity to be

O
�

Â
component c

|Vc|2 + |V|
�

Theorem 2.A.21. When Algorithm 11 (BV Bipartite) is run on a Boldi-Vigna compressed graph with

vertices V and s sequences, it terminates in time O
�
(|V| + s) · a(|V|)

�
where a(|V|) is the inverse

Ackermann function.

Proof. We assume constant time insertion and deletion from visited and the buffer. We never do

more than |V| inserts and deletes from each one, so the time used to maintain these structures

across the whole algorithm is O(|V|).

In [46] the authors state that a sequence of m MAKE� SET, FIND, and UNION operations where n of

them are MAKE� SET takes time O(m · a(n)) where a is the very slow growing inverse Ackermann

function. This gives us the running time for maintaining the forests to be O
�
(|V|+ s) · a(|V|)

�

O(C · a(|V|)), which is also the dominant term and thus final running time.

2.B Algorithms Pseudocode 50

Theorem 2.A.22. When Algorithm 11 (BV Bipartite) is run on a Boldi-Vigna compressed graph with

vertices V and compression size C, it requires O(C + |V|) space.

Proof. The data structures used in this algorithm are the original compression, the array visited,

the buffer, and the forests. The original compression is defined to be size C, and each of the other

structures require no more than |V| space. Since there are a constant number of forests we obtain

time complexity O(C + |V|).

2.B Algorithms Pseudocode
In order to enhance the readability of this dissertation chapter, we collected the pseudocode for

the various algorithms into a single section below.

Algorithm 1: Arith Sort-A method for sorting arithmetic sequences using a priority queue.
Here, pair contains an element v which is the value of a point, and d which is the interval for
its source arithmetic sequence.

Input: set of C arithmetic sequences A = {Ai, ..., AC}, the number of values to sort n
Output: set of n ordered smallest values

1 initialize priority queue pq;
2 initialize an array of size n sorted;
3 foreach Ai 2 A do
4 pq.insert(pair(0, di));
5 for i = 0; i < n; ++ i do
6 pair p = pq.poll();
7 sorted[i] = p.v;
8 pq.insert(pair(p.v + p.d, p.d));
9 return sorted;

2.B Algorithms Pseudocode 51

Algorithm 2: Arith Index-Finds the kth element in the combined sequence. Here, pair
contains an element v which is the value of a point, and d which is the interval for its source
arithmetic sequence. The method next mult(a, b) finds the next multiple of b which is greater
than a.

Input: set of C Arithmetic Sequences A = {Ai, ..., AC}, the index queried k
Output: value of the kth smallest element

1 k = k � C;
2 initialize priority queue pq;
3 L = 0;
4 foreach i < C do
5 L += 1

di
;

6 d = k
L ;

7 count = 0;
8 foreach i < C do
9 count += b d

di
c;

10 pq.add(pair(next mult(d, di),di));
11 Initialize value = 0
12 for i = 0; i < k � count; ++ i do
13 pair p = pq.poll();
14 value = p.v;
15 pq.insert(pair(p.v + p.d, p.d));
16 return value;

Algorithm 3: LZ77 Sort-A method for sorting a LZ77 compressed string. Here back is the
location of the back pointer index, and length is the number of characters to copy. It is
assumed that if an index is not in S then it is a back pointer.

Input: A LZ77-compressed list LZ
Output: A LZ77-compressed sorted list

1 initialize a list Lit;
2 initialize a table map where key 2 S, value = 0;
3 initialize a circular buffer b with size = length of longest back reference;
4 foreach a 2 LZ do
5 if a 2 S ^ a 62 Lit then
6 Lit.insert(a);

7 Lit.sort();
8 initialize j = 0;
9 for i = 0; i < C do

10 if LZ[i] 2 S then
11 b[j mod size] = LZ[i];
12 ++ map.value(LZ[i]);
13 ++ j;
14 else
15 for m = LZ[i].back; m < (LZ[i].back + LZ[i].length) do
16 b[j mod size] = b[m mod size];
17 ++ map.value(b[m mod size];
18 ++ j;

19 return map;

2.B Algorithms Pseudocode 52

Algorithm 4: LZ77 Index-A method for indexing a LZ77 compressed string. Here back is
the location of the back pointer index, and length is the number of characters to copy. It is
assumed that if an index is not in S then it is a back pointer.

Input: A LZ77-compressed list LZ, a query index i
Output: The ith element of a decompressed LZ

1 initialize count = 1;
2 initialize j = 1;
3 while count < i do
4 ++ j;
5 if LZ[j] 2 S then
6 ++ count;
7 else
8 count+ = LZ[j].length;

9 while LZ[j] 62 S do
10 i = LZ[j].back + LZ[j].length � (count � i)� 1;
11 if i > count � LZ[j].length then
12 i =

�
(i � LZ[j].back) mod (count � LZ[j].length � LZ[j].back + 1)

�
+ LZ[j].back;

13 while count � i do
14 if LZ[j] 2 S then
15 count = count � 1;
16 j = j � 1;
17 else
18 count = count � LZ[j].length;
19 j = j � 1;

20 ++ j;
21 if LZ[j] 62 S then
22 count = count + LZ[j].length;
23 else
24 ++ count;

25 return LZ[j];

Algorithm 5: CFG Sort-Sorts a context free grammar. Here, S is the set of values in the
sequence represented by the grammar, and V is the set of variables.

Input: Context free grammar CFG
Output: The sorted string represented by CFG with start variable A0

1 Convert the Variables in CFG into a dependency graph G;
2 perform a topological sort on G;
3 reorder rules in CFG to be the reverse of G;
4 Sort S;
5 transform each literal into a |S|-dimensional vector;
6 foreach rule r 2 CFG do
7 initialize a vector sum = h0i;
8 foreach Symbol S 2 S [V listed in r do
9 sum+ = hSi;

10 S = S [{A + r}, where Ar is the variable associated with rule r;
11 hAri = sum;
12 return hA0i;

2.B Algorithms Pseudocode 53

Algorithm 6: LZ78 Sort-A method for sorting a LZ78 compressed string. Here back is the
location of the back pointer index, and s is the symbol to append.

Input: A LZ78-compressed list LZ
Output: A LZ78-compressed sorted list

1 initialize an array map where elements are in N|S|;
2 initialize a |S|-dimensional vector sum = h0i;
3 for i = 1; i < |LZ|; i ++ do
4 if LZ[i].back == 0 then
5 map[i] = hLZ[i].si;
6 else
7 map[i] = map[(LZ[i].back)] + hLZ[i].si;
8 sum += LS[i];
9 return sum;

Algorithm 7: RePair Topological-A method for performing a topological sort on a Re-Pair
compressed graph. Here V is the set of vertices from the original uncompressed graph G.

Input: A Re-Pair compressed graph GC
Output: A list of vertices from the original graph G in topologically-sorted order.

1 initialize a list TS;
2 TSC = topological sort(GC);
3 foreach v 2 TS do
4 if v 2 V then
5 TS.append(v);

6 return TS;

2.B Algorithms Pseudocode 54

Algorithm 8: RePair Bipartite-A method for bipartite assignment on a Re-Pair compressed
graph. Here V is the set of vertices from the original uncompressed graph G, and VC is the
set of vertices form the compressed graph GC. Each vertex object is associated with a color
called color, a predecessor called p, and an adjacency list adj. the color WHITE identifies
unvisited vertices, GRAY is discovered but not processed, and RED and BLUE are used as the
two colors for the bipartite testing and signify that the vertex has been completely processed.

Input: A Re-Pair compressed graph GC
Output: V if the uncompressed graph G is bipartite, FALSE otherwise.

1 initialize FIFO queue Q;
2 set D = VC r V;
3 foreach v 2 VC r {s} do
4 v.color = WHITE;
5 v.p = NULL;
6 s.color = GRAY;
7 s.p = NULL;
8 ENQUEUE(Q, s);
9 while Q 6= ∆ do

10 u = DEQUEUE(Q);
11 foreach v 2 u.adj do
12 if v.color ==WHITE then
13 v.color = GRAY;
14 v.p = u;
15 ENQUEUE(Q, v);
16 else if v.color == u.color ^ u 62 D _ v.color 6= u.color ^ u 2 D then
17 return FALSE;

18 if
�
(u.p).color ==RED ^u 62 D

�
_
�
(u.p).color ==BLUE ^u 2 D

�
then

19 u.color =BLUE;
20 else
21 u.color=RED;

22 return V;

Algorithm 9: Hierarchical Topological-A method for performing a topological sort on a
hierarchy compressed graph.

Input: A list of components L for a hierarchical-compressed graph.
Output: A list of vertices from the original graph G in topologically-sorted order.

1 initialize a 2-dimensional list TSC;
2 initialize a list TS = ∆;
3 foreach c 2 L do
4 TSC[c] = topological sort(c);
5 while TSC[0] 6= ∆ do
6 v = TSC[0].remove head();
7 if TSC[0][v] 2 L then
8 INSERT(TS[0][v], TS[v]);
9 else

10 TS.append(v);

11 return TS;

2.B Algorithms Pseudocode 55

Algorithm 10: Hierarchical SSSP-A method for performing single-source shortest path on a
hierarchy compressed graph. We assume that in L the components are listed from the bottom
of the hierarchy to the top.

Input: A list of components L for a hierarchical-compressed graph G . A start vertex start.
Output: A table containing the shortest paths from start.

1 initialize a list all pairs = ∆;
2 define Gstart as the component containing start;
3 define G0 as the top component in the hierarchy;
4 define paths to be the shortest distances from start to each v;
5 foreach component c 2 L do
6 foreach vertex v 2 Vc do
7 if v 62 V then
8 replace v with all (entry, exit) paths in its representative component;

9 all pairs[c] = Floyd� Warshall(c);
10 Find shortest paths of type (start, entry);
11 foreach vertex v 2 V do
12 paths(v) = min((start, entry) + (entry, v)) ;
13 return v;

2.B Algorithms Pseudocode 56

Algorithm 11: BV Bipartite-A method for performing a bipartite assignment on a BV com-
pressed graph. Every time we do MAKE� SET into red min, red max, blue min, blue max we
also do a FIND for one more than and one less than that value. If either exist we then do a
UNION with those sets. Where it states red and blue, assume the same operation is done on
red min, red max or blue min, blue max. adj(v) refers to the compressed adjacency list of v.
When we do a FIND on a sequence we receive all sets incident with that sequence.

Input: A BV-compressed graph G.
Output: red min and blue min if the uncompressed graph G is bipartite, FALSE otherwise.

1 initialize red min, red max, blue min, blue max;
2 initialize visited = ∆; initialize bu f f er = ∆;
3 red.MAKE� SET(1);
4 visited.insert(1);
5 foreach vertex v 2 adj(1) do
6 bu f f er.insert(v); blue.MAKE� SET(1);
7 while bu f f er.notEmpty() do
8 v = bu f f er.remove(); visited.insert(v);
9 color = RED if red.FIND(v) else BLUE

10 if blue.FIND(back(v)) ^ color == RED _ red.FIND(back(v)) ^ color == BLUE then
11 return FALSE;
12 else if color == RED then
13 red.MAKE� SET(back(v));
14 else
15 blue.MAKE� SET(back(v))
16 foreach sequence s 2 adj(v) do
17 if color == RED then
18 if red.FIND(s) then
19 return FALSE;
20 foreach vertex u 62 blue.FIND(s) do
21 blue.MAKE� SET(u); bu f f er.insert(u);

22 else if color == BLUE then
23 if blue.FIND(s) then
24 return FALSE;
25 foreach vertex u 62 red.FIND(s) do
26 red.MAKE� SET(u); bu f f er.insert(u);

27 return (red min, blue min);

Chapter 3

Overview and Complexity-Theoretic

Analysis of Automata Processing

The ubiquity of web connectivity has caused runaway increases in the size and number of massive

datasets as well as unprecedented volumes of web traffic. These problems are exacerbated by

Moore’s Law’s inability to keep pace with this trend. In response, the architecture community

is looking beyond the traditional von Neumann CPU designs, towards adopting heterogeneous

computing models, using a variety architectures as accelerators for performance-critical tasks.

SIMD processors, such as graphics processing units (GPUs), can perform vector-parallel floating

point arithmetic to yield sizable speedups on appropriately parallelizable tasks. Many-core CPU

designs, such as Xeon Phi, utilize multiple parallel tandem CPUs to achieve performance benefits

in a MIMD manner. Field programmable gates arrays (FPGAs) and application-specific integrated

circuits (ASICs) enable highly specialized hardware designs to optimize domain-specific tasks.

We are currently seeing an increasing interest in automata-based architecture designs as a new

addition to the pantheon of specialized co-processors. The promise of these architectures lies in

their ability to efficiently simulate in hardware non-deterministic computations (in the form of

non-deterministic finite automata), thus providing acceleration in a MISD way.

Investigators have developed fairly robust theory to support the value of many other computing

tools. Some problems were long known to be more efficiently solvable by parallel computers [48],

which provides a guide for identifying problems well-suited for implementation on e.g., many-core

CPUs. Previous research on the complexity of Boolean circuits [49] can guide the development

of circuit-based hardware such as ASICs and FPGAs. In this section we discuss the nature of

57

3.1 Finite State Automata 58

problems that are amenable to efficient parallelization via automata computing, and also relate

these observations to other well-established results.

3.1 Finite State Automata
A finite state automaton (FA) is a simple classical computation model consisting of transitions

among a fixed set of states [50]. More formally, a finite state automaton is defined by a 5-tuple

(Q, q0, S, d, F) where Q is a finite set of states, q0 is a unique initial state, S is an alphabet of symbols,

d : Q ⇥ S ! Q is the state transition function for the machine (d maps an input state-symbol pair

to a destination state), and F is a set of final accepting states. A finite automaton begins at its initial

state q0 and reads the input string one symbol at a time, while changing states for each processed

symbol according to its transition function. If, after reading the entire input string, the FA halts in

a final state (one belonging to F), we say that the machine accepts the input string, otherwise it

rejects the input string.

Note that in the interest of succinctness we can generalize transition function d to map sets

of symbols onto new states, rather than just individual symbols (i.e. d : Q ⇥ 2S ! Q). This does

not change the behavior of the machines, as the generalized transition function can always be

converted to the former simpler definition by adding separate state-symbol pair transitions for

each state-symbol-set pair transition.

A finite automaton is a deterministic finite automaton (DFA) if its transition mapping d always

has exactly one next state for every symbol-state input pair. If for some transitions there is more

than one next state (that is, d maps onto sets of states rather than individual single states), the

automaton is a nondeterministic finite automaton (NFA). For an NFA, at every step a subset of its

states may be active (compared to a DFA, where exactly one state may be active at any particular

time), and the transition function is applied to each state in its active state-set in turn, with the

resulting next-state set being the union of the resulting individual transitions. Formally, an NFA is

defined by the same 5-tuple (Q, q0, S, d, F), but with a generalized transition function which maps

states to sets of states, i.e. d : Q ⇥ S ! 2Q. If the set of states Qa is active, and the machine receives

input b, then the next set of active states is given by
S

q2Qa d(q, b). Thus, determinism is a special

case of non-determinism.

While NFAs are more general than DFAs, it can be proven that they have no greater computing

power. Using a technique called a powerset construction, any NFA can be converted to an equivalent

DFA, at the potential cost of an exponential expansion in the number of states. Since there may be

an arbitrary set of active states in the NFA, we build a DFA where each of its states represent a set

3.2 Micron’s Automata Processor 59

of states in the NFA. Every set of active states in the NFA therefore corresponds to a single state in

this DFA. This implies that for some NFA with k states, there is always an equivalent DFA with no

more than 2k state. That is, eliminating non-determinism from an NFA can result in an exponential

increase in the state set, and indeed this is sometimes unavoidable [50].

3.2 Micron’s Automata Processor
A specific architecture that we will focus on in our discussion and experimentation is the Micron

Automata Processor (AP) [7], which is a reconfigurable hardware accelerator for non-deterministic

finite automata (NFA) simulation. This automata processor was built by the Micron Technology

corporation as a hardware implementation on a circuit board that can be plugged into commodity

PCs (see Figure 3.1 for a photo of this prototype). Leveraging existing VLSI memory technology,

Micron’s Automata Processor uses memory reads and writes along with wide logic gates to

implement bit-parallel execution of NFAs in hardware.

The AP’s usage of finite automata does not consider whether a particular input string is

accepted/rejected, but rather gives an output signal whenever one of its pre-defined “reporting

states” is active, thereafter continuing to process the input string. Such a machine is a variation

of a finite automaton similar to a “Moore machine” in that every transition can also result in an

outputted symbol, depending on the current active state(s) [51].

For our theoretical analysis of the AP, we wish to simplify its behavior, which will hopefully

enable us to characterize the formal language classes computed (or recognized) by such automata.

To do this, we must consider only the traditional automata variants, i.e. those that accept/reject

input strings, rather than ones that also output symbols like in the Moore machine model.

3.2.1 Homogeneous Finite Automata

The Micron AP acts as a hardware implementation of a bit-parallel NFA simulator. The bit-

parallel NFA simulation algorithm requires the automaton be homogeneous, meaning that all

incoming transitions for every state must match on the same character (this could be generalized

to a set of characters). Since all the incoming transitions for each state match on the same symbol,

homogeneous NFA matching is a property of states rather than transitions. This allows for the

machine topology to be defined independently from the matching behavior. The result is that each

state determines its activation in isolation from the other states, thus enabling MISD parallelism.

More formally, a finite state automaton is homogeneous if for every state q 2 Q such that

9q1, q2 2 Q and s1, s2 2 S where d(q1, s1) = d(q2, s2) = q then it must be that s1 = s2. To

generalize this definition to transitions on sets of states, the automaton is homogeneous if for every

3.2 Micron’s Automata Processor 60

Figure 3.1: A photograph of the Micron Automata Processor (AP) hardware, manufactured by the
Micron Technology corporation in 2016, which can be plugged into commodity PCs.

3.2 Micron’s Automata Processor 61

Figure 3.2: An example of homogeneous vs. non-homogeneous finite automata. In the automa-
ton on the left all incoming transitions of all states match on the same symbol set, making it
homogeneous. In the automaton on the right there is an incoming transition for state “H” which
matches on the symbol ‘a’, and another that matches on the symbol ‘b’, thus this automaton is not
homogeneous.

state q 2 Q such that 9q1, q2 2 Q and S1, S2 ✓ S where d(q1, S1) = d(q2, S2) = q then it must be

that S1 = S2.

Figure 3.2 illustrates the latter distinction. The bit-parallel algorithm requires this restriction as

symbol matching in homogeneous automata is a property of states rather than of the transitions,

i.e. states match on sets of symbols rather than transitions matching on sets of symbols. For a

homogeneous automaton, a state q which matches on symbol s (or set of symbols S0) becomes

active in step i if there is some state which was active in step i � 1 which has a transition to state q,

and the ith symbol in the input string is s (or belongs to S0).

Non-homogeneous to Homogeneous Finite Automata

Homogeneous finite-state automata are provably no less powerful than non-homogeneous

automata. To establish this equivalence, we convert a given non-homogeneous automaton to

an equivalent homogeneous automaton with a state expansion of |S| where S is the machine’s

alphabet. To do this, consider a state q which has one incoming transition on the symbol a, and

another on symbol b. To make this homogeneous we split this state into two versions, one which

receives a-transitions, the other receiving b-transitions. The output transitions on both states will

be the same as the outgoing transitions on the state q. This must be done at most once for each

symbol and automaton state. Figure 3.3 illustrates this construction.

In the case that each state matches on a set of symbols, this construction may require |Q| · 2|S|

states in the worst case. In practice, when eliminating non-homogeneity from finite automata, the

expansion of the state set seems to be modest.

3.2 Micron’s Automata Processor 62

Figure 3.3: Eliminating non-homogeneity in automata by splitting states.

3.2.2 Bit-parallel Algorithm

The bit parallel technique [52] implemented by the Micron AP maintains a bit string representing

the set of active states, and manipulates this string using Boolean logic over bitstrings that are

stored in large tables. We begin with a bit string va which maintains the set of active states, where

character va[i] = 1 if state i is currently active and 0 otherwise. Additionally we maintain two

2-dimensional tables of Boolean values, a routing table and a match table, whose values are derived

from the machine definition. The routing table tr, which has dimension |Q|⇥ |Q|, represents how

states interconnect with each other. We say that tr[i][j] = 1 if and only if there is a transition from

state i to state j. The match table tm, which has dimension |S|⇥ |Q|, represents the character sets

that each state matches upon in a homogeneous way. We say tm[x][i] = 1 if and only if state i

matches on the symbol s indexed by x.

To update the active set va on input character s, indexed by x, the AP first computes the set of

possible next states (those with an incoming transition from an active state) vn[j] =
W|Q|

i=0 tr[i][j] ^

va[i]. Next, the AP computes the new set of states as vn ^ tm[x], as this represents the set of states

that both receive an incoming transition from at least one active state and also match on s.

3.2.3 Hardware Specifications

The current generation of Micron’s Automata Processor implements states (called State Transi-

tion Elements or STEs, shown in Figure 3.4) as 256-bit memory columns representing the set of

8-bit symbols upon which that state matches. When given an 8-bit symbol, an 8-to-256-bit decoder

serves to access a row in this memory column (which will contain a 1 if that state matches on

that symbol, and 0 otherwise). The result of this access is then passed into an AND gate with

an “enable” signal, that has the value 1 if there is some adjacent state which was active in the

previous cycle. In the first (prototype) generation, 256 STEs are arranged into blocks, and 96 blocks

are arranged into a core, thus providing up to 24, 576 states per core. Each AP chip contains 2

3.2 Micron’s Automata Processor 63

Figure 3.4: A simplified model of an STE’s construction. The STE decodes each 8-bit symbol to
perform a row lookup. If the lookup returns a 1, and the enable signal is active, then the STE
propagates its enable signal to the routing matrix.

disjoint cores, with no transitions allowed to go between them. An AP board contains 32 chips.

The hardware is designed to operate at 133MHz, consuming 1 symbol every 7.5ns, thus consuming

input at a rate of 133MB/s. It is projected to operate with a TDP (thermal design power) of 4W per

chip (128W per board).

Of the 256 STEs in a block, 32 are able to “report” off-board (i.e. provide output in the style

of a Moore machine). To report, the hardware produces a “report vector” every cycle, which is a

bit-vector representation of the active status of all reporting STEs. Each current-generation AP chip

contains 6 reporting regions capable of exporting 1, 024-bit output vectors within 1.8 milliseconds.

Therefore a best-case upper-bound for the full AP output throughput is roughly 436.9MB/s per

chip.

Each AP chip provides Boolean logic elements, which allow for a STE’s enable signal to be

defined by a boolean function of other states. Each gate is reconfigurable to one of 9 choices of

Boolean operations: OR, AND, NOT, NOR, NAND, POS (product-of-sums), SOP (sum-of-products),

NPOS (NOT POS), and NSOP (NOT SOP). The former 5 (OR through NAND) behave in the

expected manner. Product-of-sums breaks up the inputs into pairs, finds the OR of each pair, then

returns the AND of all results. For example, for Boolean inputs a, b, c, d, e, f POS(a, b, c, d, e, f) =

(a OR b) AND (c OR d) AND (e OR f). Sum-of-products switches ANDs with ORs compared to

3.3 Characterizing the Computational Power of the AP 64

product-of-sums, i.e. SOP(a, b, c, d, e, f) = (a AND b) OR (c AND d) OR (e AND f). NPOS and

NSOP are the negations of POS and SOP, respectively.

Finally, the Automata Processor includes counter elements. These elements have an input port

and an output activation. During every cycle in which they receive an enable signal on the input

port, an internal count increments. When their internal count exceeds a reconfigurable threshold,

they emit an output signal, which behaves as any other automata transition.

3.3 Characterizing the Computational Power of the AP
If the Automata Processor were a simple NFA emulation engine, its computational power would

be well-understood, since non-deterministic finite state automata accept exactly the class of regular

languages [50]. Intuitively, this language class represents the set of functions computable by a

Turing Machine using finite memory. The inclusion of the Boolean elements and counter elements

in the AP architecture makes the characterization the computing capabilities of the Automata

Processor less obvious.

Toward identifying the computational power of the AP, constructions for Turing-complete

cellular automata were shown to be implementable on the AP [53]. This result would seem to

imply that the Automata Processor is itself Turing-complete, i.e. that it can compute any function

which is computable by a Turing machine, as cellular automata are Turing complete [54]. While this

result certainly speaks to the possibility of the Automata Processor being able to serve purposes

beyond the computation of only regular languages, the conclusion that the AP is Turing-complete

is flawed.

The problem of identifying the computability classes of a particular architecture must be tackled

with great care. In order to answer in a way that is faithful to practice, one must be very careful to

identify and justify proper parameterization of all of the computing resources. For example, the

typical computer scientist finds little issue with considering modern CPUs to be Turing-complete.

In reality, however, every real-world machine has a physical memory with only a finite capacity

(and the sizes of hard drives and other storage devices are similarly finitely bounded). For this

reason, the class of languages computable by any real-world computer that ever existed coincides

exactly with the class of regular languages, i.e. is the set of languages decidable with finite memory.

We excuse this apparent inconsistency between the theory and practice of computing by considering

the resources available to our computing devices.

Due to the design of von Neumann architectures, even though memory is finite, it is rarely

the most scarce resource in any particular computation (though sometimes that is certainly the

3.3 Characterizing the Computational Power of the AP 65

case). The actuality of a limitation on memory is left unapparent in practice because, almost

always, computing time is considered the most scarce resource. In other words, most practical

computations tend to run out of time before they run out of storage space. Thus we declare that a

CPU is Turing-complete if its instruction set is Turing-complete (with an underlying assumption

that memory and its addressability are unbounded), and this theoretical conclusion most closely

aligns with common practice.

Thus, when one states that a cellular automaton is Turing-complete, this means that the activation

rules are Turing-complete [54]. In the same way that declaring CPUs to be Turing complete requires

an assumption of unbounded memory, concluding that cellular automata are Turing complete

presumes an unbounded number of automata cells. In order to justify that the AP’s capability to

simulate cellular automata also demonstrates its Turing-completeness, we must first justify the

assumption that AP STEs (the analog of the cellular automata’s cells) and Boolean gates (needed to

define a cellular automaton’s activation rules) are both apparently unbounded resources (at least in

practice). However, the relatively low counts of STEs (approximately 50, 000 per chip) and Boolean

gates (about 2, 000 per chip) render the assumption of “unboundedness” indefensible, since many

applications, when run on realistically-sized problems, quickly exceed the AP’s available hardware

resources. For this reason, we must consider these components as bounded resources, and explore

the AP’s computing capabilities in light of the AP’s hardware resources being finitely bounded.

3.3.1 Alternating Finite Automata

Our analysis of the AP’s computing power relies on a comparison to a generalization of NFAs

called Alternating Finite Automata (AFAs) [55]. Recall that a deterministic finite state automaton

(DFA) accepts its input string when its unique single active state after processing the input happens

to belong to its set of accepting states. A non-determinstic finite state automaton (NFA) is able to

transition to multiple states on each input symbol, meaning that there is no unique single active

state at the end of input, but rather a (possibly large) set of active states. An NFA therefore accepts

in the case that any state among its set of active states happens to belong to its set of final states.

In other words, this requirement is by nature an existential quantification. We say that a string s

belongs to the language of some NFA M provided that, after consuming all of the input, there exists

an active state which is an accepting state. Formally:

s 2 L(M) , 9q 2 F|q 2 d⇤(q0, s)

where d⇤ is an extension of d which consumes an entire string rather than a single character:

3.3 Characterizing the Computational Power of the AP 66

d⇤(q, s) =

8
><

>:

q s = #

d⇤(d(q, a), s0) s = a · s0

An alternating finite state automaton further generalizes NFAs. Like NFAs, AFAs allow for

multiple valid transitions on any state-symbol pair. When an NFA branches to a multiplicity of

states, the condition for acceptance is “if any paths from here accept, the machine accepts” (again,

an existentially-quantified requirement). For an AFA, the acceptance condition may be either

existential or universal, the choice of which is defined individually for each state. For some states

the acceptance condition matches that of NFAs, others have a universally-quantified requirement:

“if all paths from here accept, the machine accepts”. Figure 3.5 illustrates the different acceptance

conditions of DFAs, NFAs, and AFAs.

Formally defining the acceptance condition for AFAs is similar to NFAs. As with NFAs and

DFAs, AFAs are also defined by a state set Q, alphabet S, start state q0 2 Q, and a set of final

states F ✓ Q. The transition function must be modified in order to represent the quantifiers in

the machine. This is done using a function g : Q ⇥ S ⇥ {0, 1}|Q| ! {0, 1}. The function g takes as

input a state, a symbol from the alphabet, and a bit vector of length |Q| and gives a bit as output.

From the perspective of a state q, we say gq (which defined by gq(·, ·) = g(q, ·, ·)) maps a symbol to

a Boolean expression over the state set. If this state is an existential state, that Boolean expression

will be the OR of all states it transitions to on the given input (all others are “don’t cares”). If it is a

universal state, this Boolean expression will be the AND of all states it transitions to on that input

(again, all others are “don’t cares”).

Alternating finite state automata acceptance is defined to be the truth value of a Boolean

expression generated by iterative application of this function g on the input set:

g⇤(q, s) =

8
><

>:

1 s = # ^ q 2 F

gq(a)(g⇤(q0, s0), . . . , g⇤(q|Q|, s0)) s = a · s0

We restate the behavior of g⇤ algorithmically:

1. g⇤ takes as input a state q and a string s, initially q is the start state q0

2. g⇤ removes the first character from s, call this a

3.3 Characterizing the Computational Power of the AP 67

Figure 3.5: Examples of accepting DFA, NFA, and AFA paths. Each circle represents an active
existential state, each square represents an active universal state. They are arranged left-to-right to
demonstrate a sequence of 2 transitions. Note that the DFA is only in one state at a time, whereas
NFAs and AFAs may be in multiple

3. Look up the Boolean expression associated with input a for its current state q

4. Apply g⇤ to the remainder of s (which we call s0) and all states in the automaton, where the

response of each state’s result is used to evaluate the Boolean expression from the previous

step

5. After all paths reach the base-case where s is empty, the terminating states “return” 1 if they

are accepting and 0 otherwise

6. These 1s and 0s are propagated up the “call stack” until we reach the Boolean expression

from the original call of g⇤(q0, s)

3.4 Micron’s AP Accepts the Regular Languages 68

Resource Constrained?
States Y

Boolean gates Y
Counters Y

Gate Fan-in N
Active set N

Time N

Table 3.1: Constrained vs. Unconstrained resources available on the AP

7. Accept if this first Boolean expression returns 1

Just as converting a nondeterministic finite automaton of k states into an equivalent deterministic

finite automaton requires up to 2k states, we incur the same exponential expansion in state-count

when converting an alternating finite automaton into a non-deterministic one. Thus, converting

an AFA of k states to an equivalent NFA requires up to 2k states, and further converting it into an

equivalent DFA requires up to 22k states [55] (in some worst-case example these upper bounds are

actually unavoidable). This ability to convert an AFA to an equivalent NFA shows that the class

of languages accepted by an AFA is exactly that of an NFA, i.e. alternating finite state automata

accept exactly the regular languages.

3.4 Micron’s AP Accepts the Regular Languages
In this section we will show that proper parameterization of the automata processor implies that

the AP’s computability class is exactly the set of regular languages. To do this, we model the AP as

a non-deterministic finite state automaton with added Boolean logic gates and counter elements.

In Table 3.1 we identify all resources available in defining an AP-style machine. Each resource

is identified as either “constrained” or “unconstrained”. A constrained resource is one which is

likely to bottleneck a typical application, and therefore we consider it to be a finite parameter. An

unconstrained resource rarely becomes a bottleneck, and therefore we consider it to be effectively

infinite.

States, Boolean gates, and counters are the clear choices for constrained resources, as the AP is

by its nature a spacial computing architecture, and these are the elements which occupy the vast

majority of the silicon space. We consider the fan-in of the Boolean Gates to be unconstrained

without loss of generality of our results, as one could build arbitrary fan-in gates from several

limited fan-in gates (with a commensurate propagation delay, but we assume time to be an

unconstrained resource here). We consider the active set (maximum possible number of active

states) to be unconstrained because the automata processor hardware allows this to be as large

3.4 Micron’s AP Accepts the Regular Languages 69

Figure 3.6: Converting a counter with threshold 3 to states and AND gates. All states match on all
inputs in this construction.

as the state set. We consider time to be unbounded because the AP, as with any finite automata,

makes exactly one transition for each input symbol, and thus always execute within linear time.

3.4.1 Eliminating Counter Elements

We give a construction that converts an AP-style automaton with counters to an equivalent

automaton without counters. Recall that counter elements on the Automata processor only become

active after their internal counters exceed some reconfigurable threshold. Since this threshold is

fixed per automaton, its size is finite in terms of the size of the input string; in other words, this

threshold is a fixed “compile time” parameter. For this reason we can eliminate counters using a

combination of AND gates and automata states.

In the most simple construction, a counter with threshold t requires t states (label these q1, . . . qt)

and t � 1 AND gates. Let the state qi represent the condition in which the counter’s internal count

is currently at i. The counter advances its count from i to i + 1 only when a state connected to its

increment port is active. To simulate this, state qi+1 will become active if on any cycle qi is active as

well as some “incrementing” state (one which was connected to the would-be counter’s increment

port). An illustration of this construction for a counter with threshold 3 is shown in Figure 3.6.

A more efficient construction would use each state to represent a bit in a binary representation

of the current counter threshold. Each state’s activation would then be determined by a ripple-carry

adder each cycle, adding 1 when an incrementing state is active, and 0 otherwise. This would only

require log2 t states to build, as well as about 5 log2 t gates.

These constructions show that counter elements, in their current form, contribute nothing to

the computability powers of AP automata beyond the functionality of states and gates. However,

3.4 Micron’s AP Accepts the Regular Languages 70

we now have a resource equivalency between counter elements and Boolean gates. Counters on the

AP have a maximum value of 212, so one counter serves to replace 12 states and 60 gates. While it

is difficult to estimate the relative silicon space required for counters, gates, and states without

careful examination of the AP chip’s layout (which is typically proprietary information), one would

expect counter elements to be substantially more space efficient than their state-gate replacements.

Alternative Counter Designs

The threshold counters of the AP do not contribute to its computational ability due to their

finiteness relative to the length of the automaton’s input string (being a “compile time” fixed

parameter). A construction similar to the above will not be possible if the range of values which

the counter can represent depends on the length of the automata input (making it a “run time”

parameter).

For example, consider an alternative counter design which has two input ports, increment and

decrement, and an output port which indicates whether the internal count is 0. Assuming that

the count capacity of the counter is an unconstrained resource (and therefore can count arbitrarily

high), this new counter simulates a single-character stack. Automata with access to multiple stacks

are known to be more powerful than NFAs [50]. Therefore, an AP design with enhanced counters

may be able to accept a larger class of languages than only the regular languages.

3.4.2 Eliminating Boolean Gates

Now that we have shown counter elements do not give AP-style automata additional computing

powers, the only behavior they have over NFAs is the Boolean gates. Recall the definition of AFAs

in Section 3.3.1. The function g defines acceptance by constructing a large Boolean expression (con-

sisting of only ANDs and ORs) from the given string, then evaluating that expression substituting

1 for all final states and 0 for all non-final states. If we remove the “don’t care” terms from this

substitution, we can see that AP-style automata can be simulated by AFAs.

Consider an AP-style machine in which the state qi becomes active after input a provided both

states qj, qk were active in the previous cycle. This transition is therefore defined as g(qi, a) = qj ^ qk.

The transition corresponds to an equivalent Boolean expression in an AFA. Thus we can construct

an AFA from a AP-style automaton by introducing a new existential start state with transitions to

all initial states in the AP-style automaton.

This construction has the issue that AFAs require only ORs and ANDs (from existential states

and universal states respectively), whereas AP automata may have negations. A construction in [56]

shows that an AFA with negations may be converted to one without, resulting in no more than a

3.5 Comparison to Circuit Complexity 71

doubling of the number of states.

This construction is the same as a construction from a Boolean automaton to an AFA [57], and

is shown in [58].

3.5 Comparison to Circuit Complexity
Now that we have seen that an AP automaton always accepts some regular language, we can

explore how the MISD parallelism of the AP might compare to the capabilities of other hardware

co-processors. To do this, we relate the theoretical performance of the AP to FPGA- or ASIC-like

co-processors by way of circuit complexity.

3.5.1 Circuit Complexity

A circuit is a directed acyclic graph where each node is labelled with an input variable, 0, 1, or

a Boolean operator. One unique node is identified as being the output node, and it has no outgoing

edges. Each input variable represents a particular bit in a binary input.

Each node in the circuit observes the status of each node connected via an incoming edge. It

then performs its prescribed Boolean operator, identifying its status as 1 if that operation resolves

to true, and 0 otherwise. The language computed by such a circuit is given by the set of binary

input strings for which the output node resolves to 1. The size of a circuit is the number of Boolean

operators, and the depth of the circuit is the longest path from an input variable node to the output.

Automata-based models of computation (i.e. finite state automata and Turing Machines) are

uniform, as the same automaton computes inputs of any length. By contrast, Boolean circuits are a

non-uniform model of computation, meaning that inputs of different lengths will be computed by

different circuits. We say a function is computed by a particular automaton, as the same automaton

suffices for any input length. In a circuit model of computation, we must say that a function is

computed by a family of circuits, where a family of circuits is a set of circuits {C0, . . . Cn, . . .} where

Ci computes the function when the input size is exactly i.

Typically, these circuits are given a uniformity restriction. This gives a Turing machine com-

plexity bound on the computation of a circuit Cn for a given input length n. For example, the

DTIME(n2)-uniform size-n circuits would be the class of languages computable by a family of

circuits, each with a linear number of gates relative to the input size, and computable in quadratic

time (again, relative to the input size).

3.5 Comparison to Circuit Complexity 72

3.5.2 Nick’s Class

The complexity class NC, for Nick’s Class, represents the class of problems solvable by a family

of circuits of polylogarithmic depth (O(logp n for some choice of p) and polynomially many gates,

or equivalently the class of problems solvable in polylogarithmic time by a polynomial number of

parallel Turing Machines. The class was named after Nick Pippenger by Stephen Cook in honor of

his research on such circuits.

This complexity class serves the role of describing a class of efficiently-parallelizable prob-

lems [48]. Within NC there is an (conjectured) infinite hierarchy parameterized by the degree of

the exponent in the polylogarithmic run time. We say that the class NCi is the class of problems

solvable by a family of circuits of depth O(logi n), so NC0 circuits have constant depth, NC1 circuits

have log depth, etc.

3.5.3 Circuit Complexity of the AP

It is well-known that the regular languages belong to the class NC1 [59]. This means that any

language which is computable on an AP automaton can be computed by a Boolean circuit (and

therefore an FPGA) in logarithmic time using a polynomial number of resources. Since the AP

always requires linear time to process its input, other hardware co-processors see asymptotic time

speedups over the AP for every application.

This asymptotic time speedup can be seen as a time/space tradeoff, however. The method

of converting finite state automata to these NC1 circuits requires a syntactic monoid. This is a

representation of the automaton as an associative algebra such that each character and each state

maps to one term in the algebra. Machine acceptance on that string could then be determined by:

1. begin with the term representing the start state

2. multiply this term by the first symbol’s algebraic term

3. repeat until out of input

4. accept if the resulting term belongs to an accepting set of terms

Since this algebra is associative, the multiplications in step 2 can be done out-of-order, allowing for

parallel execution.

The space required to represent these circuits is dependent on the size of the monoid required.

While it is difficult to find tight bounds on this size (their size depends in part on the size of the

input alphabet), in general |Q||Q| monoid terms are required to simulate a deterministic finite state

automaton with state set Q [60].

3.6 Summary 73

Combining this with the above results, if we represent an AP machine as an AFA, converting a

k-state AFA to a DFA will result in 22k states, meaning that the size of the monoid would be:

(22k
)22k

However, [55] states that reversing an AFA (that is modifying it to accept a string s if and only if it

would originally accept the reverse of s) allows for conversion to a DFA using only 2k states, giving

the monoid size to be:

(2k)2k

In either of these two cases, a circuit-based model of computation would require at least a double

exponential factor more than the equivalent automaton. This suggests that for many applications,

an automata-based model will be more feasible that a circuit-based model.

3.6 Summary
In this chapter we discussed various different types of finite state automata as well as the

Micron Automata Processor. Through this discussion we showed the major claim of the chapter:

the Micron Automata Processor can compute no more than the regular languages.

We additionally showed that with a small modification to the AP, a new counter design, we

could enable the AP to compute a large class of languages. This motivates future investigation into

the hardware requirements of making such a change, and a search for new applications which the

change would enable.

Finally we gave a complexity-theoretic comparison between the Automata Processor and circuit-

based processors (like FPGAs). The conclusion we can make from this discussion is that many

applications are unlikely to be accelerated via a circuit-based computation due to the immense

space requirements needed. This result only extends up to the current knowledge of DFA to circuit

conversions, and motivates finding techniques that are more efficient in gate count relative to

automata size.

Chapter 4

Pseudorandom Number Generation

using Parallel Automata

Automata-based computing has seen promise as a potential new component for heterogeneous

computing. Micron’s Automata Processor has been shown to provide substantial speedups for

pattern-matching type problems over von Neumann executions by serving as a simulator for

nondeterministic finite automata.

We show that automata-based computing has an unexpected breadth of applications with

our surprising pattern-obscuring problem: pseudorandom number generation, i.e. using a small

amount of input randomness to produce a large amount of output which behaves similarly to

random. This result demonstrates that automata-based hardware accelerators, like the Automata

Processor, show potential in providing high-throughput, low-power pseudo-random number

generation. The current specifications of the Automata Processor suggest that our approach can

create 4.1GB/s of pseudorandom data of the highest quality per each 4W chip (131.2GB/s per

board). Future manifestations of the hardware on more state-of-the-art memory technology should

enable throughput of at least 40.5GB/s per chip (1.296TB/s per board), with 6.8⇥ better power

efficiency than state-of-the-art GPU designs.

We perform a theoretical analysis of our pseudorandom number generator in terms of its

algorithmic complexity and cryptographic security. This shows that our pseudorandom number

generator is cryptographically secure, belongs to the class NC0, and has linear stretch under the

assumed hardness of an automata learning problem. We also analyze our algorithm’s behavior in

the case that it is given non-random input.

74

4.1 Motivation 75

Finally we present an alternative approach to Bloom filtering through execution of parallel

Markov chains, whose performance behaviors only hold given the pseudorandomness property

of APPRNG. This application shows that APPRNG, in addition to being a valid method for

pseudorandom number generation, is also a necessary first step in opening up a new domain for

automata-based computing: probabilistic algorithms from parallel Markov chains.1

4.1 Motivation
While the class of problems shown to benefit from the MISD parallelism of automata processors

is steadily growing, the efficacy of these architectures is still restricted to only a few applications,

such as network intrusion detection [61], association rule mining [62], natural language process-

ing [63], entity resolution [64], and machine classification [65], all of which are intuitively analogous

to pattern recognition problems. On the other hand, though originally designed to accelerate

graphics-related tasks, GPUs found applications across numerous problem domains and are now

recognized as fundamental to heterogeneous computing. Automata architectures require similar

diligence and research to determine their extensibility and applicability to additional non-obvious

domains beyond the above examples.

We present such a non-obvious (and even counter-intuitive) application of automata computing:

pseudorandom number generation (PRNG). A PRNG is a deterministic algorithm which takes a

small amount of source randomness as input and produces a large amount of output which behaves

similar to randomness. PRNGs are fundamental in a multitude of important domains, including

cryptography [66], algorithm derandomization [67], and Monte Carlo methods [68]. This new

application is therefore an exciting and necessary first step in evaluating the potential application

of automata processing in each of these domains. This application is also fundamentally different

from any previous use for automata-based computation. While all results above are by nature

“pattern finding” problems, pseudorandom number generation is intuitively opposite, being a

“pattern obscuring” problem.

We begin by explaining pseudorandom number generation in Section 4.2. In Section 4.3 we

present our algorithm for automata-based pseudorandom number generation. Section 4.4 describes

our hardness assumption for security of our PRNG. In Section 4.6 we give a contruction of APPRNG

on the Micron Automata Processor, doing a performance evaluation on current and future hardware

implementations. We discuss modifications to our PRNG for weakly random input in Section 4.7.
1The work in this chapter was done (in part) collaboratively in [8]. The areas which are principally my contribution are

the general APPRNG algorithm (Section 4.3), the characterization of the hardness assumption (Section 4.4), the theoretical
performance evaluation (Section 4.5), the adaptation for weak randomness (Section 4.7), and automata-based Bloom Filtering
(Section 4.8).

4.2 Pseudorandom Number Generation 76

Finally, in Section 4.8 we present automata-based Bloom filtering as an application enabled by

APPRNG.

4.2 Pseudorandom Number Generation
A pseudorandom number generator (PRNG) is a function that takes as input a short random

bit string and yields a larger output that “seems” random. More formally, a function f : {0, 1}n !

{0, 1}m is a PRNG provided that m > n and there is no polynomial time probabilistic algorithm

which can, with probability greater than 1/np for some p, distinguish the distribution of the range

of f from the uniform distribution Um of bit strings of length m. Intuitively, the purpose of a

PRNG is to take a small amount of hard-to-produce truly random bits, and through a deterministic

method produce a much greater amount of output bits which can be used as if they were generated

randomly. The number of pseudorandom bits gained relative to the random bits provided (i.e.

n � m) is called the stretch of the PRNG.

The existence of PRNGs is currently an open problem. Their existence implies a separation of P

and NP, and their non-existence would imply the impossibility of many cryptography primitives.

This means there is no known process for vetting candidate PRNGs by direct means. Instead,

we employ two indirect strategies, depending on the PRNG’s target application. In the case of

cryptographic use of PRNGs, vetting requires a hardness reduction, i.e., a demonstration that

the existence of an algorithm which distinguishes between the range of the generator from a

uniform distribution would imply the existence of a polynomial-time solution for some problem

which is widely believed to require superpolynomial time. For example, the classic Blum-Blum-

Shub [69] PRNG was reduced to the quadratic residuousity problem, which is conjectured to be

not polynomial time solvable.

While the cryptographic requirement for vetting a PRNG is certainly the more robust of the

two, it is an exceedingly difficult standard to meet. Because of this, few PRNGs satisfying the

cryptographic requirement are particularly performant. In applications which require large volumes

of random numbers as input (e.g., Monte Carlo simulations), the throughput of the randomness

generator is often the performance bottleneck. Therefore, PRNGs targeted for such applications are

vetted empirically using statistical tests designed to measure randomness.

To evaluate the quality of a PRNG, these test suites play the role of the polynomial time

distinguisher mentioned in the definition of a PRNG. By seeking patterns that are either overrep-

resented or underrepresented, these tests produce a likelihood that a given (very long) sequence

was generated randomly. If the entire battery of tests reports high confidence that a candidate

4.2 Pseudorandom Number Generation 77

PRNG’s output sequence was random, then that algorithm is determined to be a PRNG. The

downside of this approach for evaluating pseudorandomness, as compared to the cryptographic

approach, is that the test battery must evaluate arbitrary input sequences. Since these tests are

unaware of the method for generating the input, passing the tests does not forbid the existence of

a polynomial time algorithm “custom designed” for a particular PRNG. By way of example, the

sequence of digits of p pass many statistical tests, but could easily be checked for by a custom

test looking specifically for the digits of p. A reduction provides more convincing evidence of

pseudorandomness, as the failure of all previous solution attempts by many acclaimed pursuers

serves as its vetting.

We seek to evaluate the AP-PRNG algorithm using both of the above approaches. The cryp-

tographic vetting gives implications for developing further cryptographic primitives natively in

automata processors, and also provides stronger evidence of the quality of the APPRNG algorithm

for producing pseudorandomness. The statistical tests allow for the performance evaluation of the

AP-PRNG algorithm in terms of throughput and power efficiency on actual hardware, namely the

Micron Automata Processor (AP).

4.2.1 Previous Work on PRNGs

The storied uses of pseudorandomness for cryptography and computation has inspired the

development of quite sophisticated PRNGs. The Mersenne Twister algorithm [70] is the most

widely-used PRNG, and serves as the randomness source for a plethora of programming languages.

The Blum-Blum-Schub algorithm [69] is useful as a very simple yet cryptographically secure PRNG,

but is outdated by the current dialog in the area. Currently the focus of theoretical PRNG research

revolves around the achievable stretch for a PRNG of NC0 complexity (an NC0 function can be

computed in constant time by a polynomial number of parallel machines). Specifically, this research

seeks a PRNG in NC0 with at least asymptotically linear stretch O(n) (there is evidence favoring

one with stretch of O(n1�#)) [71]. As for high-throughput PRNGs, the Philox algorithm [72] is

currently considered the state-of-the-art. It is specifically designed for massive parallelism by

reducing the amount state required per parallel thread, the result is portability to SIMD GPU

hardware, achieving a throughput of 145GB/s on an NVidia GTX580.

To experimentally evaluate our PRNG, we subject it to the most comprehensive and stringent

collection of tests available, namely the BigCrush test battery from the TestU01 suite [73], which

evaluates the randomness of a 243-bit input. This suite includes all tests from Knuth’s Art of

Computer Programming Volume 2 on Seminumerical algorithms [74], DIEHARD [75], and the

4.3 AP-PRNG Algorithm 78

Figure 4.1: An example Markov Chain of a biased coin which lands heads with probability 1
3 and

tails with probability 2
3

NIST statistical test suite [76]. Surprisingly (given its ubiquity), Mersenne Twister does not pass the

BigCrush randomness test suite. To our knowledge the only currently available, high-throughput

PRNG which passes all BigCrush tests is Philox, and we therefore use this as the state-of-the-art

comparison standard.

4.2.2 Markov Chains as Automata

While the AP is designed to be a hardware simulator of finite state automata, APPRNG leverages

the AP as a Markov chain simulator (this construction was first presented by Wadden et al. in [77]).

A Markov chain is a discrete time, discrete space stochastic process, and behaves much like a finite

state automaton where the transitions are dependent on the value of a random variable (wheras an

automaton transitions based on an input character). One can emulate this behavior using a Moore

machine by randomly choosing the match set of each transition, and then streaming random input

into the machine. In this case the probability of a particular transition matching on each cycle is

exactly the proportion of the total alphabet which appears in its match set. That is, the probability

that a transition which matches on a set of randomly selected characters M is given by |M|
|S| , where

S is the alphabet size.

Figure 4.1 shows an example of a Markov chain which simulates biased coin flips. In this case

the coin lands heads with probability 1
3 and tails with probability 2

3 . The above construction is then

applied to this Markov Chain, which results in an equivalent automaton shown in Figure 4.2.

4.3 AP-PRNG Algorithm
The most important kernel of APPRNG performs a construction to convert Markov chains

(which emulate the behavior of fair s-sided dice) into finite automata, in which each state is given

a unique label that is emitted as output every time the machine enters that state. An s-sided die

4.3 AP-PRNG Algorithm 79

Figure 4.2: An example construction of an automaton which, when given a sequence of random
input characters, emulates the behavior of the Markov Chain shown in Figure 4.1.

has s different configurations, one for each side, and is a memoryless process since each roll’s

value is statistically independent of all previous rolls. A Markov chain which emulates such a die

will appear as a complete directed graph of s nodes (including self-looping edges), where each

transition occurs with probability 1
s .

Any automaton constructed to emulate an s-sided die Markov chain, when given random

input from an alphabet of size s, produces an output distribution statistically identical to the

input distribution. In order to “boost” the length of the output to exceed that of the input, and

therefore satisfy that requirement of a PRNG, we run many machines in parallel on the same input.

Since each machine produces its own output separate from the others, but they all share input,

the expansion of the output size from the input size is multiplicative by the number of parallel

machines. For sufficiently many input symbols the amount of output expanded by the parallel

machines will exceed the fixed quantity of randomness needed to build the machines.

Since the chains themselves are deterministic, the output’s entropy can at best match that of the

input. Because the output of the automaton is larger than the random input there must be some

correlation among the values of the output bits. The success or failure of APPRNG hinges on how

difficult it is for a distinguisher to “discover” this correlation. In order to obscure any patterns, we

use some of the random input to build each machine. The symbols upon which each transition

matches will be chosen completely at random, the adjacency list of each state generated being a

random permutation of the symbol set. This procedure allows for the construction to adapt relative

to several parameters:

• The number of machines, call this M

• The number of states in each machine, call this s

• The number of symbols in the input alphabet, call this k

• The number of symbols to be given as input r

4.4 Hardness Assumption 80

For our theoretical analysis, we will say that k = s, although for practical situations we can

achieve better throughput in the case that k > s (our experimental analysis shows for current-

generation automata-based hardware we obtain optimal performance when s = 8 and k = 256). In

this case one can apply the striding construction presented in Section 4.7 to model its behavior.

Much of this work studies the properties of the function GM,s,r : {0, 1}n ! {0, 1}m where the

amount of input randomness is given by n = M · s2 log s + r · log s, and the amount of output

pseudorandomness is given by m = M · r log s.

To set up the machine, we require log s! bits of randomness for each of s states in each Markov

chain, thus for M Markov chains M · s log s! ⇡ M · s2 log s bits are required (see Theorem 4.3.1). In

total, running AP-PRNG on an input of k symbols requires M · s2 log s + r · log s input bits and

produces M · r log s bits of output. Thus this algorithm is a PRNG if after r > M·s2

M·r�1 transitions

the output is indistinguishable from a random sequence. An overview of the deployment of the

AP-PRNG algorithm is shown in Figure 4.3. An example execution is shown in Figure 4.4.

Theorem 4.3.1. Parallel automata construction for configuration GM,s,r : {0, 1}n ! {0, 1}m of APPRNG

requires M · s log s! = Q(M · s2 log s) bits of random input.

Proof. To construct the Parallel automata for APPRNG, a random permutation of the symbol set

S, where |S| = s uniquely defines each state’s outgoing transitions. This procedure thus acts

independently on each state in each machine. To count the number of random bits needed to

build all machines, we must simply count the number of random bits needed for each state, then

multiply by the total number of states across all machines, M · s. There are s! ways to permute a list

of length s, thus requiring log s! random bits to sample one such permutation uniformly at random.

log s! 2 Q(s log s), therefore the total number of random bits needed for automata construction of

GM,s,r is M · s · log(s!) 2 Q(M · s2 log s).

4.4 Hardness Assumption
As mentioned above, at the time of writing no provably secure pseudorandom generator has

been discovered, as an existence proof for a pseudorandom generator that has no polynomial

time adversary would imply the non-equivalence of P and NP. Instead of disproving the existence

of a polynomial time adversary, the security quality of a pseudorandom generator is measured

by relating the existence of a distinguishing adversary to the existence of a problem with strong

evidence of being “hard”. Ideally, for a particular pseudorandom generator P a polynomial time

distinguisher between the distribution of the codomain of P and a uniform distribution over the

4.4 Hardness Assumption 81

Figure 4.3: Overview of the AP-PRNG algorithm for M total machines with N states each. Each
machine simulates a Markov chain representing an N-sided fair die. The N-permutations are used
to define the matching symbols on each of the outgoing transitions on each state and requires
N log N! bits of randomness. The random input string requires log N random bits per symbol. The
output will contain M pseudorandom bits per each input bit.

range of P will be shown capable of efficiently solving a well-studied problem which has no known

efficient (polynomial time) solutions.

In some cases, a slightly weaker standard for security is acceptable. For example, the famous

RSA encryption scheme is widely known to be insecure in the case that prime factorization of

integers is not polynomial time solvable, however it has not been shown that the ability to efficiently

factor integers is required for breaking RSA [78]. In other words, RSA may be easier than factoring

integers. The complexity/cryptography community still largely accepts that RSA is as secure as

factoring integers, as it is difficult to imagine a way of efficiently solving the problem set forth in

the RSA assumption that cannot be used to efficiently factor integers. For APPRNG we provide an

4.4 Hardness Assumption 82

Figure 4.4: Example execution of an instance of APPRNG for 4 states, 2 machines, and 11 input
symbols.

argument similar to the justification of the security of RSA. We relate APPRNG to the problem of

passively learning hidden finite state automata, an old and well-studied problem which provides

no prior art capable of breaking APPRNG.

4.4.1 Hardness Problem Statement

Any adversary for APPRNG must be able to distinguish a random walk through a large

machine (one with many states) from a random walk though a small machine (one with few states)

by viewing only a concatenated sequence of state labels. To demonstrate this we show that the

output to APPRNG and a random string yield the same distribution as a random walk over a large

machine and small machine respectively.

Consider a particular configuration of APPRNG GM,s,r, where M is the number of parallel

machines, s is the number of states in each machine as well as the size of the alphabet, and r

is the number of random symbols upon which the machines will transition. In this case the

length of the output will be M · r · log s, as there will be one output symbol per input symbol per

machine. Instead of representing the transition behavior of APPRNG as that of parallel machines

transitioning on shared input, we can represent this behavior as that of a singular machine over

a random input through repeated application of a standard cross-product construction on finite

4.4 Hardness Assumption 83

automata [50].

One uses the cross product construction to build a single finite automaton that simulates the

behavior of two parallel finite state automata operating in lock-step over the same input. Consider

two finite automata, M1, M2 given by

M1 = (Q1, q01, S, d1, `1)

M2 = (Q2, q02, S, d2, `2)

Let Qi represent a set of automata states, q0i represent a particular start state, S represent the

alphabet of input symbols, di : Qi ⇥ S ! Qi represent the automata transitions, and ` : Qi ! S⇤

represent a labelling of the states in Qi.

We can simulate the operation of these two automata transitioning in parallel over the same

input using the machine

M1⇥2 = (Q1 ⇥ Q2, (q01, q02), S, d1⇥2, `1·2)

For q1 2 Q1, q2 2 Q2 and s 2 S we define

d1⇥2((q1, q2, s) = (d1(q1, s), d2(q2, s))

The transition function defines a single transition from the pair of states q1 and q2 of the

embedded parallel machines corresponding to how each would transition independently over the

particular input s. For q1 2 Q1 and q2 2 Q2 we define

`1·2((q1, q2)) = `1(q1) · `2(q2)

The new labelling function labels the states in the larger machine with the concatenation of

labels from the corresponding states of the embedded machines.

Using the cross-product construction described, we are able to combine all M machines in

APPRNG into a single machine, call it Ap , with equivalent behavior to all M machines running in

parallel. Since each of the M machines has s states, the resulting super machine will contain sM

states. Each of these states will have a label that is M · log s bits long, thus it produces Mṙ · log s

bits of output, as expected. Since the behavior of this machine is equivalent to the behavior of the

4.4 Hardness Assumption 84

other machines operating in parallel, the output of APPRNG will be identically distributed to the

sequence of labels given by a random walk over Ap .

The truly random distribution of the same length as APPRNG’s output can be modelled by a

random walk over a smaller machine, which we will call A$. Since each transition emits an output

that is M log s bits long, a random sequence of length r · M · log s will be distributed identically

to a random walk of length r over an automaton with M log s states, each with a unique label of

length M log s. Because a random walk through this machine serves as a random permutation of

the input, it does not alter the entropy of the input distribution at all.

Note that m log s < sm whenever sm > 1, which will hold for any choice of m > 1 and s > 1,

which any manifestation of APPRNG must satisfy. This means that if there exists a polynomial

time algorithm which, when given two distributions of r state labels from random walks (one over

Ap and the other over A$), distinguishes which sequence came from which machine, then that

same algorithm must be able to observe a random walk over an arbitrary machine and determine

whether the number of states it contains is above or below some threshold between m log s and sm.

Assumption 4.4.1. There is no polynomial time algorithm which, when given as input a sequence of state

labels from a random walk over a DFA, can determine whether the number of states in that DFA is above or

below some threshold between m log s and sm for some choice of s, m � 2.

To the authors’ knowledge, in spite of a large amount of related results, there is no prior art

which efficiently learns hidden finite state automata by looking at a random walk alone, thus

providing evidence of the hardness of APPRNG.

4.4.2 Prior Art in Automata Learning

Prior work on learning automata has focused on efficiently finding a minimal (or as small as

possible) finite automaton which computes a hidden regular language through viewing examples

of strings which do vs. do not belong to the language. Among the earliest impossibility results

relating to this problem was Dana Angluin’s 1978 result showing that the problem of finding the

minimal automaton consistent with example sets of accepted and rejected strings is, in general,

NP-Complete [79]. This problem was later shown to not even be approximately solvable by Pitt

and Warmuth in 1993 [80]. In 1994 Kearns and Valiant (a Turing Award winner) showed that the

weaker problem of learning acyclic finite state automata consistent with a set of examples is of

equivalent difficulty to several cryptographic assumptions, e.g. RSA and factoring of Blum integers,

in the case that the learning hypothesis must be a finite automaton [81].

4.5 Theoretical Performance analysis 85

While these impossibility results may make one pessimistic for the future of automata learning

(or optimistic for the security of APPRNG), there have been several algorithms which allow for

efficient learning in certain situations. Dana Angluin’s 1987 L* algorithm provides an efficient

(polynomial time) way of learning an automaton given the opportunity to select query input for the

black-box machine, rather than relying on a random sampling of examples [82]. This approach had

the limitation of requiring a “reset” mechanism, by which the hidden automaton could be directed

to revert back to its start state. This requirement was removed by Rivest (another Turing Award

winner) and Schapire in 1989 through the use of homing sequences, which are short sequences

guaranteed to explore the neighborhood of a particular state [83]. In 1993 Freund et al. provide a

way to learn automata by observing a random walk over its states in a passive way (without being

allowed to make its own choice of input) [84], however this result still requires that the algorithm

be able to observe the input to the automaton. Angluin in 2015 showed the ability to efficiently

learn random DFAs through observing random strings and state information [85].

The above results share one fundamental shortcomming, which prevents them from serving as

a distinguisher for APPRNG. They all require the ability to observe the (possibly random) input

used to drive the automata, which is forbidden for an adversary of a pseudorandom generator.

The above research dialogue demonstrates a clear trend of achieving increasingly general results

by diminishing the ability of the learning algorithms to select their own input. In spite of results

making progressively weaker assumptions about the input, there has yet to be any results regarding

learning algorithms which do not require observing the input to the machine. In summary, through

nearly 40 years of research performed by many impressive computer scientists and mathematicians

(including two Turing Award winners) studying adjacent results trending toward increasing

generality, there has yet to be a result general enough to serve as a distinguisher for APPRNG.

4.5 Theoretical Performance analysis
While for many practical purposes, such as Monte Carlo simulations, the most important

metric for a PRNG is the throughput of pseudorandomness produced (this analysis is done in

Section 4.6.3), from a theoretical perspective the most important performance metrics are the stretch

of the pseudorandom generator (the size of the output pseudorandomness compared to the input

randomness) and the computational complexity class (the asymptotic run time of the algorithm).

The current state-of-the-art results are those which consider pseudorandom number generators

with at least linear stretch, and belong to the complexity class NC0 [71].

4.5 Theoretical Performance analysis 86

4.5.1 Stretch

The stretch of a pseudorandom number generator G : {0, 1}n ! {0, 1}m is the expansion of the

number of output bits m relative the number of input bits n, and is given by m � n. APPRNG can

be configured relative to many different parameters, so here we analyze the stretch of APPRNG

relative to each given parameter.

Recall that a particular instance of APPRNG is given by GM,s,r : {0, 1}n ! {0, 1}m where M

is the number of parallel automata, s is the number of states in each automaton as well as the

size of the input alphabet, and r is the number of symbols which will be fed as input into each of

the parallel automata. To configure the automata we must compute a random permutation of the

alphabet of size s for each of the s states in each of the M machines. Each permutation requires

log s! 2 Q(s log s) bits to define, thus with M · s total states the machine configuration requires

Q(M · s2 log s) bits. Then for the r random input symbols, each of which is s bits long, we require

r log s bits. Therefore the total amount of input randomness is given by n = M · s2 log s + r · log s.

Each of the M machines will produce one s-bit symbol of output for each symbol of input

received, thus for each of the r input symbols given to the automata we will receive M log s bits of

output. This gives the total amount of output pseudorandomness to be m = M · r log s.

The total stretch of GM,s,r is therefore given by

m � n = (M · r log s)� (M · s2 log s + r · log s)

= M · r log s � (M · s2 + r) log s

= (M · r � M · s2 � r) log s

= (r(M � 1)� M · s2) log s

Due to the presence of the negative s2 term, as well as certain practical problems which arise

from large machines (namely routability when implemented in hardware), we will consider s to

be a small constant (our experiments use s = 8). This means that the stretch for GM,s,r belongs to

Q(r · M). If we vary only the number of symbols used as input or the number of parallel machines

used the stretch will be linear. If we vary both at the same rate the stretch will be quadratic.

This analysis of the stretch of APPRNG will only hold if arbitrarily large choices of r and M

allow for APPRNG to be a pseudorandom number generator for a fixed choice of s. This is certainly

not the case when r alone varies. As the number of input symbols given to each machine increases

4.6 AP-PRNG in Practice 87

the inherent correlation in the machines’ behavior will become more pronounced, i.e. the output

will become easier to distinguish from random. This behavior is borne out in our experimental

analysis shown in Section 4.6.3. While we see that APPRNG demonstrates different quality for

different choices for machine count, this does not appear to be related to the size of this count,

but rather seems to be attributable to certain number theoretic behaviors. For APPRNG to remain

secure for an arbitrary choice of M, we must strengthen our hardness assumption 4.4.1:

Assumption 4.5.1. There is no polynomial time algorithm which can, when given a sequence of state labels

from a random walk over a DFA as input, can determine whether the number of states in that DFA is above

or below any threshold.

We again emphasize that there has been no prior art which provides an efficient solution to this

problem.

4.5.2 Complexity

The current trend in pseudorandom number generator research is the exploration of generators

belonging to the class NC0. These are of particular interest because they represent problems

computable in constant time in parallel, and have the property of each output bit depending on

only a constant number of input bits.

Under the assumption that APPRNG remains cryptographically secure for arbitrarily large M,

APPRNG belongs to the class NC0. For constant s and r, if we have M Turing machines operating

in parallel we can compute APPRNG in constant time. Each of the M machines will simulate

a single DFA. It will receive as input the constant number (s2 log s) of random bits needed ton

configure its particular automaton, which are specific per automaton. Each Turing machine will

then receive a copy of the r log s bits of random input for the machines, which is also a constant

value in this scenario. The time required for each machine to process its input is therefore constant.

In summary, in the case that Assumption 4.5.1 holds, APPRNG is a cryptographically secure

pseudorandom number generator with linear stretch belonging to NC0. Should Assumption 4.5.1

fail to hold, but Assumption 4.4.1 hold, then we could vary M and r together, causing the complexity

of APPRNG to belong to NC
1
2 .

4.6 AP-PRNG in Practice
In the above sections we discussed the theoretical properties of APPRNG, including the effect

of the input parameters on the quality of the asymptotic complexity of the algorithm, and the

quality of the pseudorandom output. We now seek to demonstrate APPRNG’s applicability as a

4.6 AP-PRNG in Practice 88

high-throughput algorithm for producing high-quality pseudorandom numbers. To do this, we

modify the execution model of APPRNG to produce arbitrarily large output. First, We build M

machines with s states each over a b-bit alphabet. Next, we run the machines over r random input

symbols of b bits each. After these r inputs we rebuild all machines using new randomly-generated

transitions. This continues until we produce the desired number of output symbols.

In order to evaluate the practical value of APPRNG to applications requiring high-throughput

randomess, we must answer the following questions:

1. How does the automata state-count effect the quality of output? Reconficuration of automata

matching on the Automata Processor is expensive, so we would like to choose the number of

states which allows for the largest value of r, thus prolonging machine reconstruction as long

as possible

2. How does the number of parallel automata effect the quality of output? If increasing the

number of automata we run in parallel limits the size of r, then by using more on-chip

resources may actually harm the effective throughput by requiring more frequent machine

reconstruction.

3. What is the maximum value of r, i.e. the longest we can delay automata reconstruction,

based on the best choices of parameters in the previous questions, while still preserving

pseudorandom behavior?

4. What minor hardware adjustments could be made to the Automata Processor to increase the

value of r, and therefore our throughput?

5. The current configuration of the Automata Processor uses DRAM built using a 40nm process

(state-of-the-art in ca. 2009 [86]). How would updating the AP architecture to current-

generation transistor technology and memory specification impact the throughput of AP-

PRNG?

4.6.1 Hardware Constraints

The first step in constructing APPRNG is to build a set of automata emulating fair Markov

chains. The number of states in each chain should be a power of two in order to ensure a uniform

distribution of 0s and 1s in the output. After each transition, each chain reports its current state,

thus emitting log2(s) bits of output for each input.

By building more parallel automata , and interleaving their output, we linearly increase the

amount of pseudorandom output relative to the number of inputs. If we have a single 2-state

4.6 AP-PRNG in Practice 89

Markov chain, it will only emit 1 bit of output. If we have a b-bit alphabet, b 2-state Markov chains

will create as much output as the input given.

Only 32 STEs out of 256 in an AP block can report in the current architecture. This means that

either total number of STEs or number of reporting element could manifest as the bottleneck for

number of machines. An N-state Markov chain requires N reporting STEs, thus we are limited to

16, 8, and 4 chains per block for 2-, 4-, and 8-state chains respectively by reporting capacity. Each

also requires N2 + N STEs, thus we are limited to 42, 12, and 3 chains per block for 2-, 4-, and

8-state chains respectively by STE capacity.

Assuming we can use all the reporting elements to draw output, that there are no bottlenecks in

the reporting architecture, and we never need to reconfigure the machines,the Automata Processor

can create 51 GB/s of pseudorandom output.

4.6.2 Sensitivity Analyses

To test APPRNG performance and quality we ran an implementation through the test batteries

in the TestU01 statistical test suite [73] to assess quality of random output. Because fully-operational

APPRNG hardware is not yet available, this is a simulation of APPRNG behavior on conventional

hardware, rather than on an automata-based accelerator.

TestU01 consists of three main test batteries: SmallCrush, Crush, and BigCrush. SmallCrush

contains 10 statistical tests, and is meant to check obvious statistical patterns in a random sequence.

Crush applies 96 statistical tests (144 total test statistics), and BigCrush applies 106 tests (160

test statistics). Because we’re emulating APPRNG without the AP as a hardware accelerator

the BigCrush test battery can take 3-7 days to complete on a single core CPU. We therefore us

SmallCrush and Crush for course-grained refinement of APPRNG parameters to quickly identify

trends. Once we have identified a promising set of parameters with these weaker tests, we use

BigCrush, the most comprehensive test suite available [87, 73], to verify that the choice configuration

provides good random quality. We then use that choice of parameters to derive performance on

AP hardware and compare to state-of-the-art high-throughput PRNGs.

APPRNG, as with any pseudorandom number generator, requires a source of random bits to

construct machines and produce the input string. For this evaluation we use Philox32x4 10 [72]

to provide all random input. As is expected for any PRNG, lower quality random sources result

in lower quality output from APPRNG. Philox was a natural choice for high-quality input as it is

the most performant generator available which passes all of the BigCrush tests. We performed all

evaluations on a cluster of Intel i7-4820k CPUs operating at 3.7 GHz with 64 logical cores.

4.6 AP-PRNG in Practice 90

Number of Markov Chain States 2 4 8
Average Number of Failures 5.5 2 0
Distinct Number of Failures 6 2 0

Table 4.1: It is statistically harder to identify correlation between chains with more states.

Effect of Automata Size

We configured APPRNG to have a reconfiguration threshold of r = 50, 000 input symbols, 384

parallel chains, each with 2, 4, or 8 states. We ran 16 trials over SmallCrush, the results shown in

Table 4.1.

We see that state count in the automata profoundly impacts the pseudorandom quality of the

output. The 2-state automata fail an average of 5.5 tests, failing 6 of the 10 tests in SmallCrush. The

4-state automata fail 2 of the 10 tests. SmallCrush was unable to distinguish the 8-state case from

random, having passed all tests.

This trend should be expected. The more states in each automaton, the more complex their

transition behavior, and the greater the number of bits required to construct the machines. This

means that two small machines should reveal their correlation after fewer transitions than larger

machines. This effect is compounded when considering large sets of many machines, allowing for

more automata transitions before their correlations become apparant, requiring reconfiguration.

Effect of Automata Count

Next we explore the impact that number of parallel 8-state automata has on the quality of

pseudorandom output. We explore performance with from 32 to 768 parallel automata operating

in parallel over shared random input, using Crush to evaluate random quality. The results of this

experiment are shown in Figure 4.5. With the exception of the obvious outliers at 352 and 768

machines, we saw no trends in the relationship between the number of parallel automata and the

quality of random output. This suggests that increasing the number of parallel automata does not

decrease the quality of pseudorandom behavior.

We hypothesize that the outliers occurred due to a number-theoretic property that the output

exhibits. Many of the Crush tests operate by considering blocks of 32 bits as integers. Our tests

concatenate machine outputs from every 8-state chain together in a round-robin fashion. Thus in

the case of the outliers at 352(= 32 ⇥ 11) and 704(= 64 ⇥ 11) each machine contributes to the same

bits in each 32-bit integer (we have no explanation for the co-occurrance at multiples of 11). To test

this hypothesis we altered the manner in which we concatenate the output so that each machine

produced 32 bits before performing the round-robin interleaving. The results of this experiment

4.6 AP-PRNG in Practice 91

Figure 4.5: Each bar represents the average number of Crush failures over four trials for parallel
8-state Markov chains with a reconfiguration threshold of 200,000. The darker bars represent failure
rates when interleaving output bits. Spikes in failure rates occur when the same Markov chains
always contribute to the same bits in output integers. The lighter bars represent failure rates when
successive output from a single Markov chain contributes to a single output integer. This eliminates
the spike in failures, but reduced overall performance.

are also shown in Figure 4.5.

The spikes in occurrance of test failures disappear after this modification. To avoid further cases

of such number-theoretic attacks on APPRNG we choose a prime number of parallel automata.

This minimizes the chance any machine from contributing to the same location when the output is

broken into blocks. The maximum number of 8-state automata which can fit onto an Automata

Processor chip is 576, therefore we use 571 parallel machines (the largest prime number less than

576). We use this configuration of 571 parallel 8-state machines for our final performance analysis.

Effect of Input Size

To show the impact increasing time between automata reconfigurations has on the output

quality, we ran four trials of 726 8-state automata through the Crush test suite varying the number

of inputs from 20, 000 to 90, 000. It should be the case that increasing the number of inputs given

before reconfiguration, the more likely the output would appear non-random. Decreasing the

number of inputs given before reconfiguration, however, reduces the performance of APPRNG, as

each reconfiguration incurs a substantial time penalty. We seek to find a choice of reconfiguration

threshold to optimize a performance/quality tradeoff. Our experimental results are shown in

Figure 4.6.

4.6 AP-PRNG in Practice 92

Figure 4.6: As the reconfiguration threshold increases, it is becomes easier for statistical tests to
identify non-random behavior.

Figure 4.6 shows that the quality of random output is inversely correlated with the length

of the reconfiguration threshold. Concerningly, even a threshold of 20, 000 input symbols fails

to consistently pass all Crush tests. In exploratory tests done (not shown in the figures), some

BigCrush tests failed for thresholds as low as 10, 00, requiring shorter thresholds to match the

quality of Philox. As the Automata Processor only requires 7.5ns to consume a symbol, but 45ms

to reconfigure, a reconfiguration threshold of 10, 000 cases the AP to spend 99.83% of its time

reconfiguring, resulting in 48MB/s of output.

We have found that the reconfiguration threshold can be dramatically increased if we can

reduce the impact of neighbor dependence. The algorithm constructs input by interleaving bits in

a fixed order, requiring nearby machines to have uncorrelated behavior. To mitigate this effect we

investigated using support hardware or software to reorder output bits of a group of automata.

We ran 4 trials of BigCrush on the output of 571 8-state automata, randomly permuting positions

of every group of 32 automata after every 1, 000 symbols. The results of this experiment are shown

in Figure 4.7. Without the permutation step APPRNG failed the Crush tests with a reconfiguration

threshold of 20, 000 symbols. With the reconfiguration APPRNG passes all BigCrush tests with a

reconfiguration threshold of 1, 000, 000. While we currently implement this step in software, we

hypothesize that the permutation could be done by a support ASIC or support processor.

4.6 AP-PRNG in Practice 93

Figure 4.7: Output quality of AP PRNG with output permutation greatly increases quality of
random output. AP PRNG passes all tests in BigCrush with a reconfiguration threshold of at least
1, 000, 000, and at most 2, 000, 000

4.6.3 AP-PRNG Performance Model

Based on the above sensitivity analyses, we evalutate the performance of APPRNG on first-

generation Automata Processor architecture configured for 571 chains, 8-states, a reconfiguration

threshold of 1, 000, 000, and a permutation threshold of 1, 000. The Automata Processor oeprates at

133MHz, consuming 1 8-bit symbol every 7.5ns, regardless of the number of automata operating in

parallel.

Figure 4.8 shows the predicted APPRNG throughput as we vary reconfiguration threshold.

When r = 1, 000, 000 APPRNG produces 4.1GB/s of pseudorandom output per each proposed AP

chip, while consuming 200.7MB/s of random input per chip.

A clear advantage APPRNG has over other pseudorandom generators is its flexibility. A user

is easily able to make tradeoffs between pseudorandom output quality and throughput. This is

useful in the case that a user has a power- or performance-bound application or simulation in

which weak randomness suffices. This user can greatly increase the reconfiguration threshold r

to gain throughput. Our model shows that for r = 10, 000, 000 a single first-generation Automata

Processor chip can produce 17.8GB/s of output. This allows for users to increase performance (by

increasing the reconfiguration threshold) or decrease power requirements (by using fewer chips) if

weak randomness is acceptable.

4.6 AP-PRNG in Practice 94

Figure 4.8: Percentage of runtime spent reconfiguring vs. AP PRNG throughput with different
reconfiguration thresholds. Performance increases dramatically if AP PRNG is able to reconfigure
less frequently.

Frequency 133MHz
Cycle Time (Tc) 7.5ns
STE Size 256 bits
Random State per Chip (ChipState) 1.17MB
Est. AP Reconfiguration Time (Tr) 45ms

Table 4.2: First Generation AP Architectural Parameters

States per Markov chain (s) 8
Markov chains per AP Chip (M) 571
Input Reconfiguration Threshold (r) 1, 000, 000
Permutation Width (PW) 32
Permutation Reconfiguration Threshold (PR) 1, 000

Table 4.3: AP PRNG Parameters

Chip Output per Input Symbol (O) log2(s) ⇤ M
Random Generation Time (TR) r ⇤ Tc
Runs per second (Runs) 1/(TRun + Tr)
AP PRNG Throughput (P) Runs ⇤ O
Random Input Stream Rate (Ins) Runs ⇤ r
Random Input Required
for Reconfiguration (Inr) Runs ⇤ ChipState
Random Input Required
per Permutation (Inp) PWlog2(PW)

Table 4.4: AP PRNG Performance Model

4.6 AP-PRNG in Practice 95

Memory Technology DDR3 DDR4 HMC 2.0
Peak Throughput (GB/s) 12.8 17.0 320

Tr (µs) 91.4 68.8 7.3
AP Chip Output (GB/s) 28.2 28.3 28.5

Throughput Limited AP Chip Output (GB/s) 12.8 17.0 28.5

Table 4.5: AP PRNG performance modeled on different memory technologies. AP PRNG through-
put is limited by peak memory throughput for DDR3 and DDR4 technologies.

Future AP Hardware

First generation AP hardware is projected to have an output throughput of 436.9MB/s, serving

as an upper bound on the throughput of off-chip pseudorandomness for APPRNG. Reconfiguration

time, which we have shown to be especially burdensome for APPRNG, is projected to be 45ms.

These limitations, however, are limitations resulting from AP hardware design decisions, rather

than fundamental limitations of APPRNG. The STEs in the AP are implemented using DRAM, and

the 45ms figure is much larger than what one would expect for native memory I/O speeds.

We hypothesize the optimal performance of APPRNG assuming that automata reconfigura-

tion can be done at native data rates of DDR3, DDR4, and Hybrid Memory Cube (HMC [88])

throughputs. These projections are shown in Table 4.5.

In order to reconfigure 571 8-state automata we only need to reconfigure the matching symbols

of each transition (64 total transitions per automaton), as the topology of the automata remains the

same. For a single chip, this requires 1.17MB of data be changed per reconfiguration. If we are

able to reconfigure at native DDR3 speeds, our model in Table 4.5 predicts 28.2GB/s of on-chip

pseudorandomness. The peak output throughput of DDR3 is only 12.8GB/s, however, which serves

as the off-chip performance bottleneck.

Using state-of-the art high-throughput memory technologies, such as HMC, our performance

model predicts APPRNG can produce 28.33GB/s of on-chip pseudorandomness. HMC provides

much higher output data rates, and is capable of matching the APPRNG throughput.

Future implementations of the AP architecture implemented on a more modern transistor

process should also have increased capacity for more STEs, translating to more parallel automata

in APPRNG. If we adjust our model for a 1.41⇥ increase in capacity per AP core, APPRNG can

produce 40.5GB/s of pseudorandomness per chip.

APPRNG Power Requirements

While the overall power performance on APPRNG will certainly depend on the deployment

scenario, we project that APPRNG on the Micron Automata Processor should be much more

4.7 Sensitivity to Weakly Random Input 96

Figure 4.9: AP PRNG is up to 6.8⇥ more power efficient than the highest-throughput reported
GPU PRNG depending on the deployment scenario.

efficient than implementation on other architectures. The GTX 580 GPU used in Salmon et.al [72]

has a TDP of 244W, while each DDR3-based AP chip has a projected TDP of 4W, and stacked

HMC-based memories are projected to use 70% less energy than DDR3. Figure 4.9 shows the

PRNG efficiency of a few different realistic AP PRNG deployment scenarios. All AP deployment

scenarios require a support processor to generate random input and configure the AP. We assume

that the support processor consumes 35W, a reasonable assumption for a single CPU core. The

configuration with 4 AP chips implemented in an HMC technology produces 4MB/s/W, 6.8⇥

more power efficient than the best performing GPU PRNG reported in the literature [72], and 10.8⇥

more power efficient than our measured experiments using the current library implementation of

Philox32x4 10 on an NVidia K20C GPU.

Disregarding support processor power consumption, and conservatively assuming a 4W TDP

per AP chip, AP chips are 6.8⇥ more power efficient than the reported GPU implementation.

4.7 Sensitivity to Weakly Random Input
By definition, the input to a pseudorandom number generator is required to be truly random.

In the case that non-random input is given to a pseudorandom number generator, no guarantees

can be made about the pseudorandomness of the output data.

In practice, randomness is typically derived by a computer in any of a number of ways, for

example using insignificant bits from the computer’s clock, or using biometrics such as the pattern

of user keystrokes. These sources are chosen under the assumption that there is some inherent

4.7 Sensitivity to Weakly Random Input 97

randomness to the sampling of these processes, however these sources are certainly not truly

random. True randomness is very hard to come by, with the only well-respected truly random

sources coming from measuring quantum effects, such as measuring the decay of radioactive

isotopes.

Since true randomness is expensive, and more easily-obtained sources are only weakly random,

a pseudorandom generator could easily be bottlenecked by its ability to obtain its random input. To

mitigate this bottleneck we demonstrate how APPRNG could be adapted to produce pseudorandom

input even in the case that the random source is only weakly random, thereby broadening the

circumstances in which APPRNG provides high-throughput pseudorandomness.

4.7.1 Entropy Extractors

Prior work on using a weakly random source to drive a process requiring true randomness

primarily relies on the use of entropy extractors. An Entropy extractor is an algorithm which takes

as input a large sequence of n bits from a weakly random (i.e. somewhat biased) source, as well

as a small sequence of d bits from a truly random source, and mitigates the bias by producing

a sequence of m output bits that are substantially closer to being uniformly distributed. We

emphasize that the definition makes a statistical requirement on the output of an entropy extractor

rather than a computational complexity requirement. In other words, the output must actually

be statistically close to random rather than being computationally indisinguishable from random.

Note that this definition still requires using some true randomness, which is unavoidable. An

entropy extractor requires a small number of truly random bits in order to provide even one bit of

near-random output [89].

One could use a composition of an entropy extractor and a pseudorandom generator to construct

a new pseudorandom generator which operates using weak randomness. Through this technique

the entropy extractor will “condense” the randomness from the weakly random source, then

provide its output as the source randomness expected by the pseudorandom generator. For

APPRNG we directly adapt the algorithm so that it will improve the quality of pseudorandom

output, thereby serving the role of this composition. This method does not serve as a stand-alone

entropy extractor.

It is known that pseudorandom generators can serve as entropy extractors under certain

assumptions relating to the size of circuits computing the function with that of its inverse [90].

Determining whether APPRNG satisfies this assumption is left to future research.

4.7 Sensitivity to Weakly Random Input 98

Figure 4.10: An example of a 2-state automaton that is 2-strided.

4.7.2 Min-Entropy

Intuitively, less randomness contained in a source necessarily reduces the amount of entropy

that can be extracted from that source. This means that the weaker a random source is, the less

efficient APPRNG must be in producing pseudorandom output from this source. For this reason

we need a means of expressing the quality of a pseudorandom source. The metric settled upon is

that of min-entropy.

The min-entropy of an n bit distribution X is the largest value p such that for every x 2 {0, 1}n

we have that P[X = x] < 2�p. We say that X is an (n, p)-distribution. In other words, the min-

entropy of a distribution is proportional to the log of the inverse of the probability of the most

likely event. The smaller the min-entropy, the weaker the distribution. For example, if we have a

uniform distribution over 4 bits, then the probability of any particular bit string being sampled

would be 1
24 , thus the min-entropy would be 4, and this would be a (4, 4) distribution. If, however,

the distribution was strongly biased such that there was a particular bit string that was sampled

with probability 1
2 , then the min-entropy would be 1, and this would be a (4, 1) distribution.

4.7.3 Striding APPRNG

In order to use APPRNG over weakly random input we transform the input distribution to one

with a higher min-entropy. We use a technique called striding, whereby an automaton transitions

simultaneously on multiple characters at once rather than on a single character. For example, if an

automaton is 3-strided then it will consume 3 input characters per transition. An example strided

automaton is shown if Figure 4.10.

Consider that we have an (n, p) distribution. If we convert the machines to k-stride its input

then the input distribution to the automata is (n ⇤ k, pk). Let’s assume the the most probable

bitstring from the input distribution is 0n, which occurs with probability 1
2p . This implies that the

4.7 Sensitivity to Weakly Random Input 99

most probable bitstring in the k-strided distribution must be 0k·n, which occurs with probability
1

2p · 1
2p · . . . 1

2p = 1
2kp . Since the min-entropy of the distribution increases exponentially with the

stride length, the min-entropy of the distribution can be made arbitrarily close to maximum (those

arbitrarily close to truly random) for any distribution with min-entropy greater than 0.

In order to accommodate the strided input we must appropriately configure the parallel

automata. To do this we will use a source of truly random input to construct the machines,

while using the weakly random source to derive the machines’ input. A machine defined over

a b-bit alphabet that is k-strided effectively transitions over an alphabet of b · k bits. This means

that a k-strided configuration of GM,s,r will need M · s · log(sk !
sk�1!) = Q(M · sk+1 log s) bits of true

randomness (Theorem 4.7.1 and r · k log s bits of weak randomness, while producing r log s bits of

output.

Theorem 4.7.1. a k-strided configuration of GM,s,r will need M · s · (log sk! � s log sk�1!) = Q(M ·

sk+1 log s) bits of true randomness

Proof. To construct the k-strided parallel automata for APPRNG, a random balanced s-partition of

the symbol set Sk, where |S| = s uniquely defines each state’s outgoing transitions. This procedure

thus acts independently on each state in each machine. To count the number of random bits needed

to build all machines, we must simply count the number of random bits needed for each state, then

multiply by the total number of states across all machines, M · s.

The number of balanced s-partitions of a set of size sk is given by:

sk!
(sk�1!)s

To construct these partitions we begin by permuting our alphabet of size sk, which has sk! possibili-

ties. Every block of sk

s in the permutation then results in one of the balanced s partitions. Each

of these partitions is a set, i.e. order doesn’t matter, we must “unpermute” each of the blocks of

size sk

s to undo the double counting of blocks containing the same set of elements appearing in

different orders in the original permutation.

Each of the blocks is of size sk

s , thus there are sk

s ! ways to permute each block. To count exactly

the number of choices for s balanced permutations we must divide the number of permutations of

the alphabet, sk!, by sk

s ! = sk�1! for block. This gives the final count of sk !
(sk�1!)s .

The number of bits required to select one choice of the s partitions at random is given by

4.7 Sensitivity to Weakly Random Input 100

log
sk!

(sk�1!)s = log sk! � log(sk�1!)s

= log sk! � s log sk�1!

2 Q(sk log sk � sk log sk�1)

= Q(sk(log sk � log sk�1))

= Q(sk log s(k � (k � 1)))

= Q(sk log s)

So for all M · s states across all M machines, we need M · s(log sk! � s log sk�1!) 2 Q(M ·

sk+1 log s) random bits.

The amount of additional randomness needed for striding increases exponentially in terms of

the stride length. This may initially seem intractable, but recall from above that the stride needs to

be logarithmic in the min-entropy of the distribution. This means that in order to compensate for

weak randomness, the amount of additional true randomness needed is linear in the min-entropy

of the weakly random distribution.

4.7.4 Experimental Results

Here we demonstrate the capability of the striding technique to allow APPRNG to effectively

utilize weak randomness, but still pass a battery of statistical tests. For this example we used the

Small Crush test suite. Due to the APPRNG algorithm being emulated on a standard CPU, rather

than hardware that can take full advantage of its parallelism, we were constrained from using the

more extensive Crush and Big Crush tests for this study as for parameters needed for striding the

time and memory constraints on the machine were insurmountable.

There are three principle models for weakly random sources [91] of min-entropy k:

• Markov Chain Source: models weak randomness using a random walk of length n over

a biased Markov Chain, where each transition pij is taken with probability k/n < pij <

1 � k/n [92].

• Unpredictable Source: models weak randomness where, 1 i n, and b1, . . . bi 2 {0, 1},

k/n Pr[Xi = 1 | X1 = b1, . . . , Xi�1 = bi�1] 1 � k/n. This means that given i bits the

i + 1th bit is only somewhat unpredictable [93].

4.7 Sensitivity to Weakly Random Input 101

• Bit Fixing Source:models weak randomness by taking a distribution over n bits where n � k

bits are fixed, and the remaining bits are generated randomly [94].

Of these three models we only used the Bit Fixing model for our experimentation. The

Unpredictable Source model was developed as an extremely general model of weak randomness.

In this model there is an adversary who is allowed to select bits somewhat at random. One could

think of this model being realized by an adversarial actor who, whenever a random bit is requested,

may maliciously select from a set of unfair coins each having its own bias known to the adversary.

We found this model unimplementable for our experimentation. The Markov Chain Source model

is a generalization of the Bit Fixing model, and allows for too many degrees of freedom to provide

for a compelling experimental narrative.

We found the Bit Fixing model best suited for our experiments due to its ease of implementation,

as well as its reliance on only a single parameter to change the degree of weakness of the random

source. For our experiments the automata were constructed with truly random input (actually

pseudorandom input from Philox), while the input string was sampled from our Bit Fixing source.

This source took in a singular parameter t. Every tth b-bit symbol in the input string was fixed to

be 0b, while all remaining bits were truly random (again, pseudorandom input from Philox).

We begin with a configuration of APPRNG which passes all tests. From here we weaken

the random input until at least one test fails. Next we increase the stride of the machines and

demonstrate that APPRNG passes all the statistical tests even when receiving the same weakly

random input. We then repeat this process of weakening until failure, increasing stride, then

passing all tests through one more cycle. The APPRNG configurations used are shown in Table 4.6.

Tests were run on the Small Crush battery of statistical tests. APPRNG was configured to run

571 machines in parallel, each with 8 states, transitioning over a 6-bit alphabet, for 550, 000 symbols.

Stride refers to the number of input symbols consumed per automaton transition. Fixing period

refers to the distance between fixed symbols (the rest of the symbols are chosen randomly), where

• means that no bits were fixed. Tests Failed refers to the number of tests from the Small Crush

battery which identify the output of APPRNG as being non-random.

Table 4.7 shows the minimum fixing period which requires stride of 1, 2, 3 in order to pass all

Small-Crush tests. Any fixing period smaller than the value in the left-hand column requires a

stride greater than that in the right hand column for APPRNG configured to run 571 machines

in parallel, each with 8 states, transitioning over a 6-bit alphabet, for 550, 000 symbols. Note that

striding automata has dramatic effect in improving APPRNG’s tolerance to weakly random input.

4.8 Automata-based Bloom Filtering 102

Stride Fixing Period Tests Failed
1 • 0
1 10 5
2 10 0
2 2 5
3 2 0

Table 4.6: Striding APPRNG mitigating weakly random input for 571 parallel 8-state automata over
550,000 6-bit inputs.

Fixing Period Stride
10,000 1

6 2
2 3

Table 4.7: Minimum Stride needed by Fixing Period in for 571 parallel 8-state automata over 550,000
6-bit inputs to pass all Small Crush tests.

We were not able to discover a non-trivial 3-strided configuration of APPRNG which failed the

Small Crush tests within the parameters of our testing environment.

4.8 Automata-based Bloom Filtering
APPRNG’s quality pseudorandom output makes it not only useful as a high-throughput

pseudorandom number generator, but also implies its usefulness as an algorithm derandomization

technique. If one has any application which seeks simulation of many Markov chains, one could use

APPRNG to accelerate this application by parallelizing the Markov chain simulation, and reduce the

amount of randomness required by sharing the input randomness across the many Markov chains.

Without APPRNG’s output having a pseudorandom property, using APPRNG may jeopardize the

derandomized algorithm’s consistency. Here we provide some such example application which

would not be possible without the pseudorandom property of APPRNG: automata-based Bloom

filters.

4.8.1 Bloom Filters

A Bloom filter is a probabilistic set-membership data structure first discovered by Burton Bloom

in 1970 [95]. A set-membership data structure is built from an input set S, and for a query item x

determines whether x 2 S. More standard instances of the data structures include binary search

trees, and hash tables. Binary search trees have logarithmic query time in terms of |S|, and space

roughly equal to |S|. Hash tables have expected constant time access, with worst case typically

either logarithmic or linear depending on the collision resolution strategy, but this expected case

performance requires the hash table to be much larger than |S|.

4.8 Automata-based Bloom Filtering 103

Bloom filters allow for worst case constant time set membership queries using space not much

larger than S. To achieve this impressive performance, Bloom filters allow for a small probability of

giving false positives, so with small probability the Bloom filter will incorrectly conclude x 2 S.

This is similar to hash tables in that both exhibit probabilistic behavior, however hash tables

“gamble” with run time (this is called a Las Vegas algorithm), while Bloom filters gamble with

accuracy (this is called a Monte Carlo algorithm). In this case Bloom filters have a small probability

of false positives, but false negatives are impossible, thus Bloom filters are a one-sided Monte Carlo

algorithm.

In order to further illustrate these concepts, consider the following analogy. Let’s say we wish

to determine a person’s identity by examining their set of Facebook friends. We might conclude

that two individuals are the same person if and only if they have the exact same set of friends on

Facebook. We could then probabilistically determine whether a mystery person is among your

Facebook friends by (1) taking the union of all people who are friends of your friends, then (2)

checking whether or not all friends of the mystery person are among your friends’ friends. If

the mystery person has any friend who is not among your friends’ friends, then that person is

certainly not your own friend. On the other hand, if all of the mystery person’s friends appear

among your friends’ friends, then that mystery person is likely to be your friend. A bloom filter

could determine this situation by doing a “roll call”, where it broadcasts each person’s name from

the mystery person’s friend list to everyone in your friends’ friends list. If all members in the roll

call are present, then that person is likely to be your friend. Conversely, if any person is missing

from that set, that person is definitely not your friend. Thus by broadcasting the names, the filter

must wait only a constant amount of time for a response.

To construct a Bloom filter, we first define a bit vector v of m 0s, and a list H = [h1, . . . , hk]

where each hi : {0, 1}⇤ ! {x 2 N | 0 x < m} is a hash function. Each hash function takes

an arbitrary item as input, and returns an index in v as output. The vector v is configured for

queries on set S by taking a hash of every element in S and setting each resulting index of v to be 1.

Formally:

v[i] = 1 , 9 s 2 S 9 hj 2 H 3 hj(s) = i

Then for a query on an element x, if x indeed belongs to the set S it must hold that v[hj(x)] =

1 8 hj 2 H, since otherwise we would have set to 1 any index that was mapped to by one of the

hash functions on input x. In the case that x 62 S it may still be the case that all hashed indices

happen to be 1, as x could be mapped to a set of indices belonging to the union of indices hashed

4.8 Automata-based Bloom Filtering 104

to by multiple items from S, i.e. 9 S0 ✓ S 3 [{hj(x) | hj 2 H} ✓ {hj(s) | hj 2 H ^ s 2 S0}]. For

example, assume that s1, s2 2 S hash to indices {8, 12, 15, 22} and {4, 9, 19, 20}, respectively, and

x 62 S hashes to {8, 15, 19, 22}. In this case, all the indices that x maps onto would be set to 1 in

the bit vector v, so the Bloom filter will erroneously claim that x belongs to S, thus giving a false

positive.

The strength of Bloom filtering comes from the seemingly random nature of the hash functions.

Each hash function serves as a deterministic approximation of an ideal truly random function,

which would take an input string and map it to a randomly selected output from its range in

a self-consistent manner (meaning if the function is given the same input multiple times it will

always provide the same output). This means that a Bloom filter’s hash functions seemingly select

a set of indices uniformly at random across the vector v.

If we assume that the hash functions successfully model random functions, we can bound the

probability of a false positive error in the Bloom filter. This error depends on the number of bits

(m) allocated for the bit vector (v), the number of hash functions (k) in the set of hashes (H), and

the number of elements (n) in the query set (S). The probability of a false positive is given by [96]:

(1 � e
�km

n)k

4.8.2 Automata-based Bloom filters

Intuitively, traditional Bloom filters achieve their performance by using hashes to probabilisti-

cally “disperse” each element’s identity across its bit vector, allowing for a more dense representa-

tion of a set of elements through combinations of enabled bits. One could say that each hashed-to bit

is a feature of that element’s identity. We model this behavior by associating each bit in the Bloom

filter’s vector using a finite state automaton, where that automaton probabilistically “distinguishes”

whether it identifies with a given query element. In the same way that Bloom filters accept a string

if and only if all aspects of its identity (hashed-to bits) had been seen by some element(s) from

S, the automata-based filter will accept if and only if all automata which identify with the query

element had also identified with an element of S.

Let’s compare these techniques using the Facebook example above. Traditional Bloom filtering

requires some central actor to inspect the mystery person’s friend list, then verify that each

individual belongs to your friends’ friends list through a roll call. The automata-based approach

instead operates by this central actor broadcasting the name of the mystery person to all people

not in your friends’ friends list. If any person is friends with that mystery person, then the mystery

4.8 Automata-based Bloom Filtering 105

Figure 4.11: An illustration of how automata-based bloom filtering decreases false-positive rates
via increased numbers of automata. Each gray circle represents the set of elements accepted by an
automaton, with all automata rejecting every element in the set S. A query on any string that falls
outside of all the gray circles will result in the response x 2 S. The more automata running against
x, the smaller the probability that x falls in neither the circle for the set S nor any of the gray circles
(which would be a false positive).

person is not your friend (as otherwise all of the mystery person’s friends would be excluded).

High-level Construction

To build automata-based bloom filters we begin with a list containing many automata, intuitively

each automaton representing a bit in the bit vector of the Bloom filter. To emulate the Bloom filter’s

property of accepting a query element if and only if that element mapped exclusively to indices

also mapped to by some element of the set S, we will accept a particular query element if and

only if all automata which accept that query element also accepted at least one element of S. False

negatives are impossible, as each automaton is deterministic, thus its answers are self-consistent.

Note that the decision of x 2 S for automata-based Bloom filtering depends only on the behavior

of machines which reject all elements from S. This means that any automaton that accepts an

element from S is irrelevant, and can be discarded. The probability of a false positive is determined

by pA, where p is the probability that any particular automaton accepts a random input string

and A is the number of automata remaining is our set. We now arrive at a simple core idea of

automata-based Bloom filtering: with high probability we determine whether x 2 S by testing it on

many non-examples of automata which accept strings in S. Since we have many automata which

all reject every element in the set S, if we have sufficiently many such automata we can conclude

any string rejected by all of them is likely to be in S. A high-level illustration of this phenomenon

is shown in Figure 4.11.

We now provide an algorithm for constructing a set of automata which perform set membership

queries such that the probability of a false positive is exactly that of a given Bloom filter with a bit

4.8 Automata-based Bloom Filtering 106

To qs To qa
From qs 1 � p p
From qa 1 � p p

Table 4.8: Stochastic Transition Matrix of each Markov Chan used for Automata-Based Bloom
Filtering

vector v of m bits, a list H = [h1, . . . , hk] of k hash functions, and a set S with n elements. We break

our discussion into 3 parts: (1) initializing our choice of automata, (2) inserting each element of S

into our filter, (3) performing queries over the data structure.

Initialization

To build the filter we first randomly construct a large set of M automata (derivation of this choice

of M is done in Section 4.8.2), each of which will accept a random input string with probability p.

Each automaton will have 2 states, call them {qs, qa}, where qs is the start state and qa is the only

accepting state. We construct each automaton by selecting two random sets of p · |S| symbols to

transition from state qs to qa and from state qa back to qa. The symbols not in each set will define

the transitions from qs to qs and qa to qs respectively.

When each automaton receives a random input string x, the long-term proportion of time the

automaton spends in state qa is exactly p. This holds because it is equivalent to the Markov Chain

in with the stochastic transition matrix shown in Table 4.8, whose stationary distribution (which

converges after a single transition) shows the proportion of time spent in state qa is exactly p. This

means that at the end of the input the probability the machine halts in state qa, and therefore

accepts, is also p. All that remains to define each automaton is the selection of p. We wish to

emulate a Bloom filter with m bits and k hashes, thus the probability that each automaton rejects

should be equal to the probability that a fixed index in v is not among the results of the k hashes.

Since there are m bits in v, the probability that the output of a particular hash function is not

index i is given by 1 � 1
m , as each hash function should return each index with equal probability.

This means that the probability that none of the hash functions returns i is (1 � 1
m)k, which should

also be the probability that our machines reject. We therefore select the probability of acceptance

for automata-based Bloom filters as:

p = 1 � (1 � 1
m
)k

Note that this construction requires the the choice of alphabet S for the transitions must exactly

match the alphabet of the inputs. Also, the minimum transition probability for each automaton

4.8 Automata-based Bloom Filtering 107

is 1
|S| . In order to have an automaton with a smaller transition probability than 1

|S| , or a larger

alphabet than the input string, then input string should be strided, thereby squaring the size of the

alphabet.

Insertion

Now that we have set up the automata for the Bloom filter, we must insert all elements from

the set S. Traditional Bloom filters execute the k hashes on each element of S, and set the automata

of each resulting index to be 1. For automata-based Bloom filtering we run each input of S on the

entire set of M automata, and remove any automata which accept.

Since each automaton accepts a input string with probability p, the probability that an automaton

is removed as a result of an insertion is p (the probability that automaton accepted), so it has

probability 1 � p of remaining. The probability that an automaton remains after n = |S| insertions

is therefore (1 � p)n. This implies that the number of automata which remain, call this R, after

inserting all of S is:

R = M(1 � p)n

= M(1 � (1 � (1 � 1
m
)k))n

= M(1 � 1
m
)kn

⇡ Me
�kn

m

While M is the number of automata we will construct when initializing the Bloom Filter, R will

be the number of automata which we must execute for each query. This implies that as k and n

grow larger for fixed m, automata-based Bloom filters require progressively fewer automata. For

fixed space, as k and n increase, we can therefore emulate a Bloom filter with more bits (larger m).

Querying

To query whether an element x belongs to the set S we run x as the input to all R automata.

If any of those automata accept then we can definitely conclude that x 62 S, as otherwise that

automaton would have been removed during the insertion. If all automata reject then we conclude

that x likely belongs to the set S. The probability that this answer was a false positive is given by

the probability that all automata accept for a random input string. Since each automaton rejects

with probability (1 � 1
m)k and we run x over R automata, the probability of a false positive is:

4.8 Automata-based Bloom Filtering 108

((1 � 1
m
)k)R

=(1 � 1
m
)kR

⇡e
�kR

m

⇡e
�k
m Me

�kn
m

In the case of traditional Bloom filters a false positive occurs whenever x hashes only to 1s in

the vector v. The probability that an arbitrary index in v is a 1 is (1 � (1 � 1
m)kn). This means that

the probability that all k hashes map to a 1 for query element x (and therefore the probability of a

false positive) is:

((1 � (1 � 1
m
)kn))k

⇡(1 � e
�kn

m)k

Number of Automata Required

We now finally derive the choice of M so that the probability of false positives for automata-

based Bloom filters matches that for traditional Bloom filters. To do this, we must simply solve for

M:

e
�k
m Me

�kn
m = (1 � e

�kn
m)k

M
�k
m

e
�kn

m = k ln(1 � e
�kn

m)

M = �m · e
kn
m ln(1 � e

�kn
m)

This ugly equation gives little intuition on the relative size of M. The equation becomes much

simpler, and the story much clearer, when we assume k takes is optimal value to minimize the

probability of false positives for m and n, given by k = m
n ln 2

4.8 Automata-based Bloom Filtering 109

M = �m · e
kn
m ln(1 � e

�kn
m)

= �m · e(
m
n ln 2) n

m ln(1 � e(
m
n ln 2)�n

m)

= �m · eln 2 ln(1 � e� ln 2)

= �m · 2 ln
1
2

= (2 ln 2)m

⇡ 1.386m

This implies that automata-based Bloom filters must create about 1.386 automata for each bit in

the bloom filter for an optimal choice of hash function count. The final expected space complexity

of automata-based bloom filters is R, final number of automata remaining after the insertions. We

derive the value of R for the optimal choice of k = m
n ln 2 and M = (2 ln 2)m:

R = Me
�kn

m

= (2 ln 2)m · e(ln 2) m
n

�n
m

= (2 ln 2)m · eln 1
2

= (ln 2)m

⇡ 0.693m

This means that per bit of the given Bloom filter, we expect to simulate 0.693 automata and

achieve the same false positive rate.

Experimental Verification

We implemented the above described Bloom filtering algorithm in Python. We tested for false

positive rates over 1000 queries, varying independently:

• Size of Bloom bit vector (ranged from 100-500)

• Size of inserted set (ranged from 5% to 50% of the size of the Bloom bit vector)

Each test was additionally repeated with 10 repetitions. The set of elements inserted into the

Bloom filter (the inserted set above), as well as the set of elements to query were chosen uniformly

at random for each trial. Across all tests, the theoretically-approximated number of false positives

4.8 Automata-based Bloom Filtering 110

was 98 on average per trial, our automata-based bloom filtering implementation observed and

average of 84 false positives per trial (87.5% of expected).

Special Considerations

The above analysis shows a configuration for automata-based Bloom filters which match the

statistically expected performance of traditional Bloom filters. The behavior of Automata-based

Bloom filtering will not follow exactly the same distribution, as illustrated by the following

examples:

• Each query on a traditional Bloom Filter hashes to exactly k bits. On the other hand, automata-

based Bloom filters “hash” to k bits on average.

• Both Bloom filtering techniques behave probabilistically relative to a random query and

a random inserted set. Automata-based Bloom filtering should see greater variance in its

performance relative to the inserted set. In an extreme example, it is possible that inserting

all elements in the set S into the automata-based Bloom filter results in the elimination of all

automata. Should this happen, every query will be a false positive. This situation can only

happen in traditional Bloom Filters in the case of a very large inserted set. In order to maintain

the same expected performance, the preponderance of cases in which automata-based Bloom

filtering outperforms traditional Bloom filtering must compensate for these adverse outliers.

• Automata-based Bloom filters require much more upfront-cost for configuration. Our con-

struction relies on random generation of many automata, requiring a large quantity of

random input. Traditional Bloom filters only require allocation of memory and knowledge

of two hash functions [97]. It is conceivable that a set of well-behaved automata could be

deterministically generated in order to reduce the initialization cost. This consideration is left

to future research.

• Automata-based Bloom filters rely on the assumption that APPRNG is a true pseudorandom

number generator. For sufficiently large query items, the distribution of the automata

acceptances will deviate from the random behavior implicit in our analysis. In the case that

APPRNG is a pseudorandom generator, “sufficient largeness” will be considerably larger

than in the case when APPRNG is not a pseudorandom generator. We hypothesize that

APPRNG, being a true pseudorandom number generator, would allow for exponentially

larger inputs before the random behavior suffers, since the definition of pseudorandomness

requires that any distinguisher must run in superpolynomial time.

4.9 Summary 111

• This automata-based Bloom filter design is not restricted in the same way Bloom filters are.

The false positive probability is given by the probability that each state rejects, raised to the

power of the number of states. We can therefore reduce the false positive probability beyond

the capabilities of traditional Bloom filters by either decreasing the probability of rejection, or

by increasing the number of machines.

4.9 Summary
In this work we explored the usage of parallel Markov chain simulation via random finite state

automata running on shared input to produce pseudorandom behavior. We briefly mentioned how

Markov chains could be simulated by such automata. This implies that automata-based accelerators

can efficiently simulate Markov chains through parallel execution on shared input, but only with

our demonstration that this produces pseudorandom behavior.

We justified the pseudorandom behavior of our approach by providing a hardness assumption

under which the algorithm is a cryptographically secure pseudorandom number generator, as well

as showing its capability of passing even the most stringent of tests for pseudorandom behavior.

We justified its efficiency by showing that the algorithm belongs to the same complexity class as

the fastest known cryptographically secure pseudorandom number generators. Toward its use

in practice, we showed its efficiency by modeling its behavior on future automata-based architec-

tures, which shows its capability of outpacing the highest-throughput GPU-based pseudorandom

generators at 40.5GB/s of throughput, while consuming 6.8⇥ less energy.

Pseudorandom number generators require truly-random input to operate, and such input is

difficult to obtain. To mitigate this issue we provide a method for altering the APPRNG algorithm

to be more tolerant to poorly-random input.

Finally, we show that our demonstration of the pseudorandom behavior displayed by parallel

automata-based simulation of Markov chains opens up a breadth of new problem solving tech-

niques. We present automata-based Bloom filtering as a first example of a solution which relies on

this pseudorandom behavior in order to be feasible. It is able to emulate a traditional Bloom filter

with the same false positive rate, while running in constant time by number of hashes, and using

0.7 automata with two states each per bit of the Bloom filter’s vector. We hope our results open up

Markov chain based probabilistic computing as an exciting new area of research.

Chapter 5

Conclusions and Future Directions

In this dissertation we proposed two new highly-scalable approaches to effectively process massive

data sets in the post- Moore’s Law era, namely:

1. algorithms that operate directly on highly compressed data; and

2. leveraging massively parallel finite automata-based architectures for adressing specific prob-

lem domains.

We showed that the compression-aware algorithmic approach can extend scalability by ex-

ploiting regularity in highly-compressible data, while also avoiding the expensive decompression

and re-compression steps. Additionally, we utilized the automata processor’s ability to succinctly

implement complex computations via simulation of non-deterministic finite-state automata. We

evaluated the efficiency, extensibility, and generality of these non-traditional approaches on big

data. We presented promising experimental results and theoretical impossibility arguments, as

summarized in this chapter below. We conclude this section with future research directions.

Our contributions serve as the first steps in enabling the design of more sophisticated and

nuanced algorithms for grappling with scaling issues in processing and mining large datasets.

Since the rate of growth of these massive datasets exceeds the pace of Moore’s Law (even before its

recently-revised forecasted slowdown [3]), application-side software resourcefulness is becoming

necessary in order to satisfy the growing demands for computing resources. The algorithms, codes,

compression schemes, and theories presented in this dissertation will hopefully help usher in future

efficient and practical algorithms, and have the potential to fundamentally change the way in which

society collects, processes, utilizes, and mines large datasets, and thereby provide a much-needed

life-extension to Moore’s Law.

112

5.1 Compression-Aware Algorithms 113

5.1 Compression-Aware Algorithms

5.1.1 Contributions

We began with a study of compression-aware techniques on a particular set of well-understood

classical problems: sorting and statistics. Next, we showed some necessary assumptions for

accelerating these algorithms. We demonstrated that not all compression techniques are amenable

for acceleration of all algorithms, but instead proper design of algorithms for compressed data

requires careful pairing of algorithms and compression schemes.

From these lessons, we designed various algorithms which are asymptotically more efficient in

both computation time and memory use when running on compressed datasets. We demonstrated

that our algorithms can be applied to existing compression schemes, as well as to new compression

schemes that are specifically tailored to speed up the algorithms over the compressed data. We

applied our methods to graphs and geometric domains, which suggests that these techniques are

broadly applicable. While prior work relies on designing or modifying compression schemes to

scalably solve specific problems, our results indicate that certain standard compression schemes

are inherently compatible with many common algorithms.

5.1.2 Future Directions

We sought to define a framework for the development of new algorithms to operate directly

on compressed data. To broaden the applicability of compression-aware techniques, we need to

study more compression schemes and their amenability to various classes of algorithms. Our

non-existance proof regarding sorting compressed lists provides a good rule-of-thumb for when a

compression scheme could enable a more efficient compression-aware approach for a particular

algorithm, namely when the data is more compressible over a distribution in which an algorithm

sees better average-case performance. This rule provides a quick way to rule out particular

applications, which should help accelerate future explorations of the compression-aware algorithms

design space.

Some of the above results may also be suitable for the development of compression-aware data

structures. For instance, can we build KD-Trees or Voronoi diagrams on set-of-lines compressed

data? Can we use graph-based compression schemes to compress graph-like data structures

over other data? And in general, which data structures are most effective in compression-aware

algorithmic design?

5.1 Compression-Aware Algorithms 114

Alternate Definitions of Compression

The goal of the compression-aware algorithms approach is to discover compression techniques

which allow for fast-running algorithms without seriously compromising the compression ratio.

One potential concern, however, is that solutions to certain problems may be “hidden” within

the compressed data. In other words, the compression scheme may pre-compute some functions

over the data during the compression phase (akin to a data preprocessing phase in traditional

algorithms), and then store those pre-computed values alongside the compressed data, for later

easy retrieval. This would be outside the spirit of our study, but in order to avoid this type of

algorithmic “cheating”, we must devise a more precise definition of compression. For example,

Feder and Motwani [33] present a working definition of a graph compression, as follows:

Let G(V, E) be a labeled graph with |V| = n and |E| = m. A compression of G is defined as a

labeled graph G⇤(V⇤, E⇤) such that:

1. n⇤ = |V⇤| is polynomial in n.

2. m⇤ = |E⇤| is significantly smaller than m, i.e. m⇤ = o(m).

3. The mapping ⇤ : G ! G⇤ is 1 � 1.

This definition is insufficient, however, for the purposes of designing compression-aware

algorithms. The restriction that n⇤ be polynomial in n allows solutions to algorithms of size

polynomial in n to be “hidden” within the compression scheme. For this reason we might seek to

restrict the schemes addressed to those which asymtotically approach entropy. This property has

been proven to hold for compression schemes in different domains (such as strings [12, 13]). With

this restriction, only constant space solutions (decision problems) may be hidden in the compression

scheme without violating our definition, so we avoid these. To the best of our knowledge, industry

has not seen widespread adoption of any graph or point set compression scheme that satisfies

these requirements.

Not yet having an entropy-rate compression scheme or precise “non-cheating” restrictions on

the contents of compressed data, an honest-effort approach will have to suffice for now. Indeed, this

is the standard that we currently uphold with our presented schemes. None of the compression

schemes used in this dissertation compute or store any hidden solutions to the problems /

algorithms that we present, nor do they utilize metadata which assists computation.

Thus, hiding precomputed solutions within compressed data will sacrifice compression ratio,

and may also obscure the potential benefits of compression-aware computations, which ideally

5.1 Compression-Aware Algorithms 115

would not require such metadata to achieve dramatic accelerations. We hope that these observa-

tions will initiate discussions regarding how to formalize such restrictions on algorithm-aware

compressions in ways that will leverage their full potential and super-scalability.

Using Imprecise Hardware on Lossy-compressed data

In Section 2.5.1 we discussed a lossy algorithmically-aware compression scheme for geometric

data. Lossy compression schemes may compress two different raw-data inputs into the same

compressed value, thus creating potential uncertainty when decompressing. We could leverage the

tolerance to lossyness of certain applications, in order to achieve further gains in performance and

power efficiency, by running the algorithm on imprecise hardware [98].

Traditional hardware design requires all computations to have strict accuracy guarantees.

However, many applications (e.g. video and audio) do not require extreme precision and are

inherently fairly fault tolerant. Thus relaxing the hardware’s perfect precision constraints can

enable potential time and power efficiency gains. In other words, rather than insist that all of the

potential imprecision should reside in the high-level implementation (i.e. compression lossyness),

we could instead choose to spread the imprecision across both the hardware and the software in

fault-tolerant applications.

In spite of the uncertainty resulting from lossy-compression and execution over imprecise

hardware, we can still be highly effective in performing complex computations. Indeed, a nat-

ural example of this “strategy” is the human brain itself. Our brains are computers based on

imprecise, unreliable neurological components and connections, that can nevertheless perform

highly sophisticated (to the point of being inimitable) computations. Evolution clearly managed to

obtain impressive computational power from imprecise components (i.e., neurons), while allowing

significant and obvious deviations from absolute correctness. Perhaps these billions of years of

trial-and-error provide deep lessons for us scientists and engineers, as we contemplate future

computer designs.

Natural applications which can benefit from lossy-compressed computation using imprecise

hardware include those that are limited by human perception (e.g., multimedia), or contain a

significant amount of noise in the system (e.g., classification, detection, and tracking in sensor

networks, or image/video processing and compression [99]). Additional potential beneficiaries

include inherently randomized or stochastic algorithmic approaches, such as simulated annealing,

genetic algorithms, neural networks, fuzzy systems, Monte-Carlo approaches, artificial intelligence

problems, numerous approximation schemes for computationally intractable problems, and those

modelled by parallel markov chains (e.g. automata-based bloom filtering of Section 4.8).

5.2 Automata Computing 116

5.2 Automata Computing
In this work we have shown that the automata computing paradigm has surprising potential, as

well as surprising limitations. We characterized the class of problems which can be implemented

on automata-based coprocessors in the model of the Micron AP. We also provided applications

with surprising properties not previously displayed by automata-based designs (e.g. APPRNG and

Bloom filtering), broadening our intuitive understanding of possible applications.

5.2.1 Contributions

Complexity-Theoretic Analysis of Automata Processing

We began with a proof that, under proper assumptions regarding computing resources avail-

ability, the automata processor can recognize no more than the regular languages. This argument

helped dispel a persistent misconception regarding the Turing-completeness of the AP. We do

not claim that the proof of Turing completeness of the AP via simulation of cellular automata

is incorrect. Rather, we argued that this only reinforces an incomplete perspective of automata

hardware.

There is an ancient Indian parable about three blind men encountering an elephant for the first

time. Being blind, they are each unable to appreciate the full size and form of the elephant, as they

have no way to study it other than by touch. The first blind man concludes that elephants are long

and slender, much like a snake. The second man concludes that elephants are sturdy and tall, much

like a tree. The third man stated that elephants are smooth and hard, much like a spear. These

three observations at first seem completely contradictory, until you realize that the first man is

touching the elephant’s trunk, the second its leg, and the third its tusk. All of them experienced the

elephant differently, and each of their experiences was incomplete, albeit not necessarily incorrect

from each blind person’s narrow perspective.

As researchers trying to study the fundamental characteristics of our computing artifacts, we

must realize we are in some ways not unlike the blind men describing an elephant. Thus stating that

the automata processor is Turing complete is correct as a statement of the behavior of the hardware

when its resources are unbounded. Perhaps in the future, should Moore’s Law continue long

enough, this may indeed be the most useful characteristic of the AP hardware. This would likely

include several orders of magnitude more states and Boolean gates in the hardware (approximately

billions).

Meanwhile, our result that the AP computes only regular languages is not only also correct,

but is better-suited for designers in some scenarios, as it better matches the design constraints of

5.2 Automata Computing 117

potential applications with the limitations of the hardware. Such observations may thus avoid some

unintended consequences in designing automata-based applications. For example, a developer

working under the impression that the AP is Turing complete might misguidedly feel more

empowered to pursue an application which requires far too many resources than what is practically

available on the AP.

AP-Based Pseudorandom Number Generation

We showed a new approach to pseudorandom number generation, as well as a novel application

for automata processing. Typical pseudorandom number generators operate by updating some

amount of centralized state (called their seed) in a hard-to-predict way. By using the MISD (multiple

instruction, single data) parallelism enabled by automata computing we instead distribute that

state across many automata, thereby also distributing the work required to update that state.

As a result, we are able to produce pseudorandom numbers with efficiency comparable to the

most efficient pseudorandom number generators available, both in a theoretical sense as well as

in a practical sense. To show theoretical efficiency, we demonstrated that APPRNG belongs to

complexity class NC0. Toward practical efficiency, our experiments show comparable efficiency to

the Philox algorithm with minor modifications to the AP hardware.

APPRNG is also very adaptable to many use cases. It allows for an easy trade off between

performance and pseudorandomness by adjusting the length of the reconfiguration threshold. We

also presented a way of adapting APPRNG to be better suited for weakly random input.

Finally in this chapter we gave a second novel application for automata processing– Bloom filters.

We find this result interesting because it takes a model of computation conceived to study what

can be done without the use of memory (finite state automata), and uses it as a form of memory.

This technique toward Bloom filtering is able to at least match the probabilistic performance of

traditional Bloom filtering, while accelerating queries and insertions to run in constant time by the

number of hash functions.

5.2.2 Future Directions

Complexity-Theoretic Analysis of Automata Processing

While our result showing that the AP only computes regular languages may seem pessimistic,

we also provide gems of optimism for how automata-based architectures may be designed in order

to broaden their class of accepted languages. For example, the construction for converting counters

to states and gates demonstrates that the finiteness of the thresholding behavior fundamentally

restricts the power of those components. Counter designs which allow for the capacity to vary

5.3 Automata-based Compression-Aware Algorithms 118

with input string size would absolutely increase the power of the machines underlying the AP

architecture. It also shows that even though counters add nothing to computability of AP machines,

their design is so efficient that applications which make proper use of them will find them

indespensible.

The final result from this section compares automata models of computation to circuit models.

With this emerging age of heterogeneous computing, improving upon this result requires more

research in developing theory relating a vast range of computing models. With this, we will be

more capable of categorizing problems by their computational complexity relative to these models.

Eventually, this would provide a more clear guide to matching algorithms (or even subroutines) to

their best-suited hardware, and thereby making optimal use of available computing resources.

AP-Based Pseudorandom Number Generation

Automata-based Bloom filtering serves as a novel application of APPRNG. This demonstrates

that APPRNG, in addition to serving as a pseudorandom number generator, is the necessary first

step allowing for many new applications based on the simulation of parallel Markov chains. Our

Bloom filter implementation is only the second step. These initial results serve to motivate and

guide future algorithm design based on these parallel Markov chains.

We hope to have commenced a new area of exploration for automata computing. Previous

to our work, applications for automata-based computing were restricted to pattern matching or

pattern discovery domains. By showing an intuitively original application of automata computing

(a pattern obscuring one), we undo any predispositions that the automata computing paradigm is

inherently restricted to pattern matching.

5.3 Automata-based Compression-Aware Algorithms
In this dissertation we demonstrated the practicality of using compression-aware algorithms

for computing on compressed input, and separately we have shown the usefulness of designing

problems in a way that takes advantage of automata-based accelerators. A next natural goal is

to synergistically compound the benefits of these two strategies by designing compression-aware

algorithms suitable for automata-based acceleration.

Many decompression algorithms are modelled by finite state automata, e.g. Huffman codes

[100], Asymmetric Numerical Systems [101], and Antidictionaries [102]. An example of a Huffman

tree (or equivalently, Huffman automaton) built on text with character frequencies shown in

Table 5.1 is shown in Figure 5.1. In these cases, intuition suggests that compression-aware automata-

based designs should be feasible, since they would be a composition of two algorithms which are

5.3 Automata-based Compression-Aware Algorithms 119

Letter a b c d e f
Frequency 45 13 12 16 9 5

Code 0 101 100 111 1101 1100

Table 5.1: Letter frequency and corresponding Huffman code for the Huffman Tree shown in
Figure 5.1.

Figure 5.1: Huffman Tree for the letter frequencies shown in Table 5.1. This tree could also be
viewed as a Moore machine, where once the computation reaches one of the leaves of the tree, it
will output its label as the corresponding character.

both implementable as automata (an automata-based decompression algorithm and an automata-

based classical algorithm). For this reason, a first step in compression-aware automata-based design

should be to identify compression schemes whose decompression algorithms themselves can be

implemented as automata.

Pattern matching over compressed data is a particularly well-studied problem (see [103] for a

survey), and therefore constitutes another promising future direction. One early result from Moura

et al. [104] gives a method for approximate pattern matching over Huffman-coded input. In this

method the authors perform a generalized Huffman code in which codes are bytes rather than bits

(i.e. the Huffman tree will have a branching factor of 128). With this modification, when patterns

are compressed using the same Huffman tree as the input string, a standard exact pattern matching

algorithm may be naively applied to match the compressed pattern on the compressed string.

In the case of approximate pattern matching, doing this in a compression-aware way requires

enumerating all possible patterns that are within a certain distance of the desired pattern. This

could produce a very large number of patterns to match against. While this would result in a

5.3 Automata-based Compression-Aware Algorithms 120

substantial slowdown when run on a sequential architecture, automata-based accelerators may be

the right tool for reigning in the large pattern set.

Ideally, the advantages offered by compression-aware algorithm design and automata-based

accelerations should behave synergistically. One drawback of automata-based computing is that it

is impossible to compute faster than linear time by the input size. However, if the input has been

compressed before computation, the automaton will run in linear time relative to the compressed

data, resulting in substantial acceleration.

Compression-aware approaches additionally gain benefit from each input bit having higher

entropy (thus the algorithm gains efficiency as each bit contains more information, like each

unpopped kernel of corn having higher density). When implemented as an automata-based

algorithm, compression-awareness could result in a simplification of the automata, since some

complexity has been offloaded onto the compression. In this case, the compression-aware approach

would enhance the effectiveness of the automata-based algorithm by diminishing the computing

resources necessary for computation, and at the same time reducing the amount of processing time

required.

Should such super-scalable compression-aware automata-based algorithms be discovered, to

paraphrase Mark Twain, rumors of the dire consequences of the death of Moore’s Law would have

been greatly exaggerated.

Bibliography

[1] B. L. Robinson G. Robins and B. S. Sethi. On detecting spatial regularity in noisy images.
Information Processing Letters, 69:189–195, 1999.

[2] J. Hurwitz, A. Nugent, F. Halper, and M. Kaufman. Big Data for Dummies. John Wiley &
Sons, Hoboken, NJ, USA, 2013.

[3] T. Simonite. Intel puts the brakes on moore’s law. MIT Technology Review, 2016.

[4] N. Brunelle, G. Robins, and a. shelat. Algorithms for compressed inputs. In Data Compression
Conference, page 441, 2013.

[5] N. Brunelle, G. Robins, and a. shelat. Compression-aware algorithms for massive datasets.
In Data Compression Conference, page 478, 2015.

[6] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Transactions on
Computers, C-21(9):948–960, September 1972.

[7] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes. An efficient and
scalable semiconductor architecture for parallel automata processing. IEEE Transactions on
Parallel and Distributed Systems, 99(PrePrints):1, 2014.

[8] J. Wadden, N. Brunelle, K. Wang, M. El-Hadedy, G. Robins, M. Stan, and K. Skadron. Gen-
erating efficient and high-quality pseudo-random behavior on automata processors. In
International Conference on Computer Design, pages 622–629, October 2016.

[9] J. Wadden and N. Brunelle. System, method, and computer-readable medium for high
throughput pseudo-random number generation. Patent Application no. US 2017/0083288 Al,
March 2017.

[10] S. M. Ross. Introduction to Probability Models, chapter 5, pages 312–339. Academic Press, 10th
edition, 2010.

[11] M. Charikar, E. Lehman, Ding Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.
The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):2554–2576, July
2005.

[12] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transac-
tions on Information Theory, 23(3):337–343, 1977.

[13] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE
Transactions Information Theory, 24(5):530–536, September 1978.

[14] A. Amir, G. M. Landau, and D. Sokol. Inplace 2d matching in compressed images. In
SIAM-ACM Symposium on Discrete Algorithms, pages 853–862, 2003.

[15] J. Kärkkäinen and E. Ukkonen. Lempel-ziv parsing and sublinear-size index structures for
string matching. In South American Workshop on String Processing, pages 141–155, 1996.

121

Bibliography 122

[16] Y. Lifshits. Processing compressed texts: a tractability border. In Combinatorial Pattern
Matching, pages 228–240, 2007.

[17] U. Manber. A text compression scheme that allows fast searching directly in the compressed
file. In Combinatorial Pattern Matching, pages 113–124, 1994.

[18] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, and S. Arikawa.
Speeding up pattern matching by text compression. In Algorithms and Complexity, pages
306–315, 2000.

[19] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in z-compressed
files. Journal of Computer and System Sciences, 52:299–307, 1993.

[20] P. Bille, R. Fagerberg, and I. L. Gørtz. Improved approximate string matching and regular
expression matching on ziv-lempel compressed texts. ACM Transactions on Algorithms,
6(1):3:1–3:14, December 2009.

[21] P. Cégielski, I. Guessarian, Y. Lifshits, and Y. Matiyasevich. Window subsequence problems
for compressed texts. In International Computer Science Conference on Theory and Applications,
pages 127–136, 2006.

[22] J. Kärkkäinen, G. Navarro, and E. Ukkonen. Approximate string matching over ziv-lempel
compressed text. In Combinatorial Pattern Matching, pages 195–209, 2000.

[23] V. Mäkinen, G. Navarro, and E. Ukkonen. Approximate matching of run-length compressed
strings. In Combinatorial Pattern Matching, pages 31–49, 2001.

[24] G. Navarro, T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Faster approximate string
matching over compressed text. In Data Compression Conference, pages 459–468, 2001.

[25] O. Arbell, G. M. Landau, and J. S. B. Mitchell. Edit distance of run-length encoded strings.
Information Processing Letters, 83(6):307–314, September 2002.

[26] H. Bunke and J. Csirik. An improved algorithm for computing the edit distance of run-
length coded strings. Information Processing Letters, 54(2):93–96, April 1995.

[27] M. Crochemore, G. M. Landau, and M. Ziv-ukelson. A sub-quadratic sequence alignment
algorithm for unrestricted cost matrices. In ACM-SIAM Symposium on Discrete Algorithms,
pages 679–688, 2002.

[28] D. Hermelin, G. M. Landau, S. Landau, and O. Weimann. A unified algorithm for acceler-
ating edit-distance computation via text-compression. In Symposium on Theoretical Aspects
of Computer Science, pages 529–540, 2009.

[29] J. J. Liu, G. S. Huang, Y. L. Wang, and R. C. T. Lee. Edit distance for a run-length-encoded
string and an uncompressed string. Information Processing Letters, 105(1):12–16, January 2008.

[30] P Loh, M Baym, and B Berger. Compressive genomics. Nature Biotech, 30(7):627–630, July
2012.

[31] R. Dugad and N. Ahuja. A fast scheme for image size change in the compressed domain.
IEEE Transactions on Circuits and Systems for Video Technology, 11(4):461 –474, April 2001.

[32] R. V. Babu and K.R. Ramakrishnan. Compressed domain human motion recognition using
motion history information. In IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 3, pages III – 41–4 vol.3, April 2003.

[33] T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up algorithms.
In Journal of Computer and System Sciences, pages 123–133, 1991.

Bibliography 123

[34] C. Karande, K. Chellapilla, and R. Andersen. Speeding up algorithms on compressed web
graphs. In Conference on Web Search and Data Mining, pages 272–281, 2009.

[35] A.B. Kahng and G. Robins. Optimal algorithms for determining regularity in pointsets. In
Canadian Conference on Computational Geometry, pages 167–170, 1991.

[36] A.B. Kahng and G. Robins. Optimal algorithms for extracting spatial regularity in images.
In Pattern Recognition Letters, pages 757–764, 1991.

[37] G. Robins and B. L. Robinson. Landmine detection from inexact data. In International
Symposium on Aerospace/Defence Sensing and Dula-Use Photonics, pages 189–195, 1994.

[38] N. J. Larsson and A. Moffat. Offline dictionary-based compression. In Data Compression
Conference, pages 296–305. IEEE Computer Society, 1999.

[39] S. H. Gerez. Algorithms for VLSI Design Automation. John Wiley & Sons, Inc., 1st edition,
1999.

[40] N. A. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer Academic Publish-
ers, 1993.

[41] P. Boldi and S. Vigna. The webgraph framework I: compression techniques. In International
World Wide Web Conference, pages 595–602, 2004.

[42] V. Kumar, S. Arya, and H. Ramesh. Hardness of set cover with intersection 1. In International
Colloquium on Automata, Languages, and Programming, pages 624–635, 2000.

[43] N. Megiddo. Linear programming in linear time when the dimension is fixed. Journal of the
ACM, 31(1):114–127, January 1984.

[44] H. Cohn, A. Kumar, S. Miller, D. Radchenko, and M. Viazovska. The sphere packing prob-
lem in dimension 24. Annals of Mathematics, 185(3):1017–1033, 2016.

[45] F. Claude and G. Navarro. A fast and compact web graph representation. In String Processing
and Information Retrieval, pages 118–129, 2007.

[46] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT
Press, 2nd edition, 2001.

[47] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann. Random access
to grammar-compressed strings. In SIAM-ACM Symposium on Discrete Algorithms, pages
373–389, 2011.

[48] S. Cook. A taxonomy of problems with fast parallel algorithms. Information and Control,
64(1):2–22, 1985. International Conference on Foundations of Computation Theory.

[49] E. Allender. Circuit complexity before the dawn of the new millennium 1. In Foundations of
Software Technology and Theoretical Computer Science, pages 1–18, 1997.

[50] M. Sipser. Introduction to the Theory of Computation. International Thomson Publishing, 1st
edition, 1996.

[51] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computability.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1979.

[52] R.A. Baeza-Yates. Efficient Text Searching. PhD thesis, University of Waterloo, 1989.

[53] K. Wang and K. Skadron. Cellular automata on the micron automata processor. University
of Virginia Technical Report # CS-2015-03, 2015.

[54] S. Wolfram. A New Kind of Science. Wolfram Media Inc., Champaign, Ilinois, USA, 2002.

Bibliography 124

[55] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, 28(1):114–
133, January 1981.

[56] A. Fellah, H. Jürgensen, and S. Yu. Constructions for alternating finite automata. Interna-
tional Journal of Computer Mathematics, 35(1-4):117–132, 1990.

[57] J. Brzozowski and E. Leiss. On equations for regular languages, finite automata, and
sequential networks. Theoretical Computer Science, 10(1):19–35, January 1980.

[58] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, Vol. 1: Word, Language,
Grammar. Springer-Verlag New York, Inc., New York, NY, USA, 1997.

[59] R. E. Ladner and M. J. Fischer. Parallel prefix computation. Journal of the ACM, 27(4):831–838,
October 1980.

[60] M. Holzer and B. König. On deterministic finite automata and syntactic monoid size.
Theoretical Computer Science, 327(3):319 – 347, 2004. Developments in Language Theory.

[61] K. Roy, A. Srivastava, M. Nourian, M. Becchi, and S. Aluru. High performance pattern
matching using the automata processor. In Parallel and Distributed Processing Symposium, 2016
IEEE International, pages 1123–1132, May 2016.

[62] K. Wang, Y. Qi, J.J. Fox, M.R. Stan, and K. Skadron. Association rule mining with the micron
automata processor. In Parallel and Distributed Processing Symposium, pages 689–699, May
2015.

[63] K. Zhou, J.J. Fox, Wang K, D.E. Brown, and K. Skadron. Brill tagging on the micron au-
tomata processor. In Semantic Computing, pages 236–239, February 2015.

[64] C. Bo, K. Wang, J. Fox, and K. Skadron. Entity resolution acceleration using micron’s
automata processor. In SRC TechCon, 2016.

[65] T. Tracy II, Y. Fu, I. Roy, E. Jonas, and P. Glendenning. Toward machine learning on the
automata processor. In International Supercomputing Conference - High Performance Computing,
2016.

[66] J. Katz and Y. Lindell. Introduction to Modern Cryptography (2nd edition). Chapman and Hall,
2014.

[67] O. Goldreich, S. Vadhan, and A. Wigderson. Simplified derandomization of bpp using a
hitting set generator. In Studies in Complexity and Cryptography, pages 59–67, 2011.

[68] N. Metropolis. The beginning of the monte carlo method. Los Alamos Science, No. 15, 1987.

[69] L Blum, M Blum, and M Shub. A simple unpredictable pseudo random number generator.
SIAM Journal on Computing, 15(2):364–383, May 1986.

[70] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer
Simulation, 8(1):3–30, January 1998.

[71] B. Applebaum. Pseudorandom generators with long stretch and low locality from random
local one-way functions. SIAM Journal on Computing, 42(5):2008–2037, 2013.

[72] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw. Parallel random numbers: as easy
as 1, 2, 3. In High Performance Computing, Networking, Storage and Analysis, pages 1–12, 2011.

[73] P. L’Ecuyer and R. Simard. Testu01: A c library for empirical testing of random number
generators. ACM transactions on mathematical software, 33(4), August 2007.

Bibliography 125

[74] D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algorithms.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[75] G. Marsaglia. Diehard: a battery of tests of randomness. See http: // stat. fsu. edu/
~

geo/ diehard. html , 1996.

[76] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel,
D. Banks, A. Heckert, J. Dray, S. Vo, and L. E. Bassham, III. A statistical test suite for random
and pseudorandom number generators for cryptographic applications, 2010.

[77] J. Wadden, K. Wang, M. Stan, and K. Skadron. Uses for random and stochastic input on
micron’s automata processor. University of Virginia Technical Report # CS-2015-06, 2015.

[78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

[79] D. Angluin. On the complexity of minimum inference of regular sets. Information and Control,
39(3):337–350, November 1978.

[80] L. Pitt and M. K. Warmuth. The minimum consistent dfa problem cannot be approximated
within any polynomial. Journal of the ACM, 40(1):95–142, January 1993.

[81] M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and finite
automata. Journal of the ACM, 41(1):67–95, January 1994.

[82] D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, November 1987.

[83] R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences. In
ACM Symposium on Theory of Computing, pages 411–420, 1989.

[84] Y. Freund, M. Kearns, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie. Efficient learning
of typical finite automata from random walks. In ACM Symposium on Theory of Computing,
pages 315–324, 1993.

[85] D. Angluin and D. Chen. Learning a random dfa from uniform strings and state informa-
tion. In International Conference on Algorithmic Learning Theory, pages 119–133, 2015.

[86] T. Reuters. Samsung moving to 40-nm dram. See http: // www. pcmag. com/ article2/ 0,
2817,2340419,00. asp [retreived July 2017], 2009.

[87] M. Manssen, M. Weigel, and A. K. Hartmann. Random number generators for massively
parallel simulations on gpu. The European Physical Journal-Special Topics, 210(1):53–71, 2012.

[88] Hybrid memory cube specification 2.0. http://www.hybridmemorycube.org/files/
SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf.

[89] R. Shaltiel. An Introduction to Randomness Extractors, pages 21–41. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[90] L. Trevisan. Extractors and pseudorandom generators. Journal of the ACM, 48(4):860–879,
July 2001.

[91] R. Shaltiel. Recent developments in explicit constructions of extractors. In Bulletin of the
EATCS, volume 77, pages 67–95, 2002. Special Issue on Cryptography.

[92] M. Blum. Independent unbiased coin flips from a correlated biased source: a finite state
markov chain. In Proceedings of the 26th International Conference on Algorithmic Learning Theory
- Volume 9355, pages 425–433, 1984.

http://www.pcmag.com/article2/0,2817,2340419,00.asp
http://www.pcmag.com/article2/0,2817,2340419,00.asp
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf

Bibliography 126

[93] M. Santha and U. V. Vazirani. Generating quasi-random sequences from semi-random
sources. Journal of Computer and System Sciences, 33:75–87, 1986.

[94] A. Cohen and A. Widgerson. Dispersers, deterministic amplification, and weak random
sources. In Symposium on Foundations of Computer Science, 1989.

[95] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of
the ACM, 13(7):422–426, July 1970.

[96] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, New York, NY, USA, 2005.

[97] A. Kirsch and M. Mitzenmacher. Less hashing, same performance: Building a better bloom
filter. Random Structures and Algorithms, 33(2):187–218, September 2008.

[98] J. Huang, J. Lach, and G. Robins. A methodology for energy-quality tradeoff using imprecise
hardware. In Design Automation Conference, pages 504–509, 2012.

[99] R. L. De Queiroz. Processing jpeg-compressed images and documents. IEEE Transactions on
Image Processing, 1999.

[100] D. A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings
of the IRE, 40(9):1098–1101, September 1952.

[101] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp. The use of asymmetric numeral systems
as an accurate replacement for huffman coding. In Picture Coding Symposium, pages 65–69,
May 2015.

[102] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compression using antidictionar-
ies. In International Colloquium on Automata, Languages and Programming, pages 261–270.
Springer, 1998.

[103] D. Adjeroh, T. Bell, and A. Mukherjee. Pattern Matching in Compressed Texts and Images. Now
Publishers Inc., Hanover, MA, USA, 2013.

[104] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Direct pattern matching on com-
pressed text. In Symposium on String Processing and Information Retrieval, pages 90–95. IEEE
CS Press, 1998.

Appendix A

Compression-Aware Algorithms

implementations

1.1 Lossless Set of Lines Python Code

AMESCS Algorithm Implementation f o r Arbi t rary Dimensions

Input : An a r b i t r a r y f i n i t e p o i n t s e t P in E ˆ d

Output : Al l c o l l i n e a r equally�spaced subsets of P

import ipdb

import numpy

from graph import Graph

import sys

c l a s s CP : # Compressed Points

def i n i t (s e l f) :

s e l f . l i n e s = []

s e l f . points = []

127

1.1 Lossless Set of Lines Python Code 128

u t i l i t y f u n c t i o n s

def c o l l i n e a r (p1 , p2 , p3) :

i f d i s t (p1 , p2) + d i s t (p2 , p3) == d i s t (p1 , p3) :

re turn True

e l s e :

re turn Fa l se

def d i s t (p1 , p2) :

re turn numpy . l i n a l g . norm (p2 � p1)

def ces (p1 , p2 , p3) :

re turn c o l l i n e a r (p1 , p2 , p3) and d i s t (p1 , p2) == d i s t (p2 , p3)

/ u t i l i t y f u n c t i o n s

c l a s s PointCompressor :

def i n i t (s e l f , dimensions =2 , pmin=0 , pmax=10 , pcount = 5 0 0) :

s e l f . dimensions = dimensions

s e l f . pcount = pcount

s e l f . pmax = pmax

s e l f . pmin = pmin

def compress points (s e l f , P) :

P = (p1 , . . . , pn) = Sor t P by x1 coordinate

G = (V, E) = (EMPTY, EMPTY)

s e l f . pcount = len (P)

1.1 Lossless Set of Lines Python Code 129

cp = CP ()

P = P [P [: , 0] . a r g s o r t ()] # weird s o r t i n g magic

g = Graph (s e l f . dimensions)

f o r i in range (0 , len (P) � 1) :

i f P [i] [0] == P [i + 1] [0] :

sys . e x i t (”X coordinate f o r each point must be unique . ”+

”A standard method of handling t h i s would be”+

” r o t a t i n g every point by a small amount ”+

”around the z axis , because of imprec is ion ”+

” of f l o a t s in Python , t h i s technique causes ”+

” l o s s i n e s s t h a t can break the algorithm ”+

”(i . e . s h i f t points minutely so ”+

” c o l i n e a r points are not s tored as such) ”)

added = []

ipdb . s e t t r a c e ()

f o r A in range (0 , s e l f . pcount � 1) :

B = A + 1

C = A + 2

while A < s e l f . pcount \

and C < s e l f . pcount \

and B < s e l f . pcount :

i f P [A] [0] != P [B] [0] and \

P [B] [0] != P [C] [0] and \

P [A] [0] != P [C] [0] and \

(ces (P [A] , P [B] , P [C])) :

add the new v e r t i c e s

newv1 = [P [A] , P [B]]

newv2 = [P [B] , P [C]]

1.1 Lossless Set of Lines Python Code 130

newv1t = [tuple (row) f o r row in newv1]

newv2t = [tuple (row) f o r row in newv1]

i f newv1t not in added :

added . append (newv1t)

t = numpy . concatenate ((g . v e r t i c e s , [newv1]))

g . v e r t i c e s = t

i f newv2t not in added :

added . append (newv2t)

t = numpy . concatenate ((g . v e r t i c e s , [newv2]))

g . v e r t i c e s = t

remove d u p l i c a t e s

newedge = [[P [A] , P [B]] , [P [B] , P [C]]]

g . edges = numpy . concatenate ((g . edges , [newedge]))

i f P [B] [0] � P [A] [0] > P [C] [0] � P [B] [0] :

review t h i s l i n e eventua l ly �

i t was j u s t ”>” in the pseudocode , not ”>=”

C += 1

e l s e :

B += 1

t h i s one goes too high and breaks the whole thing

v e r t e x t u p l e s = []

edge tuples = []

f o r v in g . v e r t i c e s :

p1 = tuple (v [0])

p2 = tuple (v [1])

v e r t e x t u p l e s . append ((p1 , p2))

f o r e in g . edges :

v1 = e [0]

v2 = e [1]

1.1 Lossless Set of Lines Python Code 131

p1 = tuple (v1 [0])

p2 = tuple (v1 [1])

p3 = tuple (v2 [0])

p4 = tuple (v2 [1])

edge tuples . append (((p1 , p2) , (p3 , p4)))

f o r each unexplored point :

conduct BFS on i t and add each

explored point to one l i s t in a l i s t

e x p l o r e d v e r t i c e s = []

f o r v in v e r t e x t u p l e s :

i f v not in e x p l o r e d v e r t i c e s :

c r e a t e empty s e t S

S = s e t ()

c r e a t e empty queue Q

Q = []

add root to S

S . add (v)

enqueue root

Q. append (v)

while Q i s not empty :

while Q:

cur = Q. dequeue ()

cur = Q. pop (0)

e x p l o r e d v e r t i c e s . append (cur)

f o r each node n t h a t i s ad jacent to current :

n1 = [n [0] f o r n in edge tuples i f cur == n [1]]

n2 = [n [1] f o r n in edge tuples i f cur == n [0]]

neighbors1 = n1

neighbors2 = n2

neighbors = neighbors1 + neighbors2

1.2 Lossy Set of Lines Python Code 132

f o r n in neighbors :

i f n i s not in S :

i f n not in S :

add n to S

S . add (n)

Q. enqueue (n)

Q. append (n)

s l i s t = sor ted (S , key=lambda item : (item [0] , item [1]))

compressed l ine = (s l i s t [0] , len (s l i s t) � 1)

cp . l i n e s . append (compressed l ine)

f o r p in P :

p = tuple (p)

i f (p not in [n [0] f o r n in v e r t e x t u p l e s]) \

and (p not in [n [1] f o r n in v e r t e x t u p l e s]) :

cp . points . append (p)

re turn cp

1.2 Lossy Set of Lines Python Code

from f u t u r e import generators

import Points

import math

from scipy . optimize import l inprog

Given a point , the l e f t �most point , the bottom�most point ,

#and eps i lon give a point back corresponding to grid s l o t

e . g . given (3 , 5) would mean grid [3] [5]

def f ind bucket (pt , l e f t , bottom , eps) :

””” Returns the array i n d i c e s t h a t a point belongs to

a f t e r generat ing the grid

Arguments :

1.2 Lossy Set of Lines Python Code 133

pt { l i s t of i n t e g e r s } �� the point from Points . py

t h a t you want to f ind the grid s l o t f o r

l e f t { l i s t of i n t e g e r s } �� The l e f t m o s t point in the dataset ,

r e t r i v e d from Points . g e t l e f t p o i n t ()

bottom { l i s t of i n t e g e r s } �� The bottommost point in the

dataset , r e t r i v e d from Points . get bot tom point

eps { f l o a t } �� Degree of e r r o r

”””

return [i n t ((pt [0] � (l e f t [0]�4⇤ eps))) , i n t ((pt [1] � (bottom [1]�4⇤ eps)))]

def e x t e n d r i g h t (point1 , point2 , epsi lon , points , gr id) :

”””[summary]

[d e s c r i p t i o n]

Arguments :

point1 { [type]} �� [d e s c r i p t i o n]

point2 { [type]} �� [d e s c r i p t i o n]

eps i lon { [type]} �� [d e s c r i p t i o n]

points { [type]} �� [d e s c r i p t i o n]

grid { [type]} �� [d e s c r i p t i o n]

Returns :

[type] �� [d e s c r i p t i o n]

”””

canExtend = True

s t r t p t s = [point1 , point2]

while (canExtend) :

i d l p t =[s t r t p t s [�1] [0]+math . fabs (s t r t p t s [�1][0]� s t r t p t s [� 2] [0]) ,

s t r t p t s [�1] [1]+math . fabs (s t r t p t s [�1][1]� s t r t p t s [� 2] [1])]

l p t = Points . g e t l e f t p o i n t (points)

1.2 Lossy Set of Lines Python Code 134

bpt = Points . get bot tom point (points)

bucket = f ind bucket (id l p t , lpt , bpt , eps i lon)

numPoints = len (s t r t p t s)

f o r x in range (�1 , 2) :

f o r y in range (�1 , 2) :

i f numPoints < len (s t r t p t s) :

continue

t r y :

s l o t = grid [bucket [0] + x] [bucket [1] + y]

f o r point in s l o t :

i f point in s t r t p t s :

continue

i f math . fabs (point [0] � i d l p t [0])<=4⇤ eps i lon

and math . fabs (point [1]� i d l p t [1])<=4⇤ eps i lon :

c = [0 , 0 , eps i lon]

A = []

b = []

f o r i in range (len (s t r t p t s)) :

#two bounds f o r each point

A. append ([s t r t p t s [i] [0] , 1 , �1])

b . append (s t r t p t s [i] [1])

A. append([� s t r t p t s [i] [0] , �1, �1])

b . append(� s t r t p t s [i] [1])

A. append ([point [0] , 1 , �1])

b . append (point [1])

A. append([� point [0] , �1, �1])

b . append(�point [1])

lp=l inprog

r=lp (c , A ub=A, b ub=b , opt ions ={” disp ” : True })

i f r . success and f l o a t (r . x [�1]) <= eps i lon :

s t r t p t s . append (point)

1.2 Lossy Set of Lines Python Code 135

except IndexError as e r r :

avoid out of bounds on the boundry of the grid

p r i n t (s t r (bucket [0]))

p r i n t (s t r (bucket [1]))

p r i n t (len (grid))

p r i n t (len (grid [0]))

p r i n t (”ERRRRR”)

continue

i f numPoints < len (s t r t p t s) :

canExtend = True

e l s e :

canExtend = Fa lse

re turn s t r t p t s

def e x t e n d l e f t (point1 , point2 , epsi lon , points , gr id) :

”””[summary]

[d e s c r i p t i o n]

Arguments :

point1 { [type]} �� [d e s c r i p t i o n]

point2 { [type]} �� [d e s c r i p t i o n]

eps i lon { [type]} �� [d e s c r i p t i o n]

points { [type]} �� [d e s c r i p t i o n]

grid { [type]} �� [d e s c r i p t i o n]

Returns :

[type] �� [d e s c r i p t i o n]

”””

canExtend = True

s t r t p t s = [point1 , point2]

1.2 Lossy Set of Lines Python Code 136

while (canExtend) :

i d l p t =[s t r t p t s [�1][0]�math . fabs (s t r t p t s [�1][0]� s t r t p t s [� 2] [0]) ,

s t r t p t s [�1][1]�math . fabs (s t r t p t s [�1][1]� s t r t p t s [� 2] [1])]

l p t = Points . g e t l e f t p o i n t (points)

bpt = Points . get bot tom point (points)

bucket = f ind bucket (id l p t , lpt , bpt , eps i lon)

numPoints = len (s t r t p t s)

f o r x in range (�1 , 2) :

f o r y in range (�1 , 2) :

i f numPoints < len (s t r t p t s) :

continue

t r y :

s l o t = grid [bucket [0] + x] [bucket [1] + y]

f o r point in s l o t :

i f point in s t r t p t s :

continue

i f math . fabs (point [0]� i d l p t [0])<=4⇤ eps i lon

and math . fabs (point [1] � i d l p t [1])<=4⇤ eps i lon :

c = [0 , 0 , eps i lon]

A = []

b = []

f o r i in range (len (s t r t p t s)) :

#two bounds f o r each point

A. append ([s t r t p t s [i] [0] , 1 , �1])

b . append (s t r t p t s [i] [1])

A. append([� s t r t p t s [i] [0] , �1, �1])

b . append(� s t r t p t s [i] [1])

A. append ([point [0] , 1 , �1])

b . append (point [1])

A. append([� point [0] , �1, �1])

b . append(�point [1])

lp = l inprog

1.2 Lossy Set of Lines Python Code 137

r=lp (c , A ub=A, b ub=b , opt ions ={” disp ” : True })

i f r . success and f l o a t (r . x [�1]) <= eps i lon :

s t r t p t s . append (point)

except IndexError as e r r :

avoid out of bounds on the boundry of the grid

p r i n t (s t r (bucket [0]))

p r i n t (s t r (bucket [1]))

p r i n t (len (grid))

p r i n t (len (grid [0]))

p r i n t (”ERRRRR”)

continue

i f numPoints < len (s t r t p t s) :

canExtend = True

e l s e :

canExtend = Fa lse

re turn s t r t p t s

def che ck dis tance (points , eps i lon) :

””” Returns t rue i f any two points are within 8⇤ eps i lon of each other

Arguments :

points { l i s t of a l i s t of i n t e g e r s}��

L i s t of points from Points . py

eps i lon { f l o a t } �� Degree of e r r o r

Returns :

bool �� I f a l l of the points are >= 8⇤ eps i lon apart ,

re turn f a l s e ; Otherwise re turn true

”””

1.2 Lossy Set of Lines Python Code 138

f o r point1 in points :

f o r point2 in points :

i f point1 == point2 :

continue

i f d i s t a n c e (point1 , point2) < 8 ⇤ eps i lon :

re turn True

return Fa l se

def d i s t a n c e (point1 , point2) :

””” Distance between two points

Arguments :

point1 { l i s t of i n t e g e r s } ��

point2 { l i s t of i n t e g e r s } ��

Returns :

f l o a t �� d i s t a n c e between the two points

”””

return math . s q r t ((point1 [0]� point2 [0])⇤⇤2 + (point1 [1]� point2 [1]) ⇤ ⇤ 2)

eps i lon = f l o a t (1/8)

points = Points . genera tePoints (7 5 , 0 , 30 , 0 , 30)

while (ch eck dis tance (points , eps i lon)) :

points = Points . genera tePoints (7 5 , 0 , 30 , 0 , 30)

points = [[4 , 2] , [2 , 2] , [0 , 2] , [4 , 4] , [2 , 4] , [0 , 4]]

gr id = []

c a l c u l a t e how many grid blocks there are in each dimension

rpt = Points . g e t r i g h t p o i n t (points)

l p t = Points . g e t r i g h t p o i n t (points)

t p t = Points . g e t t o p p o i n t (points)

1.2 Lossy Set of Lines Python Code 139

bpt = Points . get bot tom point (points)

width = (rpt [0] + 4 ⇤ eps i lon � (l p t [0] � 4 ⇤ eps i lon)) / (8 ⇤ eps i lon)

height = (t p t [1] + 4 ⇤ eps i lon � (bpt [1] � 4 ⇤ eps i lon)) / (8 ⇤ eps i lon)

c r e a t e the grid

f o r x in range (math . c e i l (width)) :

gr id . append ([])

f o r s l o t in grid :

f o r y in range (math . c e i l (height)) :

s l o t . append ([])

place each point in i t s corresponding grid s l o t

l e f t = Points . g e t l e f t p o i n t (points) [0] � 4 ⇤ eps i lon

bottom = Points . get bot tom point (points) [1] � 4 ⇤ eps i lon

f o r point in points :

f i r s t = math . f l o o r (point [0] � l e f t)

second = math . f l o o r (point [1] � bottom)

t r y :

l p t = Points . g e t l e f t p o i n t (points)

bpt = Points . get bot tom point (points)

bucket = f ind bucket (point , lpt , bpt , eps i lon)

gr id [bucket [0]] [bucket [1]] . append (point)

except IndexError as e r r :

p r i n t (len (grid))

p r i n t (f i r s t)

p r i n t (len (grid [0]))

p r i n t (second)

extend = []

f o r i in points :

f o r j in points :

i f i i s not j :

1.2 Lossy Set of Lines Python Code 140

r i g h t = e x t e n d r i g h t (i , j , epsi lon , points , gr id)

l e f t = e x t e n d l e f t (i , j , epsi lon , points , gr id)

combined = []

f o r k in range (len (l e f t) � 1 , 1 , �1):

combined . append (l e f t [k])

f o r k in range (len (r i g h t)) :

combined . append (r i g h t [k])

extend . append (combined)

f o r e in extend :

i f len (e) > 3 :

p r i n t (e)

import random

def genera tePoints (num, x1 , x2 , y1 , y2) :

””” Returns a generated l i s t of points in a given area

Returns a l i s t of <num> points randomly d i s t r i b u t e d from

(x1 , y1) to (but not inc luding) (x2 , y2)

Arguments :

num { i n t } �� Number of points to be generated

x1 { i n t } �� X�coordinate of f i r s t (i n c l u s i v e) corner

x2 { i n t } �� X�coordinate of second (e x c l u s i v e) corner

y1 { i n t } �� Y�coordinate of f i r s t (i n c l u s i v e) corner

y2 { i n t } �� Y�coordinate of second (e x c l u s i v e) corner

”””

points = []

while (len (points) < num) :

rx = random . randint (x1 , x2)

rneg1 to1 a = random . randint (�1 , 1)

r 0 t o 2 a = random . randint (0 , 2)

ry = random . randint (y1 , y2)

1.2 Lossy Set of Lines Python Code 141

rneg1 to1 b = random . randint (�1 , 1)

r 0 t o 2 b = random . randint (0 , 2)

point = [rx+rneg1 to1 a ⇤ r 0 t o 2 a / 2 . 0 , ry)+ rneg1 to1 b ⇤ r 0 t o 2 b / 2 . 0]

i f point not in points :

points . append (point)

re turn points

def g e t l e f t p o i n t (points) :

””” Returns the the l e f t �most point given a l i s t of points .

Given more than one l e f t �most (lowest x�value) point ,

the point with the lowest y�value i s returned .

Arguments :

points { l i s t of points } ��

The l i s t of points to be included in the

search f o r the l e f t �most point .

”””

points . s o r t (key=lambda point : point [0])

l e f t = []

f o r point in points :

i f point [0] == points [0] [0] :

l e f t . append (point)

l e f t . s o r t (key=lambda data : data [1])

re turn l e f t [0]

def g e t r i g h t p o i n t (points) :

””” Returns the r ight�most point , given a l i s t of points .

Given more than one r ight�most (h ighes t x�value) point ,

the point with the lowest y�value i s returned .

1.2 Lossy Set of Lines Python Code 142

Arguments :

points { l i s t of points } �� The l i s t of points to be included

in the search f o r the l e f t �most point .

”””

points . s o r t (key=lambda point : point [0])

bottom = []

f o r point in points :

i f point [0] == points [len (points) � 1] [0] :

bottom . append (point)

bottom . s o r t (key=lambda data : data [1])

re turn bottom [0]

def get bot tom point (points) :

””” Returns the lowest y�value point given a l i s t of points .

Returns lowest x�value point as a secondary key

i f there i s more than one lowest y�value point .

Arguments :

points { l i s t of points } �� The l i s t of points from which

to choose a bottom�most point .

”””

points . s o r t (key=lambda point : point [1])

bottom = []

f o r point in points :

i f point [1] == points [0] [1] :

bottom . append (point)

bottom . s o r t (key=lambda data : data [0])

re turn bottom [0]

def g e t t o p p o i n t (points) :

””” Returns the highes t y�value point given a l i s t of points .

1.3 Set-of-Lines Nearest Neighbor and Range Searches 143

Returns lowest x�value point as a secondary key i f

there i s more than one highes t y�value point .

Arguments :

points { l i s t of points } �� The l i s t of points from which

to choose a top�most point .

”””

points . s o r t (key=lambda point : point [1])

bottom = []

f o r point in points :

i f point [1] == points [len (points) � 1] [1] :

bottom . append (point)

bottom . s o r t (key=lambda data : data [0])

re turn bottom [0]

1.3 Set-of-Lines Nearest Neighbor and Range Searches

def custom round (x1 , base = 1 0) :

re turn f l o a t (base ⇤ round (f l o a t (x1) / base))

def d i s t a n c e (x1 , y) :

re turn np . l i n a l g . norm (y � x1)

def a l l l i n e p o i n t s i n r a n g e (l i n e , point , rng) :

l i n e defined as two points (A and B)

l = np . asarray (l i n e [0] , dtype = ’ f l o a t 6 4 ’)

reps = l i n e [1]

c = np . array (point) # c i s the query point

a = l [0] + 0 # a i s the f i r s t point on l i n e

b = l [1] + 0 # b i s the second point on l i n e

1.3 Set-of-Lines Nearest Neighbor and Range Searches 144

d i s t = d i s t a n c e (a , b)

s lope = b � a

max dist = d i s t ⇤ (reps + 1)

b �= a

c �= a # t r a n s l a t e a l l points

f a r t h e s t p o i n t = l [0] + (s lope ⇤ (reps + 1))

i f np . l i n a l g . norm (b) == 0 :

n = 0

e l s e :

n = b / np . l i n a l g . norm (b)

d = np . dot (n , c) ⇤ n + a

undo t r a n s l a t i o n to o r i g i n

c += a

b += a

query point = c

next we f ind the d i s t a n c e to the h y p o t h e t i c a l c l o s e s t point

i f the c o l l i n e a r points repeated f o r e v e r

d d i s t = np . l i n a l g . norm ((d � a))

d i s t q u e r y t o l i n e = np . l i n a l g . norm ((query point � d))

i f the h y p o t h e t i c a l c l o s e s t point i s too f a r away ,

we return the empty s e t

i f d i s t q u e r y t o l i n e >= rng :

re turn None

d2 = d i s t q u e r y t o l i n e ⇤ d i s t q u e r y t o l i n e

chord length =2⇤math . s q r t ((rng⇤rng)�(d2))

chord length = s q r t (r ˆ2�d ˆ 2) ⇤ 2

d i s t a n c e from our h y p o t h e t i c a l point to the beginning of the l i n e

1.3 Set-of-Lines Nearest Neighbor and Range Searches 145

f i r s t i n c l u d e d d i s t = d d i s t � (chord length / 2)

the number of reps i t would take to get to t h a t point

f i r s t i n c l u d e d r e p s = math . c e i l (f i r s t i n c l u d e d d i s t / d i s t)

the point i t s e l f

f i r s t i n c l u d e d p o i n t = l [0] + (s lope ⇤ f i r s t i n c l u d e d r e p s)

check i f f i r s t included point i s before the beginning of the l i n e .

I f so , s e t beginning of l i n e to A

i f d i s t a n c e (f a r t h e s t p o i n t , f i r s t i n c l u d e d p o i n t) > max dist :

f i r s t i n c l u d e d p o i n t = a

f i r s t i n c l u d e d r e p s = 0

same as above

l a s t i n c l u d e d d i s t = d d i s t + (chord length / 2)

check i f l a s t i n c l u d e d d i s t i s g r e a t e r than max d i s t .

I f so , use max dist ins tead of l a s t i n c l u d e d d i s t

i f l a s t i n c l u d e d d i s t > max dist :

l a s t i n c l u d e d d i s t = max dist

l a s t i n c l u d e d r e p s = math . f l o o r (l a s t i n c l u d e d d i s t / d i s t)

num incl pts = l a s t i n c l u d e d r e p s � f i r s t i n c l u d e d r e p s + 1

f r s t i n c l p t = f i r s t i n c l u d e d p o i n t

i f number of included points == 1 :

re turn tuple (f i r s t i n c l u d e d p o i n t)

i f number of included points == 2 :

t =tuple (((f r s t i n c l p t , f r s t i n c l p t + slope) , 0))

re turn t

i f number of included points > 2 :

t =tuple (((f r s t i n c l p t , f r s t i n c l p t +slope) , num incl pts �2))

re turn t

1.3 Set-of-Lines Nearest Neighbor and Range Searches 146

def range search (qp , rng , cp) :

points = cp . points

l i n e s = cp . l i n e s

p o i n t l i s t = []

f o r l in l i n e s :

pts = a l l l i n e p o i n t s i n r a n g e (l , qp , rng)

i f pts :

f o r p in pts :

p o i n t l i s t . append (p)

f o r p in points :

d i s t = np . l i n a l g . norm (qp � p)

i f d i s t < rng :

p o i n t l i s t . append (tuple (p))

re turn p o i n t l i s t

def c l o s e s t p o i n t o n l i n e (l i n e , point) :

l i n e defined as two points (A and B)

l = np . asarray (l i n e [0] , dtype = ’ f l o a t 6 4 ’)

reps = l i n e [1]

c = np . array (point) # c i s the query point

a = l [0] + 0 # a i s the f i r s t point on l i n e

b = l [1] + 0 # b i s the second point on l i n e

d i s t = d i s t a n c e (a , b)

s lope = b � a

max dist = d i s t ⇤ (reps + 1)

b �= a

c �= a # t r a n s l a t e a l l points towards o r i g i n

f a r t h e s t p o i n t = l [0] + (s lope ⇤ (reps + 1))

i f np . l i n a l g . norm (b) == 0 :

n = 0

e l s e :

1.3 Set-of-Lines Nearest Neighbor and Range Searches 147

n = b / np . l i n a l g . norm (b)

d = np . dot (n , c) ⇤ n + a # d i s the point on the ⇤ continuous⇤ l i n e

which i s c l o s e s t to the query

undo t r a n s l a t i o n to o r i g i n

c += a

b += a

d d i s t b e g i n n i n g = d i s t a n c e (d , a)

d dis t end = d i s t a n c e (d , f a r t h e s t p o i n t)

past end = d d i s t b e g i n n i n g >= (max dist � (d i s t / 2))

past end = past end and d d i s t b e g i n n i n g > d dis t end

past beginning = d dis t end >= (max dist � (d i s t / 2))

past beginning = past beginning and d dis t end > d d i s t b e g i n n i n g

rounded dist = custom round (d dis t beginning , base= d i s t)

c l o s e s t p o i n t r e p s = (rounded dist / d i s t)

c l o s e s t p o i n t = a + (s lope ⇤ c l o s e s t p o i n t r e p s)

i f past end :

re turn f a r t h e s t p o i n t

e l i f past beginning :

re turn a

e l s e :

re turn c l o s e s t p o i n t

def neares t ne ighbor (qp , cp) :

f o r each l i n e , f ind the c l o s e s t point on t h a t l i n e

t h i s means making a perpendicular l i n e

and f inding where the two i n t e r s e c t

1.3 Set-of-Lines Nearest Neighbor and Range Searches 148

then rounding t h a t point to the n e a r e s t e x i s t i n g neighbor

points = cp . points

l i n e s = cp . l i n e s

query = qp

f o r l in l i n e s :

points . append (c l o s e s t p o i n t o n l i n e (l , query))

n e a r e s t p o i n t = points . pop ()

n e a r e s t d i s t = np . l i n a l g . norm (qp � n e a r e s t p o i n t)

should be i n f i n i t e

f o r p in points :

f i g u r e out norm of qp�p

i f l e s s than before , s e t as new n e a r e s t

d i s t = np . l i n a l g . norm (qp � p)

i f d i s t < n e a r e s t d i s t :

n e a r e s t p o i n t = p

n e a r e s t d i s t = d i s t

re turn n e a r e s t p o i n t

def decompress (cp) :

r e t p t l i s t = []

f o r p in cp . points :

r e t p t l i s t . append (np . asarray (p))

f o r l i n e in cp . l i n e s :

reps = l i n e [1]

l = np . asarray (l i n e [0])

s lope = l [1] � l [0]

r e t p t l i s t . append (np . asarray (copy (l [0])))

r e t p t l i s t . append (np . asarray (copy (l [1])))

f o r i in range (1 , reps + 1) :

1.3 Set-of-Lines Nearest Neighbor and Range Searches 149

l 1 = np . asarray (copy (l [1]))

mod = slope ⇤ i

app = l 1 + mod

r e t p t l i s t . append (np . asarray (copy (app)))

r e t p t l i s t = np . s tack (r e t p t l i s t)

re turn r e t p t l i s t

def naive nn (qp , points) :

c l o s e s t p o i n t = points [0]

c l o s e s t d i s t = d i s t a n c e (qp , c l o s e s t p o i n t)

f o r p in points [1 :] :

cur po i n t = p

c u r d i s t = d i s t a n c e (qp , cur po i n t)

i f c u r d i s t <= c l o s e s t d i s t :

c l o s e s t d i s t = c u r d i s t

c l o s e s t p o i n t = copy (cur po i n t)

re turn c l o s e s t p o i n t

def na ive range search (qp , rng , points) :

r e t l i s t = []

f o r p in points :

i f d i s t a n c e (qp , p) < rng :

r e t l i s t . append (copy (p))

re turn r e t l i s t

Appendix B

Poster DCC 2013

We presented the following poster and abstract, entitled ”Algorithms for Compressed Inputs”, at

the IEEE 2013 Data Compression Conference, held at Snowbird, Utah, during March 2013.

150

A
lg

or
ith

m
s

fo
r

C
om

pr
es

se
d

In
pu

ts
N

a
th

a
n

 B
ru

n
e
lle

,
G

a
b
ri
e
l
R

o
b
in

s
,
a

b
h
i
s
h

e
la

t

S
eq

ue
nc

e
C

om
pr

es
si

on

G
ra

ph
 C

om
pr

es
si

on

LZ
 7

7

LZ
 7

8

C
on

te
xt

 F
re

e
G

ra
m

m
ar

R
e-

P
ai

r

B
ol

di
-V

ig
na

U
nc

om
pr

es
se

d
D

at
a:

“i
t w

as
 th

e
be

st
 o

f t
im

es
 it

 w
as

 th
e

w
or

st
 o

f t
im

es
 it

 w
as

 th
e

ag
e

of
 w

is
do

m
 it

 w
as

 th
e

ag
e

of
 fo

ol
is

hn
es

s
it

w
as

th

e
ep

oc
h

of
 b

el
ie

f i
t w

as
 th

e
ep

oc
h

of
 in

cr
ed

ul
ity

 it
 w

as
 th

e
se

as
on

 o
f l

ig
ht

 it
 w

as
 th

e
se

as
on

 o
f d

ar
kn

es
s.

..”

C
om

pr
es

se
d

In
pu

t:
“i

t w
as

 th
e

be
st

 o
f t

im
es

 (1
 3

) w
or

st
 (5

,2
) (

7,
3)

 a
ge

 (1
1,

1)

w
is

do
m

 (1
3,

5)
 fo

ol
is

hn
es

s
(1

9,
3)

 e
po

ch
 (2

3,
1)

 b
el

ie
f (

25
,5

)
in

cr
ed

ul
ity

 (3
1,

3)
 s

ea
so

n
(3

5,
1)

 li
gh

t (
31

,5
) d

ar
kn

es
s”

C
om

pr
es

se
d

In
pu

t:
A

0
 A

1
be

st
 A

3
A

1
w

or
st

 A
3

A
1

A
4

w
is

do
m

 A
1

→

A
4

fo
ol

is
hn

es
s

A
1

A
5

be
lie

f A
1

A
5

in
cr

ed
ul

ity
 A

1
A

6
lig

ht
 A

1
A

6
da

rk
ne

ss
...

A
1

 it
 w

as
 th

e
→

A
2

 o
f

→

A
3

 A
2

tim
es

→

A
4

 a
ge

 A
2

→

A
5

 e
po

ch
 A

2
→

A
6

 s
ea

so
n

A
2

→

S
or

t

S
or

t

C
on

ve
rt

 to
 C

FG

it

w
a

s

th
e

w
o

rs
t

o
f

ti
m

e
s

it
:
2

w
a

s
:
2

th
e

:
2

b
e
s
t:
 1

o
f:
 2

ti
m

e
s
:
2

w
o

rs
t:
1

It
 =

 <
1

,0
,.

..
,0

>
W

a
s

 =
 <

0
,1

,0
,.

..
,0

>
… D

a
rk

n
e

s
s
 =

 <
0

,.
..

,0
,1

>

A
1

 =
 i

t
+

 w
a

s
 +

 t
h

e
 =

 <
1

,1
,1

,0
,.

..
,0

>
A

2
 =

 o
f

=
 <

0
,0

,0
,0

,1
..
.,

0
>

A
3

 =
 A

2
 +

 t
im

e
s

 =
 <

0
,0

,0
,0

,1
,1

,0
,.

..
,0

>
..

.
A

0
 =

 <
8

,8
,8

,1
,.

..
,2

,1
,1

>

C
om

pr
es

se
d

In
pu

t:
“(

0,
it)

 (0
,w

as
) (

0,
th

e)
 (0

,b
es

t)
 (0

,o
f)

 (0
,ti

m
es

) (
1,

w
as

)
(3

,w
or

st
) (

5,
tim

es
) (

7,
th

e)
 (0

,a
ge

) (
5,

w
is

do
m

) (
10

,a
ge

)
(5

,fo
ol

is
hn

es
s)

 (1
0,

ep
oc

h)
 (5

,b
el

ie
f)

 (1
5,

of
)

(0
,in

cr
ed

ul
ity

) (
10

,s
ea

so
n)

 (5
,li

gh
t)

 (1
9,

of
)

(0
,d

ar
kn

es
s)

...
”

(0
,it

) (
0,

w
as

) (
0,

th
e)

 (0
,b

es
t)

(0

,o
f)

 (0
,ti

m
es

) (
1,

w
as

)
(3

,w
or

st
) (

5,
tim

es
).

A
0

 A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

A
9

→

A
1

 it
→

A
2

 w
as

→

A
3

 th
e

→

A
4

 b
es

t
→

A
5

 o
f

→

To
po

lo
gi

ca
l S

or
t

B
ip

ar
tit

e
A

ss
ig

nm
en

t

1
0

1
2

4
6

7
8

3
9

5

1
4

7
8

3
5

2
6

C
o
m

p
re

s
s
io

n
 P

re
s
e
rv

e
s
 S

o
rt

1
0

1

2
4

6

7
8 3

9
5

In
tr

o
d
u
c
e

d
 N

o
d
e
s
 s

h
a
re

 c
o
lo

r
w

it
h

 p
a
re

n
t,
 o

ri
g
in

a
l
n

o
d
e
s

d
if
fe

r
c
o
lo

r
w

it
h
 p

a
re

n
t.

1

2
4

5

6

7
8

3
R

e
m

o
v
e

 n
e
w

 n
o
d

e
s

N
o

d
e

R
e

fe
re

n
c

e
C

o
p

y
S

e
q

u
e

n
c

e
R

e
s

id
u

a
l

O
ri

g
in

a
l

1
(8

,
2

)
4

,
1

3
4

,
8

,
9

,
1

3

2
1

0
1

0
1

(1
5

,
4

)
(2

7
,
3

)
3

3
,
4

,
1

3
,
1

5
,

1
6

,
1

7
,
1

8
,

2
7

,
2

8
,
2

9

..
.

..
.

..
.

..
.

..
.

..
.

B
ip

ar
tit

e
A

ss
ig

nm
en

t

N
o

d
e

R
e

fe
re

n
c

e
C

o
p

y
S

e
q

u
e

n
c

e
R

e
s

id
u

a
l

O
ri

g
in

a
l

1
(8

,
2

)
4

,
1

3
4

,
8

,
9

,
1

3

2
1

0
1

0
1

(1
5

,
4

)
(2

7
,
3

)
3

3
,
4

,
1

3
,
1

5
,

1
6

,
1

7
,
1

8
,

2
7

,
2

8
,
2

9

..
.

..
.

..
.

..
.

..
.

..
.

A
 n

o
d
e
 m

u
s
t
s
h

a
re

 i
ts

c
o
lo

r
w

it
h
 t
h
e

 n
o
d
e
 i
n
 i
ts

 r
e

fe
re

n
c
e

fi
e
ld

.
A

ll
n
o
d
e
s
 i
n

 t
h
e

s
e
q
u
e

n
c
e
 f
ie

ld
 a

n
d
 r

e
s
id

u
a
l

fi
e
ld

 m
u

s
t
b
e

 o
p
p
o
s
it
e
.

8 9

9 8
1
6

1
7

1
8

1
5

1
6

1
7

1
5

1
8

S
e
q
u
e

n
c
e
s
 a

re
 c

h
e

c
k
e

d
 e

n

m
a
s
s
e
 u

s
in

g
 d

is
jo

in
t-

s
e

t
fo

re
s
t

d
a

ta
 s

tr
u
c
tu

re
s
:
a

 p
a
ir
 f

o
r

e
a
c
h

c
o
lo

r
(o

n
e
 w

it
h
 m

in
 e

le
m

e
n
t

a
s

re
p
re

s
e

n
ta

ti
v
e

,,
 o

n
e
 w

it
h
 m

a
x

e
le

m
e
n
t)

.

-T
im

e
-T

im
e

-T
im

e

S
ta

tis
tic

1
1

it
w

as
 th

e
be

st
 o

f t
im

es
 (1

, 3
) w

or
st

 (5
, 2

) (
7,

 3
) a

ge
 (1

1,
 1

)

In
de

x:
 1

7
=

of

5

-T
im

e

-T
im

e

-T
im

e

1

2
4

5

6

7
8

3
1
0

1

2
4

6

7
8 3

9
5

D
ef

in
iti

on
: G

ra
ph

 C
om

pr
es

si
on

P
re

v
io

u
s

:
A

 c
o

m
p

re
s

s
io

n
 o

f
G

(V
,E

),
 c

a
ll

e
d

 G
*(

V
*,

E
*)

,
m

u
s

t
s

a
ti

s
fy

:

1
.

|V
*|

 i
s

 p
o

ly
n

o
m

ia
l

in
 |

V
|

2
.

E
*=

o
(E

)

3
.

T
h

e
 m

a
p

p
in

g
 i

s
 1

-1

Is
s

u
e

:
S

a
ti

s
fi

e
s

 t
h

e
 d

e
fi

n
it

io
n

 b
u

t
h

a
s

 a

tr
iv

ia
l

a
lg

o
ri

th
m

 f
o

r
b

ip
a

rt
it

e
 a

s
s

ig
n

m
e

n
t

S
o

lu
ti

o
n

:
R

e
s

tr
ic

t
to

 s
c

h
e

m
e

s
 w

h
ic

h

a
s

y
m

p
to

ti
c

a
ll

y
 a

p
p

ro
a

c
h

 e
n

tr
o

p
y
.

F
o

rb
id

 d
e

c
is

io
n

 p
ro

b
le

m
s

.

-T
im

e

●
A

lt
h

o
u

g
h

 d
a

ta
 i

s
 c

o
m

p
re

s
s

e
d

 f
o

r
s

to
ra

g
e

,
m

o
s

t
a

lg
o

ri
th

m
s

 r
e

q
u

ir
e

 e
x

p
li

c
it

 a
n

d
 u

n
c
o

m
p

re
s

s
e

d
 i

n
p

u
ts

●
T

h
e

 s
iz

e
 o

f
d

a
ta

 s
e

ts
 i

s
 d

ra
m

a
ti

c
a

ll
y

 i
n

c
re

a
s

in
g

,
e

ff
e

c
ti

v
e

ly
 s

lo
w

in
g

 d
o

w
n

 t
h

e
 p

e
rf

o
rm

a
n

c
e

 o
f

a
lg

o
ri

th
m

s
 o

p
e

ra
ti

n
g

 o
n

 t
h

a
t

d
a

ta
.

●
A

d
o

p
t

a
 f

ra
m

e
w

o
rk

 b
y

 w
h

ic
h

 a
lg

o
ri

th
m

s
 a

re
 d

e
s

ig
n

e
d

to

 e
x

p
lo

it
 t

h
e

 r
e

g
u

la
ri

ty
 o

f
in

p
u

t
d

a
ta

,
a

n
d

 a
re

m

e
a

s
u

re
d

 b
y

 t
h

e
ir

 a
b

il
it

y
 t

o
 d

o
 s

o
.

P
ro

b
le

m
:

O
u

r
S

o
lu

ti
o

n
:

●
W

e
 s

u
g

g
e

s
t

th
e

 d
e

v
e

lo
p

m
e

n
t

o
f

a
lg

o
ri

th
m

s
 d

e
s

ig
n

e
d

to

 o
p

e
ra

te
 d

ir
e

c
tl

y
 o

n
 c

o
m

p
re

s
s

e
d

 d
a

ta
.

●
H

e
re

 w
e

 p
re

s
e

n
t

c
o

m
m

o
n

 a
lg

o
ri

th
m

s
 f

o
r

c
o

m
m

o
n

c

o
m

p
re

s
s

io
n

 s
c

h
e

m
e

s

U
n

c
o

m
p

re
s

s
e

d
 D

a
ta

C
o

m
p

re
s

s
e

d
 I

n
p

u
t

C
o

m
p

re
s

s
e

d
 I

n
p

u
t

A
6

 ti
m

es
→

A
7

 A
1

w
as

→

A
8

 A
3

w
or

st
→

A
9

 A
5

tim
es

→

Algorithms for Compressed Inputs

Nathan Brunelle, Gabriel Robins, abhi shelat
Department of Computer Science, University of Virginia, Charlottesville, Virginia 22904, USA

njb2b@virginia.edu, robins@cs.virginia.edu, shelat@cs.virginia.edu

Abstract We study compression-aware algorithms, i.e. algorithms that can ex-
ploit regularity in their input data by directly operating on compressed data.
While popular with string algorithms, we consider this idea for algorithms oper-
ating on numeric sequences and graphs that have been compressed using a variety
of schemes including LZ77, grammar-based compression, a graph interpretation
of Re-Pair, and a method presented by Boldi and Vigna in The WebGraph Frame-
work. In all cases, we discover algorithms outperforming a trivial approach: to
decompress the input and run a standard algorithm. We aim to develop an algo-
rithmic toolkit for basic tasks to operate on a variety of compression inputs.

Algorithms for Compressed Sequences We consider sorting algorithms that op-
erate on data produced by the following three compression schemes: LZ77, con-
text free grammar representation (called CFG), and LZ78. Note that in CFG an
array is represented as the singleton language parsed from a grammar.

For sorting an LZ77-compressed sequence of numbers, we present a sorting
algorithm which operates in time O(C + |S| log |S|+ n) where C is the compres-
sion size, n is the length of the sequence, and S is the set of unique numbers in
the input list. In most instances C ⌧ n, thus our algorithm in practice achieves
linear sorting as compared to the classical algorithm’s O(n log n) worst-case per-
formance. We also present a way of indexing into the sequence in O(C) time.

For sorting a list compressed by a context-free grammar (with LZ78 as a spe-
cial case) we present an algorithm which finds the sorted sequence in O(C · |S|)
time. Here, C represents the total number of symbols in all of the grammar’s sub-
stitution rules. This result has the advantage of being independent of the size of
the uncompressed list. From here, we can produce a grammar for the sorted list
which has size O(|S| log n), where n is the length of the decompressed list. The
classical approach would require O(n log n) time to decompress and then sort.

Algorithms for Compressed Graphs Next we consider topological sort and bi-
partite assignment on graphs under these two compression schemes: a graph
interpretation of the Re-Pair compression scheme, and the scheme presented by
Boldi and Vigna in the WebGraph Framework (called BV).

For graphs compressed using the Re-Pair algorithm, we perform both algo-
rithms in O(C) time. Re-Pair is a form of grammar compression, so C is the
number of terms on the right side of the grammar’s parse rules. These improve-
ments compare favorably with the O(|V|+ |E|) trivial approach.

We present an algorithm which performs bipartite checking on a BV com-
pressed graph. This algorithm runs in O(|V|+ s) time where |V| is the number
of vertices in the graph. In a graph’s adjacency list, after vertex labels are sorted,
there are often blocks of sequential labels. The BV compression scheme repre-
sents these sequences en masse, and s is the total number of such sequences. This
improves the running time of the classical O(|V|+ |E|) approach.

2013 Data Compression Conference

1068-0314/13 $26.00 © 2013 IEEE

DOI 10.1109/DCC.2013.60

478

Appendix C

Poster DCC 2015

We presented the following poster and abstract, entitled ”Compression-Aware Algorithms for

Massive Data Sets”, at the IEEE 2015 Data Compression Conference, held at Snowbird, Utah,

during April 2015.

153

Hierarchical Graph
Compression

b1

d1

c1

b2

c2

d2

a

3

5

3

5

3

3

4 8

S

A

B b

d

c

3

5

3

a

B B

A

a,b,4 a,b,8

 Compression Algorithm
Find all maximal equally-spaced collinear subsets O(n2)
Find Minimal set of lines to cover points (approximate)

Lossy Case
• Points “nearly” regular and collinear

• Runs O(n5/2)
• Must fit points to their line

• Linear programming solution

ε

Single Source Shortest Path
For each component:

Find all edge-edge shortest paths
Build “supergraph” of components
Find shortest path through “supergraph”
Find shortest path for all “non-transient” components

All to shortest paths
“Non-Transient”
 =Only one

Source Node

Minimum Spanning Tree

One per tree

Modified Kruskal’s
For each component in Compression:
 Build forest of MSTs (don’t merge “edge” nodes=)
Merge forest into a single MST

Compression-Aware Algorithms for Massive Data Sets
Nathan Brunelle, Gabriel Robins, abhi shelat

Department of Computer Science, University of Virginia
www.cs.virginia.edu/robins/compression

 Set of Lines Compression
Assumption:
x Points are often collinear
x Occur at regular intervals

Equation of dashed line:

𝑦 = −5 12 𝑥 + 4.25

Interval: 6.34

1 2 3 4 5

1

2

3

4

5

Problem:
• Massive datasets are stored compressed
• Algorithms operate on uncompressed data

 Solution: Operate directly on compressed data

 Nearest Neighbor Queries

Input: Query Point p and a set of L lines in d dimensions
Output: the nearest point to p in the compressed point set
For each axis xi do:

 Project points onto the xi O(1)
 Save 2 nearest points O(1)

Find closest remaining pt O(dyL)

dyL is linear in the compressed size!

This algorithm generalizes to:

• Manhattan range queries

• Euclidean range queries

• Convex Polytope Membership

p

1 2 3 4 5

1

2

3

4

5

Compression-Aware Algorithms for Massive Datasets

Nathan Brunelle, Gabriel Robins, abhi shelat
Department of Computer Science, University of Virginia, Charlottesville, VA, 22904

njb2b@virginia.edu,robins@cs.virginia.edu,shelat@cs.virginia.edu

Abstract While massive datasets are often stored in compressed format, most algo-
rithms are designed to operate on uncompressed data. We address this growing dis-
connect by developing a framework for compression-aware algorithms that operate
directly on compressed datasets. Synergistically, we also propose new algorithmically-
aware compression schemes that enable algorithms to efficiently process compressed
data. In particular, we apply this general methodology to geometric / CAD datasets
that are ubiquitous in areas such as graphics, VLSI, and geographic information sys-
tems. We develop algorithms and corresponding compression schemes that address
different types of datasets, including pointsets and graphs. Our methods are more
efficient than their classical counterparts, and they extend to both lossless and lossy
compression scenarios. This motivates further investigation of how this approach can
enable algorithms to process ever-increasing big data volumes.

Motivation Big datasets are emerging in all sectors of society, including industry,
government, academia, and science [2]. Achieving the full potential of this data deluge
requires addressing new and open questions, especially with respect to the scalability
of data creation, storage, and processing. While much data is stored in compressed
format, very few classic algorithms are able to process compressed data. We see this
disconnect as an opportunity to mitigate the growing gap between dataset sizes and
processing capability [1].

Compression-Aware Algorithms To overcome these problems we design algorithms
to operate directly on compressed data. Each algorithm’s speed and memory usage
dramatically improve with the input’s compressibility (i.e., descriptive complexity).
This improvement derives from leveraging highly repetitive or parametrically speci-
fied input structures, leading to much smaller inputs (and outputs), and enabling algo-
rithms to manipulate very large composite objects while interacting only with their suc-
cinct descriptions. To further bolster the efficacy of compression-aware algorithms, we
also explore the design of algorithmically-aware compression schemes. These schemes
are specifically designed to support a broad range of operations on compressed data.

We address classical problems in graph-based and geometrical domains, including
topological sort, minimum spanning trees, shortest paths, nearest neighbors, range
queries, and convex hulls. In the graph domain we present more efficient algorithms
that operate on a pre-existing compression scheme. In the geometrical domain we
present new compression schemes which enable the proposed algorithms to run more
efficiently. See http://www.cs.virginia.edu/robins/compression for more details.

References
[1] N. Brunelle, G. Robins, and a. shelat. Algorithms for compressed inputs. In Data Compression

Conference, page 478, 2013.
[2] J. Hurwitz, A. Nugent, F. Halper, and M. Kaufman. Big Data for Dummies. John Wiley Sons,

Hoboken, NJ, USA, 2013.

2015 Data Compression Conference

1068-0314/15 $31.00 © 2015 IEEE

DOI 10.1109/DCC.2015.74

441

Appendix D

APPRNG Patent Application

The following is U.S. Patent Application no. US2017/0083288Al (filed April 6, 2016 and published

on March 23, 2017), which is based on some of the research presented in this dissertation.

156

1IlIIH I lll GIGl l IDl IIlGl Illllll IlIl GllI Gill llll lIll Ill GilIll
U;!5 ZU1 /UU6_1/RS6A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0083288 Al

WADDEN et al. (43) Pub. Date: Mar. 23, 2017

(54) SYSTEM, METHOD, AND
COMPUTER-READABLE MEDIUM FOR
HIGH THROUGHPUT PSEUDO-RANDOM
NUMBER GENERATION

(71) Applicant:

(72) Inventors:

(73) Assignee:

University of Virginia Patent
Foundation, d/b/a University of
Virginia Licensing & Ventures Group,
Charlottesville, VA (US)

John Pierson WADDEN,
Charlottesville, VA (US); Nathan
James BRUNELLE, Charlottesville,
VA (US)

University of Virginia Patent
Foundation, d/b/a University of
Virginia Licensing & Ventures Group

(21) Appl. No.: 15/091,925

(22) Filed: Apr. 6, 2016

Related U.S. Application Data

(60) Provisional application No. 62/147,045, filed on Apr.
14, 2015.

Publication Classification

(51) Int. Cl.
GO6F 7/58 (2006.01)

(52) U.S. Cl.
CPC GO6F 7/584 (2013.01); GO6F 22071583

(2013.01)

(57) ABSTRACT
Disclosed embodiments include systems, methods, and
computer-readable media for generating pseudo-random
numbers. Disclosed embodiments may receive, by the at
least one processor, range data indicating a range of num-
bers. Disclosed embodiments may generate, based on the
range data and by the at least one processor, a digitized finite
state machine configured to produce pseudo-random output
within the range of numbers. Further, disclosed embodi-
ments may provide, by the at least one processor to a
specialized pattern-matching device, programmable instruc-
tions to implement the digitized finite state machine on the
specialized pattern-matching device. Disclosed embodi-
ments may transmit, by the at least one processor to the
specialized pattern-matching device, a pseudo-random bit
stream for processing by the digitized finite state machine.
Disclosed embodiments may receive, by the at least one
processor from the specialized pattern-matching device,
pseudo-random output from the digitized finite state
machine.

(300

START

RECEIVE PROBABILISTIC DEFINITIONS

GENERATE A DIGITIZED FINITE STATE MACHINE

PROVIDE PROGRAMMABLE INSTRUCTIONS TO IMPLEMENT
DIGITIZED FINITE STATE MACHINE ON SPECIALIZED

PROGRAMMABLE DEVICE [
,.-- 302

,-* 304

S- 306

TRANSMIT PSEUDO-RANDOM BIT STREAM TO DIGITIZED FINITE 308
STATE MACHINE ON SPECIALIZED PROGRAMMABLE DEVICE

4,
RECEIVE PSEUDO-RANDOM OUTPUT FROM DIGITIZED FINITE
STATE MACHINEFROM THE SPECIALIZED PROGRAMMABLE 310

DEVICE

END -D

I-

IC
C_

Patent Application Publication Mar. 23, 2017 Sheet 1 of 6

(/100

FIG. I

US 2017/0083288 Al

Patent Application Publication Mar. 23, 2017 Sheet 2 of 6

200

AQW,

N

- 109
J4,S

FIG. 2

US 2017/0083288 Al

Patent Application Publication Mar. 23, 2017 Sheet 3 of 6

(300

START D
RECEIVE PROBABILISTIC DEFINITIONS S-302

GENERATE A DIGITIZED FINITE STATE MACHINE

PROVIDE PROGRAMMABLE INSTRUCTIONS TO IMPLEMENT
DIGITIZED FINITE STATE MACHINE ON SPECIALIZED

PROGRAMMABLE DEVICE

S- 304

,.•ý 306

TRANSMIT PSEUDO-RANDOM BIT STREAM TO DIGITIZED FINITE 308
STATE MACHINE ON SPECIALIZED PROGRAMMABLE DEVICE

RECEIVE PSEUDO-RANDOM OUTPUT FROM DIGITIZED FINITE
STATE MACHINE FROM THE SPECIALIZED PROGRAMMABLE

DEVICE

END

310

D

FIG. 3

C

C

US 2017/0083288 Al

II
I

Patent Application Publication Mar. 23, 2017 Sheet 4 of 6

400

FIG. 4

US 2017/0083288 Al

Patent Application Publication Mar. 23, 2017 Sheet 5 of 6

:k
L'o
CD•

Z

0

C)

C-)

a
LU

LCO

-> C=>
'U1-3

CD9

In
6.

US 2017/0083288 Al

Patent Application Publication Mar. 23, 2017 Sheet 6 of 6

wD

US 2017/0083288 Al

US 2017/0083288 Al Mar. 23, 2017
1

SYSTEM, METHOD, AND
COMPUTER-READABLE MEDIUM FOR

HIGH THROUGHPUT PSEUDO-RANDOM
NUMBER GENERATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application No. 62/147,045, filed on Apr. 14,
2015. The contents of the above-referenced application are
expressly incorporated herein by reference for all purposes.

GOVERNMENT LICENSE RIGHTS

[0002] This invention was made with government funds
under Agreement No. HR0011-13-3-0002 awarded by
DARPA. The U.S. Government has rights in this invention.

BACKGROUND

[0003] Pseudo-random number generation (PRNG) may
be used in simulation and cryptographic applications. For
example, Monte Carlo methods are pervasive simulation
tools in physical and social sciences and rely on continuous
random sampling to drive simulations of unpredictable
processes. Monte Carlo simulations were among the first use
cases for computers and are arguably some of the most
important algorithms ever invented. Because fast and high-
quality random number generation may be on the critical
path of these applications, developing fast and high-quality
PRNGs may improve the quality and speed of computational
sciences.
[0004] Research into creating high-quality pseudo-ran-
dom sequences has existed since the first Monte Carlo
simulation on a digital computer. Today, while there are
many PRNG algorithms, not all are created equal. No matter
the method, pseudo-random output that is harder to distin-
guish from a truly random output better represents a truly
random number stream. Statistical tests, such as the Knuth
test, exist to identify patterns in pseudo-random sequences.
These tests form the basis of many modem statistical test
suites. The most comprehensive and stringent tests are the
BigCrush test battery from TestUOI suite, which includes
the functionality of the Knuth tests, DIEHARD, and the
NIST statistical test suite. A test in the suite fails if it
identifies a property of the pseudo-random sequence that
should not exist in true randomness.

BRIEF SUMMARY

[0005] In accordance with embodiments of the present
disclosure, computer-implemented systems, methods, and
computer-readable media are provided for generating
pseudo-random numbers. Embodiments of the present dis-
closure also include computerized systems, methods, and
computer-readable media for programming a specialized
pattern-matching device with a digitized finite state machine
based on probabilistic characteristics. Embodiments of the
present disclosure may be implemented for generating
pseudo-random output.
[0006] In accordance with an embodiment, a computer-
implemented system is provided for generating pseudo-
random numbers. The system may include a storage device
that stores instructions and at least one processor that
executes the instructions. The instructions may cause the at
least one processor to receive, by the at least one processor,

range data indicating a range of numbers. Also, the instruc-
tions may cause the at least one processor to generate, based
on the range data and by the at least one processor, a
digitized finite state machine configured to produce pseudo-
random output within the range of numbers. Further, the
instructions may cause the at least one processor to provide,
by the at least one processor to a specialized pattern-
matching device, programmable instructions to implement
the digitized finite state machine on the specialized pattern-
matching device. The instructions may cause the at least one
processor to transmit, by the at least one processor to the
specialized pattern-matching device, a pseudo-random bit
stream for processing by the digitized finite state machine.
The instructions may additionally cause the at least one
processor to receive, by the at least one processor from the
specialized pattern-matching device, pseudo-random output
from the digitized finite state machine.
[0007] Computer-readable media are also provided for
implementing methods of the present disclosure. Additional
embodiments and related features of the present disclosure
are presented herein.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0008] To easily identify the discussion of any particular
element or act, the most significant digit or digits in a
reference number refer to the figure number in which that
element is first introduced.
[0009] FIG. 1 illustrates an exemplary system for gener-
ating pseudo-random numbers in accordance with disclosed
embodiments.
[0010] FIG. 2 illustrates an exemplary finite state machine
for generating pseudo-random numbers in accordance with
disclosed embodiments.
[0011] FIG. 3 illustrates an exemplary process for gener-
ating pseudo-random numbers in accordance with disclosed
embodiments.
[0012] FIG. 4 illustrates a block diagram illustrating an
example of a machine upon which one or more aspects of
embodiments of the present invention can be implemented.
[0013] FIG. 5 illustrates an exemplary computing device
in accordance with disclosed embodiments.
[0014] FIG. 6 illustrates an exemplary computing envi-
ronment in accordance with disclosed embodiments.

DETAILED DESCRIPTION

[0015] Disclosed embodiments may be directed to sys-
tems and methods for a fast, scalable, and high-quality
pseudo-random number generator (PRNG). In designing a
random number generator, one may be faced with deciding
between the competing tradeoffs of efficient computer pro-
cessing and the quality of randomness of the results. For
example, a random number generator may produce results
with a very high amount of randomness (e.g., quality).
However, the high quality generator may require impractical
computing resources and/or utilize an excessively long run
time. Disclosed embodiments may be related to an improved
PRNG that improves computing efficiency while maintain-
ing a predefined level of quality for the randomness of the
results. Additionally, disclosed embodiments may permit
selection of higher quality results (e.g., increased random-
ness).

US 2017/0083288 Al Mar. 23, 2017
2

[0016] As the breakdown in Dennard scaling makes it
increasingly expensive to improve performance of tradi-
tional serial von Neumann architectures, heterogeneous
computing, involving graphics processing units (GPUs),
digital signal processors (DSPs), field programmable gate
arrays (FPGAs), application-specific integrated circuits
(ASICs) and other processors may provide improved solu-
tions. By matching computation kernels to the most effective
or efficient available processor, disclosed embodiments may
provide power efficiency and performance gains at current
transistor technology nodes. Micron, leveraging their expe-
rience and IP in memory technology, has developed the
Automata Processor (AP), a large-scale, native-hardware
implementation of non-deterministic finite automata (NFA).
While the AP is not suitable for traditional integer or floating
point computation, NFAs are extremely powerful and effi-
cient pattern matchers, and have been shown to provide
large speedups over von Neumann architectures such as
CPUs and GPUs for rule-based datamining kernels.

[0017] An AP implements an NFA using a reconfigurable
network of state transition elements (STEs) that consume an
input stream of 8-bit symbols. Each STE can be activated
and cause transitions to other STEs. STEs are capable of
single-bit reports, analogous to "accepting states" in tradi-
tional NFAs. Disclosed embodiments may utilize an AP to
form a fast, scalable, and high-quality PRNG.

[0018] Instead of driving automata transitions using con-
ventional input (e.g. a DNA sequence), disclosed embodi-
ments may dictate automata transitions using input designed
to be random or pseudorandom. Because activations of
STEs in the AP are conditional on the input stream, a
probabilistic or random input stream may provide probabi-
listic or random automata transitions, even though the tran-
sition rules are deterministic. Thus, probabilistic automata,
including finite state Markov chains, may be emulated using
the AP.

[0019] Accordingly, disclosed embodiments may create a
scalable, high-throughput, and high-quality PRNG using
Markov chains modeled by STEs on an AP. Some embodi-
ments may use parallel Markov chains to model rolls of fair
dice, and then combine the results of each roll into a new
random output string. By combining the output of parallel
rolls, driven by a single stream of random input symbols,
disclosed embodiments may construct a new pseudo-ran-
dom output many times larger than the random input used to
drive transitions on a chip. Though, emulating Markov
chains using NFAs with fixed transition functions may cause
any number of parallel Markov chains that consume the
same input to produce output that may be correlated. For
example, some output configurations of the states of Markov
chains may be more probable than others, and thus the
random output may eventually appear non-uniform, which
may be important to avoid when attempting to create
pseudo-random numbers. Accordingly, disclosed embodi-
ments may address the effect of the number and size of
parallel Markov chains on the quality of pseudo-random
output, as well as the maximum duration for running parallel
Markov chains before detecting non-uniform output. Dis-
closed embodiments may implement the AP on a modern
memory specification and technology node to provide 40
GB/s of high-quality random throughput per chip.

[0020] FIG. 1 illustrates exemplary system 100 for gen-
erating pseudo-random numbers. In some embodiments,
system 100 may include computing device 104 to perform
disclosed processes.
[0021] In some embodiments, device 104 may include
processor 108. Processor 108 may provide processing
resources to perform disclosed processes. For example,
processor 108 may generate a digitized finite state machine
based on probabilistic data (e.g., range data and/or weight
data).
[0022] In some embodiments, device 104 may include
memory 110. Memory 110 may store data and/or instruc-
tions for performing disclosed processes. In some embodi-
ments, device 104 may include storage 106. Storage 106
may store digitized instructions and computerized data. For
example, storage 106 may include non-transitory computer-
readable storage medium including instructions to perform
disclosed processes. Device 104 may generate instructions
in storage 106 that are transmitted to configure specialized
device 102 to perform disclosed processes.
[0023] In some embodiments, device 104 may include I/0
112 (input-output interface). I/0 112 may connect to I/0
Device(s) 114 and specialized device 102. For example,
device 104 may receive input (e.g., user input or network
communication) from I/0 Device(s) 114. Device 104 may
transmit programming instructions to specialized device
102, as well as, receive computing results from specialized
device 102. For example, specialized device 102 may trans-
mit pseudo-random numbers to device 104.
[0024] Device 104 may connect to specialized device 102.
Specialized device 102 may be a specialized pattern-match-
ing device for implementing digitized finite state machines.
For example, specialized device 102 may be an Automata
Processor, such as an Automata Processor PCIe board.
[0025] Specialized device 102 (e.g., an Automata Proces-
sor (AP)) may reproduce the power of a theoretical non-
deterministic finite automata to non-deterministic parallel-
ism. In this context, non-determinism may not imply
stochastic behavior, but instead may denote an exploration
of all possible parallel paths through an automata at once.
For problems with large, combinatorially difficult search
spaces, non-determinism may be an extremely powerful
tool, enabling a fast, parallel exploration of an exponential
number of problem instances.
[0026] Efficient implementations of non-deterministic
finite automata in hardware may fall into two broad catego-
ries: specialized dynamically reconfigurable hardware for
deterministic finite automata (DFA) and non-deterministic
finite automata (NFA) execution, and static, circuit-based
field-programmable gate array (FPGA) implementations.
Specialized hardware to execute DFAs and NFAs may
accelerate regular expression matching. However, existing
architectures are application-specific and can only solve
problems framed as regular expression matching. Static,
circuit-based FPGA implementations of NFAs and DFAs
may be much more flexible in their capabilities, but may
suffer from density, scalability, and throughput limitations.
Both specialized hardware and static logic solutions may not
expose automata level programmability to the application
developer, which may prevent the creation of automata that
are either not convenient or even able to be expressed as
regular expressions.
[0027] Specialized device 102 (e.g., anAP) may include a
unique memory arrangement For example, Micron's AP

US 2017/0083288 Al Mar. 23, 2017
3

may include unique, memory-derived architecture may take
advantage of the bit-level parallelism inherent in synchro-
nous dynamic random-access memory (SDRAM) arrays to
gain improvements in state density over previous NFA and
DFA implementations. In another example, Micron's AP
may be configured using both pearl-compatible regular
expressions (PCRE) and Automata Network Markup Lan-
guage (ANML), which may offer programmers finegrained
control over automata construction.
[0028] In some embodiments, specialized device 102 may
include two AP cores that are combined to form an AP chip
package and each core in the chip currently connects to the
system via a shared double data rate type three (DDR3)
interface. For example, 8 AP chips maybe combined on a
dual in-line memory module (DIMM) package, and up to
4-6 small outline dual in-line memory modules (SO-
DIMMs) may be supported on a single PCIe accelerator
board. Therefore, specialized device 102 may include a
single AP board with a base configuration having 64 AP
cores. In some embodiments, specialized device 102 may
include an accelerator board with an Altera Stratix IV
FPGA, which may include memory controllers and PCIe
hardware to support AP DIMM modules. All STEs on an AP
chip may be reconfigured in approximately 45 ms.
[0029] In some embodiments, STEs of specialized device
102 may trigger output. For example, when an STE on anAP
chip reports, the AP may generate a report vector. Each
report vector may be a bit-vector representation of all
reporting STEs that activated at that particular cycle, and
may contain up to 1,024 bits. Each chip may contain 6
reporting capable of exporting 1,024 output vectors in 1.8
ms. Therefore, a best-case upper-bound for the full AP
output throughput may be approximately 437 MB/s per AP
chip, or 14 GB/s per board.
[0030] The above metrics may be representative of first-
generation AP architecture and implementation. Future AP
system architectures may enable direct reads and writes to
AP memories via a CPU's front-side bus, or other inter-
processor interconnect, which may permit much lower AP
reconfiguration times and much higher output throughput.
[0031] FIG. 2 illustrates an exemplary finite state machine
for generating pseudo-random numbers.
[0032] A simple Markov chain that simulates an unfair
coin toss with two states: Heads and Tails. Transition
probabilities between these states are unfair meaning that the
probability of transitioning to, or flipping, Heads is different
than Tails.
[0033] In informal terms, Markov Chains are automata
with probabilistic transitions between states. To be formally
considered a Markov chain, transitions in the automaton
may be stochastic processes (e.g., they occur with some
probability), and respect the Markov property, which states
that every probabilistic transition depends only on the cur-
rent state, and is not influenced by memory of prior states.
An example Markov Chain describing the behavior of tosses
of an unfair coin is illustrated by diagram 200.
[0034] Markov chains are defined by stochastic transition
matrices which hold all transition probabilities from a start
state (row) to a transition state (column). Each row of the
transition matrix may be stochastic. For example, each
stochastic row may add up to 1. The state may make some
transition in each time step, even if it is to the current node.
[0035] A Markov chain implemented on the AP corre-
sponding to the Markov chain in diagram 202, with two "star

states" representing Heads and Tails. In an embodiment,
"star states" may match on any character. For example, a
"star state" may activate on any 8-bit input symbol, making
the probability of transitioning to a "star state" from a
previous state is 100%. Transition probabilities between
these states are unfair and are modeled by dividing the
possible input symbols [0-9] into random groups, propor-
tional to the transition probabilities as those of diagram 200.
Diagram 202 may represent programming instructions for
specialized device 102 (e.g., an AP).
[0036] AP automata may be made up of a directed graph
of state transition elements (STEs), which can recognize an
arbitrary character set of 8-bit symbols. An STE may "acti-
vate" when it recognizes the current input symbol and it is
"enabled." An STE may be considered enabled when it is
either configured to consume input from the input stream (a
"start" STE), or an STE connected to it activated on the
previous cycle. STEs can be configured to report on activa-
tion, which may produce a 1 -bit output, analogous to accept-
ing an input string in an NFA.
[0037] FIG. 3 illustrates an exemplary process for gener-
ating pseudo-random numbers in accordance with disclosed
embodiments.
[0038] In step 302, routine 300 may receive probabilistic
definitions. System 100 may receive data indicating the
parameters for pseudo-random number generation. For
example, device 104 may receive digitized instructions
describing the desired range of pseudo-random numbers to
produce and/or the desired distribution for the pseudo-
random numbers (e.g., the probabilistic transitions). System
100 may receive the state data and the weight data in the
form of a stochastic transition matrix.
[0039] In some embodiments, probabilistic definitions
may include the range of desired outputs. System 100 may
receive a number of states for which random output is
desired. For example, system 100 may receive input such as
"2" when binary output is required, mimicking results for a
coin flip. In another example, system 100 may receive "6"
as input to mimic the roll of a six-sided die. Additional
numbers of states may be used depending on the desired
output. The range of desired output may further represent the
output numbers desired to correspond to each of the states.
For example, when there are two states to mimic a coin toss,
probabilistic definitions may further detail that the two states
should be labeled "0" and "1." In another example, a
simulation of a six-sided die having six states, probabilistic
definitions may indicate that the states should range from
one ("1") to six ("6") to correspond to traditional numbers
on a six-sided die.
[0040] In some embodiments, probabilistic definitions
may include weight data. Weight data may indicate the
desired probability or probabilistic distribution for each
state. For example, for a fair coin toss (e.g., having an even
or uniform distribution), each state (e.g., "0" and "1") would
have equal probability (e.g., "0.5" for each). In the example
of a fair six-sided die, each state would have a weight of one
sixth (e.g., approximately "0.167"). In some embodiments,
uneven (e.g., not uniform) or "unfair" distributions may be
desired. For example, weight data may describe an unfair
coin toss by indicating different weights for each state. In
such an example, state "0" (e.g., "heads" for the coin) may
have a probability of "0.9" while state "1" has a probability
of "0.1". Weight data may assign any desired probability
target so long as the weights total "1.0". In some embodi-

US 2017/0083288 Al Mar. 23, 2017
4

ments, process 300 may normalize the weights to "1.0"
when the entered weights do not total "1.0".
[0041] In step 304, routine 300 may generate a digitized
finite state machine. For example, system 100 may generate
a digitized finite state machine based on probabilistic defi-
nitions. To communicate the concept of probabilistic tran-
sitions and implement Markov chains on an AP, system 100
may map the probabilistic definitions to a digitized finite
state machine. In some embodiments, system 100 may
generate a Markov chain for the AP that utilizes an input
symbol stream having uniformly distributed random sym-
bols. Each Markov chain may be constructed using a sto-
chastic transition matrix.
[0042] An example Markov chain for an unfair coin
example is shown in FIG. 2. For example, diagrams 200 and
202, as shown, are based on the input symbols being within
the character class [0-9]. In some embodiments, a single
state out of all possible states may be chosen arbitrarily to
act as the start state. In some embodiments, fully connected
fair Markov chains having transitions to all states are equally
likely may not need a randomly chosen start state, as steady
state behavior may be reached after the first cycle. As shown
in FIG. 2, the construction may take two cycles to generate
an output, one to transition to a transition node, and another
to transition to the star state. Other embodiments may
modify the state machine to generate an output on every
cycle by also setting a randomly selected transition node,
along with an arbitrary state node, to act as a start state. In
such an embodiment, one state node and one transition node
may be active on any given cycle, which may act as a
pipeline for two probabilistic transitions.
[0043] To construct a PRNG from a single Markov chain,
process 300 may build a fair Markov chain of a predeter-
mined number of states. For example, a two-state chain may
produce a single bit output on every cycle. In other
examples, any number of states may be used to construct a
Markov chain as long as transitions to all states are equally
likely. When the state output is in binary bits, the number of
states in the Markov chain may be a power of two to ensure
a uniformly distributed output bits. On every cycle, a single
chain may report which state it randomly transitioned to,
which may emit output corresponding to log 2(states) bits of
random output per machine per cycle. In some embodi-
ments, multiple Markov chains may be used. Additional
Markov chains may be added, and their output may be
interleaved, to increase the total amount of pseudo-random
output relative to the input symbols used to drive random
transitions. For example, a single 2-state Markov chain may
emit a single random bit per random input byte, while eight
2-state chains create the same amount of random output as
input.
[0044] In step 306, routine 300 may provide, to a special-
ized pattern-matching device, programmable instructions to
implement the digitized finite state machine on the special-
ized pattern-matching device.
[0045] In some embodiments, specialized device 102
(e.g., an AP) may be programmed using automata, such as
those described using a directed graph of state transition
elements (STEs) corresponding to states of a digitized finite
state machine, which can recognize an arbitrary character set
of 8-bit symbols. An STE may "activate" when it (1)
recognizes the current input symbol and (2) it is "enabled."
An STE may be considered enabled when it is either
configured to consume input from the input stream (a "start"

STE), or a STE connected to it activated on the previous
cycle. STEs may be configured to report on activation,
producing a 1 -bit output, similar to accepting an input string
in a NFA. Device 104 may receive such output using I/0
112.
[0046] Specialized device 102 (e.g., an AP) may imple-
ment STEs using 256-bit memory columns AN Ded with an
enable signal. Each 256-bit column vector may represent a
character set of 256 possible 8-bit characters that this STE
could recognize. Any character, supplied as a row address
will then force all STE columns that recognize that character
set to read out a 1 in parallel. For example, the Kleene star
operator would simply fill all bit rows in the STE column
with Is. Thus, an STE may be capable of recognizing an
arbitrary character set of possible input symbols on every
cycle. If a column reads a "1" and the STE is enabled, the
STE may activate and send its output signal to the routing
matrix. The routing matrix may allow STEs to connect to
and enable any other STEs within the same AP core, and
may be pre-configured (placed and routed) based on the
compiled AP application and automaton design. Columns of
STEs are organized into blocks and a number of blocks
makes up an AP core. Because the routing matrix only exists
within cores, STEs may be prevented from enabling other
STEs across cores. In the current generation AP hardware, a
block may contain 256 STEs, 32 of which can report. AP
cores may contain 96 blocks, offering a total of 24,576 STEs
per core. The first generation AP hardware may operate at a
constant frequency of 133 MHz, consuming a symbol every
7.5 ns, thus providing a throughput of 133 MB/s per core.
[0047] In step 308, device 104 may transmit a pseudo-
random bit stream to a digitized finite state machine. Device
104 may produce a random stream of input with a prede-
termined level of randomness. For example, device 104 may
transmit a stream of random characters to the PRNG of
specialized device 102. Specialized device 102 may receive
and process the random input on the digitized finite state
machine. For example, in the example illustrated in FIG. 2,
the digitized finite state machine may receive a stream of
characters ranging from zero to nine. Specialized device 102
(e.g., an AP) may process each digit of input by transitioning
to the appropriate state of the digitized finite state machine.
Depending on the configuration of the digitized finite state
machine, the state transition may include reporting func-
tionality.
[0048] In step 310, routine 300 may include device 104
receiving pseudo-random output from a specialized pattern-
matching device. In some embodiments, specialized device
102 may process a bit stream using a digitized finite state
machine (e.g., a Markov chain) to produce pseudo-random
output. The digitized finite state machine may include
reporting functionality to produce output based on the
current state transition of the digitized finite state machine.
For example, the state transition may include reporting
instructions that may cause an AP to generate pseudo-
random output. The AP may transmit the reporting output to
device 104.
[0049] Because only 32 memory elements (MEs) out of
256 in an AP block are capable of reporting, each Markov
chain may be limited by either reporting elements or total
STEs per block. An N-state chain requires N reporting
elements, thus system 100 may instantiate a maximum of 16,
8, and 4 chains per block for 2, 4, and 8-state chains on an
AP, respectively. An N-state chain may need N2+N STEs,

US 2017/0083288 Al Mar. 23, 2017
5

thus system 100 may instantiate a maximum of 42, 12, and
3 chains per block for 2, 4, and 8-state chains respectively.
While reporting elements may limit how many 2- and 4-state
chains an AP may fit onto a given block, the total STEs may
limit the number of 8-state chains. Given that an AP core has
96 blocks, 2 and 4-state chains may provide a 384x increase
in throughput, while 8-state chains may provide a 288x
increase in throughput per input symbol.
[0050] FIG. 4 illustrates a block diagram of an exemplary
machine 400 upon which one or more embodiments (e.g.,
discussed methodologies) can be implemented (e.g., run).
Examples of machine 400 can include logic, one or more
components, circuits (e.g., modules), or mechanisms. Cir-
cuits are tangible entities configured to perform certain
operations. In an example, circuits can be arranged (e.g.,
internally or with respect to external entities such as other
circuits) in a specified manner. In an example, one or more
computer systems (e.g., a standalone, client or server com-
puter system) or one or more hardware processors (proces-
sors) can be configured by software (e.g., instructions, an
application portion, or an application) as a circuit that
operates to perform certain operations as described herein.
In an example, the software can reside (1) on a non-
transitory machine readable medium or (2) in a transmission
signal. In an example, the software, when executed by the
underlying hardware of the circuit, causes the circuit to
perform the certain operations.
[0051] In an example, a circuit can be implemented
mechanically or electronically. For example, a circuit can
comprise dedicated circuitry or logic that is specifically
configured to perform one or more techniques such as
discussed above, including, for example, a special-purpose
processor, a field programmable gate array (FPGA), or an
application-specific integrated circuit (ASIC). In an
example, a circuit can comprise programmable logic (e.g.,
circuitry, as encompassed within a general-purpose proces-
sor or other programmable processor) that can be temporar-
ily configured (e.g., by software) to perform the certain
operations. It will be appreciated that the decision to imple-
ment a circuit mechanically (e.g., in dedicated and perma-
nently configured circuitry), or in temporarily configured
circuitry (e.g., configured by software) can be driven by cost
and time considerations.
[0052] Accordingly, the term "circuit" is understood to
encompass a tangible entity, be that an entity that is physi-
cally constructed, permanently configured (e.g., hardwired),
or temporarily (e.g., transitorily) configured (e.g., pro-
grammed) to operate in a specified manner or to perform
specified operations. In an example, given a plurality of
temporarily configured circuits, each of the circuits need not
be configured or instantiated at any one instance in time. For
example, where the circuits comprise a general-purpose
processor configured via software, the general-purpose pro-
cessor can be configured as respective different circuits at
different times. Software can accordingly configure a pro-
cessor, for example, to constitute a particular circuit at one
instance of time and to constitute a different circuit at a
different instance of time.
[0053] In an example, circuits can provide information to,
and receive information from, other circuits. In this example,
the circuits can be regarded as being communicatively
coupled to one or more other circuits. Where multiple of
such circuits exist contemporaneously, communications can
be achieved through signal transmission (e.g., over appro-

priate circuits and buses) that connect the circuits. In
embodiments in which multiple circuits are configured or
instantiated at different times, communications between
such circuits can be achieved, for example, through the
storage and retrieval of information in memory structures to
which the multiple circuits have access. For example, one
circuit can perform an operation and store the output of that
operation in a memory device to which it is communica-
tively coupled. A further circuit can then, at a later time,
access the memory device to retrieve and process the stored
output. In an example, circuits can be configured to initiate
or receive communications with input or output devices and
can operate on a resource (e.g., a collection of information).
[0054] The various operations of method examples
described herein can be performed, at least partially, by one
or more processors that are temporarily configured (e.g., by
software) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors can constitute processor-implemented cir-
cuits that operate to perform one or more operations or
functions. In an example, the circuits referred to herein can
comprise processor-implemented circuits.
[0055] Similarly, the methods described herein can be at
least partially processor implemented. For example, at least
some of the operations of a method can be performed by one
or more processors or processor-implemented circuits. The
performance of certain of the operations can be distributed
among the one or more processors, not only residing within
a single machine, but deployed across a number of
machines. In an example, the processor or processors can be
located in a single location (e.g., within a home environ-
ment, an oflice environment or as a server farm), while in
other examples the processors can be distributed across a
number of locations.
[0056] The one or more processors can also operate to
support performance of the relevant operations in a "cloud
computing" environment or as a "software as a service"
(SaaS). For example, at least some of the operations can be
performed by a group of computers (as examples of
machines including processors), with these operations being
accessible via a network (e.g., the Internet) and via one or
more appropriate interfaces (e.g., Application Program
Interfaces (APIs).)
[0057] Exemplary embodiments (e.g., apparatus, systems,
or methods) can be implemented in digital electronic cir-
cuitry, in computer hardware, in firmware, in software, or in
any combination thereof. Example embodiments can be
implemented using a computer program product (e.g., a
computer program, tangibly embodied in an information
carrier or in a machine readable medium, for execution by,
or to control the operation of, data processing apparatus such
as a programmable processor, a computer, or multiple com-
puters).
[0058] A computer program can be written in any form of
programming language, including compiled or interpreted
languages, and it can be deployed in any form, including as
a stand-alone program or as a software module, subroutine,
or other unit suitable for use in a computing environment. A
computer program can be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.
[0059] In an example, operations can be performed by one
or more programmable processors executing a computer

US 2017/0083288 Al Mar. 23, 2017
6

program to perform functions by operating on input data and
generating output. Examples of method operations can also
be performed by, and an exemplary apparatus can be imple-
mented as, special purpose logic circuitry (e.g., a field
programmable gate array (FPGA) or an application-specific
integrated circuit (ASIC)).
[0060] The computing system can include clients and
servers. A client and server are generally remote from each
other and generally interact through a communication net-
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other.
[0061] In embodiments deploying a programmable com-
puting system, it will be appreciated that both hardware and
software architectures require consideration. Specifically, it
will be appreciated that the choice of whether to implement
certain functionality in permanently configured hardware
(e.g., an ASIC), in temporarily configured hardware (e.g., a
combination of software and a programmable processor), or
a combination of permanently and temporarily configured
hardware can be a design choice. Below are set out hardware
(e.g., machine 400) and software architectures that can be
deployed in exemplary embodiments. In an example, the
machine 400 can operate as a standalone device or machine
400 can be connected (e.g., networked) to other machines. In
a networked deployment, machine 400 can operate in the
capacity of either a server or a client machine in server-client
network environments. In an example, machine 400 can act
as a peer machine in peer-to-peer (or other distributed)
network environments. Machine 400 can be a personal
computer (PC), a tablet PC, a set-top box (STB), a Personal
Digital Assistant (PDA), a mobile telephone, a web appli-
ance, a network router, switch or bridge, or any machine
capable of executing instructions (sequential or otherwise)
specifying actions to be taken (e.g., performed) by machine
400. Further, while only a single machine 400 is illustrated,
the term "machine" shall also be taken to include any
collection of machines that individually or jointly execute a
set (or multiple sets) of instructions to perform any one or
more of the methodologies discussed herein.
[0062] Exemplary machine (e.g., computer system) 400
can include a processor 402 (e.g., a central processing unit
(CPU), a graphics processing unit (GPU), or both), a main
memory 404 and a static memory 406, some or all of which
can communicate with each other via a bus 408. Machine
400 can further include a display unit 410, an alphanumeric
input device 412 (e.g., a keyboard), and a user interface (UT)
navigation device 414 (e.g., a mouse). In an example, the
display unit 410, input device 417 and UT navigation device
414 can be a touch screen display. Machine 400 can addi-
tionally include a storage device (e.g., drive unit) 416, a
signal generation device 418 (e.g., a speaker), a network
interface device 420, and one or more sensors 421, such as
a global positioning system (GPS) sensor, compass, accel-
erometer, or other sensor.
[0063] Storage device 416 can include a machine readable
medium 422 on which is stored one or more sets of data
structures or instructions 424 (e.g., software) embodying or
utilized by any one or more of the methodologies or func-
tions described herein. Instructions 424 can also reside,
completely or at least partially, within main memory 404,
within static memory 406, or within processor 402 during
execution thereof by machine 400. In an example, one or any

combination of processor 402, main memory 404, static
memory 406, or storage device 416 can constitute machine
readable media.
[0064] While machine readable medium 422 is illustrated
as a single medium, the term "machine readable medium"
can include a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that configured to store the one or more
instructions 424. The term "machine readable medium" can
also be taken to include any tangible medium that is capable
of storing, encoding, or carrying instructions for execution
by the machine and that cause the machine to perform any
one or more of the methodologies of the present disclosure
or that is capable of storing, encoding or carrying data
structures utilized by or associated with such instructions.
The term "machine readable medium" can accordingly be
taken to include, but not be limited to, solid-state memories,
and optical and magnetic media. Specific examples of
machine readable media can include non-volatile memory,
including, by way of example, semiconductor memory
devices (e.g., Electrically Programmable Read-Only
Memory (EPROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM)) and flash memory
devices; magnetic disks such as internal hard disks and
removable disks; magneto-optical disks; and CD-ROM and
DVD-ROM disks.
[0065] Instructions 424 can further be transmitted or
received over a communications network 426 using a trans-
mission medium via the network interface device 420 uti-
lizing any one of a number of transfer protocols (e.g., frame
relay, IP, TCP, UDP, HTTP, etc.). Exemplary communication
networks can include a local area network (LAN), a wide
area network (WAN), a packet data network (e.g., the
Internet), mobile telephone networks (e.g., cellular net-
works), Plain Old Telephone (POTS) networks, and wireless
data networks (e.g., IEEE 802.11 standards family known as
Wi-Fi®, IEEE 802.16 standards family known as WiMax®),
peer-to-peer (P2P) networks, among others. The term "trans-
mission medium" shall be taken to include any intangible
medium that is capable of storing, encoding or carrying
instructions for execution by the machine, and includes
digital or analog communications signals or other intangible
medium to facilitate communication of such software.
[0066] Various embodiments or aspects of the disclosure,
for example, can be implemented as software in a computing
device, or alternatively, on hardware. An exemplary com-
puting device in which disclosed embodiments, or a portion
thereof, may be implemented is schematically illustrated in
FIGS. 5 and 6.
[0067] Referring to FIG. 5, in its most basic configuration,
device 500 may include at least one Processing unit 508 and
Memory 504. Depending on the exact configuration and
type of computing device, Memory 504 can be volatile (such
as RAM), non-volatile (such as ROM, flash memory, etc.) or
some combination of the two. Additionally, device 500 may
also have other features and/or functionality. For example,
the device could also include additional removable and/or
non-removable storage including, but not limited to, mag-
netic or optical disks or tape, as well as writable electrical
storage media. Such additional storage is the figure by
removable storage 506 and non-removable storage 510.
Computer storage media includes volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information such as

US 2017/0083288 Al Mar. 23, 2017
7

computer readable instructions, data structures, program
modules or other data. The memory, the removable storage
and the non-removable storage are all examples of computer
storage media. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other
memory technology CDROM, digital versatile disks (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can accessed by the device. Any such
computer storage media may be part of, or used in conjunc-
tion with, the device.
[0068] The device may also contain one or more commu-
nications connections 512 that allow the device to commu-
nicate with other devices (e.g. other computing devices).
The communications connections carry information in a
communication media. Communication media typically
embodies computer readable instructions, data structures,
program modules or other data in a modulated data signal
such as a carrier wave or other transport mechanism and
includes any information delivery media. The term "modu-
lated data signal" means a signal that has one or more of its
characteristics set or changed in such a manner as to encode,
execute, or process information in the signal. By way of
example, and not limitation, communication medium
includes wired media such as a wired network or direct-
wired connection, and wireless media such as radio, RF,
infrared and other wireless media. As discussed above, the
term computer readable media as used herein includes both
storage media and communication media.
[0069] In addition to a stand-alone computing machine,
embodiments of the invention can also be implemented on
a network system comprising a plurality of computing
devices that are in communication with a networking means,
such as a network with an infrastructure or an ad hoc
network. The network connection can be wired connections
or wireless connections.
[0070] As a way of example, FIG. 6 illustrates a network
system 600 in which embodiments of the invention can be
implemented. In this example, the network system may
include computer 602 (e.g., a network server), network
connection 606 (e.g. wired and/or wireless connections),
computer terminal 604, and PDA (e.g. a smartphone) 608 (or
other handheld or portable device, such as a cell phone,
laptop computer, tablet computer, GPS receiver, mp3 player,
handheld video player, pocket projector, etc. or handheld
devices (or non-portable devices) with combinations of such
features). The embodiments of the invention can be imple-
mented in any of the devices of the system.
[0071] For example, execution of the instructions or other
desired processing can be performed on the same computing
device that is any one of 602, 604, and 608. Alternatively, an
embodiment of the invention can be performed on different
computing devices of the network system. For example,
certain desired or required processing or execution can be
performed on one of the computing devices of the network
(e.g. server 602), whereas other processing and execution of
the instruction can be performed at another computing
device (e.g. terminal 604) of the network system, or vice
versa. In fact, certain processing or execution can be per-
formed at one computing device (e.g. server 602); and the
other processing or execution of the instructions can be
performed at different computing devices that may or may
not be networked. For example, the certain processing can

be performed at terminal 604, while the other processing or
instructions are passed to device 608 where the instructions
are executed. This scenario may be of particular value
especially when the PDA device, for example, accesses to
the network through computer terminal 604 (or an access
point in an ad hoc network). For another example, software
to be protected can be executed, encoded or processed with
one or more embodiments of the invention. The processed,
encoded or executed software can then be distributed to
customers. The distribution can be in a form of storage
media (e.g. disk) or electronic copy.
[0072] Practice of an aspect of an embodiment (or
embodiments) of the invention is presented herein for illus-
tration only and should not be construed as limiting the
invention in any way.
[0073] An approach of the present invention systems and
designs and optimization system and techniques may be
based on the tools, programs and operating systems as
discussed throughout this disclosure, such techniques can be
applied to various hardware, tools, operating systems, vir-
tual machines, parallel virtual machines (PVMs), or execut-
able formats.

What is claimed is:
1. A method for generating pseudo-random numbers,

comprising:
receiving, by at least one processor, range data indicating

a range of numbers;
generating, based on the range data and by the at least one

processor, a digitized finite state machine configured to
produce pseudo-random output within the range of
numbers;

providing, by the at least one processor to a specialized
pattern-matching device, programmable instructions to
implement the digitized finite state machine on the
specialized pattern-matching device;

transmitting, by the at least one processor to the special-
ized pattern-matching device, a pseudo-random bit
stream for processing by the digitized finite state
machine; and

receiving, by the at least one processor from the special-
ized pattern-matching device, pseudo-random output
from the digitized finite state machine.

2. The method of claim 1, wherein the specialized pattern-
matching device is an Automata Processor PCIe board.

3. The method of claim 1, wherein the digitized finite state
machine includes a number of states corresponding to the
range of numbers.

4. The method of claim 1, further comprising:
receiving, by the at least one processor, weight data

indicating a distribution for the range of numbers;
wherein the digitized finite state machine includes proba-

bilistic transitions corresponding to the distribution for
the range of numbers.

5. The method of claim 4, wherein
the weight data indicates that the distribution should be

uniform; and
the probabilistic transitions each have an equal weight,

based on the weight data indicating that the distribution
should be uniform.

6. The method of claim 1, wherein the digitized finite state
machine is formed from multiple Markov chains.

7. A non-transitory computer-readable storage medium
for generating pseudo-random numbers, the computer-read-

US 2017/0083288 Al Mar. 23, 2017
8

able storage medium including instructions that when
executed by at least one processor, cause the at least one
processor to

receive, by the at least one processor, range data indicat-
ing a range of numbers;

generate, based on the range data and by the at least one
processor, a digitized finite state machine configured to
produce pseudo-random output within the range of
numbers;

provide, by the at least one processor to a specialized
pattern-matching device, programmable instructions to
implement the digitized finite state machine on the
specialized pattern-matching device;

transmit, by the at least one processor to the specialized
pattern-matching device, a pseudo-random bit stream
for processing by the digitized finite state machine; and

receive, by the at least one processor from the specialized
pattern-matching device, pseudo-random output from
the digitized finite state machine.

8. The computer-readable storage medium of claim 7,
wherein the specialized pattern-matching device is an
Automata Processor PCIe board.

9. The computer-readable storage medium of claim 7,
wherein the digitized finite state machine includes a number
of states corresponding to the range of numbers.

10. The computer-readable storage medium of claim 7,
wherein the instructions further configure the at least one
processor to:

receive, by the at least one processor, weight data indi-
cating a distribution for the range of numbers;

wherein the digitized finite state machine includes proba-
bilistic transitions corresponding to the distribution for
the range of numbers.

11. The computer-readable storage medium of claim 10,
wherein

the weight data indicates that the distribution should be
uniform; and

the probabilistic transitions each have an equal weight,
based on the weight data indicating that the distribution
should be uniform.

12. The computer-readable storage medium of claim 7,
wherein the digitized finite state machine is formed from
multiple Markov chains.

13. A computing apparatus for generating pseudo-random
numbers, the computing apparatus comprising:

at least one processor; and
a memory storing instructions that, when executed by the

at least one processor, cause the at least one processor
to:

receive, by the at least one processor, range data indicat-
ing a range of numbers;

generate, based on the range data and by the at least one
processor, a digitized finite state machine configured to
produce pseudo-random output within the range of
numbers;

provide, by the at least one processor to a specialized
pattern-matching device, programmable instructions to
implement the digitized finite state machine on the
specialized pattern-matching device;

transmit, by the at least one processor to the specialized
pattern-matching device, a pseudo-random bit stream
for processing by the digitized finite state machine; and

receive, by the at least one processor from the specialized
pattern-matching device, pseudo-random output from
the digitized finite state machine.

14. The computing apparatus of claim 13, wherein the
specialized pattern-matching device is an Automata Proces-
sor PCIe board.

15. The computing apparatus of claim 13, wherein the
digitized finite state machine includes a number of states
corresponding to the range of numbers.

16. The computing apparatus of claim 13, wherein the
instructions further configure the apparatus to:

receive, by the at least one processor, weight data indi-
cating a distribution for the range of numbers;

wherein the digitized finite state machine includes proba-
bilistic transitions corresponding to the distribution for
the range of numbers.

17. The computing apparatus of claim 16, wherein
the weight data indicates that the distribution should be

uniform; and
the probabilistic transitions each have an equal weight,

based on the weight data indicating that the distribution
should be uniform.

18. The computing apparatus of claim 13, wherein the
digitized finite state machine is formed from multiple
Markov chains.

Appendix E

APPRNG Python Implementation

5.1 Moore Machine Simulator

c l a s s MooreMachine :

s imulates a Moore Machine

#automaton t h a t outputs i t s s t a t e l a b e l a f t e r each t r a n s i t i o n

def i n i t (s e l f , Q, dFunc , s t a r t) :

#Q: l i s t of s t a t e s

d func : t r a n s i t i o n funct ion

#(source , d e s t i n a t i o n , input c h a r a c t e r)

s t a r t : unique s t a r t s t a t e

s e l f . s t a r t = s t a r t

s e l f . output = []

s e l f . dFunc = dFunc

s e l f . s t a t e s ={}

f o r s t a t e in Q:

s e l f . s t a t e s [s t a t e]={}

f o r t r a n s in dFunc :

s e l f . s t a t e s [t r a n s [0]] [t r a n s [2]] = t r a n s [1]

s e l f . current= s t a r t

172

5.2 APPRNG Creation 173

def s tep (s e l f , input char) :

advances computation by one c h a r a c t e r

s e l f . current= s e l f . s t a t e s [s e l f . current] [input char]

s e l f . output . append (s e l f . current)

re turn s e l f . current

def sim (s e l f , i n S t r i n g) :

runs the machine on e n t i r e s t r i n g

s e l f . r e s e t ()

walk = []

f o r c in i n S t r i n g :

walk . append (s e l f . s tep (c))

re turn walk

def r e s e t (s e l f) :

s e l f . current = s e l f . s t a r t

s e l f . output = []

5.2 APPRNG Creation

def apprngBuilder (n) :

bui lds a APPRNG markov chain of n s t a t e s

Q = [] # s t a t e s e t

f = [] # (source , d e s t i n a t i o n , input c h a r a c t e r) l i s t

f o r i in range (n) :

Q. append (i)

R = Q

f o r i in range (n) :

rand . s h u f f l e (R)

f o r j in range (n) :

f . append ((i , j , R[j]))

g = MooreMachine (Q, f , 1)

re turn g

5.3 Sample Usage 174

def apprngSim (m, n , t) :

#m machines

#n s t a t e s each

#run on t symbols

markov chains = []

output = []

sigma = []

inputs = []

f o r i in range (n) :

sigma . append (i)

f o r i in range (m) :

markov chains . append (apprngBuilder (n))

f o r i in range (t) :

f o r j in range (m) :

x = rand . choice (sigma)

inputs . append (x)

output . append (markov chains [j] . s tep (x))

re turn output

5.3 Sample Usage

def ToBits (l s t) :

#A u t i l i t y funct ion f o r convert ing i n t e g e r s to ASCII binary

output = []

curr num = ””

f o r i in l s t :

i f i == 0 :

curr num = curr num + ’0 ’

while i > 0 :

i f i % 2 == 0 :

curr num = curr num + ’0 ’

5.3 Sample Usage 175

e l s e :

curr num = curr num + ’1 ’

i = math . f l o o r (i /2)

output . append (curr num [: : � 1])

curr num = ””

s t r i n g l e n g t h = 0

f o r i in output :

i f s t r i n g l e n g t h < len (i) :

s t r i n g l e n g t h = len (i)

f o r i in range (len (output)) :

while len (output [i]) < s t r i n g l e n g t h :

output [i] = ”0” + output [i]

re turn output

def apprngSimString (m, n , t) :

runs the PRG

then converts the i n t e g e r s t a t e l a b e l s to ASCII binary

out = ToBits (apprngSim (m, n , t))

s t r i n g o u t = ””

f o r i in out :

s t r i n g o u t = s t r i n g o u t + i

re turn s t r i n g o u t

def apprngGenRand (m, n , t , o u t p u t b i t s) :

handles the f i l e wri t ing repeated invo ca t i on s of the funct ion

#m: number of machines

#n : number of s t a t e s in each machine

t : number of inputs to a l l machines

o u t p u t b i t s : des ired number of output b i t s

i t e r s = math . c e i l (o u t p u t b i t s /(t ⇤m⇤math . c e i l (math . log (n , 2))))

accumulator = ””

5.3 Sample Usage 176

f o r i in range (i t e r s) :

accumulator = accumulator + apprngSimString (m, n , t)

f = open (s t r (m)+” Machine ”+ s t r (n)+” S t a t e ”+ s t r (t)+” Input . t x t ” , ’w’)

f . wri te (accumulator)

f . c l o s e ()

8 machines

4 s t a t e s

5000 symbols before r e c o n f i g u r a t i o n

100 ,000 t o t a l output b i t s

r e s u l t wr i t ten to 8 Machine 4State 5000 Input . t x t

apprngGenRand (8 , 4 , 5 0 0 0 , 1 0 0 0 0 0)

Appendix F

AP Bloom Filter Python

Implementation

6.1 Finite Automata Simulator

c l a s s FSA :

s imulates a D e t e r m i n i s t i c F i n i t e S t a t e Automaton

def i n i t (s e l f , q , dFunc , s t a r t , f i n a l s) :

#Q: l i s t of s t a t e s

d func : t r a n s i t i o n funct ion

#(source , d e s t i n a t i o n , input c h a r a c t e r)

s t a r t : unique s t a r t s t a t e

f i n a l s : s e t of f i n a l s t a t e s

s e l f . s t a r t = s t a r t

s e l f . f i n a l s = f i n a l s

s e l f . dFunc = dFunc

s e l f . s t a t e s ={}

f o r s t a t e in q :

s e l f . s t a t e s [s t a t e]={}

f o r t r a n s in dFunc :

s e l f . s t a t e s [t r a n s [0]] [t r a n s [2]] = t r a n s [1]

177

6.2 Bloom Filter Data Structure Implementation 178

s e l f . current= s t a r t

def s tep (s e l f , inChar) :

advances computation by one c h a r a c t e r

s e l f . current= s e l f . s t a t e s [s e l f . current] [inChar]

def sim (s e l f , i n S t r i n g) :

runs the machine on e n t i r e s t r i n g

f o r c in i n S t r i n g :

s e l f . s tep (c)

s t a t u s = s e l f . current in s e l f . f i n a l s

s e l f . current= s e l f . s t a r t

re turn s t a t u s

6.2 Bloom Filter Data Structure Implementation

c l a s s B l oom Fi l t e r :

def i n i t (s e l f , sizeV , sizeAlph , t h e S e t) :

s e l f . sizeV = sizeV

s e l f . numHash = (math . log (2) ⇤ sizeV) / len (t h e S e t)

s e l f . sizeAlph = sizeAlph

s e l f . s i z e S e t = len (t h e S e t)

s e l f . numMachines = 2 ⇤ s e l f . sizeV ⇤ math . log (2)

s e l f . chains = s e l f . buildChains ()

s e l f . e r r = s e l f . setup (t h e S e t)

s e l f . probAccept = probAccept (s e l f . numHash , s e l f . sizeV)

def buildChains (s e l f) :

bui ld a two�s t a t e MC

acceptance p r o b a b i l i t y based on s i z e v and num hash

bloom = []

probAccept = probAccept (s e l f . numHash , s e l f . sizeV)

6.2 Bloom Filter Data Structure Implementation 179

f o r i in range ((i n t) (round (s e l f . numMachines))) :

bloom . append (s e l f . genMC(probAccept))

re turn bloom

def genMC(s e l f , prob) :

bui ld a 2� s t a t e automaton which accepts with p r o b a b i l i t y prob

sizeAlph i s the number of symbols in the alphabet

i f prob >= 1 : # i l l �defined w i l l cause i n f i n i t e loop

return Fa l se

sizeAlph = s e l f . sizeAlph

machineQ = [0 , 1]

machineD = []

machineStart = 0

machineFinals = [1]

to generate the t r a n s i t i o n funct ion :

pick a random s e t of s i z e p⇤ sizeAlph w/o replacement

t r a n s 0 t o 1 = []

t r a n s 1 t o 1 = []

f o r x in range ((i n t) (sizeAlph⇤prob)) :

i = rand . randint (0 , sizeAlph �1)

j = rand . randint (0 , sizeAlph �1)

while i in t r a n s 0 t o 1 : #draw without replacement

i = rand . randint (0 , sizeAlph �1)

while j in t r a n s 1 t o 1 :

j = rand . randint (0 , sizeAlph �1)

t r a n s 0 t o 1 . append (i)

t r a n s 1 t o 1 . append (j)

f o r i in range (sizeAlph) :

i f i in t r a n s 0 t o 1 :

machineD . append ((0 , 1 , i))

e l s e :

machineD . append ((0 , 0 , i))

6.3 Experiment Implementation 180

i f i in t r a n s 1 t o 1 :

machineD . append ((1 , 1 , i))

e l s e :

machineD . append ((1 , 0 , i))

f s a = FSA(machineQ , machineD , machineStart , machineFinals)

re turn f s a

def setup (s e l f , t h e S e t) :

#remove a l l chains which accept something from t h e s e t

re turn p r o b a b i l i t y of f a l s e p o s i t i v e e r r o r

f o r s in t h e S e t :

s e l f . chains = f i l t e r (lambda c : not c . sim (s) , s e l f . chains)

re turn s e l f . p e r r o r (len (t h e S e t))

def p e r r o r (s e l f , s i z e S e t) :

c a l c u l a t e s the p r o b a b i l i t y of a f a l s e p o s i t i v e

numHash = (f l o a t) s e l f . numHash

sizeV = (f l o a t) s e l f . sizeV

p = math . pow(1�math . exp(�numHash⇤ s i z e S e t /sizeV) , numHash)

re turn p

def query (s e l f , x) :

re turn true i f a l l chains r e j e c t

a l l R e j e c t = True

f o r chain in s e l f . chains :

i f chain . sim (x) :

a l l R e j e c t = Fa l se

re turn a l l R e j e c t

6.3 Experiment Implementation

def random set gen (s t r l e n g t h , s e t l e n g t h , s i z e a l p h) :

o u t p u t l i s t = []

6.3 Experiment Implementation 181

f o r i in range (i n t (s e t l e n g t h)) :

o u t p u t l i s t . append (random str gen (s t r l e n g t h , s i z e a l p h))

re turn o u t p u t l i s t

def random str gen (s t r l e n g t h , s i z e a l p h) :

out = []

f o r i in range (s t r l e n g t h) :

out . append (rand . randint (0 , s i ze a lph �1))

re turn out

def comp error (b f i l t e r , i n p u t s e t , bloom set) :

e r r o r c o u n t = 0

#add true p o s i t i v e s

e r r o r r a t e : f a l s e p o s i t i v e s / true negat ives

t r u e p o s i t i v e s = 0

f o r i in i n p u t s e t :

q = b f i l t e r . query (i)

i f i in bloom set :

t r u e p o s i t i v e s = t r u e p o s i t i v e s + 1

i f q and (i not in bloom set) :

e r r o r c o u n t += 1

i f not q and (i in bloom set) :

p r i n t (” t h i s should never p r i n t ”)

(expected errors , a c t u a l e r r o r s)

re turn b f i l t e r . e r r ⇤ (len (i n p u t s e t)� t r u e p o s i t i v e s) , e r r o r c o u n t

def testGen (nTrls , mTrls , l T r l s , reps) :

alph = 512

t o t = []

f o r t in [(n ,m, l) f o r n in nTrls f o r m in mTrls f o r l in l T r l s] :

r e s u l t s = []

f o r r in range (reps) :

6.3 Experiment Implementation 182

bSet = random set gen (t [2] , t [0]⇤ t [1] , alph)

bloom = Bloom Fi l t e r (t [1] , alph , bSet)

qSet = random set gen (t [2] , 1000 , alph)

r es = comp error (bloom , qSet , bSet)

r e s u l t s . append (r es)

t o t . append (r es)

t o t a l s = reduce (lambda x , y : (x [0] + y [0] , x [1] + y [1]) , to t , (0 . 0 , 0 . 0))

t o t a l s = (t o t a l s [0] / len (t o t) , t o t a l s [1] / len (t o t))

p r i n t ” t r i a l : ALL”

p r i n t ” averages : ” + (s t r) (t o t a l s)

def t e s t () :

n T r i a l s = [. 0 5 , 0 . 1 , 0 . 2 , 0 . 5] # v a r i e s input s e t s i z e

mTrials = range (1 0 0 , 500 , 100)

l T r i a l s = range (1 , 5 0 , 7)

reps = 10

testGen (nTr ia l s , mTrials , l T r i a l s , reps)

testGen ([0 . 5] , [5 0 0] , l T r i a l s , reps)

testGen (nTr ia l s , [5 0 0] , [8] , reps)

testGen ([0 . 5] , mTrials , [8] , reps)

t e s t ()

Appendix G

PhD Defense Presentation Video and

Slides

The PhD defense presentation of this dissertation took place on July 31, 2017, at the University of

Virginia in Charlottesville.

The video of this presentation can be viewed at:

https://www.youtube.com/watch?v=GP2rmOz3ebI

The PDF version of this dissertation is available at:

http://www.cs.virginia.edu/~njb2b/Brunelle_phdDissertation_UVACS_2017.pdf

The PowerPoint slides of this dissertation defense are available at:

http://www.cs.virginia.edu/~njb2b/Brunelle_phdDefense_UVACS_July2017.pdf.

The PDF version of the dissertation defense slides are available at:

http://www.cs.virginia.edu/~njb2b/Brunelle_phdDefense_UVACS_July2017.pptx

The dissertation defense slides are also reproduced below as follows.

183

https://www.youtube.com/watch?v=GP2rmOz3ebI
http://www.cs.virginia.edu/~njb2b/Brunelle_phdDissertation_UVACS_2017.pdf
http://www.cs.virginia.edu/~njb2b/Brunelle_phdDefense_UVACS_July2017.pdf
http://www.cs.virginia.edu/~njb2b/Brunelle_phdDefense_UVACS_July2017.pptx

8/4/2017

1

Super-Scalable Algorithms

PhD Dissertation Defense
Nathan Brunelle

July 31, 2017

1

Video of this presentation viewable at https://www.youtube.com/watch?v=GP2rmOz3ebI
Dissertation PDF: http://www.cs.virginia.edu/~njb2b/Brunelle_phdDissertation_UVACS_2017.pdf
Slides PDF: http://www.cs.virginia.edu/~njb2b/Brunelle_phdDefense_UVACS_July2017.pdf
Slides PPT: http://www.cs.virginia.edu/~njb2b/Brunelle_phdDefense_UVACS_July2017.pptx

Overview

2

2016: Intel announced that Moore’s Law is slowing down

Thesis: “Life-extension” strategies for Moore’s Law:
• Compression-aware algorithms
• Automata-based hardware accelerators

8/4/2017

2

Compression Aware Algorithms

A real world building Corresponding highly
compressible CAD model

3

• Compression’s size grows more slowly than
the volume of the data it represents

• Less data for the algorithm to manage

Compression-Aware Benefits

4

8/4/2017

3

Data Domains

• Graph
– Literature is on compression, not on algorithms

• Text

– Well-studied
– Impossibility result

• Geometric

– Literature sparse on compression
– Algorithmically-aware compressions

It was the best of times
It was the worst of times…

5

• Context-free grammar compression
– Set of terminals, variables, substitution rules
– Begin with start variable
– apply rules until no variables remain

Compression-aware Sorting

6

𝐴0 → a𝐴1𝐴2𝐴3
𝐴1 → ab
𝐴2 → 𝐴1b
𝐴3 → 𝐴2b

Grammar Parsing
𝐴0

a𝐴1𝐴2𝐴3
aab𝐴1b𝐴2b
aababb𝐴1bb
aababbabbb

8/4/2017

4

• Compress list as a string of CSV
• Requires Ω(𝑛 log 𝑛)

Compression-aware Sorting

7

𝐴0 → 𝐴1𝐴2𝐴3…𝐴𝑛
𝐴1 → …,
𝐴2 → …,
𝐴3 → …,
…

Permute these
to permute list

List is arbitrarily compressible

⇒ Compression should be matched to algorithm

Algorithmically-Aware Compressions

• Dual of compression-aware algorithms
• Compressions designed for faster algorithms
• Focus on geometric data

8

8/4/2017

5

Set of Lines Compression

9

Algorithms on Set of Lines Data

• Convex Hull
– 𝑂 𝐶𝐻(#𝐿𝑖𝑛𝑒𝑠)

• Nearest Neighbor
– 𝑂(#𝐿𝑖𝑛𝑒𝑠)

• Polytope Membership
– 𝑂(#𝐿𝑖𝑛𝑒𝑠 ⋅ #𝑓𝑎𝑐𝑒𝑠)

• Range Searches
– Manhattan

• 𝑂(# 𝐿𝑖𝑛𝑒𝑠)

– Euclidean
• 𝑂(# 𝐿𝑖𝑛𝑒𝑠)

10

8/4/2017

6

Range Search

11

• Experimental results:
– Highly compressible data has same run time as KD-Trees
– Save 10 min. on decompression/data structure construction
– Biggest advantage results returned in compressed format

• Up to 300x speedups for our experiments

Lossy vs Lossless

• Convex Hull
– Unbounded error

• Nearest Neighbor
– May be 2𝜀 farther

• Polytope Membership
– Guaranteed: move each

face in by 𝜀
– Possible: move each face

out by 𝜀

• Range Searches
– Manhattan

• Guaranteed: [range - 𝜀]
• Possible: [range + 𝜀]

– Euclidean
• Guaranteed: [range - 𝜀]
• Possible: [range + 𝜀]

12

8/4/2017

7

Coprocessing

• Use clever hardware and algorithms to
accelerate computation

• Solution: restrictive yet efficient hardware
– GPUs
– Automata Processor

13

Micron Automata Processor

• Simulates NFAs in hardware

• Other utilities:

increment

reset

>3

14

Boolean logic gates Threshold counters

8/4/2017

8

Eliminating Logic gates

• Theorem:
– Any Machine with Boolean gates can be converted

to an Alternating Finite State Automaton (AFA)

• Corollary:
– AP machines accept exactly the regular languages

AFA AP

15

Relation to Other Architectures

• Corollary:
– Any AP machine can be simulated in log time with

polynomial parallel Turing machines

• Space Cost:

– 22𝑘 22𝑘

16

8/4/2017

9

Pseudorandom Number Generators

• Few bits of random input, more bits of
“random-looking” output

• Formally:
– 𝑓: 0,1 𝑛 → 0,1 𝑚 is a PRNG for 𝑛 < 𝑚 if there is

no polynomial-time algorithm which can
distinguish the output distribution from uniform

PRNG

17

PRNG for APs

• Idea: Simulate many independent Markov
Chains in parallel on the same input string

• Intuition: The Markov Chains are correlated in
a hard-to-predict way

H T

a b,c b,c

a

18

H T

a b,c b,c

a

H T

a b,c b,c

a

H T

a b,c b,c

a

H T

a b,c b,c

a

8/4/2017

10

AP-PRNG Algorithm

Random 5-
Permutation

(d,a,e,b,c)

1

5

4
3

2

1

5

4
3

2

d

a

e
b

c

x5

Randomly choose
transitions for each state

A “5-sided die”
Markov Chain

19

AP-PRNG Algorithm
M machines with s states each

20

𝑠-sided Die
Markov
Chain 1

𝑠 -sided Die
Markov
Chain 2

𝑠 -sided Die
Markov
Chain M

𝑠 -sided Die
Markov
Chain 3

…

Random String for
Machine Input

Random Output
String 1

Random Output
String 2

Random Output
String 3

Random Output
String 𝑀

…

Pseudorandom Output String

𝑀 ⋅ 𝑠 Random
𝑠-permutations +

Random Input String

Parallel Automata

defines

8/4/2017

11

Evaluation*
• Evaluate using statistical tests

– TestU01 test suite
• Compare with state-of-the-art

– Philox
• GPU: 145 GB/s

• APPRNG:
– First Gen AP: 436.9 MB/s per chip
– Modern DDR3: 12.8 GB/s per chip

• 409.6 GB/s per board
– HMC: 28.3 GB/s per chip

• 905.6 GB/s per board
– 6.8× energy efficiency per bit

21
*Work done in collaboration with Jack Wadden

Evaluating Cryptographic Security

• D distinguishes random vs. pseudorandom
implies D solves a “hard” problem

• Assumption:
– It is difficult to distinguish a random walk on a

large automaton from a small one.

22

8/4/2017

12

Two worlds

23

1
5

4 3

2

1
5

4 3

2

1
5

4 3

2

1
5

4 3

2
× × ×

Two worlds

24

54 states 5 states

?

8/4/2017

13

History of Automata Learning
Year Author Result

1978 Angluin Learning from examples is NP-Complete

1987 Angluin L*, learns by selecting input, requires “reset” capability

1989 Rivest & Schapire Learning with homing sequences, removes “reset”

1993 Freund et al. Learning with random input

1994 Kearns & Valiant Learning acyclic automata is as hard as RSA

2015 Angluin Efficiently learn random DFAs from random strings

25

Automata-based Bloom Filters

• Application enabled by APPRNG
• Set membership data structure

– Insert(item): add item to data structure
– Contains(item): True if item is in inserted set

• Bloom filter:
– Insert: O(1)
– Contains: O(1)

26

False Positives

8/4/2017

14

Bloom filters

0 0 0 0 0 0 0 0 0

My Friends:
Ke
Jim
Gabe
Kevin
Mircea

𝐻1 𝐻3 𝐻2 𝐻4

1 1 1 1

27

Bloom filters

0 0 0 0 0 0 0 0 0

My Friends:
Ke
Jim
Gabe
Kevin
Mircea

𝐻1 𝐻3 𝐻2 𝐻4

1 1 1 1 1 1

28

8/4/2017

15

Bloom filters

1 1 0 1 1 0 1 1 0

Batman

𝐻1 𝐻3 𝐻2 𝐻4

I’m friends with Batman!
29

Bloom filters

1 1 0 1 1 0 1 1 0

Batman

𝐻1 𝐻3 𝐻2 𝐻4

I’m not friends with Batman…

30

8/4/2017

16

Automata Bloom filters

31

My Friends:
Ke
Jim
Gabe
Kevin
Mircea

Automata Bloom filters
My Friends:
Ke
Jim
Gabe
Kevin
Mircea

32

8/4/2017

17

Automata Bloom filters

33

My Friends:
Ke
Jim
Gabe
Kevin
Mircea

Automata Bloom filters
Batman

I’m not friends with Batman…

34

8/4/2017

18

Automata Bloom filters
Batman

I’m friends with Batman!

35

How Many Machines?

• For a Bloom filter of 𝑚 bits, 𝑛 inserted items
– 𝑚

𝑛
ln 2 hashes

– Must begin with (2 ln 2)𝑚 ≈ 1.386𝑚 Machines
– After removing all accepting automata

• (ln 2)𝑚 ≈ 0.693𝑚 machines remain

36

8/4/2017

19

Conclusions
• Life-extension techniques for Moore’s Law:

– Software: Compression aware algorithms
• Geometric and text data
• Lossy and Lossless compressions
• Compression scheme & Algorithm Codesign

– Hardware: Automata Processors
• Efficiently compute regular languages
• Pseudorandom number generator
• Bloom filters

• Longevity?

37

Future Directions
• Compression-aware data structures

– Revisit classical data structures w.r.t. compression
– E.g. Compression-aware KD-Trees

• Combine AP with compression-aware algorithms
– Algorithms for schemes with AP-based decompression
– Compressed pattern matching
– E.g. Pattern matching on Huffman-coded data

• Explore lossyness in compressions
– Leverage imprecise hardware
– Markov Chains vs. imprecision vs. lossyness
38

8/4/2017

20

Questions?
• J. Hott, N. Brunelle, J. Myers, J. Rassen and a. shelat. KD-Tree Algorithm for Propensity Score Matching With

Three or More Treatment Groups. Technical Report Series. Division of Pharmacoepidemiology And
Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School,
2012.

• N. Brunelle, G. Robins, a. shelat. Compression-Aware Algorithms for Massive Datasets. Data Compression

Conference (DCC), 2015.

• N. Brunelle, G. Robins, a. shelat. Algorithms for Compressed Inputs. DCC, 2013.

• T. Tracy, M. Stan, N. Brunelle, J. Wadden, K. Wang, K. Skadron, G. Robins. Nondeterministic Finite Automata in
Hardware - the Case of the Levenshtein Automaton. Workshop on Architectures and Systems for Big Data
(ASBD), in conjunction with ISCA, 2015.

• J. Wadden, N. Brunelle, K. Wang, M. El-Hadedy, G. Robins, M. Stan, K. Skadron. Generating efficient and high-
quality pseudo-random behavior on automata processors. ICCD, 2016.

• J. Wadden, V.Dang, N. Brunelle, T.Tracy II, D.Guo, E. Sadredini, K. Wang, C. Bo, G. Robins, M. Stan, K.Skadron .
ANMLZoo: A benchmark suite for exploring bottlenecks in automata processing engines and architectures.
IISWC, 2016.

• N. Brunelle, G. Robins, a. shelat, Algorithms for compressed inputs. In preparation for Journal of Discrete
Algorithms.

• N Brunelle, J. Wadden, T. Tracy, M. Wallace, G. Robins, K. Skadron. Pseudorandom Number Generation using
Parallel Automata. In preparation for Journal of Experimental Algorithmics.

• J. Wadden, N. Brunelle. System, Method, and Computer-Readable Medium for High Throughput Pseudorandom
Number Generation. Patent Application no. 15/091925, Filed April 2015

	Contents
	List of Tables
	List of Figures

	Super-Scalable Algorithms
	Compression-Aware Algorithms
	Automata Processing
	Lessons and Future Directions

	Compression-Aware Algorithms
	Introduction to Compression-Aware Computation
	Case study: Compressed Lists
	Arithmetic Sequences Compression
	Context Free Grammar Compression
	Lempel-Ziv '77 Compression
	Lempel-Ziv '78 Compression
	Lessons

	Problem Statement and Results
	Related Work
	Set-of-Lines Compression Scheme
	Compression Algorithm
	Nearest Neighbor Queries
	Range Queries
	Convex Hull
	Experimental Comparison

	Re-Pair for Graphs
	Topological Sort
	Bipartite Assignment

	Component-Based Compression
	Topological Sort
	Single Source Shortest Path
	Minimum Spanning Tree

	Boldi and Vigna: WebGraph Compression
	Bipartite Assignment

	Summary
	Lemmas and Theorems
	Algorithms Pseudocode
	Overview and Complexity-Theoretic Analysis of Automata Processing
	Finite State Automata
	Micron's Automata Processor
	Homogeneous Finite Automata
	Bit-parallel Algorithm
	Hardware Specifications

	Characterizing the Computational Power of the AP
	Alternating Finite Automata

	Micron's AP Accepts the Regular Languages
	Eliminating Counter Elements
	Eliminating Boolean Gates

	Comparison to Circuit Complexity
	Circuit Complexity
	Nick's Class
	Circuit Complexity of the AP

	Summary

	Pseudorandom Number Generation using Parallel Automata
	Motivation
	Pseudorandom Number Generation
	Previous Work on PRNGs
	Markov Chains as Automata

	AP-PRNG Algorithm
	Hardness Assumption
	Hardness Problem Statement
	Prior Art in Automata Learning

	Theoretical Performance analysis
	Stretch
	Complexity

	AP-PRNG in Practice
	Hardware Constraints
	Sensitivity Analyses
	AP-PRNG Performance Model

	Sensitivity to Weakly Random Input
	Entropy Extractors
	Min-Entropy
	Striding APPRNG
	Experimental Results

	Automata-based Bloom Filtering
	Bloom Filters
	Automata-based Bloom filters

	Summary

	Conclusions and Future Directions
	Compression-Aware Algorithms
	Contributions
	Future Directions

	Automata Computing
	Contributions
	Future Directions

	Automata-based Compression-Aware Algorithms

	Bibliography
	Compression-Aware Algorithms implementations
	Lossless Set of Lines Python Code
	Lossy Set of Lines Python Code
	Set-of-Lines Nearest Neighbor and Range Searches

	Poster DCC 2013
	Poster DCC 2015
	APPRNG Patent Application
	APPRNG Python Implementation
	Moore Machine Simulator
	APPRNG Creation
	Sample Usage

	AP Bloom Filter Python Implementation
	Finite Automata Simulator
	Bloom Filter Data Structure Implementation
	Experiment Implementation

	PhD Defense Presentation Video and Slides

