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Abstract

For a separable unital C∗-algebra A and a separable McDuff II1-factor M , we show

that the space Homw(A,M) of weak approximate unitary equivalence classes of unital

∗-homomorphisms A→M may be considered as a closed, bounded, convex subset of

a separable Banach space – a variation on N. Brown’s convex structure Hom(N,RU).

When A is nuclear, Homw(A,M) is affinely homeomorphic to the trace space of A, but

in general Homw(A,M) and the trace space of A do not share the same data (several

examples are provided). We characterize extreme points of Homw(A,M) in the case

where either A or M is amenable, and we give two different conditions – one necessary

and the other sufficient – for extremality in general. The universality of C∗(F∞) is

reflected in the fact that for any unital separable A,Homw(A,M) may be embedded

as a face in Homw(C∗(F∞),M). We also extend Brown’s construction to apply more

generally to Hom(A,MU). Finally, we return to the context of Hom(N,RU) and

examine the properties of finite dimensional minimal faces in that setting.

The connection between algebraic and convex geometric concepts is the main

theme of this thesis, and in studying this connection we uncover some new purely

operator algebraic insights.
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Chapter 1

Introduction

The purpose of this thesis is to introduce and investigate a convex structure on the

space Homw(A,M) of equivalence classes of ∗-homomorphisms from a unital separa-

ble C∗-algebra A to a separable McDuff II1-factor M . Placing a tractable structure

on equivalence classes of homomorphisms between operator algebras is no new idea

(e.g. Ext(A)). In fact, N. Brown presented a convex structure on the typically non-

separable space Hom(N,RU) of unitary equivalence classes of ∗-homomorphisms from

a separable II1-factor N into the ultrapower of the separable hyperfinite II1-factor RU

in [8]. In this thesis, we extend the scope to C∗-algebras and replace the approxima-

tion mechanism of Brown’s construction – the ultrapower – with the mechanism of

weak approximate unitary equivalence, allowing us to consider separable target al-

gebras. The result is a separable adaptation, Homw(A,M), of Brown’s Hom(N,RU)

that still retains a convex structure. We also exhibit a convex structure on a gener-

alization, Hom(A,MU), of Brown’s Hom(N,RU). There are interesting connections

(and disconnections) between algebraic concepts (e.g. traces, ideals, commutants) and

concepts associated with convex geometry (e.g. affine maps, faces, extreme points).
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These interactions are explored through both general theorems and specific examples.

The uninitiated reader will be able to find preliminary definitions and examples

of the concepts discussed in this introduction in Chapter 2.

Definition. For a C∗-algebra A (reviewed in §2.1) and a II1-factor N (reviewed in

§2.2), let Homw(A, N) denote the space of unital ∗-homomorphisms A→ N modulo

the equivalence relation of weak approximate unitary equivalence (reviewed in §2.5).

We let [π] denote the equivalence class in Homw(A, N) of π : A → N . As explained

in Definition 3.0.1, the space Homw(A, N) can be naturally metrized in a way similar

to that of Definition 1.2 of [8].

The foundation of this thesis is the following theorem.

Theorem 3.1.6. If M is a separable McDuff II1-factor, then Homw(A,M) may be

considered as a closed, bounded, convex subset of a separable Banach space.

As discussed in §2.3, a II1-factor M is McDuff if and only if M ∼= M ⊗ R, where R

denotes the separable hyperfinite II1-factor (see Example 2.2.14). We establish the

above theorem by showing that Homw(A,M) satisfies the axioms for a “convex-like

structure”as in Definition 2.1 of [8]. The authors of [11] showed that these axioms

characterize a closed, bounded, convex subset of a Banach space (convexity will be

reviewed in §2.7).

It is natural to ask why we restrict to McDuff targets. The main reason is the
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existence of isomorphisms σM : M ⊗R→M with the following property:

σM ◦ (idM ⊗ 1R) ∼ idM

(∼ denotes weak approximate unitary equivalence). Given π : A → M , such an

isomorphism gives σM ◦ (π⊗ 1R) ∈ [π]. So we can always find a representative whose

relative commutant unitally contains a copy of R. As we will see from Definition

3.1.4, the operation of taking a convex combination of [π1] and [π2] in Homw(A,M)

is obtained by slicing each representative σM ◦ (π1 ⊗ 1R) and σM ◦ (π2 ⊗ 1R) by com-

plementary projections of the form σM(1M ⊗ p1) and σM(1M ⊗ p2) respectively, with

both projections contained in both relative commutants. In this way, the structure

of a McDuff factor always provides us with representatives whose relative commu-

tants contain the same copy of R and thus have an interval’s worth of projections in

common. Also, allowing any McDuff factor as a target algebra maintains enough gen-

erality so that technical embeddability obstructions do not arise. In fact, requiring a

McDuff target is not so much of an obstruction. Thanks to N. Ozawa, we have Theo-

rem 7.1.7 which says that for any separable II1-factor N we may consider Homw(A, N)

within this convex context by stabilizing the target algebra to obtain a homeomorphic

embedding of Homw(A, N) as a closed set inside the convex Homw(A, N ⊗R).

As mentioned above, Homw(A,M) is a variation of the object of study

Hom(N,RU) in N. Brown’s paper [8] (reviewed in §2.8). A major distinction be-

tween these two objects is that Homw(A,M) is always separable (Proposition 3.2)

whereas Hom(N,RU) is either nonseparable or trivial. So by studying Homw(A,M),
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we have the advantage of studying a separable object.

The space Homw(A,M) has a connection with the trace space of A. Let T (A)

denote the trace space of A; as defined in §2.1,

T (A) := {τ ∈ A∗|τ(1A) = 1, τ(a∗a) = τ(aa∗) ≥ 0 ∀a ∈ A} .

Let [π] ∈ Homw(A,M) be the equivalence class of π : A → M and τM denote the

unique faithful tracial state on M . There is a well-defined, affine map given by

[π] 7→ τM ◦ π

(see Definition 4.1). We can think of τM ◦π as being a trace in T (A) that “lifts through

M ,”and injectivity of this map means “liftable traces remember their homomorphisms

(up to weak approximate unitary equivalence).” The following theorem shows that in

the nuclear case, this map is very well-behaved (nuclearity will be reviewed in §2.6).

Theorem 4.1.2. If A is nuclear, then for any McDuff M , Homw(A,M) is affinely

homeomorphic to T (A) via [π] 7→ τM ◦ π.

In English, this theorem says: for a nuclear A, all traces on A lift through M and

remember their homomorphisms. So in this case Homw(A,M) serves as a different

perspective from which we may study the trace space of A, and on the other side of

the coin, T (A) gives insight into understanding Homw(A,M) in general. We notice

how this compares with Ext(A) – when A is nuclear, we get that Ext(A) is a group

(see [2]). Some nontrivial work had to be done to show that there are algebras A
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for which Ext(A) is not a group (see [1] and [23]). So as in the program of Ext(A),

it is natural to ask: is Homw(A,M) always the same as T (A)? We present several

examples in §4.2 offering various negative answers (an algebra with forgetful traces,

and an algebra with so many traces that they cannot all lift through one M). These

examples are encouraging in that they show that the collection of {Homw(A,M)}M

as M varies over the McDuff factors contains information different from T (A). Notice

that we would not get much information if we examined this connection in the context

of Hom(N,RU) because any II1-factor N has a unique tracial state. Thus, for every

[π] ∈ Hom(N,RU) we get τRU ◦ π = τN .

We go further to show that the class of algebras A such that for every McDuff M

Homw(A,M) is affinely homeomorphic to T (A) via [π] 7→ τ ◦π is precisely the class of

algebras A for which given any T ∈ T (A), the weak closure of the GNS representation

induced by T (see §2.1) is hyperfinite – a class strictly larger than nuclear algebras,

see Example 2.6.13. This leads us to a characterization of hyperfiniteness stated in

our context of weak approximate unitary equivalence in McDuff factors: a separable,

tracial, RU -embeddable von Neumann algebra N is hyperfinite if and only if for

every separable McDuff II1-factor M , any two embeddings π, ρ : N →M are weakly

approximately unitarily equivalent.

We turn to consider the convex geometry of Homw(A,M). In Proposition 5.2

of [8], Brown showed that given [π] ∈ Hom(N,RU), [π] is extreme if and only if

π(N)′ ∩RU is a factor. We would like to adapt this characterization to our separable
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situation. The analogous statement is not available in our context because the relative

commutant of the image of a ∗-homomorphism is not in general well-defined under

weak approximate unitary equivalence–see Example 2.6.6. We have the following

necessary condition for [π] to be extreme.

Theorem 5.1.1. If [π] ∈ Homw(A,M) is extreme then W ∗(π(A)) is a factor.

The converse of the above theorem holds when A is nuclear by Theorem 4.1.2. Also,

when M = R, the converse holds for general A. However, the converse of this theorem

fails in general.

Since our domains are unital separable C∗-algebras, we have access to nontrivial

ideals. Using the contravariance in the first argument, we show that for a closed

two-sided ideal J of A, Homw(A/J,M) is a face of Homw(A,M). A statement like

this is meaningless in the setting of Hom(N,RU) because II1-factors are simple. The

observation that any unital separable C∗-algebra is a quotient of C∗(F∞) translates

into the following surprising fact.

Theorem 5.2.5. For any unital separable C∗-algebra A, Homw(A,M) is a face of

Homw(C∗(F∞),M).

We also discuss ultrapowers (see §2.4) in considering Hom(A,MU): the space

of all unital ∗-homomorphisms A → MU modulo unitary equivalence. This is an

obvious generalization of Hom(N,RU) and also supports a convex structure. We

extend Brown’s characterization of extreme points to apply to Hom(A,MU): [π] ∈
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Hom(A,MU) is extreme if and only if π(A)′ ∩ MU is a factor. We observe that

Homw(A,M) may be embedded into Hom(A,MU) via [π] 7→ [πU ] where πU denotes

π followed by the canonical constant-sequence embedding of M into MU . This is a

strict inclusion in general, but we observe that Homw(A,M) ∼= Hom(A,MU) in the

nuclear case. This embedding yields the following sufficient condition for extreme

points.

Theorem 6.1.13. If πU(A)′ ∩MU is a factor, then [π] is extreme in Homw(A,M).

The converse holds in the case when either A or M is amenable. It is unknown if

the converse of Theorem 6.1.13 holds in general. It would hold if one could show

that in general, Homw(A,M) embeds as a face of Hom(A,MU), and it is known that

Homw(A, R) embeds as a face of Hom(A, RU). As a consequence of the characteri-

zations of extreme points in the amenable cases, we get an equivalence of two purely

algebraic statements with no reference to Homw(A,M) (see Corollary 6.2.3 and The-

orem 6.3.1). This discussion of relative commutants in ultrapowers along with a

helpful comment made by S. White leads us to the following new characterization of

the hyperfinite II1-factor.

Theorem 6.1.8. Let N be an embeddable separable II1-factor. The following are

equivalent:

1. N = R;

2. For any separable II1-factor X and any embedding π : N → XU , π(N)′ ∩XU is
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a factor;

3. For any separable II1-factor X and any embedding π : N → XU , the collection

of tracial states {τ(π(x)·) : x ∈ N+, τ(x) = 1} is weak-∗ dense in the trace space

of π(N)′ ∩XU .

Notice that this is a strengthening of Corollary 5.3 in [8].

We will also discuss some interesting questions regarding the structure of

Hom(N,RU). Given [π] ∈ Hom(N,RU) we let F[π] denote the minimal face in

Hom(N,RU) containing [π]. The following theorem further demonstrates the con-

nection between geometric properties of Hom(N,RU) and algebraic properties of the

underlying operator algebras.

Theorem 8.2. Let the embedding π : N → RU be given.

1. If dim(Z(π(N)′ ∩RU)) = n <∞ then F[π] is an n-vertex simplex.

2. If ϕ ∈ t1[π1] + · · · + tn[πn] where 0 < tj < 1 and [πj] is an extreme point for

every 1 ≤ j ≤ n, then

ϕ(N)′ ∩RU ∼= ⊕nj=1πj(N)′ ∩RU .

3. dim(F[π]) + 1 = dim(Z(π(N)′ ∩RU)).

Propostion 5.2 of [8] is the case where dim(F[π]) + 1 = dim(Z(π(N)′ ∩ RU)) = 1. In

order to prove this theorem, we use a sort of RU -version of Schur’s lemma.
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This thesis is organized as follows.

Chapter 2 Preliminaries: This chapter is devoted to introducing and reviewing

the necessary definitions and concepts used throughout this thesis. §2.1 reviews some

basic definitions, properties, and examples regarding C∗-algebras. In §2.2, we cover

some facts about von Neumann algebras. §2.3 reviews tensor products in both the

context of C∗-algebras and the context of von Neumann algebras. We review some

introductory material on ultraproducts of certain operator algebras in §2.4. In §2.5

we will discuss some background material regarding approximate unitary equivalence.

§2.6 gives an (extremely brief) overview of nuclearity in the context of C∗-algebras

and hyperfiniteness in the context of von Neumann algebras. In §2.7, we give a short

discussion on the convexity and some of its accompanying notions in the context of

functional analysis. We will review some results concerning Hom(N,RU) from [8] in

§2.8.

Chapter 3 The Space Homw(A,M): We provide all of the initial definitions

for Homw(A,M). The convex structure of Homw(A,M) is introduced and verified in

§3.1. We briefly discuss some surface-level functoriality in §3.2.

Chapter 4 Connection to the Trace Space: Here we introduce the relation-

ship between Homw(A,M) and T (A) as mentioned above. In §4.1 we establish the

fact that the relationship is a bijection when A is nuclear, and we show that traces

remember their homomorphisms when M = R. We then discuss in §4.2 several exam-

ples showing that Homw(A,M) is not the same as T (A) in general. These examples
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include the “forgetful trace”and “too many traces”examples mentioned above. In §4.3

we record our alternative separable characterization for separable tracial hyperfinite

embeddable von Neumann algebras.

Chapter 5 Convex Geometry: We take a closer look at some of the convex

geometry of Homw(A,M). In §5.1, Theorem 5.1.1 gives a necessary condition for

extremality, and we provide an example showing that its converse is false in general.

In §5.2 we show that quotients of A give rise to faces in Homw(A,M).

Chapter 6 Ultrapower Situation: In §6.1 we generalize Hom(N,RU) by con-

sidering the space Hom(A,MU). We extend the characterization of extreme points

in Hom(N,RU) to a characterization in Hom(A,MU). This provides a sufficient con-

dition for extreme points in Homw(A,M) in general. We give a characterization of

R in Theorem 6.1.8. The embedding Homw(A,M) ⊂ Hom(A,MU) is defined and

discussed. In §6.2 we present a characterization of extreme points in Homw(A,M) in

the case where all traces of A give a hyperfinite GNS construction. In §6.3 we present

a characterization of extreme points in Homw(A, R).

Chapter 7 More on Homw(A,M): In this chapter we present some more in-

teresting facts about the structure and dynamics of Homw(A,M). In §7.1 we ad-

dress the stabilization of non-McDuff target algebras. We show in Theorem 7.1.7

that for any separable II1-factors N1 and N2, Homw(A, N1) embeds homeomorphi-

cally into Homw(A, N1 ⊗ N2) as a closed subset. So in particular, Homw(A, N) ⊂

Homw(A, N ⊗ R). In §7.2 it is shown that when a coassociative comultiplication on
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A exists (e.g. A a compact quantum group), we can define an affine-distributive,

associative product on Homw(A, R).

Chapter 8 Simplices in Hom(N,RU): In this chapter we explore more of the

structure of Hom(N,RU). In particular, we focus on analyzing finite dimensional

minimal faces of Hom(N,RU). An RU -version of Schur’s lemma is proved on the way

to establishing Theorem 8.2.
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Chapter 2

Preliminaries

We review here some basic definitions, properties, and examples of the key elements

relevant to this thesis.

2.1 C∗-algebras

We will start with C∗-algebras. The books [37], [15], [10], and [46] contain helpful

introductions to this subject. Let H be a (complex) Hilbert space with inner product

〈·|·〉, and let B(H) denote the space of all bounded linear operators on H. A bounded

operator T : H → H is one such that for any vector ξ ∈ H, there is a constant

C ∈ [0,∞) such that ||Tξ|| ≤ C||ξ|| where || · || is the Hilbert space norm given by

||ξ||2 = 〈ξ|ξ〉. We can define a norm on B(H) given by

||T || := sup
ξ∈H,||ξ||≤1

||Tξ||.

Definition 2.1.1. A (complex) C∗-algebra is typically defined in one of the following

two equivalent ways.

• (Spatial) Let H be a Hilbert space. A norm closed, ∗-closed subalgebra A ⊂
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B(H) is called a C∗-algebra. (A subset X ⊂ B(H) is ∗-closed if x ∈ X ⇒ x∗ ∈

X where x 7→ x∗ is the adjoint operation on B(H). A ∗-closed subalgebra is

often referred to as a ∗-subalgebra.)

• (Abstract) A (complex) algebra A is a C∗-algebra if it is a Banach ∗-algebra (A

is in addition a complete normed linear space with submultiplicative norm and

involution ∗) that satisfies the C∗-identity: ||x∗x|| = ||x||2 for every x ∈ A.

It is a well-known theorem of C∗-algebras that any abstract C∗-algebra can be con-

cretely realized as a norm closed ∗-subalgebra of B(H) for some Hilbert space H.

A C∗-algebra is called unital if it contains a multiplicative identity.

Example 2.1.2. The following are some of the first examples of C∗-algebras that an

introductory course would cover.

1. For n ∈ N the algebra of n×n matrices with complex entries, denoted asMn is a

C∗-algebra. The involution ∗ is the operation of taking the conjugate transpose.

These algebras are unital.

2. Given a locally compact Hausdorff topological space X, the algebra C0(X) of

complex-valued continuous functions on X vanishing at ∞ is an abelian C∗-

algebra. In fact, thanks to the Gelfand transform, any abelian C∗-algebra takes

the form of C0(X) for some locally compact Hausdorff space X. C0(X) is unital

if and only if X is compact. These abelian C∗-algebras are completely identified
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by the underlying topological space, so it is a shared philosophy that the study

of general C∗-algebras is the study of non-commutative topology.

3. Given any Hilbert space H, B(H) itself is a C∗-algebra. If Hn is n-dimensional,

then B(Hn) ∼= Mn. These algebras are unital.

4. Given T ∈ B(H) for a Hilbert space H, we can consider the C∗-algebra gener-

ated by T denoted C∗(T ). This is the smallest C∗-subalgebra of B(H) contain-

ing T . Or more explicitly, it is the norm closure of the algebra of ∗-polynomials

without constant terms in T (finite linear combinations of finite products of T

and T ∗). More generally, given an n-tuple of operators T1, . . . , Tn ∈ B(H), one

can analogously define C∗(T1, . . . , Tn). These algebras are not unital in general.

Definition 2.1.3. Let A and B be C∗-algebras. A ∗-homomorphsim π : A → B is

a well-defined map satisfying the following properties.

• (linear) For λ ∈ C, x, y ∈ A, π(λx+ y) = λπ(x) + π(y).

• (multiplicative) For x, y ∈ A, π(xy) = π(x)π(y).

• (∗-preserving) For x ∈ A, π(x∗) = π(x)∗.

If A and B are unital, then π : A→ B is a unital ∗-homomorphism if in addition

to the three properties above, π(1A) = 1B.

Definition 2.1.4. We now define several different properties elements of a C∗-algebra

can have. Let A be a C∗-algebra.
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• An element a ∈ A is called a contraction if ||a|| ≤ 1. The set of all contractions

in A will be denoted A≤1.

• An element a ∈ A is called normal if a commutes with its adjoint. That is,

a∗a = aa∗.

• An element a ∈ A is called self-adjoint if a = a∗. The set of all self-adjoint

elements in A will be denoted As.a..

• An element a ∈ A is called positive if there is some b ∈ A such that a = b∗b.

The set of all positive elements in A will be denoted A+.

• An element p ∈ A is called a projection if p = p∗ = p2.

• An element v ∈ A is called a partial isometry if v∗v is a projection.

• If A is unital, an element v ∈ A is called an isometry if v∗v = 1; and v is called

a coisometry is vv∗ = 1.

• If A is unital, an element u ∈ A is called a unitary if u∗u = uu∗ = 1. That is, a

unitary is both an isometry and a coisometry. The set of all unitary elements

in A will be denoted U(A).

Example 2.1.5 (Group C∗-algebras). We take the time now to explain how to con-

struct C∗-algebras out of groups. Such C∗-algebras are crucial to the subject and pro-

vide many rich examples. We first present the left-regular representation of a discrete

group. Let Γ be a discrete group and let `2(Γ) be the collection of square-summable
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complex-valued functions on Γ. That is f ∈ `2(Γ) if and only if
∑
g∈Γ

|f(g)|2 < ∞.

This naturally makes `2(Γ) a Hilbert space with a canonical orthonormal basis given

by {δg}g∈Γ where δg is the indicator function on the set {g}. We now define a group

homomorphism from Γ into the unitary group of B(`2(Γ)). Let

λ : Γ→ U(B(`2(Γ)))

be given by

λ(g)(δh) = δgh.

It is a direct exercise to check that for every g ∈ Γ, λ(g) is indeed a unitary operator

on `2(Γ). Furthermore, one can check that given f ∈ `2(Γ) and g, x ∈ Γ, we have

[λ(g)(f)](x) = f(g−1x).

We we let C∗λ(Γ) be the C∗-algebra generated by the unitaries {λ(g)}. That is,

C∗λ(Γ) := C∗({λ(g)}g∈Γ) ⊂ B(`2(Γ)).

We call C∗λ(Γ) the reduced group C∗-algebra of Γ. In the literature, C∗λ(Γ) is sometimes

written as C∗r (Γ).

There is also a full group C∗-algebra of Γ, denoted simply by C∗(Γ), given by the

C∗-closure of image of the direct sum of all unitary representations of Γ.

Another useful notion is the spectrum of an element of a C∗-algebra. Regardless

of whether or not a C∗-algebra is unital, one can write down the definition of the

spectrum. The non-unital case requires some technicalities, and since this thesis is
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concerned exclusively with unital C∗-algebras, we only provide the definition for the

unital case.

Definition 2.1.6. If A is a unital C∗-algebra and a ∈ A, then the spectrum of a is

given by

sp(a) := {λ ∈ C : (a− λ · 1) is not invertible } .

For any a ∈ A, sp(a) is compact, nonempty, and contained in {z ∈ C : |z| ≤ ||a||}.

If a is self-adjoint, then sp(a) ⊂ R; if a is positive, then sp(a) ⊂ [0,∞); if p is a

projection, then sp(p) = {0, 1}; if u is a unitary, then sp(u) ⊂
{
eiθ : 0 ≤ θ ≤ 2π

}
.

Let us now turn to discuss some functional analysis of C∗-algebras. This subject

is indeed deep and interesting on its own, but here we will only introduce the concepts

pertinent to this thesis.

Definition 2.1.7. A continuous linear functional f on a C∗-algebra A is a continuous

linear map f : A→ C. The set of all continuous linear functionals on A is called the

dual of A and denoted A∗.

• A continuous linear functional f is called positive if for any a ∈ A+, f(a) ≥ 0.

• A continuous linear functional f is called faithful if for any a ∈ A, f(a∗a) = 0 if

and only if a = 0.

• A positive continuous linear functional f is called a state if f(1) = 1 (there are

states on non-unital C∗-algebras, but for our context, this definition works).

The set of all states on A is denoted S(A).
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• A positive continuous linear functional f is called a tracial state if it is a state

and f(ab) = f(ba) for every a, b ∈ A. The set of all tracial states on A is

denoted T (A).

Example 2.1.8. • Let A be a C∗-algebra and let H be a Hilbert space such that

A ⊆ B(H). Let ξ, η ∈ H be vectors. Then we can define the following linear

functional f given by

f(A) = 〈Aξ|η〉

where 〈·|·〉 is the inner product on H. If ξ = η, then f is positive. Furthermore,

if ||ξ|| = 1 then f is a state. Such a state is called a vector state.

• The normalized trace on Mn is a tracial state. The normalized trace is given by

tr((aij)) =
1

n

n∑
i=1

aii

for (aij) ∈Mn.

• Let X be a compact Hausdorff space. Then given any measure µ on the Borel σ-

algebra on X, the map f 7→
∫
fdµ is a positive continuous linear functional. If

µ(X) = 1, then f 7→
∫
fdµ is a tracial state. By Riesz Representation, any con-

tinuous linear functional on C(X) can be expressed as integration against some

signed measure. So continuous linear functionals may be considered morally as

non-commutative integrals.

Notice that if A is a unital C∗-algebra and T ∈ T (A), then T “ignores”unitary



19

conjugation. That is, for x ∈ A and u ∈ U(A),

T (uxu∗) = T (xu∗u) = T (x).

We now describe a construction that shows how any abstract C∗-algebra may be

realized concretely as a norm closed ∗-subalgebra of B(H) for some Hilbert space H.

This construction can be found in [15]. Let A be a C∗-algebra and let f ∈ S(A). Let

N := {a ∈ A : f(a∗a) = 0}. One can show that N is a left ideal of A. So consider

the positive definite sesquilinear form on A/N given by

(x+N|y +N )f = f(y∗x).

This is an inner product on A/N , making A/N into a pre-Hilbert space. LetHf be the

completion of A/N under the norm induced by the inner product. We can now define

a ∗-representation πf : A→ Hf in the following way. Let a ∈ A and x +N ∈ A/N ,

then πf (a)(x+N ) = ax+N . This operation naturally extends by continuity so that

πf (A) is truly an operator in B(Hf ), and moreover, πf is a ∗-homomorphism. This

construction is called the GNS construction named for Gelfand, Naimark, and Segal.

The representation πf is called the GNS representation associated to f . To concretely

realize an abstract C∗-algebra, one takes a direct sum of all GNS representations πf

for every f ∈ S(A).

Another important notion associated with C∗-algebras is that of a completely

positive map. First we must establish some notation. let ϕ : A→ B be a linear map

from a C∗-algebra A to a C∗-algebra B. Let Mn(A) denote the C∗-algebra of n× n
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matrices with entries from A. For n ∈ N, we let ϕ(n) : Mn(A)→Mn(B) be the n×n

amplification of ϕ given by

ϕ(n)((aij)) = (ϕ(aij)).

Definition 2.1.9. Let A and B be C∗-algebras. A linear map ϕ : A → B is called

completely positive if for every n ∈ N, ϕ(n) is positive. That is, for every n ∈ N,

ϕ(n)(Mn(A)+) ⊂Mn(B)+.

Example 2.1.10. • Any ∗-homomorphism is completely positive.

• Any positive linear functional is completely positive. More generally, any posi-

tive linear map with abelian domain or range is completely positive.

2.2 von Neumann Algebras

We next turn to von Neumann algebras. Again, the books [37], [15], [10], and [46]

contain valuable information on this subject. In order to discuss von Neumann alge-

bras, we must first discuss some more topologies on B(H). Given a countably infinite

dimensional Hilbert space H,B(H) has several distinct modes of convergence. We

have already mentioned the norm topology in discussing C∗-algebras. There are six

other distinct topologies of interest that one can place on B(H). See Section II.2 of

[46] for a description and discussion of these topologies. For the sake of this thesis, we

will discuss only the weak and the strong topologies. We will define these topologies

by describing what convergence means for each topology respectively.
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Definition 2.2.1. • We say that a sequence {Tn} in B(H) converges to T ∈

B(H) weakly if for every ξ, η ∈ H we have

〈Tnξ|η〉 → 〈Tξ|η〉 .

The topology induced by this convergence is called the Weak Operator Topology,

abbreviated WOT. This convergence is often denoted as

T = WOT- lim
n→∞

Tn.

• We say that a sequence {Tn} in B(H) converges to T ∈ B(H) strongly if for

every ξ ∈ H, we have

Tnξ → Tξ.

The topology induced by this convergence is called the Strong Operator Topol-

ogy, abbreviated SOT. This convergence is often denoted as

T = SOT- lim
n→∞

Tn.

The following definition will seem very unrelated to Definition 2.2.1.

Definition 2.2.2. Given a subset S ⊂ B(H), the commutant S ′ of S is given by

S ′ := {A ∈ B(H) : AX = XA , ∀X ∈ S} .

Let S ′′ := (S ′)′, and so on.

Thanks to the following deep and celebrated theorem by John von Neumann, these

two notions are fundamentally related.
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Theorem 2.2.3 (Double Commutant Theorem, [37],[48]). Let M be a ∗-closed, unital

subalgebra of B(H). Then the following are equivalent.

1. M = M ′′;

2. M is weakly closed;

3. M is strongly closed.

We can now define a von Neumann algebra.

Definition 2.2.4. A ∗-closed, unital subalgebraM of B(H) is a von Neumann algebra

if it satisfies the equivalent conditions in Theorem 2.2.3. von Neumann algebras are

sometimes referred to as W ∗-algebras.

Remark 2.2.5. It is a quick exercise to see that norm convergence implies both WOT

and SOT convergence. In particular, this shows that von Neumann algebras are

norm-closed. So von Neumann algebras are C∗-algebras. In fact, it was shown in [41]

that a von Neumann algebra can also be characterized as a C∗-algebra that is a dual

Banach space.

Example 2.2.6. • For any Hilbert space H, B(H) itself is a von Neumann alge-

bra. In particular, for any n ∈ N,Mn is a von Neumann algebra.

• Let (X,M, µ) be a measure space. Then L∞(X,µ) is a von Neumann algebra.

One can represent L∞(X,µ) as multiplication operators on the Hilbert space

L2(X,µ). Any abelian von Neumann algebra takes this form. So, in comparison
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with the C∗-algebra situation, it is a shared philosophy that the study of von

Neumann algebras is the study of non-commutative measure theory.

• If M is a von Neumann algebra and S ⊂M is a subset of M , then we let W ∗(S)

denote the von Neumann algebra generated by S. One can view W ∗(S) ⊂ M

as the smallest von Neumann subalgebra of M containing S. W ∗(S) can be

obtained by taking the WOT-closure of the algebra of ∗-polynomials with entries

from S.

• As in the C∗ case, given a discrete group Γ, one associates to Γ a von Neumann

algebra. The group von Neumann algebra of Γ is given by ({λ(g)}g∈Γ)′′ ⊂

B(`2(Γ)) where λ : Γ→ U(B(`2(Γ))) is the left-regular representation as defined

in Example 2.1.5. Group von Neumann algebras provide important and deep

examples in the theory of von Neumann algebras.

If M ⊂ B(H) is a von Neumann algebra, and H is a separable Hilbert space, then

we say that M is separably acting.

Definition 2.2.7. Given a von Neumann algebra M , the center of M , denoted Z(M)

is given by

Z(M) := {z ∈M : zx = xz ∀x ∈M} .

Clearly, Z(M) = M ∩M ′.

Definition 2.2.8. A von Neumann algebra M is called a factor if the center of M

is isomorphic to C.
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Definition 2.2.9. A von Neumann algebra M is called finite if there is no partial

isometry v such that v∗v = 1M but vv∗ 6= 1M .

Example 2.2.10. • Mn is a finite factor.

• For H an infinite dimensional Hilbert space, B(H) is factor, but it is not finite.

All von Neumann algebras are classified by types: I, II, and III. For the sake of

brevity, we will not define these types in generality. See Section V.1 of [46] for full

definitions. We will primarily be concerned with factor von Neumann algebras of

type II that are also finite. Such factors are called type II1-factors. We define a type

II1-factor as follows.

Definition 2.2.11. A type II1-factor is an infinite dimensional factor von Neumann

algebra that is finite in the sense of Definition 2.2.9.

We can equivalently define a II1-factor to be an infinite dimensional factor von Neu-

mann algebra that admits a unique faithful tracial state. If N is a II1-factor, then

we typically denote this unique tracial state as τN or just τ when no confusion may

occur.

If N is a II1-factor, then we may use its unique tracial state τ to define a norm

on N . The so-called trace norm, denoted || · ||2, is given by

||x||2 =
√
τ(x∗x).

While N is not complete with respect to || · ||2, we have on bounded subsets of N that

|| · ||2-convergence coincides with SOT convergence. If N is separably acting, then N
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is separable with respect to the topology coming from || · ||2. For this reason, we will

sometimes simply use the word separable in place of separably acting in the context

of II1-factors.

It can be shown that a von Neumann algebra is generated by its projections.

Thus, the theory of projections in von Neumann algebras is important to the subject

as a whole. A fundamental notion associated to projections is Murray-von Neumann

equivalence.

Definition 2.2.12. Let M be a von Neumann algebra. Two projections p, q ∈M are

Murray-von Neumann equivalent in M if there is a partial isometry v ∈M such that

p = v∗v and q = vv∗. This equivalence relation is sometimes denoted as p ∼MvN q.

Example 2.2.13. • If M = B(H), then the Murray-von Neumann equivalence

class of a projections is completely determined by the rank of the projection.

• If M is a II1 factor, then Murrray-von Neumann equivalence is completely deter-

mined by the value of the trace on the projections. That is, for two projections

p, q ∈M, p ∼MvN q if and only if τ(p) = τ(q) where τ is the unique tracial state

on M .

We now present some constructions of II1-factors.

Example 2.2.14. 1. (The hyperfinite II1-factor) Consider the algebraic direct

limit Q of the sequence of algebras {M2n} with connecting maps ϕmn : M2n →
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M2m(n < m) given by

ϕ(n+1)n(a) =

a 0

0 a


and if m > n+ 1, then ϕmn = ϕm(m−1) ◦ · · · ◦ϕ(n+1)n. So Q is the infinite nested

union of the matrix algebras M2n ; that is,

Q = ∪∞n=1M2n .

Each M2n admits a unique faithful tracial state τn (the normalized trace), and

since τm ◦ϕmn = τn, these traces induce a trace τ on Q. In particular, if x ∈ Q,

then x ∈ M2n for some n, so τ(x) = τn(x). Since all the τn’s are faithful, we

have that Q with positive-definite inner product 〈·|·〉τ given by

〈x|y〉τ := τ(y∗x)

is a pre-Hilbert space. Let H be the Hilbert space obtained by taking the

completion of Q with respect to the norm induced by the inner product 〈·|·〉τ .

As in the GNS construction, we can view Q as a unital ∗-subalgebra of B(H)

by having it act (densely) on H by left multiplication. Then we let R = Q′′

be the weak closure of Q in this representation. Since each τn is the unique

faithful tracial state on M2n , we get can extend τ by continuity to be the

unique faithful tracial state on R. Thus R is an infinite dimensional factor

von Neumann algebra with a unique faithful tracial state τ . This II1-factor R

is known as the hyperfinite II1-factor. See §2.6 for a definition of hyperfinite.
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Murray and von Neumann showed that up to isomorphism, there is only one

separable hyperfinite II1-factor.

2. (Group II1-factors) If Γ is a group such that every non-trivial conjugacy class

is infinite (an infinite conjugacy class or i.c.c. group), then L(Γ) is a II1 factor

with trace given by τ(x) = 〈xδe|δe〉L2(Γ). e.g. Γ = Fn(n ∈ {2, 3, · · · ,∞}) the

free group with n letters, Γ = S∞ the group of finite permutations of N, or

Γ = SL(n,Z). It can be shown that L(S∞) is hyperfinite. So L(S∞) ∼= R from

(1) above. Historically, L(F2) was the first II1-factor shown to be distinct from

R ([30]).

2.3 Tensor Products of Operator Algebras

The operation of taking a tensor product of C∗-algebras or von Neumann algebras

has been a topic of intense study for many decades. The following treatment of the

topic can be found in Chapter 3 of [10].

Let A and B be C∗-algebras. We begin by taking the algebraic tensor product

A � B which is given by the following universal property. For any vector space Z

and any bilinear map σ : A ×B → Z, there is a unique linear map σ̇ : A �B → Z

such that for every a ∈ A and b ∈ B, σ̇(a⊗ b) = σ(a, b). The algebraic tensor product

A �B is a ∗-algebra, but it has not been topologized by any sort of norm–it is the

linear span of the simple tensors. It turns out that we have options when it comes to
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choosing a C∗-norm (one satisfying ||x∗x|| = ||x||2).

Definition 2.3.1 ([10]). The largest C∗-norm we can place on A �B is called the

maximal C∗-norm || · ||max. Given x ∈ A�B, define

||x||max := sup {||π(x)|| : π : A�B→ B(H) a (cyclic) ∗-homomorphism}

where π : X → B(H) is a cyclic ∗-homomorphism if there is a vector ξ ∈ B(H) such

that {π(x)ξ : x ∈ X} is dense in H. Let A ⊗max B denote the completion of A �B

with respect to || · ||max.

Definition 2.3.2 ([10]). On the other side of the coin, the smallest C∗-norm we can

place on A�B is called the spatial or the minimal C∗-norm ||·||min. Let π : A→ B(H)

and σ : B→ B(K) be faithful representations. Given
∑
ai ⊗ bi ∈ A�B, define

||
∑

ai ⊗ bi||min := ||
∑

π(ai)⊗ σ(bi)||B(H⊗K)

where tensor products of Hilbert spaces and of representations can be made precise.

The completion of A�B with respect to || · ||min is denoted A⊗min B.

Example 2.3.3 ([10]). For any n ∈ N and any C∗-algebra A we have that A⊗minMn
∼=

A⊗max Mn
∼= Mn(A).

When dealing with tensor products of von Neumann algebras, there are fewer

choices.

Definition 2.3.4 ([10]). Let M ⊂ B(H) and N ⊂ B(K) be von Neumann algebras.

The von Neumann algebraic tensor product M⊗N is defined to be the von Neumann
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algebra generated by

M ⊗N :=

{
n∑
i=1

xi ⊗ yi : n ∈ N, xi ∈M, yi ∈M

}
⊂ B(H ⊗K)

where the tensor product of two operators on the tensor product of two Hilbert spaces

can be made precise.

We will primarily be dealing in tensor products of separable II1-factors. Given

two II1-factors N1 and N2, we can describe N1⊗N2 as follows. Let

(N1 �N2)≤r := {x ∈ N1 �N2 ⊂ B(H ⊗K) : ||x|| ≤ r} .

Then we have

N1⊗N2 = ∪∞r=1(N1 �N2)≤r
||·||2

where the trace on N1�N2 is given by τ = τ1⊗ τ2 where τi is the unique tracial state

on Ni, i = 1, 2.

This convex structure presented in this thesis makes use of a class of II1-factors

called McDuff II1-factors. Before giving a definition of a McDuff II1-factor, we need

a preliminary definition.

Definition 2.3.5 ([29]). Let N be a II1-factor. Let [x, y] := xy − yx denote the

commutator of x and y. A bounded sequence {tk} ⊂ N is called a central sequence

in N if

||[tk, x]||2 → 0
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for every x ∈ N . A central sequence {xk} ⊂ N is called a hypercentral sequence in N

if for every central sequence {tk},

||[sk, tk]||2 → 0.

Definition 2.3.6 ([29]). A II1-factor M is called McDuff if M contains a central

sequence that is not hypercentral.

Example 2.3.7. Let {(Nn, τn)} be a sequence of II1-factors. The infinite tensor

product M := ⊗∞n=1Nn is a McDuff II1-factor. To see this, we must find a non-

hypercentral central sequence. Let an, bn ∈ Nn be contractions such that ||[an, bn]||2 ≥

1

2
for every n. Then clearly,

{
1N1 ⊗ · · · ⊗ 1Nn−1 ⊗an ⊗ 1Nn+1 ⊗ · · ·

}∞
n=1

and{
1N1 ⊗ · · · ⊗ 1Nn−1 ⊗bn ⊗ 1Nn+1 ⊗ · · ·

}∞
n=1

are non-hypercentral central sequences.

In [29], McDuff proved the following celebrated theorem giving a structural charac-

terization of McDuff II1-factors.

Theorem 2.3.8. [29] A separable II1-factor M is McDuff if and only if M ∼= M⊗R

where R denotes the separable hyperfinite II1-factor.

Remark 2.3.9. In the remainder of the thesis, we will simply use the notation M ⊗N

when discussing the von Neumann algebraic tensor product of II1-factors.
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2.4 Ultraproducts

In operator algebras, ultraproducts and utlrapowers play the dual roles of being useful

tools for proofs and being interesting objects on their own. We will see both roles in

this thesis. There are many publications regarding this subject; for a few, see [19],

[20], [21], [38], [5], [29], and [12]. This section is meant to give the basic definitions

needed in order to discuss ultrapowers. We will mainly be pulling from the material

in Appendix A of [10].

Definition 2.4.1. Let I be a set. An ultrafilter on I is a nonempty family U of

subsets of I that satisfies the following properties:

1. (nontriviality) ∅ /∈ U ;

2. (finite intersection property) if I0, I1 ∈ U , then there is a J ∈ U such that

J ⊂ I0 ∩ I1;

3. (directedness) if I0 ∈ U and I0 ⊂ I1 ⊂ I, then I1 ∈ U ;

4. (maximality) for any I0 ⊂ I, either I0 ∈ U or I \ I0 ∈ U .

If U satisfies (1) and (2), it is called a filter base. If U satisfies (1), (2), and (3), it

is called a filter.

It helps if one considers the elements of an ultrafilter U to be the “large”subsets of I.

Example 2.4.2. • For any set I, the principal ultrafilter generated by i0 ∈ I is

the family of all subsets which contain i0.
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• Let I = N. The cofinal filter base on N is the collection of all subsets of the

form {n ∈ N : n ≥ N} for some N ∈ N. There is a general theorem that says

that given a filter base U ′ on I, there is an ultrafilter U on I which contains

U ′. A free ultrafilter on N is an ultrafilter which contains the cofinal filter base.

Free ultrafilters cannot be principal too.

Remark 2.4.3. While our definition of an ultrafilter works for general sets, in this

thesis, we will exclusively discuss free ultrafilters on N.

Ultrafilters can be used to describe convergence. Next, we define what it means

to “converge along an ultrafilter.”

Definition 2.4.4. Let X be a topological space, and let U be a free ultrafilter on

N. A sequence {xn} in X is said to converge along U if for any open set in A ⊂ X,

the set {n ∈ N : xn ∈ A} is a member of U . The limit point of this convergence is

denoted

lim
n→U

xn

or

lim
U
xn.

We are now ready to define the tracial ultraproduct of II1-factors. Fix a free

ultrafilter U on N, and let {Mn} be a collection of II1 -factors with tracial states τn.

Let
∏
n∈N

Mn denote the algebra of norm-bounded sequences (xn) such that xn ∈ Mn
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for every n ∈ N. Let N
(2)
U be given by

N
(2)
U :=

{
(xn) ∈

∏
n∈N

Mn : lim
n→U
||xn||2 = 0

}
where ||xn||22 = τn(x∗nxn) is the respective trace norm. It can be shown that N

(2)
U is a

norm-closed ideal of
∏
n∈N

Mn. So we define the tracial ultraproduct of {(Mn, τn)} to be

∏
U

Mn :=
(∏
n∈N

Mn

)
/N

(2)
U .

If Mn = M for every n, then we call
∏
UMn the tracial ultrapower (or just ultrapower

when the context is clear) of M and denote it as MU . We denote a coset (xn) +N
(2)
U

as (xn)U . The ultraproduct
∏
U

Mn is a II1 factor with trace τU((xn)U) := lim
U
τn(xn);

and MU is a II1-factor with trace τU((xn)U) := lim
U
τ(xn).

Example 2.4.5. Let {k(n)} be an increasing sequence of natural numbers. One can

follow the exact same construction as above with Mn = Mk(n) and τn = trk(n) (where

trm is the unique tracial state on Mm) to obtain the ultraproduct
∏
U

Mk(n). If R

denotes the separable hyperfinite II1-factor, it turns out that RU ∼=
∏
U

Mk(n).

Given an element x ∈
∏
U

Mn, a lift of x is a sequence (xn) ∈
∏
n∈N

Mn such that

x = (xn)U . The following proposition is very useful in that it shows that we can

lift certain properties of elements. This proposition follows from a theorem due to

Hadwin and Li in [26] which appears in §2.6 as Theorem 2.6.15.

Proposition 2.4.6. Let {(Mn, τn)} be a collection of II1-factors. If x ∈
∏
U

Mn is

[normal, self-adjoint, positive, unitary, a projection, or a partial isom-

etry], then there is a lift (xn) ∈
∏
n∈N

Mn of x such that for each n, xn is [normal,
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self-adjoint, positive, unitary, a projection, or a partial isometry] respec-

tively.

2.5 Approximate Unitary Equivalence

The notion of weak approximate unitary equivalence is central to the work in this

thesis. Some publications regarding this topic are [47], [2], [24], [25], [16], [44], and

[45]. We present some background on the topic in this section. Much of the initial

discussion is pulled from [15].

Two operators S, T ∈ B(H) are unitarily equivalent if there is a unitary U ∈ B(H)

such that T = USU∗. In this case, T and S are philosophically the same operator: if

one chooses an orthonormal basis {ξi} on B(H), then the matrix representation of S

with respect to {ξi} will be exactly the same as the matrix representation of T with

respect to the orthonormal basis {Uξi}. The unitary orbit of an operator T ∈ B(H)

is given by

U(T ) := {UTU∗ : U unitary} .

Unitaries in B(H) encode the symmetries of H. So morally, two operators sharing a

unitary orbit operate the same way on different rotations of the Hilbert space.

Unitary equivalence of operators implies the exact same observable data (evalua-

tions of the form 〈Tξ|η〉) associated to those operators. In [15], the situation that two

operators have the same observable data is described as “no finite set of measurements
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determined by vectors can distinguish the two operators.”There is in fact a weaker

equivalence relation on operators that implies that there is no difference between the

operators in terms of observable data. We say that two operators S, T ∈ B(H) are

approximately unitarily equivalent (denoted S ∼a T ) if there is a sequence of unitary

operators Un such that

||T − UnSU∗n|| → 0.

Note that being approximately unitarily equivalent is the same as sharing a norm-

closed unitary orbit.

We will sometimes use the following notation. Given a unitary U ∈ B(H), let

Ad(U) denote the map

Ad(U) : B(H)→ B(H)

given by

Ad(U)(T ) = UTU∗.

Example 2.5.1. Approximate unitary equivalence is a strictly weaker relation than

that of unitary equivalence. Let H be a separable infinite dimensional Hilbert space.

Fix an orthonormal basis {ξi}. Let S ∈ B(H) be the operator with its {ξi} matrix
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representation given by

S =



1

1
2

1
4

1
2i−1


.

Let Un ∈ B(H) be the unitary with its {ξi} matrix representation given by

Un =


Pn

1

1


where Pn is the n× n permutation matrix given by

Pn =



0 0 1

1 0

0

0 0 1 0


.

Thus,

UnSU
∗
n =



1
2n−1

1

1
2

1
2n−2

1
2n+1

1
2n+2



.
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So we see that

UnSU
∗
n → T :=



0

1

1
2

1
4

1
2i


.

But it is clear to see that S and T are not unitarily equivalent because S has trivial

kernel and T has a one-dimensional kernel.

Let A be a C∗-algebra, and let ρ, σ : A→ B(H) be ∗-representations of A. We say

that ρ and σ are approximately unitarily equivalent (ρ ∼a σ) if there is a sequence of

unitaries {Un} ⊂ B(H) such that for any a ∈ A,

ρ(a) = lim
n→∞

Unσ(a)U∗n

where the limit is taken in the norm topology. By changing the topology in which the

convergence occurs, we can define weak approximate unitary equivalence as follows:

ρ and σ are weakly approximately unitarily equivalent (ρ ∼wa σ) if there are two

sequences of unitaries {Un} and {Vn} in B(H) such that for every a ∈ A,

σ(a) = WOT- lim
n→∞

Unρ(a)U∗n

and

ρ(a) = WOT- lim
n→∞

Vnσ(a)V ∗n .
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The equivalence relations [approximate unitary equivalence] and [weak approx-

imate unitary equivalence] are in fact equivalent to one another. This fact is a

consequence of the Weyl-von Neumann-Berg-Voiculescu theorem. The general non-

commutative version of the theorem first appeared in [47]. It appears as Theorem

II.5.8 in [15] and reads as follows.

Theorem 2.5.2. Let A be a separable C∗-algebra, and let σ and ρ be non-degenerate

representations of A on a separable Hilbert space H (σ(A)H and ρ(A)H are dense in

H). Then the following are equivalent.

1. σ ∼a ρ

2. σ ∼wa ρ

3. rank(σ(a)) = rank(ρ(a)) for every a ∈ A.

Arveson provides a nice survey of these results in [2]; and Hadwin showed in [24] that

this theorem holds for non-separable representations.

In the last decade or so, there has been growing interest in approximate unitary

equivalence in von Neumann algebras rather than in B(H). In [44], Sherman dis-

cusses the closures in various topologies of unitary orbits of normal operators in von

Neumann algebras. In [16], Ding and Hadwin investigated a version of the Weyl-von

Neumann-Berg-Voiculescu theorem where the target of the representations is a von

Neumann algebra M instead of B(H). Of course, in this context the unitaries im-

plementing the (weak) approximate unitary equivalence of the representations must
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come from M rather than B(H). For the Ding-Hadwin version of the Weyl-von

Neumann-Berg-Voiculescu theorem, the notion of rank must be replaced with that of

M-rank : the Murray-von Neumann equivalence class in M of the range projection.

Though [16] deals in much more generality, we will discuss some of the results of

the paper in the context where π, ρ : A → M are unital ∗-homomorphisms from a

C∗-algebra A to a finite factor von Neumann algebra M . One of the main questions

addressed in [16] is: “What are the C∗-algebras for which the notions of equal M -

rank, approximate unitary equivalence, and weak approximate unitary equivalence

(or a sub-pair) are equivalent?”Before reporting some of the results from [16] we first

mention that in the context of considering a finite factor von Neumann algebra as a

target, the notion of M -rank can be simplified as follows.

Proposition 2.5.3 ([16]). Let A be a C∗-algebra, let M be a finite factor von Neu-

mann algebra with unique tracial state τ , and let π, ρ : A → M be unital

∗-homomorphisms. Then (M − rank) ◦π = (M − rank) ◦ ρ if and only if τ ◦π = τ ◦ ρ.

A C∗-algebra A is called approximately homogeneous or AH if A is the C∗ direct

limit (see [49] or [40]) of algebras of the form Mn ⊗ C(X). The class of AH algebras

admits the following version of the Weyl-von Neumann-Berg-Voiculescu theorem.

Theorem 2.5.4 ([16]). Let A be a C∗-algebra, let M be a finite factor von Neumann

algebra with unique tracial state τ , and let π, ρ : A→M be unital ∗-homomorphisms.

If A is AH, then the following are equivalent.
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1. π ∼a ρ;

2. π ∼wa ρ;

3. τ ◦ π = τ ◦ ρ.

In §2.6 we define and discuss the class of so-called nuclear C∗-algebras. Nuclear

algebras are also well-behaved under this analysis in that if A is nuclear, M is a

finite factor von Neumann algebra with unique tracial state τ , and π, ρ : A→M are

∗-homomorphisms then π ∼wa ρ if and only if τ ◦ π = τ ◦ ρ (see Theorem 2.6.10). In

general, it is unknown if ∼a is the same as ∼wa in the context of representations of

C∗-algebras in finite factor von Neumann algebras.

In this thesis, we will study weak approximate unitary equivalence of unital ∗-

homomorphisms from a unital separable C∗-algebra into a separable II1-factor von

Neumann algebra N . In this context, one can define weak approximate unitary

equivalence using the trace norm as follows.

Definition 2.5.5. Given a unital separable C∗-algebra A and a separable II1-factor

N , two unital ∗-homomorphisms π, ρ : A → N are weakly approximately unitarily

equivalent if there is a sequence of unitaries {un} ⊂ U(N) such that for every a ∈ A,

lim
n→∞

||π(a)− unρ(a)u∗n||2 = 0

where ||x||22 = τ(x∗x) for τ the unique tracial state on N . For the rest of the thesis,

we will simply denote weak approximate unitary equivalence with the symbol ∼. We
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sometimes use the abbreviation w.a.u.e. for weak approximate unitary equivalence.

It will be useful to keep the following equivalent formulation of this definition in mind.

For π, ρ : A → N , π ∼ ρ if and only if for every finite subset F ⊂ A≤1 and every

ε > 0 there is a unitary u ∈ U(N) such that

||π(a)− uρ(a)u∗||2 < ε

for every a ∈ F .

We conclude this section by discussing weak approximate unitary equivalence of

unital ∗-homomorphisms into an ultraproduct of II1-factor von Neumann algebras.

The following theorem from [45] can be seen as an advertisement for working in an

ultraproduct/power rather than the original root algebra.

Theorem 2.5.6 ([45]). Let A be a separable unital C∗-algebra, {(Mn, τn)} be a col-

lection of II1-factors, and π, ρ : A→
∏
U

Mn where U is a free ultrafilter. Then π and

ρ are weakly approximately unitarily equivalent if and only if π and ρ are unitarily

equivalent (there exists u ∈ U
(∏
U

Mn

)
such that for every a ∈ A, π(a) = uρ(a)u∗).

Remark 2.5.7. Theorem 2.5.6 was originally stated for an ultrapowerMU as the target,

but the argument easily applies to the more general case with an ultraproduct as the

target. This theorem says that in an ultraproduct, approximate unitary equivalence of

homomorphisms on separable algebras is the same as exact unitary equivalence. This

is an attractive property because it allows one to avoid any (annoying) technicalities
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involving the approximation arguments intrinsic to the subject of weak approximate

unitary equivalence.

2.6 Amenability and W.A.U.E.

In this section, we will discuss the relationship between weak approximate unitary

equivalence and operator algebras which can be nicely approximated by finite dimen-

sional algebras. On the von Neumann algebras side of things, such algebras are called

hyperfinite; and for C∗-algebras, such algebras are called nuclear. The term amenable

is often used in place of either of these terms. We will define these properties and dis-

cuss how they relate to weak approximate unitary equivalence. The results discussed

in this section are well-known. We record them here for the sake of completeness.

Let us first give a definition of a hyperfinite von Neumann algebra.

Definition 2.6.1. A separably acting von Neumann algebra M is called hyperfinite if

there is an ascending sequence A1 ⊆ A2 ⊆ · · · ⊆M of finite dimensional subalgebras

such that their union ∪An is weakly dense in M . (For non separably acting von

Neumann algebras, replace “sequence”with “net.”)

Thanks largely to the celebrated 1976 paper [13] by Connes, this property is equivalent

to the following properties:

• M is injective: any completely positive map from a unital self-adjoint closed

subspace of a unital C∗-algebra A to M can be extended to a completely positive
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map from A to M . (see [34])

• M has property P of Schwartz: Say M acts on the Hilbert space H. For any

T ∈ B(H), the weak closure of the convex hull of the unitary orbit of T contains

an element of M ′. (see [43])

• M is semi-discrete: the identity map idM : M → M is a weak pointwise limit

of maps that factor through finite dimensional algebras. (see [17])

Recall that an embedding is a unital trace-preserving injective ∗-homomorphism.

Let Mn denote the algebra of n×n matrices with complex entries. This first lemma is

fundamental to the relationship between amenability in operator algebras and weak

approximate unitary equivalence.

Lemma 2.6.2. Let N be a II1-factor. For any n ∈ N, any two embeddings π, ρ :

Mn → N are unitarily equivalent.

Proof. We must show that there is a unitary u ∈ U(N) such that for every a ∈

Mn, π(a) = uρ(a)u∗. For 1 ≤ i, j ≤ n, let eij denote the matrix unit with a 1 in

the ij-entry and zeros everywhere else. Consider π(e11), a projection of trace
1

n
in

N . The projection ρ(e11) also has trace 1
n
. Since the value of the trace completely

determines Murray-von Neumann equivalence classes of projections in a II1-factor,
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we have that π(e11) ∼MvN ρ(e11). Let v1 ∈ N be a partial isometry such that

v∗1v1 = π(e11)

and

v1v
∗
1 = ρ(e11).

We will now define partial isometries v2, . . . vn ∈ N with v∗kvk = π(ekk) and vkv
∗
k =

ρ(ekk) for every 2 ≤ k ≤ n. For every 2 ≤ k ≤ n, put

vk := ρ(ek1)v1π(e1k).

Then

v∗kvk = π(ek1)v∗1ρ(e1kek1)v1π(e1k)

= π(ek1)v∗1ρ(e11)v1π(e1k)

= π(ek1)v∗1v1v
∗
1v1π(e1k)

= π(ek1e11e1k)

= π(ekk);

and

vkv
∗
k = ρ(ek1)v1π(e1kek1)v∗1ρ(e1k)

= ρ(ek1)v1π(e11)v∗1ρ(e1k)

= ρ(ek1)v1v
∗
1v1v

∗
1ρ(e1k)

= ρ(ek1e11e1k)

= ρ(ekk).

Now set

u :=
n∑
k=1

v∗k.
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It is an easy observation that u is a unitary in N . It will suffice to show the unitary

equivalence on matrix units, because the matrix units generate Mn. Fix 1 ≤ i, j ≤ n.

Then

uρ(eij)u
∗ =

( n∑
k=1

v∗k

)
ρ(eij)

( n∑
k=1

vk

)
= v∗i ρ(eij)vj

= π(ei1)v∗1ρ(e1ieijej1)v1π(e1j)

= π(ei1)v∗1ρ(e11)v1π(e1j)

= π(ei1)v∗1v1v
∗
1v1π(e1j)

= π(ei1e11e1j)

= π(eij).

From Lemma 2.6.2, we get some nice consequences fairly quickly.

Proposition 2.6.3. Let A be a finite dimensional von Neumann algebra, let N be

a II1-factor, and let π, ρ : A → N be ∗-homomorphisms. Then the following are

equivalent.

1. π and ρ are unitarily equivalent;

2. τ ◦ π = τ ◦ ρ.

Proof. This follows from the facts that (1) any finite dimensional von Neumann al-

gebra is a finite direct sum of matrix algebras and (2) for any projection p ∈ N , the

corner algebra pNp is still a II1-factor.
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Proposition 2.6.4. Let M be a separable finite hyperfinite von Neumann algebra, let

N be a II1-factor, and let π, ρ : M → N be ∗-homomorphisms. Then the following

are equivalent.

1. π and ρ are weakly approximately unitarily equivalent;

2. τ ◦ π = τ ◦ ρ.

Proof. (1 ⇒ 2): The fact that the trace is || · ||2-continuous and ignores unitary

conjugation makes this implication obvious.

(2 ⇒ 1): We will use the finite-subset formulation of weak approximate unitary

equivalence to prove this direction. Fix ε > 0, and let x1, . . . , xn ∈M . Because M is

hyperfinite, there is a finite dimensional von Neumann subalgebra A ⊂ M such that

there are elements y1, . . . , yn ∈ A with

||π(xk)− π(yk)||2 <
ε

2

and

||ρ(xk)− π(yk)||2 <
ε

2

for every 1 ≤ k ≤ n.

Consider the homomorphisms

π|A : A→ N

and

ρ|A : A→ N.
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By assumption, τ ◦ π|A = τ ◦ ρ|A. So by Proposition 2.6.3, there is a unitary u ∈ N

such that π|A = Ad(u) ◦ ρ|A. Thus we have for every 1 ≤ k ≤ n,

||π(xk)− uρ(xk)u
∗||2 ≤ ||π(xk)− π(yk)||2 + ||π(yk)− uρ(yk)u

∗||2

+ ||uρ(yk)u
∗ − uρ(xk)u

∗||2

= ||π(xk)− π(yk)||2 + ||π(yk)− uρ(yk)u
∗||2

+ ||ρ(yk)− ρ(xk)||2

= ||π(xk)− π(yk)||2 + ||ρ(yk)− ρ(xk)||2

<
ε

2
+
ε

2

= ε.

This gives the following corollary.

Corollary 2.6.5. Any unital endomorphism π : R → R is approximately inner (i.e.

weakly approximately unitarily equivalent to the identity endomorphism).

Example 2.6.6. It is easy to see that the II1-factor R ⊗ R is hyperfinite. So by

uniqueness, we have that R ⊗ R ∼= R. Let ε : R ⊗ R → R be an isomorphism.

Consider the map idR⊗1R : R→ R⊗R given by idR⊗1R(x) = x⊗1R. By Corollary

2.6.5, we have that ε◦ (idR⊗1R) ∼ idR. The relative commutant of a homomorphism

π : A→ B is given by {b ∈ B : bπ(a) = π(a)b, ∀a ∈ A} and is denoted by π(A)′ ∩B.

It is clear that if π and ρ are unitarily equivalent, then π and ρ have isomorphic (via

a unitary) relative commutants. This example shows that w.a.u.e does not preserve



48

the isomorphism class of relative commutants. Indeed, because R is a factor, we have

that idR(R)′ ∩R ∼= C, but (ε ◦ (idR ⊗ 1R))(R)′ ∩R ∼= R.

A finite tracial von Neumann algebra N is called embeddable if there exists an

embedding (unital, trace-preserving, injective ∗-homomorphism) π : N → RU . In

[27], Jung gave a fundamental characterization of a separable tracial finite hyperfinite

embeddable von Neumann algebra. We will discuss this characterization in §4.3, but

it is worth mentioning here.

Theorem 4.3.1 ([27]). Let N be a separable tracial finite embeddable von Neumann

algebra. The following are equivalent.

1. N is hyperfinite;

2. any two embeddings π, ρ : N → RU are unitarily equivalent.

In §4.3, we show how we can rephrase this characterization in a separable context.

In gaining separability, we must pass to the weaker equivalence relation of weak

approximate unitary equivalence.

Theorem 4.3.2. Let N be a separable tracial finite embeddable von Neumann algebra.

The following are equivalent.

1. N is hyperfinite;

2. for any McDuff II1-factor M , any two embeddings π, ρ : N → M are weakly

approximately unitarily equivalent.
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Now we move to discuss amenability in the context of C∗-algebras.

Definition 2.6.7. [10] A C∗-algebra A is nuclear if there is a sequence of matrix

algebras Mk(n) and completely positive maps ϕn : A → Mk(n) and ψn : Mk(n) → A

such that ψn ◦ ϕn approximates the identity idA : A→ A. That is, for every a ∈ A,

lim
n→∞

||ψn ◦ ϕn(a)− a|| = 0.

This can be interpreted as the C∗-version of the semidiscrete property mentioned

above. The original definition of nuclearity is in the context of tensor products. A

C∗-algebra A is nuclear if for any other C∗-algebra B,

A⊗min B ∼= A⊗max B.

There is also a C∗-version of hyperfiniteness called approximately finite dimensional

or AFD (A is AFD if it is the norm closure of an increasing union of finite dimensional

subalgebras). Unlike the von Neumann case, being AFD and being nuclear are not

equivalent. The class of nuclear algebras strictly contains the class of AFD algebras.

The following lemma is a useful characterization of nuclearity.

Lemma 2.6.8 ([10]). Let A be a C∗-algebra. The following are equivalent.

1. A is nuclear;

2. A∗∗ is semidiscrete (as a von Neumann algebra);

3. A∗∗ is hyperfinite (as a von Neumann algebra).



50

Proposition 2.6.9. Let A be a separable unital nuclear algebra, and let T be a tracial

state on A. Let πT be the induced GNS representation associated with T . Then πT (A)′′

is hyperfinite.

Proof. Let M = πT (A)′′. By Lemma III.2.2 of [46], the double dual A∗∗ surjects

onto M . Since A is nuclear, we get that A∗∗ is hyperfinite. It is an easy exercise

to show that the homomorphic image of a hyperfinite von Neumann algebra is itself

hyperfinite. So M is hyperfinite.

In particular, Lemma 2.6.8 and Proposition 2.6.9 can be used to prove the following

theorem from [16] relating traces on nuclear C∗-algebras to weak approximate unitary

equivalence–a major piece the argument for Theorem 4.1.2 from §4.1. The proof we

present for the following theorem is different from the one appearing in [16].

Theorem 2.6.10 ([16]). Let A be a separable unital nuclear C∗-algebra and let N be

a separable II1-factor. If π, ρ : A→ N are unital ∗-homomorphisms, then τ ◦π = τ ◦ρ

if and only if π and ρ are weakly approximately unitarily equivalent.

Proof. As argued before, the reverse implication is obvious.

(⇒): Consider the algebras W ∗(π(A)) and W ∗(ρ(A)). Since A is nuclear, both of

these algebras are hyperfinite by Proposition 2.6.9. The assumption that τ ◦π = τ ◦ρ

gives that the map

ϕ : W ∗(π(A))→ W ∗(ρ(A))
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SOT-densely defined by

ϕ(π(a)) = ρ(a), a ∈ A

is a well-defined ∗-isomorphism. So we have the maps idW ∗(π(A)), ϕ : W ∗(π(A))→ N

are such that τ ◦idW ∗(π(A)) = τ ◦ϕ. And by Propostion 2.6.4, since W ∗(π(A)) is hyper-

finite, we have that idW ∗(π(A)) and ϕ are weakly approximately unitarily equivalent.

It then follows that π ∼ ρ.

The main property of nuclear algebras at play in this discussion is the fact that all

of their traces give hyperfinite GNS constructions. Consider the following definition.

Definition 2.6.11 (Definition 3.2.1, [7]). A trace T ∈ T (A) is called uniform amenable

if there exists a sequence of unital completely positive maps ϕn : A → Mk(n) such

that

lim
n
||ϕn(ab)− ϕn(a)ϕn(b)||2 = 0

for all a, b ∈ A, and

lim
n
||T − trk(n) ◦ ϕn||A∗ = 0

where || · ||A∗ is the natural norm on the dual of A. Let UAT(A) denote the set of all

such traces.

We have the following fact about uniformly amenable traces thanks to Theorem 3.2.2

of [7].
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Theorem 2.6.12 ([7]). Let A be a separable unital C∗-algebra, and let T be a tracial

state on A. Let πT be the induced GNS representation associated with T . Then

T ∈ UAT(A) if and only if πT (A)′′ is hyperfinite.

So according to Theorem 2.6.12, the result of Thorem 2.6.10 applies to any algebra

A such that T (A) = UAT(A).

Example 2.6.13. The class of algebras for which T (A) = UAT(A) is strictly larger

than the class of nuclear algebras. Dadarlat’s example of a non-nuclear subalgebra

of an AF-algebra in [14] is an example of a non-nuclear algebra whose tracial GNS

representations are hyperfinite.

Because weak approximate unitary equivalence becomes exact unitary equivalence

in an ultrapower (when considering a separable subalgebra), we can write an ultra-

power version of Theorem 2.6.10. The following theorem appears in [45] and is an

immediate corollary of Theorems 2.5.6 and 2.6.10.

Theorem 2.6.14 ([45]). Let A be a separable unital C∗-algebra such that T (A) =

UAT(A), and let N be a separable II1-factor. If π, ρ : A → NU are unital ∗-

homomorphisms, then τ ◦ π = τ ◦ ρ if and only if π and ρ are unitarily equivalent.

The following theorem originally appeared in Hadwin and Li’s paper [26] and naturally

follows Theorem 2.6.14 in that Theorem 2.6.14 can be used to give a proof much more

concise than the original.
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Theorem 2.6.15 (Theorem 4.10, [26]). Let {Mi} be a collection of II1-factors with

traces τi. If A is either countably generated hyperfinite von Neumann algebra or

a separable unital C∗-algebra such that T (A) = UAT(A), then for any unital ∗-

homomorphism

π : A→
∏
U

Mi

there exist unital ∗-homomorphisms πi : A→Mi such that for every a ∈ A,

π(a) = (πi(a))U

and

τU ◦ π = τi ◦ πi

for every i where τU denotes the trace on the ultraproduct.

In particular, homomorphisms from separable nuclear C∗-algebras into ultraproducts

of II1-factors lift to coordinate-wise ∗-homomorphisms.

Proof. Let π : A →
∏
U

Mi be given. Let T = τU ◦ π. Since T induces a hyperfinite

GNS construction, we can find unital ∗-homomorphisms ρi : A → Mi so that T =

τi ◦ ρi. By uniqueness of GNS constructions we have that π and (ρi)U both have

hyperfinite images then using Theorem 2.6.14, we get that π and (ρi)U are unitarily

equivalent. Let u be a unitary in
∏
U

Mi such that π = u(ρi)Uu
∗. We may write

u = (ui)U where each ui is a unitary in Mi. Then we have π = (uiρiu
∗
i )U . So put

πi = uiρiu
∗
i , and we are done.
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2.7 Convexity

In this section, we will briefly review some concepts and results concerning convexity

in a functional analytic setting. Most of this material can be found in [37].

Definition 2.7.1. 1. Let V be a linear space (e.g.vector space, topological vector

space, Banach space, Hilbert space, C∗-algebra, von Neumann algebra, . . . ). A

subset C ⊂ V is called convex if for any t ∈ [0, 1], x, y ∈ C we have tx+(1−t)y ∈

C. In plain English, a set C is convex if any average of any two elements in C

remains in C.

2. Let C be a convex subset of a linear space V . A convex subset F of C is called

a face if for any t ∈ (0, 1), tx+ (1− t)y ∈ F implies that x, y ∈ F .

3. Let C be a convex subset of a linear space V . An element z ∈ C is called an

extreme point if {z} is a face of C. That is, for any t ∈ (0, 1), tx + (1 − t)y =

z ⇒ x = y = z. The set of extreme points of C is sometimes denoted as ∂e(C).

4. Given a subset S of V , the convex hull of S is the smallest convex subset of V

that contains S, denoted conv(S). It can be obtained by taking the collection

of all convex combinations of elements from S. If there is a topology on V , it

is sometimes useful to consider the closed convex hull conv(S) of S in V .

5. Let C,D be two convex sets. A map ϕ : C → D is called affine if for any

t ∈ [0, 1], x, y ∈ C,ϕ(tx+ (1− t)y) = tϕ(x) + (1− t)ϕ(y). Affine maps preserve
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convex combinations.

Example 2.7.2. 1. A solid disc is convex, but just the boundary circle is not.

The real line R is convex.

2. Any edge of a solid square is a face. The diagonal line connecting two non-

adjacent corners of a square is not a face. The real line R as a subset of itself

is a face.

3. Any corner of a solid square is an extreme point. Any point on the boundary

circle of a solid disc is an extreme point. The real line R has no extreme points.

4. In R2, the convex hull of (0, 0), (1, 0), and (0, 1) is a solid right triangle.

5. Let C be the closed line segment in R2 between (0, 0) and (1, 0), and let D be the

closed line segment in R2 between (0, 1) and (1, 3). Then the map ϕ : C → D

given by ϕ(x, 0) = (x, 2x+ 1) for x ∈ [0, 1] is affine.

Naturally, as the linear space increases in complexity, studying the convex geome-

try of its convex subsets can become more difficult–faces and extreme points become

harder to find and identify. The following theorem is invaluable when exploring con-

vexity in the context of functional analysis.

Theorem 2.7.3 (Krein-Milman Theorem, [37]). Let V be a topological vector space,

and let K be a compact convex subset of V . Then K = conv(∂e(K)). That is, a

compact convex subset is the closed convex hull of its extreme points.
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This theorem is true in more generality than the version presented here, but

the present version is sufficient for the purposes of this thesis. One of the major

consequences of the Krein-Milman Theorem is that if K is a compact convex subset,

then K is guaranteed to have extreme points.

Example 2.7.4. Let A be a unital C∗-algebra. The space of tracial states T (A)

is convex and compact under an appropriate topology. Thus, by the Krein-Milman

Theorem, T (A) is the closed convex hull of its extreme points. In particular, if T (A)

is nonempty, then there exist extreme tracial states. It can be shown that an extreme

tracial state T gives rise to a GNS representation πT such that πT (A)′′ is a factor.

2.8 Survey of Hom(N,RU)

Let N be a separable embeddable II1-factor. We let Hom(N,RU) denote the set of ∗-

homomorphisms π : N → RU modulo unitary equivalence. Given a ∗-homomorphism

π : N → RU , we let [π] denote the unitary equivalence class of π. In [8], it was

shown that a convex structure can be placed on Hom(N,RU). That is, one can take

averages of unitary equivalence classes of embeddings of N into RU . The purpose

of this section is to go over the construction of and basic properties concerning the

convex structure on Hom(N,RU) established in [8].

The topology ofHom(N,RU) can be described as pointwise ||·||2-convergence along

representatives. More precisely, [πn]→ [π] in Hom(N,RU) if there are representatives
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π′n ∈ [πn] such that for every x ∈ N , ||π′n(x)− π(x)||2 → 0. This can be metrized as

follows. Let {xn} be a generating subset of the unit ball of N and define the metric

d on Hom(N,RU) to be

d([π], [ρ]) = inf
u∈U(RU )

( ∞∑
n=1

1

22n
||π(xn)− uρ(xn)u∗||22

) 1
2
.

In the appendix of [8], it is shown that if N � R then Hom(N,RU) is not second

countable in this topology.

We start with a technical proposition that is fundamental in the structure and

analysis of Hom(N,RU). The following proposition appears as Proposition 3.1.2 of

[8].

Proposition 2.8.1. Let p, q ∈ RU be projections of the same trace, M ⊂ pRUp

be a separable von Neumann subalgebra and ϕ : pRUp → qRUq be a unital ∗-

homomorphism. Assume there exist projections pi, qi ∈ R, i ∈ N with τ(pi) =

τ(qi) = τ(p) for every i ∈ N such that (pi)U = p and (qi)U = q, and there exist

∗-homomorphisms ϕi : piRpi → qiRqi such that ϕ = (ϕi)U . Then there exists a par-

tial isometry v ∈ RU with v∗v = p and vv∗ = q such that ϕ(x) = vxv∗ for every

x ∈M .

This proposition will be used several times in Chapter 8. We will say that such a

homomorphism ϕ lifts to fiberwise or coordinatewise homomorphisms. Let σ : R ⊗

R→ R be an isomorphism, and to allow an abuse of notation, let σ : (R⊗R)U → RU

also denote the induced isomorphism between ultrapowers. As a consequence of
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Proposition 2.8.1, we get the following fact.

Proposition 2.8.2. Let π : N → RU be given. Then [π] = [σ(1 ⊗ π)] where σ(1 ⊗

π)(x) = σ(1⊗ π(x)).

The following definition provides one of the ingredients for the convex structure on

Hom(N,RU).

Definition 2.8.3. Let p ∈ RU be a projection such that p = (pi)U where pi is a

projection in R with τ(pi) = τ(p) for each i ∈ N. An isomorphism θp : pRUp→ RU is

called a standard isomorphism if it lifts to coordinate-wise isomorphisms piRpi → R.

Before exhibiting a convex structure on Hom(N,RU), Brown had to establish in

[8] what it means to have a convex structure outside of the context of linear space.

Brown gave five axioms in Definition 2.1 of [8] that should be expected of a bounded

convex subset of a linear space.

Definition 2.8.4. [8] If X is a complete bounded metric space, then X has a convex-

like structure if

1. (commutativity) t1x1 + · · ·+ tnxn = tα(1)xα(1) + · · ·+ tα(n)xα(n) for every permu-

tation α ∈ Sn.

2. (linearity) if x1 = x2 then t1x1 + t2x2 + t3x3 + · · ·+ tnxn = (t1 + t2)x1 + t3x3 +

· · ·+ tnxn.

3. (scalar identity) if ti = 1 then t1x1 + · · ·+ tnxn = xi.
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4. (metric compatibility) d((t1x1 + · · ·+ tnxn), (t′1x1 + · · ·+ t′nxn)) ≤ C
∑
|ti − t′i|

and d((t1x1 + · · ·+ tnxn), (t1y1 + · · ·+ tnyn)) ≤
∑
tid(xi, yi).

5. (algebraic compatibility)

s
( n∑
i=1

tixi

)
+ (1− s)

( m∑
j=1

t′′j zj

)
=

n∑
i=1

stixi +
m∑
j=1

(1− s)t′′j zj

where x1, . . . , xn, y1, . . . , yn, z1, . . . , zm ∈ X and 0 ≤ t1, . . . , tn, t
′
1, . . . , t

′
n,

t′′1, . . . , t
′′
m ≤ 1 with

n∑
i=1

ti =
n∑
i=1

t′i =
m∑
i=1

t′′i = 1.

Remark 2.8.5. The notation using the “+”sign of course needs to be made precise

because a priori, X may not have any notion of a “sum.”To do so, let Xn be the

n-fold Cartesian product and let ∆n denote the set of probability measures on the

n-point set {1, . . . , n} with the `1-metric. Then for each n ∈ N and µ ∈ ∆n, there

is a continuous map γµ : Xn → X that satisfies the above axioms when we set the

notation as

γµ(x1, . . . , xn) =: µ(1)x1 + µ(2)x2 + · · ·+ µ(n)xn.

In [11], Capraro and Fritz showed that closed bounded convex subsets of Banach

spaces are characterized by these axioms defining a convex-like structure. That is,

any complete bounded metric space with a convex-like structure can be realized as a

closed bounded convex subset of a Banach space.

We are now ready to define convex combinations in Hom(N,RU).
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Definition 2.8.6. Given [π1], . . . , [πn] ∈ Hom(N,RU) and 0 ≤ t1, . . . , tn ≤ 1 with∑
ti = 1, we define

t1[π1] + · · ·+ tn[πn] := [θ−1
p1
◦ π1 + · · ·+ θ−1

pn ◦ πn]

where τ(pi) = ti for every 1 ≤ i ≤ n and θpi is a standard isomorphism.

Remark 2.8.7. Thanks to Proposition 2.8.1, this operation is well-defined. Proposition

2.8.1 can also be used to show that

t1[π1] + · · · tn[πn] = [σ(p1 ⊗ π1) + · · ·+ σ(pn ⊗ πn)]

where p1, . . . , pn are projections with traces t1, . . . , tn respectively and σ ◦ (pk ⊗

πk)(x) = σ ◦ (pk ⊗ πk(x)).

Theorem 2.8.8 ([8]). (Hom(N,RU), d) is a complete metric space with a convex-like

structure with convex combinations defined as in Definition 2.8.6

The next concept is very useful in studying the convex geometry of Hom(N,RU).

Definition 2.8.9. Let π : N → RU be given. For a projection p ∈ π(N)′ ∩ RU , we

define the cutdown of π by p to be the map πp given by πp(x) = θp(pπ(x)) where θp

is a standard isomorphism. It can be shown that [πp] is independent of the choice of

the standard isomorphism.

The following proposition records important facts regarding this operation of taking

a cutdown.
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Proposition 2.8.10 ([8]). Let π : N → RU be given.

1. Let p ∈ π(N)′ ∩RU be a projection. If u ∈ RU is a unitary, then

[πp] = [(Ad(u) ◦ π)upu∗ ].

2. For any projection p ∈ RU ,

[π] = [σ(1⊗ π)σ(p⊗1)].

3. (a) Given any p ∈ π(N)′ ∩RU , [π] = τ(p)[πp] + τ(p⊥)[πp⊥ ].

(b) If [π] = t[ρ1] + (1 − t)[ρ2] then there is a projection p ∈ π(N)′ ∩ RU with

trace t such that [ρ1] = [πp] and [ρ2] = [πp⊥ ].

4. Let p, q ∈ π(N)′ ∩ RU be projections with the same trace. Then the following

are equivalent.

(a) [πp] = [πq]

(b) p and q are Murray-von Neumann equivalent in π(N)′ ∩RU .

With Proposition 2.8.10 established, we can now present Brown’s characterization of

extreme points in Hom(N,RU).

Theorem 2.8.11 ([8]). Given π : N → RU , [π] is extreme in Hom(N,RU) if and

only if π(N)′ ∩RU is a factor.
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Proof. (⇒): We will show that any two projections in π(N)′ ∩ RU are Murray-von

Neumann equivalent if and only if they have the same trace. Assume let p, q ∈

π(N)′ ∩ RU be projections with τ(p) = τ(q) = t. By part (3a) of Proposition 2.8.10,

we have

[π] = t[πp] + (1− t)[πp⊥ ]

= t[πq] + (1− t)[πq⊥ ].

And since [π] is extreme, [πp] = [π] = [πq]. And by part (4) of Proposition 2.8.10 p

and q are Murray-von Neumann equivalent in π(N)′ ∩RU .

(⇐): Assume [π] = t[ρ1] + (1− t)[ρ2]. Then by part (3b) of Proposition 2.8.10, there

is a projection p ∈ π(N)′ ∩RU with trace t such that [ρ1] = [πp] and [ρ2] = [πp⊥ ]. Let

q ∈ π(N)′ ∩ RU be a projection with trace t such that [π] = [πq] (this is possible by

parts (1) and (2) of Proposition 2.8.10). Since π(N)′ ∩ RU is a factor, then p and q

are Murray-von Neumann equivalent. Thus, [ρ1] = [πp] = [πq] = [π]. And similarly,

[π] = [ρ2].

Brown follows this characterization with a quick corollary that follows from Theorems

4.3.1 and 2.8.11.

Corollary 2.8.12 ([8]). R is the unique (embeddable) separable II1-factor with the

property that every embedding into RU has factorial commutant.

We will show generalizations of Theorem 2.8.11 and Corollary 2.8.12 in Chapter 6.

See Theorems 6.1.4 and 6.1.8.
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This completes the overview of the basic facts about Hom(N,RU) established in

[8]. We should mention that in [9], for N a separable II1-factor, Brown and Capraro

constructed a real Banach space that naturally contains Hom(N,MU). This space is

constructed by applying the Grothendieck construction to a cancellative semigroup

structure on the space of ∗-homomorphisms of N into amplifications of MU . Also,

in [35] and [36], Pănescu exhibits and investigates a similar convex structure on the

space of sofic representations of a given sofic group. These variations are interesting

on their own, but examining such things is not within the scope of this thesis.

Chapter 8 will return to the context of Hom(N,RU) and call upon many of the

definitions and results laid out in this section.
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Chapter 3

The Space Homw(A,M)

Unless otherwise noted, A will denote a separable unital C∗-algebra, N will denote a

separable II1-factor, M will denote a separable McDuff II1-factor, and R will denote

the separable hyperfinite II1-factor.

We consider the topology of pointwise convergence (of equivalence classes) for

Homw(A, N). That is, for [πn], [π] ∈ Homw(A, N), [πn]→ [π] if there are representa-

tives π′n ∈ [πn] such that π′n(a) → π(a) under the || · ||2-norm for every a ∈ A. This

topology can be metrized in the following way.

Definition 3.1. For [π], [ρ] ∈ Homw(A, N), let {an} be a countable generating set in

A≤1 and define the metric (same as in Definition 1.2 of [8])

d([π], [ρ]) = inf
u∈U(N)

( ∞∑
n=1

1

22n
||π(an)− uρ(an)u∗||22

) 1
2
. (3.0.1)

This is quickly seen to be a metric that induces the topology described above. We

note that the objects of study in [8] are typically not second countable with respect

to the corresponding metric, but in our situation we have the following fact.

Proposition 3.2. Homw(A, N) is complete and separable under the metric d.
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Proof. Completeness follows from an argument identical to one found in the proof of

Proposition 4.6 of [8].

For separability under d, let (N≤1)N/ ∼ denote the set of all sequences in the unit

ball of N modulo the equivalence relation given by {xn} ∼ {yn} if there is a sequence

of unitaries {up} ⊂ U(N) such that for every n we have xn = limp upynu
∗
p where the

limit is taken in the || · ||2-norm. Let [{xn}] denote the equivalence class of {xn} under

this equivalence relation. Consider a metric d′ on (N≤1)N/ ∼ given by

d′([{xn}], [{yn}]) = inf
u∈U(N)

( ∞∑
n=1

1

22n
||xn − uynu∗||22

) 1
2
.

We claim that (N≤1)N/ ∼ is separable under d′.

Let {mn} be || · ||2-dense in N≤1. Fix ε > 0 and [{xn}] ∈ (N≤1)N/ ∼. Let K ∈ N

be such that

4
∞∑

n=K+1

1

22n
<
ε2

2
,

and let f : {1, . . . , K} → N be such that

1

22n
||xn −mf(n)||22 <

ε2

2K
,∀1 ≤ n ≤ K.

For such a K and f , put {zK,f,n} ⊂ N≤1 with

zK,f,n =


mf(n) if 1 ≤ n ≤ K

mn+K′ if n > K

where K ′ = max {f(n) : 1 ≤ n ≤ K}.
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Then we have

d′([{xn}], [{zK,f,n}])2 ≤
∞∑
n=1

1

22n
||xn − zK,f,n||22

=
K∑
n=1

1

22n
||xn − zK,f,n||22 +

∞∑
n=K+1

1

22n
||xn − zK,f,n||22

< K · ε
2

2K
+
ε2

2
= ε2.

Thus d′([{xn}], [{zK,f,n}]) < ε.

So

{[{zK,f,n}]|K ∈ N, f : {1, . . . , K} → N} =
∞⋃
K=1

⋃
f :{1,...,K}→N

{[{zK,f,n}]}

is dense and countable. Thus (N≤1)N/ ∼ is separable under the metric d′.

By fixing a generating sequence {an} in A≤1, we get the metric d onHomw(A, N) as

defined in (3.0.1). We can consider the metric space (Homw(A, N), d) as a subspace of

the metric space ((N≤1)N/ ∼, d′) by identifying [π] ∈ Homw(A, N) with [{π(an)}] ∈

(N≤1)N/ ∼. Since subspaces of separable metric spaces are separable, the proof is

complete.

Remark 3.3. This metric is not canonical–it depends on the choice of the generating

sequence. It will sometimes be useful to choose our generating sequence to be a

sequence of unitaries (always possible in a unital C∗-algebra)–see Theorem 7.1.7.

We will see later in Example 4.2.2 that Homw(A,M) is not necessarily compact.
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3.1 Convex Structure

We now turn to define a convex structure on Homw(A,M) for M McDuff. In [8]

Brown uses certain isomorphisms between corner algebras pRUp and RU to define

a convex structure. We take a slightly different approach in order to define convex

combinations in Homw(A,M). We must first introduce some terminology.

Definition 3.1.1. For a McDuff II1-factor, a regular isomorphism σ : M ⊗ R → M

is an isomorphism such that σ ◦ (idM ⊗ 1R) ∼ idM where (idM ⊗ 1R)(x) = x⊗ 1R for

x ∈M . Denote the set of regular isomorphisms of M as REG(M).

Proposition 3.1.2. Let M be a McDuff II1-factor.

1. REG(M) 6= ∅.

2. Any two regular isomorphisms σM , sM : M ⊗R→M are weakly approximately

unitarily equivalent.

3. The following are equivalent.

(a) For every isomorphism ν : M ⊗R→M, ν ∈ REG(M);

(b) Inn(M) = Aut(M). (The closure is in the point-|| · ||2 topology).

Proof. (1): We will construct an isomorphism σM : M ⊗ R → M such that idM ∼

σM(idM ⊗ 1R). Let ν : M ⊗ R → M and ε : R ⊗ R → R be isomorphisms. By

Corollary 2.6.5, any unital endomorphism of R is approximately inner. We apply this
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fact to the map ε ◦ (idR ⊗ 1R) : R→ R getting that ε ◦ (idR ⊗ 1R) ∼ idR. Let

σM := ν ◦ (idM ⊗ ε) ◦ (ν−1 ⊗ idR)

and consider

σM(idM ⊗ 1R) = ν ◦ (idM ⊗ ε) ◦ (ν−1 ⊗ idR) ◦ (idM ⊗ 1R)

= ν ◦ (idM ⊗ ε) ◦ (ν−1 ⊗ 1R)

= ν ◦ (idM ⊗ ε) ◦ (idM ⊗ idR ⊗ idR) ◦ (ν−1 ⊗ 1R)

= ν ◦ (idM ⊗ ε) ◦ (idM ⊗ idR ⊗ 1R) ◦ ν−1

= ν ◦ (idM ⊗ (ε ◦ (idR ⊗ 1R))) ◦ ν−1

∼ ν ◦ (idM ⊗ idR) ◦ ν−1

= idM .

(2): From Definition 3.1.1 we have that σ−1
M ∼ idM ⊗ 1R ∼ s−1

M . Then it is a straight-

forward exercise to see that this implies that σM ∼ sM .

(3): (a ⇒ b): Let α ∈ Aut(M), and let ν : M ⊗ R → M be an isomorphism. Define

να := α ◦ ν. By assumption and part (2), ν ∼ να, or equivalently, ν−1 ∼ ν−1
α . So we

get

α = α ◦ ν ◦ ν−1

= να ◦ ν−1

∼ να ◦ ν−1
α

= idM .
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(b ⇒ a): Let ν : M ⊗ R → M be an isomorphism, and let σ ∈ REG(M). Then

ν ◦ σ−1 ∈ Aut(M). Thus

ν ◦ σ−1 ∼ idM ⇒ ν−1 ∼ σ−1

⇒ ν−1 ∼ idM ⊗ 1R

⇒ ν ∈ REG(M).

Remark 3.1.3. In Theorem 8 of [42], Sakai gave an example of a McDuff factor

(⊗ZL(F2)) that fails condition (3b) of Proposition 3.1.2. Also, by Corollary 3.3 of

[13], the McDuff factor L(F2)⊗R also fails condition (3b) of Proposition 3.1.2. So it

is nontrivial for us to restrict to regular isomorphisms in this thesis.

For π : A → M and p a projection in R, let π ⊗ p : A → M ⊗ R be given by

(π ⊗ p)(a) = π(a)⊗ p as similarly described in Remark 2.8.7. We now define convex

combinations in Homw(A,M).

Definition 3.1.4. Given [π], [ρ] ∈ Homw(A,M) and t ∈ [0, 1] we define

t[π] + (1− t)[ρ] := [σM(π ⊗ p) + σM(ρ⊗ p⊥)] (3.1.1)

where p ∈ P(R) with τ(p) = t and σM : M ⊗R→M is a regular isomorphism.

Compare Definition 3.1.4 with Remark 2.8.7. Clearly, this definition extends to taking

convex combinations of n equivalence classes. The following picture is helpful in

visualizing this operation.
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t[π] + (1− t)[ρ] 7→

σM
 π ⊗ p 0

0 ρ⊗ p⊥




where the block decomposition corresponds to the decomposition via 1M ⊗ p and

1M ⊗ p⊥.

Proposition 3.1.5. The formula (3.1.1) is well-defined. That is, for σM and sM

regular isomorphisms, p, q ∈ P(R) with τ(p) = τ(q) = t, and [π1] = [π2], [ρ1] = [ρ2],

then

[σM(π1 ⊗ p) + σM(ρ1 ⊗ p⊥)] = [sM(π2 ⊗ q) + sM(ρ2 ⊗ q⊥)].

Proof. By Proposition 3.1.2 (2) we have

[σM(π2 ⊗ q) + σM(ρ2 ⊗ q⊥)] = [sM(π2 ⊗ q) + sM(ρ2 ⊗ q⊥)]. (3.1.2)

Let v, w ∈ R be partial isometries such that

v∗v = p, vv∗ = q,

w∗w = p⊥, ww∗ = q⊥.

Then u := σM(1M ⊗ (v + w)) is a unitary with

σM(π2 ⊗ p) + σM(ρ2 ⊗ p⊥) = u∗(σM(π2 ⊗ q) + σM(ρ2 ⊗ q⊥))u. (3.1.3)

Let {un} , {vn} ⊂ U(M) be such that

π1(a) = lim
n
unπ2(a)u∗n,

ρ1(a) = lim
n
vnρ2(a)v∗n



71

for every a ∈ A. Let wn = σM(un ⊗ p) + σM(vn ⊗ p⊥). Then {wn} ⊂ U(M) with

σM(π1 ⊗ p) + σM(ρ1 ⊗ p⊥) = lim
n
wn(σM(π2 ⊗ p) + σM(ρ2 ⊗ p⊥))w∗n. (3.1.4)

So by (3.1.4), (3.1.3), and (3.1.2) respectively we have

[σM(π1 ⊗ p) + σM(ρ1 ⊗ p⊥] = [σM(π2 ⊗ p) + σM(ρ2 ⊗ p⊥)]

= [σM(π2 ⊗ q) + σM(ρ2 ⊗ q⊥)]

= [sM(π2 ⊗ q) + sM(ρ2 ⊗ q⊥)].

We are now ready to prove the following theorem.

Theorem 3.1.6. With convex combinations defined as in Definition 3.1.4,

Homw(A,M) satisfies the axioms of Brown’s convex-like-structure (Definition 2.1 of

[8]). Therefore, by Proposition 3.2 and the main result of [11], Homw(A,M) may be

considered as a closed, bounded, convex subset of a separable Banach space.

Proof. Given [π1], . . . , [πn] ∈ Homw(A,M) and 0 ≤ t1, . . . tn ≤ 1 such that
∑
ti = 1,

we must show that Homw(A,M) is complete under d and that Definition 3.1.4 satisfies

the following axioms.

1. (commutativity) t1[π1] + · · · + tn[πn] = tα(1)[πα(1)] + · · · + tα(n)[πα(n)] for every

permutation α ∈ Sn.

2. (linearity) if [π1] = [π2] then t1[π1] + t2[π2] + t3[π3] + · · ·+ tn[πn] = (t1 + t2)[π1] +

t3[π3] + · · ·+ tn[πn].
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3. (scalar identity) if ti = 1 then t1[π1] + · · ·+ tn[πn] = [πi].

4. (metric compatibility) d((t1[π1]+· · ·+tn[πn]), (t′1[π1]+· · ·+t′n[πn])) ≤ C
∑
|ti−t′i|

and d((t1[π1] + · · ·+ tn[πn]), (t1[π′1] + · · ·+ tn[π′n])) ≤
∑
tid([πi], [π

′
i]).

5. (algebraic compatibility)

s
( n∑
i=1

ti[πi]
)

+ (1− s)
( m∑
j=1

t′j[π
′
j]
)

=
n∑
i=1

sti[πi] +
m∑
j=1

(1− s)t′j[π′j].

We have completeness by Proposition 3.2. Metric compatibility follows from an

argument identical to the one found in Proposition 4.6 of [8].

Commutativity and scalar identity are automatic.

We check linearity. That is, if [π1] = [π2] then

t1[π1] + t2[π2] + · · ·+ tn[πn] = (t1 + t2)[π1] + · · ·+ tn[πn].

By definition, for σM a regular isomorphism, we have that

t1[π1] + t2[π1] + · · ·+ tn[πn] = [σM(π1 ⊗ p1) + σM(π1 ⊗ p2) + · · ·+ πn ⊗ pn]

= [σM(π1 ⊗ (p1 + p2)) + · · ·+ πn ⊗ pn]

= (t1 + t2)[π1] + · · ·+ tn[πn].

We next check algebraic compatibility. That is, for 0 ≤ ti, t
′
j, s ≤ 1 with

∑
ti =∑

t′j = 1, then

s
(∑

ti[πi]
)

+ (1− s)
(∑

t′j[π
′
j]
)

=
∑

sti[πi] +
∑

(1− s)t′j[π′j].
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We have that

s
(∑

ti[πi]
)

+ (1− s)
(∑

t′j[π
′
j]
)

= s
[∑

σM(πi ⊗ pi)
]

+ (1− s)
[∑

σM(π′j ⊗ p′j)
]

=
[∑

σM(σM(πi ⊗ pi)⊗ ps) +
∑

σM(σM(π′j ⊗ p′j)⊗ p1−s)
]

=
[
σM((σM ⊗ idR)

(∑
πi ⊗ pi ⊗ ps +

∑
π′j ⊗ p′j ⊗ p1−s

)]
for projections ps, p1−s, pi, p

′
j ∈ P(R) with τ(ps) = s, τ(p1−s), τ(pi) = ti, τ(p′j) = t′j

with p1−s = 1−ps, the projections {pi} pairwise orthogonal, and the projections
{
p′j
}

pairwise orthogonal.

From Definition 3.1.1 we know that σ−1
M is weakly approximately unitarily equiv-

alent to idM ⊗ 1R. Also ε ◦ (1R⊗ idR) is weakly approximately unitarily equivalent to

idR because it is a unital endomorphism of R. So we get the following equivalences

with respect to weak approximate unitary equivalence.

(idM ⊗ ε) ◦ (σ−1
M ⊗ idR) ∼ (idM ⊗ ε) ◦ (idM ⊗ 1R ⊗ idR)

= idM ⊗ (ε ◦ (1R ⊗ idR))

∼ idM ⊗ idR

= idM⊗R

It follows that

(idM ⊗ ε) ∼ (σM ⊗ idR).
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Thus we get that

s
(∑

ti[πi]
)

+ (1− s)
(∑

t′j[π
′
j]
)

=
[
σM

(
(σM ⊗ idR)

(∑
πi ⊗ pi ⊗ ps +

∑
π′j ⊗ p′j ⊗ p1−s

))]
=

[
σM

(
(idM ⊗ ε)

(∑
πi ⊗ pi ⊗ ps +

∑
π′j ⊗ p′j ⊗ p1−s

))]
=

[∑
σM(πi ⊗ ε(pi ⊗ ps)) +

∑
σM(π′j ⊗ ε(p′j ⊗ p1−s))

]
=

∑
sti[πi] +

∑
(1− s)t′j[π′j]

since the operation is well-defined.

3.2 Functoriality

A ∗-homomorphism ϕ : A → B induces an affine map ϕ∗ : Homw(B,M) →

Homw(A,M) given by

ϕ∗([π]) = [π ◦ ϕ].

Proposition 3.2.1. The induced map ϕ∗ is well-defined, continuous, and affine.

Proof. Well-Defined: Let [π] = [ρ] ∈ Homw(B,M). So there is a sequence of unitaries

{un} ⊂ M such that ρ(b) = limn unπ(b)u∗n for any b ∈ B. Thus, for a ∈ A, we have

that ρ(ϕ(a)) = limn unπ(ϕ(a))u∗n. Therefore ϕ∗([π]) = [π ◦ ϕ] = [ρ ◦ ϕ] = ϕ∗([ρ]).

Continuity is just as quick to see.
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Affine:

ϕ∗(t[π] + (1− t)[ρ]) = ϕ∗([σM(π ⊗ p) + σM(ρ⊗ p⊥)])

= [(σM(π ⊗ p) + σM(ρ⊗ p⊥)) ◦ ϕ]

= [σM((π ◦ ϕ)⊗ p) + σM((ρ ◦ ϕ)⊗ p⊥)]

= t[π ◦ ϕ] + (1− t)[ρ ◦ ϕ]

= tϕ∗([π]) + (1− t)ϕ∗([ρ]).

The chain rule and preservation of identity are obvious observations; so we see that

Homw(·,M) is a contravariant functor from the category of C∗-algebras to the cate-

gory of affine metrizable spaces.

Example 3.2.2. We exhibit an injective homomorphism ϕ such that ϕ∗ fails to be

surjective. Consider ϕ : C⊕M2 → C⊕M3 given by

λ⊕

a b

c d

 7→ λ⊕


a b 0

c d 0

0 0 λ

 .

By Lemma 2.6.2 we know that up to unitary equivalence, ∗-homomorphisms from

finite dimensional algebras into II1 factors are completely determined by their induced

traces. Therefore the induced map ϕ∗ : Homw(C ⊕M3,M) → Homw(C ⊕M2,M)

may be understood as ϕ∗ : T (C⊕M3)→ T (C⊕M2) where given f ∈ T (C⊕M3) we

have ϕ∗(f) = f ◦ ϕ. Since both algebras have two summands, both trace spaces are

the two-vertex simplex (i.e. the unit interval). The fact that ϕ∗ is affine allows us to
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only check the images of the extreme points (endpoints) under ϕ∗ in order to see the

image ϕ∗(T (C⊕M3)). One endpoint of T (C⊕M3) is the trace

f1(λ⊕ (aij)) = λ.

We see that

ϕ∗(f1)

(
λ⊕

a b

c d


)

= λ.

The other endpoint of T (C⊕M3) is

f2(λ⊕ (aij)) = tr3(aij)

where tr3 is the (unique) normalized trace on M3. We get that

ϕ∗(f2)

(
λ⊕

a b

c d


)

=
1

3
λ+

2

3
tr2

(a b

c d


)

where tr2 is the normalized trace on M2. So the image ϕ∗(T (C⊕M3)) is the convex

hull of ϕ∗(f1) and ϕ∗(f2). From this it is clear that the extreme trace

λ⊕

a b

c d

 7→ tr2

(a b

c d


)

does not lie in the image ϕ∗(T (C⊕M3)). Hence ϕ∗ is not surjective.

On the other hand, we have the following fact.

Proposition 3.2.3. If ϕ is surjective, then ϕ∗ is an affine homeomorphism onto its

image.
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Proof. We must show that ϕ∗ is injective and that (ϕ∗)−1 is continuous on

ϕ∗(Homw(B,M)). Showing that ϕ∗ is injective is a simple exercise and will be left

to the reader. To show the continuity of (ϕ∗)−1 assume that ϕ∗([πn]) → ϕ∗([π]) in

Homw(A,M). This is the same as saying [πn ◦ ϕ] → [π ◦ ϕ]. We will demonstrate

that [πn]→ [π]. Let γn ∈ [πn ◦ϕ] be representatives such that γn(a)→ π(ϕ(a)) in M

under the trace norm. Since γn ∈ [πn ◦ ϕ] we get that ker(ϕ) ⊆ ker(γn) for every n.

Thus by isomorphism theorems, we can write γn = δn ◦ ϕ for some ∗-homomorphism

δn : B→M for every n. For b ∈ B, we have that b = ϕ(a) for some a ∈ A; thus

δn(b) = δn(ϕ(a)) = γn(a)→ π(ϕ(a)) = π(b).

It remains to show that [δn] = [πn] for every n. Fix n; there exists {uk(n)} ⊂ U(M)

such that for every a ∈ A,

uk(n)γn(a)uk(n)∗ → πn(ϕ(a)).

Let b ∈ B, and let a ∈ A be such that ϕ(a) = b. Then

uk(n)δn(b)uk(n)∗ = uk(n)δn(ϕ(a))uk(n)∗

= uk(n)γn(a)uk(n)∗

→ πn(ϕ(a))

= πn(b).

Similarly, a unital ∗-homomorphism ψ : M1 → M2 between McDuff factors M1

and M2 also induces a map

ψ∗ : Homw(A,M1)→ Homw(A,M2)
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given by ψ∗([π]) = [ψ ◦ π].

Proposition 3.2.4. The induced map ψ∗ is well-defined, continuous, and affine.

Proof. The fact that ψ is a unital ∗-homomorphism guarantees that ψ∗ is well-defined.

Continuity is also routine.

To show that ψ∗ is affine, we will show that for [π], [ρ] ∈ Homw(A,M1) and for a

projection p ∈ P(R) we have

[ψ(σM1(π ⊗ p) + σM1(ρ⊗ p⊥))] = [σM2((ψ ◦ π)⊗ p) + σM2((ψ ◦ ρ)⊗ p⊥)]

or

[ψ ◦ σM1(π ⊗ p+ ρ⊗ p⊥)] = [σM2 ◦ (ψ ⊗ idR)(π ⊗ p+ ρ⊗ p⊥)]

Here σM1 and σM2 are regular isomorphisms.

Thus it suffices to show that ψ ◦σM1 ∼ σM2 ◦ (ψ⊗ idR); or equivalently, σ−1
M2
◦ψ ∼

(ψ ⊗ idR) ◦ σ−1
M1

. Since σM1 and σM2 are regular isomorphisms,

σ−1
M2
◦ ψ ∼ (idM2 ⊗ 1R) ◦ ψ

= ψ ⊗ 1R

= (ψ ⊗ idR) ◦ (idM1 ⊗ 1R)

∼ (ψ ⊗ idR) ◦ σ−1
M2
.

One can easily see that Homw(A, ·) satisfies the chain rule and preserves identities;

so Homw(A, ·) is a covariant functor from the category of McDuff II1 factors to the

category of affine metrizable spaces.
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Chapter 4

Connection to the Trace Space

Given [π] ∈ Homw(A,M), we can assign to it a trace on A in the following natural

way.

Definition 4.1. For a separable unital tracial C∗-algebra A and a McDuff factor M ,

let α(A,M) : Homw(A,M)→ T (A) be the map given by α(A,M)([π]) = τM ◦π where τM

is the unique tracial state of M , and T (A) denotes the trace space of A (see Definition

2.1.7).

Proposition 4.2. For any separable unital tracial C∗-algebra A and McDuff factor M

the map α(A,M) : Homw(A,M)→ T (A) is well-defined, continuous (from the d-metric

to the weak-∗ topology), and affine.

Proof. That α(A,M) is well-defined and continuous follows from the continuity of τM .

To see that α(A,M) is affine, let [π], [ρ] ∈ Homw(A,M) and t ∈ [0, 1]. Then for a ∈ A
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and p ∈ P(R) with τ(p) = t, letting α stand for α(A,M) we have

α(t[π] + (1− t)[ρ])(a) = α(σM(π ⊗ p+ ρ⊗ p⊥))(a)

= τ(σM(π(a)⊗ p)) + τ(σM(ρ(a)⊗ p⊥))

= tτ(π(a)) + (1− t)τ(ρ(a)) (4.0.1)

= (tα([π]) + (1− t)α([ρ]))(a).

Where (4.0.1) follows from the fact that τ(σM(·⊗p)) is a trace on M that evaluates to

t at 1M , and thus by the uniqueness of trace, we get that τ(σM(· ⊗ p)) = tτM(·).

4.1 Nuclear and Hyperfinite Cases

In this section, we investigate the cases in which α(A,M) is an affine homeomorphism

for every McDuff M . We first prove a technical lemma.

Lemma 4.1.1. Let π, πk : A→ M be ∗-homomorphisms for k ∈ N and consider the

∗-homomorphisms

(πk)U : A→MU and πU : A→MU

given by

(πk)U(a) = (πk(a))U and πU(a) = (π(a))U

where U is a free ultrafilter on N. If (πk)U is unitarily equivalent to πU , then there is

a subsequence {kj} such that [πkj ]→ [π] in Homw(A,M).
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Proof. Let u = (uk)U ∈ U(MU) be such that for every a ∈ A,

(π(a))U = (ukπk(a)u∗k)U .

Let {ai} ⊆ A≤1 be dense in the unit ball of A. Put

Aj :=
⋂

1≤i≤j

{
k : ||ukπk(ai)u∗k − π(ai)||2 <

1

j

}
.

We have Aj ∈ U for every j. Pick k1 ∈ A1, and for j > 1, pick kj ∈ Aj ∩ {k > kj−1}.

We claim that for every a ∈ A≤1,

ukjπkj(a)u∗kj → π(a)

as j →∞. Fix a ∈ A≤1 and ε > 0. Let i ∈ N be such that ||a− ai|| <
ε

4
. Let J ∈ N

be such that i ≤ J and
1

J
<
ε

2
. Then for j > J , since kj ∈ Aj, we have

||ukjπkj(a)u∗kj − π(a)||2 ≤ ||ukjπkj(a)u∗kj − ukjπkj(ai)u
∗
kj
||2+

||ukjπkj(ai)u∗kj − π(ai)||2 + ||π(ai)− π(a)||2

<
ε

4
+

1

j
+
ε

4

< ε.

Since Ad(ukj) ◦ πkj ∈ [πkj ], this gives [πkj ]→ [π].

Theorem 4.1.2. If A is nuclear, then α(A,M) is an affine homeomorphism for any

McDuff M . In particular, Homw(A,M) is affinely homeomorphic to T (A).
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Proof. Injective: When A is nuclear we have

(α([π]) = α([ρ]))⇔ (τ ◦ π = τ ◦ ρ)

⇔ ([π] = [ρ]). (4.1.1)

Here (4.1.1) follows from Theorem 2.6.10.

Surjective: By Proposition 2.6.9, every trace of A gives a finite hyperfinite GNS

closure, and it is well known that in this case every trace lifts through R ⊂M . Thus

α(A,M) is surjective.

Bicontinuous: Let Tn → T in T (A). Let [πn] = α−1
(A,M)(Tn) and [π] = α−1

(A,M)(T ).

We must show that [πn] → [π]. We will show this by appealing to the following

standard topological fact: for a sequence {an}, if every subsequence
{
an(k)

}
has a

sub-subsequence
{
an(kj)

}
converging to a, then {an} converges to a. Let

{
[πn(k)]

}
be

a subsequence of {[πn]}. Now consider the homomorphism (πn(k))U : A→MU where

U is a free ultrafilter on N. By the convergence of the induced traces, we get that

τMU ◦ (πn(k))U = τMU ◦ πU .

And by Theorem 2.6.14, we get that (πn(k))U is unitarily equivalent to πU . So by

Lemma 4.1.1, there is a sub-subsequence {n(kj)} such that [πn(kj)]→ [π].

Example 4.1.3. Theorem 3.10 of [3] says that for any metrizable Choquet simplex

∆, there exists a simple unital AF algebra B such that T (B) is affinely homeomorphic

to ∆. Combining this fantastic result with Theorem 4.1.2 tells us that any (separable)

metrizable Choquet simplex ∆ can arise as Homw(B,M) for some (separable) B.
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We now work to characterize the algebras A for which α(A,M) is an affine homeo-

morphism for every McDuff M .

Definition 4.1.4. Let

T (A,M) := {∈ T (A) : there exists π : A→M such that T = τM ◦ π} .

For T ∈ T (A,M), we say “T lifts through M .”

Theorem 4.1.5. For any A, the map α(A,R) : Homw(A, R) → T (A) is always a

homeomorphism onto its image. In particular, Homw(A, R) ∼= T (A, R) (affine home-

omorphism).

Proof. Let π, ρ : A→ R be unital ∗-homomorphisms such that α(A,R)([π]) = α(A,R)([ρ]).

We must show that [π] = [ρ].

Consider the following map

ϕ : W ∗(π(A))→ W ∗(ρ(A))

densely defined by

ϕ(π(a)) = ρ(a).

The assumption that τ ◦ π = τ ◦ ρ gives that all the ∗-moments in π(A) agree with

those of ρ(A). So this is a well-defined ∗-isomorphism. In fact, ϕ : W ∗(π(A)) →

W ∗(ρ(A)) ⊆ R is an embedding. Now W ∗(π(A)) ⊆ R is hyperfinite, so Proposition

2.6.4 gives that ϕ ∼ idW ∗(π(A)). Thus [π] = [ρ], and α(A,R) is injective.
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It remains to show that α−1
(A,R) is continuous on T (A, R). We proceed similarly

to the bicontinuous part of the proof of Theorem 4.1.2. Let Tn → T in T (A, R) in

the weak-∗ sense. And let πn, π : A → R be such that τ ◦ πn = Tn and τ ◦ π = T .

Let {n(k)} be a subsequence. Consider (πn(k))U and πU for a free ultrafilter U of N.

By assumption, τRU ◦ (πn(k))U = T . So by the uniqueness of the GNS construction,

W ∗((πn(k))U(A)) ∼= W ∗(πU(A)) is hyperfinite. As above in the proof of the injectivity

of α(A,R), the fact that τRU ◦ (πn(k))U = τRU ◦ πU gives that the map

ψ : W ∗((πn(k))U(A))→ W ∗(πU(A)) ⊂ RU

given by

ψ((πn(k))U(a)) = πU(a)

is an embedding. Thus, by Theorem 4.3.1, idW ∗((πn(k))U (A)) is unitarily equivalent to

ψ. It follows immediately that (πn(k))U is unitarily equivalent to πU . Then Lemma

4.1.1 tells us that there is a sub-subsequence {n(kj)} such that [πn(kj)]→ [π]. So we

have shown that for any subsequence
{

[πn(k)]
}

of {[πn]} there is a sub-subsequence{
[πn(kj)]

}
⊂
{

[πn(k)]
}

such that [πn(kj)]→ [π]. Thus

α−1
(A,R)(Tn) = [πn]→ [π] = α−1

(A,R)(T ).

From Theorem 4.1.5 we have that Homw(A, R) ∼= T (A, R) as convex sets. Note

that by Theorem 2.6.12, T (A, R) = UAT(A). We can now give our characterization

theorem.
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Theorem 4.1.6. The following are equivalent:

1. α(A,M) is an affine homeomorphism for every McDuff M ;

2. α(A,R) is an affine homeomorphism;

3. α(A,R) is surjective;

4. UAT(A) = T (A, R) = T (A).

Proof. The implications ((1)⇒ (2)) and ((2)⇒ (3)) are obviously true.

The observation that α(A,R)(Homw(A, R)) = T (A, R) = UAT(A) shows the equiv-

alence ((3)⇔ (4)).

It remains to show ((4) ⇒ (1)): If M is such that α(A,M) is not injective, then

there are homomorphisms

π, ρ : A→M

such that τM ◦ π = τM ◦ ρ but [π] 6= [ρ]. Then by Theorem 4.1.5 we have that

τ ◦ π /∈ T (A, R) – a contradiction. So α(A,M) must be injective for every M . If M

is such that α(A,M) is not surjective then there exists T ∈ T (A) such that T does

not lift through M ; thus T cannot lift through R either. So again T (A, R) 6= T (A)

– a contradiction. So α(A,M) must be bijective for every M . To show that α−1
(A,M)

is continuous for every M , we use the assumption that T (A) = T (A, R) along with

an argument identical to the justification of the continuity of α−1
(A,R) in the proof of

Theorem 4.1.5.
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Thus, the class of algebras A for which α(A,M) is an affine homeomorphism for all

McDuff M is exactly the class of all A such that for any trace T ∈ T (A), the GNS

representation of A induced by T has a hyperfinite von Neumann closure. Recall that

in Example 2.6.13 we noted that this class of algebras is strictly larger than that of

nuclear algebras.

4.2 Examples

By Theorem 4.1.2 we know that α(A,M) can be both injective and surjective. The

following examples will demonstrate that the other three cases where one or both

properties fail are possible. This suggests that Homw(A,M) is a rich object with

deep and interesting subtleties.

Example 4.2.1. “Forgetful Trace.”This example shows that α(A,M) is not always

injective – confirming that Homw(A,M) carries information different from that of

T (A). The strategy of this example also reveals the usefulness of non-approximately

inner automorphisms of McDuff factors. Let M be a McDuff factor with a non-

approximately inner automorphism ϕ (e.g. M = ⊗ZL(F2) satisfies this property as

mentioned in Remark 3.1.3). Let A be a separable, || · ||2-dense C∗-subalgebra of M .

Let π : A→M be the identity inclusion, and let ρ = ϕ ◦ π. Then we claim

τM ◦ ρ = τM ◦ π,
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but

[π] 6= [ρ].

Since τM ◦ ϕ is also a trace on the II1 factor M , we have τM = τM ◦ ϕ. Then

τM(π(a)) = τM(ϕ(π(a))) = τM(ρ(a)). Now suppose for the sake of contradiction that

[π] = [ρ]. Then there is a sequence of unitaries {un} in M such that for every a ∈ A

we have

lim
n
||ϕ(π(a))− unπ(a)u∗n||2 = lim

n
||ϕ(a)− unau∗n||2 = 0.

Then the || · ||2-density of π(A) = A ⊂M implies that for every x ∈M we have

lim
n
||ϕ(x)− unxu∗n||2 = 0

meaning that ϕ is approximately inner – a contradiction.

If we further insist that A has a unique trace (by throwing in enough unitaries via

Dixmier approximation – see Lemma 4.2.3), then this is an example of α(A,M) failing

to be injective while remaining surjective.

Example 4.2.2. By Proposition 3.5.1 of [7] we have that T (A, R) is a weakly closed

subset of T (A). It is not true in general, however, that T (A, R) is weak-∗ closed in

T (A). By Remark 4.1.7 of [7] if Γ is a non-amenable, residually finite, discrete group

(e.g. Fn) then the T (C∗(Γ), R) is not weak-∗ closed. So for A = C∗(Γ) where Γ

is a non-amenable, residually finite, discrete group, we have that α(A,R) fails to be

surjective while remaining injective. Furthermore, Homw(A, R) is not compact: if it
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were, then by continuity α(A,R)(Homw(A, R)) = T (A, R) = UAT(A) would also be

weak-∗ compact and thus weak-∗ closed – a contradiction.

For the next example, we will need the following lemma which is most likely known

to experts. We include a proof for the sake of completeness. We thank N. Brown for

suggesting the proof of the following lemma.

Lemma 4.2.3. If Y is a separable von Neumann subalgebra of a II1 factor X with

1Y = 1X , then there is a separable II1 factor M contained unitally in X that contains

Y : Y ⊂M ⊂ X.

Proof. This proof will heavily rely on Dixmier’s approximation theorem: For N a

finite von Neumann algebra and x ∈ N then we have

conv {uxu∗|u ∈ U(N)} ∩ Z(N) = {T (x)}

where T is the unique center-valued trace, and the closure is in the norm topology.

We will recursively construct an increasing sequence {Yi}∞i=0 of separable subal-

gebras of X and claim that M = W ∗(∪∞i=0Yi) is the desired factor. Let Y0 = Y .

We will assume that Yi has been constructed and go about constructing Yi+1. Let

{y(i, j)}∞j=1 ⊂ (Yi)≤1 be weakly dense in (Yi)≤1. By Dixmier, for any j and for

any k ∈ N there are unitaries u1(i, j, k), . . . , un(i,j,k)(i, j, k) ∈ U(X) and scalars

α1(i, j, k), . . . , αn(i,j,k)(i, j, k) ∈ (0, 1) with
∑n(i,j,k)

p=1 αp(i, j, k) = 1 such that

∣∣∣∣∣∣ n(i,j,k)∑
p=1

αp(i, j, k)up(i, j, k)y(i, j)up(i, j, k)∗ − τ(y(i, j))I
∣∣∣∣∣∣ < 1

k
.
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Then we let

Yi+1 = W ∗(Yi ∪ (∪∞j=1 ∪∞k=1

{
u1(i, j, k), . . . , un(i,j,k)(i, j, k)

}
)).

Let M := W ∗(∪∞i=0Yi). To show that M is a factor we will show that it has

a unique unital trace (given by restriction of the unital trace τ on X). Let T be

a unital trace on M and let m ∈ M≤1. It will suffice to show that for any ε >

0, |T (m) − τ(m)| < ε. Fix ε > 0. Let K ∈ N be such that 1
K

< ε. And let

i(m), j(m) be such that y(i(m), j(m)) ∈ Yi(m) with |T (m)−T (y(i(m), j(m))| < ε
3

and

|τ(m)− τ(i(m), j(m))| < ε
3

(guaranteed by the weak continuity of both traces).

For brevity let

y = y(i(m), j(m)), up = up(i(m), j(m), 3K),

αp = αp(i(m), j(m), 3K), n = n(i(m), j(m), 3K)

and consider

|T (y)− τ(y)| =
∣∣∣T( n∑

p=1

αpupyu
∗
p

)
− τ(y)

∣∣∣
=
∣∣∣T( n∑

p=1

αpupyu
∗
p − τ(y)I

)∣∣∣
≤
∣∣∣∣∣∣ n∑
p=1

αpupyu
∗
p − τ(y)I

∣∣∣∣∣∣
<

1

3K

<
ε

3
.
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Thus we have

|T (m)− τ(m)| ≤ |T (m)− T (y)|+ |T (y)− τ(y)|+ |τ(y)− τ(m)|

<
ε

3
+
ε

3
+
ε

3

= ε,

and we are done.

Definition 4.2.4. We say that a tracial von Neumann algebra N is embeddable if

there exists a trace-preserving unital embedding π : N → RU .

Example 4.2.5. “Too Many Traces.”This example will provide an algebra A such

that α(A,M) simultaneously fails injectivity and surjectivity for some M . This idea

was suggested by N. Brown. Let N be an embeddable separable non-hyperfinite II1-

factor. Let π, ρ : N → RU be two embeddings that are not unitarily equivalent (this is

guaranteed by Theorem 4.3.1). Let Y := W ∗(π(N)∪ρ(N)), and let X = RU . We have

that the separable algebra Y is contained in the (nonseparable) II1 factor X; so by

Lemma 4.2.3 there is a separable II1 factor M such that Y ⊂M ⊂ X. We claim that

π and ρ are not weakly approximately unitarily equivalent in M . If they were weakly

approximately unitarily equivalent in M then they will also be weakly approximately

unitarily equivalent in RU ; but then by Theorem 2.5.6 we have that π and ρ are

unitarily equivalent in RU – a contradiction. Consider π ⊗ 1R, ρ⊗ 1R : N →M ⊗R.

By Theorem 7.1.4, since π and ρ are inequivalent, we have that π⊗ 1R is not weakly
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approximately unitarily equivalent to ρ ⊗ 1R (be assured that the proof of Theorem

7.1.4 does not depend on this example).

Now let A = C∗(F∞). And let ζ : C∗(F∞) → N be a ∗-monomorphism with

weakly dense image as guaranteed by Proposition 3.1 of [6]. Let π̂ and ρ̂ be given by

π̂ = (π ⊗ 1R) ◦ ζ : C∗(F∞)→ N →M ⊗R

and

ρ̂ = (ρ⊗ 1R) ◦ ζ : C∗(F∞)→ N →M ⊗R.

Then we clearly have that [π̂] 6= [ρ̂] but α(A,M⊗R)([π̂]) = α(A,M⊗R)([ρ̂]).

Another consequence of Proposition 3.1 of [6] is that A = C∗(F∞) enjoys the

property that for any McDuff factor S there is a trace TS ∈ T (A) such that πTS(A)′′ ∼=

S (where πTS is the GNS representation corresponding with TS). By [32], there is

no separable universal II1 factor, and so we can conclude that there is no separable

universal McDuff factor. So let S be such that S does not embed into M ⊗R. Then

we have that TS ∈ T (A) as described above does not lift through M ⊗ R. Thus

TS /∈ α(A,M⊗R)(Homw(A,M ⊗ R)). So we have that α(A,M⊗R) is neither injective nor

surjective.
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4.3 An Alternative Characterization of Hyperfinite-

ness

Investigating the connection between weak approximate unitary equivalence and

preservation of a given trace has led us to a characterization of a finite tracial em-

beddable hyperfinite von Neumann algebra that we believe to be new.

A result of Jung gives a characterization of hyperfiniteness using embeddings into

RU . We state it as follows.

Theorem 4.3.1 (Lemma 2.9, [27]). A separable tracial embeddable von Neumann

algebra N is hyperfinite if and only if any two embeddings π, ρ : N → RU are conjugate

by a unitary in RU .

The characterization we present in the following theorem frames Jung’s result in

terms of embeddings into separable algebras – removing (most of) the ultrapower

language from the characterization. This characterization may be known to experts,

but we have not seen it in the literature.

Theorem 4.3.2. Let N be a separable tracial embeddable von Neumann algebra.

Then N is hyperfinite if and only if for every separable McDuff II1-factor M , any two

embeddings π, ρ : N →M are weakly approximately unitarily equivalent.

Proof. (⇒): This follows directly from Proposition 2.6.4.

(⇐): The argument here is similar to the one found in Example 4.2.5. Assume that

N is not hyperfinite. Then Jung’s result says that there exist two embeddings π, ρ :
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N → RU such that π and ρ are not unitarily conjugate. Let Y := W ∗(π(N)∪ ρ(N)).

Then by Lemma 4.2.3 there is a separable II1-factor M0 ⊂ RU containing Y . Just as

in Example 4.2.5, we may argue that π and ρ are not weakly approximately unitarily

equivalent in M0. And by Theorem 7.1.4 (whose proof does not rely on this result),

we have that π⊗ 1R : N →M0 ⊗R is not weakly approximately unitarily equivalent

to ρ⊗ 1R : N →M0 ⊗R. So putting M := M0 ⊗R, we are done.

Remark 4.3.3. Jung’s approach to the characterization in [27] hinges on the concept

of tubularity: a condition on neighborhoods of unitary orbits of the microstate spaces

for the generators of the algebra. We remark here that this concept of tubularity

was preceded a decade earlier in [25] by Hadwin’s concept of dimension ratio. The

dimension ratio is a quantity associated to the self adjoint generators of a tracial C∗-

algebra. This dimension ratio quantifies tubularity in the sense that the dimension

ratio of the generators is 0 if and only if the generators are tubular. See [27] and [25]

for the relevant definitions and theorems.



94

Chapter 5

The Convex Geometry of
Homw(A,M)

In the first part of this chapter we discuss a necessary condition for extreme points of

Homw(A,M). A complete characterization of extreme points remains open, and thus

the question of existence of extreme points in Homw(A,M) is also open. In Chapter

6 we provide characterizations for extreme points in broad cases. The second part

of this section discusses a natural relationship between quotients of A and faces of

Homw(A,M). The discussion there provides a sufficient condition for the existence

of extreme points.

5.1 Factorial Closure

We now proceed to establish a necessary (but not sufficient: see Example 5.1.2)

condition for extreme points in Homw(A,M). Although relative commutants are not

well-defined under weak approximate unitary equivalence in general, it is easy to see

that the von Neumann closure of the image of a ∗-homomorphism is well-defined
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under weak approximate unitary equivalence up to ∗-isomorphism. We state the

necessary condition for extreme points as follows.

Theorem 5.1.1. If [π] ∈ Homw(A,M) is extreme, then W ∗(π(A)) is a factor.

Proof. Using the isomorphism Homw(A,M) ∼= Homw(A,M ⊗ R) we will show that

if [π] ∈ Homw(A,M ⊗ R) is extreme then W ∗(π(A)) is a factor. We will argue

by contrapositive and assume that W ∗(π(A)) is not a factor. Then there exists a

nontrivial central projection z ∈ W ∗(π(A)). In particular 0 < τ(z) < 1. We will now

construct inequivalent ∗-homomorphisms ρ1 and ρ2 using z and z⊥ in the following

way. Let p ∈ R be a projection such that τ(p) = τ(z). Let σM⊗R : M ⊗ R ⊗ R →

M⊗R, σM : M⊗R→M , and ε : R⊗R be regular isomorphisms. Let v, w ∈M⊗R⊗R

be partial isometries with

v∗v = σ−1
M⊗R(z), vv∗ = 1M ⊗ 1R ⊗ p,

w∗w = σ−1
M⊗R(z⊥), ww∗ = 1M ⊗ 1R ⊗ p⊥.

We have v + w ∈ U(M ⊗ R ⊗ R). Let Ad(u)(x) = uxu∗. For q ∈
{
p, p⊥

}
, let

Tq : qRq → R be an isomorphism. We are now ready to define ρ1, ρ2 : A → M ⊗ R

by the following formulas.

ρ1(a) = (idM ⊗ ε) ◦ (idM ⊗ idR ⊗ Tp) ◦ Ad(v + w) ◦ σ−1
M⊗R(zπ(a))

ρ2(a) = (idM ⊗ ε) ◦ (idM ⊗ idR ⊗ T⊥p ) ◦ Ad(v + w) ◦ σ−1
M⊗R(z⊥π(a)).
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By construction, we have [ρ1], [ρ2] ∈ Homw(A,M ⊗R).

We claim that we will be done if we show the following two statements are true:

1. If t = τ(z) then t[ρ1] + (1− t)[ρ2] = [π].

2. [ρ1] 6= [π].

Indeed, if these two statements hold, then [π] is not an extreme point.

(1): By definition, we have that

t[ρ1] + (1− t)[ρ2] = [σM⊗R(ρ1 ⊗ p+ ρ2 ⊗ p⊥)].

And we have

ρ1(a)⊗ p =
(
(idM⊗R ⊗ p) ◦ (idM ⊗ ε) ◦ (idM ⊗ idR ⊗ Tp)

)
◦Ad(v +w) ◦ σ−1

M⊗R(zπ(a)).

Notice that

(
(idM⊗R⊗p)◦(idM⊗ε)◦(idM⊗idR⊗Tp)

)
= idM⊗fp : M⊗(R⊗pRp)→M⊗(R⊗pRp)

where

fp = (idR ⊗ p) ◦ ε ◦ (idR ⊗ Tp) : R⊗ pRp→ R⊗ pRp

is a unital ∗-homomorphism. Thus we have

fp(x) = lim
j
ajxa

∗
j

where aj ∈ U(R⊗ pRp). Note that a∗jaj = aja
∗
j = 1R ⊗ p. So we have

(
(idM⊗R ⊗ p) ◦ (idM ⊗ ε) ◦ (idM ⊗ idR ⊗ Tp)

)
(y) = lim

j
(1M ⊗ aj)y(1M ⊗ aj)∗.
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Similarly,

ρ2(a)⊗p⊥ =
(
(idM⊗R⊗p⊥)◦(idM⊗ε)◦(idM⊗ idR⊗T⊥p )

)
◦Ad(v+w)◦σ−1

M⊗R(z⊥π(a)),

and there is a sequence {bj} ⊂ R⊗R with b∗jbj = bjb
∗
j = 1⊗ p⊥ such that

(
(idM⊗R ⊗ p⊥) ◦ (idM ⊗ ε) ◦ (idM ⊗ idR ⊗ Tp⊥)

)
(y) = lim

j
(1M ⊗ bj)y(1M ⊗ bj)∗.

We now have that (1M ⊗ aj + 1M ⊗ bj) is a unitary for every j and so

ρ1(a)⊗ p+ ρ2(a)⊗ p⊥

= lim
j
Ad(1M ⊗ aj + 1M ⊗ bj) ◦ Ad(v + w) ◦ σ−1

M⊗R(zπ(a) + z⊥π(a))

= lim
j
Ad(1M ⊗ aj + 1M ⊗ bj) ◦ Ad(v + w) ◦ σ−1

M⊗R(π(a)).

Thus,

[t[ρ1] + (1− t)[ρ2] = [σM⊗R(ρ1 ⊗ p+ ρ2 ⊗ p⊥)]

= [σM⊗R ◦ Ad(v + w) ◦ σ−1
M⊗R ◦ π]

= [σM⊗R ◦ σ−1
M⊗R ◦ π]

= [π].

So (1) has been verified.

(2): To show that [π] 6= [ρ1] we will exhibit an element x with ||π(x)||2 6= ||ρ1(x)||2.

Let ε > 0 be such that ε <

√
1− t

1 + 1√
t

. Let x ∈ A be such that ||π(x) − (1 − z)||2 < ε.
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Then we have

||zπ(x)||2 = ||zπ(x) + z(1− z)||2

= ||z(π(x)− (1− z))||2

≤ ||z|| · ||π(x)− (1− z)||2

< ε

(5.1.1)

and

||π(x)||2 = ||(π(x)− (1− z)) + (1− z)||2

≥ ||(1− z)||2 − ||π(x)− (1− z)||2

>
√

1− t− ε.

(5.1.2)

Let ϕ : z(M ⊗R)z →M ⊗R be given by

ϕ = (idM ⊗ ε) ◦ (idM ⊗ idR ⊗ Tp) ◦ Ad(v + w) ◦ σ−1
M⊗R.

So ρ1(x) = ϕ(zπ(x)). If [π] = [ρ1] then there exists a sequence of unitaries {un} ⊂

U(M ⊗R) such that

lim
n→∞

unπ(x)u∗n = ρ1(x) = ϕ(zπ(x)).

So we have the following equation of norms

||π(x)||2 = || lim
n→∞

unπ(x)u∗n||2 = ||ϕ(zπ(x))||2.

Then according to (5.1.2) we have on one hand

||π(x)||2 >
√

1− t− ε,
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while on the other hand, by (5.1.1) we have

||ϕ(zπ(x))||2 =
1√
t
||zπ(x)||2 <

ε√
t
.

This gives the following implications

√
1− t− ε < ε√

t
⇒
√

1− t <
(

1 +
1√
t

)
ε

⇒
√

1− t
1 + 1√

t

< ε.

This last line is a contradiction to the assumption that ε <

√
1− t

1 + 1√
t

. So we can

conclude that [π] 6= [ρ1], and this completes the proof.

Example 5.1.2. In this example, we will show that the converse of the above the-

orem does not hold in general. Let M be a McDuff factor with an automorphism

β ∈ Aut(M) \ Inn(M). As in Example 4.2.1 we may consider the nonhyperfi-

nite McDuff factor ⊗L(F2); the fact that the inner automorphisms are not dense

in the automorphism group of M is the main player in this argument. Let A be

a dense C∗-subalgebra of M . Let ρ1 = idA be the identity inclusion of A in M ,

and let ρ2 = β ◦ ρ1. Then from Example 4.2.1 we have that [ρ1] 6= [ρ2]. Thus

[π] = 1
2
[ρ1] + 1

2
[ρ2] is not an extreme point in Homw(A,M). Let p be a projection in

R so that τ(p) = 1
2
, and thus σM(ρ1 ⊗ p+ ρ2 ⊗ p⊥) is a representative of [π]. We will

show that W ∗((ρ1 ⊗ p+ ρ2 ⊗ p⊥)(A)) ∼= W ∗(A) ∼= M , and thus giving an example of

a non-extreme point with a factorial closure of its image. Consider the map

ϕ : A→ (ρ1 ⊗ p+ ρ2 ⊗ p⊥)(A)
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given by

ϕ(a) = ρ1(a)⊗ p+ ρ2(a)⊗ p⊥

= a⊗ p+ β(a)⊗ p⊥.

The map ϕ is clearly a bijective ∗-homomorphism. The following computation shows

that ϕ is also isometric with respect to || · ||2.

||ϕ(a)||22 = τ((a⊗ p+ β(a)⊗ p⊥)∗(a⊗ p+ β(a)⊗ p⊥))

= τ(a∗a⊗ p+ β(a∗a)⊗ p⊥)

=
1

2
τ(a∗a) +

1

2
τ(a∗a)

= ||a||22.

Evidently, ϕ extends to an isomorphism between M = W ∗(A) and W ∗((ρ1⊗ p+ ρ2⊗

p⊥)(A)).

While the converse of Theorem 5.1.1 fails in general, if we combine Theorem 4.1.2

with the observation that a trace is extreme if and only if it gives a factorial GNS

construction, then the converse holds in the nuclear case. Thus we have the following

theorem characterizing extreme points of Homw(A,M) when A is nuclear.

Theorem 5.1.3. If A is nuclear, then [π] ∈ Homw(A,M) is extreme if and only if

W ∗(π(A)) is a factor.

We will extend this characterization in §6.2, and we will see in §6.3 that this charac-

terization of extreme points in Homw(A,M) holds for a general A when M = R.
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5.2 Quotients

We have access to quotients of C∗-algebras; this access is unavailable in the setting

of [8] because II1 factors are simple. Given a ∗-homomorphism h : A → M , let

qh : A→ A/ker(h) be the canonical quotient map; and let h : A/ker(h)→ M be the

natural ∗-homomorphism that makes the following diagram commute.

A M

A/ker(h)

h

qh h

In particular h = h ◦ qh. The map qh induces a map q∗h : Homw(A/ker(h),M) →

Homw(A,M) (see Proposition 3.2.1) with

q∗h([h]) = [h ◦ qh] = [h]. (5.2.1)

Definition 5.2.1. A singly exposed face of a closed bounded convex subset C of a

Banach space is a face that can be described as {x ∈ C : h(x) = M} where h : C → R

is a continuous affine functional and M = max {h(x) : x ∈ C}.

Definition 5.2.2. Given a ∈ A, we define a natural continuous affine functional fa

on Homw(A,M) given by fa([π]) = τM(π(a)).

We leave it to the reader to check that this satisfies the definition of a continuous

affine functional.
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Lemma 5.2.3. Let J E A be a closed, two-sided ideal, and let q : A → A/J be the

canonical quotient map. Then we have that q∗(Homw(A/J,M)) is a singly exposed

face of Homw(A,M).

Proof. Without loss of generality, assume that J is generated by {an}∞n=1 ⊂ (J)+
≤1.

Put

a :=
∞∑
n=1

1

2n
an.

Consider f−a. By the positivity of τM we get that f−a([π]) ≤ 0 for every [π] ∈

Homw(A,M). It is a quick observation to see that

q∗(Homw(A/J,M)) = {[π] ∈ Homw(A,M) : f−a([π]) = 0} .

The quotient map q : A → A/J is surjective, so by Proposition 3.2.3 we get

that q∗ is a homeomorphism onto its image. Thus we may regard Homw(A/J,M)

as a face of Homw(A,M) by identifying it with its image q∗(Homw(A/J,M)). So

every quotient of A gives a face of Homw(A,M). Conversely, by Example 4.1.3, any

metrizable Choquet simplex arises as Homw(A,M) for some simple AF-algebra; so in

this situation, no nontrivial face of Homw(A,M) is induced by a quotient of A.

We can use this discussion to give a sufficient condition for the existence of extreme

points in Homw(A,M).

Theorem 5.2.4. If A has a finite nuclear quotient, then Homw(A,M) has extreme

points.
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Proof. If A/J is finite and nuclear, then Homw(A/J,M) ∼= T (A/J); and thus

Homw(A/J,M) has extreme points. An extreme point of a face is extreme.

If we combine Lemma 5.2.3 with the observation that any A is a quotient of

C∗(F∞), we get the following theorem.

Theorem 5.2.5. For any A, an affinely homeomorphic copy of Homw(A,M) appears

as a face of Homw(C∗(F∞),M).

Remark 5.2.6. Theorem 5.2.4 guarantees that Homw(C∗(F∞),M) has extreme points.

Also, when we take Example 4.1.3 into account, this property enjoyed by

Homw(C∗(F∞,M) is very similar to one characterizing property of the so-called

Poulsen simplex: A metrizable Choquet simplex S is the Poulsen simplex if and

only if S contains every metrizable Choquet simplex as a face and for any two faces

F1 and F2 with dimF1 = dimF2 <∞ there is an affine homeomorphism σ of S onto

itself with σ(F1) = F2. The Poulsen simplex was originally defined to be a metriz-

able Choquet simplex whose extreme points are dense. See [39] and [28] for more

information.
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Chapter 6

Ultrapower Situation

6.1 The Space Hom(A,MU)

Let U denote a free ultrafilter on N. We now take the opportunity to extend

Brown’s construction of the convex structure on Hom(N,RU) to a convex structure on

Hom(A,MU): the space of unital ∗-homomorphisms A→MU modulo unitary equiv-

alence (M is still a separable McDuff II1-factor). This space has the same metric as

its predecessor. For σM : M ⊗R→M a regular isomorphism, we let

(σM)U : (M ⊗R)U →MU

be given by

(σM)U((xi)U) = (σM(xi))U .

There is a natural way to embed M into MU as cosets of constant sequences: x ∈

M 7→ (x)U ∈ MU . Also, as in Remark 3.2.4 of [8], there is a natural embedding of

MU ⊗ RU in (M ⊗ R)U . So for x ∈ MU and y ∈ RU , the expression (σM)U(x ⊗ y)

makes sense once we consider x⊗ y ∈ (M ⊗R)U via this natural embedding. We can
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now define convex combinations in Hom(A,MU) in a way similar to Definition 3.1.4.

Definition 6.1.1. For [π], [ρ] ∈ Hom(A,MU) and t ∈ [0, 1], define

t[π] + (1− t)[ρ] = [σUM(π ⊗ (p)U + ρ⊗ (p⊥)U)] (6.1.1)

where σM : M ⊗ R → M is a regular isomorphism and p ∈ R is a projection with

τ(p) = t.

We leave it to the reader to check that this convex combination is well-defined and

satisfies the axioms of a convex-like structure (the proofs are analogous). This gener-

alization of Hom(N,RU) from [8] also retains the characterization of extreme points.

One can see this by following the same reasoning as in [8] and looking at “cut-downs”of

homomorphisms by projections in the relative commutant.

Definition 6.1.2. For technical reasons, we consider homomorphisms π : A→ (M ⊗

R)U . Given π : A → (M ⊗ R)U , let q ∈ π(A)′ ∩ (M ⊗ R)U be a projection. We now

define the cut-down

πq : A→ (M ⊗R)U

of π by q. Let p ∈ R be a projection in R with τ(p) = τ(q). Let v ∈ (M ⊗ R ⊗ R)U

be a partial isometries such that

v∗v = (σU(M⊗R))
−1(q), vv∗ = (1⊗ 1⊗ p)U .

Let θp : pRp→ R be an isomorphism. Then we let

πq(·) := (σU(M⊗R)) ◦ (idM ⊗ idR ⊗ θp)U ◦ (Ad v) ◦ (σU(M⊗R))
−1(qπ(·)).
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Proposition 6.1.3. Using the above definition of cut-downs, one can verify the fol-

lowing six statements.

1. [πq] is independent of choices made in the definition

2. For a unitary u, [πq] = [(Adu ◦ π)uqu∗ ]

3. (a) Given any q ∈ π(A)′ ∩MU , [π] = τ(q)[πq] + τ(q⊥)[πq⊥ ].

(b) If [π] = t[ρ1] + (1 − t)[ρ2] then there is a projection q ∈ π(A)′ ∩MU with

trace t such that [ρ1] = [πq] and [ρ2] = [πq⊥ ]. In particular, since for any

t ∈ (0, 1), [π] = t[π] + (1 − t)[π] then we have that for any t ∈ (0, 1) there

is a projection q ∈ π(A)′ ∩MU with τ(q) = t such that [π] = [πq].

4. Given projections q1, q2 ∈ π(A)′ ∩MU with τ(q1) = τ(q2), we have that [πq1 ] =

[πq2 ] if and only if q1 is Murray-von Neumann equivalent to q2 in π(A)′ ∩MU .

5. π(A)′ ∩ (M ⊗R)U is diffuse.

6. A finite diffuse von Neumann subalgebra A ⊂ MU is a factor if and only if for

projections p, q ∈ A, τ(p) = τ(q)⇒ p is Murray-von Neumann equivalent to q.

Proof. Proof of (1): To show this, we must show that [πq] is independent of choice

of σ(M⊗R), θp, v, and p. The independence of choice of σ(M⊗R) follows from the

combination of the fact that any two regular isomorphisms are weakly approximately

unitarily equivalent with Theorem 2.5.6. Once p is selected, the independence of

choice of θp follows from the combination of the fact that any endomorphism of
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R(∼= pRp) is approximately inner with Theorem 2.5.6, and the independence of choice

of v is clear. It remains to show that [πq] is independent of the choice of p. Let p, p′ ∈ R

be projections with τ(p) = τ(p′) = τ(q). Then there exists a partial isometry y ∈ R

such that y∗y = p and yy∗ = p′. Let v be the partial isometry in the definition of

πq according to the choice of p, and let v′ be the partial isometry in the definition of

πq according to the choice of p′. By Proposition 2.8.1, there exists a unitary a ∈ RU

such that

Ad(1⊗ 1⊗ a) ◦ (idM ⊗ idR ⊗ θp′)U ◦ Ad((1⊗ 1⊗ y)U)(x) = (idM ⊗ idR ⊗ θp)U(x)

for every x ∈ Ad(v) ◦ (σUM⊗R)−1(q · π(A)). So we have

σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v) ◦ (σU(M⊗R))
−1(qπ(x))

= σU(M⊗R)◦Ad(1⊗1⊗a)◦(idM⊗idR⊗θp′)U◦Ad((1⊗1⊗y)U)◦Ad(v)◦(σU(M⊗R))
−1(qπ(x))

which is unitarily equivalent by the independence of choice of the partial isometry

established above to

σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp′)U ◦ Ad(v′) ◦ (σU(M⊗R))
−1(qπ(x))

by the selection of y.

Proof of (2): We have

(Ad(u) ◦ π)uqu∗(·) = σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v) ◦ (σU(M⊗R))
−1(uqu∗uπ(·)u∗)

where p and v are appropriately chosen per the definition of a cut-down. Let u′ :=
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(σU(M⊗R))
−1(u). Then we have

(Ad(u) ◦ π)uqu∗(·) = σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(vu′) ◦ (σU(M⊗R))
−1(qπ(·)).

Note that

(vu′)∗vu′ = u′∗v∗vu′ = u′∗((σU(M⊗R))
−1(uqu∗))u′ = (σU(M⊗R))

−1(q)

and

vu′(vu′)∗ = vu′u′∗v∗ = vv∗ = (1⊗ 1⊗ p)U .

So by part (1),

[πq] = [(Ad(u) ◦ π)uqu∗ ].

Proof of (3a): We have, for appropriately chosen p ∈ R and v, w ∈ RU per the

definition,

πq = σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v) ◦ (σU(M⊗R))
−1 ◦ (q · π)

and

πq⊥ = σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp⊥)U ◦ Ad(w) ◦ (σU(M⊗R))
−1 ◦ (q⊥ · π).

Also,

τ(q)[πq] + τ(q⊥)[πq⊥ ] = [σU(M⊗R)(πq ⊗ (p)U + πq⊥ ⊗ (p⊥)U)].

For this argument, we must specify our choice of σ(M⊗R). Let σ(M⊗R) = idM⊗ε where

ε : R ⊗ R → R is a ∗-isomorphism. The possibility for this choice of σ(M⊗R) is the
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reason for working in M ⊗R rather than M . Now, observe that

σU(M⊗R)(πq ⊗ (p)U)

= σU(M⊗R) ◦ (idM ⊗ idR ⊗ p)U ◦ πq

= σU(M⊗R) ◦ (idM ⊗ idR ⊗ p)U ◦ σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U

◦ Ad(v) ◦ (σU(M⊗R))
−1 ◦ (q · π)

= σU(M⊗R) ◦ (idM ⊗ ((idR ⊗ p) ◦ ε ◦ (idR ⊗ θp)))U ◦ Ad(v) ◦ (σU(M⊗R))
−1 ◦ (q · π).

Note that

(idR ⊗ p) ◦ ε ◦ (idR ⊗ θp) : (1⊗ p)(R⊗R)(1⊗ p)→ (1⊗ p)(R⊗R)(1⊗ p)

is a unital ∗-homomorphism. So by Proposition 2.8.1, there is a partial isometry

v′ ∈ (M ⊗R⊗R)U such that v′∗v′ = v′v′∗ = (1⊗ 1⊗ p)U and (idM ⊗ ((idR ⊗ p) ◦ ε ◦

(idR ⊗ θp)))U(x) = v′xv′∗ for every x ∈ Ad(v) ◦ (σU(M⊗R))
−1 ◦ (q · π)(A). Thus,

σU(M⊗R)(πq ⊗ (p)U) = σU(M⊗R) ◦ Ad(v′) ◦ Ad(v) ◦ (σU(M⊗R))
−1 ◦ (q · π).

Similarly, there is a partial isometry w′ ∈ (M ⊗ R ⊗ R)U such that w′∗w′ = w′w′∗ =

(1 ⊗ 1 ⊗ p⊥)U and (idM ⊗ ((idR ⊗ p⊥) ◦ ε ◦ (idR ⊗ θp⊥)))U(x) = w′xw′∗ for every

x ∈ Ad(w) ◦ (σU(M⊗R))
−1 ◦ (q⊥ · π)(A). And so

σU(M⊗R)(πq⊥ ⊗ (p⊥)U = σU(M⊗R) ◦ Ad(w′) ◦ Ad(w) ◦ (σU(M⊗R))
−1 ◦ (q⊥ · π).

Therefore,

σU(M⊗R)(πq ⊗ (p)U + πq⊥ ⊗ (p⊥)U)
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= σU(M⊗R) ◦ Ad(v′) ◦ Ad(v) ◦ (σU(M⊗R))
−1 ◦ (q · π)

+ σU(M⊗R) ◦ Ad(w′) ◦ Ad(w) ◦ (σU(M⊗R))
−1 ◦ (q⊥ · π)

= σU(M⊗R) ◦ Ad(v′ + w′) ◦ (Ad(v) ◦ (σU(M⊗R))
−1 ◦ (q · π)

+ Ad(w) ◦ (σU(M⊗R))
−1 ◦ (q⊥ · π))

= σU(M⊗R) ◦ Ad(v′ + w′) ◦ Ad(v + w) ◦ (σU(M⊗R))
−1 ◦ (q · π + q⊥ · π)

= σU(M⊗R) ◦ Ad(v′ + w′) ◦ Ad(v + w) ◦ (σU(M⊗R))
−1 ◦ π

∼ π

Proof of (3b): Suppose [π] = t[ρ1] + (1 − t)[ρ2]. Then for p ∈ R with τ(p) = t, we

have

[π] = [σU(M⊗R)(ρ1 ⊗ (p)U + ρ2 ⊗ (p⊥)U)].

Let ζ = σU(M⊗R)(ρ1 ⊗ (p)U + ρ2 ⊗ (p⊥)U), and let u ∈ RU be a unitary such that

π = Ad(u) ◦ ζ. By construction, we have that σU(M⊗R)(1⊗ 1⊗ (p)U) ∈ ζ(A)′ ∩RU . So

we can consider the cutdown of ζ by σU(M⊗R)(1⊗ 1⊗ (p)U) :

ζσU
(M⊗R)

(1⊗1⊗(p)U ) = σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(1)

◦ (σU(M⊗R))
−1 ◦ (σU(M⊗R)(1⊗ 1⊗ (p)U) · ζ)

= σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ (ρ1 ⊗ (p)U)

= (idM ⊗ (ε ◦ (idR ⊗ θp) ◦ (idR ⊗ p)))U ◦ ρ1.

Again, by Proposition 2.8.1, there is a unitary v ∈ (M ⊗R)U such that

(idM ⊗ (ε ◦ (idR ⊗ θp) ◦ (idR ⊗ p)))U(x) = vxv∗
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for every x ∈ ρ1(A). Thus,

[ρ1] = [ζσU
(M⊗R)

(1⊗1⊗(p)U )]

= [(Ad(u) ◦ π)σU
(M⊗R)

(1⊗1⊗(p)U )]

= [πu∗σU
(M⊗R)

(1⊗1⊗(p)U )u].

The same argument works for the complement.

Proof of (4): Let p ∈ R and v1, v2 ∈ RU be appropriately chosen such that

πq1 = σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v1) ◦ (σU(M⊗R))
−1 ◦ (q1 · π)

and

πq2 = σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v2) ◦ (σU(M⊗R))
−1 ◦ (q2 · π)

(⇐): Assume there is a partial isometry z ∈ π(A)′ ∩ (M ⊗ R)U such that z∗z = q1

and zz∗ = q2. It follows that

zq1π(a)z∗ = q2π(a)

for every a ∈ A. Then

πq2 = σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v2) ◦ (σU(M⊗R))
−1 ◦ (q2 · π)

= σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v2) ◦ (σU(M⊗R))
−1 ◦ Ad(z) ◦ (q1 · π)

= σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v2(σU(M⊗R))
−1(z)) ◦ (σU(M⊗R))

−1 ◦ (q1 · π).

By part (1), it suffices to show that

(v2(σU(M⊗R))
−1(z))∗(v2(σU(M⊗R))

−1(z)) = (σ(M⊗R))
−1(q1)
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and

(v2(σU(M⊗R))
−1(z))(v2(σU(M⊗R))

−1(z))∗ = 1⊗ 1⊗ (p)U .

Indeed,

(v2(σU(M⊗R))
−1(z))∗(v2(σU(M⊗R))

−1(z)) = (σU(M⊗R))
−1(z∗)v∗2v2(σU(M⊗R))

−1(z)

= (σU(M⊗R))
−1(z∗)(σU(M⊗R))

−1(q2)(σU(M⊗R))
−1(z)

= (σU(M⊗R))
−1(z∗q2z)

= (σU(M⊗R))
−1(q1)

and

(v2(σU(M⊗R))
−1(z))(v2(σU(M⊗R))

−1(z))∗ = (v2(σU(M⊗R))
−1(z))(σU(M⊗R))−1(z∗)v∗2

= v2σ
U
(M⊗R))

−1(q2)v∗2

= 1⊗ 1⊗ (p)U .

Therefore, by the independence of choice established in part (1), we have that [πq1 ] =

[πq2 ].

(⇒): Assume that [πq1 ] = [πq2 ]. Let u ∈ (M ⊗ R)U be a unitary such that πq1 =

Ad(u) ◦ πq2 . That is, for appropriately chosen p ∈ R and v1, v2 ∈ (M ⊗R⊗R)U ,

σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v1) ◦ (σU(M⊗R))
−1 ◦ (q1 · π)

= Ad(u) ◦ σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v2) ◦ (σU(M⊗R))
−1 ◦ (q2 · π).

Let

u′ := σU(M⊗R) ◦ Ad(v∗2) ◦ (idM ⊗ idR ⊗ θ−1
p )U ◦ (σU(M⊗R))

−1(u).
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(Note that u′∗u′ = u′u′∗ = q2.) So this gives

σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v1) ◦ (σU(M⊗R))
−1 ◦ (q1 · π)

= σU(M⊗R) ◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v2) ◦ (σU(M⊗R))
−1 ◦ Ad(u′) ◦ (q2 · π).

Then

q1 · π = σU(M⊗R) ◦ Ad(v∗1) ◦ (idM ⊗ idR ⊗ θ−1
p )U ◦ (σU(M⊗R))

−1 ◦ σU(M⊗R)

◦ (idM ⊗ idR ⊗ θp)U ◦ Ad(v2) ◦ (σU(M⊗R))
−1 ◦ Ad(u′) ◦ (q2 · π)

= σU(M⊗R) ◦ Ad(v∗1) ◦ Ad(v2) ◦ (σU(M⊗R))
−1 ◦ Ad(u′) ◦ (q2 · π)

= σU(M⊗R) ◦ σU(M⊗R))
−1 ◦ Ad(σU(M⊗R)(v

∗
1v2)u′) ◦ (q2 · π)

= Ad(σU(M⊗R)(v
∗
1v2)u′) ◦ (q2 · π).
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So taking z = σU(M⊗R)(v
∗
1v2)u′ will give z∗z = q2 and zz∗ = q1. Indeed,

z∗z = u′∗σU(M⊗R)(v
∗
2v1v

∗
1v2)u′

= u′∗σU(M⊗R)(v
∗
2(1⊗ 1⊗ (p)U)v2)u′

= u′∗q2u
′

= q2

and

zz∗ = σU(M⊗R)(v
∗
1v2)u′u′∗σU(M⊗R)(v

∗
2v1)

= σU(M⊗R)(v
∗
1v2)q2σ

U
(M⊗R)(v

∗
2v1)

= σU(M⊗R)(v
∗
1(1⊗ 1⊗ (p)U)v1)

= q1.

Proof of (5): We will show that π(A)′ ∩ (M ⊗ R)U has no minimal projections. Let

p ∈ π(A)′ ∩ (M ⊗R)U be a nonzero projection. Let u ∈ (M ⊗R)U be a unitary such

that σU(M⊗R)(x ⊗ 1) = uxu∗ for every x ∈ W ∗(π(A) ∪ {p}). Let q ∈ R be a nonzero

projection with τ(q) < 1. Then we have

σU(M⊗R)(p⊗ q) < σU(M⊗R)(p⊗ 1).

And clearly,

σU(M⊗R)(p⊗ q) ∈ σU(M⊗R) ◦ (π ⊗ 1)(A)′ ∩ (M ⊗R)U = Ad(u)π(A)′ ∩ (M ⊗R)U .

Thus,

u∗σU(M⊗R)(p⊗ q)u ∈ π(A)′ ∩ (M ⊗R)U
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is a projection with

u∗σU(M⊗R)(p⊗ q)u < u∗σU(M⊗R)(p⊗ 1)u = p.

So p cannot be minimal.

(6) is well-known.

With the above proposition established, we have the following theorem.

Theorem 6.1.4. The equivalence class [π] ∈ Hom(A,MU) is extreme if and only if

π(A)′ ∩MU is a factor.

Proof. (⇒): Assume [π] is extreme. Let q1, q2 ∈ π(A)′ ∩ (M ⊗ R)U be projections

with τ(q1) = τ(q2). Then by part (3a) of Proposition 6.1.3, we have that

[π] = τ(q1)[πq1 ] + τ(q⊥1 )[πq⊥1 ]

= τ(q2)[πq2 ] + τ(q⊥2 )[πq⊥2 ].

And since [π] is extreme, we have that [π] = [πq1 ] = [πq2 ]. And so by part (4) of

Proposition 6.1.3, q1 is Murray-von Neumann equivalent to q2 in π(A)′ ∩ (M ⊗ R)U .

Thus by parts (5) and (6) in Proposition 6.1.3, π(A)′ ∩ (M ⊗R)U is a factor.

(⇐): Assume that π(A)′ ∩ (M ⊗R)U is a factor. Let

[π] = t[ρ1] + (1− t)[ρ2]

with t ∈ (0, 1). By part (3b) of Proposition 6.1.3 we have that [ρ1] = [πq] and

[ρ2] = [πq⊥ ] for a projection q ∈ π(A)′ ∩ (M ⊗ R)U with τ(q) = t. Also by part (3b)
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of Proposition 6.1.3 there is a projection q′ ∈ π(A)′ ∩ (M ⊗ R)U with τ(q′) = t and

[πq′ ] = [π]. Since π(A)′ ∩ (M ⊗R)U is a factor, we have that q and q′ are Murray-von

Neumann equivalent in π(A)′ ∩ (M ⊗ R)U . So by part (4) of Proposition 6.1.3 we

have

[ρ1] = [πq] = [πq′ ] = [π]

and similarly

[ρ2] = [π].

Remark 6.1.5. The existence of extreme points in Hom(A,MU) remains an open

problem. The existence of extreme points in the context of Hom(N,RU) as in [8] is a

well-known open question. The most recent work done on this question can be found

in [12].

Given any McDuff M and any separable finite hyperfinite factor N , we have that

any embedding of N into MU is unique up to unitary equivalence by Theorem 2.6.14.

That is, Hom(N,MU) is a single point. Combining this observation with the above

theorem gives the following consequence.

Corollary 6.1.6. For any McDuff M and any finite hyperfinite factor N , any em-

bedding π : N → MU has the property that its relative commutant π(N)′ ∩MU is a

factor.

Thanks to an observation by S. White, a more general version of the above corollary

is available. In particular, we do not need to require that M is McDuff.
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Theorem 6.1.7. For any separable II1-factor X and any separable finite hyperfinite

factor N , any embedding π : N → XU has the property that its relative commutant

π(N)′ ∩XU is a factor.

Proof. Throughout this proof we will abuse notation by letting τ denote both the

trace on N and the trace on XU . The proof of this theorem essentially follows from

Lemma 3.21 of [4]. The lemma says, among other things, that the collection of tracial

states {
τ(π(x)·) : x ∈ N+, τ(x) = 1

}
on π(N)′∩XU is weak-∗ dense in the trace space of π(N)′∩XU . For any fixed x ∈ N+

with τ(x) = 1, Dixmier approximation gives that for any ε > 0, there exist unitaries

u1, . . . , un ∈ U(N) and numbers 0 ≤ λ1, . . . , λn ≤ 1 with
∑
λj = 1 such that

∣∣∣∣∣∣ n∑
j=1

λjujxu
∗
j − 1N

∣∣∣∣∣∣ < ε.

Note that for such an x ∈ N, τ(π(x)·) = τ(π(
∑

j λjujxu
∗
j)·).

We will now show that π(N)′ ∩ XU is a factor by showing that it has a unique

normalized trace (in particular, the trace induced by the unique trace on XU). Let

T be a tracial state on π(N)′ ∩XU . Fix δ > 0 and y ∈ π(N)′ ∩XU with ||y|| ≤ 1. By

Lemma 3.21 of [4] there is an xy ∈ N+ with τ(xy) = 1 such that

|T (y)− τ(π(xy)y)| < δ

2
.

For such an xy, let u1, . . . , un ∈ U(N) and 0 ≤ λ1, . . . , λn ≤ 1 with
∑

j λj = 1 be such
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that ∣∣∣∣∣∣ n∑
j=1

λjujxyu
∗
j − 1N

∣∣∣∣∣∣ < δ

2
.

Then we have

∣∣∣τ(π(∑
j

λjujxyu
∗
j

)
y
)
− τ(y)

∣∣∣ =
∣∣∣τ(π(∑

j

λjujxyu
∗
j − 1N

)
y
)∣∣∣

≤
∣∣∣∣∣∣π(∑

j

λjujxyu
∗
j − 1N

)
y
∣∣∣∣∣∣

≤
∣∣∣∣∣∣∑

j

λjujxyu
∗
j − 1N

∣∣∣∣∣∣ · ||y||
<
δ

2
.

Thus,

|T (y)− τ(y)| ≤ |T (y)− τ(π(xy)y)|+ |τ(π(xy)y)− τ(y)|

= |T (y)− τ(π(xy)y)|+
∣∣∣τ(π(∑

j

λjujxyu
∗
j

)
y
)
− τ(y)

∣∣∣
< δ.

The case whereN = X = R is already well-known, but we have not seen the statement

as it appears above in the literature. A similar discussion does appear in Section 2

of [38] (in particular Theorem 2.1 and Conjecture 2.3.1). There, Popa addresses

bicentralizers in ultraproduct von Neumann algebras, while we are concerned with

relative commutants (centralizers).

Corollary 5.3 of [8] says “R is the unique separable II1-factor with the property

that every embedding into RU has factorial commutant.” Theorem 6.1.7 leads us to
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the following stronger version of Brown’s statement.

Theorem 6.1.8. Let N be an embeddable separable II1-factor. The following are

equivalent:

1. N ∼= R;

2. For any separable II1-factor X and any embedding π : N → XU , π(N)′ ∩XU is

a factor;

3. For any separable II1-factor X and any embedding π : N → XU , the collection

of tracial states {τ(π(x)·) : x ∈ N+, τ(x) = 1} is weak-∗ dense in the trace space

of π(N)′ ∩XU .

Proof. ((1)⇒ (3)): This follows from Lemma 3.21 of [4].

((3)⇒ (2)): This follows from the proof of Theorem 6.1.7.

((2)⇒ (1)): This follows from Corollary 5.3 of [8].

The characterization in Theorem 6.1.4 of extreme points in the ultrapower case

reveals some information on extreme points in the separable Homw(A,M) setting.

Using the canonical constant-sequence embedding of M into MU we get the following

map.

Definition 6.1.9. Let

β(A,M) : Homw(A,M)→ Hom(A,MU)
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be given by

β(A,M)([π]) = [πU ]

where πU(a) = (π(a))U for a ∈ A.

Proposition 6.1.10. The map β(A,M) is a well-defined affine homeomorphism onto

its image.

Proof. That β(A,M) is continuous and affine is an easy check. Well-defined and injec-

tive follow from Theorem 3.1 of [45].

It remains to show that if β(A,M)([πn])→ βA,M)([π]) in Hom(A,MU) then [πn]→

[π] in Homw(A,M). So suppose that

[πUn ]→ [πU ].

That means that there exists homomorphisms ϕn ∈ [(πn)U ] such that

ϕn(a)→ (π)U(a)

for every a ∈ A in the trace norm on RU . Now for n fixed, ϕn ∈ [(πn)U ] means

that there is a unitary un ∈ U(RU) such that ϕn(a) = unπn(a)u∗n. Without loss of

generality, say that un = (un,j)U . So we have that ϕn(a) = (un,jπn(a)u∗n,j)U .

We follow an argument similar to the one found in the proof of Lemma 4.1.1.

Let {ai} ⊂ A≤1 be dense in the unit ball of A. Recursively construct a sequence

of positive integers {Nk} in the following way. Let N1 ∈ N be such that for every

n ≥ N1,

||ϕn(a1)− π(a1)||2 <
1

2
.
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Let N2 > N1 be such that for every n ≥ N2 and i = 1, 2

||ϕn(ai)− π(ai)||2 <
1

4
.

In general, let Nk > Nk−1 be such that for every n ≥ Nk and 1 ≤ i ≤ k

||ϕn(ai)− π(ai)||2 <
1

2k
.

For Nk ≤ n < Nk+1 and 1 ≤ i ≤ k, let

L(n, i) = ||ϕn(ai)− π(ai)||2 = lim
j→U
||un,jπn(ai)u

∗
n,j − π(ai)||2.

By our construction, we have 0 ≤ L(n, i) < 1
2k

. By definition

{
j :
∣∣||un,jπn(ai)u

∗
n,j||2 − L(n, i)

∣∣ < 1

2k

}
∈ U .

And since

{
j :
∣∣||un,jπn(ai)u

∗
n,j||2 − L(n, i)

∣∣ < 1

2k

}
⊆
{
j : ||un,jπn(ai)u

∗
n,j − π(ai)||2 <

1

k

}
,

we get {
j : ||un,jπn(ai)u

∗
n,j − π(ai)||2 <

1

k

}
∈ U .

So for Nk ≤ n < Nk+1, the intersection

An :=
⋂

1≤i≤k

{
j : ||un,jπn(ai)u

∗
n,j − π(ai)||2 <

1

k

}

is in the ultrafilter U , and hence is nonempty. Pick j(1) ∈ A1 and for n > 1, let

j(n) ∈ An∩{j > j(n− 1)} (also nonempty since it is an element of the ultrafilter U).
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Let vn = un,j(n). We will now show that for a ∈ A≤1, vnπn(a)v∗n → π(a). Fix

ε > 0. Let i′ ∈ N be such that ||a − ai′ || <
ε

4
. Let k ∈ N be such that i′ ≤ k and

1

k
<
ε

2
. Let n ≥ Nk; thus n ∈ [Nk+c, Nk+c+1) for some c ≥ 0. Then

j(n) ∈
⋂

1≤i≤k+c

{
j : ||un,jπn(ai)u

∗
n,j − π(ai)||2 <

1

k + c

}
.

So we have

||vnπn(a)v∗n − π(a)||2 ≤ ||vnπn(a)v∗n − vnπn(ai′)v
∗
n||2 + ||vnπn(ai′)v

∗
n − π(ai′)||2 +

||π(ai′)− π(a)||2

<
ε

4
+ ||un,j(n)πn(ai′)u

∗
n,j(n) − π(ai′)||2 +

ε

4

<
ε

4
+

1

k + c
+
ε

4

< ε.

Since (Ad(vn) ◦ πn) ∈ [πn], we have [πn] → [π]. Thus β(A,R) is an affine homeo-

morphism onto its image.

We can also define a map α̃(A,M) : Hom(A,MU) → T (A) analogous to α(A,M) in

the following way.

Definition 6.1.11. Let

α̃(A,M) : Hom(A,MU)→ T (A)

given by

α̃(A,M)([π]) = τMU ◦ π

where τMU is the unique normalized trace of MU .
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The maps α(A,M) and α̃(A,M) relate naturally to one another via the map β(A,M).

In particular, we have that the diagram

Homw(A,M) T (A)

Hom(A,MU)

α(A,M)

β(A,M) α̃(A,M) (6.1.2)

commutes.

It is natural to ask “is β(A,M) ever surjective?”The answer is: sometimes. The

following example will show that β(A,M) is not surjective in general.

Example 6.1.12. This example will show that Hom(A,MU) can strictly contain

Homw(A,M); or in the notation of Definition 6.1.9, β(A,M) can fail to be surjective.

Let A = C∗(F∞) and M = R. Furthermore, let N be a non-hyperfinite separable

embeddable II1-factor. By Proposition 3.1 of [6], A can be embedded into N (say via

ζ : A→ N) such that it is weakly dense in N . Consider the map ζ∗ : Hom(N,RU)→

Hom(A, RU) given by

ζ∗([π]) = [π ◦ ρ].

Just as in Proposition 3.2.1, ζ∗ is well-defined, continuous, and affine. It is not hard

to see that ζ∗ is additionally injective. Now, by Theorem A.1 of [8], we know that

Hom(N,RU) is nonseparable. So, since ζ∗(Hom(N,RU)) ⊂ Hom(A, RU), this means

that Hom(A, RU) is nonseparable. On the other hand, Homw(A, R) is separable. So
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by cardinality considerations,

β(A,R)(Homw(A, R)) ( Hom(A, RU).

With this embedding β(A,M) established, we immediately get a sufficient condition

for extreme points in Homw(A,M).

Theorem 6.1.13. For π : A→M , if πU(A)′∩MU is a factor, then [π] ∈ Homw(A,M)

is extreme.

The converse of the above statement would be true if we can show that in general

β(A,M)(Homw(A,M)) is a face of Hom(A,MU). This question comes down to asking if

the cut-down of a constant-sequence homomorphism πU is itself a constant-sequence

homomorphism. In the case where M = R, the answer is yes. That is, we have the

following theorem.

Theorem 6.1.14. β(A,R)(Homw(A, R)) is a face of Hom(A, RU).

Proof. Let [π] ∈ Homw(A, R) be given, and suppose for t ∈ (0, 1) and [ρ1], [ρ2] ∈

Hom(A, RU) that β(A,R)([π]) = [πU ] = t[ρ1] + (1 − t)[ρ2]. We must show that [ρi] ∈

β(A,R)(Homw(A, R)) for i = 1, 2.

Because the map α̃(A,R) is affine, we have that

α̃(A,R)([π
U ]) = tα̃(A,R)([ρ1]) + (1− t)α̃(A,R)([ρ2]).

Since [π] ∈ Homw(A, R), we have that α̃(A,R)([π
U ]) ∈ UAT(A). And from [7] we know

that UAT(A) is a face of T (A). Thus, we have that α̃(A,R)([ρi]) ∈ UAT(A) for i = 1, 2.
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By the uniqueness of the GNS construction, this implies that W ∗(ρi(A)) is hyperfinite

for i = 1, 2. Thus, for i = 1, 2 there exists an embedding γi : W ∗(ρi(A))→ R. Then

consider the maps

(γ1 ◦ ρ1) : A→ R

and

(γ2 ◦ ρ2) : A→ R.

Theorem 4.3.1 immediately shows that β(A,R)([γi ◦ ρi]) = [ρi] for i = 1, 2.

We now give an example of a face in Homw(C∗(F∞),M) that does not come from

an ideal (cf. §5.2).

Example 6.1.15. Let M = R, and let ζ : C∗(F∞) → R be an injective

∗-homomorphism such that ζ(C∗(F∞)) is weakly dense in R as provided by Proposi-

tion 3.1 of [6]. Then we consider

ζU : C∗(F∞)→ RU .

Consider R ⊂ RU via the constant embedding. Since ζ has a dense image in R, we

get that

ζU(C∗(F∞))′ ∩RU = R′ ∩RU .

It is well-known that R′ ∩RU is a factor. Thus ζU(C∗(F∞))′ ∩RU is a factor, and by

Theorem 6.1.13, we get that [ζ] is extreme. So {[ζ]} is a face of Homw(C∗(F∞), R)

that does not factor through a quotient map.
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6.2 Extreme Points in Homw(A,M): Amenability

in First Argument

We first note the following theorem.

Theorem 6.2.1. If T (A) = UAT(A) then for any McDuff M ,

Homw(A,M) ∼= Hom(A,MU)

via β(A,M). In particular, if A is nuclear, then Homw(A,M) ∼= Hom(A,MU).

Proof. By Proposition 6.1.10, it suffices to show that β(A,M) is surjective. We will let

τ denote the unique tracial state on both M and MU . Let π : A → MU be given.

Let T ∈ T (A) be given by T = τ ◦ π. Since T ∈ UAT(A), there is a ρ : A → M so

that T = τ ◦ ρ. Now, consider ρU : A → MU . Since the images of π and ρ are both

hyperfinite, the argument from Theorem 4.1.5 gives that π ∼ ρ. By Theorem 2.5.6

we get that π and ρ are unitarily equivalent. Thus β(A,M)([ρ]) = [ρU ] = [π].

With the notation introduced in Definition 6.1.11 , we have the following corollary

to Theorem 6.2.1

Corollary 6.2.2. If T (A) = UAT(A), then for any McDuff M , Hom(A,MU) ∼= T (A)

via α̃(A,M).

So we can immediately observe the following characterizations of extreme points

in T (A) and Homw(A,M) when T (A) = UAT(A).
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Corollary 6.2.3. Let A be such that T (A) = UAT(A).

1. T ∈ T (A) is extreme if and only if πT (A)′ ∩XU is a factor where πT : A→ XU

is a lift of T through XU for any separable II1-factor X.

2. The following are equivalent.

(a) [π] ∈ Homw(A,M) is extreme;

(b) πU(A)′ ∩MU is a factor;

(c) W ∗(π(A)) ⊂M is a factor.

Note that the equivalence between (2b) and (2c) is a purely algebraic statement with

no reference to Homw(A,M).

6.3 Extreme Points in Homw(A,M): Amenability

in Second Argument

A satisfying characterization of extreme points is also available when we shift our

amenability assumption to the second argument of Homw(A,M). We state this in

the following theorem.

Theorem 6.3.1. Let A be a (not necessarily nuclear) separable unital C∗-algebra.

Then given a ∗-homomorphism π : A→ R, the following are equivalent.

1. [π] ∈ Homw(A, R) is extreme;
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2. W ∗(π(A)) ⊂ R is a factor;

3. πU(A)′ ∩RU is a factor.

Proof. ((1) ⇒ (2)): This is just Theorem 5.1.1.

((2) ⇒ (3)): We have that

R ⊃ W ∗(π(A)) ∼= W ∗(πU(A)) ⊂ R ⊂ RU

and

W ∗(πU(A))′ ∩RU = πU(A)′ ∩RU .

And since the factor W ∗(π(A)) ⊂ R must be separable, finite, and hyperfinite, Corol-

lary 6.1.6 or Theorem 6.1.7 implies that πU(A)′ ∩RU must be a factor.

((3) ⇒ (1)): This is just Theorem 6.1.13.

Again, notice that the equivalence of (2) and (3) is a purely algebraic statement.

Remark 6.3.2. In Example 6.4(2) of [21], the existence of a locally universal separable

II1-factor S was established. This S has the property that any separable II1-factor

embeds into SU . Tensoring S with R preserves this property, so we may assume that

S is McDuff. Therefore, we may consider the convex structure Hom(N,SU) for any

separable II1-factor N without any additional embeddability assumptions.
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Chapter 7

More on Homw(A,M)

7.1 Stabilization

The “McDuffness”of the codomain of π : A → M allows us to coherently define

the convex structure on Homw(A,M). Only considering McDuff codomains seems to

provide some restrictions on our theory and collection of examples. Unfortunately,

without a tensor factor of R in the target, it is unclear how to define a convex structure

on Homw(A, N) for a non-McDuff N .

A natural way around this obstruction is to stabilize a given non-McDuff codomain.

That is, given a non-McDuff factor N and a ∗-homomorphism

π : A→ N,

we compose π with the embedding

idN ⊗ 1R : N → N ⊗R.

Using the notation from §3.2, this composition induces the map

(idN ⊗ 1R)∗ : Homw(A, N)→ Homw(A, N ⊗R).
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That is,

(idN ⊗ 1R)∗([π]) = [(idN ⊗ 1R) ◦ π] = [π ⊗ 1R]

where

(π ⊗ 1R)(a) = π(a)⊗ 1R.

It turns out that (idN ⊗ 1R)∗ is well-defined and injective:

(π ⊗ 1R ∼ ρ⊗ 1R)⇔ (π ∼ ρ).

Well-defined is a clear observation. Showing that (idN⊗1R)∗ is injective is not obvious

at all. The author would like to thank N. Ozawa for suggesting the proof of Theorem

7.1.4. First we need the following fact established by Haagerup in Section 4 of [22]

concerning the notion of δ-related n-tuples of unitaries.

Definition 7.1.1 ([22]). Let N be a II1-factor. For n ∈ N and δ > 0, two n-tuples

(u1, . . . , un) and (v1, . . . , vn) of unitaries in N are δ-related if there is a sequence

{aj} ⊂ N with

∑
j

a∗jaj = 1 =
∑
j

aja
∗
j (7.1.1)

such that for every 1 ≤ k ≤ n,

∑
j

||ajuk − vkaj||22 < δ. (7.1.2)

We say that {aj} is a sequence that witnesses that (u1, . . . , un) and (v1, . . . , vn) are

δ-related.
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Theorem 7.1.2 ([22]). Let N be a II1-factor. For every n ∈ N and every ε > 0,

there exists a δ(n, ε) > 0 such that for any two δ(n, ε)-related n-tuples of unitaries

(u1, . . . , un) and (v1, . . . , vn) in N , there exists a unitary w ∈ N such that for every

1 ≤ k ≤ n

||wuk − vkw||2 < ε.

Next we establish the following lemma.

Lemma 7.1.3. Let N1 and N2 be separable II1-factors, and let (u1, . . . , un) and

(v1, . . . , vn) be two n-tuples of unitaries in N1. Fix δ > 0, and let z ∈ N1 ⊗ N2

be a unitary of the form

z =
∞∑
j=1

aj ⊗ bj

where {bj} ⊂ N2 is an orthonormal basis in L2(N2). If z is such that for every

1 ≤ k ≤ n,

||z(uk ⊗ 1N2)− (vk ⊗ 1N2)z||22 < δ,

then (u1, . . . , un) and (v1, . . . , vn) are δ-related. Furthermore, {aj} is a sequence that

witnesses that (u1, . . . , un) and (v1, . . . , vn) are δ-related.

Proof. It suffices to show that {aj} is the sequence that witnesses that (u1, . . . , un)

and (v1, . . . , vn) are δ-related. First we show that the summing condition (7.1.1) is

satisfied. This is a consequence of the fact that
∑

j aj ⊗ bj is a unitary. Let E1 be the

canonical normal conditional expectation

E1 : N1 ⊗N2 → N1 ⊗ C1N2
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onto the first tensor factor. So on simple tensors, E1(x⊗ y) = x⊗ τ(y). So we have

1 = E1(z∗z)

= E1

(∑
j′,j

a∗j′aj ⊗ b∗j′bj
)

=
∑
j′,j

a∗j′aj ⊗ τ(b∗j′bj)

=
∑
j

a∗jaj ⊗ 1.

Thus
∑

j a
∗
jaj = 1 and by a symmetric argument,

∑
j aja

∗
j = 1.

To check (7.1.2), fix 1 ≤ k ≤ n and observe

∑
j

∣∣∣∣∣∣ajuk − vkaj∣∣∣∣∣∣2
2

=
∑
j

τ
((
ajuk − vkaj

)∗(
ajuk − vkaj

))
=
∑
j′,j

τ
((

(aj′uk − vkaj′)∗(ajuk − vkaj)
)
⊗ b∗j′bj

)
= τ
((∑

j′

(aj′uk − vkaj′)⊗ bj′
)∗(∑

j

(ajuk − vkaj)⊗ bj
))

= ||z(uk ⊗ 1N2)− (vk ⊗ 1N2)z||22

< δ.

Theorem 7.1.4. Let N1 and N2 be arbitrary separable II1-factors. Given

∗-homomorphisms π, ρ : A → N1, consider π ⊗ 1N2 , ρ ⊗ 1N2 : A → N1 ⊗ N2. If

π ⊗ 1N2 ∼ ρ⊗ 1N2 then π ∼ ρ.
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Proof. Because a unital C∗-algebra is generated by its unitaries, it suffices to show

that for any ε > 0 and any set of unitaries u1, . . . , un ∈ A, there exists a unitary

w ∈ N such that for every 1 ≤ k ≤ n,

||wπ(uk)− ρ(uk)w||2 < ε.

Fix ε > 0 and unitaries u1, . . . , un ∈ A. Let δ(n, ε) > 0 be such that if (v1, . . . , vn)

and (v′1, . . . , v
′
n) are δ(n, ε)-related n-tuples of unitaries in N1, then there is a unitary

w ∈ N1 such that for every 1 ≤ k ≤ n,

||wvk − v′kw||2 < ε

as guaranteed by Theorem 7.1.2. Thus we will be done if we show that (π(u1), . . . ,

π(un)) and (ρ(u1), . . . , ρ(un)) are δ(n, ε)-related.

Since π ⊗ 1N2 ∼ ρ ⊗ 1N2 , we can find a unitary z ∈ N1 ⊗ N2 such that for every

1 ≤ k ≤ n,

||z(π(uk)⊗ 1N2)− (ρ(uk)⊗ 1N2)z||22 < δ(n, ε).

By standard approximation arguments we may assume that

z =
∞∑
j=1

aj ⊗ bj

where {bj} ⊂ N2 is an orthonormal basis in L2(N2) (guaranteed by Gram-Schmidt).

Then by Lemma 7.1.3 we have that (π(u1), . . . , π(un)) and (ρ(u1), . . . , ρ(un)) are

δ(n, ε)-related.
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We can also use the proof strategy from Theorem 7.1.4 to provide an alternative proof

to Corollary 3.3 in [13]: Let N1 and N2 be separable II1 factors, and let θi ∈ Aut(Ni),

i = 1, 2. Then θ1⊗ θ2 ∈ Aut(N1⊗N2) is approximately inner if and only if θ1 and θ2

are both approximately inner.

Example 7.1.5. It is well-known that L(F2) has non-approximately inner automor-

phisms (e.g. exchanging generators). Let β be such a non-approximately inner au-

tomorphism of L(F2). Let ι : C∗r (F2) → L(F2) be the canonical embedding, then we

have

π := ι � β ◦ ι =: ρ.

Then by Theorem 7.1.4 we have that [π⊗1R] 6= [ρ⊗1R]. Since Homw(C∗r (F2), L(F2)⊗

R) is convex, there is at least an interval’s worth,

{t[π ⊗ 1R] + (1− t)[ρ⊗ 1R] : t ∈ [0, 1]} ,

of inequivalent ∗-homomorphisms of C∗r (F2) into L(F2)⊗R.

For the next theorem, we will use the following standard fact about complete

metric spaces.

Proposition 7.1.6. Let (X, d) and (Y, d′) be complete metric spaces. If ϕ : X → Y

satisfies the following conditions

1. ϕ is continuous,

2. ϕ is injective,
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3. {ϕ(xn)} is Cauchy in d′ ⇒ {xn} is Cauchy in d;

then ϕ is a homeomorphism onto its image and ϕ(X) is closed in Y .

Theorem 7.1.7. For any two separable II1-factors N1 and N2, the map

(idN1 ⊗ 1N2)∗ : Homw(A, N1)→ Homw(A, N1 ⊗N2)

is a homeomorphism onto its image, which is closed in Homw(A, N1 ⊗ N2). In par-

ticular, we may consider Homw(A, N1) as a closed subset of Homw(A, N1 ⊗N2).

Proof. Let {uk} be a sequence of unitaries that generate A. As in Remark 3.3,

we can use these unitaries to define metrics dN1 and dN1⊗N2 on Homw(A, N1) and

Homw(A, N1 ⊗N2) respectively. That is,

dN1([π], [ρ]) = inf
v∈U(N1)

( ∞∑
k=1

1

22k
||vπ(uk)− ρ(uk)v||22

) 1
2

and

dN1⊗N2([π], [ρ]) = inf
z∈U(N1⊗N2)

( ∞∑
k=1

1

22k
||zπ(uk)− ρ(uk)z||22

) 1
2
.

Theorem 7.1.4 shows that (idN1⊗1N2)∗ is injective, and (idN1⊗1N2)∗ is continuous

by Proposition 3.2.4. Now, by Proposition 7.1.6, it suffices to show that if {[πn ⊗ 1N2 ]}

is Cauchy in dN1⊗N2 then {[πn]} is Cauchy in dN1 . Fix ε > 0. Let J ∈ N be such

that
∞∑

k=J+1

4

22k
<
ε2

2
. By Theorem 7.1.2 there is a δ

(
J,

ε√
2J

)
such that for any pair

of δ
(
J,

ε√
2J

)
-related n-tuples of unitaries (w1, . . . , wJ) and (w′1, . . . , w

′
J) in N1 there

is a unitary v ∈ N1 such that for every 1 ≤ k ≤ J ,

||vwk − w′kv||2 <
ε√
2J
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or

||vwk − w′kv||22 <
ε2

2J
.

Now let K ∈ N be such that for n,m ≥ K we have

dN1⊗N2([πn ⊗ 1N2 ], [πm ⊗ 1N2 ])
2 <

δ
(
J, ε√

2J

)
22J

.

We will show that for any n,m ≥ K, dN1([πn], [πm]) < ε. Fix n,m ≥ K. From the

definition of dN1⊗N2 there is a unitary z ∈ N1 ⊗N2 of the form z =
∑
j

aj ⊗ bj with

{bj} an orthonormal basis in L2(N2) such that

∞∑
k=1

1

22k
||z((πn ⊗ 1N2)(uk))− ((πm ⊗ 1N2)(uk))z||22 <

δ
(
J, ε√

2J

)
22J

.

So, for 1 ≤ k′ ≤ J we have

1

22k′
||z((πn ⊗ 1N2)(uk′))− ((πm ⊗ 1N2)(uk′))z||22

≤
∞∑
k=1

1

22k
||z((πn ⊗ 1N2)(uk))− ((πm ⊗ 1N2)(uk))z||22

<
δ
(
J, ε√

2J

)
22J

.

Therefore for every 1 ≤ k ≤ J ,

||z((πn ⊗ 1N2)(uk))− ((πm ⊗ 1N2)(uk))z||22 < 22k
δ
(
J, ε√

2J

)
22J

≤ δ
(
J,

ε√
2J

)
.

Thus by Lemma 7.1.3 we have that (πn(u1), . . . , πn(uJ)) and (πm(u1), . . . , πm(uJ)) are

δ
(
J,

ε√
2J

)
-related. By Theorem 7.1.2, there is a unitary v ∈ N1 such that for every

1 ≤ k ≤ J ,

||vπn(uk)− πm(uk)v||22 <
ε2

2J
.
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So to complete the proof we observe that

dN1([πn], [πm])2 ≤
∞∑
k=1

1

22k
||vπn(uk)− πm(uk)v||22

=
J∑
k=1

1

22k
||vπn(uk)− πm(uk)v||22

+
∞∑

k=J+1

1

22k
||vπn(uk)− πm(uk)v||22

< J · ε
2

2J
+
ε2

2

= ε2.

Therefore, if N is an arbitrary separable II1-factor, we may consider Homw(A, N) as

a closed subset of the convex set Homw(A, N ⊗R).

Example 7.1.8. When A is such that UAT(A) = T (A), Homw(A, N) ∼= T (A); so

(idN ⊗ 1R)∗(Homw(A, N)) = Homw(A, N ⊗R).

Example 7.1.9. If N is a non-hyperfinite solid II1-factor, for example L(F2) or

L(Z2 o SL(2,Z)), then all of its subfactors are also solid, see [31] and [33]. Non-

hyperfinite solid factors are prime. So we know that N ⊗ R does not embed into N .

Thus, if we let A be a separable dense C∗-subalgebra ofN⊗R with a unique trace, then

Homw(A, N) is empty, but Homw(A, N ⊗R) is nonempty. Such a dense monotracial

C∗-subalgebra exists by applying the argument found in Lemma 4.2.3 except all W ∗’s

should be replaced with C∗’s and all instances of “weak”with “norm.” Therefore, in

contrast to the situation of Example 7.1.8, we have that (idM ⊗ 1R)∗(Homw(A, N))

is empty.
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It would be interesting to know more about the way Homw(A, N) sits inside

Homw(A, N ⊗ M) for M McDuff and A such that UAT(A) 6= T (A). In particu-

lar, it would be nice to find an example of a separable II1-factor N and a separable

C∗-algebra A such that Homw(A, N) fails to be convex.

7.2 A Product

Remark 7.3 at the end of [8] suggests a way to define a product on Hom(N,RU) when

there exists a comultiplication on A. We show here that we can also define a product

on Homw(A, R) under the same assumptions. Before restricting ourselves, we discuss

this idea in more generality. We can define a binary operation in the following way.

Definition 7.2.1. Given C∗-algebras A and B and McDuff II1-factors M and N , we

define the binary operation

• : Homw(A,M)×Homw(B, N)→ Homw(A⊗min B,M ⊗N)

to be given by

[π] • [ρ] = [π ⊗ ρ].

Proposition 7.2.2. The map • is well-defined, jointly continuous, and

affine-distributive on both sides–that is, the following equations hold.
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(t[π1] + (1− t)[π2]) • [ρ] = t([π1] • [ρ]) + (1− t)([π2] • [ρ]),

[π] • (s[ρ1] + (1− s)[ρ2]) = s([π] • [ρ1]) + (1− s)([π] • [ρ2])

Proof. Well-defined and continuous is routine.

We will show one side of the affine-distributive claim, and the other side will follow

by a symmetric argument. We show that

[(σM ⊗ idN)(π1 ⊗ p⊗ ρ+ π2 ⊗ p⊥ ⊗ ρ)] = [σM⊗N(π1 ⊗ ρ⊗ p+ π2 ⊗ ρ⊗ p⊥)]

for σM and σM⊗N regular isomorphisms.

Let D : M ⊗ N ⊗ R → M ⊗ R ⊗ N be the canonical isomorphism from the

commutativity of tensor products. Define sM⊗N : M ⊗N ⊗R→M ⊗N by sM⊗N :=

(σM ⊗ idN) ◦D . Then we have that

s−1
M⊗N = D−1 ◦ (σ−1

M ⊗ idN)

∼ D−1 ◦ (idM ⊗ 1R ⊗ idN)

= idM ⊗ idN ⊗ 1R

= idM⊗N ⊗ 1R.

So by Proposition 3.1.2 (2), sM⊗N ∼ σM⊗N . So we get

[(σM ⊗ idN)(π1 ⊗ p⊗ ρ+ π2 ⊗ p⊥ ⊗ ρ)] = [sM⊗N(π1 ⊗ ρ⊗ p+ π2 ⊗ ρ⊗ p⊥)]

= [σM⊗N(π1 ⊗ ρ⊗ p+ π2 ⊗ ρ⊗ p⊥)].
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Example 7.2.3. In the case that A and B are nuclear, • is simply the tensor product

on traces.

Now, if there is a unital ∗-homomorphism γ : A→ A⊗min A then we may use the

functoriality discussed in §3.2 to define a product on Homw(A, R) as follows. Let

•γ : Homw(A, R)×Homw(A, R)→ Homw(A, R)

be given by

•γ = ε∗ ◦ γ∗ ◦ •

where ε : R⊗R→ R is an isomorphism. That is,

[π] •γ [ρ] = [ε ◦ (π ⊗ ρ) ◦ γ].

We remark that •γ is independent of the choice of ε.

We do not have a priori that •γ is associative. However, if we further assume that

γ : A→ A⊗min A is coassociative, then we do get that •γ is associative.

Definition 7.2.4. A ∗-homomorphism γ : A→ A⊗min A is coassociative if

(idA ⊗ γ) ◦ γ = (γ ⊗ idA) ◦ γ.

Proposition 7.2.5. If γ : A → A ⊗min A is a coassociative ∗-homomorphism, then

•γ is associative.

Proof. We must show

[π1] •γ ([π2] •γ [π3]) = ([π1] •γ [π2]) •γ [π3]. (7.2.1)
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That is

[σR ◦ (π1 ⊗ (σR ◦ (π2 ⊗ π3) ◦ γ)) ◦ γ] = [σR ◦ ((σR ◦ (π1 ⊗ π2) ◦ γ)⊗ π3) ◦ γ],

where σR is a regular isomorphism. (We can take σR = ε if we like.)

We have

σR ◦ (π1 ⊗ (σR ◦ (π2 ⊗ π3) ◦ γ)) ◦ γ

= σR ◦ ((σR ◦ σ−1
R ◦ π1 ◦ idA)⊗ (σR ◦ (π2 ⊗ π3) ◦ γ)) ◦ γ

= σR ◦ (σR ⊗ σR) ◦ ((σ−1
R ◦ π1)⊗ (π2 ⊗ π3)) ◦ (idA ⊗ γ) ◦ γ

∼ σR ◦ (σR ⊗ σR) ◦ ((π1 ⊗ 1R)⊗ (π2 ⊗ π3)) ◦ (idA ⊗ γ) ◦ γ (7.2.2)

= σR ◦ (σR ⊗ σR) ◦ ((π1 ⊗ 1R)⊗ (π2 ⊗ π3)) ◦ (γ ⊗ idA) ◦ γ (7.2.3)

∼ σR ◦ (σR ⊗ σR) ◦ ((π1 ⊗ π2)⊗ (π3 ⊗ 1R)) ◦ (γ ⊗ idA) ◦ γ (7.2.4)

∼ σR ◦ (σR ⊗ σR) ◦ ((π1 ⊗ π2)⊗ (σ−1
R ◦ π3)) ◦ (γ ⊗ idA) ◦ γ (7.2.5)

= σR ◦ ((σR ◦ (π1 ⊗ π2) ◦ γ)⊗ π3) ◦ γ.

Here (7.2.2) and (7.2.5) follow from the fact that σR is a regular isomorphism, and

(7.2.3) follows because γ is coassociative. To verify (7.2.4) we consider (π1 ⊗ 1R) ⊗

(π2 ⊗ π3) as an element of R⊗4. Note that since all ∗-endomorphisms of R are

approximately inner, we have that σR(idR ⊗ 1R) ∼ idR ∼ σR(1R ⊗ idR). Thus we
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have idR ⊗ 1R ∼ 1R ⊗ idR and

(π1 ⊗ 1R)⊗ (π2 ⊗ π3) = π1 ⊗ (1R ⊗ π2)⊗ π3

∼ π1 ⊗ (π2 ⊗ 1R)⊗ π3

= (π1 ⊗ π2)⊗ (1R ⊗ π3)

∼ (π1 ⊗ π2)⊗ (π3 ⊗ 1R),

verifying (7.2.4). So (7.2.1) has been demonstrated, and the proof is complete.

Example 7.2.6. If A is a compact quantum group (cf. [50]) and we take γ to be the

comultiplication ∆ (denoted as Φ in [50]), then we are in the situation of Proposition

7.2.5.

Example 7.2.7. If A is a nuclear compact quantum group with comultiplication ∆

and tracial Haar state it can be shown that under this product, the representative of

the Haar state behaves as a zero. That is, if [H] ∈ Homw(A, R) is a lift of the Haar

state through R, then for any [π] ∈ Homw(A, R), [H] •∆ [π] = [π] •∆ [H] = [H].

We go a bit further to observe that in the case that A is a compact quantum group

with comultiplication ∆, Homw(A,M) can be seen to behave as a sort of right (or

left) Homw(A, R)-module with the action given by

•M∆ = (σM)∗ ◦∆∗ ◦ •

where σM is a regular isomorphism. That is, for [π] ∈ Homw(A,M) and [ρ] ∈

Homw(A, R) we have

[π] •M∆ [ρ] = [σM ◦ (π ⊗ ρ) ◦∆].
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Remark 7.2.8. It would be interesting to study the algebraic properties of this product.

Can we find examples where •γ is not associative? In the associative case, how do

powers [π]n behave? How do faces react to this product?

This approach should extend painlessly to the object Hom(A,MU) using the re-

sults from Chapter 6.
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Chapter 8

Simplices in Hom(N,RU)

In this chapter, we will work in Brown’s original context from [8] (see §2.8 for a brief

survey). Let N be a separable II1-factor, and let R denote the separable hyperfinite

II1-factor. We denote by Hom(N,RU) the collection of unitary equivalence classes

of ∗-homomorphisms N → RU where U is a free ultrafilter on the natural numbers.

We let [π] denote the equivalence class of the ∗-homomorphism π : N → RU . It was

shown in [8] and [11] that Hom(N,RU) can be considered as closed bounded convex

subset of a Banach space.

Definition 8.1. Let F[π] denote the minimal face in Hom(N,RU) containing [π]. F[π]

is obtained by intersecting all faces in Hom(N,RU) that contain [π]. Let dim(F[π])

be the dimension of the minimal face, given by the smallest n such that F[π] affinely

embeds into Rn; if there is no such n, then we say dim(F[π]) = ∞. As a convention,

dim(F[π]) = 0 if and only if F[π] = {•} is a singleton.

The work of this chapter builds upon the results of [8] in order to further establish

a connection between the convex geometry of Hom(N,RU) and the algebraic data of

the embeddings of N into RU . In particular, given π : N → RU , we will examine the
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relationship between F[π] and the relative commutant π(N)′ ∩ RU . The work of this

chapter culminates in the following theorem.

Theorem 8.2. Let the embedding π : N → RU be given.

1. If dim(Z(π(N)′ ∩RU)) = n <∞ then F[π] is an n-vertex simplex.

2. If ϕ ∈ t1[π1] + · · · + tn[πn] where 0 < tj < 1 and [πj] is an extreme point for

every 1 ≤ j ≤ n, then

ϕ(N)′ ∩RU ∼= ⊕nj=1πj(N)′ ∩RU .

3. dim(F[π]) + 1 = dim(Z(π(N)′ ∩RU)).

This theorem is a generalization of Theorem 2.8.11–different from the generalization

given by Theorem 6.1.4–in the sense that Theorem 2.8.11 gives part (3) of Theorem

8.2 in the case where dim(F[π]) + 1 = dim(Z(π(N)′ ∩ RU)) = 1. As mentioned

before, the question of existence of extreme points in Hom(N,RU) is an equivalent

formulation of a well-known open question (given any separable II1-factor N , is there

an embedding π : N → RU such that π(N)′ ∩ RU is a factor?). Theorem 8.2 informs

us about the convex geometry of Hom(N,RU) and thus gives us deeper insight into

this open question. In particular, we have the following corollary.

Corollary 8.3. The following are equivalent.

• There is an embedding π : N → RU such that π(N)′ ∩RU is a factor.
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• There is an embedding ρ : N → RU such that Z(π(N)′ ∩ RU) is finite dimen-

sional.

8.1 Proof of Part (1) of Theorem 8.2

From now on, fix π : N → RU . To allow an abuse of notation, let σ : (R⊗R)U → RU

denote the isomorphism induced by an isomorphism σ : R ⊗ R → R. The following

Proposition shows that given a cutdown πp of π, it is always unitarily equivalent to a

cutdown of π by a projection of smaller trace. This can be considered as a rescaling

propostion.

Proposition 8.1.1. Let p be a projection in π(N)′ ∩ RU . Then for any nonzero

projection Q ∈ RU , we have

[πp] = [σ(1⊗ π)σ(1⊗p)] = [σ(1⊗ π)σ(Q⊗p)].

Proof. To show the first equality, by Proposition 2.8.1 there is a unitary u ∈ RU so

that σ(1⊗ π)(x) = uxu∗ for every x ∈ W ∗(π(N)∪ {p}). Then by Proposition 2.8.10,

we have

[πp] = [(Adu ◦ π)upu∗ ] = [σ(1⊗ π)σ(1⊗p)].

For the second equality, we will appeal to the fact that we can take θσ(Q′⊗p) =
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σ ◦ (θQ′ ⊗ θp) ◦ σ−1 for any projection Q′ (see Definition 3.3.2 in [8]). Thus we have

σ(1⊗ π)σ(Q⊗p) = θσ(Q⊗p)(σ(Q⊗ p)σ(1⊗ π))

= θσ(Q⊗p)(σ(Q⊗ pπ))

= σ ◦ (θQ ⊗ θp) ◦ σ−1(σ(Q⊗ pπ))

= σ ◦ (θQ ⊗ θp)(Q⊗ pπ)

= σ(1⊗ θp(pπ))

= σ ◦ (1⊗ θp) ◦ σ−1(σ(1⊗ p)σ(1⊗ π))

= θσ(1⊗p)(σ(1⊗ p)σ(1⊗ π))

= σ(1⊗ π)σ(1⊗p).

The next proposition addresses convex combinations of cutdowns.

Proposition 8.1.2. Let p, q ∈ π(N)′ ∩RU be projections with τ(p) = τ(q).

t[πp] + (1− t)[πq] = [σ(1⊗ π)(σ(S⊗p)+σ(S⊥⊗q))]

for any projection S ∈ RU with τ(S) = t.

Proof. By Example 4.5 of [8] we have that

t[πp] + (1− t)[πq] = [σ(S ⊗ πp) + σ(S⊥ ⊗ πq)]

for any projection S ∈ RU with τ(S) = t. So we must show

[σ(1⊗ π)σ(S⊗p)+σ(S⊥⊗q)] = [σ(S ⊗ πp) + σ(S⊥ ⊗ πq)].
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By definition

σ(1⊗ π)σ(S⊗p)+σ(S⊥⊗q) = θσ(S⊗p)+σ(S⊥⊗q)(σ(S ⊗ pπ) + σ(S⊥ ⊗ qπ))

and

σ(S ⊗ πp) + σ(S⊥ ⊗ πq) = σ(S ⊗ θp(pπ)) + σ(S⊥ ⊗ θq(qπ)).

Now note that,

τ(θσ(S⊗p)+σ(S⊥⊗q)(σ(S ⊗ p)) =
τ(S) · τ(p)

τ(σ(S ⊗ p) + σ(S⊥ ⊗ q))

=
τ(S) · τ(p)

τ(p)

= τ(S).

Let p′ := θσ(S⊗p)+σ(S⊥⊗q)(σ(S ⊗ p)) and consider

ψ : p′RUp′ → σ(S ⊗ 1)RUσ(S ⊗ 1)

given by

ψ = σ ◦ (S ⊗ id) ◦ θσ(S⊗p) ◦ θ−1
σ(S⊗p)+σ(S⊥⊗q)

∣∣
p′RUp′

.

Let u ∈ RU be a unitary such that for every a ∈ N,

σ(1⊗ θp(pπ(a))) = uθp(pπ(a))u∗

as provided by Proposition 2.8.2.

So, for a ∈ N we have

ψ(θσ(S⊗p)+σ(S⊥⊗q)(σ(S ⊗ pπ(a))))
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= σ ◦ (S ⊗ id) ◦ θσ(S⊗p)(σ(S ⊗ pπ(a)))

= σ ◦ (S ⊗ id) ◦ σ ◦ (θS ⊗ θp) ◦ σ−1(σ(S ⊗ pπ(a))) (8.1.1)

= σ ◦ (S ⊗ id) ◦ σ ◦ (θS ⊗ θp)(S ⊗ pπ(a))

= σ ◦ (S ⊗ id)(σ(1⊗ θp(pπ(a))))

= σ(S ⊗ σ(1⊗ θp(pπ(a))))

= σ(S ⊗ uθp(pπ(a))u∗)

= σ(S ⊗ u)σ(S ⊗ θp(pπ(a)))σ(S ⊗ u∗)

where (8.1.1) follows from the fact that θσ(S⊗p) = σ ◦ (θS ⊗ θp) ◦ σ−1.

Evidently, ψ is a unital ∗-homomorphism that lifts to coordinate-wise homor-

phisms. Then by Proposition 2.8.1 there is a partial isometry v ∈ RU such that

v∗v = p′, vv∗ = σ(S ⊗ 1), and ψ(x) = vxv∗ for every

x ∈ θσ(S⊗p)+σ(S⊥⊗q)(σ(S ⊗ pπ(N)))

(a separable subalgebra). Therefore, for every a ∈ N ,

σ(S ⊗ u)σ(S ⊗ θp(pπ(a)))σ(S ⊗ u∗) = ψ(θσ(S⊗p)+σ(S⊥⊗q)(σ(S ⊗ pπ(a)))

= vθσ(S⊗p)+σ(S⊥⊗q)(σ(S ⊗ pπ(a))v∗.

It follows that

v∗σ(S ⊗ u)σ(S ⊗ θp(pπ(a)))σ(S ⊗ u∗)v = θσ(S⊗p)+σ(S⊥⊗q)(σ(S ⊗ pπ(a))).

Let v′ := v∗σ(S⊗ u). Then v′∗v′ = σ(S⊗ 1) and v′v′∗ = θσ(S⊗p)+σ(S⊥⊗q)(S⊗ p). Thus

v′σ(S ⊗ θp(pπ(a)))v′∗ = θσ(S⊗p)+σ(S⊥⊗q)(σ(S ⊗ pπ(a)))
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for every a ∈ N .

Similarly, there is a partial isometry w′ ∈ RU with w′∗w′ = σ(S⊥⊗1) and w′w′∗ =

θσ(S⊗p)+σ(S⊥⊗q)(σ(S⊥ ⊗ q)) such that

w′σ(S⊥ ⊗ θq(qπ(a)))w′∗ = θσ(S⊗p)+σ(S⊥⊗q)(σ(S⊥ ⊗ qπ(a)))

for every a ∈ N .

Thus, if u′ = v′ + w′ then u′ is a unitary such that

u′(σ(S ⊗ θp(pπ(a))) + σ(S⊥ ⊗ θq(qπ(a))))u′∗

= θσ(S⊗p)+σ(S⊥⊗q)(σ(S ⊗ pπ(a)) + σ(S⊥ ⊗ qπ(a))).

Note that thanks to the rescaling Proposition 8.1.1, the requirement that p and q

have matching traces in Proposition 8.1.2 is not an obstruction at all.

Proposition 8.1.3.

F[π] =
{

[πp] : p ∈ π(N)′ ∩RU , a nonzero projection
}

Proof. ⊆: We will show that

A :=
{

[πp] : p ∈ π(N)′ ∩RU , a projection , p 6= 0
}

is a face. Then this inclusion will hold due to minimality of F[π]. By Proposition 8.1.2

we have that A is convex. Now if t[ρ1] + (1− t)[ρ2] = [πp]. So we have

[π] = τ(p)[πp] + τ(p⊥)[πp⊥ ]

= tτ(p)[ρ1] + (1− t)τ(p)[ρ2] + τ(p⊥)[πp⊥ ].
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by Proposition 2.8.10. Also by Proposition 2.8.10, we have that [ρi] = [πqi ] for

qi ∈ π(N)′ ∩RU for i = 1, 2. So indeed, A is a face. Thus F[π] ⊆ A.

⊇: By Proposition 2.8.10, we have that τ(p)[πp] + τ(p⊥)[πp⊥ ] = [π] ∈ F[π] for any

p ∈ π(N)′ ∩ RU . And since F[π] is a face, we have that [πp] ∈ F[π] for any p ∈

π(N)′ ∩RU .

Proposition 8.1.4. If Z(π(N)′ ∩RU) is separable then

1. Z(σ(1⊗ π)(N)′ ∩RU) = σ(C⊗Z(π(N)′ ∩RU)).

2. If z is a minimal central projection in Z(π(N)′ ∩RU) then σ(1⊗ z) is minimal

in Z(σ(1⊗ π)(N)′ ∩RU).

Proof. (1): We have that X := W ∗(π(N) ∪ Z(π(N)′ ∩ RU)) is separable. So by

Proposition 2.8.1, there is a unitary u ∈ RU such that for every x ∈ X, σ(1 ⊗ x) =

uxu∗. It follows that

σ(1⊗ π)(N)′ ∩RU = Ad(u)(π(N)′ ∩RU).

So we have

Z(σ(1⊗ π)(N)′ ∩RU) = Ad(u)Z(π(N)′ ∩RU)

= σ(1⊗Z(π(N)′ ∩RU)).

(2): Let u be as in the proof of part (1). Then since z ∈ Z(π(N)′ ∩ RU) is minimal,

it follows that σ(1⊗ z) = uzu∗ is minimal.
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The following lemma shows that in the case that the center of the relative commu-

tant of π is finite dimensional, there is a number 0 < t0 < 1 such that every element

of F[π] may be expressed as a cutdown of π by a projection with trace t0.

Lemma 8.1.5. Let Z(π(N)′ ∩ RU) be finite dimensional with minimal central pro-

jections z1, . . . , zn, and let t0 ≤ min {τ(z1), . . . , τ(zn)}. Then

F[π] =
{

[πp] : p ∈ π(N)′ ∩RU , a projection , τ(p) = t0
}

Proof. Let q ∈ π(N)′ ∩RU be a projection and let t′ = τ(q). Put

At0 =
{

[πp] : p ∈ π(N)′ ∩RU , a projection , τ(p) = t0
}
.

Assume that t′ > t0. Let Q ∈ RU be a projection with τ(Q) =
t0
t′

, and let u ∈ RU be

a unitary such that σ(1⊗ x) = uxu∗ for every x ∈ W ∗(π(N) ∪Z(π(N)′ ∩RU)), then

by Proposition 8.1.1,

[πq] = [σ(1⊗ π)σ(Q⊗q)] = [πu∗σ(Q⊗q)u] ∈ At0 .

Now let t′ < t0. Let p ∈ π(N)′ ∩ RU be a projection such that τ(pzi) =
t0
t′
τ(qzi)

for every 1 ≤ i ≤ n. That is, the center-valued trace of p is a
t0
t′

-scaling of the

center-valued trace of q. Clearly, τ(p) = t0. Let Q ∈ RU be a projection such that

τ(Q) =
t′

t0
. By Proposition 8.1.4, the minimal central projections in σ(1⊗π)(N)′∩RU
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are {σ(1⊗ zi)}ni=1. Observe that for every 1 ≤ i ≤ n we have

τ(σ(Q⊗ p)σ(1⊗ zi)) = τ(σ(Q⊗ pzi))

= τ(Q) · τ(pzi)

=
t′

t0
· t0
t′
τ(qzi)

= τ(qzi)

= τ(σ(1⊗ q)σ(1⊗ zi)).

Thus σ(Q⊗ p) is Murray-von Neumann equivalent to σ(1⊗ q) in σ(1⊗ π)(N)′ ∩RU .

By Propositions 2.8.10 and 8.1.1 we get that

[πq] = [σ(1⊗ π)σ(1⊗q)]

= [σ(1⊗ π)σ(Q⊗p)]

= [σ(1⊗ π)σ(1⊗p)]

= [πp] ∈ At0 .

We are now sufficiently prepared to prove part (1) of Theorem 8.2.

Proof. (of part (1) of Theorem 8.2) We will show that if Z(π(N)′∩RU) is n-dimensional

with n <∞ then F[π] is affinely isomorphic to the n-vertex simplex given by

Xt0 :=

{
(x1, . . . , xn) : 0 ≤ xi ≤ t0 ∀1 ≤ i ≤ n,

n∑
i=1

xi = t0

}
.

By Lemma 8.1.5, we may identify F[π] with

At0 :=
{

[πp] : p ∈ π(N)′ ∩RU , a projection , τ(p) = t0
}
.
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Consider the map

ϕ : At0 → Xt0

given by

ϕ([πp]) = (τ(pz1), . . . , τ(pzn))

where z1, . . . zn are the minimal central projections of π(N)′∩RU . Proposition 2.8.10

ensures that ϕ is well-defined and injective. Given any (x1, . . . , xn) ∈ Xt0 , it is

well-known that there is a projection p ∈ π(N)′∩RU such that (τ(pz1), . . . , τ(pzn)) =

(x1, . . . , xn); thus, ϕ is surjective. It remains to show that ϕ is affine. SinceW ∗(π(N)∪

Z(π(N)′ ∩ RU)) is separable, there is a unitary u ∈ RU so that σ(1 ⊗ x) = uxu∗ for

every x ∈ W ∗(π(N) ∪ Z(π(N)′ ∩ RU)) as in Proposition 8.1.4. Now, by Proposition

8.1.2,

t[πp] + (1− t)[πq] = [σ(1⊗ π)σ(S⊗p)+σ(S⊥⊗q)] = [πu∗(σ(S⊗p)+σ(S⊥⊗q))u]

where S ∈ RU is a projection such that τ(S) = t. Furthermore, for every 1 ≤ i ≤ n,

we have that

τ(u∗(σ(S ⊗ p) + σ(S⊥ ⊗ q))uzi) = τ((σ(S ⊗ p) + σ(S⊥ ⊗ q))uziu∗)

= τ((σ(S ⊗ p) + σ(S⊥ ⊗ q))σ(1⊗ zi))

= τ(σ(S ⊗ pzi)) + τ(σ(S⊥ ⊗ qzi))

= τ(S) · τ(pzi) + τ(S⊥) · τ(qzi)

= tτ(pzi) + (1− t)τ(qzi).
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So

ϕ(t[πp] + (1− t)[πq]) = ϕ([πu∗(σ(S⊗p)+σ(S⊥⊗q))u]

= tϕ([πp]) + (1− t)ϕ([πq]).

8.2 A Form of Schur’s Lemma for RU

Before we establish part (2) of Theorem 8.2 we must prove an intuitive yet difficult

lemma. Since Lemma 8.2.1 addresses intertwiners of unital representations of N in

RU , we can consider this as a sort of RU -version of Schur’s lemma. An argument simi-

lar to the argument presented in Lemma 8.2.1 appears in [18]. Thanks to Nate Brown

for a helpful discussion regarding this lemma and to Stuart White for suggesting the

proof of this lemma.

Lemma 8.2.1. Let [π], [ρ] ∈ Hom(N,RU) be extreme points. If there is a nonzero

x ∈ RU such that π(a)x = xρ(a) for every a ∈ N (that is, x intertwines π and ρ),

then [π] = [ρ].

Proof. Let x = v|x| be the polar decomposition of x (here |x| = (x∗x)
1
2 ). We first

claim that v also intertwines π and ρ. Note that x∗x ∈ ρ(N)′ ∩ RU and so |x| ∈

ρ(N)′ ∩RU . Thus we have for every a ∈ N

π(a)v|x| = v|x|ρ(a)

= vρ(a)|x|.
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So for every a ∈ N , π(a)v = vρ(a) on range|x|. Also, v∗v is the projection onto

range|x|, and thus v∗v ∈ W ∗(|x|) ⊂ ρ(N)′ ∩RU . Thus, for every a ∈ N ,

π(a)v = π(a)v(v∗v)

= vρ(a)v∗v

= vv∗vρ(a)

= vρ(a).

Consider the set

S :=
{
w : w ∈ RU a partial isometry and π(a)w = wρ(a), ∀a ∈ N

}
.

By above, S is nonempty. Define the following partial order on S:

v ≤ w ⇔ wv∗v = v(⇔ v∗ = v∗vw∗).

Let w1 ≤ w2 ≤ w3 ≤ . . . be an increasing chain of elements in S. We will show that

this chain has an upper bound. To do this we will show that {wn} is || · ||2-Cauchy.

Note that {τ(w∗nwn)} is a monotone, bounded sequence of real numbers, so it is a

convergent sequence. Let n ≤ m; by the definition of the ordering,

τ(w∗mwn) = τ(wnw
∗
n)

and

τ(w∗nwm) = τ(wnw
∗
n).
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Thus,

||wn − wm||22 = τ((wn − wm)∗(wn − wm))

= τ(w∗nwn − w∗mwn − w∗nwm + w∗mwm)

= τ(w∗nwn)− τ(wnw
∗
n)− τ(wnw

∗
n)− τ(w∗mwm)

= τ(w∗mwm)− τ(w∗nwn).

And since {τ(w∗nwn)} is convergent, this shows that {wn} is || · ||2-Cauchy. So let w

be the || · ||2-limit of {wn}. Clearly w ∈ S and w is an upper bound of the chain

w1 ≤ w2 ≤ · · · . So by Zorn’s lemma, there is a maximal (with respect to this

ordering) v ∈ S.

Assume by way of contradiction that v is not a unitary. Then τ(v∗v) < 1. Also

note that v∗v ∈ ρ(N)′ ∩ RU . Let p ∈ ρ(N)′ ∩ RU be a nonzero projection orthogonal

to v∗v and such that τ(p) ≤ τ(v∗v). Let w ∈ ρ(N)′ ∩ RU be such that w∗w = p

and ww∗ ≤ v∗v (this is possible because ρ(N)′ ∩RU is a factor). Note that for every

a ∈ N

vwρ(a) = vρ(a)w

= π(a)vw

which implies that (vw)(vw)∗ ∈ π(N)′ ∩ RU . Now let y ∈ π(N)′ ∩ RU be such that

y∗y = (vw)(vw)∗ and yy∗ ≤ 1− vv∗ (this is possible becuase π(N)′ ∩RU is a factor).

Now consider

v + yvw.
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First note that

||yvw||22 = τ(w∗v∗y∗yvw)

= τ(w∗v∗vww∗v∗vw)

= τ(w∗v∗vw)

= τ(w∗w)

= τ(p)

6= 0,

so v 6= v + yvw. Next, we see that v + yvw ∈ S: for every a ∈ N ,

π(a)(v + yvw) = π(a)v + π(a)yvw

= vρ(a) + yπ(a)vw

= vρ(a) + yvρ(a)w

= vρ(a) + yvwρ(a)

= (v + yvw)ρ(a).

Lastly, we observe that

(v + yvw)v∗v = v + yvwv∗v

= v + yvww∗wv∗v

= v + 0,

so v ≤ v + yvw in the ordering on S. So maximality of v implies that v = v + yvw,

but this is absurd because yvw 6= 0. So v must be a unitary, and so π ∼ ρ.
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Next we record the following easy lemma. This is essentially a scaled version of

Lemma 8.2.1.

Lemma 8.2.2. Let p, q ∈ RU be mutually orthogonal projections with τ(p) = τ(q). Let

[π], [ρ] ∈ Hom(N,RU) be distinct extreme points. If x ∈ (p+ q)RU(p+ q) intertwines

θ−1
p ◦ π and θ−1

q ◦ ρ, then x = 0.

Proof. We are assuming that for every a ∈ N,

θ−1
p (π(a))(p+ q)x(p+ q) = (p+ q)x(p+ q)θ−1

q (ρ(a)). (8.2.1)

Then by (8.2.1) we have

pxp = pθ−1
p (1)(p+ q)x(p+ q)p

= p(p+ q)x(p+ q)θ−1
q (1)p

= p(p+ q)x(p+ q)qp

= 0.

And similarly, qxq = 0. So x = pxq + qxp. Thus, for every a ∈ N

θ−1
p (π(a))(pxq) = θ−1

p (π(a))(pxq + qxp)

= θ−1
p (π(a))(x)

= (x)θ−1
q (ρ(a))

= (pxq + qxp)θ−1
q (ρ(a))

= pxqθ−1
q (ρ(a)).
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Let v ∈ RU be a partial isometry such that v∗v = p and vv∗ = q. Then for every

a ∈ N ,

π(a)θp(pxqv) = θp(θ
−1
p (π(a))(pxq)v)

= θp(pxqθ
−1
q (ρ(a))v)

= θp(pxqv)θp(v
∗θ−1
q (ρ(a))v).

Notice that θp ◦ Ad(v∗) ◦ θ−1
q : RU → RU is a unital ∗-homomorphism that lifts to

homomorphisms fiberwise. So by Proposition 2.8.1 we have that

θp(v
∗θ−1
q (ρ(·))v ∼ ρ(·).

Thus θp(pxqv) intertwines π and θp ◦ Ad(v∗) ◦ θ−1
q ◦ ρ ∼ ρ. So by Lemma 8.2.1,

0 = θp(pxqv). Since θp is an isomorphism, we get that 0 = pxqv. Then multiplying

on the right by v∗ yields

0 = pxqvv∗ = pxq.

By taking adjoints, one can show in an identical way that qxp = 0. Thus x = 0.

8.3 Proof of Parts (2) and (3) of Theorem 8.2

Now we are ready to prove part (2) of the Theorem.

Proof. (of part (2) of Theorem 8.2)

We prove this part of the theorem in the case where n = 2. All other cases are

direct generalizations of this one. So we must show that if [π], [ρ] ∈ Hom(N,RU) are
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distinct extreme points and if ϕ ∈ t[π] + (1− t)[ρ] for 0 < t < 1, then

ϕ(N)′ ∩RU ∼= π(N)′ ∩RU ⊕ ρ(N)′ ∩RU .

We will further subdivide the problem into two cases.

Case I: t is rational. Let t =
k

N
for positive integers k and N . Then 1− t =

N − k
N

.

Let p ∈ RU be a projection such that τ(p) =
k

N
. Without loss of generality, let

ϕ = θ−1
p ◦ π + θ−1

p⊥
◦ ρ.

Let p1, . . . , pk ≤ p be mutually orthogonal projections with τ(pi) =
1

N
; and let v ∈ RU

be a partial isometry with v∗v = vv∗ = p such that

θ−1
p ◦ π = Ad(v) ◦

( k∑
i=1

θ−1
pi
◦ π
)
.

Similarly, let q1, . . . , qN−k ≤ p⊥ be mutually orthogonal projections with τ(qj) =
1

N
;

and let w ∈ RU be a partial isometry with w∗w = ww∗ = p⊥ such that

θ−1
p⊥
◦ ρ = Ad(w) ◦

(N−k∑
j=1

θ−1
qj
◦ ρ
)
.

Fix x ∈ ϕ(N)′ ∩RU . It will suffice to show that x = pxp+ p⊥xp⊥. Observe that

p =
k∑
i=1

vpiv
∗

and

p⊥ =
N−k∑
j=1

wqjw
∗.
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So we get that

pxp⊥ =
k∑
i=1

N−k∑
j=1

(vpiv
∗)x(wqjw

∗)

and

p⊥xp =
k∑
i=1

N−k∑
j=1

(wqjw
∗)x(vpiv

∗).

Next, we claim that for every 1 ≤ i ≤ k and 1 ≤ j ≤ N − k, (vpiv
∗)x(wqjw

∗)

intertwines v(θ−1
pi
◦ π)v∗ and w(θ−1

qj
◦ ρ)w∗. For every a ∈ N , we have by assumption

that xϕ(a) = ϕ(a)x. Expanding x gives the following equation

(
pxp+

k∑
i=1

N−k∑
j=1

(vpiv
∗)x(wqjw

∗) +
k∑
i=1

N−k∑
j=1

(wqjw
∗)x(vpiv

∗) + p⊥xp⊥
)
·

( k∑
i=1

vθ−1
pi

(π(a))v∗ +
N−k∑
j=1

wθ−1
qj

(ρ(a))w∗
)

=
( k∑
i=1

vθ−1
pi

(π(a))v∗ +
N−k∑
j=1

wθ−1
qj

(ρ(a))w∗
)
·

(
pxp+

k∑
i=1

N−k∑
j=1

(vpiv
∗)x(wqjw

∗) +
k∑
i=1

N−k∑
j=1

(wqjw
∗)x(vpiv

∗) + p⊥xp⊥
)
.

Multiplying the above equation on the left by vpiv
∗ and on the right by wqjw

∗ yields

(vpiv
∗)x(wqjw

∗)(wθ−1
qj

(ρ(a))w∗) = (vθ−1
pi

(π(a))v∗)(vpiv
∗)x(wqjw

∗)

as claimed. Then by Lemma 8.2.2 we have that (vpiv
∗)x(wqjw

∗) = 0. Similarly, one

can show that (wqjw
∗)x(vpiv

∗) = 0 for every 1 ≤ i ≤ k and 1 ≤ j ≤ N − k. So

x = pxp+ p⊥xp⊥.

Case II: t is irrational. Fix N ∈ N and let 1 ≤ k ≤ N−1 be such that
k

N
< t <

k + 1

N
.
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Let p ∈ RU be a projection with τ(p) = t and let

ϕ = θ−1
p ◦ π + θ−1

p⊥
◦ ρ.

Let p1, . . . , pk, p̃ ≤ p be mutually orthogonal projections such that τ(pi) =
1

N
for

1 ≤ i ≤ k and τ(p̃) = t− k

N
(<

1

N
); and let v be a partial isometry with v∗v = vv∗ = p

such that

θ−1
p ◦ π = Ad(v) ◦

( k∑
i=1

θ−1
pi
◦ π + θp̃ ◦ π

)
.

Similarly, let q1, . . . , qN−k−1, q̃ ≤ p⊥ be mutually orthogonal projections such that

τ(qj) =
1

N
for every 1 ≤ j ≤ N − k − 1 and τ(q̃) =

k + 1

N
− t; and let w be a partial

isometry with w∗w = ww∗ = p⊥ such that

θ−1
p⊥
◦ ρ = Ad(w) ◦

(N−k−1∑
j=1

θ−1
qj
◦ ρ+ θ−1

q̃ ◦ ρ
)
.

Fix x ∈ ϕ(N)′ ∩ RU with ||x|| ≤ 1. As before, it will suffice to show that x =

pxp+ p⊥xp⊥. By an argument identical to the one in Case I, we have that

k∑
i=1

N−k−1∑
j=1

(vpiv
∗)x(wqjw

∗) =
k∑
i=1

N−k−1∑
j=1

(wqjw
∗)x(vpiv

∗) = 0.

So

pxp⊥ = px(wq̃w∗) + (vp̃v∗)x(p⊥ − wq̃w∗)

and

p⊥xp = (wq̃w∗)xp+ (p⊥ − wq̃w∗)x(vp̃v∗).
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Thus,

||pxp⊥ + p⊥xp||2 ≤ ||px(wq̃w∗)||2 + ||(vp̃v∗)x(p⊥ − wq̃w∗)||2 + ||(wq̃w∗)xp||2

+ ||(p⊥ − wq̃w∗)x(vp̃v∗)||2

≤ ||wq̃w∗||2 + ||vp̃v∗||2 + ||wq̃w∗||2 + ||vp̃v∗||2

< 4

√
1

N
.

Since N ∈ N was arbitrary, this shows that pxp⊥ + p⊥xp = 0. Thus, x = pxp +

p⊥xp⊥.

Proof. (of part (3) of Theorem 8.2) This statement follows from (1) and (2). Let

dim(Z(π(N)′∩RU)) = n. If n <∞, then by (1) we have that F[π] is an n-vertex sim-

plex and thus dim(F[π]) = n−1. If n =∞ but dim(F[π]) <∞, then [π] is an average of

finitely many extreme points. And this would imply by (2) that dim(Z(π(N)′ ∩RU))

is finite–a contradiction. So we must have dim(F[π]) =∞.

The following corollary indicates a sort of linear independence between extreme

points.

Corollary 8.3.1. The convex hull of n extreme points in Hom(N,RU) is always an

n-vertex simplex.

So for example, the convex hull of four extreme points cannot be a square–it must be

a tetrahedron.
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Example 8.3.2. In Corollaries 6.10 and 6.11 of [8], Brown exhibits II1-factors with

the property that for such a II1-factor N , Hom(N,RU) has infinitely many extreme

points with a cluster point. So for such a II1-factor N and any n ∈ N, by Theorem

8.2, there is a face in Hom(N,RU) taking the form of an n-vertex simplex. Given

a sequence of extreme points [πn] ∈ Hom(N,RU) such that [πn] → [π], it would be

interesting to have a description of

conv({[πn]}∞n=1 ∪ {[π]}).

Remark 8.3.3. An interesting property of a simplex is that the convex hull of any

finite number of extreme points is a face. Although Hom(N,RU) is rarely a simplex,

in the cases where extreme points exist, it is a consequence of Theorem 8.2 that

Hom(N,RU) shares this property.

Remark 8.3.4. The content of this chapter was in the context of Hom(N,RU) in order

to address the structure of that well-known object. At no point was it used that N is a

II1-factor, so all of the results in this chapter apply to Hom(A, RU) for any separable

unital C∗-algebra A. Though it would require even more technical notation, it is

reasonable to expect that these results extend even further to Hom(A,MU) for any

separable unital C∗-algebra A and any separable McDuff II1-factor M .
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