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Abstract 
 

The process of alternative splicing enables one gene to produce multiple transcript 
isoforms that can produce proteins with distinct functions, expanding the diversity of the human 
proteome. The individual isoforms resulting from alternative splicing provide discrete levels of 
regulation that can modulate distinct cell phenotypes or cell fates. The evolution of RNA-
sequencing technology has contributed to illuminating the prevalence of alternative splicing 
events, revealing that 95% of human genes are subjected to this process. However, the 
availability of comprehensive methods that delineate both transcript isoforms and associated 
protein isoforms remain limited. As a result, the isoform atlas remains incomplete for many 
tissue types, hindering knowledge of the degree at which alternative splicing impacts the 
proteome. In my dissertation work, I utilized innovative approaches to more effectively profile 
isoforms and their associated protein isoforms. My research benefitted from advancements in 
long-read RNA-sequencing technology, increasing resolution of the human transcriptome. I 
highlight in my first chapter, the development of an approach capitalizing on such RNA-
sequencing advancements and integrating it with proteomics to create an isoform atlas. In my 
second chapter, I describe an application of this method to characterize the isoform landscape 
within endothelial cells, discovering novel protein isoforms for key markers of endothelial cell 
identity. I then review the roles of isoforms in directing cell fate decisions and their influence 
within gene regulatory networks. In my next chapter, I describe the knowledge of the potential 
roles of isoforms in development and how increases in resolution and throughput of long-read 
RNA-sequencing technologies were enabled by the introduction of a novel concatenation 
technique called MAS-Iso-Seq. These advances enabled the construction of an isoform atlas 
describing transcriptome dynamics during the process of early endothelial cell differentiation. 
Finally, I offer my perspectives on the state of the transcriptome analysis field and describe 
potential future directions for how such analysis can support precision medicine applications. 
Overall, my dissertation work supports enhanced profiling of isoform populations with specific 
focus on construction of an isoform atlas within endothelial cell types.  
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Chapter 1 Introduction  
1.1 Background on isoforms 

1.1.1 Defining isoforms in the human genome  

The central dogma underlies the foundation of biology in which genetic information 
exists in a unidirectional continuum where DNA stores genetic information that encode genes. 
From this, genetic information can be transferred via transcription, to produce RNA molecules. 
These RNA molecules are then translated into proteins that form the functional and active units 
of the cell which perform their associated function as destined by their underlying genetic code 
(Figure 1.1). The human genome is comprised of about 20,000 protein-coding genes.  

 

 

 

Figure 1.1 The central dogma of biology describes the flow of genetic information in living 
systems 
Genetic information flows through a biological system and is stored in DNA. The process of transcription 
allows the genetic information to be copied within the nucleus of the cell into messenger RNA (mRNA) 
molecules. Once RNA is transcribed, it exits the nucleus and binds to ribosomes that translate the RNA 
code into proteins, the functional units of the cell.  
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However, an added complexity exists in this simplistic portrayal of the transfer of genetic 
information, revising the idea that one gene translates to one protein. Genes can give rise to 
multiple RNA products through the process of alternative splicing (AS), discovered by Philip 
Sharp and colleagues in the 1970s (Berget, Moore, and Sharp 1977). In this study, they focused 
on modeling the process of transcription where it was observed, the messenger ribonucleic acid 
(mRNA) strands produced via transcription by the adenovirus when hybridized to the genome 
did not match the DNA template sequence to which it was derived. Rather, the mRNA 
represented novel combinations of sequences that seemed to be “spliced together” from dis-
contiguous parts of the DNA coding regions.  

It was later understood that the pre-mRNA transcripts produced by an organism via 
transcription could be subject to the removal of intronic (non-coding regions) and that the exons 
(coding) can be ligated together to form a mature mRNA transcript isoform. These exons could 
be differentially included during AS to create distinct transcript products unique from the 
original DNA sequence that they were derived. The process of splicing is quite complex, 
requiring tight regulation to permit selective inclusion or exclusion of exons within the final 
mRNA transcript. The splicing machinery (the spliceosome) is used to facilitate this process and 
is comprised of over 200 proteins (Cvitkovic and Jurica 2013). To achieve sensitive selection of 
the proper splice sites, a cascade of binding events between splice-factors (SFs) and the 
spliceosome occurs on the pre-mRNA, regulating the appropriate exons to include. These 
binding events cause recruitment of the spliceosome, which catalyzes the joining of the selected 
exons. Additional details on this process are outlined in Chapter 4.3.1.  

The process of AS is responsible for contributing to a major source of genetic variation 
(F. Shen et al. 2023). Rather than the human genome having simply the repertoire of functions 
achieved by 20,000 genes (Aebersold et al. 2018), it is predicted that there are at least 200,000 
alternative transcripts with more being discovered (Adam Frankish et al. 2021). Additionally, AS 
contributes a major source of gene regulation, enabling refinement of the exact combinations of 
exons necessary for a particular function. These distinct transcript isoforms can be translated into 
proteins that may go on to produce functionally distinct proteins, or proteoforms (L. M. Smith, 
Kelleher, and Consortium for Top Down, Proteomics 2013) (Figure 1.2).  

 



 
  

3 

 

Figure 1.2 The process of alternative splicing contributes to proteomic diversity 
DNA forms the template by which RNA is transcribed. During the process of transcription, the introns 
within the pre-mRNA are removed (spliced out) and the exons are ligated together into distinct 
arrangements forming a mature mRNA transcript. The mRNA generated from the alternative transcripts 
can be translated into a protein and can possess distinct functions depending on the unique combinations 
of sequence contained in the alternative protein product.  

It is predicted that over 90% of the human genome undergoes AS, supporting 
diversification of the proteome (E. T. Wang et al. 2008; Yansheng Liu et al. 2017). While AS 
enables proteomic diversity, aberrant splicing is associated with 15% of human diseases that 
present based on heredity (Ibeh et al. 2024; R. Wang et al. 2023), and one-third of disease-
causing mutations are attributed to aberrant RNA splicing patterns (Montes et al. 2019; Scotti 
and Swanson 2016).  

AS can also act in a tissue-specific manner, generating splicing patterns yielding 
distinguishable transcriptional signatures to specific tissue types (Melé et al. 2015; E. T. Wang et 
al. 2008). The process of AS also is associated with defining developmental stages. Specific 
groups of isoforms might be expressed highly during early stages of development, with 
decreased expression of those isoforms associated with later developmental stages (Mazin et al. 
2021). Important switches in these isoform expression ratios can govern cell differentiation 
processes and assimilation of tissue-specific properties (Fiszbein and Kornblihtt 2017). The 
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ability to detect and characterize AS-driven transcriptional signatures can help us understand the 
relationship between transcript isoforms and biological phenotypes.  

1.2 Approaches for detection of RNA transcript isoforms 

1.2.1 The origin of RNA-sequencing technologies  

Our understanding of the prevalence of isoforms produced via AS has been greatly 
influenced by short-read RNA sequencing technology (Z. Wang, Gerstein, and Snyder 2009).  

The evolution of RNA-sequencing has been defined by three major waves of 
technological advancements. The “first-generation sequencing” wave has been defined by the 
development of automated Sanger sequencing (Figure 1.3, “First-generation sequencing”) 
(Mardis 2013). This technology was a catalyst for the genomic era allowing for direct 
sequencing of the genome. In Sanger Sequencing, DNA is denatured into single strands, serving 
as the template for DNA synthesis. The DNA is synthesized via chain terminating polymerase 
chain reaction (PCR) that occurs with a mixture containing normal and chain terminating bases 
(Sanger, Nicklen, and Coulson 1977). As the DNA is synthesized, chain terminating bases are 
randomly incorporated into the growing DNA strand, creating different sizes of DNA fragments. 
The fragments are then size-separated via capillary electrophoresis. As fragments exit the 
capillary, a detector excites the fluorescent labels associated with the nucleotides on the DNA 
molecule. This information is compiled into a chromatogram with the peaks corresponding to the 
appropriate nucleotide, returning information about the order of the associated nucleotide at each 
position (Heather and Chain 2016; Sanger, Nicklen, and Coulson 1977).  

This technique of direct DNA sequencing spearheaded the efforts related to the Human 
Genome Project that began in 1990, taking 13 years to complete and costing $3 billion (Hood 
and Rowen 2013). Given the extended timeframe of the Human Genome Project, focus was 
directed to developing technologies that would expedite direct DNA sequencing (Hood and 
Rowen 2013). This led to the second wave of sequencing technology termed “Next-generation 
sequencing” (Figure 1.3, “Next-generation sequencing”) (Goodwin, McPherson, and McCombie 
2016). This era of next-generation sequencing was driven by technology created by the company 
Solexa, which would later be acquired by Illumina (Slatko, Gardner, and Ausubel 2018). In this 
method of sequencing, RNA is extracted from the sample of interest and converted into cDNA to 
make a library of sequences of the original RNA. The library sequences become fragmented to 
create shorter sequences amenable for sequencing. The resulting fragments receive adaptors on 
both ends of the fragments allowing for identification of individual samples and for the 
molecules to bind to the flow cell where the RNA-sequencing reaction will occur. The novelty of 
this next-generation sequencing approach was framed by the introduction of the bridge 
amplification technique, creating dense clusters of identical DNA molecules within a flow cell, 
increasing throughput from previous Sanger sequencing methods. Next-generation sequencing 
technologies utilize a sequencing-by-synthesis reaction using the bridge-amplified clusters as a 
template. As sequencing occurs, fluorescently labeled nucleotides are added to the growing DNA 
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strand with a camera capturing the fluorescence signal emitted by the individual nucleotide upon 
incorporation (Bentley et al. 2008). Next-generation sequencing technology enabled collection 
and identification of on average one million sequences per run rather than a few hundred 
tediously collected sequences with Sanger technology (Kukurba and Montgomery 2015).  

Bainbridge and colleagues reported one of the first methods for generating transcript 
sequences utilizing the bridge-amplification approach and Basic Local Alignment Search Tool 
(BLAST) (Altschul et al. 1990) search methods to align the collected sequences to their 
associated gene in the genome (Bainbridge et al. 2006). The term RNA-sequencing was 
introduced around 2008, describing the process of mapping and quantifying transcriptomes 
collected via RNA-sequencing approaches (Mortazavi et al. 2008).  

Eventually, this process of next-generation sequencing would become commercially 
available via technology including the Ion Torrent and other subsequent Illumina platforms such 
as NovaSeq and NextSeq (Figure 1.3, “Next-generation sequencing”) (Slatko, Gardner, and 
Ausubel 2018). The reads generated via these platforms spanned 50-500 base pairs (bp) 
fragments requiring transcript assembly or alignment to map these small fragments back onto the 
complex genome to determine the gene for which the sequence represents and its frequency 
(Amarasinghe et al. 2020). The depth of reads needed to adequately represent and quantify the 
genes expressed in a eukaryotic transcriptome can vary greatly, but the consensus remains that 
about 100 million reads are appropriate to map and accurately quantify a eukaryotic 
transcriptome (Conesa et al. 2016). This technology revolutionized RNA sequencing platforms 
enabling comprehensive transcriptome profiling, providing new avenues for downstream 
analysis and differential expression platforms. Next-generation sequencing was followed by 
third-generation long-read RNA-sequencing techniques offered by Oxford Nanopore (ONT) and 
Pacific Biosciences (PacBio) (Figure 1.3, “Third-generation sequencing”). PacBio long-read 
RNA-sequencing is a focus of this thesis. 
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Figure 1.3 Evolution of DNA sequencing platforms and technologies 
Illustrating the three-generations of RNA-sequencing technologies. First-generation sequencing, marked 
by Sanger sequencing technology, utilizes chain-termination methods to sequence DNA fragments. 
However, while this method was highly accurate, it suffered from low-throughput (Goodwin, McPherson, 
and McCombie 2016). The second generation of sequencing includes the advent of Illumina sequencing 
platforms, increasing throughput via technological advancements including parallel reactions and bridge-
amplification to accurately sequence entire libraries, producing short-reads around 150 bp in length. 
While highly accurate, short-reads introduced challenges in reconstructing full-length transcripts for 
complex regions of the genome. Third-generation RNA-sequencing platforms offered by PacBio and 
Oxford Nanopore addressed these limitations by producing full-length transcript reads capable of 
spanning 10kbp. Figure adapted from PacBio (PacBio 2020).  

1.2.2 Detecting and quantifying isoforms via RNA sequencing  

The starting material begins with RNA from the sample of interest that is converted into 
cDNA to represent the library of sequences for a sample. Given that cDNA molecules input into 
sequencing reactions undergo fragmentation, RNA-sequencing reads generally span the length of 
about 150 base pairs (bp) (Eisenstein 2023). These short transcripts represent small stretches of 
the transcriptome from the sample of interest that need to be aligned to a reference genome to 
determine the location for which that transcript belongs. Those reads are then quantified to 
determine the abundance of that transcript. Thus, this process provides a measurement for a 
gene’s expression level within a sample.  

1.2.3 Software for processing short-read RNA sequencing data  

Software has been created to process RNA-sequencing data. Specific tools have been 
created to address splice-aware alignment needs such as HISAT (D. Kim, Langmead, and 
Salzberg 2015), STAR (Dobin et al. 2013), TopHat (Trapnell, Pachter, and Salzberg 2009), and 
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Bowtie (Table 1.1). This category of splice aware aligners bioinformatically split collected reads 
aligning to different exons to identify junction-spanning reads that detect alternatively spliced 
transcripts.  

Another category of RNA-software includes transcript reconstruction as accomplished 
via tools such as CuffLinks (Trapnell et al. 2010) and StringTie (Pertea et al. 2015) which 
assemble aligned reads into transcript models. Additional software such as Kallisto (Bray et al. 
2016), Salmon (Patro et al. 2017), Sailfish (Patro, Mount, and Kingsford 2014), and Bambu 
(Chen et al. 2023) (with more focus on the benefits of this approach discussed in Chapter 5) 
have been developed to address alignment-free quantification providing computationally 
efficient estimates of transcript abundance given a reference genome, with each of the tools 
having their own unique focus (Table 1.1). Both transcript reconstruction and alignment free 
analysis can quantify alternative isoforms.  

With the knowledge that specific splicing patterns are associated with particular cell 
states, software has been developed to measure differential splicing between conditions. The tool 
Mixture of Isoforms (MISO) focuses on identifying the differentially expressed isoforms 
between two conditions (Katz et al. 2010). One of the most widely used tools for differential 
splice analysis is Multivariate Analysis of Transcript Splicing (rMATS) (Shen et al. 2014), 
which operates by calculating a percent spliced in (PSI) metric to identify a biological condition 
where a splicing pattern (e.g. exon inclusion) is more predominate in one state compared with its 
paired condition. rMATs characterizes the five major splicing patterns including exon skipping, 
alternative 3’ splice sites, alternative 5’ splice sites, and mutually exclusive exons. Another tool, 
DEXSeq (Anders and Huber 2010) employs a different approach to measure splicing changes by 
evaluating exons to determine if an exon is statistically more or less used within a transcript 
when compared across biological conditions. Additional software has also been created such as 
LeafCutter which characterizes splicing in a reference independent manner by detecting splice 
clusters related splice variants (Y. I. Li et al. 2018). The tool SUPPA (Alamancos et al. 2015), 
leverages already prepared transcript quantification results, calculating PSI values of individual 
splice events between conditions based on transcript expression data.  
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Table 1.1: Overview of software packages for processing RNA-sequencing data with the 
focus on profiling isoforms  

However, such splicing aware platforms are limited by the resolution of the RNA-
sequencing derived data.  

1.2.4 Limitations of short-read RNA sequencing data  

It has been observed that 95% of human genes encompass transcripts that are greater than 
300 bp, with the average length of a transcript being 1,712 bp (Li et al. 2019). With most short-
read RNA-sequencing platforms returning reads significantly shorter than the length of an 
average transcript (Kovaka et al. 2019), incomplete transcript read coverage compounds issues of 
resolving transcript sequences. Alternatively spliced transcripts often combine their sequences in 
distinct or novel ways, with distinct AS events occurring far apart beyond the length of short-
reads (Anvar et al. 2018). Therefore short-reads cannot effectively distinguish alternatively 
spliced transcripts alone (Au et al. 2013). With the results of RNA sequencing reflecting gene 
expression dynamics in a cell, inadequate measurements can fail to capture isoform complexity.  
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1.2.5 Addressing limitations of short-read RNA sequencing for the purposes of isoform 
detection with long-read RNA-sequencing technology 

To overcome the limitations of short-read RNA sequencing for the purposes of isoform 
discovery, breakthroughs in technology have led to a “third-generation of sequencing”, yielding 
long-read RNA sequencing technologies such as those from PacBio and Oxford Nanopore (refer 
to Figure 1.3, “Third-generation sequencing”). PacBio long-read sequencing technologies can 
produce reads spanning tens of kilobases (kbp) in length rather than short-read RNA-sequencing 
technologies, which have a limit of 50-200 bp, with full-length reads eliminating the need for 
complex assembly and reconstruction approaches (Sharon et al. 2013) (Figure 1.4).  

 

 

Figure 1.4 Short vs. long-read RNA sequencing approaches  
In short read RNA-sequencing (A.); short transcripts are collected then aligned to the genome, with 
aligned reads used to estimate transcript abundance and reconstruct the transcriptome. Unambiguous 
mapping of reads to isoforms can occur. In long-read RNA sequencing (B.); reads provide full-length 
resolution. Reads mapped to full-length transcripts can be counted to quantify isoforms for the respective 
sample.  

The first long-read sequencing technology was termed single-molecule real time (SMRT) 
sequencing released by PacBio in 2011 (Eid et al. 2009) (Figure 1.3, “Third-generation 
sequencing”). The starting material begins with RNA extracted from the sample of interest which 
is converted into cDNA that then is extended with SMRTbell adaptors attaching to the blunt ends 
of the cDNA molecules to form a circularized DNA sequence (Eid et al. 2009). The 
fragmentation step necessary in short-read RNA-sequencing is omitted to allow for direct 
sequencing of full-length cDNA molecules. The process of sequencing full-length transcripts 
from the 5’end to the poly-A site is termed Iso-Seq as developed by PacBio (Ardui et al. 2018). 
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Single circularized molecules enter the zero-mode waveguide (ZMW), the site of the 
sequencing reaction. A polymerase is added, orbiting around this circular DNA, synthesizing 
DNA during each revolution. As nucleotides are added in the growing complimentary strand, 
fluorescently labeled nucleotides are incorporated within the growing strand, a laser and camera 
capture the incorporation in real-time. The resulting read, constructed after several revolutions of 
the polymerase, is a HiFi read constructed by averaging the repeat cDNA sequences collected. 
The fully constructed reads are on average 15-20 kb in size (Hon et al. 2020), generally able to 
cover the average length of human transcripts. This process has been widely adopted and carried 
out through the production of the Sequel sequencing platform by PacBio.  

With PacBio sequencing resulting in full-length transcripts, the exact exon-to-exon 
boundaries are measured, allowing for unambiguous identification of a transcript sequence. 
Thus, given the full-length resolution of collected transcripts, this technology overcomes 
limitations of short-read RNA-sequencing, enabling discovery of novel exon-exon connections 
that may have been difficult to resolve. Additional details on PacBio long-read RNA-sequencing 
analysis platforms and technology advancements can be found in Chapter 5. 

1.3 Tracking the protein isoforms expressed in a biological system 

1.3.1 Mass-spectrometry based proteomics for detection of protein isoforms 

While RNA-sequencing technologies have provided greater resolution of the 
transcriptome, profiling the associated protein-level product is essential to assess the extent of 
functional diversity achieved via AS events (Reixachs-Solé and Eyras 2022). Collecting such 
information allows direct association of an isoform’s expression to an associated biological state 
and potential effect.  

To detect the proteins expressed in a sample, mass-spectrometry based proteomics 
remains the gold standard (Mann et al. 2013). In this application, proteins are extracted from a 
sample of interest and digested into peptides through enzymatic digests (e.g. trypsin), cleaving 
proteins at predictable amino acid (AA) locations. The resulting peptides are amenable for 
bottom-up mass-spectrometry applications, in which the peptides ultimately serve as the proxy to 
identify a protein product (Nesvizhskii and Aebersold 2005).  

After enzymatic digest, the resulting peptide mixture is very complex consisting of tens 
of thousands of peptides (Shishkova, Hebert, and Coon 2016). To simplify the complex mixture, 
high-performance liquid chromatography (HPLC) is interfaced to the mass-spectrometer to 
separate peptides by their hydrophobicity (chemical composition), simplifying the mixture that is 
then electro-sprayed into the MS instrument.  

The simplified mixture of peptides then enters the mass-analyzer in the form of ions 
using high voltage gradients to allow the peptides in the gas phase to be transmitted through the 
instrument towards an ion detector. In this thesis, I will be focusing on the mass-spectrometry 
approach using a ThermoFisher Orbitrap Eclipse system.  
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In an MS measurement, the ions are collected in the ion trap and are separated by their 
mass-to-charge ratios (m/z). The instrument performs an initial survey scan called MS1, in which 
all ions from a user-defined m/z range are measured. Operating under Data Dependent 
Acquisition (DDA) parameters, a selection of the most abundant ions from the MS1 are then 
subjected to a second scan (MS2) during which individual precursor ions are subjected to 
collisions with neutral gas causing the peptide to fragment into product ions. With amino acids 
discernable by their respective mass-to-charge ratios, such information supports identification of 
peptides. Over thousands of iterations of MS1 and subsequent MS2 scans, this process can 
characterize the amino acid sequences of the peptides within the sample using statistical search 
workflows such as target-decoy analysis (Elias and Gygi 2007). These peptides sequences are 
utilized to map back to a protein sequence and provide protein-level evidence for the existence of 
a protein within a sample (Figure 1.5).  

 

Figure 1.5 Overview of bottom-up mass-spectrometry-based proteomics  
The general mass-spectrometry workflow to discover proteins represented within a sample of interest.  

One can find a limitation of bottom-up MS analogous to short-read RNA-sequencing, in 
which the peptides resulting from MS analysis are far shorter than their source protein (often less 
than 25 AA), therefore unambiguously mapping them back to the original full-length protein 
sequence of interest introduces ambiguity. Since the proteins are cleaved at specific AAs, this 
process may not reveal peptides that are uniquely distinguishing for proteins, adding complexity 
in resolving closely related protein isoforms (Wang et al. 2018).  

A limitation of MS-based proteomics is the challenge of detecting peptides for isoform-
specific regions. For instances of mRNAs with several isoforms, the resulting protein sequences 
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for each isoform may have short stretches of AAs that are isoform-unique (or distinguishing), 
while the vast majority of AA sequence might be shared among different isoforms (see Chapter 
2 Figure 2.1 “Long-read Proteogenomics pipeline”) (Miller et al. 2022). There are additional 
challenges to confirming isoform-unique peptides, including peptide abundance, peptide 
ionization efficiency, and other "proteotypicity" characteristics of the AA region of interest 
(Mallick et al. 2007).  

Due to the infrequent detection rates of isoform-specific regions, some researchers have 
concluded that most human genes likely have a single protein isoform (Tress, Abascal, and 
Valencia 2017). To account for the possibility of true protein isoform expression, other 
approaches have settled at utilizing an alternative isoform’s longest sequence as the reference 
sequence to increase the chance of identifying peptide sequences that match to some region of 
that gene during the mass-spectrometry alignment process (Tress, Abascal, and Valencia 2017b). 
Other tools such as TRIFID and MANE utilize the large amounts of proteomics data available to 
attempt to classify the importance of splice isoforms (Pozo et al. 2021, 2022).  

Uncertainty remains in the field over the importance and the prevalence of factors driving 
protein isoform complexity within a tissue or sample. Tools such as APPRIS (Rodriguez et al. 
2018), recognize the landscapes of at least some isoforms that exist but limit the space by 
defining a “major isoform”, based on several metrics such as conserved domains and other 
evolutionarily conserved functional elements. However, this approach ignores the fact that 
tissues exhibit specific expression patterns, and genes can express two or more isoforms across 
distinct tissues (Baralle and Giudice 2017; Tapial et al. 2017).  

1.4 Importance of isoforms in regulating distinct biological processes  

1.4.1 Isoforms involved in cell differentiation processes  

While studies remain limited in experimentally detecting isoform-specific peptides to 
support protein-level evidence of protein isoforms, other studies have begun to illuminate the 
functional importance of isoforms in controlling cellular processes. For example, during 
differentiation it has been observed that the transcription factor OCT4, a master regulator of 
pluripotency, undergoes AS producing OCT4A (expressed during pluripotency) and OCT4B 
(expressed after the induction of differentiation) (Atlasi et al. 2008). Another example is the 
forkhead box transcription factor (FOXP1), where AS events cause an exon skipping event that 
alters residues in the DNA binding domain affecting the balance between pluripotency and 
differentiation pathways (Gabut et al. 2011).  

AS events do not just regulate the balance of differentiation and pluripotency but can 
govern cellular activities in mature tissue types. In the process of hematopoiesis, the 
establishment of new blood cells, the transcription factor Ikaros undergoes AS to produce 
isoforms restricting differentiation pathways of cells (Molnár and Georgopoulos 1994). 
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1.4.2 Isoforms involved in the pathogenesis of diseases  

As mentioned previously, AS events have also been linked to the progression of disease. 
For example, aberrant AS of the BCL-x gene alters the ratio of the healthy BCL-XL isoform that 
blocks apoptosis, preventing healthy cell turnover, and the apoptotic BCL-XS isoform. This 
switch in isoform ratios serves as an early indicator for some cancers (Dou et al. 2021; Aguzzoli 
Heberle et al. 2024).  

1.4.3 The importance of isoforms in endothelial cell identity 

Of specific focus in this thesis is the expression of isoforms in endothelial cells (ECs). 
ECs represent an important cell type within the body comprising the luminal lining of all blood 
vessels allowing for the cardiovascular system to carry out critical functions, such as regulating 
gas exchange, nutrient delivery, and maintenance of vascular tone (Cleaver and Melton 2003; 
Godo and Shimokawa 2017). ECs acquire specialized phenotypes to become arteries, capillaries, 
and veins to dynamically respond to and accomplish their diverse roles within the cardiovascular 
system (Marziano, Genet, and Hirschi 2021). Due to the importance of these ECs within the 
cardiovascular system, it is not surprising that dysfunctions arising within these cell types present 
a myriad of cardiovascular diseases (Sun et al. 2019). Thus, cataloging the factors contributing to 
the maintenance of EC function and plasticity could yield massive therapeutic potential towards 
identification of target genes to treat cardiovascular diseases. 

It has been observed that ECs can be modulated by the process of AS and express distinct 
isoforms. In ECs, the gene Nova2 undergoes AS that governs the organization and expansion of 
the vascular lumen, which is critical during the process of angiogenesis (Giampietro et al. 2015). 
One of the most drastic examples showing the functional activities among isoforms is 
demonstrated in the AS of the vascular endothelial growth factor A (VEGFA) in which there 
have been 13 isoforms identified with their splicing patterns falling into two distinct families; 
one family of isoforms promotes angiogenesis while the other hinders angiogenic processes. 
These families of VEGF-A isoforms must be in balance within ECs to control growth and 
expansion of vascular cells (Farrokh et al. 2015). 

Another example of isoforms modulating EC function is seen in the endothelial nitric 
oxide synthesis (eNOS) gene with three known splice variants. AS creates novel exons that cause 
early truncation of the protein, altering polyadenylation signals causing variations in interactions 
with target genes modulating eNOS production and expression (Farrokh et al. 2015). AS also 
occurs in the gene Endoglin (ENG), a transmembrane glycoprotein that expresses multiple 
isoforms with different affinities for target genes, modifying interactions between pathways 
(Farrokh et al. 2015). 

While these studies have begun to highlight the critical role of isoforms with distinct 
functions in ECs, the full repertoire of isoforms in ECs remains an unknown. Additionally, 
providing protein-level evidence and linking such transcript isoforms to protein function remains 
an area of active investigation. Thus, cataloging the isoform expression profiles underlying EC 
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identity represents an opportunity to begin to delineate the isoform factors contributing to 
function.  

1.5 Integrating short-read RNA sequencing with mass-spectrometry based 
proteomics to profile protein isoforms and determine their role in 
transcriptome complexity 
Widespread understanding of the repertoire of isoforms expressed in a system is still an 

area of active investigation. To better define the exact transcriptome and corresponding proteome 
content of a cell or tissue, “proteogenomics” approaches can be used. These approaches involve 
integration of transcriptomics information with matched MS-derived data to link transcripts to 
their translated protein isoform counterparts (Nesvizhskii 2014; Reixachs-Solé and Eyras 2022).  

Early proteogenomic approaches have relied on short-read RNA sequencing which 
presents limitations in the ability to confidently catalog isoforms due to the fact that isoform-
specific sequences may be lost during the transcript reconstruction process, obscuring regions 
that were pivotal for isoform characterization (Sheynkman et al. 2016; Alexey I. Nesvizhskii 
2014). A major technical challenge is obtaining sensitivity to accurately detect short stretches of 
isoform-distinguishing (referred to as “isoform-informative”) regions (Blakeley et al. 2010).  

Leveraging advancements in technology to empirically define transcriptomes and 
proteomes has been essential in cataloging and defining global, high-resolution, and tissue-
specific isoform expression.  

1.6 Purpose of this thesis  
Isoforms are involved in supporting a wide range of functions affecting a multitude of cell 

states both within diseased and healthy tissues. While we know that over 95% of genes undergo 
AS, the atlas of isoform expression within ECs remains limited. Insight into the EC isoform 
landscape can provide the ability to distinguish factors underlying EC heterogeneity activities 
within the cardiovascular system. As advancements in both next-generation sequencing and MS-
based proteomics evolve, clarity into the intricacies of how the human genome outputs a diverse 
landscape of transcriptional and proteomic products have become apparent. In this thesis I aim to 
address limitations in our capabilities to measure isoform expression within ECs, including 
during dynamic processes, such as differentiation. I address this gap in knowledge by integrating 
high-throughput long-read RNA-sequencing and MS-based proteomics.  

In Chapter 2, I will discuss the establishment of an integrated multi-omics approach 
utilizing long-read RNA sequencing and matched mass-spectrometry data to generate custom 
databases by which isoforms can be profiled in a sample-specific manner (Chapter 2). I apply 
this approach to illuminate the isoform landscape for a well-studied vascular cell type, human 
umbilical vein endothelial cells (HUVECs) (Chapter 3). I then review the known roles of 
isoforms in globally regulating early developmental processes and their contribution within 
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regulatory networks working to define cell fate (Chapter 4). Given the prevalence of isoforms in 
governing developmental processes, I decided to characterize isoform expression as they pertain 
to EC differentiation. I utilized advancements in long-read RNA sequencing technology in the 
form of an order of magnitude increase in throughput to carry out time course studies (Chapter 
5). I profiled isoform dynamics across the continuum of primordial EC differentiation, 
highlighting EC related genes with switches in their isoform expression (Chapter 6). And lastly, 
I summarize the ongoing efforts and growing knowledge enabled through transcriptomic 
technologies and provide perspectives on the future of isoform discovery and characterization in 
a precision medicine context (Chapter 7). 
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Chapter 2 Development of the long-read 
proteogenomics pipeline 

This chapter is adapted from: 

Miller, R.M., Jordan, B.T., Mehlferber, M.M. Jeffery E.D., Chatzipantsiou C., Kaur S., Millikin 
R.J., Dai Y., Tiberi S., Castaldi P.J., Shortreed M.R., Luckey C.J., Conesa A., Smith L.M., 
Deslattes Mays A., Sheynkman G.M. Enhanced protein isoform characterization through long-
read proteogenomics. Genome Biol 23, 69 (2022). https://doi.org/10.1186/s13059-022-02624-y  

License: https://creativecommons.org/licenses/by/4.0/  

2.1 Introduction 
This chapter summarizes the key findings surrounding the development of the long-read 

proteogenomic approach and rationale for development. As mentioned in Chapter 1, an 
approach that enables visualization of isoform expression in a sample-specific manner is 
essential to begin to define the isoforms comprising a tissue specific sample. Such information 
can support endeavors to understand how isoforms contribute to a phenotype, as proteins form 
the operational units of the cell. Capturing AS events comprising the transcriptome and the 
proteome derived from the human genome is important for many facets of biology including 
characterizing and targeting biologically relevant pathways to support biomedicine and 
developmental biology studies.  

This long-read proteogenomic approach described here, will become the underlying 
method utilized in the subsequent chapters to support a comprehensive elucidation of the isoform 
landscape within ECs. Here, and in the following chapters we will expand upon the usage of this 
approach for uncovering isoform expression in vascular-related cell types to demonstrate the 
utility of the approach and the knowledge available when utilizing a matched tissue-specific 
database for isoform characterization.  

2.1.1 Uncovering the isoform population comprising a sample  

Gaining an understanding of the isoforms comprising tissues in both healthy and diseased 
states provides vital knowledge of the distinguishing features allowing a tissue or cell-type to 
achieve its distinct functions. Multiple protein isoforms can arise from the same gene through the 
process of AS creating distinct arrangements of AA sequences. Protein isoforms resulting from 
this process can exhibit different stabilities and functional effects (Yang et al. 2016). It has been 
observed that protein isoforms are involved in a wide range of diseases. However, limited 
experimental knowledge exists to detect protein isoforms at high resolution, leaving ambiguity to 
the extent by which transcript isoforms contribute to the complexity of the proteome (Blencowe 
2017).  

https://doi.org/10.1186/s13059-022-02624-y
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For the process of defining the proteins comprising a sample, MS based proteomics has 
become the leading method for sensitive characterization of distinct protein populations of the 
proteome.  

To measure the proteome, proteins from a sample are digested into short peptide 
sequences comprised of AA subsets from the original intact protein. The complex mixture of 
peptides is resolved through liquid chromatography (LC-MS) methods, separating peptides by 
their hydrophobicity for analysis. Once separated, these peptides become ionized and enter the 
mass spectrometer, where they are sorted based on their mass-to-charge ratio (m/z). Next, 
peptide precursor ions are trapped in the analyzer region, fragmented during collisions with gas 
atoms, and are then analyzed by the detector. This is the MS2 scan, containing fragment ions that 
correspond to the amino acid sequence of the precursor ion. Peptide sequences are identified by 
searching experimental MS2 spectra and correlating them to the predicted fragment ions of 
known peptides in a protein database. These identified peptides are then mapped back to their 
potential parent protein based on the alignment of collected sequences. Often, peptides can be 
shared where their AA sequence matches back to multiple protein isoforms, in those scenarios, 
uncovering a unique protein isoform based on its sequence alone is limited.  

The issue of shared peptide sequences confounds the goal of isoform detection where 
isoforms often exhibit small and few uniquely distinguishing sequences. Often, these unique 
regions are not amenable for enzymatic digestion, preventing mass-spectrometry suitable 
peptides. Therefore, gaining protein level evidence for these unique isoforms at the protein level 
is extremely difficult. Adding to the complexity of defining protein-level isoform expression, is 
the fact that peptide identifications are dependent on the contents of the database used. These 
“reference” databases are often representative of the average tissue expression profiles and can 
be ignorant towards the variation attributed by tissue-specific phenomena, developmental states, 
or the differences between diseased and healthy tissues (Mudge and Harrow 2016). Therefore, 
the composition of the database used for MS analyses directly impacts peptide identifications 
returned. To optimize the peptide identifications in an experimental design, the protein sequences 
annotated in the database used for searching ideally should match exactly the sequences 
represented in a sample. Despite this, obtaining reference databases that are representative of a 
sample and associated contents is rare. Overall, this discordance can cause a multitude of issues, 
however for the specific goal of isoform detection in this thesis, the largest obstacle is the 
inability to identify a uniquely distinguishing peptide sequence, therefore limiting detection of 
protein isoforms or novel protein isoform events. Such features could be hugely descriptive in 
defining a cell state or condition.  

To address limitations of reference databases, transcript sequencing approaches such as 
RNA-sequencing can be used to determine expression profiles unique to a sample in order to 
create a “sample-specific” database that can be used for protein identifications. This database is 
created based off the transcripts identified via a sample-specific RNA-sequencing experiment 
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and may be more reflective of the isoform diversity of a sample than the generic reference 
database.  

Efforts to generate a sample-specific database have been achieved primarily through the 
usage of short-read RNA-sequencing platforms which relies on the short-sequences (as described 
in Chapter 1) to represent a complex genome hindering the ability to effectively delineate 
complex unique isoform patterns. Long-read RNA sequencing technologies such as those offered 
through PacBio can delineate full-length transcripts with high fidelity (Frankish et al. 2019). 
With the full-length transcript resolution, these platforms can uncover thousands of novel 
isoforms. This presents an opportunity to leverage these capabilities and obtain more complete 
transcript expression information, which is a prerequisite to equate protein expression and 
enhance detection of isoform-resolved proteomics. Here, we present the long-read 
proteogenomics pipeline that achieves enhanced characterization of the protein isoform diversity 
through the integration of long-read RNA-sequencing with matched MS-based proteomics 
performed on the same sample. This first-generation pipeline offers the ability to aid in 
characterizing human protein isoform diversity across various contexts. 

Here and in the following chapters, we will expand upon the development of this pipeline. 
The constructed open-source pipeline and associated modules in this chapter and within Chapter 
3 can be found at https://github.com/sheynkman-lab/Long-Read-Proteogenomics.  

2.2 Results  

2.2.1 Study Overview 

The goal of this pipeline is to provide a sample-specific database that more accurately 
represents the protein isoform populations expressed in a sample-specific manner and therefore 
enhance detection of these important isoform populations by leveraging integration of long-read 
RNA seq and matched MS-based proteomics. The process includes 1. Utilizing and analyzing 
the PacBio sequencing results to reveal high-quality full-length transcripts 2. Predicting open 
reading frames from the full-length transcript sequences 3. Utilizing a novel categorization 
approach, SQANTI Protein to characterize how the transcript sequences are translated to protein 
4. Creation of the sample-specific database 5. Profiling novel protein isoforms as determined 
through the approach. The overall pipeline and associated modules comprising the long-read 
proteogenomics approach can be found in (Figure 2.1).  

 

 

https://github.com/sheynkman-lab/Long-Read-Proteogenomics
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Figure 2.1 Long read proteogenomics approach for enhanced sample-specific protein 
isoform identification  
Schematic of the long-read proteogenomic pipeline for improved protein isoform characterization. The 
pipeline includes approaches for ORF calling from long read transcripts, an automated protein isoform 
classification (SQANTI Protein), novel protein isoform detection and a long-read informed protein 
inference algorithm. CPM – full-length counts per million. Figure made by Rachel Miller.  

2.2.2 Long-read RNA sequencing enables identification of isoform populations not 
represented in the GENCODE annotation alone  

Long-read sequencing was performed on the PacBio platform to characterize the 
landscape of the full-length transcript sequences within the Jurkat T-lymphocyte cell 
populations. Collected transcript sequences were compared to the GENCODE (A. Frankish et al. 
2019) reference database and classified utilizing SQANTI3 (Pardo-Palacios et al. 2023) to 
determine their associated novelty status. Of the transcripts identified, 43,865 transcripts were 
known (full-splice matches), 75,491 were determined to be novel (Figure 2.2A). Within that 
population, 43,075 transcripts were novel-in-catalog having novel combinations of known splice 
sites/junctions, and 37,416 transcripts were novel-not-in-catalog as they represented unannotated 
splice sites or exons (Figure 2.2A). On average the novel transcripts were in lower abundance 
than the known transcripts. Overall, the majority of genes expressed multiple isoforms (Figure 
2.2B). For a third of all genes with observed transcripts, the most abundant protein isoform did 
not correspond to the “reference” isoform (i.e., GENCODE APPRIS principal reference isoform) 
(Figure 2.2C). Overall, these results highlight the widespread isoform diversity in this sample, 
emphasizing the need for sensitive methods to define isoform expression.  
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Figure 2.2 Characterization of the predicted candidate protein isoform sequences derived 
from long-read RNA-sequencing collected data  
A. Transcript abundance distributions for the known (full-splice matches (FSM)) versus the novel 
categories of transcript isoform (novel in catalog (NIC), novel not in catalog (NNC)). B. Bar plot 
illustrating the distribution of the genes expressing multiple protein isoforms. C. Donut plot illustrating 
the proportion of genes where the most abundant transcript isoform in Jurkat cells does not align with the 
identified major isoform as defined by APPRIS. D. Correlation of long-read RNA sequencing derived 
transcript abundance and protein abundance. Panels made by Rachel Miller and Ben Jordan. 

2.2.3 Creation of a classification system for defining and characterizing protein-isoforms  

To build a custom sample-specific protein database, we needed a way to derive protein 
models from the transcripts for each gene. To systematically characterize transcripts into protein 
models, we crafted a protein classification system extending upon the SQANTI3 transcript 
classification system to create SQANTI Protein describing the relationship a predicted protein 
isoform has based on its sequence in reference to GENCODE. This approach relies on the 
assumption that RNA expression roughly equates to protein expression (Floor and Doudna 2016; 
Sterne-Weiler et al. 2013). This method enables determination of how a protein sequence model 
matches the reference and is therefore known (a protein full-splice match, pFSM) or how it may 
be novel, where elements for that protein contain elements that represent a novel combination (a 
protein novel in catalog, pNNC) or contain elements that have not been previously annotated (a 
protein novel not in catalog, pNIC). For a third of the genes with observed transcripts, the most 
abundant protein isoform for that gene did not match the most dominant isoform as annotated in 
the reference (Figure 2.2C). This signifies the need for sample sensitive database curation.  

A. B. 

C. 
D. 
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It has been previously understood that RNA abundance is at least moderately correlated 
with protein expression (Y. Liu, Beyer, and Aebersold 2016; D. Wang et al. 2019). We also 
observed a moderately strong correlation (R-squared = 0.65) when comparing transcript 
abundance and protein abundance, supporting the use of transcripts as a proxy to represent 
general protein abundance (Figure 2.2D).  

After this classification with SQANTI Protein, there were 45,068 protein isoforms 
(pFSM, pNIC, pNNC) representing 10,348 genes to be considered for the sample-specific 
database.  

2.2.4 Defining a protein database comprised of PacBio derived transcripts  

To generate a high-quality database for downstream proteomics analysis, the sample-
specific database was crafted in the following ways. Since the database is determined by the 
collected PacBio transcripts, we found that transcripts with extreme lengths (less than 1kb or 
longer than 4 kb), having low abundance (less than 3 CPM), or lacking 3’ polyadenylation sites 
were not adequately covered due to the technical limitations of the platform. Any genes that were 
matching these criteria were excluded and were not considered for the database generation 
(Figure 2.3A). We had relatively high confidence in the models for the genes that passed the 
filtering steps, and these formed the basis for the high-confidence gene set representing 6,653 
genes in the Jurkat cell model. For genes where we were missing an annotation because the high-
confidence set did not include that gene, we utilized the GENCODE entries, thus the database 
would be a hybrid database. This decision ensured that the database would remain 
comprehensive to maintain integrity for downstream proteomics analysis.  

2.2.5 The PacBio-derived sample specific database recovers peptides and genes found in 
the reference databases  

The engineered sample specific hybrid database recovered 99% of the peptide and 99% 
of the gene identifications that were found when using the GENCODE database alone (Figure 
2.3B). The overlap of the identified genes and peptides was comparable when using other well-
established databases (GENCODE vs UniProt) (Figure 2.3C).  
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Figure 2.3 Comparison of MS-based proteomics coverage when using different protein 
databases as the template for MS searching 
A. Schematic illustrating the criteria forming selection criteria for the basis of the PacBio-Hybrid 
database creation where the High-confidence genes are predicted from the transcripts from PacBio long-
read RNA-sequencing, where the PacBio-derived transcript read fell short of these parameters, the 
GENCODE entry is substituted instead therefore making it a hybrid database. B. Overlap of the gene and 
peptide identifications returned when using the PacBio-Hybrid database or the GENCODE annotation for 
MS-searching. C. Overlap of the genes and peptides returned when compared against the gene and 
peptide identifications returned when comparing the PacBio-Hybrid database and the UniProt reference 
database for MS-searching. Figure panels made by Rachel Miller and Ben T. Jordan  

2.2.6 Utilizing the PacBio-derived sample specific database enables identification of novel 
protein isoforms providing protein level evidence for these cases  

Due to the creation of the sample-specific hybrid database, the PacBio-Hybrid database 
was able to reveal peptide sequences that were not present in either GENCODE or UniProt 
databases and were therefore novel. In order to verify that these novel peptide sequences were of 
high quality, stringent criteria were used (generally following the principles outlined in Human 
Proteome Organization developed Mass Spectrometry Data Interpretation Guidelines (Deutsch et 
al. 2016)). Upon manual validation of individual novel peptides, we were confidently able to 
identify 14 peptides which corresponded to unique splicing events and therefore provided 
protein-level evidence for these splicing events.  

Notably, 6 of the 14 novel detected peptides mapped to a single isoform and therefore 
were unique peptides and provided direct protein-level evidence for the expression of the 
corresponding full-length novel protein isoform. This direct link is only achievable with the 
knowledge of the full-length transcripts and the creation of sample-specific sensitivity (Deslattes 

A. 

B. 
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Mays et al. 2019). An example of this is outlined in Figure 2.4 for the peptide ESD, which maps 
to the PacBio-derived transcript PB.1248.6 and uniquely maps to the region indicating a novel 
terminal exon. While the prevalence of uniquely mapping peptides is rare, these unique mapped 
peptides are pivotal components to determine protein-level evidence for protein isoforms.  

 

 

Figure 2.4 Discovery of novel peptides and full-length protein isoforms  
A. Novel peptide MIF confirms translation of an ATG start for RBMS1. B. Novel peptide GYA confirms 
translation of a novel retained intron for FXR1. C. Novel peptides ESD and EVR confirms the translation 
of a novel terminal exon for RABGAP1L. In this case, since the novel peptide maps exclusively to 
PB.1248.6, the corresponding full-length protein isoform is likely translated. Note that only ESD passed 
strict manual annotation, but EVR, which passed a 1% FDR in the global MS search, supports the 
expression of the same terminal exon. 

2.3 Discussion  
The overarching goal of this work was to provide a platform enabling the systematic 

characterization of protein isoform populations, which are the underpinnings for defining healthy 
and diseased tissue types. To our knowledge, this study represents the first long-read 
proteogenomics pipeline that integrates and capitalizes on the full-length resolution of full-length 
transcripts identified via PacBio sequencing in conjunction with matched MS data to accomplish 
identification of full-length protein isoforms. This work highlights the importance of engineering 
a sample specific database to enhance protein isoform detection in a sample-specific manner. As 
sequencing platforms continue to improve accuracy and detection of discrete isoform 

A. 
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populations, the resolution of sample-specific databases derived from transcript sequencing will 
continue to be more sensitive.  

Limitations to this study include minimal experimental approaches that have characterized 
the individual functions of protein isoforms. While we have established an approach to 
characterize their expression, further experimental approaches seek to characterize the function 
and effect of the use of different protein isoforms. Additionally, the space of isoform specific 
peptides is generally very small, hindering the ability for identification of unique protein 
isoforms. Deeper MS coverage including usage of multi-protease approaches may work to 
produce a greater population of isoform specific peptides. Additionally, targeted MS approaches 
such as Tomahto (Yu et al. 2020) or MaxQuant.Live (Wichmann et al. 2019) that work to target 
and elucidate specific peptide sequences of interest may support deeper elucidation of distinct 
and unique protein isoforms produced by alternative splicing.  

The flexibility of the pipeline extends to be adaptable towards a wide array of tissue types 
and samples to interrogate the landscape of isoforms in order to begin characterizing the role of 
protein isoforms.  

The work in this chapter describes the foundational approach for characterizing the 
landscape of protein isoforms more effectively. This approach will be utilized in the following 
chapter to elucidate the isoform landscape within vascular cell types.  
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Chapter 3 Application of the long-read 
proteogenomics pipeline to characterizing the 
landscape of human umbilical vein endothelial cells  

This chapter is adapted from:  

Mehlferber, M. M., Jeffery, E. D., Saquing, J., Jordan, B. T., Sheynkman, L., Murali, M., Genet 
G., Acharya B.R., Hirschi K.K., Sheynkman G.M. Characterization of protein isoform diversity 
in human umbilical vein endothelial cells via long-read proteogenomics. RNA Biology 2022, 
19(1), 1228–1243. https://doi.org/10.1080/15476286.2022.2141938 

License: http://creativecommons.org/licenses/by/4.0/  

List of supplementary files associated with this chapter:  

- Appendix A: Supplemental Figures (S1-S6) 
- Appendix B: Supplemental Tables (S1-S6) 

3.1 Introduction 
Endothelial cells are critical for the development and maintenance of the cardiovascular 

system. They form the lining of all blood vessels within the body allowing for functions such as 
oxygen nutrient delivery, blood pressure regulation, and immune control (Cleaver and Melton 
2003). Endothelial dysfunctions can contribute to a host of cardiovascular diseases, such as 
atherosclerosis, diabetes retinopathy, cancer, and stroke (Rajendran et al. 2013). Improved 
understanding of these and related diseases may be attained through molecular characterization 
of the proteome underlying endothelial cell identity and functionality (Richardson et al. 2010; 
Nordon et al. 2009). 

Endothelial cells can express functionally distinct protein isoforms through the process of 
alternative splicing (AS). For example, vascular endothelial growth factor A (VEGF-A) exists as 
two separate isoform families that differentially bind to the extracellular region on VEGFR1 or 
VEGFR2 leading to proliferation and survival of endothelial cells. One VEGF-A isoform family 
is pro-angiogenic and another is anti-angiogenic (Farrokh et al. 2015; Bowler and Oltean 2019). 
Together these isoforms work in balance to regulate new vessel formation. Globally, across the 
endothelial cell proteome, many gene functions are modulated by AS (Mthembu et al. 2017; Di 
Matteo et al. 2020; Hang et al. 2009; Giampietro et al. 2015). However, despite many high-
throughput sequencing datasets collected on endothelial cells (Khan et al. 2019), our knowledge 
of individual protein isoforms that are expressed is incomplete (Mudge and Harrow 2016). 

In order to characterize the proteome of endothelial cells, human umbilical vein endothelial 
cells (HUVECs) can serve as a relevant model system, since they are primary cells that can be 
expanded in culture to generate sufficient material for proteomic analysis (Richardson et al. 

https://doi.org/10.1080/15476286.2022.2141938
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2010; Caniuguir et al. 2016; Banarjee et al. 2018). A prior study performed by Madugundu and 
colleagues employed a proteogenomics approach, incorporating RNA-seq and mass-
spectrometry (MS)-based proteomics in order to characterize proteomic variation in HUVECs 
(Madugundu et al. 2019). By utilizing short-read RNA-seq data, the authors generated a set of 
custom databases of relevance to protein variants. Though the primary focus of the study was to 
characterize diverse sources of variation, such as single amino acid variants and phosphorylation, 
they generated a database of candidate splice-junction peptides derived from novel exon-to-exon 
connections (i.e., junctions), as well as a custom database based on inferred reconstruction of 
full-length transcripts. The study reported a few novel splice junction peptides, providing further 
insight into the role of splicing events in HUVECs. However, the proteogenomics approach used 
relied upon short-read RNA sequencing in the custom database generation, and short reads 
cannot provide unambiguous knowledge of the bona fide full-length isoform (i.e. complete chain 
of exon/junction connectivity) (Steijger et al. 2013), which is needed for accurate prediction and 
detection of full-length protein isoforms (Alexey I. Nesvizhskii 2014). 

For improved characterization of protein isoform expression in HUVECs, it would be ideal 
to obtain full-length transcript information to infer expressed isoforms at the protein level. 
Fortunately, advances in sequencing technology, such as through the PacBio or Oxford 
Nanopore long-read sequencing platforms, have allowed for detection of full-length transcript 
isoforms. Capitalizing on these technologies, we previously developed a proteogenomic 
approach that incorporates long-read RNA sequencing with MS analysis, which we term “long-
read proteogenomics” (Miller et al. 2022). Long-read RNA-seq returns information on full-
length transcript isoforms (Sharon et al. 2013), which is bioinformatically translated into full-
length protein isoform predictions (Miller et al. 2022; Deslattes Mays et al. 2019; Verbruggen et 
al. 2021; Anvar et al. 2018). These predicted protein isoforms serve as sample-specific, full-
length isoform models from which to infer protein expression from MS data (Alexey I. 
Nesvizhskii and Aebersold 2005). 

Here, we apply a long-read proteogenomic approach to characterize protein isoforms 
expressed in HUVECs. We demonstrate the application of PacBio long-read RNA-seq data 
towards characterization of the full-length transcriptome in HUVECs, which includes detection 
of unannotated transcript isoforms. A PacBio-derived HUVEC protein database is searched 
against a sample-matched MS dataset facilitating the characterization of HUVEC-specific 
isoforms. Finally, we report on the discovery of novel peptides, providing evidence for novel 
isoforms through a direct mapping of novel peptides to full-length protein isoforms in HUVECs. 
Overall, we present the first application of a long-read proteogenomics approach as applied to 
primary endothelial cells. These results nominate candidate isoforms for functional studies of 
how splicing modulates endothelial cell phenotype and function.  
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3.2 Results  

3.2.1 Long-read proteogenomics to characterize isoforms in endothelial cells  

In order to characterize the isoforms expressed in an endothelial cell population, we 
subjected HUVECs to “long-read proteogenomics” where samples undergo long-read RNA-
sequencing and mass-spectrometry analysis in parallel, which is followed by integrative analysis 
of the matched datasets (Miller et al. 2022). The full-length transcripts obtained from long-read 
RNA-seq are converted to a predicted protein database, serving as candidate isoforms for 
proteomic detection (Figure. 3.1). As a first step in our method, PacBio RNA sequencing is 
performed to characterize the HUVEC transcriptome. 

 

 

Figure 3.1 Characterization of isoform diversity in HUVECs through integration of long-
read RNA-seq with mass-spectrometry data (‘long read proteogenomics’) 
Transcripts are converted into a protein isoform database based on predicted open reading frames (ORFs) 
and the resulting database is searched against a sample-matched bottom-up mass spectrometry (MS) 
dataset. The peptide identifications can be used to support the expression of isoform candidates related to 
endothelial pathways. 

3.2.2 Long-read RNA-seq of HUVECs reveals widespread and novel isoform diversity  

Long-read RNA-seq data was collected on the PacBio sequencing platform using the 
“Iso-Seq” method (Gordon et al. 2015), generating 3,608,972 long-reads (i.e. circular consensus 
reads). These reads were processed by Iso-Seq3 (Gordon et al. 2015) to generate the set of 
distinct transcript isoforms and their respective abundances (Figure 3.2A) (Miller et al. 2022). 
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Figure 3.2 Characterization of transcript isoform diversity in HUVECs via long-read RNA-
Seq.  
(A) Schematic of the long-read RNA-seq analysis pipeline. (B) Transcripts and genes identified from 
PacBio long-read RNA-seq. The number of known (blue) and novel isoforms (green and orange) are 
shown. (C) Transcript abundance distribution for known (FSM) versus novel transcripts (NIC, NNC), 
with dashed lines representing median abundance values in full-length read counts per million (CPM) for 
each category (FSM = 2.4, NIC = 1.5, NIC = 1.3). (D) Distribution of the number of genes expressing 
multiple isoforms. (E) Fraction of genes in which the most abundantly expressed isoform (“major 
isoform”) differs from the reference isoform (APPRIS principal isoform). 

PacBio-derived transcripts were compared to reference transcripts (GENCODE v35) and 
their novelty status was defined using SQANTI3 (Figure 3.2B) (Frankish et al. 2019; UniProt, 
Consortium 2019; McGarvey et al. 2019). The UniProt database lacks a complete mapping of 
protein isoforms to the reference genome, and therefore we could not compare transcripts to 
UniProt directly, although future efforts may address this limitation (A. Frankish et al. 2019; 
UniProt, Consortium 2019; McGarvey et al. 2019). Based on a comparison to GENCODE 
models, we identified 53,863 transcripts from 10,426 protein coding genes, inclusive of all 
transcripts with a minimum abundance of one full-length read count per million (CPM). The 
average length of transcripts is 2,846 kilobase pairs (kbp) (Appendix A: Supplemental Figure 
S1A). Among the 53,863 transcripts isoforms identified in the HUVEC sample, 31,668 (59%) 
matched exactly to a transcript isoform in GENCODE, the match being based on splice junction 
connectivity (‘full splice matches’, ‘FSM’, Figure 3.2B). The remaining 22,195 (41%) isoforms 
were unannotated, or novel, in terms of the observed ordering of splice junctions along the length 
of the transcript (Figure 3.2B). Of the unannotated isoforms identified, 13,746 (62%) contained 
novel combinations of known splice junctions (‘novel in catalog’, ‘NIC’), and the remaining 
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8,449 (38%) isoforms contained entirely new exon splice boundaries, in which the acceptor or 
donor site is not represented in GENCODE (‘novel not in catalog’, ‘NNC’, Figure 3.2B). The 
overall abundance distribution for identified transcripts was wide ranging (see Appendix A: 
Supplemental Figures S1B). As expected, on average, the novel transcripts exhibit lower 
abundance than known transcripts (Figure 3.2C) (Huang et al. 2021; Leung et al. 2021). The 
FSM transcripts displayed a median abundance of 2.4 CPM, while the NIC and NNC transcripts 
displayed a median of 1.5 and 1.3 CPM, respectively. These data illustrate that novel transcripts 
tend to exhibit lower abundances than known transcripts. While these trends represent average 
expression differences, particular novel transcripts can exhibit high abundances within HUVECs. 

Using the full-length transcriptomics dataset, we next determined the number of protein-
coding genes that returned evidence for expression of multiple isoforms. We found that 82% 
(8,522 genes of the 10,426 genes represented) of detected genes expressed multiple transcript 
isoforms (Figure 3.2D). To focus on genes involved in endothelial pathways that may be co-
expressing multiple isoforms, we manually curated the literature to compile a list of genes that 
are involved in vascular pathways related to early endothelial differentiation and development or 
hemogenic specification (Appendix B: Supplemental Table S1) (Marcelo, Goldie, and Hirschi 
2013; Aragon and Hirschi 2022). We then determined which endothelial genes are expressing 
multiple isoforms in our HUVEC sample. To have increased confidence in isoform expression of 
such genes, we filtered for genes which contain two or more isoforms with each isoform having 
an abundance of at least three CPM. We identified multiple co-expressing isoforms for CD34, 
CELF1, FLT1, NRP1 and SRSF5 (Table 3.1, with annotations from GOrilla (Eden et al. 2009; 
Bowler and Oltean 2019; Lanahan et al. 2013). 

Table 3.1 Endothelial-relevant genes expressing multiple transcript isoforms in HUVECs 

Gene PacBio 
transcript 

GENCODE 
isoform match 

Counts per million 
(CPM) Function* 

CD34 

PB.1222.12 CD34-201 13.9 

Cell adhesion molecule 

PB.1222.24 novel 9.8 

PB.1222.26 CD34-202 226.7 

PB.1222.27 CD34-201 344.7 

PB.1222.29 novel 12.8 

PB.1222.31 CD34-203 27.8 

CELF1 

PB.7605.14 novel 9.4 

Pre-mRNA splicing PB.7605.21 novel 4.5 

PB.7605.23 novel 6.8 
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PB.7605.28 novel 58.3 

PB.7605.29 CELF1-201 13.2 

PB.7605.56 novel 5.3 

PB.7605.70 novel 27.1 

PB.7605.76 novel 47.0 

PB.7605.81 novel 10.1 

CDH5 

PB.10443.1 CDH5-209 216.5 

Regulation of cellular 
metabolic process 

PB.10443.11 CDH5-201 3.0 

PB.10443.15 novel 321.8 

PB.10443.18 novel 3.0 

PB.10443.2 CDH5-201 2402.9 

PB.10443.22 CDH5-201 44.0 

PB.10443.26 novel 9.0 

PB.10443.28 CDH5-201 13.5 

PB.10443.33 novel 4.5 

PB.10443.36 CDH5-201 20.7 

PB.10443.38 CDH5-201 28.2 

PB.10443.40 CDH5-208 5.6 

PB.10443.45 novel 27.1 

PB.10443.49 novel 9.8 

PB.10443.50 CDH5-209 6.4 

PB.10443.52 CDH5-201 10.5 

PB.10443.57 novel 3.0 

FLT1 

PB.8882.15 FLT1-204 42.9 

Vascular endothelial 
growth factor activated 

receptor activity 

PB.8882.22 FLT1-207 23.7 

PB.8882.27 FLT1-207 9.4 

PB.8882.30 FLT1-207 29.7 

PB.8882.9 FLT1-201 6.4 

NRP1 PB.6952.10 novel 32.0 
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PB.6952.12 novel 3.8 

Vascular endothelial 
growth factor binding 

PB.6952.35 novel 4.1 

PB.6952.54 novel 3.4 

PB.6952.58 novel 5.6 

PECAM1 

PB.11293.22 novel 29.3 

Epithelium 
development 

PB.11293.23 novel 38.7 

PB.11293.54 novel 6.0 

PB.11293.55 novel 5.3 

PB.11293.64 PECAM1-203 524.8 

PB.11293.68 novel 32.7 

PB.11293.7 novel 6.4 

PB.11293.70 novel 12.8 

PB.11293.71 novel 4.5 

PB.11293.80 novel 5.6 

PB.11293.81 novel 29.3 

PB.11293.83 novel 3.4 

PB.11293.9 novel 5.3 

PB.11293.95 novel 3.8 

PB.11293.98 novel 3.4 

SRSF5 

PB.9356.16 SRSF5-201 10.5 

Pre-mRNA splicing 
PB.9356.17 SRSF5-217 103.8 

PB.9356.21 SRSF5-217 68.4 

PB.9356.4 SRSF5-207 15.8 

*Function - GO annotations derived from GOrilla (Eden et al. 
2009) 

 
To explore the putative functional effects of candidate genes, we closely examined the 

potential impacts of changes to amino acid sequences among isoforms of NRP1, CELF1 and 
FLT1. We discovered novel isoforms for NRP1, also called neuropilin. NRP1 is involved in 
regulating angiogenesis and arteriogenesis pathways through its binding interactions with VEGF-
A (Marcelo, Goldie, and Hirschi 2013; Lanahan et al. 2013; Kofler and Simons 2015). Notably, 
we detected a novel isoform (PB.6952.10) at moderate abundance (40 CPM) containing an 
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alternative donor region. This region has been found within three amino acids of a glycosylation 
site that has been suggested as potentially affecting neuropilin activity (Bowler and Oltean 
2019). Additionally, we found NRP1 isoform expression of both soluble and membrane-bound 
forms, and it has been well known that the soluble form acts antagonistically to the full-length 
form for VEGF signaling (Bowler and Oltean 2019). Finally, we identified an isoform with a 
skipped exon in the C-terminal disordered region of the protein that resides just outside of the 
transmembrane domain. 

Next, we examined CELF1, which is an RNA binding protein that is a known regulator 
of splicing in cardiovascular biology (Chang et al. 2021). We observed eleven isoforms for this 
gene, seven being novel. The abundance for the major isoform of CELF1 is moderately high 
(124 CPM) (PB.7605.2), but the 2nd to 5th isoforms by ranked abundance are also expressed at 
moderate levels, with two of them novel (PB.7605.5, PB.7605.1). These novel CELF1 isoforms 
arise from distinct combinations of splicing events. Nearly all isoforms contain the complete set 
of three RNA recognition motif (RRM) domains, as described previously (Edwards et al. 2013); 
however, an alternative acceptor site residing between the 2nd and 3rd RRM domain may alter 
the inter-domain distance, which may alter binding behavior. Interestingly, the CELF1 isoforms 
contain either an extended or truncated N-terminus, which may have a direct effect on cellular 
localization based on previous reports of the extended N-terminal CELF1 isoform as being 
localized to the nucleus and the truncated N-terminal CELF1 isoform as being localized to the 
cytoplasm (Blech-Hermoni, Stillwagon, and Ladd 2013). Based on the long-read RNA-seq data, 
we estimate that in HUVECs, approximately 30% of CELF1 isoforms may be localized to the 
nucleus. 

Finally, we examined FLT1, a gene that encodes the vascular endothelial growth factor 
receptor 1 (VEGFR1) and mediates VEGF-A signaling allowing for the survival and proliferation 
of endothelial cells (Marcelo, Goldie, and Hirschi 2013). We identified ten protein isoforms for 
FLT1. Five of such isoforms were novel and were all extremely low in abundance (~1 CPM, 
only a few reads supporting their existence); therefore, we did not consider them further. Among 
all the isoforms, we observed two major families of FLT1 isoforms: 1) full-length isoforms that 
contain the transmembrane domain, and can promote endothelial proliferation and angiogenesis 
(Di Matteo et al. 2020), and 2) short, soluble isoforms that lack the transmembrane domain but 
still binds to VEGF-A, and thus loses its signal transduction function, and therefore is anti-
angiogenic (Bowler and Oltean 2019). 

Given the prevalence of genes that co-express multiple isoforms in HUVECs, we next 
asked to what extent the identity of the most highly expressed isoform, i.e. the major isoform, 
matched what is defined as the “reference isoform” for a gene. To define a gene’s “reference 
isoform,” we used the APPRIS database which reports a principal isoform to be most 
representative for a gene (Rodriguez et al. 2018). The APPRIS principal isoform concept is 
related to the concept of a UniProt “canonical” protein, though underlying assumptions differ 
(UniProt, Consortium 2019; Rodriguez et al. 2018). For the genes expressing multiple isoforms, 
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we classified the corresponding isoforms as either major, i.e. the most abundant isoform based 
on relative expression levels of all isoforms for a gene, or minor. There were 1,904 genes only 
expressing one isoform and therefore were excluded from analysis. We identified 8,522 
transcripts as the major isoform and 43,437 as minor isoforms. We found, as expected, that on 
average the major isoforms are more highly expressed than minor isoforms (Appendix A: 
Supplemental Figure S1C-D). Surprisingly, we found that for 25% (2,143 isoforms) of genes, the 
major isoforms in our HUVEC sample do not coincide with the APPRIS principal isoform 
(Figure 3.2E). Within this population of major isoforms, we found six genes involved in 
endothelial pathways, CELF1, FLT1, GATA2, NR2F2, NRP1, NRP2 and SRSF6 (see Appendix B 
Supplemental Table S2). These results illustrate that the major isoform expressed in a given 
sample may not always correspond to the generic “reference” isoform for a gene, which can be 
explained by the fact that isoforms exhibit cell or tissue-specific expression patterns (X. Wang et 
al. 2012). 

Next, we examined the presence of previously annotated splice factors (Van Nostrand et 
al. 2020) expressed within our HUVEC PacBio data. Overall, we detected long reads for 85 
annotated splice factors, with the 10 most abundant splice factors including HNRNPA2B1, 
HNRNPK, HNRNPC, DDX5, EWSR1, PCBP2, HNRNPA1, PCBP1, FUS, KHDRBS1 (Appendix 
B Table S3). Notably, SRSF5 was found to be the eleventh highest expressed splice factor at 408 
CPM, followed by SRSF2 as the twenty-second most abundant splice factor at 300 CPM, and 
lastly CELF1 as the 25th highest expressed at 263 CPMs. Interestingly, it has been observed that 
SRSF2 and SRSF5 are involved in splicing of VEGF-A pre-mRNA splicing (Farrokh et al. 
2015). 

We next asked how the novel isoforms differed from the APPRIS principal isoform in 
terms of length and affected amino acids. As expected, on average, novel isoforms are shorter 
than the reference form due to the loss of amino acid regions (Appendix A: Supplemental Figure 
S2C-D), with a median shortening of 159 amino acids and an average gain of 11 amino acids. 
The APPRIS principal isoform for a gene may not be the most representative isoform in 
HUVECs (see Figure 3.2E). Therefore, we also compared the lengths of the novel isoform 
against the ‘major’ isoform in HUVECs, i.e. the highest expressed isoform in the HUVEC data. 
Interestingly, we observed that ‘major’ isoforms do not tend to be the longest isoform of a gene, 
or at least this trend is not as stark as with APPRIS principal isoforms. This is likely because the 
APPRIS algorithm does tend to select the longest isoform of a gene as its ‘principal’ isoform 
(Rodriguez et al. 2018). 

Collectively, the HUVEC transcriptomic results demonstrate the use of long-read RNA-
seq to characterize sample-specific variation in isoform identity and abundance. 

3.2.3 Deriving a HUVEC sample-specific protein isoform database 

The vast transcriptome diversity of HUVECs likely translates in some part to a diversity 
of protein isoforms. To explore this question, we translated the HUVEC transcript isoform 
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sequences in silico into open-reading frames (ORFs) and compiled the predicted sequences into a 
HUVEC sample-specific protein isoform database for MS searching, as previously described 
(Appendix A: Supplemental Figure S3A) (Miller et al. 2022). To classify the relationships 
between the predicted proteins to that of annotated protein isoforms in GENCODE (A. Frankish 
et al. 2019), we used the classification scheme we previously developed, SQANTI Protein 
(Miller et al. 2022). SQANTI Protein automatically categorizes known and novel protein 
isoforms. The categories include “protein full-splice match” (pFSM), “protein novel in catalog” 
(pNIC), and “protein novel not in catalog” (pNNC) (Appendix A: Supplemental Figure S3B). We 
found that 16,296 predicted proteins exactly matched protein isoforms in the GENCODE 
reference (pFSMs), while 24,896 predicted protein isoforms were novel (Appendix A: 
Supplemental Figure S3C). Among those novel isoforms, 5,855 had novel combinations of 
known protein sequence elements such as the N-terminus, the C-terminus or the splicing pattern 
(pNICs). The other 19,041 protein isoforms had one or more entirely novel elements, such as a 
novel N-terminus or an unannotated exon (pNNC). 

Among the candidate protein isoforms, we first filtered out protein isoforms that may 
have resulted from transcripts from incomplete reads or poor-quality transcripts (see Protein 
database generation in section 3.4 Methods; 11,876 filtered out). The remaining 34,531 
predicted protein isoforms (comprising 16,296 pFSMs, 5,855 pNICs, and 12,389 pNNCs) from 
10,912 genes were compiled to create a preliminary HUVEC protein database (Figure 3.3A). 
These genes and their associated isoforms represent candidates for inclusion in the final 
database. For the final database, we decided to only include isoforms from genes for which we 
could ensure a complete sampling of the transcripts, and thus the predicted proteins. Therefore, 
we created a hybrid database in which we defined a core set of genes for which the transcript 
detection, and thus predicted proteins, is likely complete based on the long-read data collected. 
The core set of genes included in the hybrid database have a minimum abundance of three CPM 
and a moderate transcript length (1–4 kbp average GENCODE-annotated transcript length). For 
all other genes, the hybrid database is populated with all GENCODE protein isoform entries. The 
hybrid structure of the final database ensures comprehensiveness of the protein models, with the 
protein completeness assumption of target-decoy searching satisfied so as to avoid issues of an 
off-target peptide match (Elias and Gygi 2007). 
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Figure 3.3 Proteomic analysis of HUVECs using a customized long-read-derived protein 
isoform database  
A. Steps involved in the generation of a HUVEC sample-specific database. B. Parallel long-read RNA-
seq and MS proteomic data collection from HUVECs. B. Correlation between estimated RNA and protein 
expression levels. PSM, peptide spectral match; CPM, full-length read counts per million. D. Comparison 
of proteomic search results between the reference and HUVEC sample-specific database. 

As described, the final HUVEC sample-specific database for proteomic analysis includes 
a mixture of custom PacBio-derived proteins as well as annotated GENCODE proteins (Table 
3.2). A detailed listing of steps to convert the transcriptome data to a protein database may be 
found in Appendix B: Supplemental Table S4. 

PacBio-derived HUVEC sample-specific database   

Source Genes Protein entries 

GENCODE  12,699 44,836 

PacBio-derived (HUVECs) 7,283 26,675 

Contaminants (MetaMorpheus) - 264 

Total 19,982 71,511 

Table 3.2 Composition of the HUVEC sample-specific database.  
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3.2.4 Collection of a deep-coverage MS dataset for HUVECs.  

To characterize protein isoforms in HUVECs, we generated and analyzed a deep-
coverage MS dataset collected on the same HUVEC pellets that were used for long-read RNA 
sequencing (Figure 3.3B). HUVECs were lysed and processed using the filter aided sample 
preparation (FASP) protocol, in which protein was digested with trypsin to generate a mixture of 
tryptic peptides. The tryptic digest was subjected to off-line fractionation on an analytical scale 
high-pH reverse-phase liquid chromatography instrument, and 20 fractions were collected 
(Appendix A: Supplemental Figure S4). These fractions were then analyzed via liquid 
chromatography LC-MS/MS (Orbitrap Eclipse) in data-dependent acquisition (DDA) mode, 
generating 3,772,771 MS2 fragmentation spectra. Acquired spectra were searched using the 
MetaMorpheus (Solntsev et al. 2018) software to obtain peptide and protein identifications 
passing a 1% false-discovery-rate (FDR). Parameters for the MS search can be found in 
Appendix B: Supplemental Table S5. 

3.2.5 The HUVEC-specific protein database returns near-complete coverage of detectable 
peptides from a reference search 

To use PacBio-derived transcripts as the basis for deriving a protein database for MS 
searching, a key assumption is that the detection of a transcript from PacBio data reflects the 
discovery of a protein product for that isoform, showing that there is a moderate correlation 
between transcript and protein abundance. In the past, moderate RNA-protein correlations have 
been observed using short-read RNA-seq or microarray datasets to quantify transcript abundance 
(D. Wang et al. 2019; Vogel and Marcotte 2012). Here, we examined the correlation of the 
transcript abundance that is computed from the long-read RNA-seq data (sum total transcript 
abundance for a gene, in units of CPM) to the estimated protein abundance (sum total peptide 
counts passing a 1% FDR, in units of number of peptide spectral matches or PSMs). We 
observed a moderate correlation with a coefficient of determination (R-square) of 0.66 (Figure 
3.3C), providing support that the PacBio-based transcript abundances should serve as a 
reasonable proxy for protein presence, although that may not always be the case for a particular 
gene. 

To assess the general protein sequence content of the HUVEC sample-specific database 
(not resolved to individual isoforms), we assessed recovery of annotated peptides and genes. The 
MS data was searched against the GENCODE and UniProt databases to define the set of 
annotated peptides and genes detectable in the HUVEC sample, and then the same data was 
searched against the HUVEC sample-specific database. We found that the HUVEC sample-
specific database search returned 98% of the peptide and 99% of the gene identifications that 
were identified when using the GENCODE database for searching (Figure 3.3D). The extent of 
overlap between peptides and genes was similar for the UniProt search results (Appendix A: 
Supplemental Figure S5). Overall, these results indicate that the HUVEC sample-specific 
database, which was derived de novo from long reads, can capture a majority of the detectable 
gene and peptide populations likely expressed in HUVECs. Confirmation of the large overlap of 
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peptide populations identified by the sample-specific database is ultimately useful since it is the 
underlying populations of peptides identified that are the basis for protein isoform 
characterization. 

3.2.6 Characterization of HUVEC protein isoforms based on available peptide evidence 

We have shown that nearly all reference annotated peptides that are detectable are 
represented in the HUVEC sample-specific database. With the goal of characterizing isoform 
expression in endothelial cells, we next evaluated the evidence for the presence of isoforms, in 
terms of the patterns of their underlying peptide identifications. Due to the complexities and 
potential ambiguities of protein inference (Alexey I. Nesvizhskii and Aebersold 2005), we 
elected to examine the peptide evidence directly. 

We defined three scenarios of isoform detection precision, based on how the set of 
identified peptides map to isoforms of a gene. The first scenario is when all isoforms of a gene 
contain only shared peptides, in which the presence of any isoform cannot be definitively 
confirmed (Figure 3.4A, “Protein isoforms correspond to shared peptides”). Among the 10,444 
genes with any peptide evidence, we found that 5,993 genes (57%) were cases in which no 
isoform could be specifically confirmed as expressed because all mapped peptides were shared 
among two or more isoforms. Of these genes evidenced only by shared peptides, 3,436 are genes 
containing PacBio-derived protein isoforms in the hybrid database. 
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Figure 3.4 Protein isoforms analyzed based on peptides identified via mass-spectrometry 
A. Scenarios of differing protein isoform detection precision when evidenced by peptides identified from 
MS. Only genes with multiple protein isoforms in the database are included, and 1,904 genes that express 
only one isoform were excluded. B. A protein isoform confirmed with a uniquely mapping peptide LNE, 
for SRSF5, a splice factor that regulates transcripts of VEGF-A. C. Two protein isoforms of TPM2 are 
confirmed with uniquely mapping peptides TID, AIS, and YKA. In B and C PacBio-derived protein 
isoform label follows this format: <Gene>|<PB accession>|<SQANTI Protein class>|<CPM>. 

In all other scenarios, there is evidence for the existence of a specific protein isoform 
because one or more isoforms contain a uniquely mapping peptide. Indeed, the second scenario 
is when an isoform-specific peptide is identified (Figure 3.4A, “One protein isoform confirmed 
with a unique peptide”). We found 4,451 (42%) genes for which we have unambiguously 
identified at least one isoform for a gene. For 1,748 (17%) of genes, only a single isoform was 
listed in the database, thus, all peptides would be expected to be uniquely mapped. For the 
remaining 2,703 (26%) of genes with multiple isoforms annotated, 2,597 (25%) of genes have a 
single isoform with unique peptide evidence. For example, we found a single isoform supported 
by a uniquely mapping peptide (Sequence: LNEGVVEFASYGDLK) for Serine and Arginine 
Rich Splicing Factor 5 (SRSF5), which is involved in the splicing of VEGF-A pre-mRNA 
(Figure 3.4B). Notably, this peptide is shared among two isoforms in the GENCODE database, 
meaning that the reference database search results cannot pinpoint the source isoform for this 
peptide. 
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Of particular interest is a third scenario in which we found evidence for co-expression of 
two or more isoforms, each supported by a uniquely mapping peptide. In such cases, a natural 
question is the nature of the functional relationship between the two isoforms and their biological 
role in endothelial cells. We found 106 (1%) genes with evidence of two or more co-expressing 
isoforms (Figure 3.4A, “Multiple protein isoforms confirmed with unique peptides”). For 
example, we found two isoforms for Tropomyosin 2 (TPM2), each supported by a unique peptide 
(Figure 3.4C). Notably, there were nine genes in which three or more isoforms each had unique 
peptide evidence. Interestingly, there was an unusually large number of seven protein isoforms 
detected from the gene Plectin (PLEC), which exhibits a series of alternative N-termini due to 
differential 5’ transcription (Appendix A: Supplemental Figure S6). A list of all protein isoforms 
supported by peptide evidence can be found in Appendix B: Supplemental Table S6.  

Collectively, these results highlight that while some isoforms may be readily identified 
from peptide evidence alone, overall, the standard bottom-up MS approach alone does not reach 
the coverage needed to directly characterize all isoforms predicted from the transcriptome, as 
observed previously (Blakeley et al. 2010; Lau et al. 2019). Obtaining peptides suitable to 
resolve protein isoform identification is limited by the peptides detected during bottom-up MS. 
Part of the challenge is that when comparing isoforms of the same gene, only small stretches of 
amino acids are unique to an isoform, while the vast majority of amino acid sequence is shared 
(Miller et al. 2022; Blakeley et al. 2010). Therefore, sampling peptides from the small space of 
unique amino acids that can directly confirm the presence of a protein isoform is limited by the 
space of “informative” (i.e. unique-to-an-isoform) peptides (Xiaojing Wang et al. 2018). 

3.2.7 Increased support for protein isoform presence in HUVECs through incorporation 
of underlying transcript evidence from long-read RNA-seq 

Despite the use of a sample-specific protein isoform database for MS analysis, a large 
population of predicted isoforms are only supported by shared peptides (Figure 3.4A). Because 
shared peptides map ambiguously to multiple isoforms, they cannot directly confirm expression 
of any particular isoform in the sample. However, the evidence for a particular protein isoform 
could be strengthened by considering the underlying transcript abundance levels provided by the 
sample-matched long-read RNA-seq data, a concept we previously introduced, as well as 
described for short-read RNA-seq data (Miller et al. 2022; Carlyle et al. 2018; Salovska et al. 
2020). We reasoned that transcript abundance could be used as an additional source of evidence 
in the isoform discovery process, given there is a moderate correlation between RNA and protein 
abundance (Figure 3.3C). 

To explore how long-read RNA-seq data can nominate particular protein isoforms, we 
first focused on scenarios for which all predicted isoforms for a gene are supported only by 
shared peptide support. Among such ambiguous protein isoform sets, we reasoned there is higher 
likelihood for expression of protein isoforms for which the associated transcript abundance is 
moderately high (e.g., 25 CPM or higher, Figure 3.5A). As described in the previous section, 
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5,993 genes had only shared peptide evidence. Among those genes, 3,436 (57%) contained 
PacBio-derived isoforms, which have associated transcript abundance information. 

 

 

Figure 3.5 Nomination of protein isoforms when incorporating long-read data.  
A. Scenarios of protein isoform candidates nominated for expression when transcript abundance from the 
long-read RNA-seq information is incorporated. B. CDH5 gene, involved in endothelial pathways 
demonstrating a scenario of ambiguous protein isoforms identified only by shared peptides, but 
incorporation of long-read RNA-seq data suggests the expression of three moderately expressed protein 
isoforms (PB.10443.1, PB.10443.9 and PB.10443.71). C. PECAM1 gene, involved in endothelial 
pathways demonstrating an example where one protein isoform is identified via a unique peptide 
(PB.1123.25), SDS, while the remaining protein isoforms are supported by shared peptides. Abundance 
information from long-read RNA-seq suggest expression of (PB.11293.1 and PB.11293.7). In B and C, 
PacBio-derived protein isoform label follows this format: <Gene>|<PB accession>|<SQANTI Protein 
class>|<CPM>. For B and C, low abundance protein isoforms (<25 CPM) are not shown. 

We found that 2,280 (38%) out of the 3,436 genes contain at least one isoform with a 
moderately high transcript abundance of 25 CPM or higher (Figure 3.5A, “Ambiguous protein 
isoform nominated with long-read information”). Interestingly, we found 247 (4%) genes in 
which there is potential co-expression of at least two protein isoforms in HUVECs. For example, 
we found that CDH5, otherwise known as VE-Cadherin (Sauteur et al. 2014), potentially 
expresses multiple protein isoforms. One isoform is highly expressed (PB.10443.1; 2,787 CPM) 
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*Not all transcripts shown



 
  

41 

and matches a protein isoform in GENCODE and UniProt (GENCODE isoform CDH5-201, 
UniProt accession P33151). However, another isoform is robustly expressed (PB.10443.9, 326 
CPM) and, interestingly, is a novel isoform because of alternative usage of a novel splice 
acceptor (Figure 3.5B). This splicing event leads to an isoform of CDH5 that gains nine amino 
acids in the extracellular domain, the region of the protein responsible for mediating interactions 
with other cadherins to regulate endothelial adhesion properties. This example highlights that 
while CDH5 isoforms were only supported by shared peptides, the inclusion of the transcript 
abundance information as provided by the matched long-read data provides higher weights on 
the existence of at least two isoforms.  

To further explore how long-read RNA-seq data can provide additional evidence for 
expression of protein isoforms, we focused on scenarios in which there is clear evidence for one 
isoform based on unique peptide evidence, but another isoform of the same gene is supported by 
only shared peptides (Figure 3.5A, “Additional protein isoforms nominated based on long-read 
information”). We found 180 genes (3%) for which the existence of the alternative protein 
isoform is supported by long-read evidence (i.e., 25 CPM or higher transcript abundance). 
Interestingly, we found several protein isoforms of a key endothelial cell surface marker, the 
platelet endothelial cell adhesion molecule, PECAM1 (also known as CD31 (Privratsky and 
Newman 2014). We found a unique peptide identified for PECAM1 (PB.11293.25, Sequence: 
SDSGTYICTAEMLSQPR), but the remainder of peptides identified for PECAM1 are shared 
across multiple PECAM1 isoforms, leaving open uncertainty about the expression of other 
PECAM1 isoforms beyond PB.11293.25. From the transcript abundance information, we 
nominated three additional isoforms accompanied by strong long-read support for PECAM1 (PB 
11293.22, 75 CPM: PB 11293.1, 79 CPM; PB 11293.7, 543 CPM; Figure 3. 5C). PECAM1 
produces a transmembrane protein with an extracellular domain, transmembrane-spanning 
domain, and a C-terminal cytoplasmic domain that likely interacts with intracellular signaling 
proteins in endothelial cells (Privratsky and Newman 2014; Cao et al. 2002; Dusserre et al. 
2004). Strikingly, the differential exon usage observed for these three isoforms are located 
exclusively in the C-terminal domain, suggesting potential changes to interactions with 
intracellular signaling molecules. Further details on candidates identified via long-read 
abundance information can be found in Appendix B: Supplemental Table S6. 

Collectively, these case studies highlight how inclusion of transcript abundance 
information could nominate protein isoforms which were unable to be directly confirmed as 
expressed based solely on MS peptide evidence. Note that this approach does not provide any 
information on the absence of protein isoforms with lower transcript abundance, but, rather, is 
supplying additional lines of evidence to nominate protein isoforms that may have higher 
likelihood of expression and represent candidates for functional study. Such isoforms are 
attractive candidates for further MS validation and subsequent functional analysis.  
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3.2.8 Novel protein isoform discovery enabled through the HUVEC sample-specific 
database 

We have shown that utilization of a HUVEC sample-specific protein database, with the 
accompanying transcript abundance values, can lead to inference of novel protein isoform 
presence. A more direct way to confirm the presence of a novel protein isoform is by detecting a 
uniquely mapping novel peptide. However, the knowledge of the full-length protein isoforms 
expressed within a sample is not always possible when using short-read RNA-seq, which can 
return information on individual splice junctions but may not accurately define full-length 
transcripts (Frankish et al. 2019; UniProt, Consortium 2019). Long-read RNA-seq provides the 
full-length transcript and, by extension, the full-length protein isoform prediction; therefore, a 
novel peptide that directly maps to the full-length protein isoform lends support for its existence. 

Using the sample-specific database, we discovered novel peptides for HUVECs, 
indicating that the reference proteome does not comprehensively capture all protein isoform 
diversity in a sample. We found 108 novel peptide sequences passing a global 1% FDR, for 
which they are not represented within the GENCODE or UniProt databases (Figure 3.6A, 
Appendix B: Supplemental Table S7) (A. Frankish et al. 2019; UniProt, Consortium 2019). 
Increased false positive rates for novel peptides have been observed previously (Castellana and 
Bafna 2010); therefore, we employed strict validation criteria for the novel peptides. Of the 108 
novel peptides identified, 39 peptides had a Q-value score below 0.001, corresponding to a 0.1% 
global FDR. Upon manual annotation of these 39 peptides, we noted 30 peptides with especially 
strong spectral support, such as full ladders of b- and y- ion fragmentation peaks in the MS2 raw 
spectra. These novel peptides supported expression of novel alternative transcription or splicing 
events, such as retained intronic regions or novel exons (Figure 3.6B, Appendix B: Supplemental 
Table S7). 
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Figure 3.6 Novel protein isoforms discovered via unique peptides.  
A. Novel protein isoform confirmed by identified novel peptides. B. Table of the frequency of events 
supported confirmation of a novel peptide. C. Novel peptide found for a protein isoform of endothelial 
gene EGFL7. Novel peptide and corresponding protein isoform shown in red, which supports a frameshift 
event for the protein isoform PB.6795.3. 

Of the identified novel isoforms, we closely examined splicing events for genes previously 
implicated in endothelial pathways. Such novel isoforms could represent attractive candidate 
isoforms for further functional characterization. We found a novel peptide (Sequence: 
GTACLQTVHSVCPR) confirming the expression of a splice-induced frame-shifted region of 
EGFL7 (Protein entry: PB.6795.3), a gene reported through the literature to be involved in 
vasculogenic pathways as well as hemogenic specification (Figure 3.6C) (Nichol and Stuhlmann 
2012; Schmidt et al. 2009). We also discovered two novel peptides for PECAM1. This is an 
important finding since PECAM1 is a marker for endothelial cells and plays a role in the 
regulation of junctional integrity of endothelial cells and vascular barrier (Privratsky and 
Newman 2014). Specifically, we discovered a novel peptide (Sequence: 
ELELLTSKDPPPSASQSAGITDLGKK, maps to protein entry PB.11293.45) corresponding to a 
novel exon, as well as a second novel peptide (Sequence: SDSGTYICTAEMLSQPR, mapping to 
protein entry PB.11293.25) that confirms the usage of a novel alternative donor site (Appendix B: 
Supplemental Table S6). 

3.3 Discussion  
Endothelial cells that line all blood vessels are critical for the cardiovascular system and 

their behaviors can be modulated by protein isoforms, though the extent of this mechanism is not 
known. To characterize isoform expression in endothelial cells, we performed long-read RNA 
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sequencing (PacBio) of HUVECs to characterize transcript isoforms, and predicted proteins via 
their translation in silico to protein isoform sequences. To assess evidence for protein isoform 
expression, we performed MS analysis on the same HUVEC sample and used the HUVEC 
sample-specific database for MS searching. This general approach has been described and 
termed “long-read proteogenomics” to enhance protein isoform characterization (Miller et al. 
2022). 

Our long-read proteogenomics workflow applied to HUVECs, led to the identification of 
53,863 distinct transcript isoforms, of which 22,195 were novel. We also found 8,522 genes co-
expressing multiple isoforms. Surprisingly, a quarter of the time, the most abundant isoform in 
HUVECs did not match the predicted “reference isoform” (GENCODE APPRIS principal 
isoform). This includes genes annotated in endothelial pathways including CD34 and NRP1. 
From the transcript sequences, we derived a hybrid protein isoform database that contains the 
highest confidence protein isoform predictions from PacBio-derived transcript isoform 
sequences, which was completed with GENCODE reference and contaminant sequences. The 
long-read-derived database captures almost all peptides and proteins detected from searches 
against the GENCODE protein database.  

We identified 10,444 genes with peptide evidence. Based on the peptides identified 
through MS searching, we found support for expression of 4,451 genes based on uniquely 
mapping peptides. For the remaining 5,993 genes only evidenced by shared peptides, we 
incorporated the underlying transcript abundance information as an additional layer of evidence, 
nominating an additional 2,280 genes as potentially expressed. This group includes a novel 
isoform for endothelial gene CDH5 (VE-Cadherin). This case exemplifies how a combination of 
the full-length transcript and proteomics data can lead to the discovery of novel protein isoforms 
that cannot be identified by MS data alone. We showed that the HUVEC sample-specific 
database enabled the discovery of 108 novel protein isoforms based on novel peptide 
identifications. Among the novel protein isoforms identified is the endothelial gene PECAM1. 

Our proteogenomic method shows promise for isoform discovery in endothelial cells, but 
opportunities exist for further improvements. First, limitations in the MS coverage mean that 
proteins with low abundance or poorly ionizable peptides remain undetected. Future work could 
involve targeted proteomics, such as parallel reaction monitoring or advanced targeted 
acquisition strategies, for sensitive detection of alternative protein isoforms (Gallien, Kim, and 
Domon 2015; Erickson et al. 2017; Wichmann et al., n.d.). Second, the isoforms discovered in 
this study represent the results of a single cell line in a static culture condition. For the purpose of 
identifying isoforms that are dynamically regulated, multiple conditions should be examined. 
Third, the sample-specific database relies on the assumption that sequenced transcripts reflect 
protein sequences. Thus, we assume that transcripts are both fully sampled as well as moderately 
correlated to protein expression, which may not be the case for all genes. And finally, our 
pipeline so far is focused on proteins arising from genes already annotated as protein-coding. An 
interesting future direction would be to include long non-coding RNAs or other ostensibly non-
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coding transcripts, which may reveal coding potential through the proteogenomics approach 
(Mattick 2018).  

Overall, we have shown the application of a long-read proteogenomics platform towards 
characterization of known and novel isoforms in primary endothelial cells. This approach can 
uncover isoform populations that could modulate endothelial cell phenotype and function. The 
systematic discovery of isoforms produces information to guide selection of candidate isoforms 
for functional studies. This approach can be extended to various endothelial cell contexts 
including both healthy and diseased states to chart isoforms changing across development or 
during onset of cardiovascular disease. 

3.4 Methods 

3.4.1 HUVEC Cell culture  

Primary Human Umbilical Vein Endothelial Cells (HUVECs) were purchased from 
Lonza (C2519AS) and used up to passage five. Early passage HUVECs were cultured in 
EGM™2-Bulletkit™ medium with growth supplements CC-3156 & CC-4176 purchased from 
Lonza.  

At 80% confluency, HUVECs were trypsinized, washed twice with phosphate-buffered 
saline (PBS), pelleted, and frozen at −80°C. 

3.4.2 Long-read RNA-seq (PacBio Iso-Seq) library preparation and sequencing run 

PacBio (Iso-Seq) data were collected on the extracted total RNA collected from the 
HUVEC cell pellet. HUVEC RNA was analyzed on an Agilent Bioanalyzer to confirm 
concentration and RNA integrity for downstream analysis. We observed a RIN value of 10. From 
this RNA, cDNA was synthesized using the NEB Single Cell/Low Input cDNA Synthesis and 
Amplification Module (New England Biolabs). 

Approximately 200 ng of HUVEC cDNA was converted into a SMRTbell library for 
usage with the Iso-Seq Express Kit SMRTbell Express Template prep kit 2.0 (Pacific 
Biosciences). Through this protocol, bead-based size selection occurs in order to remove low 
mass cDNA (less than 500 kb). Each SMRTbell library was sequenced on the SMRT cell on 
Sequel II system. A 2-hour extension and 3-hour movie collection time was used for data 
collection. The ‘ccs’ command from the PacBio SMRTLink suite (SMRTLink version 9) was 
used to convert raw reads into Circular Consensus (CCS) reads. 

3.4.3 Mass spectrometry-based proteomics sample preparation 

Harvested HUVECs, approximately 5 million cells each, were pelleted and frozen at 
−80°C. The sample pellet was lysed according to the Filter Aided Sample Preparation (FASP) 
protocol (Wiśniewski 2018). Lysis buffer used in the FASP was changed to 6% SDS, 150 mM 
DTT, 75 mM Tris-HCl. To the 30 µL pellet of 5 million cells, an aliquot of 60 µL of lysis buffer 
was added and probe-sonicated to lyse the cells and shear the nucleotide material. Sonication 
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continued for 1–5 minutes until the sample was clear and no longer viscous. The lysate was then 
incubated at 95°C for 5 minutes. Protein quantitation was estimated by BCA assay to be 
approximately 500–600 µg. Quadruplicate aliquots of 20 µL each were subjected to FASP and 
trypsin digest (1 µg per aliquot) and allowed to incubate at 37°C overnight. Nanodrop analysis 
estimated peptide content at 22 µg per trypsin digest (total of 88 µg). 

3.4.4 Offline HPLC Fractionation 

The tryptic digests were pooled and dried down to a volume of 40 µL and subjected to 
offline high pH RP-HPLC fractionation using an Agilent 1200 HPLC. Sample was loaded onto a 
ThermoFisher Scientific Hypersil Gold C18 column (150 mm × 3 mm × 3 µm C18), equilibrated 
with 95% solvent A (20 mM NH4 formate, pH 10) and 5% solvent B (70% acetonitrile/30% 
solvent A), and eluted at a flow rate of 400 µL/min, with fractions collected every 1 minute from 
RT 38–63 min. The following gradient was used: 5% B from 0 to 30 min, 5–65% B from 30 to 
63 min, 65–100% B from 64 to 69 min, 100–5% B from 69 to 70 min, 5% B from 70 to 73 min. 
Samples containing peptide, according to UV 214 nm corresponding to the HUVEC pellet were 
digested with trypsin. Collected fractions 4–20 were selected for LC-MS/MS analysis. 

3.4.5 NanoLC-MS/MS analysis 

The resulting peptides were dried to 12 µL and analyzed by nanoLC-MS/MS using a 
Dionex Ultimate 3000 (Thermo Fisher Scientific, Bremen, Germany) coupled to an Orbitrap 
Eclipse Tribrid mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). Three 
microliters of each peptide-containing sample were loaded onto an Acclaim PepMap 100 trap 
column (300 µm × 5 mm × 5 µm C18) and gradient-eluted from an Acclaim PepMap 100 
analytical column (75 µm × 25 cm, 3 µm C18) equilibrated in 96% solvent A (0.1% formic acid 
in water) and 4% solvent B (80% acetonitrile in 0.1% formic acid). The peptides were eluted at 
300 nL/min using the following gradient: 4% B from 0 to 5 min, 4–28% B from 5 to 210 min, 
28–40% B from 210 to 240 min, 40–95% B from 240 to 250 min and 95% B from 250 to 260 
min. 

The Orbitrap Eclipse was operated in positive ion mode with 1.9 kV at the spray source, 
RF lens at 30% and data dependent MS/MS acquisition with XCalibur version 4.3.73.11. 
Positive ion Full MS scans were acquired in the Orbitrap from 375 to 1500 m/z with 120,000 
resolution. Data dependent selection of precursor ions was performed in Cycle Time mode, with 
3 seconds in between Master Scans, using an intensity threshold of 2 × 104 ion counts and 
applying dynamic exclusion (n = 1 scans within 30 seconds for an exclusion duration of 60 
seconds and ± 10 ppm mass tolerance). Monoisotopic peak determination was applied and 
charge states 2–6 were included for HCD scans (quadrupole isolation mode; 1.6 m/z isolation 
window). The resulting fragments were detected in the Orbitrap at 15,000 resolution with 
standard AGC target. 
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3.4.6 Long-read RNA-seq analysis, MS searching, and proteogenomic analysis conducted 
using a Nextflow pipeline  

The long-read proteogenomics pipeline was implemented with Nextflow, a workflow 
framework which allows for scalable and reproducible computational analysis. The Nextflow 
pipeline developed and described previously was used to process HUVEC collected PacBio data, 
translate the resulting transcripts into the protein database (see Deriving a HUVEC sample-
specific protein isoform database below), and perform proteomics database searches (Miller et al. 
2022). Further information on the workflow including individual modules of the Nextflow 
pipeline can be found at https://github.com/sheynkman-lab/Long-Read-Proteogenomics (Miller 
et al. 2022). The GitHub revision (i.e., commit) used in this analysis was 
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/releases/tag/v1.0.0. All 
transcriptomic and proteogenomic docker images that are used within the analysis can be found 
at https://hub.docker.com/ under the repository gsheynkmanlab. The analysis was performed on 
the University of Virginia High Performance Computing system. 

3.4.7 Long-read RNA-seq (PacBio Iso-Seq) data analysis 

The CCS reads obtained from PacBio sequencing were analyzed using the Iso-Seq 
workflow described previously (Miller et al. 2022). Primer removal was done on the 5’ and 3’ 
end. The 5’ primer consists of an NEB adapter sequence (Sequence: 
GCAATGAAGTCGCAGGGTTGGG). The 3’ primer consists of the Clontech SMARTer cDNA 
universal primer (Sequence: GTACTCTGCGTTGATACCACTGCTT). Following processing of 
the raw reads using the Iso-Seq workflow, we derived the number of full-length reads 
corresponding to each distinct transcript. Full-length read counts per million (CPM) were 
computed by dividing the number of full-length reads aligning to a transcript isoform by the total 
number of reads and then multiplying this by a factor of 1,000,000. 

3.4.8 Transcript isoform classification and filtering 

SQANTI is a computational tool used for comparison, classification, and quality 
assessment of the full-length isoform sequences collected from the long-read platform 
(Tardaguila et al. 2017). We used SQANTI3 (version 1.3) to annotate the polished transcript 
isoforms obtained from the Iso-Seq analysis using SQANTI default parameters. Note: the default 
parameters included options to use the genome-derived sequences for the isoform output. As a 
result, transcriptional variations inclusive of alternative N-termini, alternative splicing, etc. but 
not genetic variations are captured in the HUVEC sample-specific database. 

3.4.9 Generation of a full-length protein isoform database from the long-read RNA-seq 
data 

After deriving a high confidence set of full-length transcript isoforms within the 
Nextflow pipeline, we select the most biologically plausible ORF for each of the Iso-Seq 
transcripts. Calling the best ORF consists of two steps: finding candidate ORFs (50 nucleotides 
or longer) using CPAT (L. Wang et al. 2013), and selecting the most plausible ORF based on 

https://github.com/sheynkman-lab/Long-Read-Proteogenomics
https://github.com/sheynkman-lab/Long-Read-Proteogenomics/releases/tag/v1.0.0
https://hub.docker.com/
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coding potential, relation of AUG start site to GENCODE reference start sites, and number of 
AUGs skipped to reach the ORF start site. 

To generate the PacBio-derived protein database (HUVEC sample-specific database) 
employed for downstream MS searching, transcripts were grouped that produced ORFs of the 
same sequence. The total transcript abundance for each grouping was calculated as the sum of all 
CPM values for the transcripts comprising that group. Candidate isoforms are further classified 
based on the protein sequence in relation to the reference protein isoforms, as defined in the 
“sqanti_protein” and “protein_classification” modules in the Nextflow pipeline. Classifications 
are based on a variant of nomenclature used within the SQANTI3 software, which we call 
“SQANTI Protein”. 

Additional filtering was performed in order to retain only isoforms that were likely 
protein coding. Isoforms that did not have a stop codon within the predicted ORF, and could 
represent truncations, were removed. Isoforms that were either fully mapped to a protein-coding 
GENCODE reference isoform (“protein full splice match”, pFSM) were retained, as well as 
isoforms that contained a novel combination of known splice sites or junctions (“protein novel in 
catalog”, pNIC). Of the isoforms that contain novel splice sites (“protein novel not in catalog”, 
pNNC), suspected nonsense mediated decay (NMD) isoforms were removed. Here, NMD 
suspects were defined as isoforms that contained more than two junctions after the stop codon. 
Isoforms that were not classified as pFSM, pNIC, or pNNC were removed from consideration. 
Protein classification details can be found within the “protein_classification” module of the 
pipeline, while the filtering criteria can be found within the “protein_filter” module of the 
Nextflow pipeline. 

A hybrid database was developed that incorporated isoforms from PacBio if the gene 
resided in the high confidence region, defined as where the aggregated transcriptomic gene 
abundance contained at least three CPM and the average reference transcript length was between 
1 and 4 kilobases (kbp). If a gene did not meet these criteria, the reference isoforms were 
substituted in place of the long-read isoforms. If a gene was not found within the long-read 
transcriptomic data, the reference protein isoforms were also appended into the hybrid database. 
A detailed description of reasoning behind creation of a hybrid database has been described 
previously (Miller et al. 2022). 

3.4.10 GENCODE and UniProt reference protein database 

The GENCODE protein database used in this study was created by downloading the 
coding translation FASTA and grouping entries with the same protein sequence for each gene 
(“make_gencode_database” module in the Nextflow). For the many cases where one or more 
GENCODE transcripts from the same gene lead to the same protein sequence, the transcripts 
were grouped and assigned a protein accession as the first alphanumeric GENCODE protein 
accession, by the transcript name (e.g., GAPDH-201). 
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The UniProt database used was the reviewed human database with isoforms, downloaded 
November 1st, 2020. The database contains 42,358 protein isoform entries from 20,292 genes. 

3.4.11 MS database search 

Standard proteomic analysis of acquired mass spectra files were performed using the free 
and open-source search software program MetaMorpheus (Solntsev et al. 2018). A custom 
branch and Docker image were made as part of the Nextflow pipeline (GitHub: 
https://github.com/smith-chem-wisc/MetaMorpheus/tree/LongReadProteogenomics , Docker: 
https://hub.docker.com/r/smithchemwisc/metamorpheus/tags?page=1&ordering=last_updated 
tag: lrproteogenomics) based on MetaMorpheus version 0.0.316. Analysis of the collected 
spectra files performed either using the HUVEC sample-specific database (HUVEC-derived 
PacBio reads + GENCODE entries; ‘HUVEC sample-specific database’) (71,511 of entries from 
19,982 genes) in which the subset of PacBio derived entries are 26,675 protein isoforms from 
7,283 genes. The GENCODE human database (version 35; 87,729 protein entries from 19,982 
genes), or the UniProt reviewed human database with isoforms (downloaded 8 July 2021; 42,380 
protein entries from 20,292 genes). All searches were conducted with a contaminants database, 
included in MetaMorpheus, which contains 264 common contaminant proteins frequently found 
in MS samples. 

All RAW spectra files were first converted to mzML format with MSConvert prior to 
analysis with MetaMorpheus (see “mass_spec_raw_convert” module in the Nextflow pipeline). 
For the MetaMorpheus MS search, the settings used for all search tasks can be found in 
Appendix B: Supplemental Table S6. MetaMorpheus produces peptide spectral match (PSM), 
peptide and protein group result files, which we analyzed in downstream custom modules. All 
peptide and protein results reported employ a 1% False Discovery Rate (FDR) threshold after 
target-decoy searching (Elias and Gygi 2007). 

3.4.12 Criteria for Novel Peptide Identification 

Stringent filtering criteria and manual validation were used, as described previously 
(Miller et al. 2022; Lloyd M. Smith et al. 2021) to ensure that the spectrum does in fact represent 
the novel peptide sequence. Spectra corresponding to the scan number of the identified novel 
peptide sequence were derived from MetaDraw and manually inserted into an Excel file which 
were then manually evaluated. Corresponding University of California Santa Cruz Genome 
Browser tracks depicting protein isoforms were derived and can be found via the following 
session: https://genome.ucsc.edu/s/mm5db/211018_huvec_hcd_trp. In addition to previously 
(Miller et al. 2022) described criteria for novel peptide annotation, we allowed for cases where 
the C13 isotope for a novel peptide was selected as the precursor. 

https://github.com/smith-chem-wisc/MetaMorpheus/tree/LongReadProteogenomics
https://hub.docker.com/r/smithchemwisc/metamorpheus/tags?page=1&ordering=last_updated
https://genome.ucsc.edu/s/mm5db/211018_huvec_hcd_trp
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3.4.13 Data analysis and plot generation 

All downstream data analyses were performed through custom Python scripts. Data 
analysis scripts used for generation of figures, plots, and statistics may be found in the following 
GitHub repository: https://github.com/sheynkman-lab/Huvec-Proteogenomic-Analysis  

3.4.14 Availability of data and materials 

Raw long-read RNA-seq data collected on the PacBio platform are available from the 
Sequence Read Archive (PRJNA832812, corresponding to accession SRR18959149). Data 
generated by mass spectrometry are available through MassIVE, the Mass Spectrometry 
Interactive Virtual Environment (MSV000089326). The output of the data analysis including the 
long-read proteogenomics Nextflow workflow results generated using the mass spectrometry and 
long-read RNA-sequencing data as well as the post pipeline analysis results are available on 
Zenodo (https://zenodo.org/record/7117445#.Y2FQE-wpD0o). 

The open-source software produced in the making of this work is freely available under 
the MIT license found in the GitHub repository (https://github.com/sheynkman-lab/Long-Read-
Proteogenomics). A wiki was created (https://github.com/sheynkman-lab/Long-Read-
Proteogenomics/wiki) describing each of the pipeline processes. 

Code used to generate the main figures and tables in this manuscript can be found in the 
GitHub repository (https://github.com/sheynkman-lab/Huvec-Proteogenomic-Analysis).  
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Chapter 4 Importance of isoforms in dynamic 
settings, the role of isoforms in development with 
specific focus on isoforms of splice factors and 
transcription factors  

This chapter is adapted from:  

Mehlferber, M.M., Kuyumcu-Martinez, M., Miller, C.L.,  Sheynkman G.M. - Transcription 
Factors and Splice Factors—Interconnected Regulators of Stem Cell Differentiation. Curr Stem 
Cell Rep 9, 31–41 (2023) https://doi.org/10.1007/s40778-023-00227-2 

License: 5925560747511 (obtained from Springer Nature) 

4.1 Stem cells as a powerful system for studying development and disease 

4.1.1 Stem cells differentiate into diverse cells - Waddington landscape and molecular 
patterns 

Stem cells can differentiate into any cell type in the body. Initially, human embryos were 
used to generate embryonic stem cells (hESCs) that are derived from the inner cell mass (ICM) 
of the blastocyst (Thomson et al. 1998). Such cells are pluripotent, with the ability to 
differentiate into any cell of the body given the proper genetic or exogenous factors. Another 
source of stem cells are terminally differentiated somatic cells, which can be reprogrammed into 
induced pluripotent cells (iPSCs) by addition of four key transcription factors (TFs)—OCT4, 
SOX2, c-MYC and KLF4, as shown in the landmark experiment in the Yamanaka lab (Takahashi 
and Yamanaka 2006). iPSCS are largely indistinguishable from embryo-derived hESCs in terms 
of their genetic, molecular, and phenotypic properties, permitting widespread application of these 
cells for disease modeling without the ethical issues of human embryo use (Salomonis et al. 
2016; Takahashi and Yamanaka 2016). 

Stem cells can model the transition from a pluripotent to a differentiated state, which is 
critical for development of specialized cell types and tissues. Stem cell potency exists in a 
continuum, with successive cell divisions correlating with narrower differentiation potentials. 
Such transitions can be thought of as a series of cellular states, which has been analogized by 
Conrad Waddington as a marble (the “cell”) traveling down a hilly terrain to arrive at a position 
of the energetically most favorable cellular attractor state (the terminally “differentiated cell”) 
(Creighton and Waddington 1958). Cell states are reflected by global patterns of gene 
expression, especially transcript and protein molecular expression. Tracking such coordinated 
molecular expression changes in these interim steps of differentiation can provide insight into the 
underlying regulatory network logic associated with these cell states, the relationship of which is 

https://doi.org/10.1007/s40778-023-00227-2
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a critical question for the stem cell field (Panina et al. 2020; MacArthur, Ma’ayan, and 
Lemischka 2009). 

4.1.2 Stem cells are tractable models to link molecular variation to development 

Stem cell models provide a portal to study otherwise inaccessible aspects of in vivo 
human development, particularly at the genetic and molecular level. Protocols are now available 
to direct differentiation of stem cells into hundreds of cell types (Rowe and Daley 2019; Sharma 
et al. 2020). For example, in cardiovascular development, stem cells can be differentiated into 
arterial and venous endothelial cells subtypes (Dejana, Hirschi, and Simons 2017; Sriram et al. 
2015), and hematopoietic development have well characterized models (Kennedy et al. 2012). 
And, it has been shown that hESCs can differentiate into epicardial cells that graft onto damaged 
heart tissue for repair (Bargehr et al. 2019). More recently, going beyond the constraint of 
monolayer 2D cell cultures, 3D organoid cultures have been developed for a series of organ 
types that better recapitulate in vivo phenomena such as cell-cell interactions and soluble factor 
gradients (J. Kim, Koo, and Knoblich 2020). 

In addition to hESCs, human iPSCs (hiPSCs) can also be differentiated into several 
different cell types and are widely used to understand underpinnings of development. For 
example, in the heart, both hECs and hiPSCs can be differentiated into several different cell 
types including endothelial cells, endocardial cells, and cardiomyocytes to define molecular 
drivers of cardiovascular development (Shi et al. 2017).These differentiated cells can then be 
cocultured to study the communication between these cells that build up the heart. Furthermore, 
iPSCs obtained from patients are excellent tools to determine the mechanisms responsible for 
disease pathogenesis as well as identifying developmental defects that give rise to these complex 
disease phenotypes. Stem cells also allow temporal analyses of molecular and cellular events that 
occur during development. Genome edited hiPSCs or hESCs carrying patient specific mutations 
are used to model cell specific defects that give rise to human diseases well as to perform screens 
of compounds or drugs for treatment of disease complications (Shi et al. 2017). Both hESC and 
hiPSC mediated stem cell model systems are utilized to identify transcriptional regulatory 
networks necessary for development and function (Yeo and Ng 2013). With advancements in 
RNA sequencing and computational methods, post-transcriptional regulatory networks necessary 
for stem cell differentiation are becoming more appreciated. 

Tracing the expression changes of factors associated with differentiation temporally can 
indicate links between genetic factors and the downstream developmental pathways they regulate 
(Mahla 2016; Young 2011). Though not fully recapitulating in vivo complexity, the journey a 
stem cell takes during in vitro differentiation at least partially recapitulates molecular changes 
occurring during development and can provide a tractable experimental system with human 
relevance. The practical benefits include the ability to culture cells in vitro to generate sufficient 
material for high-throughput molecular assays and biochemical and genetic screens. The benefit 
of human relevance arises from the fact that human stem cells should best recapitulate the 
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repertoire of transcript and protein molecular forms (e.g., isoforms, proteoforms) that are primate 
or human-specific. Though many genes are conserved between human and model organisms, the 
molecular details of gene products, such as splicing patterns, tend to diverge greatly (Mouse 
Genome Sequencing Consortium et al. 2002). 

The generation of certain cell types is possible by addition of individual soluble factors or 
transcriptional regulators (Yeo and Ng 2013; Lesha et al. 2023). In large part this knowledge 
arose from trial and error or small-scale screens, guided by simple morphogenic or gene 
expression patterning (Zhou et al. 2008; Yamanaka 2008), rather than a fundamental 
understanding of the underlying gene regulatory network that governs cell behavior. Even such 
factors operate within an interconnected and complex gene regulatory network; and, therefore, an 
incomplete picture remains of the underlying molecular logic and critical factors that direct 
differentiation of stem cells into fully functional, mature cells (Vierbuchen and Wernig 2012). 
The field of stem cell systems biology aims to complement focused functional studies, through 
paradigms that merge high-throughput datasets and computational models. 

4.2 Gene regulatory networks - TFs mediate pluripotency and differentiation 
One type of network that plays a critical role in cell fate decisions are gene regulatory 

networks (GRNs). A GRN is represented by the set of active transcription factors (TFs) that bind 
to and regulate their target genes. TFs comprise about 10% of all protein-coding genes (Lambert 
et al. 2018). TFs can serve as an activator that promotes transcription of the gene or a repressor 
that inhibits, and thus lowers gene transcription. Within a network representation, TFs can be 
modeled as nodes, from which one or more directed edges point to target genes. The edge has a 
sign, depending on the activating (+) or repressive (-) function of the TF (Bulyk and Walhout 
2013). 

TFs networks are characterized by biochemical or genome-wide techniques (Farnham 
2009). The specific DNA sequences to which a TF binds can be assayed using high-throughput 
approaches (Lambert et al. 2018) such as systematic evolution of ligands by exponential 
enrichment (SELEX) (Lambert et al. 2018; Jolma et al. 2010), protein binding microarrays 
(PBMs) (Berger and Bulyk 2006), or microfluidic chip-based mechanically induced trapping of 
molecular interactions (MITOMI) (Rockel, Geertz, and Maerkl 2012). Cell-type specific TF 
binding within a cellular context can be inferred genome-wide using approaches such as DNAse-
Seq (Galas and Schmitz 1978) or ATAC-Seq (Buenrostro et al. 2015). TF binding can be directly 
mapped to genomic sites with approaches such as Chip-Seq (Johnson et al. 2007) or Cut&Run 
(Skene and Henikoff 2017). 

4.2.1 TFs as drivers of stem cell fate - GRN knowledge to guide stem cell engineering 

TFs can play an outsize role in influencing stem cell fate by modulating gene expression 
patterns in differentiating cells (Oh and Jang 2019). To accomplish this in stem cell 
differentiation, TFs are thought to concurrently repress pluripotent genes to allow activation of 
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lineage-specific genes (Yeo and Ng 2013). The potent effects of TFs is evident by the fact that 
OCT4, c-MYC, KLF4 and SOX2 form a core network that can reprogram a somatic cell to an 
iPSC (Takahashi and Yamanaka 2006). Just one or a few TFs can, solely, convert cells to certain 
lineages. A quintessential example is MyoD, which can convert somatic cells into muscle cells 
(Davis, Weintraub, and Lassar 1987). Many other lineage defining TFs exist across the 
differentiation spectrum, such as ETV2, which is necessary and sufficient for converting 
mesodermal precursors to primordial endothelial cells (Aragon and Hirschi 2022). 

About 1,564 TFs have been annotated (Ng et al. 2021), but for many their role in driving 
cell fate decisions remain uncharacterized (A. C. Wilkinson, Nakauchi, and Gottgens 2017). 
Recently, this has been tested across most human TFs experimentally (Ng et al. 2021). A study 
employed a library of all human TF open reading frame (ORF) clones to test the role of 
individual TF expression in differentiating cells (Ng et al. 2021). Surprisingly, 241 of the 1,564 
TFs tested resulted in a differentiation phenotype across biological replicates. More recently, an 
even more comprehensive library of human TFs that included all RefSeq annotated ~3,500 TF 
isoforms were overexpressed in a population of stem cells and, using single cell RNA-seq as a 
readout—each TF was profiled in terms of its ability to drive diverse cell-type-specific gene 
expression programs (Joung et al. 2023). For a subset of TFs, the effect of multiple TFs on cell 
fate were tested, showing both cooperative and antagonistic relationships and reflecting the 
combinatorial nature of TF activities. 

Cellular gene expression is the product of the timing and location of the collective 
activities of all TFs in a cell. The correlation between TF activity—most commonly, mRNA 
levels as a proxy—and expression of target genes, either experimentally or through inference via 
co-expression, is the basis for inferring links between TFs and their downstream targets (Kinney 
et al. 2019). These correlations guide computational predictions of TFs responsible for 
determining cell fates. For example, approaches such as CellNet (Cahan et al. 2014) and Mogrify 
(Rackham et al. 2016) leverage knowledge of TFs and their downstream targets and pathways 
responsible for promoting differentiation transitions in order to nominate TFs that would be ideal 
factors for cell engineering (Kinney et al. 2019; Wells and Choi 2019).  

4.3 Regulation beyond transcription - alternative splicing regulatory 
networks 
GRNs and the resulting transcriptional output is significantly affected through the process 

of alternative splicing (AS) (Stamm et al. 2005). During AS, intronic regions are excised from 
nascent mRNA while the remaining exon coding regions are ligated together to form distinct 
mRNA isoforms. Such isoforms can greatly expand the protein functional diversity of the cell 
(Kelemen et al. 2013; Nilsen and Graveley 2010). The first large-scale RNA-seq datasets of 
human tissues have revealed that 95% of human genes undergo AS (Pan et al. 2008), with many 
tissue-specific AS expression patterns (Yang et al. 2016). 
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4.3.1 Splice regulatory networks - the central role of splicing factors 

AS is controlled by the splicing regulatory networks (SRN) operative in a cell. The 
workhorse of SRNs is the spliceosome, a protein machine comprises over 200 proteins (Wachtel 
and Manley 2009) and five ribonuclear proteins (U1, U2, U4/U6 and U5) (Lee and Rio 2015; 
Ule and Blencowe 2019). The process of splicing unfolds via the sequential binding of small 
nuclear ribonucleoproteins (snRNPs) on the pre-mRNA, which eventually catalyze the joining of 
particular exon junctions (Wachtel and Manley 2009). The activity of the spliceosome is 
regulated by a repertoire of splice factors (SFs), a subfamily of approximately 356 (Van 
Nostrand et al. 2020) RNA binding proteins (RBPs) that bind to sites on pre-mRNA and interacts 
with components of the spliceosome to enhance or inhibit splicing reactions at certain exons (Fu 
and Ares 2014; He et al. 2023; Quattrone and Dassi 2019). Families of SF exist, such as 
heterogeneous nuclear ribonucleoproteins (hnRNPs), which tend to inhibit (i.e., silence) splicing 
(Geuens, Bouhy, and Timmerman 2016; Blencowe 2006), and serine and arginine rich proteins 
(SRs), which tend to enhance splicing (Ule and Blencowe 2019), although the regulatory activity 
of SFs can be highly dependent on context and position of binding within the pre-mRNA 
(Marasco and Kornblihtt 2022). Many annotated SF functions have been produced by 
hypothesis-driven studies, and, more recently, systematic efforts, such as through the 
Encyclopedia of DNA Elements (ENCODE) project have mapped the functional and biophysical 
networks of 80 SFs in two human cell lines (Van Nostrand et al. 2020).  

4.3.2 The emerging role of SFs in mediating pluripotency and differentiation 

Just as with TFs, SFs can also act as master regulators of cell fate decisions during stem 
cell differentiation acting through SRNs (Wright and Ciosk 2013; Jangi and Sharp 2014). For 
example, SRSF2 promotes the AS of exon 9 of the NUMB gene, creating an isoform of NUMB 
that specifically governs NOTCH (Y. Li et al. 2021), and thus inducing endothelial cell 
progenitor cell specification (Y. Li et al. 2021). Muscleblind-like splicing factor (MBNL1) and 
RNA Binding Fox-2 (RBFOX2) alternatively splice targets that drive iPSCs to mesoderm 
transitions (Venables et al. 2013). RBPs ESP1, ESPR2, RBFOX2 and QKI coordinate an isoform 
switch that promotes tissue remodeling from a mesenchymal to epithelial state for kidney 
development (Wineberg et al. 2022). And, RNA binding motif protein 24 (Rbm24) drives cardiac 
differentiation programs in human and mouse by AS of genes related to cytoskeletal proteins and 
ATPase components that promote cardiac development (Zhang et al. 2016). Splicing regulator 
QKI is essential to establish splicing networks that control contractile and structural genes in the 
heart (Montañés-Agudo et al. 2023). The repression of PTBP1, another splicing regulator, can 
convert cardiac fibroblasts into cardiomyocytes or fibroblasts into neuronal cells, indicating its 
critical role in cell differentiation (Keppetipola et al. 2012; Xue et al. 2013). PTBP1 influences 
transcriptional networks by regulating transcription factor PBX1 during neuronal differentiation 
(Linares et al. 2015). RBFOX2 is necessary for establishing splicing regulatory networks 
required for heart and neuronal development (Gehman et al. 2012). Overall, these examples 
highlight how SFs can serve as master regulators of cellular fate, similar to TFs. 
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SF networks can be characterized by experimental methods that link RBPs to the target 
isoforms they regulate. There are several different approaches that include RNA 
Immunoprecipitation (RIP)(Gagliardi and Matarazzo 2016), and enhanced crosslinking and 
immunoprecipitation (eCLIP) (Van Nostrand et al. 2016). Photoactivatable-Ribonucleoside-
Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) (Danan, Manickavel, and Hafner 
2016). One of the most commonly used approaches is CLIP-seq, which links SF to their binding 
sites within their respective RNA targets transcriptome-wide is crosslinking and 
immunoprecipitation followed by RNA-sequencing, or CLIP-seq (Ascano et al. 2012; Hafner et 
al. 2021). Here, RBPs are subjected to UV irradiation, which cross-links RBPs to the RNA at the 
site to which they bind. The RBPs, which remain covalently bound to the RNA target, are 
enriched as an RNA-protein complex, and the population of bound RNA is deeply sequenced 
and subsequently aligned to the genome to depict locations of the bound RBPs (Hafner et al. 
2021), revealing the positions across pre-mRNA and mRNA wherein the RBPs are bound, and 
presumably active, in a given condition or sample. Another method maps functional relationships 
between SFs and their targets by experimentally modulating RBP concentrations, such as 
through siRNA knockdown or overexpression plasmids, followed by measurements of splicing 
using RNA-seq (Van Nostrand et al. 2020). 

4.4 Splice factors as regulators of the regulators - TF and SF isoforms 
Among the many types of genes that splicing can target, the most marked effects are likely 

through alternative splicing of potent regulators of stem cell fate. Alternative splicing of such 
regulators could generate isoforms of the same gene with variable activities - from loss of 
function to gain in new functions (Castaldi et al. 2022). In other words, splicing can have outsize 
effects on stem cell fate by “regulating the regulators”. 

4.4.1 Splicing influences GRNs by producing TF isoforms that differentially regulate cell 
fate  

A continuum of functional relationships between TF isoforms of the same gene can 
occur, from isoforms with attenuated, opposite, or tandem functions. The levels and relative 
stoichiometries of such TF isoforms are directly influenced by AS, and thus AS can influence 
gene regulatory networks by modifying TF activities through splicing (López 1995; Niwa 2018).  

AS can modulate TF functions by production of a sub-functional isoform. For example, 
AS modulates the activities of OCT4. OCT4 produces at least three major isoforms (OCT4A, 
OCT4B and OCT4B1)(X. Wang and Dai 2010; Atlasi et al. 2008). OCT4A is responsible for 
establishing pluripotency. In contrast, an isoform switch to OCT4B, a sub-functional form of 
OCT4, results in inhibition of stem cell self-renewal, but may be involved in responses to cell 
stress (X. Wang and Dai 2010). The differences in isoform function may be due to differential 
inclusion of localization signals in which a nuclear localization signal in OCT4A is absent in 
OCT4B, reducing its nuclear residence and thus transcriptional activity (Cheong and Lufkin 
2011). 
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AS can modulate TF function by producing an isoform with opposite function. For 
example, splicing can alter the specificity of the forkhead transcription factor (FOXP1) where 
one isoform promotes pluripotency by directly stimulating expression of the Yamanaka factors, 
while another isoform is predominantly expressed in differentiated cells and represses 
pluripotency genes (Gabut et al. 2011). 

And, lastly, AS can modulate TF function in a way in which there is a division of labor 
between multiple TF isoforms of the same gene. An example can be found in SALL4, a member 
of the spat-like gene family (Tatetsu et al. 2016). SALL4 interacts with both OCT4 and NANOG 
to regulate pluripotency networks. SALL4 produces two isoforms, SALL4A and SALL4B, which 
collaborate to maintain pluripotency networks (Rao et al. 2010). SALL4A represses genes 
associated with differentiation while SALL4B promotes pluripotent gene expression (Chepelev 
and Chen 2013). Interestingly, expression of SALL4B alone is not sufficient to promote the 
pluripotent state (Rao et al. 2010). 

Analogously to how SFs can modulate activity of TFs, in a similar vein, SFs themselves 
may also act as upon themselves to modulate their own splicing (Jangi and Sharp 2014). Indeed, 
a pervasive mechanism of SF regulation is a negative feedback loop in which a SF binds to its 
own pre-mRNA which leads to nonsense-mediated decay products. While further studies work to 
elucidate these mechanisms as it relates to differentiation, negative regulation has clearly been 
demonstrated to affect 10-30% of mammalian genes (Jangi and Sharp 2014), and may play an 
important role in stem cell SRNs. GRNs and SRNs likely work in concert within stem cells to 
regulate pathways of pluripotency or differentiation (Figure 4.1).  
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Figure 4.1 Depiction of the complex interplay between gene and splice regulatory networks 
Gene regulatory networks (GRNs) are composed of transcription factors (TFs) and their target genes, 
controlling the expression of genes to determine pluripotency and differentiation. GRNs can also be 
shaped by alternative splicing (AS), resulting in the production of different isoforms with varying 
functions in stem cell fate. Splice regulatory networks (SRNs), consisting of splice factors (SFs) and their 
target splice sites, can have a significant impact on GRNs by producing different TF isoforms with 
different functions in stem cell phenotypes. SRNs can also regulate other SFs, leading to further control of 
the balance between pluripotency and differentiation. 

4.5 Characterization of the transcriptome at isoform-resolution 
GRN and SRN programs can influence transcriptome expression. For characterization of 

the stem cell transcriptome, early efforts employed mid-throughput real-time quantitative PCR 
(RT-qPCR)(“Real-Time QRT-PCR” n.d.) assays to quantify pre-selected isoforms panels (Atlasi 
et al. 2008). More recently, short-read RNA-sequencing (SR RNA-seq) has enabled facile 
characterization of thousands of annotated and novel splice junctions and exon expression 
associated with stem cell phenotypes (Hardwick et al. 2019; Mortazavi et al. 2008; Conesa et al. 
2016). However, the short length of RNA-seq reads limit observation of the entire unambiguous 
full-length isoform (Steijger et al. 2013; Alexey I. Nesvizhskii 2014). 

These limitations are addressed with long-read (LR) sequencing platforms, such as through 
Pacific Biosciences Inc. (PacBio) or Oxford Nanopore Technologies (ONT) (van Dijk et al. 
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2018; Eid et al. 2009; Rhoads and Au 2015; Mantere, Kersten, and Hoischen 2019). In the 
decade following their introduction, the throughput, affordability, and accuracy of LR 
sequencing was lower than SR, but with the steady evolution of LR sequencing systems in terms 
of the chemistries, instrumentation, and computational pipelines (e.g., PacBio’s Revio (Eid et al. 
2009), ONT’s iSeq100 (Jain et al. 2016)), accurate transcriptome sequences will likely become 
accessible at a large depth and breadth. With this higher depth, single cell LR (scLR) methods 
are being developed for both ONT and PacBio platforms. With ONT as a readout, Barcode 
identification from Long-reads for AnalyZing single-cell gene Expression (BLAZE) relies on 
barcodes from ONT long-reads to profile isoforms at single-cell resolution (Mantere, Kersten, 
and Hoischen 2019). PacBio has also reached the throughput needed for scLR through 
development of multiplexed arrays sequencing (MAS-ISO-seq), which uses a concatenation 
approach to ligate multipole cDNAs into large single molecules that is then sequenced 
(Al’Khafaji et al. 2023). To infer the functional interrelatedness of isoforms from scLR data, new 
analysis pipelines have been developed, such as acorde, which analyzes co-expression networks 
of correlated isoform abundances (Arzalluz-Luque et al. 2022).  

4.5.1 Transcriptome and splicing regulation are an intertwined process 

AS is co-transcriptional, and thus splicing and transcriptional biochemical processes 
work in concert within an epigenetic context to drive transcriptional outputs during 
differentiation (Tilgner et al. 2012; Kosti, Radivojac, and Mandel-Gutfreund 2012; Han et al. 
2017). Chromatin state has a large influence on splicing (Kosti, Radivojac, and Mandel-
Gutfreund 2012; Naftelberg et al. 2015). Two models have been proposed to describe how 
chromatin affects splicing outcomes: the kinetic and recruitment model. The kinetic model 
relates RNA polymerase II transcriptional speed with splice status. “Slow” Pol II increases the 
time with which an SF is exposed or could bind their cognate RNA binding sites, and thus 
promotes exon inclusion. The recruitment model focuses on the ability for components such as 
Pol II C-terminal tail or histone tails to mediate interaction-driven recruitment of SFs onto the 
nascent pre-mRNA which in turn affects AS (Luco et al. 2010; Agirre et al. 2021). Beyond the 
influence of chromatin and splicing, the biochemical relationships of splicing and transcription 
are surprisingly intertwined. TFs can bind to and regulate nascent RNA, influencing not only 
gene expression, but potentially RNA processing such as splicing (Han et al. 2017; Liang et al. 
2022; Oksuz et al. 2022). SFs, on the other hand, can influence transcriptional regulation. For 
example, RBM20, through splicing, regulates genes necessary for heart development (Bertero et 
al. 2019).  

Not only are the biochemical mechanisms of transcription and splicing intertwined, but 
components of the transcriptional (TFs, gene targets) and splicing (SFs, splice targets) networks 
feed into each other and are involved in cross-regulatory logic, in sometimes unexpected ways. 
The transcription factor OCT4 upregulates the splice factor SFRS2, which regulates the splicing 
of methyl-CpG-binding protein, MBD2, whose isoforms play opposing roles in reprogramming 
to pluripotency (Lu et al. 2014). Upregulation of SFRS2 increases levels of an isoform of MBD2 
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(MBD2c), which binds to the promoter of OCT4 to reinforce the pluripotency core network. 
Interestingly, loss of either OCT4 or SFRS2 activity leads to product of the other isoform of 
MBD2 (MBD2a), which also binds to the promoter of OCT4, but has a different C-terminal 
domain that silences OCT4 expression by recruiting the Nucleosome Remodeling and 
Deacetylation complex (NuRD) (Lu et al. 2014). SRSF2 does not just regulate MBD2, but can 
also change the activity of the transcription factor FOXP1, whose isoforms are nearly opposite in 
their induced stem cell phenotypes; one isoform of FOXP1 activate genes that promote 
pluripotency and the other isoform promotes differentiation, a splicing switch that involves 
exonic changes to the FOXP1 DNA binding domain (Gabut et al. 2011). Notably, TFs with zinc 
finger domains can also bind RNA. Zinc finger domains allow binding to both DNA and RNA. It 
has been shown that transcription factor GATA4 can bind RNA and regulate alternative splicing 
networks in the heart (Zhu et al. 2022).  

4.6 The functional output of the transcriptome - the stem cell proteome 
In large part, the functional effect of the transcriptome manifests through the proteome, 

making identification of protein expression within the cell equally important. Indeed, transcript 
and protein abundances are not always highly correlated, with this relationship being affected by 
several factors including co- and post-translational layers of regulation (Aydin et al. 2022; Y. 
Liu, Beyer, and Aebersold 2016). Given the importance of splicing networks in stem cell 
differentiation, approaches to directly measure their functional outputs, or protein isoforms, in 
stem cells are critical (Kornblihtt et al. 2013; Tress, Abascal, and Valencia 2017a). 

Mass-spectrometry (MS)-based proteomics is a powerful technique for comprehensive 
general proteome characterization of stem cell states (Lindoso et al. 2019; Gundry, Burridge, and 
Boheler 2011; J. Wang et al. 2008). MS has been used to track dynamic changes of proteins over 
stem cell differentiation, which may not correlate with transcriptional changes. An early work on 
transcript and protein levels in hESCs demonstrated that up to 50% of changes in protein 
expression do not have corresponding transcript changes, although some of this non-correlation 
is attributable to technical variability of the first-generation MS instruments (van Hoof, 
Krijgsveld, and Mummery 2012). The value of proteomics for discovering important stem cell 
factors continues to be demonstrated. In a study of young and adult mouse HSCs, a module of 
proteins were specifically expressed in young mouse HSCs, uncorrelated to the transcript levels 
(Van Hoof et al. 2008; Zaro et al. 2020). Multiplexed isobaric labeling, now a standard approach, 
allows for measuring protein expression along many more differentiation timepoints (Sabatier et 
al. 2021). Newer thermal profiling approaches coupled with MS can even assay intrinsic protein 
stability, and regulated destabilization during early differentiation, such as the ribosomal 
machinery that exhibits higher stability during differentiation (Sabatier et al. 2021).  

Though general protein content from genes is readily measured, an ongoing challenge 
remains the characterization of the final output of gene and splicing regulatory networks: the 
proteome at isoform resolution. MS characterization of protein isoforms have been applied to 
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histone isoforms and isoforms in mesenchymal stem cells (Phanstiel et al. 2008; She et al. 2012). 
Technical challenges of isoform detection remain, though. In bottom-up MS, proteins are 
proteolytically digested into short peptides—few peptides uniquely map to an isoform (Blakeley 
et al. 2010), and such peptides are under sampled due to technical issues (MS ionization, charge, 
etc. (Marasco and Kornblihtt 2022)). New proteogenomic approaches (Alexey I. Nesvizhskii 
2014; Parrotta et al. 2019; Miller et al. 2022; Sheynkman et al. 2016) can enhance protein 
detection accuracy and coverage by leveraging matched long-read RNA-seq data to generate a 
sample specific database of protein isoforms used for MS searching (X. Wang et al. 2012), which 
can provide direct protein level evidence of stable isoform expression (Mehlferber et al. 2022). 

4.6.1 Emerging scalable strategies to causally link isoforms to stem cell phenotypes 

Given the critical nature of SRNs in driving cell fates, determining the functional role of 
their downstream protein isoform products are critical, such as through experimentally testing 
the effect of knocking out or overexpressing an individual isoform on stem cell phenotypes. 
Isoforms can be “knocked down” using short interfering RNAs (siRNA) that are designed 
against regions specific for the target isoform mRNA (Endoh and Ohtsuki 2009; Dana et al. 
2017). This approach has been used to modulate splicing patterns of isoforms in cancer cells to 
functionally decouple gene expression patterns from the individual role of isoforms in driving 
cell phenotype (Prinos et al. 2011).  

To further modulate isoform expression, morpholino oligonucleotides can be used, which 
are RNA sequences designed to be complementary to the target sequences of RNA. Upon 
morpholino binding, spliceosome assembly or translation is inhibited through steric hindrance 
(Corey and Abrams 2001; Moulton 2007). And, the Type II CRISPR-based system Cas13 
demonstrates the ability to knock-down RNA isoforms with high specificity and efficiency, with 
potential to design gRNAs against isoform-specific regions (Abudayyeh et al. 2017; Cox et al. 
2017). The CRISPR-Cas9 system has been engineered to modulate expression of individual 
exons through the paired guide RNAs for alternative exon removal (pgFARM) to enable 
functional testing of individual exons that may be part of AS pathways (Thomas et al. 2020). 
Further application of the CRISPR system has been extended to the CRISPR (Artificial Splicing 
Factors (CASFx) system which provides the ability to induce AS events onto target regions, to 
mimic and functionally characterize specific splice isoforms (Du et al. 2020) .  

For similar experimental goals, isoforms can be over-expressed to understand the 
contribution an isoform has in driving cell fate. Currently, large-scale overexpression screens 
have been applied to TFs by using a strong promoter to profile individual TF isoforms driving 
stem cell differentiation (Aragon and Hirschi 2022). Creation of “ORFeome” libraries have been 
created to functionally describe and characterize human isoforms (Yang et al. 2016). However, 
large-scale overexpression screens to functionally interrogate the role of isoforms in driving stem 
cell differentiation have yet to be performed, but similar methods could be applied to elucidate 
the greater role of isoforms in driving stem cell fate. These screens could complement massively 
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parallel reporter assays for screening candidate functional exonic or cryptic splice variants 
associated with stem cell mediated traits (Rhine et al. 2022; Soemedi et al. 2017). A range of 
splicing effects could be evaluated including, intron retention, exon exclusion, 5’ or 3’ UTR 
usage. More recent high-content cell imaging assays could be combined with these molecular 
functional screens (Veschini et al. 2021). By comparing different molecular splicing effects with 
gene expression and protein abundances and linking these to stem cell phenotypes, we expect 
these assays to dissect the complex architecture for a range of diseases such as cancers, 
cardiovascular disease, and autoimmune diseases.  

4.7 Unresolved questions in the field and future directions 
Stem cells are powerful model systems that mirror the processes of human development. 

Methods to date have focused on linking transcript expression signatures to stem cell phenotype, 
but emerging methods that combine multiple facets of regulation, such as transcriptional and 
splicing networks during stem cell differentiation should capture important regulatory programs 
previously missed. The interrelatedness of transcriptional and splicing networks, during 
biochemical regulation, as well as between their network components, during stem cell 
differentiation necessitates a multi-faceted approach to understand. 
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Chapter 5 Development of RNA-sequencing 
technologies to enhance characterization of the 
transcriptome  

The content of this chapter is adapted from:  

Transcript detection and quantification using Kinnex Full-length RNA Sequencing Data  

David Wissel, University of Zurich, Joint work with Madison M. Mehlferber with joint 
supervision by Gloria Sheynkman (UVA) and Mark D. Robinson (University of Zurich) 
https://programs.pacb.com/l/1652/2024-03-08/44gtlx  

And  

Kinnex full-length RNA kit for isoform sequencing  

https://www.pacb.com/wp-content/uploads/Application-note-Kinnex-full-length-RNA-kit-for-
isoform-sequencing.pdf  

5.1 Evolution of next-generation sequencing platforms  
In this chapter I will discuss the processing and analysis of PacBio long-read RNA-

sequencing data and the recent advancements in technology within PacBio. I will also discuss 
how such advances in technology can further support efforts to enhance characterization of 
isoforms. 

5.2 Long-read RNA sequencing technologies enhance resolution of the 
genome  
Capturing high resolution information about isoform landscapes is critical for 

understanding their roles within tissues and cell states. As previously mentioned, isoforms harbor 
small stretches of unique sequences distinguishing them from their isoform counterparts, 
therefore utilizing technology that provides resolution of these small regions at high-confidence 
is imperative.  

As discussed previously, the short-fragments provided by short-read RNA sequencing 
platforms are not ideal for all biological studies such as those for distinguishing isoforms. 
However, the third-generation of PacBio long-read RNA sequencing technologies offers support 
for isoform centric resolution. The technology itself is the key to supporting such research.  

During PacBio long-read RNA-sequencing, after the cDNA molecules from the sample of 
interest receive SMRTbell adaptors forming circular DNA molecules, they enter the SMRT Cells 
receiving polymerase which initiates the sequencing reaction (refer to Chapter 1 Figure 1.4B 
and Chapter 1.2.5 for a detailed description of PacBio SMRT sequencing). The polymerase 

https://programs.pacb.com/l/1652/2024-03-08/44gtlx
https://www.pacb.com/wp-content/uploads/Application-note-Kinnex-full-length-RNA-kit-for-isoform-sequencing.pdf
https://www.pacb.com/wp-content/uploads/Application-note-Kinnex-full-length-RNA-kit-for-isoform-sequencing.pdf
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revolves around the formed circular DNA molecule, and during each revolution (10 on average) 
captures the sequence of the nucleotide. The raw reads are aligned to determine the circular 
consensus read (CCS) which is the average nucleotide collected during sequencing of the 
circular DNA molecule (refer to Figure 5.1 for a visual depiction of CCS). These CCS reads 
with a high base-calling accuracy score (Q > 99%) become high-fidelity reads (HiFi) (Hon et al. 
2020). The ability to combine several observations generated from multiple polymerase passes 
around the circular DNA molecule provides confidence in the true sequence of the transcript 
sequenced, resulting in highly-accurate reads.  

The total number of reads generated from the Iso-Seq Sequel IIe platform generally 
produces on average about 3 million HiFi reads (Al’Khafaji et al. 2023). These reads can then be 
mapped to the genome, guided by reference transcriptomes, to generate the set of distinct 
transcripts and genes and their respective abundances. Long read alignments can be further 
analyzed with downstream open access tools, discussed in section 5.2.3.  

While the read depth (or total number of reads) of long-read RNA sequencing runs are 
generally lower compared to short-read RNA sequencing, it is important to note that third 
generation sequencing technologies generate full-length transcript sequences spanning the 5’ to 
3’ end of a transcript, eliminating the need for probabilistic transcript assembly as with short-
read RNA sequencing approaches. Thus, full-length transcripts allow for highly accurate 
identification of transcripts, limiting ambiguity of sequence identity, including the discovery and 
annotation of novel full-length isoforms.  

However, on the PacBio Sequel IIe platform, it has been observed that for optimal base 
calling quality to be achieved, larger library sizes are needed (15 – 20kbp) to allow for optimal 
sequencing, which can be difficult to achieve with highly precious or limited samples 
(Al’Khafaji et al. 2023). With the transcriptome serving as a proxy for diagnostics of gene 
expression within a sample, refined resolution of the genome for sensitive and biomedically 
relevant samples can greatly support advancements in health. Therefore, efforts to increase 
throughput and resolution are still ongoing. Increasing throughput within the PacBio platform 
means the generation of more HiFi reads, catapulting confidence in the identities of the 
transcripts identified and at a greater scale.  

5.2.1 Development of MAS-Iso-Seq to increase RNA-sequencing throughput  

The most recent advancement to improve throughput of PacBio sequencing is the 
development is of MAS-Iso-Seq, created by Dr. Aziz Al’Khafaji et. al in 2023 which was later 
adapted by PacBio in 2023 and coined Kinnex.  

In the Kinnex method, cDNA libraries are separated into individual PCR reactions to 
increase yield, followed by the addition of unique barcode adaptors to each library. After 
amplification, the barcodes are used to ligate together samples from each library, then hybridized 
to form a concatemer of several cDNA molecules (up to 8 currently). In the final step, SMRT 
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bell adaptors are added to the terminal ends of the concatenated cDNAs to coerce the formation 
of the circular DNA molecule needed for SMRT sequencing and obtaining HiFi reads. The 
concatenation step is what allows for the increase in throughput, enabling the sequencing of up to 
8 cDNAs within one circularized molecule rather than one cDNA sequenced per molecule, as in 
the original Iso-Seq method (Figure 5.1).  

The sequencing reaction following the Kinnex protocol, occurs as described, collecting 
circular consensus reads (or HiFi reads). Rather than revolutions of about 10x per circular DNA 
molecule, the Kinnex approach utilizes a higher fidelity polymerase performing on average 16 
revolutions per circular DNA molecule further enhancing throughput to increase the number of 
reads generated. Overall, this approach enables a 3x increase in the number of HiFi reads 
collected (Figure 5.1). It is important to note that within that HiFi read, there are 8 transcripts 
being simultaneously sequenced, meaning that there is an 8x increase in the number of 
transcripts being sequenced. When multiplying this over the entirety of the SMRT Cell, this 
yields a 15x increase in the number of total reads generated via Kinnex. The resulting reads from 
Kinnex can be bioinformatically de-constructed (de-concatenated) to identify the individual 
transcripts comprising the amplicon molecules.  

 

Figure 5.1 Evolution of PacBio HiFi long-read RNA-sequencing SMRTbell library 
preparation 
In the Iso-Seq method (A), one cDNA molecule is transformed into one circular DNA molecular that will 
undergo single-molecule real-time sequencing (SMRT sequencing). The resulting reads are used as the 
input for the Iso-Seq analysis platform to define a high-confidence (HiFi) read. In the Kinnex platform 
(B), rather than 1 read comprising 1 circular DNA, multiple libraries of cDNA are separated into 
individual PCR reactions to append barcode adaptors to the ends of the individual cDNA libraries. After 
amplification of the libraries, the barcodes are ligated together forming a concatemer of several cDNA 
molecules. Overall, the Kinnex platform results in a 15x increase in the number of reads generated from 
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previous technology (based on CCS reads). Collected sub-reads are bioinformatically processed and 
separated by their barcodes to obtain the set of distinct transcripts.  

The Kinnex workflow was developed on the Sequel IIe resulting in 15-20 million reads. 
The introduction of the PacBio Revio sequencer in 2023 supported further enhancements in 
throughput and when combined with the Kinnex protocol generated 37- 40 million reads for 
downstream analysis. Improvements in throughput were achieved in multiple ways. Not only did 
the Kinnex workflow enable the parallel sequencing of multiple transcripts with the introduction 
of the concatenation technique through MAS-Iso-Seq, but technological considerations were 
included within the Revio that supported increased throughput as well. The Revio was 
accompanied by the introduction of a new SMRT Cell with 25 million ZMWs and the capability 
to sequence up to four SMRT Cells in parallel making 100 million ZMWs available for 
sequencing runs. The Revio sequencer also includes the accompaniment of the NVIDIA GPUs 
allowing for a 20-fold increase in computing power. Together, the combination of the Revio with 
the Kinnex protocol and enhanced ZMW chips has allowed for over an 8-fold increase in 
throughput from previous protocols. Thus, this technological advancement resulted in about 15x 
increase in the number of reads generated from previous technology (Iso-Seq and Sequel IIe, 
Figure 5.1).  

With increased throughput comes enhanced sensitivity and additional coverage of the 
transcriptome. Specifically, increases in the number of reads enhance our confidence in the 
sequence identity.  

5.2.2 Bioinformatic tools for analysis of PacBio-derived data  

Thus far I have only discussed the sequencing methods and platforms for collecting long-
read RNA-sequencing data, however data analysis is a key element. Here I will discuss the suite 
of software for long-read RNA-sequencing data to support isoform discovery. However, the 
PacBio Github (https://github.com/PacificBiosciences/pbbioconda) provides a comprehensive 
list of packages, beyond those described in this thesis, to support applications of PacBio RNA-
sequencing  

The term Iso-Seq not only applies to the method of sample preparation for collecting 
long-read RNA-sequencing data but also the bioinformatics processing steps needed to generate 
final transcript expression files. The Iso-Seq analysis pipeline consists of five major steps 
(Figure 5.2) (Gordon et al. 2015). The first step is Collapse, which combines the multiple HiFi 
reads to generate consensus reads. Demultiplexing follows to remove the barcodes added during 
the sequencing reaction and filters out suboptimal reads utilizing tools, such as Lima. The Refine 
process follows offering additional filtering opportunities removing residual sequences from 
barcodes or filtering transcripts that are potential artifacts formed during the SMRT bell adaptor 
step. The next step is Cluster, which takes the cleaned transcript sequences and generates an 
alignment to group similar transcripts together based on sequence similarity. Mapping and 

https://github.com/PacificBiosciences/pbbioconda
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Collapsing is the final step, aligning clustered reads to the reference genome utilizing packages, 
such as pbmm2, to determine the genes and transcripts represented within the data. 

 

Figure 5.2 Overview of PacBio Iso-Seq workflow for processing of PacBio derived 
sequencing data  
Overview of the Iso-Seq bioinformatic processing workflow and visual depiction of how such steps 
process the collected transcripts.  

Once data is processed, downstream analysis options follow with a variety of open-
source computational software. One common analysis for long-read RNA sequencing 
bioinformatic workflows includes the Structural and Quality Annotation of Novel Transcript 
Isoforms (SQANTI) (Tardaguila et al. 2017) which is a an open-source transcript classification 
tool to determine from a sample of long-read collected data the portion of transcripts that match 
reference annotation sequences versus transcripts categorized as novel. The tool “pigeon” is an 
implementation of SQANTI to PacBio specifications 
(https://isoseq.how/classification/workflow). The number of transcripts that represent true 
positives is an ongoing topic of discussion. However, projects such as the Long-Read Genome 
Annotation Assessment Project (LRGASP) have assessed various long-read RNA sequencing 
workflows. Such research efforts have suggested the need for orthogonal experimental 
approaches to validate the novel isoforms discovered during such analysis (Pardo-Palacios et al. 
2024).  

Another component of the LRGASP project included benchmarking of transcriptome 
analysis tools available for long-read RNA-sequencing data. Sub-aims of this effort included 
comparing tools for transcript discovery and quantification, recognizing accuracy in these 
competencies affects the datasets used for downstream data interpretation. Focusing on the top-
performing tools as revealed through the study (Pardo-Palacios et al. 2024), IsoQuant and 

https://isoseq.how/classification/workflow
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Bambu emerged as top performing tools for transcript quantification. Each tool focuses on 
handling unique aspects of long-read RNA-seq data. IsoQuant 
(https://github.com/ablab/IsoQuant) is a Python package focused on accurately providing 
isoform discovery and quantification to support projects focused on alternative splicing by 
providing error correction features to improve accuracy. Bambu 
(https://github.com/GoekeLab/bambu) is an R package providing transcript quantification and 
novel transcript discovery. Bambu incorporates a novel machine-learning algorithm to learn 
features of bona fide transcripts and establish read-classes based on transcript similarity (Chen et 
al. 2023). A novel discovery threshold is then applied to discern between transcripts that are 
products of sequencing artifacts or actual novel transcripts (Figure 5.3). 

 

Figure 5.3 Overview of Bambu processing for quantification  
Resulting data frames after executing Bambu are available and amenable for downstream applications to 
support analysis efforts of various applications.  

5.3 Transcript quantification and isoform discovery with the new Kinnex 
platform  
We obtained early access to the Kinnex platform to collect deep coverage long-read RNA-

sequencing data on the Revio. We wanted to understand how Kinnex could support RNA-
sequencing applications such as isoform discovery and measurement of differential transcript 
expression. Given the novelty of the Kinnex platform, we wanted to understand if this new 
technology enabled increased isoform resolution to support downstream isoform-related analysis.  

https://github.com/ablab/IsoQuant
https://github.com/GoekeLab/bambu
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To investigate the performance of Kinnex, I collected long-read RNA-sequencing data 
from induced human pluripotent stem cells (iPSCs, WTC11s) across multiple timepoints as they 
differentiated to become primordial endothelial cells, to characterize temporal isoform dynamics.  

5.3.1 Sample collection for Kinnex RNA-sequencing  

To obtain the dataset utilized for addressing these questions, WTC11 stem cells were 
subjected to a primordial endothelial cell differentiation protocol (Nelson et al. 2021) 
transitioning from pluripotency to then form a primitive streak, a mesodermal population, and 
finally primordial endothelial cells (ECs), over the course of 6 days. In order to capture changes 
in isoform expression across development, cells were collected at every day of differentiation 
with biological replicates for Day 0, 3 and 5. In order to assess the accuracy of PacBio Kinnex 
long-read RNA sequencing for isoform discovery, following RNA extraction, Spike-In RNA 
Variants (SIRVs, Lexogen (Paul et al. 2016)) were added as control transcripts with Day 0 
biological replicates receiving E1 SIRVs, Day 5 E2 and all other Days receiving S4. Samples 
from each day were split into equal aliquots for parallel Kinnex long-read RNA-sequencing on 
the Revio and Illumina (Kapa RNA HyperPro Kits) short-read RNA-sequencing on the NovaSeq 
at 150 base pair (bp) paired end. Additional, details on stem cell culture methods and sample 
collection can be found in Chapter 6.4 Methods.  

5.3.2 Data analysis  

The dataset utilized for evaluating the effectiveness of Kinnex data for the study of 
isoform populations encompasses a 6-day differentiation time course. However, for the purposes 
of evaluation, the data discussed in this chapter will follow a 2-condition comparison between 
Day 0 (WTC11 cells) and Day 5 (primordial ECs) to align with the general format for many 
open-source analysis tools. Results of isoform dynamics during the entire primordial EC 
differentiation process are discussed in Chapter 6.  

To compare sequencing coverage and read depth metrics, for all samples with Kinnex 
data, short-read RNA-sequencing data was collected in tandem for the same samples (Figure 
5.4). To benchmark the accuracy of isoform discovery and differential expression, Lexogen 
SIRV Spike-In RNA Variants (SIRVs, Lexogen) served as control transcripts. SIRVs are 
engineered to map to non-human genes, allowing for separation of sample-derived transcripts 
verses control spike-in RNA data.  
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Figure 5.4 Experimental schematic of Kinnex data collection during iPSC to primordial EC 
differentiation  
Samples were collected for benchmarking Kinnex long-read RNA-sequencing data with the Illumina 
short-read RNA-sequencing performed in parallel.  

Overall, we observed on average a 2x fold increase in the number of HiFi reads generated 
between samples sequenced using the Non-Kinnex (Iso-Seq protocol) on the Sequel II/IIe as 
compared to Kinnex on the Revio (Table 5.1). Additionally, we observed about a 3.5x increase 
in the number of S-reads generated with the Kinnex prepared samples when sequenced on the 
Revio compared to the Sequel IIe (Table 5.1).  
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Table 5.1 Number of reads generated via Kinnex on the Revio sequencer vs. previous long-
read RNA-sequencing platforms  
Comparison of collected reads (HiFi Reads) obtained via the Kinnex platform sequenced on the Revio 
and Iso-Seq Sequel IIe platforms for various cell lines and associated sub-reads (S-reads). S-reads and 
HiFi sequence numbers are calculated via the Iso-Seq workflow. Reference Kinnex full-length RNA kit for 
isoform sequencing.  

Due to the mechanism by which the Kinnex protocol concatenates multiple cDNA’s into 
one larger molecule to generate libraries, concerns might arise that there is a potential bias with 
shorter cDNA molecules being incorporated into the constructed cDNA molecule more 
efficiently. Despite the concatenation technique featured within the Kinnex protocol as described 
previously (Figure 5.1), we did not observe a skew in terms of the transcript lengths generated 
when comparing against a diverse range of samples (Figure 5.5). 
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Figure 5.5 Distribution of transcript lengths is not affected by the Kinnex concatenation 
method (refer to Kinnex full-length RNA kit for isoform sequencing) 
Transcript length distribution of various library samples created via the Kinnex protocol showing 
variations in length occur in a sample-specific manner but exhibit consistent size ranges. Figure made by 
Elizabeth Tseng (PacBio).  

To measure transcript differences across the differentiation time course, we utilized 
Bambu (Chen et al. 2023) to quantify the sequencing data and derive count matrices to measure 
transcript differences across the differentiation time course (Figure 5.6). Bambu is ideally suited 
for the analysis of multi-sample PacBio data, as uniquely identifying accessions assigned to a 
transcript during sequencing vary between runs, limiting the ability to compare samples. Bambu 
enables construction of multi-sample quantification files.  
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Figure 5.6 Workflow for utilizing Bambu to quantify and detect isoforms from Kinnex 
long-read RNA-sequencing data 
Bambu works with the Iso-Seq Bioinformatic workflow, using as input the aligned bam files 
(mapped.bam) from pbminimap2, for quantification and novel discovery.  

For a transcriptome-wide, global comparison of the results of Illumina versus Kinnex 
data, we determined the consistency of transcript expression within each platform by day. To 
assess this, we plotted the Pearson correlation between computed transcript abundances for 
Illumina and Kinnex (Figure 5.7). The correlation between Day 0 and Day 5 for Kinnex and 
Illumina are moderately high (0.75-0.8), indicating consistent expression patterns by day within 
each platform (intra-platform variability) (Figure 5.7). However, the correlations between 
Kinnex and Illumina are somewhat lower, suggesting that Kinnex captures transcript expression 
patterns comparable to Illumina, although with some variability. Such variability associated with 
intra-platform correlations has been previously observed (Pardo-Palacios et al. 2024).  
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Figure 5.7 Kinnex quantification results shows competitive replicability to that of Illumina.  
Pearson correlation matrix representing transcript expression profiles between Day 0 and Day 5 faceted 
by Illumina and Kinnex technologies. Figure made by David Wissel. 

For both the Kinnex and Illumina datasets, the number of reads returned was comparable. 
But, lengths of reads produced via Kinnex, on average are longer than those produced by 
Illumina, consistent with our expectations for long-read RNA-sequencing results (Figure 5.8A). 
This means that though Kinnex and Illumina return roughly the same number of reads, the 
absolute number of bases that are sequenced by Kinnex is on average 2-fold greater (Figure 
5.8B). And lastly, we confirmed that Kinnex concatenation does not alter significantly transcript 
length when compared with Iso-Seq technology (Figure 5.8C).  
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Figure 5.8 Kinnex provides more base pairs compared to Illumina due to its longer read-
length  
Bar plots showing the total number of reads (A) and base pairs (B) identified via Illumina and Kinnex 
platforms (C) Violin plots that display the distribution of read lengths for non-Kinnex Iso-Seq, and 
Illumina sequencing. Figure made by David Wissel. 

The data we collected represents a dramatic transition between pluripotent and 
differentiated primordial ECs; therefore, I asked which genes and isoforms may be differentially 
expressed for Day 0 and Day 5 samples. We used the database PanglaoDB (Franzén, Gan, and 
Björkegren 2019), compiled from single-cell RNA-sequencing experiments from both human 
and mouse to provide a list of genes we expect to be differentially expressed between Day 0 and 
Day 5 samples. Overall, both Kinnex derived data and Illumina agreed in revealing a consistent 
set of genes up-regulated between the 2 conditions. For known EC markers, we found that 
overall genes with differential expression were concordant with expectations for gene expression 
programs associated with early EC phenotypes (Figure 5.9).  
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Figure 5.9 Differential gene expression of Illumina and Kinnex Day 0 and Day 5 show 
overlap between upregulated endothelial cell markers 
Upset plot comparing the differentially expressed genes identified between Day 0 and Day 5 found on 
Kinnex and Illumina revealing a large proportion of recovered genes via both platforms. Figure made by 
David Wissel. 

With these results, we were encouraged that the Kinnex platform was able to support efforts 
to comprehensively study isoform expression dynamics over the differentiation time course of 
primordial EC establishment described in Chapter 6.  
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Chapter 6 Deep coverage, high accuracy long-read 
RNA sequencing to characterize isoforms across 
early endothelial cell development  

This chapter contains preliminary unpublished data: 

Madison M. Mehlferber, David Wissel, Vasilii Pavelko, Elizabeth Nelson, Emily Watts-
Whitehead, Erin D. Jeffery, Mark D. Robinson, Leon Sheynkman, Gloria M. Sheynkman  

List of additional files: 

- Appendix C: Supplemental Figures S1-S9  

6.1 Introduction  
Previously, the study of isoforms within this thesis has been assessed in a single cell line 

within HUVECs (see Chapter 3). As demonstrated in Chapter 4, isoforms contribute to the 
earliest establishment of cell fates, working to orchestrate discrete developmental transitions, 
with some splice networks governing division between mature and plastic cellular states (Gabut 
et al. 2011). Therefore, studying isoforms within a multi-sample, dynamic context could inform 
on the versatility achieved through isoform regulation within biological systems.  

However, the extent of profiling isoforms across a temporal trajectory has been relatively 
narrow, limiting knowledge on the series of choices associated with cellular fate specification. It 
has been understood that isoforms modulate their expression during specific times of 
development to become defining features of specific developmental states (Mazin et al. 2021). 
But systematically tracking the changes in cellular decisions resulting at arrival of specific cell 
fates has not been widely documented.  

Specific information on temporal isoform dynamics has been extremely limited in the 
vascular biology field, where comprehensive understanding of the factors underlying the 
development and establishment of early endothelial cell (EC) phenotypes is poorly characterized 
(Kelly and Hirschi 2009). Studies have shown that certain functions of ECs can be modulated 
through isoforms (Giampietro et al. 2015; Blanco and Bernabéu 2012; Park, Sorenson, and 
Sheibani 2015); however global characterization of isoforms involved in EC development has 
not been done in a comprehensive manner, nor at full-length isoform resolution.  

For in-depth profiling of full-length isoforms in EC differentiation, we subjected human 
induced-pluripotent stem cells (WTC11s) to a five-day differentiation protocol to model the 
transition from pluripotency to primordial ECs, the precursors to mature EC populations and 
study isoforms that may be involved during this process. To delineate the factors involved in its 
regulation, we collected cells over six days of differentiation with biological replicates for Day 0, 
Day 3, and the final day, Day 5.  
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To construct an atlas of full-length isoforms associated with EC differentiation, we 
capitalized on increased depth of Kinnex long-read RNA-sequencing, described in Chapter 5, 
which enabled the collection of deep-coverage, full-length transcriptomics data for multiple 
samples. We identified isoforms with expression changes over the differentiation time course, 
including cases of isoform switching events. We highlight dynamically regulated isoforms 
previously implicated within vascular and EC pathways.  

This work represents to our knowledge the first-comprehensive long-read RNA-
sequencing atlas of differentiating ECs, at high splicing resolution. This work should serve as a 
resource for defining the genes and full-length isoforms potentially associated with 
developmental transitions.  

6.2 Results  

6.2.1 In vitro system to derive primordial endothelial cells from induced pluripotent stem 
cells (WTC11) 

We surmised that using time course derived long-read RNA sequencing data could 
expose dynamic isoform expression patterns correlated with primordial EC developmental 
trajectory. Such information would form the basis of an atlas representing temporal expression 
profiles (Figure 6.1A). To construct the database of isoforms associated with this process, we 
designed a tractable system in which samples were collected every day during primordial EC 
development to analyze isoform expression (Figure 6.1B). We used a previously established 
protocol to generate primordial ECs from iPSCs in five days (Nelson et al. 2021). Utilizing small 
molecules, we coaxed cells from a pluripotent state (Day 0) to primitive streak (Day 1) with 
addition of glycogen synthase kinase (GSK3). Mesodermal lineages (Day 3) were created with 
addition of basic fibroblast growth factor (bFGF), and finally, a primordial EC phenotype (Days 
4 and 5) was promoted via a combination of bone morphogenetic protein 4 (BMP4) and vascular 
endothelial growth factor A (VEGF-A) (Figure 6.1B). Additional details pertaining to cell 
culture can be found in 6.4 Methods.  

To confirm the progress of differentiation, we performed quantitative polymerase chain 
reaction (qPCR) analysis for gene markers associated with cell fate changes. We observed a 
decline in pluripotency genes (SOX2) while mesodermal and endothelial associated gene markers 
(TBXT (Brachyury protein), HAND1, CDH5 and VEGFR2) increased in their expression across 
differentiation (Qiu et al. 2020) (Figure 6.1C). Given that samples expressed the expected 
genetic markers associated with their differentiation stage, we proceeded to use these samples for 
Kinnex sequencing to generate a long-read RNA-sequencing dataset.  
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Figure 6.1 Use of an in vitro model of primordial endothelial cell differentiation from 
induced human pluripotent stem cells (WTC11)  
A. Rationale for studying isoforms involved in differentiation to establish a temporal database of isoforms 
B. Experimental design to generate temporal isoform expression profiles of differentiating primordial 
endothelial cells C. qPCR validation of genetic markers associated with cell fate establishment with 
pluripotency (SOX2), early mesoderm (TBXT), mesoderm (HAND1), early endothelium (CDH5, 
VEGFR2) 

6.2.2 Characterization of RNA-sequencing results  

We utilized Bambu (Chen et al. 2023) to quantify transcript expression between the 
multiple samples to generate a comprehensive gene and transcript count matrix to track changes 
in transcript expression (described previously in Chapter 5). We processed Kinnex data for 11 
samples (includes variable number of replicates of Day 0, 1, 2, 3, 4 and 5) and identified 60,000 
genes and 254,000 isoforms. In this case, the term “gene” refers to a region in which there is a 
pile-up of full-length reads that is non-overlapping with other pile-up regions. 

We wanted to ensure that Bambu quantification of the long-read RNA-sequencing 
PacBio data was accurately recapitulating expected gene marker expression. We performed an 
in-silico qPCR to focus on the genetic markers we utilized in the experimental qPCR to examine 
if gene expression from our constructed matrix matched similar trends. Overall, the Bambu 
derived gene matrix returned similar trends to those found experimentally (Appendix C: 
Supplemental Figure S1). 

We calculated the Pearson correlation to measure transcript expression reproducibility 
across replicates and days. We found very high reproducibility among replicates from the same 
day (R2~1) (Figure 6.3A). As differentiation progressed, we observed increased differences in 

B. 

C. 

A. 
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transcript expression profiles, as evidenced by the graduate decrease in correlation coefficients 
(Figure 6.3A). Samples were exhibiting transcriptomic differences distinct from the prior day 
while becoming more similar to the subsequent day (Figure 6.3A). Since this analysis is based 
on a differentiation time course from bulk samples, and not single-cell resolved, not all cells are 
transitioning simultaneously, we expected to see variation in the observed correlation 
coefficients between days and samples.  

We initially used Bambu as a quantification tool, but it also incorporates a novel 
discovery threshold to identify novel transcripts from long-read RNA-sequencing data. We 
identified 204 novel transcripts corresponding to 70 novel genes. These genes correspond to 
genomic regions without previous annotation within GENCODE. To provide a more detailed 
classification of the features leading to the transcript being classified as novel, we utilized the 
tool SQANTI3 (Pardo-Palacios et al. 2023) and further classified a total of 2,034 novel 
transcripts with 1,406 novel not in catalog (NNC) and 628 novel in catalog (NIC) corresponding 
to 1,187 genes. Overall, the known isoforms are in higher abundance than their novel isoform 
counterparts, but novel isoforms still are well represented within the data (Figure 6.2B).  

Driven by the goal to profile the isoform landscape in early ECs, we focused on the 
frequency of genes (counts per million (CPM) >1) expressing different numbers of isoforms. We 
observed a large portion of genes were expressing multiple isoforms, with 9,227 genes 
expressing more than one isoform (Figure 6.2C). We also faceted genes expressing multiple 
isoforms by individual day and observed similar distribution patterns (Appendix C: Supplemental 
Figure S2A). Over the time course, however, we noted fluctuations in the number of genes that 
expressed multiple isoforms (Appendix C: Supplemental Figure S2B) 

Next, we wanted to understand the types of splicing events (e.g., exon skipping) that were 
contributing to EC isoform diversity. We utilized the tool SUPPA (Trincado et al. 2018) to 
quantify splicing events from our Bambu-computed transcript expression. We observed a 
diversity of splicing patterns with a substantial proportion of genes expressing more than one 
splicing event type (Figure 6.2D). Skipped exons (SE) events were the most prevalent, followed 
by alternative 3; (A3) and 5’ (A5) splice site usage, while retained introns (RI) were the least 
common.  
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Figure 6.2 Characteristics of long-read sequencing 
A. Pearson correlation plot comparing the relationship among replicates over the differentiation time 
course B. Distribution of the known and novel isoforms C. Distribution of the number of genes 
expressing multiple isoforms D. The breakdown of the number and type of splicing patterns exhibited 
(A3 = Alternative 3’ splice site, A5 = Alternative 5’ splice site, RI = Retained intron, SE = Skipped 
exon). 

6.2.3 Profiling dynamic isoform expression patterns  

Given the sheer number of isoforms profiled, we needed a systematic way to measure 
isoform changes that were the most significantly different over the time course. Gene-level 
expression analysis does not capture transcript-level changes that may be the result of alternative 
splicing (Marques-Coelho et al. 2021). We employed two complimentary metrics to quantify 
dynamic isoform changes: differential transcript expression (DTE) and differential transcript 
usage (DTU) (Figure 6.4A). For cases of DTE, we are measuring changes in overall transcript 
expression (counts per million, CPM) across conditions, identifying scenarios where the total 
expression of the isoform is changing (Figure 6.4A). For cases of DTU, we are measuring 
changes to the proportion of an isoform relative to others within the same gene, measuring how 
isoform usage shifts over time, even if the total expression remains constant (Soneson et al. 
2016) (Figure 6.4A) 

To ascribe a measure of statistical confidence in the isoforms that are differentially 
expressed across time, we used the samples with biological replicates (Day 0, Day 3, and Day 5). 
To identify cases of DTE occurring across these three timepoints, we used the time-series 
analysis function in the edgeR package (Robinson, McCarthy, and Smyth 2010). This analysis 
aided in identification of isoforms with dynamic changes across time.  
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To uncover specific patterns of isoform expression changes, we first filtered for isoforms 
exhibiting some statistically significant change in expression across any of the timepoints. We 
filtered for the top 500 isoforms identified at a false discovery threshold (FDR) less than 0.01 
and performed hierarchical clustering on those expression values.  

Two distinct clusters emerged. The members within cluster 1 represented isoforms whose 
expression gradually increased in concordance with EC development, while cluster 2 included 
isoforms with high expression that gradually decreased (Figure 6.4B). For genes in the identified 
clusters, we performed gene ontology (GO) enrichment, revealing that genes within these 
clusters generally correspond to developmental and metabolic pathways (Appendix C: 
Supplemental Figure S3).  

We also performed time-series analysis on the gene-level expression patterns for Day 0, 3 
and 5 to measure differential gene expression (DGE). We observed clustering patterns similar to 
those seen in the isoform expression results (Appendix C: Supplemental Figure S4A). Overall, 
the overlap of genes showing both DGE and DTE were low, as previously reported , suggesting 
that gene and splice regulation are orthogonal processes (Appendix C: Supplemental Figure S4B) 
(W. Li et al. 2016).  

Next, we were interested in analyzing isoform changes for genes associated with EC 
identity. We used the PanglaoDB database (Franzén, Gan, and Björkegren 2019) to compile a list 
of genes that have been previously observed via single cell RNA-seq experiments in mouse and 
human, specifically expressed in EC populations (N=195). Overall, we found 38 EC-specific 
genes that had isoforms exhibiting DTE (Appendix C: Supplemental Figure S5). To specifically 
investigate isoform switching, we filtered the list to include genes with at least two isoforms, 
aiming to capture cases where one isoform’s expression increases while another decreases, 
reflecting switches in ratios. Within this group, we found 28 EC-relevant genes expressing 
multiple isoforms and dramatically shifting in their fractional expression (Figure 6.3C).  
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Figure 6.3 Dynamic isoform patterns observed during primordial EC differentiation.  
A. Visualization of the difference between differential transcript expression (DTE) and differential 
transcript usage (DTU) cases used to profile isoforms systematically within this study B. Hierarchical 
clustering of the expression values (CPM) for the top 500 isoforms at FDR of less than 0.01 identified to 
have differential transcript expression profiles identified via dynamic expression analysis. C. Endothelial 
relevant genes with 2 or more isoforms identified to have DTE with their relative expression changes 
during differentiation 

 

6.2.4 Differential transcript usage cases are more sensitive to genes with more isoforms  

We next turned our attention to profiling isoforms that represented cases of DTU. Here 
we used spline fitting curves to model isoform expression changes across timepoints, to identify 
isoforms with statistically significant changes in their ratios (i.e., fractional abundance). We 
found 500 isoforms exhibiting DTU at a False Discovery Rate (FDR) threshold of <0.01. We 
found that this group of DTU isoforms profiled genes with several isoforms, suggesting this 
method is sensitive to minute changes in isoform expression fractions (Appendix C: 
Supplemental Figure S6A). Between the DTE and DTU analysis we found a small overlap (22 
genes versus 416 genes in total for DTU and 381 in total for DTE) (Appendix C: Supplemental 
Figure S6B), suggesting these methods capture distinct regulatory mechanisms.  

6.2.5 Visualizing the effects of isoform dynamics 

For the isoforms we profiled, we wanted the ability to visualize how the usage of 
different isoforms relate to potential molecular effects, such as differential presentation of 
functional elements such as protein structural domains or active sites (Vitting-Seerup and 
Sandelin 2019). To achieve this, we utilized the transcripts collected via Kinnex as input to build 

A. 

B.  

C.  Clustered expression of endothelial relevant genes with 
2 or more differentially expressed isoforms (DTE)

Clustered expression of differentially expressed 
isoforms (DTE)

Cluster 1 consisting 348 isoforms

Cluster 2 consisting 117 isoforms
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a custom University of Santa Cruz (UCSC) Genome Browser to enable visualization of the full-
length transcripts identified and used existing genome features on the browser to associate 
regions on the collected transcript isoforms to corresponding protein domains. Obtaining 
dynamic vantage of transcripts within a one-dimensional view is difficult, however we focused 
on identifying the most highly expressed isoform for a gene (major isoform) on Day 0, 3, and 5 
and color coded the major isoform for each day to observe isoform switching events 
(https://genome.ucsc.edu/s/emilyfwatts/madison). Such information can support hypotheses for 
how one isoform accomplishes a distinct function.  

First, we looked at isoforms for the vascular endothelial growth factor A (VEGF-A) gene 
due to its well characterized splicing patterns that influence states of proangiogenic and anti-
angiogenesis (Farrokh et al. 2015). Within our dataset we found proportions of isoforms 
changing (Figure 6.4A). When looking at the transcript structure we were able to see the 
dichotomy of isoforms denoted by the inclusion or lack of inclusion of exon 7 corresponding to 
the platelet derived growth factor domain responsible for accomplishing its distinct functions 
(White and Bix 2023) (Figure 6.4B).  

 

 

 

 

 

 

 

 

https://genome.ucsc.edu/s/emilyfwatts/madison
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Figure 6.4 Dynamics of VEGF-A isoform expression  
A. Stacked bar-plot of VEGF-A isoforms with respective ratios of isoforms over time B. UCSC genome 
browser track of the transcripts collected for VEGF-A from Kinnex sequencing, and the corresponding 
domains and protein features mapped to the transcript with the major isoforms highlighted in magenta and the 
region of the transcripts demonstrating the change in the platelet derived growth factor domain in orange (only 
a subset of transcripts shown for visualization purposes)  

We next turned our attention to EC-relevant genes with isoforms having DTE, as these 
isoform switches represented robust changes in their expression. We looked at the gene ICAM2, 
noting its involvement with maintaining EC junctional integrity (Amsellem et al. 2014). We 
observed on Day 0 a shorter transcript inclusive of the signal peptide domain. On Days 3 and 5, 

A. 

B. B. 
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we observed the major isoform is modified to include an extracellular and immunogloloin 
domain (Guerra-Espinosa et al. 2024). We looked at the isoform expression patterns for ICAM2 
identified from our positive control from the purified EC Day 5 population observing similar 
trends in isoform ratios (Appendix C: Supplemental Figure S7).  
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Figure 6.5 Differential transcript expression for the gene ICAM2  
A. Stacked bar plot for ICAM2 demonstrates dramatic switches in isoform ratios during differentiation. B. 
Browser track image of ICAM2 transcripts identified demonstrating changes in the major isoform by day 
corresponding to changes within the signal peptide domain and the gain of multiple domains for the 
isoforms on Day 3 and Day 5.  

A. 

B. 
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6.2.6 Isoform dynamics of transcription factors and splice factors  

Understanding that gene and isoform expression networks are greatly influenced by 
regulators working hierarchically, we focused on isoforms of transcription factors (TFs) and 
RNA-binding proteins (RBPs) found differentially expressed within the data. Overall we 
observed isoform dynamics associated with the serine and arginine rich splicing factor 5 
(SRSF5), known to be involved in the splicing of the VEGF-A (Di Matteo et al. 2020) finding a 
large group of isoforms identified (Farrokh et al. 2015) (Appendix C: Supplemental Figure S8). 
We then turned to identifying dynamically regulated transcription factors. We observed the ETS 
transcription factor 2 (ETV2) to have DTE with isoforms differentially regulated between days 
(Appendix C: Supplemental Figure S9), noting the importance of this gene in regulating and 
promoting EC identity (Gong et al. 2022).  

6.3 Discussion  
Characterizing the landscape of isoforms involved in differentiation and development is a 

prerequisite towards understanding their contributions in modulating cell fate. To elucidate the 
isoform landscape associated with primordial EC differentiation, we sequenced and quantified 
isoform populations over the course of a six-day differentiation process from a pluripotent to EC 
population, collecting samples across time, identifying two groups of isoforms associated with 
EC differentiation. We identify a set of endothelial-relevant genes within this set, bringing 
attention towards the unexpectedly diverse isoform landscape in ECs, even for well-studied 
markers.  

This dataset should serve as a resource for expressed isoforms underlying early EC 
differentiation and facilitate further functional studies to shed light on the importance of these 
isoforms in contributing to EC state. Functional testing could include in vitro studies to test for 
causal roles of an isoform, such as using molecular biology approaches to express or ablate 
certain isoforms and measuring its ability to promote or hinder differentiation. While this study 
has delineated the transcriptome, additional support for a transcript’s biological relevance would 
be bolstered by protein-level expression evidence such as those provided via mass-spectrometry-
based proteomics. Early methods we developed, such as “long-read proteogenomics” (Chapter 2 
and Chapter 3) should support these efforts.  

6.4 Methods  

6.4.1 Stem cell culture  

Undifferentiated human induced pluripotent stem cells (hiPSCs): hiPSCs (WTC-11 iPSC 
line GM25256, NIGMS Repository number) were obtained from Coriell through the Materials 
Transfer Agreement with the University of Virginia from Dr. Hirschi’s lab. WTC11 cells were 
thawed from CryoStor (Stem Cell Technologies, catalog #07932) per manufacturer's instructions 
and replated into Matrigel (Corning) basement membrane-coated wells with mTESR Plus (Stem 
Cell Technologies, catalog #100-0276) and ROCK (Stem Cell Technologies, catalog #73802). 
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WTC11 cells were cultivated utilizing mTESR Plus media on Matrigel coated plates with media 
changes following manufacturers' recommendations. Cells were cultured to maintain 
undifferentiated cell populations and passaged when confluent using ReLeSR (Stem Cell 
Technologies, catalog #100-0483) per manufacturer guidelines. Cells were replated at their 
desired density on Matrigel-coated dishes.  

6.4.2 Stem cell (WTC11) derived primordial endothelial cells 

WTC11 derived primordial endothelial cells: WTC11 cells were seeded with mTESR 
Plus media onto 6-well dishes or 10 cm Matrigel coated plates for primordial endothelial cell 
differentiation as described in Nelson et al., J Vis Exp 2021. Twenty-four hours after initial 
plating of WTC11 cells, on Day 0, media was aspirated and replaced with StemDiff APEL 2 
(Stem Cell Technologies, catalog #05275) differentiation media containing 5μM GSK3i 
(CHIR99021, Reprocell, catalog #04-0004). On Day 1 media was aspirated and replaced with 
differentiation media containing 50ng/mL essential fibroblast growth factor (bFGF, R&D 
Systems, catalog #233FB025). For Days 3, 4, and 5 media was aspirated and replaced with 
differentiation media containing 25ng/mL of bone morphogenetic protein 4 (BMP4, R&D 
Systems, catalog #314BP010) and 50 ng/mL of vascular endothelial growth factor VEGF (Fisher 
Scientific). Cells were collected from Days 0-5 of the differentiation protocol using Accutase 
(ThermoFisher) per manufacturer guidelines and pelleted. Three biological replicates were 
obtained from Day 0 with Day 0-1 and Day 0-2 collected from a 10 cm dish and Day 0-3 from a 
6-well dish. Three biological replicates were collected as described above for Day 5 with Day 5-
1 and Day 5-2 derived from a 10 cm dish and Day 5-3 from a 6-well plate. Two biological 
replicates were obtained from Day 3 from 10 cm dishes. Days 1, 2 and 4 were all collected from 
10 cm dishes. On average, for each sample, RNA was extracted from 1 X 10^6 cells using a 
RNeasy (Qiagen) kit with quality accessed via Bioanalyzer. In each RNA sample, Spike-In RNA 
Variants (SIRVs, Lexogen) were reconstituted per suggested manufacture guidelines and added 
to samples with Day 0 biological replicates receiving E1 SIRVS, Day 5 E2 and all other Days 
receiving S4. Master mixes of RNA and SIRVs were split into 4 tubes for parallel long-read 
PacBio Revio sequencing and short-read sequencing on the NovaSeq at 150bp.  

6.4.3 qPCR gene marker analysis  

Total RNA was isolated according to RNeasy (Qiagen, cat 74004) protocol from aliquots 
of 500,000 - 5 million cells. The concentration of the RNA was assessed by Nanodrop. RNA was 
converted to cDNA using the Iso-Seq™ Express Template Preparation for Sequel® and Sequel 
II Systems protocol. RNA concentrations were normalized to the lowest concentration of RNA in 
batch.  

After adding 2 µL of NEBNext RT primer mix, each sample was incubated at 72°C for 5 
minutes. We combined NEBNext Single Cell RT Buffer, NEBNext Single Cell RT Enzyme Mix, 
and water in the following scheme to create a Master mix:  

- NEBNext Single Cell RT Buffer - ((5 µL * 0.1) * # of RNA Samples)  
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- NEBNext Single Cell RT Enzyme Mix - ((2 µL * 0.1) * # of RNA Samples)  
- Water - ((3 µL * 0.1) * # of RNA Samples)  

The Master mix was vortexed, spun down, and was distributed in 10 µL aliquots to the 
samples after primary incubation. With 10 µL of the Master mix distributed to each sample and 
mixed, samples were incubated at 42°C for 1 hour and 15 minutes. After, 1 µL of NEBNext 
template switching oligo (TSO) was immediately added to each sample and mixed. Samples 
were incubated for another 15 minutes at 42°C.  

For cDNA amplification, followed the Iso-Seq™ Express Template Preparation protocol 
based off the following scheme before distributing 80 µL of the resulting mix to each sample:  

- NEBNext Single Cell cDNA PCR Master Mix - ((50 µL * 0.1) * # of RNA Samples)  
- NEBNext Single Cell cDNA PCR Primer - ((2 µL * 0.1) * # of RNA Samples)  
- Water - (28 µL * (# of RNA Samples * 0.1)  

Primary mixture was distributed to each sample and vortexed then placed in a thermal cycler 
to begin the Iso-Seq™ Express Template Preparation protocol. The PCR included an initial 
denature step at 98°C for 45 sec, 14 cycles of denaturation at 98°C for 10 sec, annealing at 62°C 
for 15 sec, and extension at 72°C for 3min. Final Extension was at 72°C for 5min.  

cDNA was cleaned via ProNex Size-Selective Chemistry (Promega, cat NG2001). 
Samples were eluted with 32.5µL of Elution Buffer (Promega, cat NG116A). Concentration of 
cDNA was measured on Qubit (Invitrogen, dsDNA High Sensitivity).  

qPCR was run on a QuantStudio 6 Real-Time PCR system (Applied BioSystems catalog 
#4485691). First, we prepared a stock of primers: 5 µL of 1x Power-up SYBR Green Mastermix 
(ThermoFisher, catalog #A25741) and the second stock of cDNA was 5 µL of 1x Power-up 
SYBR Green Mastermix that contained 38 ng of cDNA. The 2 stocks were mixed together in 
MicroAmp Optical 384-well plates (Applied Biosystems, catalog # 4309849), centrifuged, and 
sealed.  

The final mixture contained 3.33ng of cDNA per reaction, 1x Power-up SYBR Green 
Mastermix (ThermoFisher, catalog #A25741), 0.5uM of each primer in 10 µL of total volume. 
Amplification began on the thermal cycler. Collected data was analyzed and normalized 
according to the GAPDH sample run in the experiments as a control. Then we normalized every 
sample from different time points to Day 0 using delta CT (ΔΔCT). Fold change was calculated 
using 2^(–ΔΔCT).  

6.4.4 SIRV preparation and sample aliquoting  

Extracted total RNA was RNA was analyzed on an Agilent Bioanalyzer to confirm RNA 
integrity for downstream analysis. We consistently observed an RNA integrity value (RIN) value 
of ~10 for all samples. After assessment of quality via Bioanalyzer, Spike-In RNA Variants 
(SIRVs, Lexogen, catalog #025.03 and 025.03) were prepared and reconstituted per suggested 
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manufacture guidelines and added to samples with Day 0 biological replicates receiving E1 
SIRVS, Day5 E2 and all other Days receiving S4. Master mixes of RNA and SIRVs were split 
into 4 tubes for parallel long-read PacBio Revio sequencing and short-read sequencing on the 
NovaSeq at 150bp.  

6.4.5 Short-read RNA sequencing 

Aliquots were obtained as described above from the master mixes made with the total 
RNA and SIRV spike-ins. Kapa RNA HyperPro Kits (catalog # 08098093702) were used for 
RNA sequencing library preparation. Resulting libraries were sequenced on the NovaSeq at 
150bp.  

6.4.6 Kinnex long-read RNA sequencing library preparation and long-read RNA 
sequencing run  

PacBio (Kinnex) data were collected from an aliquot of the extracted total RNA collected 
from the SIRV containing master mixes as described above. From this RNA, cDNA was 
synthesized using the Iso-Seq Express kit (PacBio). Approximately 300 ng of cDNA from each 
sample was barcoded and equally pooled. Samples were subjected to Kinnex multiplexing to 
generate Kinnex concatemers for final SMRTbell molecule generations. Resulting libraries were 
sequenced on the Revio.  

The samples were demultiplexed bioinformatically using pb-demux and processed using 
Pigeon. The intermediate files (mapped.bam) from Iso-Seq were used for Bambu processing.  

6.4.7 Purified Day 5 primordial endothelial cell long-read RNA-sequencing data 
collection  

WTC11 cells were subjected to the primordial endothelial cell differentiation described 
above. Cells were harvested on Day 5 and were sorted using the FACS Melody sorter to select 
for cell populations that were CD31+CD45- FACS sorted endothelial cells. These cells were then 
processed via the PacBio Iso-Seq protocol and subjected to sequencing on the Sequel IIe 
capturing ~ 3 million CCS reads. Resulting files were analyzed via Iso-Seq to generate the 
distinct set of transcripts and genes.  

6.4.8 Transcript isoform classification  

BAM files were generated via Iso-Seq from the Kinnex-derived long-read sequencing 
data and were used as input into Bambu to generate the set of distinct full-length transcripts and 
associated genes. Additional classification was performed via SQANTI3 version 5.2 to annotate 
Bambu generated GTF files. The inputs for SQANTI3 analysis include the GENCODE version 
35 annotations (i.e., GTF file) and the human reference genome (GRCh38, only canonical 
chromosomes chr1-22, X, Y) as well as the Bambu generated GTF file. The SQANTI3 outputs, 
isoform and junction “classification” files were subjected to additional analysis using custom R 
scripts.  
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6.4.9 Generation of UCSC genome browser tracks  

We used SQANTI to generate a CDS (file of the genomic regions) of the genes and 
isoforms quantified via Bambu. Common gene names were replaced using a custom script 
(https://github.com/efwatts/LRP_Troubleshooting/tree/main/15_accession_mapping). In order to 
assess changes in isoform expression we generated 3 separate GTF files to denote the most 
abundant isoform (“major isoform”) for a gene at Day 0, 3, and 5 and added associated color 
shading based off CPM. Both the GTF files for each day and associated CDS files were uploaded 
to the UCSC genome browser using custom tracks.  

6.4.10 Data analysis and plot generation  

All downstream analysis was performed via custom R scripts and Bioconductor available 
packages. Custom scripts were made via R and can be found at this repository 
https://github.com/sheynkman-lab/madison_mmehlferber/tree/main/scripts. 

6.4.11 Availability of materials 

The RNA-sequencing data can be found at 
https://downloads.pacbcloud.com/public/dataset/MAS-Seq-bulk-2023-WTC11/. All other data 
files used during this analysis can be found at Box 
(https://virginia.box.com/s/9zs2kntwppncozjuvyzofixky419png5).  

  

https://github.com/efwatts/LRP_Troubleshooting/tree/main/15_accession_mapping
https://github.com/sheynkman-lab/madison_mmehlferber/tree/main/scripts
https://downloads.pacbcloud.com/public/dataset/MAS-Seq-bulk-2023-WTC11/
https://virginia.box.com/s/9zs2kntwppncozjuvyzofixky419png5
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Chapter 7 Concluding remarks and future 
directions  
The field of isoform biology is an exciting and rapidly evolving research area. From the 

discovery of isoforms spearheaded by Phil Sharp and colleagues in 1970, to tracking splice event 
expression with RNA-sequencing technologies, and most recently, associating specific isoform 
aberrations as indicators of disease, the field has seen blossoming advances (Berget, Moore, and 
Sharp 1977; Z. Wang, Gerstein, and Snyder 2009; Cooper, Wan, and Dreyfuss 2009). A 
landmark finding in this field was the discovery in 2008, as evidenced through RNA-sequencing 
approaches, that over 95% of human protein coding genes undergo the process of alternative 
splicing to yield multiple isoforms with potentially distinct functions (E. T. Wang et al. 2008; 
Pan et al. 2008). Since this discovery, researchers have continued to inform isoform discovery 
with recent predictions indicating that there are at least 100,000 alternative transcripts, with 
active research increasing this number (Jiang and Chen 2021). Here, I describe my contributions 
to the isoform biology field which included improving the ability to profile and resolve isoforms 
and their associated protein isoforms. I applied a long-read proteogenomic method to construct 
an isoform atlas within ECs, recognizing that such knowledge could elucidate the intricacies of 
EC identity, enabling the diverse and critical functions within the cardiovascular system.  

I first discussed my contributions in developing an integrated approach to improve 
identification of isoforms and linking corresponding protein-level evidence for such isoforms 
through the development of the long-read proteogenomics method in Chapter 2. We leveraged 
the resolution of long-read RNA-sequencing to detect intricate AS events, overcoming 
limitations of short-read RNA-sequencing for isoform discovery. In tandem with mass-
spectrometry proteomics, we created an open-source computational pipeline to generate sample-
specific isoform databases to track isoforms at both the transcriptome and proteome level. As 
part of this work, I demonstrated the discovery of novel protein isoforms by identifying peptides 
mapping to AS regions of novel transcripts, providing protein-level evidence of novel protein 
isoform events.  

In Chapter 3, I applied this integrated long-read proteogenomic (LRP) method onto human 
umbilical vein endothelial cells (HUVECs) demonstrating the versatility of the LRP approach 
towards characterizing the isoform landscape in different tissue types. This work represented the 
first application of the approach in supporting isoform discovery in ECs. Despite the well-studied 
status of HUVECs due to their experimental tractability to model vascular phenotypes, I 
documented novel protein isoform events for key genetic markers of EC identity, including 
CDH5 and PECAM1. This work demonstrated the ability of the long-read proteogenomic 
approach to profile unique splicing patterns, even for very well characterized genes.  
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In Chapter 4, I reviewed how isoforms derived from AS change during cell development. I 
explored the splice repertoire of isoforms that govern distinct developmental states as well as 
their involvement in modulating both gene and splice regulatory networks, describing the 
resulting transcriptional and splicing networks they mediate. I concluded that cell fate regulation 
is deeply interconnected within an integrated network and that further studies delineating the 
factors involved in development is important to understand how a cell arrives at a final cell state.  

With the knowledge that the use of a particular isoform can dictate cell fate, I wanted to 
characterize isoforms involved in the establishment of primordial ECs, the precursors to mature 
ECs. I utilized a tractable induced pluripotent stem cell system to model their development and 
collected time course RNA-sequencing data so I could interrogate day-to-day changes in global 
isoform expression. Capitalizing on increases in throughput enabled by PacBio long-read RNA-
sequencing, I assessed this platform for the purpose of multi-sample isoform characterization in 
Chapter 5. I described bioinformatic approaches for analyzing multiple sequencing datasets, 
extending isoforms studies from single samples to multi-sample dynamics.  

Encouraged by the ability of this new technology to further enhance isoform 
characterization, I utilized this technology in Chapter 6 to describe isoform dynamics during the 
differentiation of primordial ECs. I profiled various approaches to capture changes in isoform 
expression patterns temporally. I highlight endothelial-relevant genes having dynamically 
expressed isoforms. I provided an approach to visualize the structure of isoforms and those 
changing over the time course. While this study illuminated the extensive isoform landscape 
associated with primordial EC development, associating a specific function to an isoform 
remains an ongoing effort. However, the study serves as an atlas representing the rich isoform 
landscape present in early ECs. 

7.1 Future Directions:  
As RNA-sequencing technologies continue to evolve, resolution of the complex isoform 

landscape within the human genome will continue to advance. Recently long-read RNA-
sequencing was chosen as the method of the year (“Method of the Year 2022: Long-Read 
Sequencing” 2023). With the knowledge that isoforms operate in tissue specific manners, open 
source databases such as GTEx provide a resource of various tissue transcriptomes (GTEx 
Consortium 2013). However, databases highlighting temporal transcriptome changes associated 
with arrival at a cell fate remain limited. Recognizing that the data discussed in this thesis 
primarily surrounds bulk transcriptomic datasets, it is important to note that the evolution of 
single-cell long-read RNA-sequencing offered through PacBio, offers isoform resolution at 
individual tissue level.  

As the cost of sequencing throughput continues to decrease, knowledge of the complexities 
of the human genome will continue to be elucidated. With the sheer number of isoforms reported 
in long-read RNA-sequencing studies, the question shifts to the plausibility of their existence and 
associated function (Weirick et al. 2016). Recent studies have suggested that AS provides 
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regulation by creating unproductive transcripts or transcripts that undergo nonsense mediated 
decay (NMD). Such events suggest a limited role of AS in contributing diversity to the proteome 
(Fair et al. 2024). Therefore, efforts to comprehensively profile the proteome to parse the 
relationship of the transcriptome to the proteome will remain important. Mass-spectrometry 
based proteomics remains the gold standard approach. However, traditional MS data dependent 
workflows return limited numbers of isoform specific peptides to support the existence of protein 
isoforms (Korchak et al. 2024). To increase versatility of mass-spectrometry for such 
applications, targeted mass-spectrometry strategies have gained traction. In these advanced 
targeting methods, candidate peptides of interests are identified, representing potentially novel 
regions, and targeted by the mass spectrometer to acquire spectra from the peptides of interest 
(Reed et al. 2022; Yu et al. 2020; Stopfer et al. 2021). This approach can be used to isolate and 
confirm the presence of isoform-specific peptides. Another approach that might support protein 
detection is single molecule protein-sequencing (Alfaro et al. 2021). This method does not 
provide global protein sequence coverage but rather focuses on individual proteins, identifying 
their amino acid sequences (Floyd and Marcotte 2022).  

However, researchers continue to confound the activity of detecting an isoform and 
associating a function. These issues are not trivial, and very few studies currently exist offering 
this full circle perspective globally (Shaw et al. 2022). Within the isoform field there is this 
natural desire to utilize the power of isoforms to support precision medicine techniques inspired 
by the knowledge that aberrant splice patterns can separate healthy and diseased tissues. 
Comprehensive studies illustrating the direct role of individual isoforms are needed for the 
isoform biology field to demonstrate its applicability to precision medicine.  

Early efforts are beginning to screen isoform functions at high-throughput. Studies such as 
those employed by Dr. Julia Joung et al. (Joung et al. 2023) cloned libraries of transcription 
factors into stem cells to create an expression atlas associating specific roles of transcription 
factors with cell phenotypes. Advancements in gene-editing platforms such as Cas13 provide 
precise modulation of RNA molecules, and this could be used to edit isoforms (Abudayyeh et al. 
2017).  

It is important to note the expense and resource-intensive nature of isoform-resolved panel 
studies. Supplementing these experimental efforts, computational approaches can predict 
functions of proteins with high accuracy (Mishra, Muthye, and Kandoi 2020). Tools such as 
AlphaFold, winning the 2024 Nobel Prize (Callaway 2024) have been applied to predict accurate 
protein structures informing how a transcript structure could alter a protein domain (Abramson et 
al. 2024). Thus, predictive tools could alleviate the burden of resource-intensive experimental 
approaches to study isoforms. Additional computational tools, such as isoform functional 
annotation databases, are gaining traction allowing researchers to associate a genetic pathway 
with an isoform (Ferrer-Bonsoms et al. 2020).  
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These studies emphasize the need to embrace systems-level perspectives to connect the 
multitude of networks contributing to a biological system to draw true meaning (Hood et al. 
2004). With advances in technology comes the responsibility to utilize it effectively to support 
and inform the biomedical community. Therefore, for the isoform biology field to reach its full 
potential requires collaboration between the technology development, basic science and the 
clinical community. Welcoming these approaches could yield breakthroughs in the field of 
precision medicine. With this attitude, I am optimistic that an isoform might be discovered and 
utilized as the therapeutic driver to treat a patient cohort in the next decades.  

Finally good science comes not only from the impact one has on the biomedical 
community but the ways in which one leads that team to discovery of approaches that take the 
leap from the bench to the bedside. Strides emphasizing reproducible and open access science is 
the key to contributing to long-lasting and impactful medical breakthroughs (M. D. Wilkinson et 
al. 2016).  

In conclusion, I detail here my efforts related to better profiling isoform landscapes, 
especially as it relates to contributing to the EC atlas. I illustrate the benefits of a sample matched 
database for isoform discovery highlighting the ability to profile novel protein isoforms for 
previously uncharacterized splicing events. I demonstrate the applicability of utilizing time series 
RNA-sequencing experiments to study dynamic isoform populations and offer an approach to 
effectively analyze multidimensional sequencing data. And lastly, I hope one can appreciate the 
development of a comprehensive method of profiling isoforms with great versatility and utility 
for the larger biomedical community.  
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Appendix A: Supplemental Figures for Chapter 3 
The supplemental figures here pertain to the data within Chapter 3.  

 

 

Figure S1. Characterization of the HUVEC full-length transcriptome based on long-read 
RNA-seq data. (A) Distribution of transcript isoform length (B) Distribution of the transcript 
abundance (counts per million, CPM) (B) Distribution of all transcripts identified from the Iso-
Seq pipeline with abundance greater than one CPM. (C) Distribution of the abundances for the 
most highly expressed isoform for each gene, i.e., the major isoform. (D) Distribution of the 
abundances of the minor isoforms reported for all transcripts with CPM>1. 
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Figure S2. Characterization of novel isoform length as identified through long-read 
proteogenomics (A) Overall length in amino acids of the principal isoforms as defined by 
APPRIS (B) Overall length in amino acids of the major isoforms as defined within HUVECs (C) 
Comparison of the length in amino acids of identified novel isoforms (novel in catalog (NIC) and 
novel not in catalog (NNC)) against the APPRIS reference isoform. (D) Comparison of the 
length in amino acids of identified novel isoforms (novel in catalog (NIC) and novel not in 
catalog (NNC) against the “major isoform” reference isoform as identified within HUVECs.  
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Figure S3. Derivation of predicted protein isoforms to generate a HUVEC sample-specific 
database. (A) Schematic of protein database generation from long-read RNA-seq data. (B) 
Schematic of SQANTI Protein classification (C) Bar chart indicating the frequency of different 
protein isoforms based on novelty category.  
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Figure S4. Basic pH HPLC fractions for the HUVEC MS data collection. (A) UV trace of 
peptide elution from offline fractionation (range of fractions shown with dashed lines). (B) Total 
ion (black) and base peak (red) chromatograms from LC-MS analysis of peptides from 
representative fractions 7 and 17. Basic High Performance Liquid Chromatography (bHPLC), 
Extracted ion chromatogram (XIC), Nanoscale liquid chromatography coupled to tandem mass 
spectrometry (nano LC–MS/MS), milli-Absorbance Units (mAU).  
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Figure S5. Comparison of proteomic coverage when using the HUVEC sample-specific versus 
UniProt protein databases for MS searching. 
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Figure S6. Plectin (PLEC) gene evidenced by seven unique isoforms. Plectin (PLEC) gene in 
which MS analysis identified seven unique isoforms each evidenced by their own unique 
peptide.  
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Appendix B: Supplemental Tables for Chapter 3 
The supplemental tables here pertain to the data in Chapter 3 and can be found at: 
https://www.tandfonline.com/doi/suppl/10.1080/15476286.2022.2141938?scroll=top   

https://www.tandfonline.com/doi/suppl/10.1080/15476286.2022.2141938?scroll=top
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Appendix C: Supplemental figures for Chapter 6  
The supplemental figures here pertain to the data within Chapter 6.  

 

 

 

Figure S1: In silico-derived qPCR of genetic markers associated with cell fate markers 
from long-read RNA-sequencing derived gene matrix  
Long read RNA-seq quantification results for genetic markers associated with cell fate 
transitions. There is a decrease in pluripotency genes (SOX2) accompanied by an increase in 
expression of early mesoderm genes (BRACHYURY) and mesoderm (HAND1) followed by 
upregulation of genes associated with early endothelia (CDH5, VEGFR2).  
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Figure S2: Number of genes expressing multiple isoforms by Day 
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Figure S3: GO enrichments for the parental genes with their isoforms having DTE. Gene 
ontology of the genes comprising the two clusters of genes with isoforms having differential 
transcript expression. 
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Figure S4: Gene dynamics and clustering. A. Clustering of gene-level expression profiles for 
those genes with differential expression over the time course B. Overlap of the genes having 
differential gene expression (DGE) and the genes with isoforms having differential transcript 
expression (DTE).  

 

 

 

 

 

 

 

 

 

 

 

 

B.A.
Clustered expression of differentially expressed genes 



 
  

108 

 

Figure S5: Endothelial-relevant genes with isoforms classified with differential transcript 
expression (DTE). Gene-level expression changes for the DTE EC-relevant genes. 
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Figure S6: Number of isoforms profiled between differential transcript expression (DTE) 
and differential transcript usage (DTU) approaches. A. Number of genes with multiple 
isoforms for DTE vs. DTU approaches B. Overlap of genes exhibiting DTE vs. DTU.  
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Figure S7: Purified primordial endothelial cell Day 5 isoform ratios for the gene ICAM2. 
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Figure S8: Isoform dynamics for the splice factor SRSF5 in ECs. A. The splicing factor, 
SRSF5, regulates VEGF-A isoforms. It is found to have dynamic isoform expression changes 
observed over differentiation. B. Browser track for SRSF5 isoforms with the major isoforms 
outlined in magenta.  
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Figure S9: Isoform dynamics in transcription factor ETV2 in ECs. A. Stacked bar plot for 
the gene ETV2, which is a known regulator that promotes endothelial cell function B. UCSC 
genome browser highlighting the major isoform for ETV2 outlined in magenta for each day. 
Noting the reduction in expression of ETV2-206 during differentiation. 
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