
Monitoring Web Applications: An Automated Approach

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Sierra Shuman

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

Monitoring Web Applications: An Automated Approach

CS4991 Capstone Report, 2022

Sierra Shuman

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

sms6ss@virginia.edu

ABSTRACT

Solution Street, a software engineering firm

based in Herndon, Virginia, found that its

manual system of monitoring hosted web-

based applications for issues such as downtime

was inefficient, and they wanted to replace this

system with a more streamlined automated

process. To increase the efficiency of Solution

Street’s website monitoring, a team of interns

and I created an internally used web-based

application to periodically test the firm's

websites for downness and response time. We

met with our internal client to determine the

requirements of the application and show

progress, and we utilized an Agile process

during the software development cycle. We

designed the application from the ground up,

including the user interface and database

system. The application used a Hypertext

Transfer Protocol (HTTP) application

programming interface, hosted as a cloud

application, to make calls to websites and wait

for a response. The application, now in use at

Solution Street, was able to check websites

successfully and alert users in the case of any

problems. Future maintenance of the

application will require a number of

improvements, including increasing the

accessibility and clarity of the user interface,

allowing for more functionality and more

ways to test websites, as well as better analysis

on website statistics (for example, the

percentage of uptime).

1. INTRODUCTION

Imagine you are the leader of a development

team with the task of maintaining a web

application. It is late in the day on a Friday,

and you get an angry phone call from your

client. He tells you the website is down and has

been for hours, he has gotten numerous

complaints from dissatisfied customers, and he

is losing money. Now your team has to work

through the weekend to get the website back

up and running, and you are at risk of losing

the client entirely. How could this have been

avoided?

All software maintenance involves fixing

problems with the program, such as testing to

find failures, patching bugs, and adding new

updates. However, with web applications it is

important to also be sure the website is always

up and running, its response time is fast, and

users can access it easily. If issues affecting

these goals are detected early, it takes less time

and money to fix it, resulting in a more positive

developer-customer relationship.

Solution Street had been having issues with

this. With as many websites as they

maintained, they could not manually monitor

them all fast enough. One would go down, and

they would not know about it until annoyed

users complained and their client noticed the

issue. An automated monitoring process was

necessary for Solution Street so they could

stay informed on the status of their websites.

2. RELATED WORKS

Uptime is defined by Uptrends (2022) as the

ratio of time a website has spent available

("up") over a certain amount of time. The

industry standard is to have an uptime of

99.999% [1]. Additionally, even when a

website is up and running, there are other

performance considerations. According to a

consumer survey completed by Gehrke and

Turban (1999), the speed of a website is the

number one complaint made by e-commerce

website users, who are likely to leave the

website if it is not responding fast enough [2].

My team looked at available website

monitoring services for ideas on what to

include in our application. SolarWinds (2022)

touted an existing tool, Pingdom, a paid

service that offers page speed monitoring,

uptime monitoring, and real-time text and

email alerts as services [3]. Another tool,

Uptime Robot, (n.d.) offers SSL certificate

monitoring in addition to uptime monitoring

[4]. These existing services helped inform us

about features that would be useful to include

in our monitoring service for Solution Street.

3. PROCESS DESIGN

Solution Street, after realizing their manual

process for monitoring website performance

was inefficient, needed a new web application

to monitor the websites the company

maintains. They tasked my intern team to

design and build a new system for them to use

internally.

3.1 Gathering Requirements

Our team’s client, on behalf of the company,

met with us many times to discuss and refine

the requirements for our web application. First

and most importantly, the application needed

to automatically perform health checks on the

site periodically, with a time between checks

specified by the user. Health checks were

required to be able to test whether the website

is up, the response time of the website when

loading, and if the website is accurately

displaying the expected data. If the check

detects any problems, the bounds of which are

specified by the user, the application needed to

alert the user managing the site by email or

SMS message. Additionally, the client

requested that the application keep record of

previous health checks and have analytical

tools such as graphs so the user can monitor

the health of a website over time.

3.2 Application Stack and Development

For the framework and programming language

used for our application, my team chose to use

Ruby on Rails. This framework lends itself

well to beginner web developers, as it makes it

quicker to get a web app up and running

compared to other frameworks we were

considering, such as Django.

For the user-facing frontend of the app, my

team decided to use HTML, CSS, and the

JavaScript library JQuery as languages since

they are compatible with Rails and are widely

used for web apps. To begin development on

the app, we utilized these technologies to

create a mockup version of the application that

displayed the user interface without any data.

We met with our client many times to ensure

he approved of the visuals and workflow of the

application before we moved on to develop the

logic behind it.

To persist the data entered into the app, we

chose PostgreSQL as a relational database

management system. We designed the

database from scratch, including database

tables for HealthChecks, Tests, Responses,

and others. Once we had both the user

interface and database set up for the app, we

linked them together so user input would be

stored in the database. Before we got the

functionality of the app working, we tested this

storage by using “dummy” data.

After linking the frontend and backend, my

team began to work on the actual functionality

of the application. We used a library for Rails

called httparty in order to simplify sending

HTTP requests to websites. We used this

library to develop the way the application

performs tests during health checks, as the

library returns a response that is checked by

the application to be correct and expected. We

used a Rails email library to allow the

application to alert the user if the response of

the test is not as expected. All the responses

the application receives back from websites

are stored in the database, so this data is what

contributes to the analytics portion of the

application, where we had multiple ways to

display the data for the user.

4. RESULTS

After my team finished our internship, the

application was able to successfully monitor

websites automatically and alert users when

their websites were not performing well

enough. Some Solution Street employees who

wanted extra help monitoring their websites

started using the application by just before my

internship finished. I know that the application

has been developed even further and is still in

use.

Website outages that used to take hours to

detect manually are now detectable in minutes

by project managers, since most users

scheduled their health checks to run every five

to sixty minutes. This reliable method of

monitoring websites has benefitted the

relationships Solution Street has with its

customers, since problems in websites are

being found and fixed much more quickly than

before.

5. CONCLUSION

My internship experience helped me expand

my skills as a software developer while

solving a problem for a real company. The

program’s emphasis on an enforced

development cycle introduced me to the

development process in a real-world setting,

and I was able to explore all of the various

aspects of development such as user interface

design, working with the database, and

gathering requirements from the client. At the

end of this process, my team and I had

produced an efficient website monitoring tool

that has proven useful and effective through

Solution Street’s internal use.

6. FUTURE WORK

Although my team was able to create a fully

functioning application during our internship,

numerous improvements can be made to it in

the future. Future maintenance should include

updating the user interface to be clearer and

more accessible, since no one on my team had

any background in user interface design and it

was not a main focus during development.

More functionality could be added to the

application, including new and more

complicated types of tests to run and more

robust tools for analyzing website statistics.

We saw many types of website performance

tests in currently existing software that were

too complicated for us to implement before our

deadline, but these can be added to the

application later.

Additionally, the tools we included to track

and analyze the status of the website were

simple, such as an uptime percentage and a

chart that displayed this data over time. There

are more useful statistics that a user might like

to see about their websites, however, since my

team did not have enough time to conduct

research on what would be practical, these will

have to be implemented in the future.

REFERENCES

[1] Uptrends. 2022. What is website uptime?

Retrieved from https://www.uptrends.com/

what-is/website-uptime.

[2] Gehrke, D. and Turban, E. 1999.

Determinants of successful website design:

Importance and recommendations for

effectiveness. Proceedings of the 32nd Annual

Hawaii International Conference on Systems

Sciences. DOI: https://doi.org/10.1109/

HICSS.1999.772943.

[3] SolarWinds. 2022. Pingdom: Uptime,

Website, and Performance Monitoring.

Retrieved from https://www.solarwinds.com/

pingdom.

[4] UptimeRobot. n.d. UptimeRobot: Free

Website Monitoring Service. Retrieved from

https://uptimerobot.com/.

