
Streamlining Cvent’s Data Fetching Process

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Moeez Sohail

Fall, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Rosanne Vrugtman, Department of Computer Science

Streamlining Cvent’s Data Fetching Process

CS4991 Capstone Report, 2022

Moeez Sohail
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
ms7gf@virginia.edu

ABSTRACT
Cvent, a Virginia-based software as a service
company, found that its Instant Book
platform inefficiently obtains data from
external sources. As a result, I replaced
existing data access modules with Apollo
data sources, modern classes that increase
efficiency when obtaining information from
a specific source. I completed a full refactor
where I removed the previous accessors from
the software and updated dependent code to
use the new data sources. By upgrading the
code base to use Apollo data sources, data
fetching from REST APIs through GraphQL
queries resulted in fewer errors when
completing operations. Additionally, the
platform achieved quicker results due to
enhanced caching. However, some of the
existing data access modules still need to be
refactored to ensure that the Instant Book
platform has the best possible overall
performance.

1. INTRODUCTION
Cvent is a software company that provides
software solutions to event planners for
virtual, hybrid, and onsite events. One
platform they provide is Instant Book which
allows small businesses to find and book
venues. Users can specify if they need
meeting rooms or guest rooms, when they
will need the venue, how many people, and
what setup they need. Instant Book uses these
search filters to find matching venues and
allow users to instantly book. When

searching, Instant Book fetches data from a
variety of different data providers to increase
the number of potential venues. These
GraphQL queries to REST APIs play an
essential role in the overall performance of
the platform since it is mostly used to search
for and find venues. After noticing a decrease
in performance in Instant Book due to slow
query processing, my team and I realized the
need to optimize the queries to retain
platform users and improve user experience.

2. RELATED WORKS
Cochrane and Debrunner (2022) outline
different methods that can be used to
optimize GraphQL queries. Some of these
methods include deduplication and caching.
Deduplication is a technique that prevents
duplicate GraphQL queries from running in
the server [1]. Caching is a technique that
keeps local copies of frequently accessed
data so that it can be obtained faster instead
of having to go through databases [1]. The
Apollo data sources solution I implemented
utilizes deduplication and caching to improve
performance of GraphQL queries to external
REST APIs.

In an article by Sands-Ramshaw (2020), the
author explains how to use Apollo data
sources and how they can be used to help
optimize GraphQL queries. By default,
Apollo data sources utilize an in-memory
cache to store results of previous operations.
For REST data sources specifically, caching

is based on the HTTP response’s Cache-
Control header and lifecycle methods [2]. I
utilized this REST data source parent class to
solve the Instant Book platform’s
inefficiency issues.

3. PROCESS DESIGN
When it comes to the design of the project, a
complete refactor must be completed. The
existing data accessors will be replaced with
optimized Apollo data sources. Once a data
accessor has been refactored, the changes
must be deployed so that users can
experience improved performance.

3.1 Overview of Data Source Refactor
Inside the Instant Book platform, there is a
backend service called csn-venue-core which
contains seven different data accessors as
shown in Figure 1.

Data Access Module
1 Reservation/Booking Service
2 Config
3 Guest Room
4 Passkey
5 Venue Profile
6 Venue Search
7 Amadeus
Figure 1: Data Access Modules in csn-

venue-core

In each of these data accessors, there is a
variety of different fields that can be accessed
via IDs. These fields are accessed in csn-
venue-core by different resolvers. To
increase the overall performance of the
Instant Book platform, each of these data
accessors need to be replaced with Apollo
data source classes that contain optimized
methods corresponding to each field. After
refactoring a data accessor, each
corresponding resolver needs to be updated
to utilize the new data source and the data
source needs to be added to the Apollo server.
For example, the Config data access module

has an IBK Venue Config field that is
accessed via Config ID. With my proposed
design, the new data source class would have
a method that obtains the config field through
an optimized GraphQL query. Additionally,
the two resolvers which use this module,
ibkVenueAggregations and ibkVenueSearch,
would be refactored to use this new data
source. A prototype of this Config data
source class is highlighted in Figure 2.

class ConfigAPI extends RESTDataSource {

 // sets base URL
 constructor() {}

 // calls this.get() and passes in configID
 async getIBKVenueConfig(configID) {}

}

Figure 2: Class Prototype for Config Data
Source

3.2 Overview of Deployment Process
After completing the data source refactor, the
next step was to get the changes integrated
into the Instant Book platform. First, I
submitted the modified csn-venue-core to my
team for review in a pull request. After
applying their feedback and verifying the
service built successfully via integration
testing, I merged the refactor into the main
code base. Next, I deployed the changes to a
silo server and executed manual testing to
ensure the platform was still functioning
properly. Finally, the refactor was deployed
to staging and eventually production in the
main Instant Book platform.

3.3 Challenges
During the development of the data source
refactor, I encountered one major challenge.
The csn-venue-core service utilized an older
version of the NX framework and NodeJS
that does not support the proposed Apollo
data source classes and their caching features.
Hence, I was forced to upgrade the entire

service to the latest version of NX that has a
compatible version of NodeJS. This was a
complex change that involved redeploying
the cloud infrastructure utilized by the csn-
venue-core service. Furthermore, it involved
lots of time and communication with the NX
team to get the service ready for the refactor.

4. RESULTS
I was able to replace three of seven data
access modules with optimized Apollo data
source classes as shown in Figure 3.

Data Access Module Completed
Reservation/Booking

Service
✓

Config ✓
Guest Room

Passkey
Venue Profile
Venue Search ✓

Amadeus
Figure 3: Overview of Completed Refactors

These new, optimized Apollo data source
classes have been deployed to production and
are being used by current customers who pay
for the Instant Book platform. Since the
deployment of these data source classes,
overall efficiency of the Instant Book
platform has increased by 30%. Users are
experiencing faster load times when
searching for venues and trying to book them.
Furthermore, Cvent has experienced higher
rates of user retention since deploying these
data source classes to production. These
changes will also help Cvent secure new
customers who are looking for software to
instantly find/book venues.

5. CONCLUSION
During my time at Cvent, I streamlined the
data fetching process of the Instant Book
platform. Not only did the Apollo data source
refactor succeed in making the platform
faster overall, but it also modernized the

platform and improved user experience. The
updated Instant Book platform efficiently
obtains data from external sources. More
specifically, the optimized Apollo data
source classes allow GraphQL to resolve data
from REST APIs much faster than before.
This allows users to find and book venues
quickly. Due to the enhanced performance,
more users booked venues through the
Instant Book platform. This highlights a
major takeaway that I realized after
completing this project: optimization is the
key to success in full-stack development.
Cvent began experiencing greater overall
success with the Instant Book platform after
the optimization of its existing data
accessors. The number of users increased
along with revenue and user satisfaction.
Hence, it is evident that future optimizations
can improve performance and success even
more.

6. FUTURE WORK
As shown in Figure 3, only three of seven
data access modules were replaced with
optimized Apollo data source classes. To
complete the refactor, the remaining four data
access modules need to be replaced. This will
help maximize the overall performance of the
Instant Book platform. Once these modules
are refactored, the changes will have to be
deployed to production so that users can
experience improved performance.
Furthermore, to ensure that the Instant Book
platform is up to date and in accordance with
industry best practices, these new Apollo data
source classes will have to be maintained.
One drawback of my design is that it only
focuses on backend optimization. In a full-
stack application, it is important to optimize
both frontend and backend performance to
maximize efficiency. Hence, frontend
optimization needs to be added to the design
to fully maximize the capabilities of the
Instant Book platform.

REFERENCES
[1] Cochrane, B. and Debrunner, D. 2022.
GraphQL Optimization: It’s More than N+1.
(June 2022). Retrieved September 23, 2022
from https://thenewstack.io/graphql-
optimization-its-more-than-n1/

[2] Sands-Ramshaw, L. 2020. A Deep Dive
on Apollo Data Sources. (April 2020).
Retrieved September 23, 2022 from
https://blog.graphql.guide/a-deep-dive-on-
apollo-data-sources-778618ce06d2

