
Automating Summer Camp Logistics: Building a Custom Schedule Generator
and Attendance System for ChugBot

CS4991 Capstone Report, 2024

Jonah Werbel

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

jwerbel@virginia.edu

ABSTRACT
 Camp Ramah in New England used many
outdated systems for camper management,
often utilizing paper tools resulting in
unmaintainable records and extra work for
staff. Using a pre-existing custom software
camp developed as the basis, I worked with
year-round staff to identify ways to expand its
capabilities in daily camp management. After
collecting a set of requirements, I designed and
developed solutions from scratch. My work
built upon the existing work which required
my familiarization with the existing code (to
understand conventions and prior design
choices): PHP (the language used throughout),
MySQL (the database system), Docker (used
for local testing), and some Amazon Web
Services (AWS) systems (for deployment).
The solutions were designed, developed, and
operational before the camp season began and
they performed well during their inaugural
season with consistent, near-daily usage
streamlining camp operations. Stakeholder
feedback will continue to guide updates and
adjustments as I continue my software
development role with camp.

1. INTRODUCTION
 A picture-perfect scene is unfolding at
Camp Ramah in New England (CRNE,
colloquially known as “Ramah”). Children are
happily playing sports, swimming and doing
crafts. Counselors are joyfully leading
electives and planning programs for their

campers. Everyone is having a wonderful day
at their home away from home. Suddenly, all
counselor phones buzz. “RED ALERT,” a text
message reads. “CAMPER MISSING.”
 Sending this message is one of the worst
nightmares of Ramah leadership, who far
prefer working to provide a traditionally fun
“camp” summer where children make
memories, try new things, and have fun.
However, they are responsible for ensuring the
safety of the campers, guaranteeing each one
makes it home at the end of the summer.
 One important step in keeping campers
safe is verifying they are where they are
supposed to be. Both in case of emergency and
to dissuade trouble, being present keeps eyes
on campers and enables quick responses if
necessary. I implemented a mechanism to
generate individual schedules for campers,
telling kids where they should be at any time.
Additionally, I created an online, real-time
attendance module so activity leaders could
verify all kids are present and other staff could
check the status of their campers. Together,
individual schedules give campers the agency
to be present and permission to behave, while
the attendance system enables staff to verify
camper presence and respond to any absences.

2. BACKGROUND
At Ramah, campers are given the option to

choose from several elective options. Each
camper ranks their top six choices for three
daily periods. Until 2015, the ranking and

assigning process was done manually. This
time-consuming process was eliminated when
a parent created an automated system called
“ChugBot.” The Hebrew word chug, referring
to a class or activity, is used at camp to
describe elective periods. Campers log in to
rank their preferences for each period.

3. RELATED WORKS
 The method for creating individual
schedules for campers is based on the idea of a
mail merge. Wempen (2008) discusses mail
merges and how they generate personalized
documents based on a template using a set of
structured data. Her book further describes
using Microsoft Word to perform one. I
extended this idea by creating a module to
build campers’ customized schedules. After
creating the template and inserting proper tags,
an individual schedule is automatically made
for each camper with their information.
 Apandi & Mohamed (2012) provided
critical insight into necessary components for
a rudimentary attendance system with their
development of a classroom system. There is a
need for marking and viewing attendance, in
this case with different user roles. I also
needed to ensure attendance records were
easily digestible, communicating quickly who
was present or absent. Furthermore, I needed
to consider what the intended action would be
upon learning the attendance records. Their
system generated a report by student; mine
generated a report by elective period to easily
distribute to other staff members.

4. PROJECT DESIGN
 Extending ChugBot to include both a
schedule builder and attendance module
required a significant amount of work but
allowed me to make many design choices and
decisions. I consulted with camp staff to
determine their priorities but largely relied on
my own understanding of camp operations to
develop a set of requirements. I implemented
each part iteratively, providing updates as
work progressed before releasing my code to

be reviewed. Finally, I deployed the updates to
live ChugBot instances.

4.1 Schedule Builder
 The core requirement for the schedule
builder was to provide campers with paper
copies of their elective assignments. From
experience, I know it is helpful for many
campers to have full schedules of the day,
allowing independence and knowledge of the
day. Therefore, I recognized the benefit of
allowing customization of the output, enabling
creation of individual schedules. As a result, I
understood how creating a mechanism to save
those templates for frequent usage would
minimize repetitive work for staff. The final
requirement is specific to operations at CRNE:
older campers train in one sport for a final
competition during a month-long session but
have different electives weekly. Elective
assignments are saved in the database by week
they begin, so I needed to include a way to
include assignments from multiple weeks.

4.1.1 Design Details
 The user begins by selecting the age group
they are generating schedules for, and if a
template was previously saved the user will
see an option to select it. The week to use
elective assignments from is also selected.
 The schedule template itself is typed into
a rich text editor below the other options.
TinyMCE enables users to type and format
text like standard document editors (n.d.) It
also interacts with the website, allowing me to
include buttons which automatically add
placeholders at the location of the cursor (e.g.
for name, bunk, electives, etc.) and to later
retrieve typed text as HTML (n.d.).
 Users needed the ability to override which
week certain information is retrieved from,
and a set of dropdowns are located below the
editor in an expandable window.
 When the template is ready and a user
generates schedules, a form is submitted to the
server. A SQL query is built to retrieve camper
information and their elective assignments (for

correct weeks). Then ChugBot loops through
each camper and replaces the placeholders in
the template with their information, adding the
resulting schedule to a viewable page. Printing
the webpage maintains page breaks between
each camper’s schedule for clarity.

4.1.2 Challenges
 The largest challenge of this feature was
designing the SQL query to retrieve camper
information and elective assignments and
letting it include assignments from different
weeks. I first made the query work for one
session, generating a new column per elective
in the resulting table. Then, I needed to specify
individual weeks to retrieve electives from. I
designed the query in a separate document,
testing it frequently using a test database in
Docker. Once the query worked, I needed to
write PHP code to build, execute, and use the
results from the query.
 The other challenge was how to print the
generated schedules. I originally planned to
create a PDF of the schedules to download or
print but struggled to find a good package to
create PDFs using PHP. Additionally, I could
not find a package which allows both English
and Hebrew characters. I instead wrote the
schedules to a new webpage and used CSS to
style it, hiding non-relevant features and
adding page-breaks after each schedule.

4.2 Attendance Module
 The attendance module replaced paper
attendance sheets. It needed to allow an
elective leader to sign in and mark which
campers are present, and separately let a unit
head sign in to view who is missing. Elective
leaders also must be able to update attendance
if kids show up late or go missing mid-activity.
It also needed to update if camper assignments
switch mid-week, and needed a way for the
administrator to indicate which week is
currently running. Most importantly, the entire
module needed to be simple to use, and the
website needed to work on a mobile phone.

4.2.1 Design Details
 I extended the existing admin login page
to work for two new user roles: elective leader
and unit head. I made one generic user for each
role with a shared password across staff for
flexibility. When those users sign in, their
default action is to either take attendance
(elective leader) or view attendance (unit
head). They are greeted by similar forms to
specify date, age group, and time of day, plus
elective leaders indicate the activity they run.
 After searching for their activity, elective
leaders see a list of enrolled kids. They select
a checkmark next to each present camper and
submit the record by pressing a button below
the camper list. If updating attendance,
campers previously marked present have their
checkbox automatically selected.
 Unit heads have two views available: by
activity (view currently missing campers) or a
historical matrix (view trends/patterns). Both
utilize consistent icons and coloring to indicate
if a camper is present, absent, or if attendance
was not taken for their activity. The view by
activity has a table with a row for each camper
in the age group (sorted by bunk and name)
and their elective assignment. The row is
highlighted red if absent, yellow if attendance
was not taken, or white if present. Staff can
also flip a toggle to only see campers not
marked present. At the bottom of the page, a
button marked “Copy Missing Camper
Report” generates a plaintext report of missing
campers and where they should be, easily
pastable into a staff group chat.
 Alternatively, the matrix view provides a
summary over a date range for one age group.
Each camper is in one row with columns for
each date. The intersecting cell has an icon
showing their status, and the cell is highlighted
with the same color scheme. Tapping the icon
shows what elective the camper was assigned.
 Finally, administrators designate active
weeks for electives. Once new assignments
take effect, they update ChugBot so attendance
is taken with correct camper lists.

4.2.2 Challenges
 The main challenge was simply the scale
of the module. There were many components
to build with a lot of pieces dependent on each
other, but dividing the work into sections made
it significantly more manageable. I was also in
constant communication with camp staff to
ensure I built what they needed.
 Testing also proved to be challenging as I
spent much time working on fulfilling the
requirements and could not objectively test it
myself. So, I enlisted others to beta test. I
asked them first to execute basic tasks (take,
view, and update attendance) before asking for
general feedback, and finally encouraged them
to try breaking the system (I ran a test server
using Docker with sample data so if something
went critically wrong, I could simply launch a
new instance). Their feedback was invaluable
in finding bugs, updating design choices, and
improving directions.

5. RESULTS
 Both features were delivered before camp
began. Due to unrelated circumstances, the
schedule generator feature was not used
significantly during the summer. Camp staff
experimented with it, but I am not aware of
schedules being distributed to campers.
 Conversely, the attendance module was
widely used. It was introduced to all staff and
all attendance records were taken using it.
According to the database following the
conclusion of the summer, 29,673 individual
attendance records were taken across 1,275
individual activities (each day an elective is
offered is a unique offering). No data is
available for comparison from past summers
but in 2024, 26,804 of the 29,673 attendance
records were “present” (90.3%).

6. CONCLUSION
 My ChugBot work enhanced operations at
CRNE, modernizing attendance tracking and
providing campers individual schedules to
ensure safety, optimize staff time, and provide
campers agency over their actions. Attendance

can now easily be tracked in real-time and
historically with a system designed for camp’s
needs. And campers can now easily have their
own daily schedule information. These
features transformed camp administration.
 Personally, I enhanced my skills in
software design, user-centric problem solving,
and iterative development. Working with PHP,
MySQL, Docker, and AWS honed my
technical skills and provided practice software
engineering experience, equipping me with
essential tools for future development work.

7. FUTURE WORK
 Following the summer, I met with my
supervisor to discuss additional work. The
only necessary change is an update to handle a
use case we did not originally identify for the
attendance module where campers in different
age groups are in different “weeks” at the same
time (P. Kekst, personal communication,
October 22, 2024). Otherwise, I anticipate
continuing to work on various tasks for the
entire system (including updating styling,
fixing bugs with “de-duplication” options,
allowing electives to be uploaded in a CSV,
and other tasks as identified). More Ramah
camps are beginning to use ChugBot and my
work will also aid their camp operations.

REFERENCES
Apandi, S. H., & Mohamed, R. (2012).

Development of attendance management
system: An experience. Faculty of
Computer Systems and Software
Engineering, University of Malaysia
Pahang, 26300.

TinyMCE. (n.d.). TinyMCE; Tiny
Technologies Inc. https://www.tiny.cloud/

Wempen, F., & O'Reilly Online Learning:
Academic/Public Library Edition
(2008). Mail and Data Merges Using
Word 2007. Indianapolis, Indiana: Que.

https://www.tiny.cloud/

