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Annular pressure seals are critical components used in turbomachinery. The annular seal is a
thin annular clearance region “sealing” between a high-pressure region and a low-pressure region
of a rotating machine by limiting the leakage of the working fluid. The working fluid leakage is
limited by the cross-sectional area allowed to the flow, and frequently further limited by axisymmetric
grooves machined into the rotor or stator within which the fluid expands, contracts, and recirculates.
Modern analysis techniques of such seals tend to fall into two categories. Either the seal model is
greatly simplified through assumptions and application of empirical factors, or the seal is modeled
using 3-D CFD techniques in generalized fluid dynamics codes. The method of simplification is
referred to as “Bulk Flow” analysis due to the use of radially averaged “bulk” values for flow variables.
This model takes those radially averaged values and assumes a circumferential solution based on
small orbit circular whirling motion. The 3-D momentum equations are thus reduced to a series
of 1-D equations in the axial direction with shear forces modeled empirically through Blasius type
friction factors. These 1-D equations can be solved rapidly at the expense of accuracy and flexibility
in seal geometry types. Comparatively, 3-D CFD codes require large 3-D meshes and the solution
of the full 3-D Navier-Stokes equations accompanied by turbulence model. The CFD solutions
are accurate within the precision of the boundary conditions used at the expense of much greater
computational cost and engineer expertise requirements.

A 2-D seal code is developed with an axial-radial grid to strike a balance between the 1-D bulk
flow method and 3-D generalized CFD. This 2-D seal code distinguishes itself through rigorous
application of modern numerical and code techniques. The code allows the Oth and 1st order
solution of the geometrically perturbed and incompressible cylindrical Reynolds Averaged Navier-
Stokes equations to model the seal’s eccentric annular region with an assumed small and circular
whirl orbit. Currently a single one-equation turbulence model is included to model the transport of
turbulent kinetic energy for high Reynolds number flows. The Oth order solution provides the user
with leakage results, wall shear stress, and initial pressure differential estimates. The 1st order
solution refines the pressure differential estimate and models the circumferential variation to obtain

rotordynamic coefficients from multiple whirl speed cases.
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Chapter 1

Introduction and Motivation

1.1 Annular Pressure Seals in Turbomachinery

The Study of turbomachinery is built on the foundation of fluid dynamics, thermodynamics, and
vibrational dynamics. The safe and efficient operation of these machines, and their performance, is
reliant on rigorous analysis and manipulation of the working fluid in the rotating system. Growing the
market for turbomachinery often requires improvements to existing designs to gain performance in a
smaller or more efficient system. These performance requirements must be met by new designs with
more pressure stages, higher rotor speeds, narrower clearances, and optimization. It is impractical
to rely on analysis methods that require physical experimentation to obtain empirical coefficients for
testing of uncommon designs or design optimization studies. However, computational resources
do not yet exist to make large 3-D computational fluid dynamics (CFD) studies practical on a
corporate time scale for most applications. There exists a gap in commonly applied analysis
techniques between 1-D approximations based on many assumptions and 3-D CFD relying only on
the Navier-Stokes equations and a turbulence model. This work focuses on introducing alternative
analysis methods for the secondary flow paths between pressure stages in turbomachinery, typically
designed as annular pressure seals.

Sealing between high and low pressure regions has long been a complication in turbomachinery.
Mechanical seals provide the best performance from a leakage perspective, however they wear over
time, distributing debris through the flow passages and requiring frequent maintenance to clean and

replace seals. Instead, non-contacting annular seals are commonly employed in turbomachinery

1
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as secondary flow paths that limit leakage between regions with large pressure differences, while
avoiding much of the wear or rub of rotor and stator associated with a contacting seal. Annular
pressure seals consist of a stationary outer surface (stator) and a rotating inner surface along
the shaft (rotor) of the machine, separated by a radially narrow clearance. Many seal geometry
designs consist of additional geometry such as circumferential or helical grooves or teeth added
to either rotor or stator surfaces. The leakage of working fluid from high pressure to low pressure
regions is restricted by the cross-sectional area of the seal passage, with clearances on the order
of 0.003-0.005 times the rotor radius,’ and further reduced by additional flow direction changes and
recirculation caused by macro roughness geometries which convert kinetic energy to thermal energy.
As a smooth annular seal’s geometry is similar to that of a plain journal bearing, direct (radial) and
cross-coupled (tangential) stiffness and damping forces are generated by the converging/diverging
wedge formed by the fluid being pulled circumferentially into the smaller clearance, caused when
the shaft position becomes eccentric due to vibration.? These forces increase with the reduction of
clearance, which also has the largest effect on reducing leakage. Because of the cross-coupled
stiffness response of annular pressure seals, their design must balance the leakage of working
fluid between pressure zones and their destabilizing effect on the machine’s rotordynamic behavior.
To design a seal that effectively reduces leakage, improving machine efficiency, it is necessary to
accurately model the flow to predict the rotordynamic response forces generated.

Initially, annular seals were “straight seals” or “smooth seals” with smooth-walled annularly
cylindrical flow passages. This was advantageous because of the simplicity of analysis of the
flow behavior. Such a seal can be modeled analytically as a superposition of pressure driven flow
through a non-rotating annular passage and axisymmetric Couette flow between an inner rotating
wall and a stationary outer wall prior to the onset of turbulence. Over time seal designs became
increasingly complex geometrically and higher rotor speeds and pressure differentials frequently
drive the flow into the turbulent regime. Various design applications for annular pressure seals
typically have a wide range of Reynolds numbers from 100° to 100,000,* or higher, depending on
the working fluid and application of the machine. The onset of turbulence in an annular pressure
seal with a turbulence model based on a Reynolds number, obtained using twice the clearance and
the rotor surface speed, can begin as early as a Reynolds number around 1,800° which can be

compared to the critical Reynolds number for pipe flow of 2,300.6 Note this turbulence may not



1.2 | Literature Review 3

become fully developed even up to Reynolds numbers around 12,000.” This variability in turbulent
behavior causes seal flows to be difficult to predict with high numerical accuracy. Seal analysis
methods thus require either physical experimentation or complex numerical models to accurately
determine leakage, power loss, and forces on the rotor. Traditionally, annular seals have been
modeled using Darcy-Weisbach type friction factors®~'? since the early 20th century’'~'¢ and later a
1-D approximation method known as "bulk-flow”.">"7='9 This method is fast and order of magnitude
accurate, but relies on empirical factors that require physical experimentation or more complex
numerical analysis to predict. As a 1-D method bulk-flow is also inherently unable to handle various
geometries flexibly. Seal researchers are increasingly looking to CFD analysis tools to calculate the
fluid flow within the seal domain with increased accuracy compared to more traditional bulk-flow

methods.

1.2 Literature Review

1.2.1 Bulk-Flow and Empirical Factors

bulk-flow analysis is so named because the primary assumption is that the radial pressure variation
is negligible, thus a “bulk” velocity is assumed for the flow as a radial average across the cearance
gap, and further averaged over a particular axial and circumferential control volume. The neglect
of radial velocity gradients necessitates the assumption of an empirical friction factor to estimate
the wall shear stresses in the seal. The radius of the seal is then assumed to be much larger than
the clearance allowing the circumferential curvature to be neglected. The fluid flow is assumed
to turbulent and, when the rotor is non-eccentric, steady state and fully developed. This allows
for the rapid numerical solution of the concentric annular flow through a seal with a non-vibrating
rotor from the non-dimensionalized Navier-Stokes (N-S) momentum equations simplified with the
above assumptions. The rotor’s actual eccentricity is then assumed to be much less than the radial
clearance and a perturbation model is developed by assuming a periodic circular function for radial
clearance as a function of whirl speed.

Bulk-flow methods for analysis of annular seals are available in 1, 2 and 3 control volume (CV)

methods to model straight, hole-pattern, labyrinth, and helical seals.'®2°> Models for two and three
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CVs are similar to the single CV model except for the need to include interaction between the
clearance region and the groove cavities. The only distinction between the two and three CV models
is the addition of a simple CV, typically with the same equations as a single CV model to account for
the regions between grooves. Scharrer writes the continuity equations in terms of mass flow rate
and uses a Pradtl mixing length hypothesis to determine free shear stress and couple two CV’s.'9-26
The Prandtl mixing length is employed as a measure of how far from the boundary between control
volumes the recirculation begins to dominate the flow in a labyrinth groove. Scharrer also takes the
novel approach of modeling the recirculating flow inside the groove cavity, his second CV. The flow
is modeled with a half-infinite turbulent jet, simulating flow entering the cavity with one direction
and diffusing into multiple directions. Childs also models the connections between the first and
second CV’s of a two CV model with mass transfer rates and Prandtl’'s mixing length hyptothesis,
however he uses a more typical black box approach to the third control volume instead of assuming
a special flow field.! Ha’s three CV model writes the continuity equation as in the single CV model,
with the addition of the Prandtl mixing length hypothesis terms and a radial velocity at the boundary
between second and third control volumes.?* Each of the approaches applying Prandtl’s mixing
length employed approximately the same values in an annular labyrinth seal as found by Rhode.?’
Nordmann’s three CV model does not appear to employ the mixing length.?® Otherwise this method
is very similar to both the work of Childs and Ha. All four models employed an additional empirical
coefficient to estimate pressure losses as the flow accelerates out of a groove cavity, in the case of
a two CV model, or from region 2 to 1 in a three CV model. The control volume equations’ repetition
between grooves serves to imply that the flow can be modeled with the same patterns in each
groove section. Han?® created an early analytical model for leakage prediction through labyrinth
seals and discussed the flow character of the groove filled vortices. The rectangular grooves under
consideration were assumed to have an “inviscid core of uniform vorticity” within the groove cavity
enveloped by boundary layer regions between this core and the walls and jet flow region. This
assumes no flow between the jet region and the groove cavity, with the two regions interacting only
with fluid-fluid shear forces. Flow streamlines similar to those described by Han’s theory can be
seen in CFD simulation results presented by Morgan et. al.30-33

All of these bulk-flow models employ friction factor models to replace the shear stress terms in

the momentum equations and use empirical coefficients for entrance and exit losses. Brighton3*
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effectively summarizes the analytical development of empirical friction factors for pipe flow and
applies this to concentric annular cross-sections. Empirical friction factors are given for a wide
range of annulus diameters and fluid Reynolds numbers, along with characterization of pressure
driven flow profiles through annular regions. Elrod®® tested annular seal entrance and exit lengths
and friction factors experimentally to develop empirical relationships. Smooth and honeycomb
seals were tested experimentally to determine the length of the entrance and exit zones and the
differences in empirical friction factors used to describe these regions when compared to the
developed flow of the seal. The key feature of all of these empirical coefficients is that they require
large amounts of experimental data, or CFD simulations, to model and validate for each new seal
geometry and operating conditions investigated. This is prohibitively expensive for large scale

optimization studies.

1.2.2 CFD Applied to Annular Pressure Seals

The primary alternative analysis method to bulk-flow analysis, is the use of CFD for solving the
complete Navier-Stokes equations in conjunction with an appropriate turbulence model. Unlike
the bulk-flow models, computational fluid dynamics simulations make no simplifying assumptions
based on the seal geometry, shear stress at the wall, relationship between wall shear stress and
mean fluid velocity, or characterization of interfaces between control volumes through empirical
friction factors. There are still some simplifying assumptions in the RANS equations and turbulence
models, but not individual seal specific ones. The annular seal flow behavior is obtained while rapid
flow variations at the interface between the groove and land sections are inherently time averaged
into the solution. Although lack of the above simplifying assumptions provides increased accuracy,
CFD simulations can be expensive in terms of modeling time and computational power.

Early CFD solutions for seals began with taking advantage of the near axisymmetry of many seal
geometries. A two-dimensional, axial-radial, gas seal solution was developed by Deitzen®¢ using
a non-specified finite difference technique to solve the 3-D N-S momentum equations, an energy
equation, and the k-¢ turbulence model, over a coarse two-dimensional grid. The circumferential
dimension was removed by assuming a small circular whirl orbit and related perturbation of fluid

flow variables. This method neglected some terms of the resulting equations, but demonstrated the
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capability to model seal rotordynamic coefficients. The method was then extended to rectangularly
grooved gas seals®” where the solution was found to have improved accuracy over bulk methods,
with significant increased computational cost at the time. This method seems to have since been
abandoned due to the high computational costs in the early 1990’s. Later seal work with CFD jumps
straight to the full 3-D N-S solutions, presumably for reasons of convenience with commercial CFD
software and the assumption that a more complex model will be more accurate.

Dietzen and Athavale®®*~*' began the transition to 3-D FEA and finite volume CFD codes
to model seal flows from the late 1980’s through the 1990’s. The current trend in seal CFD
research30-3342-%0 is o take advantage of commercial CFD software, often 3-D FEA codes, that
are designed for a broad range of applications. The required expertise has transitioned towards
creation of appropriate meshes and tweaking of options within these generalized codes rather than
seal specific CFD code development. However, even neglecting the time and effort required to
create a quality mesh of the fluid region and the availability of modern parallel computing clusters, a
full seal model can take hours or days to solve a single case. Considering that it is necessary to run
each seal geometry at multiple whirl speeds to determine the rotordynamic coefficients, performing
large scale experimentation can be impractical for industrial applications though somewhat common
in academia.

A hybrid CFD/bulk-flow method was first developed for annular labyrinth seals in 1996 by
Athavale et. al.*" This method was later independently developed for hole pattern and honeycomb
seals by Migliorini et. al. in 2012.2° Both methods can be applied to smooth look-through seals.
These hybrid methods combine the positive features of both bulk-flow and CFD techniques. The
method begins with a single concentric, with no whirl, small sector CFD simulation of a seal
geometry. The flow variables are exported from this CFD simulation result to obtain a single
control volume base state solution that can be applied to a bulk-flow method. This provides a more
accurate and more detailed solution of the unperturbed flow within the seal than can be obtained
by a normal single control volume method. The CFD solution can also be obtained quickly and at
low computational cost due to the concentric and small sector nature of the model. This base state
solution is then applied in place of the normal bulk-flow zeroth-order calculation and perturbed by
standard bulk-flow methods to obtain stiffness and damping coefficients. The increased accuracy of

the unperturbed flow increases the accuracy of the resulting coefficients obtained from the bulk-flow
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without resorting to a full series of 3-D eccentric seal CFD models. As the friction factors necessary
for the bulk-flow calculations can also be obtained from the simplified CFD model, this becomes
a practical and efficient method for testing potential seal geometries for which no information is
previously known.

Academically, published design optimization studies are exclusively the result of CFD simulations
of varying complexity. Rhode, Ko, and Morrison®' performed early optimization of leakage rate
through step labyrinth annular seals. The leakage rate of the step seal was calculated using
a numerical Navier-Stokes code based on the TEACH algorithm with a variation in the QUICK
differencing scheme and the high Reynolds number k-¢ turbulence model. Seven characteristic
geometric parameters were varied over 16 simulation experiments. The simulation experiment
with minimum leakage rate was selected to be investigated experimentally for verification of the
numerical code. The predicted optimal seal geometry had a 60% less leakage than their baseline
seal geometry, and suggested some significant factors relating step seal geometry to leakage rate.
The results of this work show the benefits of optimizing seal geometry designs for improved leakage
rate.

Schramm, et. al.°? performed simulated annealing optimization of step labyrinth seal geometry.
The step seal geometry shape was parameterized for only two design variables representing
step position and step height. A three-dimensional CFD mesh was automatically generated and
TASCflow3D was used to solve for the seal’s flow properties. Nine hundred simulation experiments
were performed with factor values selected by the optimization algorithm. Both factors converged to
predicted optimum values after approximately 600 simulations, resulting in an improved leakage
rate of greater than 10

Asok, et. al. 2007°° employed an artificial neural network simulation model to optimize
labyrinth seal groove geometries for minimal leakage rate. Initially five different aspect ratio
square cavity labyrinth seal groove geometries were simulated in Fluent with the second-order
upwind SIMPLEC algorithm. The CFD results for the square cavity labyrinth seal geometries were
confirmed by physical experiment. Artificial neural network simulation and analytical modeling were
then combined to predict the performance of new seal geometries based on the CFD results of
the previous simulations. Additionally, based on the flow fields found in the square cavity grooves

by CFD simulation, two new seal geometries were defined with curved cavity walls at the rear of
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the grooves. This additional curve creates a counter rotating double vortex in the groove cavity
resulting in a pressure differential increase of more than 75%. The results of this study suggest that
investigation of novel groove geometries can yield significant performance increases.

Untaroiu, et. al.>* also performed CFD simulation and verified with physical experiments. The
four factor parameterized seal geometry was meshed and simulated using ANSYS CFX. The design
factors include the seal tooth front and back angles, the tooth tip width, and the spacing between
teeth. The CFD simulation results for five seal geometries were verified by physical experiment.
Subsequently, design factor values selected based on the output of a genetic optimization algorithm.
The genetic algorithm was used to generate design points for 38 simulated experiments and a
sensitivity study was performed with this sample. This study demonstrates the effective use of a
genetic optimization algorithm for prediction of local optimum design points.

Bellaouar, et. al.>® performed a similar optimization of annular labyrinth seal tooth geometry
using the multivariate Gauss-Seidel iteration method. The five parameterization factors under
investigation include the seal tooth front and rear angles, and the rounding radii on each side of the
base and tip of the seal tooth. Cosmos FloWorks 2009 for SolidWorks 2009 was the CFD code
employed to model the performance of the test seal geometries. This study demonstrates the use
of the Gauss-Seidel iteration method to optimize seal geometry for reduced leakage rates.

This author and colleagues at the University of Virginia’s Rotating Machinery and Controls
(ROMAC) Laboratory, have also performed multiple CFD studies to optimize annular seal geom-
etry.30-82:42,46-48,50 A|| of the seal geometry optimization studies mentioned suggest that future
improvements in seal designs will require flexible or computationally efficient modeling tools for
mass optimization studies. The success of such optimization studies with commercial CFD codes in
academia suggests that similar performance improvements could be found for industrial applications

if the computational efficiency of seal CFD analysis is improved.

1.2.3 Modeling Turbulence in Annular Pressure Seals

Annular pressure seal designs and applications exist for Reynodls numbers as low as 100° and
up into the 100,000* range even for liquid seals. Flow through these secondary passages can

be laminar, turbulent, or somewhere in between. For a smooth seal geometry and a Reynolds
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number using a characteristic length equal to twice the clearance, turbulent flow effects can be
observed as early as Reynolds numbers of 1,800.° However, the turbulence in seal flow can
delay becoming fully developed to Reynolds numbers as high as 12,000%°¢ depending on seal
geometry. Comparatively, the acknowledged onset of turbulence in smooth pipe flow occurs at a
Reynolds number of 2,300.5°” Design engineers will even add geometric features in the seal path
or upstream of the seal to encourage additional turbulence in the flow, reducing leakage through
increased shear from the wall boundary layers. As Reynolds number increases, laminar model
for seal flow becomes increasingly inaccurate at predicting seal performance characteristics such
as leakage, power-loss to torque shear, and rotordynamic response coefficients. Selection of an
appropriate turbulence model for the seal design, or selection of a turbulence model that is flexible
enough to cover a broad design space, is critical to a numerical seal flow analysis.

Primarily, laminar flow is only observed in annular seals where oil is the working fluid.®> The
greater viscosity of oils lowers the Reynolds number significantly, but oil seals are also frequently
lower speed than water or gas seals. Chien®® applied an early alternative turbulence model using
a Taylor series expansion to the more typical kinetic energy and turbulent dissipation energy
equations. Chochua®® comapred Chien’s model to the k-e model and concluded that the latter
model matched experimental results more closely for most cases tested. The two equation k-¢ is
frequently applied to both liquid®® and gas seals whether straight through, honeycomb, or labyrinth
geometries are used. In fact, gas seals are almost exclusively modeled using the k-e turbulence
model,20-36:37,42,59.61-65 que to lower mesh density requirements from high flow velocities causing
higher y+ values along the rotor and stator surfaces. The k-e model has been applied at Reynolds
numbers of 1,900,%° 12,000, and 3,000 to 100,000.* The largest weakness of the k-e model with
resect to seals is inaccuracy when simulating significant stream line curvature or secondary paths.5’
Patel and Chen et. al. investigated low Reynolds number turbulence models®® and introduced a
two-layer model combining the standard k-e model with several one equation models®®’° before
settling on Wolfshtein’s.”" This two layer model was later compared, by Vilasmil et. al. ,’> with
the Re-Normalisation Group (RNG) modified k-e model, the original k-e model, and the Reynolds
Stress equation for flows with Reynodls numbers from 2,000 to 60,000. Vilasmil observed that
the experimental friction factor data was matched most closely by the Reynolds Stress equation

results. Despite this result, the Reynolds Stress equation model is not typically applied to seals in
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the literature.

The only model that is competative with the k-e for seals in more recent years is the Shear Stress
Transport (SST) model.”>~’® SST is actually a weighted blending of the k-e and the k-w model to
increase the range of allowable y+ values,’® but most authors apply it within the y+ range of the
k-w model (y+ < 5). This has only become more common recently as computational resources

have increased due to the high density mesh requirements of getting a y+ value that low.

1.2.4 CFD Methods Not Specific To Annular Seals

One of the drawbacks of modern commercial CFD software is the high requirements for user
expertise to define the mesh grid, the boundary conditions, the solver domain and time step
settings, and many more parameters. These complex paramteters allow for a software package,
such as ANSYS, to accurately handle a wide variety of flow configurations, but significantly increase
the time, engineer, and computational requirements. In contrast, specialized codes such as bulk-
flow analysis methods are easy to learn, run quickly, and lack much of the flexibility and accuracy of
commercial CFD codes. There exists a niche for seal analysis tools that bridge the gap between
these methods. However, this code must employ modern techniques to maximize the comparative
advantages since it will not be a full 3-D CFD code.

Annular pressure seal flow is nearly axisymmetric, as previously discussed, with only small
variations due to rotor eccentricy around the concentric position. Barring the use of bi-polar
cylindrical coordinates like used in drilling calcualtions’”-"® which doesn’t reduced the size of the
model, just the complexity; it will be most efficient to employ standard cylindrical coordinates
like the bulk-flow codes. As discussed, large component of an engineer’s time is used to create,
troubleshoot, and test independence of the mesh grid when using commercial CFD software. The
authors thus focused on numerical methods that reduce the dependence on mesh quality to stability
and accuracy of solution. The first investigated numerical technique was the Boundary Element
Method,”%-82 for its geometric flexibility and grid insensitive qualities. However this method relies
on full matrices which quickly grow beyond current RAM and storage capacities when mesh density

is increased to offset non-linear solution stiffness.
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The opposite extreme of complexity was then considered in the form of the Finite Diference
Method (FDM).8384 FDM is commonly applied to numerical solutions of differential equations and
appreciated for its simplicity both in implementation and concept. FDM is also a popular method to
hybridize with other techniques such as BEM or Finite Element Analsyis (FEA).2>-87 Unfortunately,
FDM is not generally known for mesh insensitivity. To address this potential failing, the Mimetic
Finite Difference Method (MFDM) was applied.®®=° Oud®':°? demonstrates that discretization
schemes generated by the mimetic method can inherently conserve mass, momentum and kinetic
energy; while also preserving the symmetry properties of the differential operators in the cylindrical
coordinate system. The mimetic method is further elaborated in the related methods section of

Chapter 2.

1.3 Dissertation Plan

Modern annular pressure seal design employs a combination of physical experiments and numerical
simulations to accurately predict the effects of the seal on the total system. The common methods
discussed in the literature for numerical simulation are extremes of simplicity, in the form of bulk-
flow analysis, or complexity, in the form of full 3-D CFD analysis often using commercial CFD
software. Bulk-flow analysis is a rapid and low computational cost method for testing design
variations, but it requires knowledge of empirical coefficients to approximate wall shear stresses,
entrance contraction pressure losses, and exit expansion effects. The bulk-flow method is also
inherently constrained to simple rectangular geometry due to its 1-D nature. This greatly reduces
the usefulness of the bulk-flow method in optimizing a seal design. Despite this, bulk-flow is still
more popular in industrial settings than CFD because the CFD simulations required for these
studies consume vastly more computational resources, engineer expertise, and time. There is a
niche for numerical modeling methods that are more efficient than general CFD, but do not require
extensive use of empirical coefficients. Previously a 2-D axial-radial analysis method was developed
and tested for smooth and rectangularly grooved seals, but it never became mainstream due to the
computational resources and numerical methods available at the time. This work demonstrates a

similar 2-D axial-radial seal modeling method applied with modern numerical methods and coding
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techniques to create a code to model annular pressure seals in a more computationally balanced
way.

This work accomplishes improved computational efficiency by creating and investigating meth-
ods to reduce the mesh sizes, dimensionality, and stability of the computational analysis. The
created methods offer the potential for greatly increased flow characterization within the seal when
compared to bulk-flow, require no empirical coefficients within the fluid domain, and require less

computational resources when compared to CFD. The objectives of this dissertation are:

1. Create a mimetic discrete vector and tensor calculus (DVTC) for 3-D cylindrical differ-

ential vector operators:

» The model will apply a single assumption that the rotor surface moves in a small circular

whirl orbit.

» The discrete grid is 2-D in the axial and radial coordinate directions.

An axial-radial grid is created by geometric perturbation of the radial coordinate using the
rotor eccentricity as the perturbation variable. The small circular whirl assumption and the
geometric perturbation are combined to remove the circumferential dependence of the original
cylindrical coordinate differential vector operators. The mimetic DVTC operators preserve
the identities and properties of the continous vector differential operators that make up the
Navier-Stokes equation ensuring that the individual errors of the discrete approximations do

not combine to violate the conservation of mass or momentum.

2. Apply the mimetic DVTC to the Reynolds Averaged Navier-Stokes (RANS) equations to

create an annular flow code:

» The computational and time cost of solution should be between bulk-flow and generalized

CFD techniques, and closer to the cost of bulk-flow analysis.

* The engineer expertise requirements should be closer to those of bulk-flow. CFD

modeling requirements of mesh creation and boundary assignment should be automated.
» The numerical techniques employed must be robust/stable.

» The method must allow for future work expanding the code to generalized seal geome-

tries.
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» The annular flow code will accept Dirichlet or Neumann boundary conditions for each

face to ease transition to a multi-domain method in the future.

» The DVTC operators are coded using only matrix operations through the shift matrix

method to optimize the creation of solution matrices within Matlab.

The RANS conservation equations are solved for a zeroth-order non-linear concentric flow
and a first-order linearized fluctuation of flow variables due to the whirling motion of the
inner annular surface. The mimetic finite difference method provides a stable conservative
discretization of the Navier-Stokes and turbulence modeling equations through pairs of primary
and support discrete vector and tensor calculus (DVTC) operators. The annular flow modeling
code is written in Matlab to take advantage of the well optimized matrix algebra operations
and comprehensive debugging features. The combination of a mimetic spatial discretization
and semi-implicit trapeziodal method allows for an extremely stable numerical model in space

and time.

3. Select and apply a turbulence model to approximate the Reynolds Stresses in the

RANS equations:

» The turbulence model must model the transport of kinetic energy.

* Like the RANS equations, the turbulence model is constructed with the mimetic DVTC

operators through the shift matrix method.

The Prandtl one-equation turbulence model is selected for simplicity of application and existing
simulation data of direct numerical simulation (DNS) models for small clearance geometry.
The additional advantage of the Prandtl one-equation model is that it is a complete turbulent
kinetic energy (TKE) transport model and once it is constructed with the mimetic DVTC much
of the discrete math requried for a more complex two-equation turbulence model is already

accomplished.

4. Validate the annular flow code against CFD simulation data and experimental results

from the literature for annular pressure seals:
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+ Validate the discrete RANS code without reynodls stress term by comparison to analytical

solutions at low to medium Reynolds numbers.

« Compare the annular flow code with turbulence model to CFD simulation data for medium
to high Reynolds numbers to verify the reasonableness of the TKE and eddy viscosity

solutions.

+ Demonstrate quantitative and qualitative agreement in code results when compared to

physical experiment data for annular pressure seals in the literature.



Chapter 2

Background on Methods

2.1 Rotordynamics of Annular Pressure Seals

The rotordynamic forces generated by annular pressure seals, like journal bearings, are quantified
using a mass-spring-damper analogy describing shaft vibration. In this analogy, the mass represents
the local section of the shaft and any components attached to it. The shaft vibrates, bends on
its supports, and rotates pushing and dragging against the working fluid in the seal. As with any
mass-spring-damper system, turbomachines are subject to phenomena such as natural frequencies
and corresponding bending modes of the shaft. The restorative force generated by the working
fluid pushing radially against compression is expressed as a spring constant K. However, in annular
seals, relatively large cross-coupled spring constants are generated as the working fluid is dragged
into the smallest clearance region between the rotor and stator. The working fluid is pulled by
the no-slip boundary on the rotor into a converging/diverging wedge, Figure 2.1, that creates
a tangential pressure imbalance, resulting in a tangential push caused by a radial motion. The
tangential force is represented rotordynamically as the off main diagonal terms in the stiffness matrix
(K) and known as cross-coupled stiffness because a radial displacement causes a circumferential
force. The seal component’s damping depends largely on the properties of the working fluid, but
can be positively influenced by larger volume and greater radial depth of the labyrinth groove
features that give additional volume in which the viscous interaction of fluid particles can convert
mechanical energy, and when the fluid is compressible, into which the clearance region’s fluid may

be displaced. The damping also increases the local restorative forces as it always acts against

15
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motion proportionally to the speed of vibration. The effective mass term is more controversial in
its application to seal rotordynamics with most authors neglecting its use. The mass term of a
seal is not often calculated by bulk-flow methods but it is essential in calculation of rotordynamic
coefficients from CFD simulations. Sufficiently fast and accurate analysis tools for annular seals

would allow designers to customize seal geometries to improve total system stability.

——

ﬂ.\
w%\\iﬁ\\

Figure 2.1: Rotordynamic seal response force profile, including converging (red) and diverging
(green) pressure wedges.
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All modern seal flow analysis methods numerically estimate the forces acting on the rotor by
integrating the circumferential/axial pressure distribution over the rotor surface. These fluid forces
acting on the rotor are calculated for a given seal geometry, fluid boundary conditions, rotor speed,
and an assumed rotor whirling motion, Equation 2.1. The classical dynamics equations of motion
for the vibrational system, Equation 2.2, are then manipulated to develop a function linking response
forces to rotordynamic coefficients and whirl frequency, Equation 2.5 when the smallest clearance

is at & radians.
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These rotordynamic coefficients are functions of eccentric whirl speed. As each equation is
second order (quadratic) a minimum of four whirl speeds and force responses are required, three
to allow calculation of each coefficient and at least one more to allow for calculation of confidence
interval and other model fit statistics. Although the effective mass and cross-coupled damping
terms may or may not be used for the rotordynamic stability calculations, it is necessary to include

them in the regression modeling to accurately estimate the stiffness and damping coefficients.

2.2 Bulk-flow Analysis of Annular Pressure Seals

Bulk-Flow analysis grew as a natural extension of early 20th century work on using empirical Darcy-
Weisbach friction factors to predict head loss in pipes and annular regions.8='9 By assuming that the
flow within an annular pressure seal is a "thin film”, flow property radial variation is neglected allowing
a single "Bulk” to represent the entire radial clearance at each axial and circumferential location.
The control volume of flow is drawn to include the entire radial clearance, Figure 2.2. Here the axial
direction is represented by x and the radial clearance is c. The shear stresses are represented
by R for rotor surface and S for stator surface respectively. The familiar momentum conservation
equations are radially averaged in Equations 2.6 to 2.8. The control volume encompassing the fluid

flow the labyrinth groove cavities is more complex. They are also constrained to specific groove
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geometries (rectangles, semi-circles, ect.) with specific aspect ratios. This limit is due to typical
bulk models failing to take into account the vortex size and positioning as well as the interactions

between the groove volume and the below groove jet flow.

pRdfdx pRdBdx
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N dp do N dc do
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Figure 2.2: Free-body Diagram of Seal Control Volume, } F, on the left and Y Fy on the right
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Wall shear stress acts in exact opposition to the direction of relative motion. With only a single
radial value, it is impossible to calculate wall shear contributions to the momentum equations from
the standard Cauchy stress tensor terms necessitating the substitution of approximations using the
empirical friction factors, Equation 2.9. Note that here a Fanning friction factor is used instead of
Darcy-Weisbach, the difference is a factor of 4. The relative velocities relating the bulk values to the
rotor and stator walls are given by Equation 2.10. Using these magnitudes for relative velocity, the
individual components of shear stress can be related to the resultant shear stress for each wall,

Equation 2.11.

v =3 fplUP (2.9)
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2.2.1 Friction Factors Models for Seals

There have been many models developed after Blasius’ early equation to select pipe flow friction
factors,?® most of which are approximations to the Colebrook-White Equation.®* However of the
pipe flow type friction factor models, only the Blasius type friction factor®® and friction factors based
on a few select variations of the Colebrook equation have been applied to seals. The general
Colebrook equation for friction factor estimation is Equation 2.12, however it is seldom used directly

as it requires an iterative solution.

L = —-2log (2.12)

Vf

A large body of early experimental work on turbulent flow between plates and through channels,

+
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pipes and annuli established that axial flow can be modeled by a power function of Reynolds
number®.97 This lead to Prandil’s boundary layer equations®® and Blasius’ development of pipe
flow friction factor empirical relationships®® based on the assumption that near wall flow behavior is
a power law function of Reynolds number implying that the shear stress can be similarly modeled.

The analytical relationship for a turbulent Blasius friction factor is given by Equation 2.13."8

f=0.079Re" T (2.13)

The earliest applications of a power law based friction factor to rotating annular flow was
performed by Suzuki'! in 1929. A single expression was developed for a friction coefficient, A,
based on a %th power law and employing an additional empirical factor 3, seen in Equation 2.14.

The radius used is the inner annulus radius and the U velocities are axial.

3 3
0.3216 1 R:\?|® R:\%|®
A= % 1+0.629(“’ ) + 1+o.629(ﬁ‘” ) (2.14)
i 2 U, U
Re; 2 z
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Another early application of friction factors to the analysis of annular flow was Yamada in
1962'213.14 Yamada experimentally determined an axial flow resistance coefficient (1) for smooth
and grooved annular vertical regions with inner rotating cylinders and a working fluid of water. A is
defined in Equation 2.15, and the relationship for smooth turbulent annular regions is in Equations
2.16. These empirical relationships for A are also based on a % power law velocity distribution in
the clearance. Equation 2.17 gives Yamada’s torque coefficient definition and Equation 2.18 shows
the relationship between torque and Reynolds number in the presence of axial flow and a rotating
inner cylinder. In these equations ry is the inner radius, ro the outer radius, and u is the average

circumferential velocity and the experiments were performed up to a rotational Reynolds number of

30,000.

2
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Childs and Dressman®® performed experimental testing of turbulent seals with clearance to
radius ratios ranging from 0.0106 to 0.0129, and axial and rotational Reynolds numbers up to 40,000.
They found leakage and pressure differentials that were “reasonably well predicted” by Yamada’s
friction factor model. Yamada’s friction factor model was later used in bulk-flow applications by
Fenwick et. al.’% Polkowski,'°! in 1984, models turbulent flow between coaxial rotating cylinders
without a pressure gradient and develops a friction factor expression that was demonstrated is
identical to Yamda’s,'# it was also demonstrated that a friction factor model developed by Gazley'%?
is equivalent.

Black and Jenssen applied thin-film theory and perturbation to create the first bulk-flow model
of annular seal flow'?® in 1969. They employed a single friction factor throughout the equations.
Black and Jenssen’s friction factor is defined like Yamada’s with Equation 2.15 and also is based on
a 1 power law velocity distribution, however, the coefficients relating their turbulent friction factor to

Reynolds number differ as seen in Equation 2.19. Black and Jenssen’s experiments covered axial
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Reynolds numbers ranging from 6,000-20,000 and rotational speeds ranging 2,000 to 8,000 RPM.

They were not specific about what working fluid was used in the experiment.

3
8

1+(ZRew)1 (2.19)
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In the early 1970’s Hirs developed a general bulk-flow method for thin film lubricants'”.'%* Hirs
employed only one empirical friction factor defined similarly to Equation 2.17 as a ratio of shear
stress to kinetic energy. Hirs compared his theory to experimental results with Reynolds numbers
ranging from 3,000 to 30,000. The following relationship was observed between Reynolds number
and shear stresses, where 1, is the shear stress due to pressure driven flow, 7y is the shear stress

due to a sliding wall, and 7;, is the combination shear stress observed at the sliding surface.

U 3pU?

~0.25
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Hirs also derived an equivalent expression for his friction factor model for easier comparison
to Yamada’s results, as shown in Equation 2.21. In this equation Re without a subscript is the
axial Reynolds number, ny = 0.066 and m = —0.25. These values were found to be very close to

Yamada’s coefficients.

1+70
A= dngRe™ | 1 Rew)* - (2.21)
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Childs applied Hirs’ lubrication bulk-flow equations to annular seal dynamics in 1983 to model
interstage seals in a multi-stage centrifugal pump'%® . It is also noted that Hirs’ and Black’s'%
friction factors give very similar results. Hirs’ friction factor equation modified for usage with bulk-flow

models is given below.

m
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The second friction factor model to be applied to annular pressure seals was an approximation

of the Colebrook-White equation®* proposed and plotted by Moody'?” for pipe flow applications,
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seen in Equation 2.24 . The moody friction factor model is intended for use with Reynolds numbers
between 4,000 and 3,000,000 and relative roughness from 0 to 0.05 for pipe flow and is £15%
accurate within this range. Nelson and Nguyen'?® observed in 1987 that Hirs’ friction factor model,
and by extension the other Blasius based models, tended to predict lower direct stiffness when used
in Bulk-flow models than was experimentally measured. Specifically, the direct stiffness predictions
were increasingly inaccurate as the ratio of relative roughness to seal clearance increased. In an
attempt to correct this under prediction, Nelson and Nguyen chose to compare Hirs’ friction factor
equation to Moody’s model. Their study found that for smooth seals the two friction factor models
gave nearly identical results. As they varied the relative roughness ratio from 0 to 0.05, obtaining
Moody friction factors between 0.0056 and 0.018, there were large differences in predicted stiffness
and damping terms when compared to Hirs’ friction factors. Particularly, the Moody friction factor
model resulted in up to 44% more direct stiffness predicted and a larger predicted pressure gradient.
The authors make no claim that the Moody friction factor model is best for annular seals, but they
advocate increased complexity of friction factor model to allow bulk-flow models to account for

non-smooth surface roughness.

S =0.001375

106)3 (2.24)
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The Moody friction factor type model has been applied to bulk-flow methods particularly in the
case of modeling cryogenic liquids in work published in 1993 by Yang and San Andreas'%?.110
However going further, in 1999, Childs''" comments that based on flat plate experiments done
in the early 1990’s the friction factor should increase if the relative roughness is decreased while
Reynolds number is maintained at a constant value for certain geometries with tight clearance gaps
between surfaces with macro scale roughness features. It is then concluded that, in general, friction
factor models used for turbulent pipe flow are not adequate for bulk-flow applications to modeling
hole-pattern annular seals.

In addition to the friction factor models originally developed for pipe flow, there are several other
relationships developed with other theories in mind. Simon and Frene, in 1989''2 and in 1992,*
applied a friction factor type model developed by Elrod''® for turbulent fluid film bearing applications

to model annular pressure seals with bulk-flow. This model chooses to approximate the local shear
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stresses instead of specifically the wall shear stress and is developed by combining theories of
Prandtl’s mixing length with wall functions. The relationship for shear stresses is given below in
Equations 2.25 to 2.28, where the £’s represent frictional surface stresses. The equation is in
Cartesian coordinates with z along the axial length of the seal, U and W are average velocities in

the x and z directions respectively and | and J are given by Equations 2.29 and 2.30.
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The is a general consensus that friction factors are sufficient to reasonably model the shear
stresses appearing in annular seals. However, there is no guidelines on which friciton factor model
is more appropriate or reliable way to select a friction factor without some physical or simulation
experiments. This works well for familiar geometries and operating conditions and for incremental

improvements, but breaks down as potential designs diverge from the known cases.

2.2.2 Perturbation of Flow Variables

This reduces the 3-D Navier-Stokes momentum and mass conservation equations to 2-D by
removing the radial dimension of the annulus. The circumferential dimension is then removed
by assuming that the film thickness can be modeled as a sine-cosine function of time, fixing
the whirling motion of the rotor’s vibration to a circular or eliptical path. As the change in film
thickness is equal to the rotor’s eccentricity, this distance can usually be assumed to be small,
much smaller than the clearance. Since this whirling motion is driving the fluid flow circumferentially,

it is assumed that the flow variables will also exhibit some sine-cosine function dependence in
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the circumferential direction. The method of multiple scales is then appllied, based on the small
amplitude of the whirling motion relative to the clearance, to assume that the flow variables are
functions of the concentric steady-state solution of the flow and a perturbation solution in the
form of sine-cosine. The perturbation variables of clearance height, axial velocity, circumferential
velocity and pressure are then introduced to the non-dimensional equations. This produces in two
zeroth-order momentum equations allowing for solution of the velocity components and pressure
using the inlet and outlet pressures of the seal as boundaries along with the no-slip walls on the
rotor and stator. These results from the zeroth-order equations are then used as coefficients for the
first-order perturbation equations. The eccentricity of a shaft that is vibrating while it rotates will
result in a harmonic solution to the perturbation of the clearance height.'”-19193 As expected from
classical mechanics, the eccentricity of the spinning rotor will precess around its axis and account
for the remaining time dependence in the non-dimensional equations. Similar harmonic solutions
can be applied with separation-of-variables techniques to the other first order perturbation variables.
These variables are also solved by numerical iteration with homogeneous boundary conditions.
Rotordynamic forces are calculated by integrating the first order perturbation pressures along the
axial length and circumferentially around the seal. This process is then repeated for at least two
whirl speeds to provide estimates of the rotordynamic stiffness and damping coefficients associated

with the annular seal.’™*

2.2.3 Two and Three Control Volumes

Two and three CV models are similar to the single CV model except for the need to include
interaction between the clearance region and the groove cavities, as seen in Figure 2.3 for two
and three CV models respectively. It can be seen that the only distinction between the two and
three CV models is the addition of a simple CV with the same equations as a single CV model
to account for the regions between grooves. Because of the similarities among the equations,
the focus of this section will be on the methods of joining the clearance region of the seal to the
grooves and what models are used for the groove cavities. Scharrer writes the continuity equations
in terms of mass flow rate and uses a Pradtl mixing length hypothesis to determine the free shear

stress and couple the two CV’s.'® The Pradtl mixing length hypothesis is a similar concept to
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mean free path. It represents the length over which a fluid element is likely to maintain a separate
momentum before it mixes with the fluid elements around it.°” Thus, it is a measure of how far from
the boundary between control volumes the recirculation begins to dominate the flow in a labyrinth
groove. Scharrer also takes the most novel approach to modeling the recirculating flow inside the
groove cavity, the second CV. The flow in the groove is modeled with a half-infinite turbulent jet,
simulating flow entering the cavity with one direction and diffusing into multiple directions. Childs
also models the connections between the first and second CV’s of a two CV model with mass
transfer rates and Prandtl’s mixing length hyptothesis, however a more typical black box approach
to the third control volume was used instead of assuming a special flow field." Ha’s three CV model
but writes the continuity equation like above in the single CV model with the addition of the Prandtl
mixing length hypothesis terms and a radial velocity at the boundary between second and third
control volumes.?* Each of the references that used Prandtl’s mixing length used approximately the
same values for it in an annular labyrinth seal as found by Rhode.?” Nordmann’s three CV model
was the exception to the rule and does not appear to employ the mixing length.?® Otherwise it is
very similar to both the work of Childs and Ha. All four models employed an additional empirical
coefficient to estimate pressure losses as the flow accelerates out of a groove cavity, in the case of

a two CV model, or from region 2 to 1 in a three CV model.

Rotor

Figure 2.3: Left: two control-volume, Right: three control-volume
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2.2.4 Hybrid CFD/bulk-flow method for first order results

The bulk-flow method employs empirical models for modelling the wall shear stresses. A hybrid
method that replaces the zeroth order solution, and thus the dependence on shear stress approxi-
mation, with CFD solutions over a 3-D grid has been previously demonstrated in the literature.?°
This work demonstrates the application of the 2-D grid turbulent flow solution to the concentric seal
geometry as a replacement for the zeroth order solution of traditional bulk-flow methods. The first
order bulk-flow equations are employed with non-dimensional variables and characteristic quantities
in, Equations 2.38 to 2.40 below, with radially averaged zeroth order solution data and numerically
obtained local shear stress values from the near wall nodes. The local shear stress values are
obtained numerically using laminar finite difference or turbulent wall functions from Section 4.2.1

that describes their use in the Prandtl one-equation turbulence model.
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The continuity equation has dimensions of velocity and was non-dimensionalized by divid-
ing through by U.. The momentum equations above have dimensions of pressure, so to non-
dimensionalize the equations the characteristic pressure took the form P. = pU? and the equations
were divided by the newly defined P.. Additionally, at this step the clearance was substituted from
Equation 2.34 and the derivatives were expanded. As the hybrid method only requires the first

order terms, the zeroth order terms were also discarded at this step.
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Note that the first order shear stress terms can be approximated from the zeroth order numerical

results by the following relationship.
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On a staggered axial grid, where circumferential velocity and pressure are stored in the cell
centers and axial velocity is stored on the cell faces, this becomes:
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On a staggered axial grid, where circumferential velocity and pressure are stored in the cell

centers and axial velocity is stored on the cell faces, this becomes:
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2.3 The General Mimetic Finite Difference Method

The finite difference method (FDM)83-84 is a general category of methods for solving partial differen-
tial equations (PDE’s) in which continuous derivatives are replaced with discrete approximations,
typically based on manipulations of Taylor series polynomials,? Equation 2.57. The accuracy of
these approximations depends on the remainder terms in the manipulated Taylor series combina-
tions once the desired derivative approximation is isolated. The scale of the error involved depends
on the number of discrete nodes employed in the calculation, the degree of the derivative, and
the position at which the desired derivative is located relative to the discrete nodes. For example,
the right-sided finite difference scheme of Equation 2.58 is considered first order accurate since
it's remainder term is proportional to Ax and the central difference scheme of Equation 2.59 is
considered 2nd order accurate since it's remainder is proportional to (Ax)2. However, the individual
errors at each node do not necessarily predict the overall accuracy and stability of the method as a

whole series of equations converted from the PDE.
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The mimetic finite difference method (MFDM) is designed to account for the interactions between
the remainder error terms by creating finite difference schemes that mimic the properties of the
continuous vector and tensor calculus (CVTC) operators that make up the original PDE with
discrete vector and tensor calculus (DVTC) operator equivalents. These DVTC operators can also
be designed according to the physical properties that the original continuum PDE’s are intended to
model.88-°

Like any numerical method for solving PDE’s the initial step is to define the discretization of
the domain with suitable degrees of freedom and discrete vector spaces to store each scalar,
vector, and tenso valued variable. The degrees of freedom relates to the number of variables in the
equation to be stored at each discrete location, the number of discrete nodes, faces, and edges

at which these are located, and the geometry of the domain to be modeled. The grid sizing is
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dependent on computational resource constraints and the expected scale of gradients in the PDE

to be modeled. Higher gradient values typically need a more dense mesh to accurately model.

2.3.1 Natural Discretizations of Continuous Operators

The discrete schemes employed in the MFDM corresponds to the first-order differential operators,
grad, curl, and div, that exist in the continuous PDE. A primary operator is selected to be derived
from coordinate invariant CVTC definitions. These definitions for differential operators grad, curl,
and div are given in Equations 2.60 to 2.62. The discretizations of these operators give intuitive
transformations between vector spaces defined in a control volume.88-°%115 For a central difference
discrete scheme, the vector div operator naturally maps from vector values normal to the control
volume’s faces, FC space, to a scalar at the center, CC or cell centered space, of the control volume.
Similarly, the vector grad operator maps from scalar CN, or corner node, space to the vector valued
edge centered space, EC. The curl operator is different in that it needs two discrete forms, where
the second one maps in reverse of the first. The primary discrete vector curl operator then would
map from the center of the control volume’s edges, EC space, to to the vector valued FC space.
These constructions of the primary operators enforce basic CVTC properties such as div curl
o = 0 and curl grad ii = 0. The proof of these identities for the discrete operators is provided by

Hyman’s 1997 paper.''®

X2 ab't’ X2
/ —dL =/ grad (i) - dL = ii (x2) — u (x1) (2.60)
X1 or X1
/(curlﬁ)-ﬁdS:jI{ u-tdL (2.61)
S aS
/ diviidV = j{ i - s (2.62)
1% S

2.3.2 The Adjoint Support Operators

Notice that the vector space mappings of these "naturally” obtained primary operators do not
allow the construction of common CVTC combinations such as div grad, grad div, or curl curl.
To perform these operations discretly it is necessary to create paired adjoint operators, grad,
curl, and div, that complete the vector space transformation of the original operators in reverse.

The support operator method (SOM)''¢ is employed to ensure that these adjoint operators are
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consistent with the primary pair and maintain the identites of the DVTC being constructed.’'” Each
primary operator is paired with it's adjoint through a discrete equivalent to Green'’s integration by
parts formulae in Equations 2.63 to 2.65.88-°0.117 The script @7v and £»« « are discrete tensor
operators while the bold text represents vector operators. The discrete form of the volume integrals
can be performed with volume weighted inner products, Equations 2.66 to 2.68, analagous to
Hausdorff pre-Hilbert space inner products.®’-92118.119 These equations are the inner products for

the CC, FC, and EC vector spaces respectively located on a staggered grid that will be elaborated

in Chapter 3.
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The resulting adjoint DVTC operators have reversed mappings to the primary operator so grad
maps CC — FC, curl maps FC — EC, and div maps EC — CN. These adjoint operators maintain

the same identites as the primary operators, div curld = 0 and curl gradii = 0.""” The primary and
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SOM DVTC operators can then be combined to form discrete equivalents of any continuous PDE
while preserving the original system behavior. The construction of the original primary operators
and the inner product definitions result in conservative finite difference schems in general.'20121
For example, the basic equaitons of gas dynamics, Equations 2.69 to 2.71, relate to the integral in
Equation 2.72 with a zero pressure boundary condition. Converted to discrete mimetic operators
and inner products, Equation 2.73, the equation is now equivalent to Equation 2.63.%% Thus the
mimetic operator construction ensures that the discretization scheme is energy conservative, which

provides an unconditionally stable spatial discretization.®’
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2.4 Turbulence Modeling

Accurate turbulence modeling is of particular importance to annular pressure seal modeling due
to the dissipation of kinetic energy that occurs. Annular pressure seals are used to prevent loss
of pressure between regions of the rotor system that cannot be fully sealed. As such, any effects
that reduce the leaking flow’s motion are desirable. Adding turbulence modeling to a seal analysis
method increases the accuracy of flow solutions and provides the opportunity to test the effect of
various patterns of surface roughness more extensively.

Turbulent flow occurs at the high Reynolds numbers that often characterize turbomachinery
flows. High Reynolds numbers indicate the ratio of inertial forces to viscous forces acting on a fluid
element is immensely in favor of inertia. Any inconstancy in the flow can then cause effectively
random abruptly fluctuating local 3-D unsteady variations in fluid velocity and pressure. Turbulent
motion in fluids is often described as a collection of eddies, defined as local regions exhibiting high

vorticity swirling, that are capable of continuous merging into large unsteady structures, splitting into
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multiple smaller structures, and eventually dissipating due to viscous effects. Larger scale eddies
transport significant energy not direclty associated with the aggregate fluid motion, increasing

diffusion and fluid shear stresses.

2.4.1 Reynolds Averaging

While, turbulence is continuous and can calculated completely with the Navier-Stokes equations at
a high enough numerical resolution, it is often more practical to describe turbulent motion as a sta-
tistical average effect over a chosen time scale, the method is termed Reynolds decomposition. 22
To achieve a model of this statistically averaged flow, the fluid properties of velocity, pressure, and
density, are assumed to be composed of a mean component that represents the overall motion
of the fluid, and a time fluctuating component accomidating the local transient eddy motion. By
definition, the average of time fluctuating components over the chosen time scale is zero implying
that the multiple of a mean value and time fluctating value also averages to zero. However, the
multiple of two time fluctuating values does not necessarily average to zero. The Reynolds Averaged
Navier-Stokes (RANS) equations result from substituting the mean and fluctating values for each
flow variable into the original N-S conservation equations and integrating over a characteristic
time scale related to the life expenctancy of a turbulent eddy in the flow. This Kolmogorov time
scale is proportional to the changes of local kinetic energy contained in the turbulent eddies due to
production and dissipaton of turbulence. The Kolmogorov scales for length, time, and velocity, are

given in terms of turbulent energy dissipation, e, and kinematic viscosity, v in Equation 2.74.1%3
J3\ 1
£y = (_) (2.74a)
€
1
2 (2.74b)

U = (ve)t (2.74c)
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2.4.2 Transport of Turbulent Kinetic Energy

Turbulent kinetic energy, k., is defined as a scalar quantity that is produced by fluid-fluid interactions
forming eddies, exchanged and transported by eddy splitting, and transformed to heat by viscous
dissipation. The eddy dissipation to heat occurs at the smallest turbulent scales, though still much
larger than molecular scales, and thus transpires over short time scales. It is then assumed that
this dissipation is independent of the larger, and therefore slower, eddy motion and the mean fluid
transport. The motion within these small eddies is assumed to be a zero-sum game, averaging out
to a net zero change over a Kolmorogorov time scale, but still contributing to the total energy of the
flow. The kinetic energy in the small eddies within a control volume is thus balanced by convective
transport, energy delivered from larger eddies, and the conversion to heat resulting in Kolmogorov’s
universal equilibrium theory'?4.'2> The non-dimensionalized incompressible RANS momentum
equation is given in Equation 2.75, where terms with bars over them are time averaged values
and terms with * are time fluctuating values. By definition, the time average of a time fluctuating
value is zero, but not necessarily so for the multiple of two time fluctuating values, leading to the
RANS equations being nearly identical to the typical N-S equations with an additional Reynolds
Stress Tensor that appears as the multiple of the fluctuating time fluctuating velocities. This new

Reynolds Stress Tensor, usu;, represents 6 new unknowns due to symmetry and sparks the

"Closure Problem” of turbulence modeling.
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The Reynolds Stress Tensor resembles the definition of specific kinetic energy, %@ and was
linked to the concept of turbulent kinetic energy in the eddies by Prandtl.?® Full transport equations
for the Reynolds Stress Tensor terms can be developed by taking the RANS equations prior to
averaging, subtracting the mean flow terms, multiplying by the fluctuating velocity components, and
performing the Reynolds averaging last. This 3-D Reynolds Stress transport equations results in 6
new equations and 22 new unkowns to replace the previous 6 unknowns, however the trace of this

system of equations is equivalent to the scalar turbulent kinetic energy, as suggested by uu;, in the
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definition. The resulting transport equation for turbulent kinetic energy is given in Equation 2.76.
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This equation still has too many unknown variables, but begins to be more managable. The
dissipation term is substituted for ¢ to be defined later by the particular turbulence model, but is
within a small margin of 22‘—2% for most flows without shocks.'?® The Reynolds Stress tensor
has been represented by ;. Further simplificaitons require more assumptions and are discussed

in the following sections.
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2.4.3 The Boussinesq Hypothesis: Linear Eddy Viscosity Model

Of the available methods to model these 6 unknowns in the Reynolds Stress tensor, one of the
more commonly applied and earliest methods in approaching the closure problem is the application
of the Boussinesq Hypothesis.'?” Boussinesq proposed that the Reynolds stress tensor, that
describes turbulent shear and normal stresses, could be approximated by assuming the turbulent
stress tensor can also be approximated with a Newtonian fluid model that has a separate empirical
"eddy” viscosity from fluid’s molecular viscosity. Instead of relating the trace terms in the turbulent
constitutive equation to pressure, they are assumed to reflect the TKE. This approximation of
Reynolds Stresses as a function of effective turbulent viscosity defined in Equation 2.78. The
turbulent viscosity is, technically, defined through the Boussinesq Hypothesis, as no approximations

were made to this point. However, the model is further simplified by assuming that turbulent viscosity
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a scalar and estimated through additional calculation. The hypothesis lumps the motion within
small eddies into the turbulent kinetic energy and effective turbulent viscosity terms, allowing the

calculation of large eddy motion without need to significantly increase numerical resolution.

1r1_. R 1 R 2
—pusug =241, {5 [Vu + (Vu)T] - §V . udqs} - =
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Note that this approximation results in modificaitons to the primary non-dimensional and
incompressible RANS momentum equations, see Equation 2.79.
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Addtional assumptions are made to empirically replace the turbulent transport and pressure
diffusion terms in Equation 2.77. The turbulent transport is approximated with gradient-diffusion
and an empirically determined coefficient in Equation 2.80.'2% As with the turbulent eddy viscosity,
the coefficient o is assumed scalar making the vectors on either side of the equals sign parallel.
The pressure diffusion effects are neglected based on DNS simulation results by Mansour, Kim and

Moin. 28

Wi, ~ - -V k (2.80)

2.4.4 Prandtl 1-Equation Model

Based on the Buckingham Pi Theorem and dimensional reasoning, Taylor'?° demonstrated that
the dissipation of kinetic energy is proportional to k{%/f{. Prandtl®® ran with this ratio by adding a
closure coefficient Cp to that proportionality and positing that the length scale is proportional to
the Prandtl Mixing Length if the ratio of turbulent production to dissipation is steady. The turbulent
kinetic energy transport equation for incompressible fluids is then re-written in the form of Prandtl’s
One-Equation Model for turbulence in Equation 2.81. The value of Cp is approximately 0.3 for thin

boundary layers.
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2.5 The Shift-Matrix Coding Method

The Shifting-Matrix coding method as applied to fluid dynamics appears to have been pioneered
by Sun and Salama.3%-'33 This addition to CFD techniques does not improve the solution time,
stability, or accuracy of the solution to the AX = b equation that is the eventual form of the majority
of PDE numerical solution techniques. However, it still significantly improves the overall run time of
a CFD code by taking advantage of certain aspects of programming languages. The concept in its
most basic form is to construct A and 5 using only computational operations that are computationally
efficient.

Programming languages such as Matlab, Mathematica, Python, and JavaScript are able to
direclty perform tasks without previously compiling a program into machine-language instructions
for a particular hardware combination. This makes such languages platform independent, flexible
to variable type and scope, and convenient for a programmer to code, decipher, and debug a
program, but also makes the end product less efficient as each code statement has to be passed
through an interpreter that organizes it into machine language on the fly. A comparison can be
made with compiled imperative programming languages like FORTRAN, C, C++, and C#. FOTRAN
for example is rigid in variable type and scope, with such things assigned before the body of the
program; is harder to read; and requires more steps to test and debug than an interpreted language.
The trade-off is that it typically performs much more efficiently, which has made it a traditional staple
in scientific computing.'34-136

Particularly, loops such as DO FOR or DO WHILE are especially inefficient in interpreted
languages.®®'3” To overcome the relative inefficiency of Matlab for the CFD task, it is necessary
to first avoid loops except in the high-level iteration between variablue updating over time-steps,
or psuedo-time in steady state. Conveniently, Matlab, being an abbreviation of "matrix laboratory”,

has long optimized and pre-compiled functions for efficient construction of matrices and performing
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matrix algebra operations for both sparse and non-sparse matrices. This specialty of Matlab
becomes an advantage when used to construct A and b as whole matrices and vectors instead of
looping through component by component.

For the purposes of this study, basic finite difference and averaging operations must be per-
formed through matrix algebra. Note specifically that every discrete mimetic operator in the MFDM
method applied in this work involves a mapping between variables contained within multiple vector
spaces with different ranges of indices on a staggered grid. Figure 2.4 shows a staggered grid with
pressure located in each cell center and the velocity vector components located at the center of the
cell’s positive faces in their respective tangential directions. Each flow variable is stored in a vector
array with elements unwrapped axial row by row. If there are N, axial cells and N, radial cells, the
pressure and circumferential velocity arrays have N, x N, internal elements, (N, +2) X (N, +2)
elements counting ghost cells. The pressure array is visualized in Equation 2.83. The radial velocity
location is "shifted” radially by half a cell to the outward normal face and has N, x (N, — 1) elements,
with out boundary/ghost cells, in the storage array. Similarly, the axial velocity has (N, — 1) x N,
elements. Sun’s shifting matrix technique'®' involves defining basic shifting matrices that “shift”
a flow variable east, west, north, or south and increment the size of the flow variable’s range in
that direction by one. The nm x n (m + 1) east-shift matrix, Ag, consistes of Equation 2.84 which is
constructed with the Kronecker tensor product, aka outer product, of a n element identity matrix
and an identity matrix with a row of zeros on top. The remaining shifting A matrices are given by

Equations 2.85 to 2.87, with the north/south shifting matrices even simpler to construct.
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Lnxm
[AW]nan(m+1) =Lixn ® (2.85)
01><m
Omxnm
[AN] (n+l)ymxnm = (286)
Limscnm
Limsnm
[AS] (n+l)mxnm =~ (287)
Omxnm
Original Grid

x North Shift

O South Shift

Shift
Expanded
Grid
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Sun131

calls these A "Cell-to-Face” shifting matrices and the same matrices incremented from n
to n+1 form "Face-to-Node” matrices. For example, Figure 2.5, the pressure array multipled by the
north/south shifting matrices maps from the cell centered nodes to the radial face centered nodes
by moving the value to the face centered node to the north or south respectively, while the same
north/south shifting matrices with an appropriate chosie of n and m will map the velocity to the cell
center that is north or south of it in the staggered grid. The A shifting matrices map locations within
the variable’s internal domain index range, while similar B shifting matrices, given by Equations 2.88
to 2.91, map the boundary and ghost cells. The pairs of north/south and east/west shift operations
can combined to difference or average a flow variable, while a similar Kroneker tensor product
can be applied to distribute the differencing/averaging scale for non-uniform grids. The discrete
pressure gradient in the axial direction is given in terms of shift matrices by Equation 2.92 and
radial weighted average of axial velocity is given by Equation 2.93. There are no boundary shift

matrices in the axial pressure gradient because the mimetic discretization of pressure gradient

does not include boundary/ghost cells. In contrast, the weighted radial average of axial velocity
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uses the east/west boundary values.
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The study on Stokes’ flow by Zhang in 201533 found that applying the shifting matrix method
instead of loops in matlab decreased their code’s runtime by orders of magnitude. They also found
that the runtime of matlab code created with shifting matrices was a small fraction of the runtime for

each of multiple tested FORTRAN implementations.
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2.6 Commercial CFD Software - ANSYS CFX

ANSYS Workbench and CFX were commercial CFD softwares employed in this work for validation
cases and the dynamic similarity models. ANSYS allows the creation of discretized finite element
analysis (FEA) CFD models and solves the unsteady Reynolds Averaged Navier-Stokes (RANS)
equations with a selected turbulence model.’*3-%0 The Navier-Stokes equations are sufficient
to model any fluid flow when solved analyticaly or at high enough resolution. In practice it is not
realistic to use numerical mesh grids fine enough to model the smaller turbulent features. For a
simple geometry it may be possible to perform direct numerical simulation (DNS) to fully resolve
the flow. However, for the majority of applictions the flows variables are time averaged with mean
and fluctuating values by Reynolds Averaging (discussed in detail at Section 2.4.1). This results in
the standard conservation of mass and three momentum equations, plus turbulence model to be
solved in the discretized domain using FEA.

The Navier-Stokes equations do not have analytical solutions for flows as complex as those
presented in this study. Instead, ANSYS CFX discretizes the fluid domain into small control volumes,
or elements, using a user defined mesh. The fluid properties for the domain are stored at each
node, or corner, of the control volumes. The RANS conservation equations and turbulence model
are then constructed as integral FEA matrices. The flow properties are then found by application of
a backwards, or implicit, Euler method to the governing equations. This numerical iteration method
equates the differential form of the governing equations to change in flow properties between
times 1y and ¢y + At, through the integrated governing equations. In the case of a steady-state
simulation, the time step both resolves turbulent time scales and functions as a limiter on the rate

of convergence.

2.6.1 Finite Element Method

The finite element method is a subset of a wider range of numerical analysis techniques that are
categorized as Galerkin methods'#' that convert continuous equations to discrete equations by
assuming that the local solution has the form of a shape function between nodes and integrating
the equations over these shape functions. Specifically FEA is a method of mean weighted residuals

(MWR),8283.142 a1s0 known as the Rayleigh-Ritz method. If the a residual is defined as the difference



2.6 | Commercial CFD Software - ANSYS CFX 43

between the exact solution and the discretely obtained FEA solution at each node, Equation 2.94,
the goal is to minimize the magnitude of these residuals like in least-squares linear regression.
To perform this minimization, weighting functions for each node are applied as shape functions
that approximate the true solution value between nodes, Equation 2.95. In solving the unsteady
Navier-Stokes equations, the flow variables substituted into the discrete conservation equations
results in the residual directly since the conservation equations should sum to zero. The integral
in Equation 2.95 is typically performed by Gaussian quadrature’*® over the shape functions that

weight the flow variables between nodes.

R(t’ xi) =Strue — SDiscrete(ta xi) (294)

1
Oz/ Ox, R(t,x;)dx (2.95)
-1

Shape Functions

ANSYS CFX stores the flow variables and properties at each node of the domain. Algebraic
shape functions are used as integrators and interpolators for the finite element method to smoothly
connect these discrete nodal values throughout the domain. The sum of shape functions around a
particular node describes the 'weight’ of its influence on the local flow. The shape functions are
given by S; and the flow properties are represented by ¢; in Equation 2.96. The general solution to
the discretized RANS equations is composed by the piecewise connection of all the shape functions

throughout the domain.

Nodes

¢ = Z (Sig:) (2.96)

1

The specifics of the shape function employed vary with the number of nodes used to define
each element and the geometric structure of the element, i.e. 4 or 8 nodes for a tetrahedral element,
6 or 12 nodes for a hexahedral element, and so on. The fluid domains in the present work are
simple annular geometries that can be meshed as a single face and swept circumferentially. The
radial-axial face is then a rectangular geometry and can be easily divided into rectangular elements
and swept into hexahedral elements, though sometimes it is preferable to use triangles and thus
sweep them into triangular prism elements. ANSYS CFX documentation provides the individual

shape functions for each element type.'38-140
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Equation

Solution and Determination of Residuals

As with most finite element numerical solvers, the ANSYS CFX software collects the discretized and
shape function weighted RANS equations into a matrix of linearized equations. Equation 2.97 is the
generalized form of the resulting linear algebra expression. The variable ¢; represents the solution
to the flow variables linearized by shape functions. Matrix a;; consists of the differential operators in
the RANS equations and b; is a measure of solution residual errors. Each conservation equation is

coupled, sacrifcing computer memory capcacity for improved efficiency and robustness of solution.

aijqﬁj = bi (297)

The linear algebra solver employed by ANSYS CFX'%8.140 js a combination of ILU factorization'4
and multigrid techniques.'* ILU factorization refers to decomposing a matrix into the identity, upper,
and lower component matrices and is a common linear algebra technique with many variations.
Multigrid refers to the use of multiple grids of varying mesh density. The solver is first iterated
with a fine mesh and then subseqently with a series of coursening grids to smooth the solution
before interpolating the coarse solution back to the finer grids. The actual fine and course grids
do not necessarily need to be individually created, instead an algebraic multigrid method can be
applied to create matrix operators that perform restrictions and prolongations to simulate multiple
grid levels from a single fine grid matrix. The smoothing that results from the prolongation and
restriction mapping to and from the fine and coarse grids tend to remove high frequency noise from
the solution. Additionally, the coarse grid structure will increase the rate of convergence due to the

larger spatial steps between nodes creating a larger step in residuals.

2.6.2 ANSYS Turbulence Models

ANSYS CFX has many turbulence models available for selection, 38140 however, the more com-
monly applied models in the literature for annular pressure seals are the k—e and SST eddy viscosity
models. Both models are two-equation models that consist of a transport equation for the turbulent

kinetic energy and a representation of the eddy viscosity dissipation rate. Most turbulence models
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are designed for accuracy over a particular range of operating parameters and grid types, the k — e
model and SST are not exceptions to this rule. The k — e model has relatively strict requirements
on y+ values for the first layer of elements inside the domain against a wall to be between 30 and
300. The SST turbulence model has much looser restrictions on y+ due to its nature as a smooth
blending of the k — e and k — w models based on local y+ value. However, researchers typically treat
the SST model as having the same y+ restrictions of the k — w model, a local y+ value of less than
5, to ensure that the k — w part of the model is being used. A y+ value of less than 5 is typically a
high demand in terms of mesh size and results in computationally expensive models. The SST
model attenuates this cost by allowing the turbulence model to transition to the k — € requirements
in parts of the fluid domain while maintaining the accuracy of the k — w model where needed.

2-D Numerical Analysis of Incompressible Annular Seals by Mimetic FDM



Chapter 3

2-D Grid Laminar Annular Pressure Seal

Code By Mimetic FDM

3.1 Mimmetic FDM in Perturbed Cylindrical Coordinates

The mimetic finite difference (MFD) method was selected as the numerical discretization proce-
dure for this body of work due to its conservation and spatial stability properties. MFD methods
were developed from work done by Shashkov and hyman in the mid to late 1990’s and early
2000’s,'15-117,120,146,147 gnd not available to the few authors who tested two-dimensional grids with
finite difference methods and applied to annular pressure seals in the late 1980’s.36-3¢ Additionally,
the MFD method lends itself well to vetorized coding which has been demonstrated to be consider-
ably more computationally efficient, particularly when using Matlab.'®® Future application of the
mimetic finite difference method is also more easily adaptable to less structured grid generation
than other finite difference techniques.®8-8% The use of mimetic discretizations is novel in application
to annular pressure seals, and rarely seen in turbomachinery applications in general. Additional
novelty on the side of MFD techniques occurs from the effects of the complex variables, used in the

perterbued radial coordinate definition, on the derived adjoint support operators.

46
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3.1.1  Coordinate Perturbation, Definition, & Transformation

To apply the MFD method, the RANS momentum equations were transformed, from the standard
incompressible form (A.2) to a form using a only a sequence of first order operators (3.1) and no
second order differential operators. The sequence of operators was considered carefully to ensure
that no operators require discrete information outside of the established vector spaces within the
domain and its adjacent ghost cells along the boundaries.''>""” While the original form could be
preserved by applying tensor discrete operators to the viscous diffusion terms, the diffusion terms
and the convection terms are more easily modeled using the vector discrete operators. It did still
become necessary to formulate tensor operators for diffusion of eddy viscosity and production of
turbulent kinetic energy in the following chapter, but that was not motivation to avoid simplification
where possible. The transformation was accomplished by applicaiton of vector operation identities.
Between these two steps the equation was non-dimensionalized by Reynolds Number scaling using
a characteristic density, length, and velocity, Table A.1. For convenience sake, the characteristic
pressure difference was taken pU?, so that the Euler number is 1 and the gradient of velocity could
be conveniently combined into the total pressure without additional scaling parameters.

0 (i)
ot

d (i)
=St
ot

1 1
0=35t +(Vxﬁ)xﬁ+§V(12-L7)+VP+R—V><V><17
e

(3.1)

+N (@) +VPT + RieC [5(&)]

The coordinates were then transformed from standard cylindrical coordinates to a perturbed
and eccentric whirling cylindrical coordinate system. The true radial position, r, of a given lo-
cation was defined as a function of y, 6, and r seen in Equation 3.4 as a stretching away from,
and contraction towards, of the radial clearance depth around a fixed radial location selected at
the stator surface, Rs. The position variable, 6, is the standard variable for angular position in
cylindrical coordinates, and r indicates a function of time. The y coordinate was defined as the
concentric, non-whirling, radial position being perturbed by the whirling motion. Thus the y radial
coordinate is not a function of angle or time. The new coordinate system consisting of y, 6, z,
and t will accomidate a small circular whirling motion of the rotor about it's nominal geometric center.

BT _ Eccentricity (32)

€ = =
h Clearance
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& = e’ (¥+0) (3.3)

r=x+&(Rs—x) (3.4)

The core assumption of perturbation methods relies on the method of multiple scales'*

assumption that the perturbation effects of the eccentric whirl are small compared to the basline
concentric behaviour about which the perturbation occurs. Thus the sum of effects incurred at each
power of the perturbation variable € were taken separately and conservation of dynamic properties
such as mass, momentum, and energy, is maintained individually for each power of €. This work
truncated terms with powers €2 and higher. The truncation of terms necessitated defining some
approximately equivalent expressions seen below in Equation 3.5 and each subsequent equation

in this section.

Taylor Expansion

1 1 1 Rg — Rs — x)? Rs — x)°
e —— — x — - ( SQX)+82h2( S 3X) —83h3¥+...
rox+eRs-x) x X X X (3.5)
First 2 terms '
—
1 (Rs — x)
z——g—z
X X

With the coordinate variable y substituted into the RANS equations in place of r, the relevant
derivatives to application of the chain rule are listed in Equations 3.6 to 3.11. Note that the chain
rule terms relating to the dependence of coordinate r on 8 and r+ must be applied even in RANS

equation terms with no r variables.

Taylor Expansion First 2 terms

1 —

N et~ 146 (3.6)
or 1-¢
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9 + 7(Qt+0) Re —
ar (/\/90’ t) — [X €e ( S X)] — ng (RS _ r) (38)
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The flow variables of the RANS equations were also perturbed using the small circular whirl

expression of Equation 3.3:

Uy k -lft(}k+8u;k

Vi,k ?k + Svl k

W,"n _ W?,n + SWL-I’n (3 9)
Pix ng + sPil,k

PT, PZ;{O + ePZ;(l
K| | Kk

For convenience, the real and imaginary components of the radial velocity are shown below
with the variable multiplied by < and distributed to the real and imaginary components. Note that
the conjugate refered to in the mimetic support operator derivation does not correspond with a

complex conjugate.

1 R R iy
Up j i = uf1k+zufjk:u;j’k:uﬁj,k—wﬂj’k (3.10a)
zu}]k ufjk+zuf]k=>zuf]k u;’j’k+iu§’j,k (3.10b)
The chain rule for each spatial derivative of a flow variable follows in Equation 3.11. Note that
the extra terms in the total derivative with respect to angle and time reduce to partial derivatives of

x without the (1 + &) factor as the second power of ¢ is truncated away.

d 0 oy O
T . o, “_ A1
dr dy or (1+2) (3.112)
du Ou Or Ou 614 oud
— =4 — - ~ Rs — x) — A1
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The time derivatives were then discretely approximated as follows using the taylor approxima-
tions and chain rule application shown in Equation 3.11. The discrete radial derivatives in the chain

rule differed for radial velocity compared to circumferential and axial velocities due to the second
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two variables being located in the radial center of each domain cell. These velocity derivatives were

split into zeroth and first order terms to be added to the A matrix and B array respectively.
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3.2 Discrete Staggered 2-D Grid for the Navier-Stokes Equations

The fluid modeling of an annular pressure seal begins with the Navier-Stokes (NS) momentum
equations. The general Reynolds scaling non-dimensional form of the incompressible NS equations
are found in Equation 3.13. These equations were applied in the geometrically perturbed cylindrical
coordinate system discussed in Section 3.1.1. Both the convection and diffusion components of the
NS equation are second order tensors, to take advantage of simpler mimetic DVTC operators the
components were reorganized into first order tensor operations through vector calculus identities
in Equation 3.14. Note that the Euler number was removed in the second form by selecting a
characteristic pressure differential equal to the denominator of the Euler Number’s definition. The
non-dimensionalization and tensor rank adjustments were developed in detail in Appendix A.

a (i1)
t

1
St +V- (@ ®i) = —EuVP+ - [VZii] (3.13)
e



3.2 | Discrete Staggered 2-D Grid for the Navier-Stokes Equations 51
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As the mimetic approach customizes the operators to the discrete Hilbert spaces that makeup
the selected staggered 2-D grid, in geometrically perturbed cylindrical coordiantes, it was first
important to define the various grid locations. For the purposes of the grid definition it was assumed
to have three basis vectors analagous to cylindrical coordinates. The coordinate directions consist of
the concentric radial coordinate y basis, the circumferential coordinate angle 6 basis, and the axial
coordinate z basis; with respective discrete distances of Ay, A8, Az. However, the grid was 2-D in
the radial-axial directions; there were no grid variations with 6 so there is no need to define an index
or discrete distance in the 6 basis direction. The non-uniform distribution of the cell centered, (CC),
grid locations depended on the discrete distances and indices i and k in each respective direction.
Additional grid locations on the cell faces, (FC), were defined by adding half of the respective
discrete distances so i + % =7 and k + % = n. The staggered grid was then constructed with N, by
N, cells in the axial and radial directions and a single cell in the circumferential direction. Flow
variables were separated into distinct vector spaces that are cell centered (CC), face centered (FC),
and edge centered (CC) seen in Equations 3.16a, 3.16b, and 3.16c respectively. Like the radial
and axial velocities stored on the positive radial and axial faces respectively, the circumferential
velocity was considered face centered on an infinitely thin circumferential face. The edge centered
vector space existed in the positive corners of the infinitely thin rectangular prism and contained the
vorticity flow variables. The cell centers contain the scalar flow variables such as pressure, total
pressure, viscosity, density, and turbulent kinetic energy. This work consists of incompressible flow
calculations, however, there is no conceptual difficulty in having the Reynolds number (and thus
density) stored for each cell as an additional variable with the existing conservative discretization
if discrete tensor operators are used for viscous diffusion and an additional equation of state is

included allow for more unknowns.
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(3.15¢)

(3.15d)

(3.16a)

(3.16b)

(3.16¢)

As previously discussed, the mimetic method consists of constructing a unique DVTC for the

vector spaces and grid defining the fluid domain. The DVTC consists of paired discrete operators

that form Hilbert spaces with the flow variables. These discrete operators are derived as paired

primary and derived operators. The primary operators were created from coordinate invariant

definitions of the vector operators and the derived operators are arrived at through the support

operator method that uses the defined Hilbert spaces. As Hilbert spaces are used, the inner

products must be defined for each vector space in question. The CC, FC, and EC Hilbert spaces

are defined with Equations 3.17, 3.18, and 3.19. The DVTC mimetic operators are combined in the

following sections to create the the mass conservation equation and pressure gradient, diffusion

and convection components of the NS momentum equations.
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3.3 Mass Conservation, V- u

The mass conservation equation for an incompressible fluid is simply the divergence of velocity
equal to zero. Divergence is a measure of flux in and out of a differential volume, thus for an
incompressible fluid, density is constant, velocity flux is equal to mass flux. The primary discrete

divergence operator is used from Appendix Section B.1.

3.3.1 Discrete Divergence Operator, Zeroth Order: 0 = (V - ii)"
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3.3.3 Discrete Divergence Operator, Imaginary First Order: 0 = (V - ii)’
1 Xfl/lé k _Xf—luLIp_l k
D! (i) = 0 =— A :
Xi Xi
0 _ .0 I _ .1 (3.22)
Vielk ~ Vi-1,k Win = Win-1

+ Lir +2 (R )
Bl . S — xi
xi| ok “ Axir1 + 20xi + xic1 Az




Chapter 3 | 2-D Grid Laminar Annular Pressure Seal Code By Mimetic FDM 54

3.4 Discrete Pressure Gradient, VP’

In 3.14, the convection term was split into vorticity crossed with velocity and a kinetic energy term
5V (ii - ii). Instead of separately defining an appropriate equivalent discrete operator for the gradient
of the kinetic energy, this term is combined with the gradient of pressure to form the gradient of
total pressure. Even though the kinetic energy term must be calculated later to determine the static
pressure, it involves less error to calculate the potential instead of the gradient. To conveniently
combine the kinetic energy and pressure gradients the characteristic pressure differential is selected
to be pU?, resolving the Euler number to unity. The discrete scalar gradient operator is derived

from the vector divergence operator in Appendix Section B.4.

3.4.1 Discrete Pressure Gradient Operator, Zeroth Order: (VPT)O
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3.4.2 Discrete Pressure Gradient Operator, Real First Order: (VPT)R

3.4.3 Discrete Pressure Gradient Operator, Imaginary First Order: (VP7)’

© p0 0 R R
(G P)R Pi+1,k - Pi,k Pi+1,k - Pi,k
ekl D Axi A Axi+Axiv
R 1
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( CC¢ i — Xi ik
R R R
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3.5 Discrete Viscous Diffusion, CC (ii)) =V x V x ii

The diffusion term is transformed in 3.14 to a function of the sequentially applied curl operators
on velocity. Appendix Sections C.1 and C.2 give the derivations of the curl operator and its
conjugate, it is necessary to use the primary curl operator on its conjugate curl operator rather
than sequentially applying the primary curl operator to maintain the correct mapping between
vector spaces, beginning and ending in the FC space. Futhermore, boundary conditions must be
applied consistently with the mimetic operators to preserve their replication of the continuous vector
operators. The full diffusion equations are obtained by substituting the derived curl operator into the
primary curl operator. The zeroth and first order equations are first substituted and then simplified

in the following subsections.

3.5.1 Discrete Viscous Diffusion, Zeroth Order: (V x V x ii)"

0o _ .0 0 _ .0
1 {uf,k+1 Upk  Wisin = Win

CTAz | A+ Azier Axin + Ay

0o _ .0 0 .0
Up —Up k-1 N Wirtn-1 =~ Win-1
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] ] 2 Viks1 Vi N Vik " Vik-1
C (@)%, Azk | Azp +Azpyr Az + Az

G 0 4 1 Xi+1v?+1,k _/\/ivg’k
0 0 | _
¢ = |C @ik = Axi | Xivt +xi Axi+Axin (3.26)
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3.5.2 Discrete Viscous Diffusion, Real First Order: (V x V x ii)"

R _ R
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ik Azg Ayi Ay
R R R R
=\’ 1 1 Viksl1 ~ Vik I Vik = Vik-1
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3.5.3 Discrete Viscous Diffusion, Imaginary First Order: (V x V x ii)’

0 _ 40 T
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1 _ 1 T _ 51
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in  xilyi Az +Azkr1 Axiv +Axi
I I I 1
W 1ke1 ~ %16 Win = Wicin
—Xr-1 -
Az + Az Axi-1+Axi
(3.38)
R R
11 wl  _9 Vikel = Vik

Xi| xi ™" Azi + Azgsa

0 0 0 _ 0
Rs — xi {_2vi+1,k+1 Vislk o Vi-1k+1 vi—l,k}]

+2
Axi-1+2Ax; + Axin Azp + Azgyr Azi + AZisr



3.6 | Discrete Convection, N (i, ) = (V X 1) X i 61

3.6 Discrete Convection, N (i, ®) = (VXu) Xu

Oud?®' converts the convection terms into a function of the velocity and vorticity terms, A.17,
to maintian consistency and take advantage of the discrete operators selected for the mimetic
method. The discrete form of the convection terms is given in Equation 3.40 from Oud’s work. Oud
constructed the averaging of vorticities and velocities to allow conservation of both momentum and
energy. The conservation of energy is checked through assuring that (N (&), ) p¢ = 0.

A similar convection averaging was performed below for the perturbed coordinate system on the
two-dimensional grid. To create this convection averaging operator, Equation 3.41 which describes
the face centered inner product space, is set to zero and a discretization for the circumferential
momentum average is selected. This allows the calculation of consistent averaging for £ and n in
the radial and axial convection components. Circumferential convection is assumed to be averaged
using the combination of Equations 3.43 and 3.44. Recall that while Oud’s work used j + % for the
circumferential velocity location, this work employs a 2-D grid and thus all relevent vorticities and
circumferential velocity exist on the j location only.

To apply these convection components to the numerical code, they were next substituted with
the perturbed flow variables of velocity and vorticity to prepare for distinguishing the zeroth order
and first order components. Simultaneously, the equations were simplified by collection of the

velocity terms into their radially and axially averaged values.

(ww = 2V)

N (@) = | (Cu-nw), (3.39)

(v — wu); ,
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3.6.1 Gathering 7, , terms for circumferential/axial convection

Gather n; ,, terms from cells (i,k) and (i,k+1). Equation 3.46 provides two relationships to define the
circumferential and axial convection components related to . Equation 3.46 has a factor of two on
the N term to account for the fact that it is one number being applied at the + and - circumferential

faces of the cell.

<1_<Iaﬁ> |77,~,, =0=
FC '

Ay; (1 — &) AOAzy; >
+ = {2 [xi + & (Rs = x)1vikNo, (Mi,mn—1:Mim.n)
2 . ) (i, k)
+[xi +&(Rs — xi)l [Nzn,lwi,n—l + Nznwi,n” (3.45)
Axi (1 —&) AOAZp11 >
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Azps1 ]-_\)Iznwi,n + ﬁzmlwi,rﬁl] + Azg [ﬁzn,lwi,n—l + 1_\)Iz,,"vi,n] =- 2AZkVi,kﬁHj (ni,m,n—la ni,m,n)

— 2A2141i,kNo; (Mim.ns Mi,mon+1)

(3.46)

At this point, the assumed circumferential convection averaging components are substituted in
and it becomes clear that the axial convection component averaging can be modeled on Oud’s work,
where j+3 and j - 1 are the same location, and thus have the same values for each flow variable at
those two locations. Note that if instead, a pseudo three dimensional grid was used where velocity
was face centered at +4¢ from the cell center, the averaging depends on some assumed Ad value
which can be arbitrarily chosen as long as it obeys the A << 1 rule of finite difference methods. An

infinitely thin element corresponds to selecting the limit of that circumferential distance going to

Zero.
= Azkvi,j_%’k + Azk"'lvi’j_%,k‘*'l (3 47)
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3.6.2 Gathering {,; terms for radial/circumferential convection

Gather ¢, x terms from cells (i,k) and (i+1,k). A step was skipped to assume a version of Oud’s
averaging and the inner product of the convection components with velocity was confirmed to be

Zero.
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3.6.3 The Convection Averaging Operator
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3.6.5 Discrete Convection, First Order: N' (i, d) = (V x it) x il
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3.6.6 Discrete Convection, Real First Order: N% (i, ) = (V x i) X i
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3.6.7 Discrete Convection, Imaginary First Order: N/ (ii,d) = (V x i) X ii

1
i,n—1

Axi +Axin

0
i,n—1

Axi +Axin

0
+Axiniw

I
+Axinw i+1,n-1

0 AX,'W i+1,n—1 n 1 AX,'W

1
I -
N, () =3 Wy oy

,n—1

1
i+1,n I
+ Wy .

0

AXiWi, + Axis1w Pl (3.80)

Axiw), + Axiaw

Axi +Axin Axi +Axin

I 1
Vik  Vislk

Xi Xi+1

0 0
Vik  Vislk

Xi Xi+l

1
+ Lok

1 0
AXiW; o1 + DXis1 Wiy iy

Axi+Axin

0 _.0 0 _ 0
N (i) = ek THeak-1 Witin-1 = Win-1
X Az + Az Axiv1 + Ay

T I T 0 .0
Up o ~Up k-1 Wivtne1 = Win-1 | DXiW; o DXt Wiy

Az + Az Axiv1 +Axi Axi +Axin

o _ .0 0 _ .0
(uf,k+1 Urk  Wisin = Win

Azi +Azpr1 Axisn +Axi

1 1
Axiw; , + Dxiaawiyy ,

Axi +Axin

I I 0 0
| Mear "Mk Winin ™ Wi AXiw; , + BXiaaWiiy , (3.81)
Azg + AZpiq Axiv1 + Ay Axi+Axin '

I I
Vik  VitlLk
+ —_—

Xi Xi+l

0 0
_ XitXin 4 XitlVigq p —XiVik
4 Xitl+ Xi  Axi+Axin

0 0
Vik Vislk
+

Xi Xi+1

4 Xi+1Vf+1’k —)(in’k
Xiv1+Xi  Axi+Axin
R (RS _/\/f+1) M2+1’k - (RS _/\/f—l) ”2—1,k
Axi +Axin

+

0 _ .0 0 0
N (i) = ek “Hek-1 Wirin-1 7 Win-1
X Az + Azk— Axiz1 +Axi

. o
AXiW; g + DXt Wi oy

Axi+Axin

I I T 0 )
Up o —Up i1 Wistne1 = Wino1 | BDXiWi o1 F DXt Wiy g

Az + Azk—1 Axiv1 + Ay Axi+Axin

0 _ .0 0o _ .0
(“f,k+1 Urk  Wisin Win

Azk +Azier  Axivi +Axi

1 1
AXiWi,n + A/\/le

i+1,n

Axi +Axin (3.82)

[ [ 1,0 ,
Upks1 ~ Up i Wisin = Win | DXiW; , + Axinaw

Az + Az Axis1 + Ay Axi +Axin

0
i+1,n

1
i+1,k

Xi Xi+1

0 0
Vik  Virlk

Xi Xi+1

1 1
Xi+lVip k ~ XiVik

Axi +Axin

0 0
Xi+1Vipy g ~ XiVi

Axi +Axiv

1
vi,k v
L

0 0
Vik  Vitlk

Xi Xi+l

1
+_
2

+uR _(RS _/\/f+1) u2+1,k_(RS _/\/f—l) ”2—1,k
ok Axi+Axin
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o 1 1 Xi+ Xi-1 Axi-1+Axi
T _ i+ Xi 0 1 1 0
Ny (i) “2Av: )(_12 (Xf— 9 B) {gf—l,k Up_1 ke t Spoak ”f—l,k}

4

i+ Xi+1 Axiv1 + Axi
+Xle 2)(z+1 Xz+12 Xi {52,1( u;’k + fé,k Mg’k}) (3.83)
0

1
0 I I 0o I I 0
3 {77i,n—1 Win-1 ¥ Min-1Win-1+tMinWin t Min wi,n}

1

N 1 i+ vie1 Axio1 + Ay
Ny 0 = [ i Mt O

2 2
{ 4 v xi-vi e

i

u
Xi-1+xi  Axi+Axia £-1.k
+u0 _ 4 Xivl{k _Xi—lv{_l’k
LR xici+xi o Axi+Axic
P R +(Rs ~xe)uy  — (Rs = xe-2)uy_,
Xi-1+Xi =Lk Axi +Ayi1
Xi+ Xi+1l Axiv1 + Ay
+ Xxr 5 5

0 _ .0
4 Xl+1vi+1’k lei,k ul
Xiri +Xi  Axi+Axiv Z:k
I I
4 XitlVigq o = XiVi g
Xivltxi  Axi+Axia

_uR +(RS = X£+1) Mgﬂ,k —(Rs — x¢-1) ”2—1,/( (3.84)
- Axi+ Axin

0
+up |-

0 _ .0
1{ Vik " Vik-1 g

w
Az + Azj_q

I I
1 & 9 Vik = Vik-1
Tl Wi YA

Xi Azp + Azi—q
2 [Axivn (Rs = xiv1) Wiy iy ~ Axi-1 (Rs = Xi-1) wi_y 4 0
XiAxi Axi +2Axi41 + Axiv2 Axio+2Axi 1+ Ay bl
0 0
oYk T Vik !
Az +Azgyr "
I I
1 V. — V.
+ | -— wfen +2 M
Xi Az + AZp
.\ 2 [Axis1 (Rs = Xiv1) W3, _ Axia (Rs = xi-) Wi, , W0
Xidxi \ Axi +2Axiv1 + Axiv2 Axi—2+2Axi-1+ Ay o
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1 =\ _ 1 1 0 0 1
Ny (i) —m?/\/ﬂl {(Xivi,k —Xi—1V,-_1,k) Up 1k
1

0 1 I
TUs gk [_ (Xi"i,k _Xi—lvi—l,k)

1
-3 (— [Axi +Axi-1] uf_y i +(Rs = xe)ud  — (Rs = x¢—2) u(}_g,k)”

+LLW{(){- PVt — XY ) uj
2AX1' Xi2 +1 Y41k tVik ?,k

o [_ (Xi+1vg+1,k _Xi"g,k)
5 [Axi + Axi] Up k +(Rs Xf+1)uf+1’k (Rs Xf—l)u,f_Lk
0

) 0 _ .0 3.85
Vik " Vik-1 g Viks1 " Vik g ( )

Az + Az P Az + Az

I I
1 Wk Vik = Vik-1
2 M Az + Azioy
. 1 [ Axin (Rs = Xist) Wiy oy Axic1 (Rs = xic) Wiy, 0
_ wo
XilDxi Axi +2Axit1 + Axiso Axi-2+2Axi-1+ Ay -l

I
1 WR Vikel1 ~ Vik
2xi " Az + Azin

1

. Axivi (Rs = Xis1) Wiy, Axi-1 (Rs = xi-1) wi_y ,
XiAxi

Axi+2Axi11 + Axiso Axi—o+2Axi-1 + Ay
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I I 0 0
N (@) = n° Aziv;  + Aza1v; piq N Azivi p + Azavy iy
< e AZg + AZgs e Azg + AZgs
A 1 A 1 A 1 A 1
11 0 Lty _q g T BZUs1lp g jq o DTkUy gt AZkailly g (3.86)
5 | Ne-1Weip T XeWyp )
2 xi ’ Azg + AZgiq ’ Azg + Azgs
11 Azkugﬂ,k + AZk+1“271,k+1 7 Azk”g,k + AZk+1“2,k+1
- 5T | X1 We_ + Xxr w
2 xi 7=1n Az + Az Zon Az + Azgat
0o _ .0 I I
NI (@) =2 Vigs = Vik Dvig + AZkavi g
‘ AZx + Az AZx + Az
0 0 I
Azkvi o + Az g 1 WwR 4o Vike1 ~ Vik
Azk + Aziys Xi " Azk + Azgn
0 0
2 | Axivt (Rs = xis) Wiyy - Bxi-1 (Rs = xi-1) wi_y ,
+ —
XiDxi | Axi+2Axi1 + Axive Axio+2Ax;i 1+ Ay
I I 0 _ 0 0 _ .0
1 p Azty g+ Dzisrtty gy (Upgjur “Hpi ke Win = Wit
e _
Xi Az + Azjq Az + Az Axi-1+ Ay (3.87)
I I o _ .0 o _ .0
iy Azgtty  + AZiilly oy (Up g1 =Up i Wis1n = Win
. _
Azp + Azjsn Az +Azkr1 Axivi +Axi
0 0 I o I
N 1 P Aziity_y g+ Dzisatly g g [ Up_y jar = Upq g W m = Wil
L SV _
Xi Azi + Azpiq Azg + AZgin Ayi—1 +Ay;
0 0 I I
iy Azgtty j + Azpsilty gy [ Uy iy = Up g Witin = Win
, _

Azg + AZgiq Az + Azgi Axiv1 + Ay
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3.7 Boundary Conditions of Smooth Annular Pressure Seals

The Navier-Stokes momentum equations are second order PDE’s requiring two boundary conditions
for each coordinate dimension. No boundary needs to be specified in the circumferential direction
as that coordinate dimension is removed through application of the small whirl orbit perturbation
solution around an axisymmetric solution for a concentric rotor. Also absent is the need for axial
ghost cell boundary conditions for pressure, as pressure is obtained implicitly from the momentum
and mass conservation equations. A radial boundary condition for pressure is necessary due
to the circumferential pressure gradient’s radial dependence in the perturbed coordinate system.
This radial, zeroth order, pressure boundary condition is assigned for a standard no slip wall as
Neumann zero gradient conditions on the Rotor and Stator surfaces. Additionally, the pressure
solution results in a gauge pressure that must be set relative to the absolute pressure of the
surroundings by selecting a single mass conservation equation for a cell on the seal outlet boundary
and replacing it with a direct asssignment of that cell’s pressure to the reference value, typically
zero for convenience.

The basic seal geometry parameters and boundary conditions for each flow variable are given
in Table 3.1. The velocity boundary conditions are specified for the zeroth order, concentric solution,
and the real and imaginary components of the first order perturbation solutions. Considering
the second order PDE’s being solved, 6 velocity boundaries must be defined for each velocity
component. Beginning with the zeroth order solution, an annular seal’s operating conditions are
usually defined with a pressure differential, AP; a pre-swirl circumferential velocity ratio on the inlet
PR; and a rotor rotational speed specified by revolutions per minute, RPM, or as the rotor surface
speed. The radial velocity on the inlet is assumed to be zero without any knowledge of upstream
conditions. Without the axial pressure boundary conditions allowed by solving the pressure Poisson
Equation (PPE), the inflow to the seal must be defined by an inlet axial velocity wy and a specified
circumferential velocity on the inlet, vyy. To match a given pressure differential, an initial axial inlet
velocity is guessed and a pressure profile is solved. The inlet axial velocity is then iterated by Brent’s
Method'4%1°0 to match the desired pressure differential. The Brent's method is an optimization
algorithm to obtain zeros of a continuous objective function by combining three other methods:

the bisection method,'®! the secand method,'®? and inverse quadratic interpolation.’®31%* The
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algorithm switches between the individual methods to either increase speed or robustness of

convergence. The exit velocity conditions are defined as Neumann boundaries with zero value to

allow for flow profiles that are not fully developed. The Rotor and Stator boundaries are defined

with Dirichlet conditions of zero value due to a no-slip wall.

Table 3.1: Seal Defining Variables and Boundary Conditions

Variable | Symbol | 0*" Order Real 1°¢ Ord. | Imag. 1°* Ord.
Length Lg Lg - -
Clearance HY H° - -
Eccentricity H' - H! H!
Radius Rs Rg - -
Viscosity u u - -
Density P P - -
Pre-Swirl Pr e - -
Rotor Speed w w -
Whirl Speed Q - Q
Radial Vel. Uw u(‘]%, =0 u{fv =0 u{,v =0
Ug 65?20 ulg:O uIE=0
us ug:() u§:0 uéz(Q—w)HO
Un “9\7 =0 u§ =0 ufv =0
Angular Vel. vw 6;§V =0OR Y, P Pw
BV% Bv% _ BﬁE _
VE oz 0 oz 0 bz 0
Vs vg = wRg v§ =0 vé = QHO
VN V?v = v§ =0 vg\, =
Axial Vel. ww | Wy = (AP ) [ wy = [ (Pysin) | wy = f(Pyy.éim)
W 2e 0 WwR = (PR &ou) | Wh = F(PL, éour)
ws w([]; =0 wlg =0 wlg =0
WN wy = wy =0 wy =0
Press. Diff. AP AP - -
I W Lins Lour) - -
Ref. Press. PrEF PrEF - -
TKE kw dw =0 - -
kg %r =0 - -
ks 52=0 - -
kN 6;—/‘(1\] = 0 - -

The boundary conditions are derived from the physical system and the definition of the coordi-

nate system. Remember that the coordinate system has been perturbed from R to y by a small

circular orbit at Q whirl frequency.
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H' _ Eccentricity

"= 0 = Clearance (3.88)

g = ee’ (0 (3.89)
r=x+eh(Rs—x) (3.90)

r =y +h(cosf+ rsind) (Rs — x) (3.91)

At 6 = 0 the sine term disappears and the cosine term becomes 1. If we further assume that we
are at the yro:or modified radial coordinate that is equal to the shaft radius, then the equivalent

radial coordinate in classical cylindrical coordinates becomes the following:

"Rotor = XRotor + (RS - XRotor) = XRotor t hHO = XRotor t Hl (392)

This indicates that the real world radial position at 8 = 0 is shaft radius + eccentricity. As the
coordinate transformation is based on a stator surface that is fixed in both modified and original
cylindrical coordinates, this means that the clearance gap is smallest at 6 = 0.

The surface of the rotor can be defined with the following polar complex forms. The rotor surface
speed is related to the variable w which is given in hz or RPM. Similarly, the whirl speed is defined
using the variable Q in the same units. Using complex polar coordinates, the vector that defines a

point on the rotor surface can be defined as follows:
1 6 OHl i (Qt+6
TRotorSur face = RRotorel(wH )+ H mel( #+6o) (3.93)
In order to combine the terms for these two rotations, whirling motion must be modified by

adding and subtracting the shaft rotation for a net zero change.

. H! .
2 t+6 0 Qt — wt+wt+6
I'RotorSur face = RRotorel(w O+ H Oel{ o} (394)

- . H' o .
rRotorSurface — RR()torel(wH-gO) + Homel{<9 w)t}et(wt+00) (395)

The following equation describes the actual position of the rotor surface relative to its own center

in the bracketed term and the surface rotation in the rightmost term.
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- H' o ,
FRotorSur face = [RRotor + Homel{(ﬂ w)t}] el(ngO) (396)

The radial velocity of the rotor surface can then be calculated as the time derivative of the

bracketed term in the previous equation.

9 RadialMagnitude = 2 |R +H0H—1 H(@-w)r} (3.97)
5 adialMagnitude = o Rotor Hoe .

H'
URotor =1 (Q — w) HY— ¢ {(Q- @)t} (3.98)
HO

The linear angular velocity is the derivative of each exponential term with respect to time and

re-multiplied by their respective radii.

27 = 2 R ei(u)t+00) +H0H_lei(Qt+90) (3 99)
ot RotorSur face It Rotor HO .
. HY .
VRotor = U-)RRotorel(ngO) + QHoml’el(QHgO) (3.100)

The pressure difference increases or decreases based on flow curvature leading into the seal
clearance or exiting from the clearance region. This is often approximated based on some empirical
factors that modify the pressure differential by a ratio of the equivalent Bernoulli stagnation pressure
corresponding to either the velocity through the seal clearance or a function of seal clearance

velocity and upstream or downstream velocities.

0 0 0 0
APCombined = APLoss,lnlet + APSeal - APRecovery,Outlet (3101 a)
L+ Jinler 2
0 _ nie 0
APL()ss,IrLlet - T'D (WAveruge) (3101b)
1- {E : 2
0 _ xit 0
APRecovery,Outlet - Tp (WAvemge) (3.1 010)

When the pressure differential is known and the velocity through the seal is unknown, the
program iterates over seal inlet axial velocities and calculates inlet losses and exit recovery to
match the total pressure differential. The first order boundary conditions for axial velocity are
similarly calculated based on the first order pressure profile. This relationship is also based on
the inlet loss and exit recovery factors and models the "Lomakin” effect’s impact on the velocity

boundary terms.



3.8 | Numerical lteration to RANS Solutions 87

R 0 R
APlnlet = (1 + {Inlet) pWAverageWInlet,Average (3.1 023.)
4 0 I
APInlet = (1 + {1"131‘) pWAverageWInlet,Average (31 02b)
R 0 R
APOmlet = (1 - gExit) pWAverageWExit,Average (31 033.)
4 0 I
APOm‘let = (1 - gExit) pWAverageWExit,Average (31 03b)
APR
WR — Inlet (31 o4a)
Inlet,Average (1 + glnlet) 'Owgverage
AP!
1 Inl
WInlet,Average = nlet (31 O4b)

(1 + éulnlet) prverage

R
ngit Average — APOutlelo (31 053.)
, (1 - (Exit) pWAverage
AP!
1 Outl
WExit,Average = e (31 OSb)

(1= LExir) prverage

3.8 Numerical Iteration to RANS Solutions

While the MFD method provides spatial stability of the discretization, it does not have any claims to
stability of iteration over time. Because the N-S equations are inherently non-linear, the equations
are linearized for solution by applying a velocity multiple from a previous iteration step. Most
codes take a pseudo-time approach even when solving steady state problems, and of course a
time-stepping approach to transient solutions, to control the rate of change of the velocity solution
as it is iterated towards a converged equilibrium. Oud®' selects an implicit midpoint method in time
(Implicit Euler) to iterate with an unspecified Krylov method. However, their implicit midpoint method
seems to be a half implicit trapezoidal method instead. A similar trapezoidal method is given below
in Equations 3.110 to 3.120. To obtain an implicit form of the solution, the A matrix is split into g and
q + 1 time-steps by Equations 3.109 and 3.119. While the work by Oud split the mass conservation
equation with the trapezoidal method, Gresho et al. suggests that this split can cause an oscillation
in the solution on the order of 2Ar when the inputs are not well posed.'®> Gresho also says that
switching to a fully implicit mass conservation solution can hide this oscillation. Ideally this work

would include perfectly posed inputs, but determining the perfect boundary conditions for velocity is
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not necessary for a decently converged and accurate solution. Future improvements or switching
to the Pressure Poisson Equation form of the continuity equation would allow changing back to a
trapezoidal continuity solution iteration. Note that the Reynolds Stress terms based on turbulent
eddy viscosity are already included in this splitting of equation terms into A and b components prior

to their introduction and discussion in the next chapter.

dii — 1 — —[ 2 2
St— +GPT == N(ii,ii) - —CC (i) + D | —E (i) - =k’ - 1 3.10
o (id, ) e (i) + Re¢=(u) 3k 1 (3.106)
0 =Dii (3.107)
di d (- >
= 0 1
dr d‘r( +8h“)
dl® d | . -
-7 L2 L(Qt+p) 1 A
— (ee hu) (3.108)
~0,g+1 _ 20,8 =0,g+%
S TR Qehi et — iQeh (Rs — x) u 57>
At Oy
B8 4 ohi 8 = (70 4 ch" S + @04 4 chie ) (3.109)
=0,g+1 _ =0.g =0,g+% _
St% + StiQehii E*E — StiQeh (Rs — y) P L GPTOF 4 enGPT 8 =
.
CNO (7083 =0.8) _ 1 00 (20.642) L 50 | _2 g0 (0841} _ 2,000 .
N (u 2,uU ) ReCC (u 2)+9 ReiE: (u 2) 3k 1
_ 1(=1,g+1 =1.g) _ i 1RL (21,642 =1 i 1(=1,g+1
ehN (u 2. ) ahReCC (u 2)+sh9 Re{E= (u 2)
(3.110)

- (1 4 ehit+!) = - {Do (701) o (i) + D0 (7)o (go,gﬂ)b}

(3.111)

3.8.1 Zeroth Order lteratation

Note that, as discussed above, for the concentric zeroth order solution, the physics is technically
steady-state. The discrete time derivative is maintained to allow time-stepping iteration from the
initial values to the final steady solution. However, the Strouhal number used for the zeroth order
calculations is folded into the time step variable, with adaptive time step selection, for iterative
stability instead of the whirl speed that defines the first order equation’s Strouhal number or the

constant that is typicaly used for steady state turbulent solutions.
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o )l -a e

2 St ’ =
1AT 1 =0
—_20g_ - 20,8 20,8 il 28\ _ 2 E(n8
i - o {N(u i )+Recc ) [ _E (i )}} ro (3.112)
At 0.8 20.8) L L 6C(7%) T | L2 E (7¢) _ 2pt8
St {N(u 7 )+ReCC(u) D Rei,g(u) 3k I b
T T = AT =
L3 (a0e) s () |14 (ag) of (@) ar 511)
_]_) 0 PT,g+1 0 0 PT,g St
; .
st)_|L+ost (A §G| | |I-557 (AD-) Offd%) ar
pTe+1 -D 0 0 of\pPTe| St
(3.114)

3.8.2 First Order lteratation

The first order iteration procedure is different from that of the zeroth order solution due to the time
derivative being a known quantity derived from the small circular perturbation. This means that
there is no time-step applied to the first order solution as the discrete first order time derivative has
no Ar. Also note that the first order equations are a linear expansion and thus more numerically
stable than the zeroth order equations. This increased stability means that there is no need to split

the matrix into current and future steps. Instead a fully implicit solution can be sought as seen

below.
;70.8+% —
StsQehii¢*2 — St¢Qeh (Rs — ) ‘9 +ehGPT 8" =
, _ (3.115)
_ 1(=1.g+1 =18} _ ~1,g+1 G| % gl (=194
N (i 7 ) N e e e ]
St/ Qi+ + GPT 8
1(=1.g+1 =l.g 4 ~1,g+1 _ | 2! (et _
+N (u N7 )Al + CC ( )Al"' [Re{_( )_A1+
e ~ (3.116)

{ StzQ (Rs — x) 8 —-N! (ﬁl’g,ﬁl’g)

o :

—§c c (*1g)b=1 + g [Re E (*15')]b=1

-t

The real form of the first order RANS equations follows:
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~1(st@it=1) + R (GPT)

R[+N: (I/—il,g+1,ﬁ1,g)Al+ + éclél (ﬁLgH)Al.,. _gl [%E: (l/—il,g+1) Al+) _ (3.417)
+1 (StQﬁl’g) _R (N1 (ﬁl’g,ﬁl’g)b S+ éclé1 (ﬁl’g) ] -9 %E; (ﬁl’g)} 1)

The imaginary form of the first order RANS equations is similarly:

R (StQﬁl’g+1) +1 (GpTl,gﬂ)

+|(N1 (—>1 g+1 bl 8)A1 + —C C (_)1 g+1)A + _gl [%E: (ﬁl’gﬂ)]A-' ) -

= = 1+
aﬁog B (3.118)
StQEil g+1 { StQ (Rs — x) }
bit
1 =1 —1( 2
_ 1(=-1,g ~l,g ! ~1,g _ _“ El(=2lg
.(N (750) 0 i (1) -7 2 )
The combination of real and imaginary forms results in the final matrix form below:
'R {A1+(Ur,Wwr)} -StQl+R{Al+(Vi)} R{G(Pr)} 0 |[ ke
StQL+1{ALl+(Vr)}  1{Al+ (Ui, Wi)} 0 H{GPi)}|| a"s! b1t b1
R{—L) (Ur, W}")} R{—]=) (Vl)} 0 0 pT.R.g+1 = 2
1{-D(Vr)} R{-D (Ur,Wr)} 0 0 |\phhet
(3.119)
- -1
iR+l R{Al+(Ur,Wr)} -StQl+R{Al+(Vi)} R{G(Pr)} 0
il-s+l StQIL +1{ALl+(Vr)} I {AL+ (Ui, Wi)} 0 1{G (Pi)}
pT-R.g+l R{-D (Ur,wr)} R{-D (Vi)} 0 0 (3.120)
prlsrt ]| 1H{-D(Vr)} R{-D (Ur,Wr)} 0 0
{-blt - b1}

Note that each first order pressure gradient above is a gradient of total pressure, Equation
3.121, and not static pressure. To obtain first order static pressure from the first order total pressure

and the zeroth and first order velocities it is necessary to perturb the definition of total pressure
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in Equation 3.124. The real component of the static pressure is given by Equation 3.126 and the
imaginary component by Equation 3.127.

Pr =Py + h (PReost + i Plsind) (3.121)
Pr="Ps+5 (w417 +?) (3.122)

PY+ 1 (PReoso + ¢Phsing) =P + h (PEcoso + ¢ Plsind)

P
2

(uo +h [MRCOSH + iulsiné] )2
9 (3.123)
+ (VO +h [VRCOSQ + ivlsing])

2
+ (WO +h [chose + z'wlsine]) }

Py + 1 (PReost + ¢ Phsing) =P§ + h (PRcoso + i Plsiné)
+ 'g ([u0]2 + 2hu® [uRCOSH + iulsiné] +h? [uRcos0]2 - h? [ulsinG]2
+ [v0]2 +2m° [chose + z'vlsinH] +h? [ch0s0]2 e [vlsine]2

+ [w0]2 + 2hw’ [WRCOSH + z'w[sine] + h? [chos9]2 — h? [w[siné]z)

(3.124)
h (P¥00s9 + iP%sinQ) =h (P§00s0 + insinﬁ)
+ g (Zhuo [MRCOSH + iulsiné]
(3.125)
+2m° [VRC050 + ivlsine]
+2hw? [WRCOSH + iwlsine])
P¥ :PI; + ph (uOuR +v0R 4 wowR) (3.126)

P; =P§ +ph (uoul +07 4 wowl) (3.127)
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3.8.3 Adaptive time-stepping

The selected time-step size in the above numerical schemes affects the stability and speed
of convergence to a steady solution. The initial time-step size was determined by a standard
two-dimensional Courant-Friedrichs-Lewy (CFL) condition, 6157 Equation 3.128. This commonly
applied method bases the time-step size on the spatial discretization and the characteristic velocities
in the flow domain. However, the CFL condition is a guideline and not a hard limit on the time-step

size for stability.

1

max(ww) max(vs) (31 28)
max(Ay) max(Az)

Atcpp < St

It was decided to allow the time-step size to vary adaptively based on instantaneous estimates
for the numerical discretization truncation errors of the spatial and temporal schemes. Pan et. al.
202178 demonstrated an adaptive time-stepping method compatible with compressible flow solvers.
Their adaptation function for time-step size is designed to maintain parity between the temporal
truncation error and the product of the time-step and the spatial truncation error. The goal was then
to maximize the time-step size without reducing accuracy by increasing the temporal truncation error
above the spatial truncation error. The local spatial truncation error was estimated for each node
using Equation 3.129 as a function of the change in the momentum and conservation equations
from one iteration step to the next. Note that for brevity the equations below are presented in
terms of a standard Ax = B matrix equation rather than the detailed matrices given in the previous
sections. The component spatial truncation error for each set of equations was combined within the
individual cells using the FC vector space inner product, Equation 3.18 providing Equation 3.130.
The temporal truncation error necessitated a different method to estimate. The most direct method
to obtain an estimate of truncation error was to apply another temporal discretization scheme,
Equation 3.131, and then compare prediction for the subsequent time-step from each temporal
scheme. A third order explicit-implicit backwards finite difference scheme (BFD3) was selected
for the extra temporal discretization. The temporal truncation error, Equation 3.132, is likewise
summed locally for each cell using the FC vector space inner product. Equation 3.133 was then
applied to obtain new values for each cell’'s local time-step. These potential new time-steps are then

averaged with a weighted sum of the local temporal truncation errors, in Equation 3.134, and the
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maximum value is selected based on Equation 3.135. As the extra temporal discretization required
multiple historical values for the flow variables, and to avoid an extra matrix division step at every

iteration, the time-step size adaptation is applied every 10 iteration steps.

€s.x% =abs (égxg +Db% — ASTIx8 1 - bg—l) (3.129)
2
. (Axint +Axi) €suy  + (Axi +Axic1) €5l
€S,CC = 2AX1'
2
¢ 12 | (A +Aze) €suf, + (Azk + Azi-1) €50, (3.130)
* [ES’Vi,k] * 2Az;
1
g 2 g 2)2
ety ] + [esat] )
-1
11 3 1
ng}ng = [Atgég - El] —At8bh8 =3x8 + §xg_2 - gxg_g'} (3.131)
€/, =abs (xﬁ;ild - xg}“lm) (3.132)
1
1 g 2 1 2
gl _pge | 225 o H L (T a8 |2 (3.133)
bk €l + (x8*1 — x8) .
t,x
) g A $+1
A8+ Z—Z"" G ik (3.134)
Zi,k E;‘g,x
Ar* =min (max [Ar£*1, 1075, 0.1 x MaxError] , 100AtcrL ) (3.135)

3.9 Validation of RANS Code Solutions Without Reynolds Stresses

The RANS equations without the Reynolds Stress tensor are equivalent to the un-averaged
Navier-Stokes momentum equations, making the code a laminar or DNS numerical solution. As a
laminar code, analytical solutions exist for simple flow cases such as classical Poiseuille (pressure
driven flow between two surfaces) and Couette (fluid between a moving and stationary surface,
driven by the moving surface) flows. The established analytical solutions for annular laminar
Poiseuille, Equation 3.136, and Couette, Equation 3.137, flows were provided in terms of no-
slip wall boundaries and Dirichlet velocity boundary conditions.® The expected profiles for the
analytically calculable flows were compared to the numerically obtained results in the following

sections.
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op 1 In (—R)
w= _a_];,@ (R% - r?) (&3 - R2) - (g—i) (3.136)
(% - )
v = wRR (R_S - é) (3.137)
Rgr Rs

Annular pressure seals consist of a pressure driven flow between a rotating shaft and a fixed
stator. While turbulent effects dominate the flow at high Reynolds numbers, at low Reynolds
numbers the seal flow can be modeled as a superposition of the Poiseuille and Couette flow
analytical solutions. The fundamentals of the 2-D seal code were thus validated against multiple
Poiseuille, Couette, and combined flow cases to ensure the baseline functionality and stability of the
solutions. Only the zeroth order laminar validation results are shown in this section. The first order
laminar validation results are given with respect to the rotordynamic coefficients of San Andres’
oil seal’® in Section 5.1. For purely laminar test cases compared directly to analytical solutions
numerical grids with radial element counts were tested with regularly spaced and growth-rate
spaced cells numbering from 10 to 60 radial elements and 100 to 1,000 axial elements; at mean
inlet velocities of 0.1 to 0.6 [%] (Axial Reynolds Numbers of 173 and 1,039); and rotor speeeds of

0 to 50 [RPM] (Circumferential Reynolds Numbers of 0 and 1088).

3.9.1 Poiseuille Flow Validation

The first comparison between analyitcal and numerical solutions was for pressure driven flow
between a stationary concentric rotor and stator. The velocity boundary conditions on the rotor and
stator assighed as homogeneous Dirichlet no-slip conditions, and all velocity boundary conditions
at the inlet and outlet, other than the inlet axial velocity boundary condition, were applied as
homogeneous Neumann conditions. The only boundary condition defined for pressure was a single
node at the outlet specified at 0 Pa gauge pressure. With an inlet mean velocity of 0.1 [%] (Axial
Reynolds Number of 173), the profile of the axial velocity was given by Equation 3.136 and can
be seen in Figure 3.1 as the dashed line which can be compared to the numerically obtained
profile of points. The devaition between the analytical velocity profile and the numerically obtained

outlet profile was less than 0.002 % at any given grid node for a grid size of 30 radial by 300
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axial elements. The coarsest mesh pressure drop across the seal deviated from the analytically
obtained solution by an rms percent difference of 1.98 % and the finest by 0.059 %. The pressure
drop for all tested Poiseuille flow cases at any mesh size deviated by an rms percent difference
of 1.69 %. These pressure drop rms percent difference numbers were also tested for combined

Couette-Poiseuille flow cases with all cases showing 1.29 % difference for any combined flow.

Auxdial Velocity [m)]

Axial Location [m] 0.15 042 Radial Location [m]

Figure 3.1: Axial velocity profile for Poiseuille flow at 0.1 [ 2] mean inlet velocity

3.9.2 Couette Flow Validation

The second comparison between analyitcal and numerically obtained solutions was performed with
annular Couette flow between a stationary stator and a concentric rotating rotor shaft. Equation
3.137 describes the circumferential velocity of the fluid in steady state. Figure 3.2 shows the
circumferential velocity profile obtained numerically as a profile of points and the analytical solution
as a dashed line at the domain exit for a seal with a 50 [RPM] rotor speed. The rotor and stator
surfaces were again defined with Dirichlet boundaries and the inlet and outlet velocities were
assigned with homogeneous Neumann conditions. However, the rotor circumferential velocity
boundary is a non-homogeneous Dirichlet condition at the rotor surface speed. The resulting
velocity profile rms percent difference between analytical and numerical solutions is less than 0.29

% for any given grid node at a grid size of 30 radial by 300 axial elements. The coarsest mesh
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deviated from the analytically obtained solution by an rms percent difference of 0.27 % and the
finest by 1.83 %.

0.6

(m]

0.5

0.4

Circumferential Velocity

012

0.1202

0.05 s 0.1204

Axial Location [m] 0 01206 Radial Location [m)]

Figure 3.2: Circumferential velocity profile for Couette flow at 50 [RPM] rotor speed



Chapter 4

Eddy Viscosity Turbulence Model by
Mimetic FDM

4.1 Discrete Turbulence Modeling

The discretization of terms for turbulence modeling comes in two parts. First, the momentum
equations were augmented with the tensor gradient and tensor divergence operators, and averaging
of scalar CC kinetic energy values to model the linear turbulent eddy viscosity effects. The additional
momentum equation terms were completed for the zeroth and first order forms of the equations
to include turbulence effects in the full solution. Then the selected Prandtl 1-Equation turbulence
model was discreteized for the zeroth order solution only. The first order solution of turbulent eddy
viscosity was deemed negligible as the scale of turbulence velocity fluctations in the kinetic energy
transport equation is already assumed to be small.

As discussed in Section 2.4.3, Equation 3.14 is augmented with the Reynolds Stress tensor
terms that are approximated with a linear eddy viscosity assumption. The resulting momentum
equations with turbulence effects is seen in Equation 2.79. The non-dimensionalization coefficient
of the kinetic energy term works out to be ZZ—ZE = 1. Note that the two Reynolds number coefficients
are not combined through summing because Re; is not a constant in space and thus cannot be

pulled out of the divergence operation.
dii - r 1 =1 =[1_ . 2
0= St +N (il) + VP +EC[C (u)] Yo [R—%E(u)—gkgdqs (4.1)

97
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4.1.1 Discrete Eddy Viscosity Diffusion

The 0" and 1t order components of momentum for the terms with tensor divergence and gradients
including the turbulent Reynolds number and turbulent kinetic energy scalars are discretized using
the discrete tensor operators in Appendix D. The terms are substituted from equations in Section
D.2 into the tensor divergence operators in Section D.3 to create the discrete form of Equation 4.1’s
right most terms. The turbulent reynolds number and turbulent kinetic energy terms are stored in
the CC vector space, and the Reynolds number requires averaging or linear interpolation to the
EC vector space to properly combine with the established discrete tensor operators. Note that the

turbulent Reynolds number scalar has only a 0" order value.

— 2 N 2 —
9] R_e{E (I/t) - gk{éqs =9 [qu] (42)

The EC vector space terms in Equation 4.2 represent the Reynolds Stresses and are given
below to be later substituted into the discrete tensor divergence operators. The linear interopolation
of the turbulent Reynolds number is performed analagously to the averages radial averages of

circumferential velocity in the tensor gradient operator for the radial locations and

Hik 1 P
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Mo 1 _A)(i+1ki2+1,k?’ﬂi+1,k + A)(ikz?,kfi,k (4.4)
peLcUe Re’ kX Axiv1 +Axi
1 1
1 p 1
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Zeroth Order Discrete Reynolds Stress Terms

0o _ 0 0 0
(T/\/)()O _ 2 1 Xfuf’k Xf—luf—l,k 1 Mf,k+uf—1,k 2k[
. = - _ = -2k,
bk Rei{k Xi Ay Xi 2 3!
0 0
00\0 _ 2 [ LUpptUeix| 2,
) = — -k
ik ) TRz 5 3Kik
Re? , \ Xi
0 _ .0
77 0 2 Wi,k,n Wi,k,n—l 2 7
Tik) TRt — gkix
’ Rel. k Azk 3 b
0 0 0 0
( XO)O 1 4 XirlVia T XVik vk T Vi
T = —
ok Rel “\ximitXi  Axi+Axia Xi+ Xi+l
€rk
0o _ .0
(THZ)O 2 Viger " Vik
in)] T/
Re’, Azi + Azpyr
0 _,,0 0 _..,0
(sz )0 _ 2 “oer " Mok Wisin Wi
Zm Re{ xe AZk + AZk+1 A)(i+1 + AXL

Z.n

99

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.7e)

(4.7f)



Chapter 4 | Eddy Viscosity Turbulence Model by Mimetic FDM 100

First Order Discrete Reynolds Stress Terms
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Real First Order Discrete Reynolds Stress Terms
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Imaginary First Order Discrete Reynolds Stress Terms
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Equation 4.2 has three directional components to be discretized, one for each of the momentum

equations.
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Zeroth Order Discrete Eddy Viscosity Operator: 20 (1)
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Real First Order Discrete Eddy Viscosity Operator: PR (1)
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Imaginary First Order Discrete Tensor Divergence Operator: ! (1)
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4.2 Discrete Turbulent Kinetic Energy Transport: Prandtl 1-Equation

The turbulent kinetic energy (TKE) variable is stored in the CC vector space, enabling convenient
use of the vector gradient and divergence operators from the mass conservation and momentum
pressure terms to perform analogous operations in the TKE transport equation. The complexity of
the discrete form of the TKE equation comes from the production component’s tensor product that
must be converted from the EC vector space to the CC. Conveniently, this discrete operation is
analagous to the EC inner product given by Equation 3.19 that describes the discrete contraction of
two EC vector space variables to single cell value. Just like in the previous section, the turbulent
Reynolds number is averaged to the EC vector space along with the TKE variable inside the
production term. Similarly, the dot product of velocity with the gradient of TKE is evaluated in the

CC vector space using Equation 3.18. Because the TKE transport equation refers to the energy
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contained in small eddies, it is assumed that the 1** order components are negligible, thus only the

0t order form is used herein.
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Note that the tensor Reynolds stresses in the TKE production terms are symmetric since they
are based on the strain rate tensor. This allows the simplification of Equation 4.34 to Equation
4.35. The boundary conditions for TKE must be assigned at each face on the inlet, outlet, rotor
and stator. The TKE on the walls along the rotor and stator boundary faces is zero because of the
no-slip condition. The inlet and outlet boundary values for TKE are more complicated. Like ANSYS

CFX Solver,'38 a constant value for the TKE could be estimated along the mass flow inlet boundary
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or a Neumann condition could be applied to the TKE with zero gradient. On the outlet, ANSYS CFX
applies a constant gradient to the TKE, which is equivalent to declaring the second derivative of
TKE to be zero on the boundary in the direction of flow.

The boundaries on TKE are selected to be zero gradient at the inlet to the seal and constant
gradient at the seal exit (not necessarily zero). These boundary conditions are seleced to avoid
having to estimate turbulent values at the inlet and exit prior to the solution. The discrete forms of
implementation for the inlet and outlet boundary conditions are in Equation 4.37. The zero gradient
condition on the inlet is implemented implicitly, while the exit constant gradient boundary condition is
a combination of implicit and explicit implementation, both with ghost cells as needed. The constant
gradient boundary is applied based on the finite difference estimation of the second order derivative
of TKE at the wall location of n + %.84 On the rotor and stator surfaces, the TKE is of course equal

to zero as a Dirichlet boundary condition due to the no-slip walls not allowing velocity fluctiation.

k _ g _kin—kiw LA +An 9k
Azo + Azy 2 022 et (4.37)

aZInlet

=k;w =ki1

4.2.1 Turbulent Length Scale, and Turbulence Model Empirical Coefficients

With a discrete TKE transport equation established, the two remaining empirical coefficients are o
and #;. The turbulent transport and pressure diffusion closure coefficient, oy, associated with the
assumed gradient-diffusion of turbulence is typically assumed to be equal to 1.'%® The turbulent
length scale, Z;, is more complicated to estimate. Prandtl originated a characteristic "mixing”
length to the eddy viscosity model and described the concept of "Boundary Layers” creating the
foundation for the "law of the wall”, Equations 4.39 to 4.41.'% The law of the wall describes the
logorithmic growth of non-dimensional velocity parallel to a no-slip wall as the reference point is
moved perpendicularly to the wall and relates it to shear stress acting on the wall. Prandtl related
the magnitude of the partial derivative of the parallel velocity with respect to the normal distance
from the wall multiplied by the square of mixing length to an approximation for eddy viscosity,
Equation 4.38, for a thin shear layer. When applied to the TKE transport equation above, the mixing
length is a decent guess for turbulent length scale assuming that the ratio of TKE production to

dissipation is constant. van Driest'®' observed that Prandtl’s mixing length model “represents
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mean fully developed flow near a wall”, but fully developed motion does not exist adjacent to the
wall. A damping function for turbulent length scale was proposed by van Driest to account for flow
changes adjacent to the wall. A modern empirical formulation for approximating the mixing length
was adapted from Li’s work'®? on annular sector ducts which was derived from Nukuradse type
pipe flow mixing length expressions.'®® This empirically derived mixing length formula combines
the use of a radial coordinate and the van Driest damping function to create a model particular to
annular fluid domains. For the purposes of this study, the turbulent length scale was calculated as
a scalar in the CC vector space using the local radial distance to the nearest stator or rotor surface

to obtain the y* value.
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To calculate the y+ value for each node in the domain, it is first necessary to calculate the
wall shear stress, this shear stress is proportional to the characteristic viscosity and the derivative
of the axial-circumferential velocity with respect to the radial distance to the wall, Equation 4.45.
When modeling turbulent flow, the wall shear stress can also be proportional to the turbulent kinetic
energy and fluid density near the wall.'®* It then becomes necessary to determine whether to use
the laminar or turbulent relationships for wall shear stress and to modify wall boundary conditions
so that the tensor divergence of viscosity and velocity gradient takes the turbulent behavior into
account near the wall.

The discrete form of the laminar shear stress in Equation 4.45 is given by Equation 4.48 for i
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locations at 0,1 and N,, N,.1, and the discrete form of the derived local node y+ value and turbulent
length scale is given by Equations 4.49 and 4.66. Local laminar y+ values are calculated with the
local wall shear stress of the same axial location. Note that the discrete wall shear is calculated on
the boundary and not the cell center where TKE is stored, while the y+ values are also stored in the
cell centers. However, as long as the y+ value is below ~ 10, there is negligible difference between
deriving this shear stress at the first node inside the domain or on the rotor boundary directly due

to the linear nature of the velocity profile in the inner shear layer.®
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If the y+ is higher and the first node exists in the log-law of the wall shear region, the friction
velocity and associated wall shear stress are calculated using the method of Lauder and Spalding. 5
The friction velocity is given by Equation 4.50 and converted to wall shear stress and y+ value
through Equations 4.53 and 4.40. The friction velocities, wall shear stress components, and y+
values are caluclated locally and individually for each wall and each velocity component direction.
To accomplish the component direction split for turbulent friction velocity, the total friction velocity
predicted using turbulent kinetic energy is split by a scaling factor related to the local near-wall
velocity component scales, Equation 4.51. The localized component wall shear stresses are then

split according to Equation 4.54.
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If the flow is found to be turbulent, Reynolds Number above 850, the local y+ is calculated on
each wall as turbulent. The Lauder and Spalding turbulent wall shear stress calculation works
better for y+ values solidly in the log-law region (> 30), so the average y+ value is taken. If the
average y+ along the wall is below 30, the wall shear stress and y+ values are calculated with the
next axial row of nodes that occurs radially away from the wall. This radial shift of wall adjacent
nodes is repeated until either the wall distance is greater than 10% of the clearance, or the y+ value

is greater than 30. This prevents the turbulent shear predictions from being invalid due to nodes
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occuring in the viscous sublayer region when the mesh grid is fine.

While the wall shear stress was calculated accordingly, the effects of any additional shear
due to turbulence must be passed into the tensor divergence operator. To accomplish this, the
wall boundary condtions for axial and circumferential velocity were changed from homogeneoush
Dirichlet, no-slip, to Neumann boundaries defined by the laminar gradients needed to produce the
appropriate turbulent wall shear stress. To do this by finite difference, the discrete finite difference
equation for wall shear stress is first equated to the wall shear stress defined by the wall functions,
Equations 4.55a and 4.59a.

From Appendix D, the gradient of velocity with respect to radial dimension is given by Equation

4.55a and relates to wall shear stress by Equation 4.55b.

gx (VO)W“” :)1(% (XVO) - L—O (4.55a)
i

In comparison the Neumann boundary condition for circumferential velocity from Appendix
C is related to the inner product summation of vorticity over the FC and EC vector spaces. For

convenience these equations are provided below in Equations 4.56 to 4.57.
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Based on these discrete boundary conditions integral to the mimmetic method, it is convenient
to re-cast the wall shear stress in terms of % (xv) as seen below. The relationship is first
presented as a continuous equation and then a discrete form for each of the Rotor and Stator walls.
Equation 4.58d shows the continuous relationship in dimensional form, which is then adjusted to

non-dimensional form in Equation 4.58e.
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Similarly to the previous equations for circumferential velocity, it is convenient to re-cast the

axial-radial wall shear stress in terms of a Neumann boundary condition.
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In comparison the Neumann boundary condition for axial velocity is as follows:
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The turbulent length scale is then calcualted using the maximum value of local shear stress,
the rotor or stator value at that axial node, to define the baseline local mixing length scale, 6, of

Equation 4.65.
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(4.61)
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4.3 Solution of the TKE Transport Equations by Numerical Iteration

Like the RANS momentum and mass conservation equations discussed in the previous chapter, the
TKE transport equation has been discretized spatially using the MFD method to be conservative
and stable. To maintain stability over time-stepping and to more closely link the iteration in velocity
and pressure to the TKE iteration, the TKE transport equation is also discretized in time using a

semi-implicit midpoint method and the same time step as the RANS equations.
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Chapter 5

Annular Pressure Seal Validation Cases

for Seal2D

The full 2D seal code was tested against liquid seal geometries and operating cases from the litera-
ture for the zeroth-order concentric solution and the first-order rotordynamic coefficient prediction
using both the hybrid bulk-flow method and the 2D first-order solution method. No gas seals were
tested in this study as the code is currently for incompressible flows only. The uncertainty bars
generated for figures in the following results were calculated using Richardson extrapolation®®
typically using the two finest meshes tested.

The first-order solution of the 2D momentum equations, and the hybrid bulk-flow method
employed, require an additional set of 4 first-order axial boundary conditions (real and imaginary
velocities at the inlet and outlet). These boundary conditions are not known. Instead they were
estimated by minimization of an optimization objective function that compares the sum of the
Seal2d first-order pressure solutions at the inlet and exit boundaries to the first-order pressures
calculated based on the inlet/exit loss coefficients specified as input and the previous velocity guess.
The relationship between velocities, first-order pressure, and loss/recovery coefficients is given
in Section 3.7 The 4-dimensional optimization is then performed using a modified Nelder-Mead
simplex algorithm based on a combination of the algorithms presented by Gao et. al. (2012),16
Jalaeian-F (2012),'%” and Fajfar et. al. (2019).'%8 The modifications are selected to improve the

robustness of the standard downhill simplex algorithm by introducting perturbations to avoid the
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simplex becoming lower-dimensional and to introduce a "drunkard’s walk” randomness to avoid

getting stuck in local minima. There is currently no additional calculation to determine appropriate

inlet loss or exit recovery coefficients in this work.

The employed Nelder-Mead simplex algorithm follows the procedure below:

1. Randomly select five sets of axial velocity boundary conditions to form a simplex.

2. Solve the first-order momentum equations (hybrid bulk-flow or 2D) to the required resolution

for each new point.

3. Sort the points according to optimization function.

4. Calculate the centroid of the simplex formed by the five best cases.

5. Perform a transformation on the simplex based on the extra point’s value and relative location.

If the simplex volume is within error margins or the optimization function is minimized to

the given residual: End optimization with the current best point of the simplex.

If optimization step count is modulo 20: Randomly select a new point within the allowed

values.

If the last point generated a new minimum of the optimization function: Perform a

reflection of the simplex to move downhill in the appropriate direction.

If the last point was a reflection and generated a new minimum: Perform an expansion

of the simplex in the same direction as the last reflection.

If the last step was a reflection or expansion and the generated objective function value
is worse than the existing points in the simplex: Perform an outer contraction of the

reflected or expanded simplex in the samre direction as the reflection or expansion.

If the last step was a reflection or expansion the generated objective function value is
better than some of the existing points in the simplex: Perform an inner contraction of

the simplex prior to the reflection or expansion, but along the same direction.

Otherwise: Shrink the simplex from a corner node.

6. Take the new simplex point and loop to step 2.
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5.1 Case 1: San Andres 2018

For the first test case, an oil seal from San Andres'%° was selected for the simulation of a purely
laminar flow. The work of San Andres has flows with axial Reynolds Numbers less than 50 and

circumferential Reynolds Numbers under 350.

Table 5.1: Laminar seal case study definition

Variable | Units | Symbol | San Andres (2018)'%°
Length mm Lg 46
Clearance mm HO 0.203
Radius mm Rg 63.5
Eccentricity - H! 0.0203
Radial Cell Count - Nr 16 to 44
Axial Cell Count - Nr 250 to 2,400
Total Cell Count - Nr 4,000 to 66,000
Viscosity Pa-s u 0.0108
Density — p 828.124
Pre-Swirl - Pr 0
Rotor Speed RPM w 0 to 3,500
Inlet Loss Coef. - e 0.01
Exit Recovery Coef. - (E 0.01
Radial Vel. 5 uw 0

(')u% 0

dz

us 0

un 0
Angular Vel. 5 Vw Pr- wRs

N2

Bz 0

Vs wWRs

VN 0
Axial Vel. = ww ~1

oy 0

dz

ws 0

WN 0
TKE (M) | kw 0

ki 0

az

oks 0

%%

Okn 0
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5.1.1 Zeroth-order Solution: Concentric Cylinders

The zeroth-order solution for an annular seal from bulk-flow typically provides leakage and power
loss. In this case, the code takes an average axial velocity across the seal inlet plane, which sets
the leakage by mass conservation. Thus the reported output for comparison with the work of San
Andres (2018)'%9 is the pressure drop across the seal length instead. The experiment of San
Andres (2018)'%° is performed with a fixed pressure drop of 1.5 bar (or 1.50E5 Pa) and the seal
code predicted pressure drop is shown in Figure 5.1. The percent difference between predicted and
experimental values for pressure drop across the seal is 3.6 % and the uncertainty from Richardson

extrapolation'® is 1.3E-3 %.
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Figure 5.1: Calculated vs. experimental pressure drop across a laminar seal

5.1.2 First-order Equation Simulation Results -

Eccentric Annular Region

The laminar first-order rotordynamic coefficients from the work of San Andres (2018)'¢° are shown
in Table 5.2 along with the coefficients predicted by the hybrid bulk-flow method and the 2D
first-order solution. The normal and tangential forces divided by eccentricity from the hybrid-bulk
flow method are plotted, in Figures 5.2 and 5.3 respectively, against the whirl frequency and
the polynomial expressions equivalent to the vibration equations of Section 2.1. The polynomial

regression models for the rotordynamic coefficients do not show a good linearity with R? values of
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0.318 and 0.12 for the normal and tangential directions respectively. This indicates a lot of noise
or uncertainty in the first-order solution for both calculation methods when applied to the laminar
flow of San Andres’ oil seal. The error may related to the optimization search routine to determine
the first-order axial velocity boundary conditions finding many local minima or to the accuracy of
the loss coefficients selected for these test cases. Alternatively, the issue may be due to the rapid
increase in circumferential velocity from the zero pre-swirl not being sufficiently smoothly modeled

with the axial grid resolutions tested for the San Andres seal test cases.
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Table 5.2: Case 1: Laminar rotordynamic coefficients

Variable

125

| Units | Symbol | San Andres (2018)'%° | Hybrid Code | 2D Code

Direct Stiffness
Cross-Coupled Stiffness
Direct Damping
Cross-Coupled Damping
Direct Mass

N/m
N/m
N-s/m
N-s/m
kg

KXX

3.69E4
3.70E6
2.00E4

231

7.30E5
1.20E7
1.34E5
1.36E4
1.36E4

7.46E3
2.68E6
2.08E4
1.88E2
187
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5.2 Case 2: Jolly et. al. 2018

The second test case was selected as an opposite extreme, Jolly et. al. (2018)'7° is characterized

by high speed liquid flow at axial Reynolds Numbers of approximately 23,000 and circumferential

Reynolds numbers between 0 and 96,000.

Table 5.3: Turbulent seal case study definition

Variable | Units | Symbol | Jolly et. al. (2018)'7°
Length mm Lg 150
Clearance mm HY 0.57
Radius mm Rg 120
Eccentricity - H! 0.0285
Radial Cell Count - Nr 16 to 28
Axial Cell Count - Nr 400 to 650
Total Cell Count - Nr 6,400 to 18,200
Viscosity Pa-s u 6.53E-4
Density ) p 992.617
Pre-Swirl - Pr 0
Rotor Speed RPM w 0 to 2,000
Inlet Loss Coef. - e 0.735
Exit Recovery Coef. - (E 1.51
Radial Vel. 5 uw 0

oug, 0

0z

us 0

un 0
Angular Vel. 5 Vw Pr- wRs

e

a1 0

Vs wWRs

VN 0
Axial Vel. = Ww 8.42 10 13.78

ol

o 0

ws 0

WN 0

T

TKE ()% | kw 0.1 (v2, +w2)2

Ok 0

dz

ks 0

Iy

Okn 0
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5.2.1 Zeroth-order Solution: Concentric Cylinders

The leakage from Jolly et. al.'’? is again set by the specified average inlet axial velocity for this work.
Instead the goal is to match the pressure differential across the seal. Figure 5.4 shows the pressure
differential predicted by the zeroth-order solution to the 2D annular seal code. Meshes were tested
from 6,400 to 18,200 cells, with the full code solutions becoming less accurate (predicting higher
pressure) with increasing mesh density. This is likely due to the nature of the turbulent wall functions
used to predict wall shear stress requiring higher y+ values and the limits of a coarse mesh in a
radially small clearance region. The updates to the turbulent wall functions to draw information from
cells located further into the domain from the walls, partially resolve this issue, but not consistently
for every case. The 2,000 RPM test case from Jolly et. al.'’® was simulated using ANSYS CFX
for the concentric seal with mesh densities ranging from 28,000 to 78,000 elements. The eddy
viscosity was then exported and interpolated into the 2-D seal code using radial basis functions.'”"
The 2-D Seal code was run without the turbuelent kinetic energy transport equation, using the
imported eddy viscosity instead, at mesh densities from 12,100 to 27,500 cells to establish the mesh
independence of the modified wall function method stand-alone. Figure 5.5 shows the simulated
pressure differential results from the 2-D seal code with a 0.84% Richardson extrapolation error.'6°

Thus the remaining mesh independence issues are related to the iteration between the wall function

generated shear stress and the turbulent kinetic energy transport equations.
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Figure 5.4: Calculated vs. experimental pressure drop across the turbulent seal from Jolly et. al.
(2018)'70
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Figure 5.5: Calculated vs. experimental pressure drop across the turbulent seal from Jolly et. al.
(2018)'70

5.2.2 First-order Equation Simulation Results -

Eccentric Annular Region

Jolly et. al.'’® provides an oportunity to compare qualitative pressure profile contours as well
as the rotordynamic coefficients. Figure 5.6 shows the first-order pressure profile unwrapped
circumferentially from the seal’s rotor surface for the Jolly seal geometry at a stationary rotor speed
with inlet loss coefficient of 0 and exit recovery coefficient of 0.8. The right side shows in grey-scale
the pressure profile provided in Jolly et. al.,'’® while the left side shows the pressure profile from
the 2D first-order solution. The first order solutions are heavily dependent on the selected loss
and recovery coefficients at the inlet and outlet. Future versions of the 2-D code will eliminate
this dependence by modeling the upstream and downstream regions of the seal as well. The
quantitative values of the contours in Figure 5.6 are approximately the same between the 2-D seal
code and the results from Jolly et. al.,'’? along with qualitative contour shapes that show the same
flow profiles. Similarly, Figure 5.7 shows a set of pressure profiles at 6,000 RPM with inlet loss
coefficient of 0 and exit recovery coefficient of 1. While the magnitude of the pressure peaks and
valleys are different between the 2-D code and Jolly et. al.,’’® the contours remain approximately

the same in shape at the 6,000 RPM rotor speed. The magnitude difference can be attributed to
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inaccurate estimation of the loss and recovery coefficients, or to the mesh dependence seen in the

concentric solution.
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The turbulent first-order rotordynamic coefficients for the seal from Jolly et. al. (2018)'70 are
given in Table 5.4. The force regression analysis plots for the hybrid and 2D momentum equations
are given by Figures 5.8 to 5.11. It can be seen that the regression fit is smoother and more accurate
for the hybrid force solution than the 2D solution. The additional noise in the first order solution of
the 2-D code is possibly attributable to the mesh dependence issues with the concentric solution
compounding with the 2-D perturbation. Without an upstream region or equivalent additional
calculation, both solutions are still rather dependent on the inlet and exit loss coefficients specified
by the user. Figure 5.12 shows the dimensionless stiffness coefficient profile against rotor speed.
Both the hybrid and 2D versions of the code give rotordynamic stiffness coefficients that are within
a reasonable range of the experimental values, and showing the appropriate trends, when a good
loss coefficient is input. However, it is clear in Figure 5.13 that the dimensionless damping profile is

less accurate to the experimental results, though still showing qualitatively similar trends for the 2-D

code.
Table 5.4: Case 2: Turbulent rotordynamic coefficients

Variable | Units | Symbol | Jolly (2018)'"° | Hybrid Code | 2D Code
Direct Stiffness N/m Kyx 7.76E6 1.07E7 6.52E6
Cross-Coupled Stiffness | N/m Ky 2.65E7 3.45E7 3.29E7
Direct Damping N-s/m Cxx 1.40E5 1.34E5 6.38E3
Cross-Coupled Damping | N -s/m Cry 1.20E5 1.00E5 2.84E4
Direct Mass kg M, - 1.60E2 0
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Chapter 6

Conclusions

The zeroth-order, concentric, solution to the simulation of annular pressure seals was accomplished
with a mimetic finite difference method approach to the RANS momentum and mass conservation
equations and the Prandtl one-equation turbulence model. The error bars from Richardson
extrapolation in Figure 5.4 indicate a significant mesh dependence for the full code, but an imported
eddy viscosity profile removes this issue. Further debugging is necessary to integrate the modified
Spalding wall functions with the chosen turbulence model. The Prandtl one-equation turbulence
model provides quantitatively and qualitatively reasonable profiles when similarly run with fixed
velocities. As previusly discussed, annular pressure seals have not been modeled with a 2-D axial-
radial grid method since the work of Dietzen et. al.*® in 1987 despite the benefits of this method
falling between the two modernly accepted approaches in computational cost, engineer set-up time,
and engineer training required. The novel applications included herein are the application of many
various modern coding and optimization techniques to a mimetic finite difference implementation of
both the RANS momentum equations and a selected turbulence model. While work has been done
using the mimetic finite difference method with a cylindrical coordinate system on the Navier-Stokes
equations, the author has found no works that apply the mimetic finite difference method to a
similarly perturbed solution of the RANS equations to the 2-D axial-radial grid for annular pressure
seals. Mimetic methods and the shift matrix coding techniques are valuable due to their spatially
and transiently stable nature and computational efficiency. Similarly, no work has been done to
apply the mimetic finite difference method to the solution of turbulence models with conservation

equations in concert to the RANS equations. Neither has the Prandtl one-equation been previously

135
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applied to the simulation of annular pressure seal flows, with or without the specific modifications to
length scale and wall function calculation in this work.

The first-order solutions, both hybrid-bulk flow and 2D momentum equation, provide a qualita-
tively and quantitatively reasonable pressure profile generated circumferentially around the seal
due to eccentric whirl and the rotordynamic coefficients that are based on that pressure profile.
The first-order pressure profiles and rotordynamic coefficients remain heavily dependent on the
loss and recovery coefficients for the inlet and exit of the seal at this time, but this can easily be
overcome with future updates to the 2-D and hybrid codes. Both versions of the first-order codes
result in rotordynamic coefficients that fall within a reasonable range when an appropriate pair of
loss coefficients are selected. However, the hybrid bulk-flow code results in less accurate prediction
of damping coefficients, while having a slightly more accurate prediction of cross-coupled stiffness
coefficients. The hybrid bulk-flow method is reasonably succesfull on its own, but can be better
applied to improve the convergence of the 2-D first order code by providing more accurate initial
conditions and initial first-order axial velocity boundary condition guesses. Further debugging of the
full zeroth-order code and adjustments to the turbulence model will fine tune the results of both
the hybrid and 2-D first-order codes. As discussed above with the 2-D code, the hybrid bulk-flow
approach has not been applied to labyrinth seals since Athavale et. al. in 1996,*' though more
modern attempts have been made at hybrid methods for hole-pattern seals.

While the 2-D axial-radial grid approach to modeling annular pressure seals is not new, it has
been largely neglected in modern literature. The code(s) developed in this work are computationally
efficient, parallelized, and capable of being run on computing clusters. The development goals
have been met in terms of accuracy, engineer set-up time, and solution time to allow industrial
researchers to design seals specific to individual applications with large scale optimization studies

on a reasonable time scale.
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6.1 Expected Publications

This work will be split into two primary publications. The first publication will consist of the zeroth-
order solution methodology and turbulence implementation. The second publication will discuss the
first-order solution results with both the hybrid-bulk flow and 2D first-order momentum equations.
Additional publications will also be created, but require content discussed in the following section

on future work.

6.1.1 Mimetic Finite Difference Implementation of Turbulence In Concentric Annuli

This work will be published in the Journal of Computational Physics. This journal has an impact
factor of 3.553 (in 2020), and is appropriate for the discussion of the novel numerical methodology
and turbulence application due to the similarity with prior publications in the same journal by Oud.®’

The abstract for this publication is below: Turbulent incompressible flow through a concentric
annular region is modeled numerically with mimetic finite difference (MFD) techniques and the
Prandtl One-Equation eddy viscosity turbulence model. The numerical model consists of three
Reynolds-Averaged Navier-Stokes (RANS) momentum equations, a mass conservation equation, a
turbulent kinetic energy (TKE) conservation equation, and an empirical model for turbulent mixing
length. These equation are solved with mimetic discrete operators on an axial-radial staggered grid
discretization of a concentric annular flow domain. The work demonstrates the application of MFD
methods to eddy viscosity turbulence models with conservation equations. While MFD methods
are widely applied to computational fluid dynamics (CFD) in the literature, the author is not aware
of any attempts to apply them to turbulence modeling. The resulting analysis code is then validated

against annular pressure seal data from the literature.

6.1.2 Mimetic Finite Difference Annular Seal Modeling in 2-D and Hybrid Bulk Flow

The first-order results and discussion will be published in the ASME Journal of Gas Turbines and
Power after submission to the ASME Turbomachinery Exposition conference of 2023. This journal
was selected due to ROMAC'’s prior experience with the associated conference.

The abstract for this publication is below: Annular pressure seals are employed in turbomachin-

ery systems to limit the leakage of working fluid between pressure stages. The seal consists of a
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thin annular clearance region which lowers leakage with a small cross-sectional area and viscous
pressure losses. Modern analysis techniques of such seals tend to fall into two categories. Either
the seal model is greatly simplified through assumptions and application of empirical factors, or
the seal is modeled using 3-D CFD techniques in generalized fluid dynamics codes. The method
of simplification is referred to as “Bulk Flow” analysis due to the use of radially averaged “bulk”
values for flow variables. These 1-D bulk flow equations can be solved rapidly at the expense of
accuracy, the use of empirical factors, and flexibility in seal geometry types. This work applied a
2-D grid axial-radial grid with a memetic finite difference scheme to strike a balance between the
1-D bulk flow method and 3-D generalized CFD. The 0th and 1st order solution of the geometrically
perturbed and incompressible cylindrical Reynolds Averaged Navier-Stokes (RANS) equations were
solved to model the seal’s eccentric annular region with an assumed small and circular whirl orbit.
Turbulence was modeled with both Reichardt’s zero-equation and Prandil’s one-equation models
for comparison. The Oth order solution provided the user with leakage results, wall shear stress,
and initial pressure differential estimates. The 1st-order solution refined the pressure differential
estimate and models the circumferential variation to obtain rotordynamic coefficients from multiple
whirl speed cases. The rotordynamic coefficients predictions from the perturbed 2D finite difference
code were then compared to a 1st-order hybrid CFD-bulk flow method and experimental studies on

smooth annular seals from the literature.

6.2 Recommendations for Future Work

The initial goals for further code development consist of additional validation and comparison to
the literature and commercial CFD software. The author has requested electronic data for the
first-order unwrapped pressure profiles from Jolly et. al.,’’® shown in Figures 5.6 and 5.7. A direct
numerical comparison of the first-order pressures will allow for further fine-tuning of the 2-D and
hybrid codes and a quantification of the first-order solution’s relative accuracy. Both the first-order
pressure profiles and rotordynamic coefficients will then be additionally compared to traditional
bulk-flow and full 3-D commmercial CFD eccentric simulations for the test cases presented. Then
an additional test case will be added from the work of Kaneko et. al.'’? that consists of a water

seal with axial Reynolds number of 5,000 and circumferential Reynolds numbers ranging from 0 to
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4,000 to cover the lower speed turbulent flow range. These additional validation steps will be taken
prior to submission of the expected publications from this dissertation.

Outside of code validation, one of the easiest code updates to apply consists of modifying
the code to allow compressible flow cases. Due to the spatially conservative construction of
the finite difference equations employed in this work, it is likely that the only changes necessary
to the momentum and mass conservation equations would be the inclusion of a localized fluid
molecular viscosity translated to a local baseline Reynolds number for each node that is updated
based on the solution of additional equations for energy conservation or equations of state. The
remaining categories of future work can be broken into two approaches. The first category is to
allow generalized seal geometry and boundary conditions so that seals can be optimized for specific
tasks or more varieties of seals can be investigated. The second category is the investigation and
comparison of alternate turbulence models and wall functions for various geometries and operating

conditions.

6.2.1 Generalized Geometry

The potential approaches to generalize the geometry for a finite diference CFD code consist of the

following options:

 Using a rectangular mesh grid, remove cells outside the seal domain and adjust the boundary

handling functions to deal with multiple faces in each boundary direction.

+ Link multiple rectangular domains together at adjoining faces to create a multi-domain finite

difference method.
 Adjust the fintie difference mimetic operators to apply to an unstructured mesh.

+ Apply an immersed boundary method'”® of pseduo wall forces between grid elements to

model irregular rotor and stator surfaces.

» Convert the mimetic operators to the finite element method with an unstructured mesh grid.

Each of these options has positive and negative points associated. The first two options are

likely the simplest to implement, but would be most restricting on the potential geometries to
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model. The user would be restricted to geometries that can be mapped onto quadrilateral grids.
Allowing an unstructured grid with mimetic finite difference operators would require additional matrix
inversion operations to automatically calculate the adjoint discrete vector and tensor operators,
thus increasing the computaitonal cost as the trade-off for flexibility. Employing the immersed
boundary method'”® would likely be the most computationally efficient method while retaining
the finite difference nature of the code to minimize time to modify and test new code. The last
option of switching from fintie difference to finite element methods would allow similar flexibility for
geometries, but would sacrifice some of the stability of the mimetic finite difference method and

requrie extensive researcher time.

6.2.2 Turbulence Modeling

Future work related to modeling turbulence in the 2D annular seal code consists of testing multiple
turbulence models of zero, one, and two conservation equations; or testing the application of
different wall functions.

The primary options used for turubulence modeling of annular seals include variations on the
123

k — € 2 equation model (for y+ values > 30) and SST k — Q 2 equation model (for y+ values < 30).

Additional alternative turbulence models of potential interest are:

+ Cebeci-Smith empirical model

Baldwin-Lomax empirical model

« £ equation model of Johnson et. al.

Spalart-Allmaras 2-equation turbulence model

Another publication could investigate the differences in usage of smooth and non-smooth wall

functions or wall functions that account for the circumferential curvature of the seal.



Appendix A

Non-dimensionalization and Reynolds

Averaging

As discussed in Section 2.4.1, the mass conservation and Incompressible Navier-Stokes momen-
tum conservation equations are frequently Reynolds Averaged to introduce turbulence modeling
corrections for high Reynolds Number flows. This averaging results in the Reynolds Averaged
Navier-Stokes (RANS) equations that include a Reynolds Stress Tensor to model local time fluc-
tuating turbulence. In this work, and many from the literature, the Reynolds Stress Tensor is
approximated though application of artificial Eddy Viscosity that modifies the diffusion of velocity
through the domain. The RANS equations with eddy viscosity modification are given below in Equa-
tion A.2, wher each «'d variable represents a flow variable with physical dimension. Compressible

flow is similarly managed through Favre Averaging over fluid mass.

1 ¢ o o>
E* 25 [V* ® I/—i* + (V* ® M*)T] (A1)
i* 2 2
9 (a’:f ) +pilt V' ®i* =— VP +V* - [u (25* - v I) +2u'E - Spk" 1 (A.2)
k* _1 x/ %/ (A 3)
_2u u .

When performing numerical analysis of the partial differential equations it is common to non-
dimensionalize them. Non-dimensionalization of the equations allows the researcher to more
directly view the relative strength of contribution from different physical effects, levels the scaling

of terms to prevent poor matrix conditioning, and exhibits the characteristic properties of the
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fluid system. Non-dimensionalization has an additional benefit to the numerical stability of a
system of equations because it typically helps to manage the condition number of the matrices by
bounding the scale of the numbers involved. All non-dimensionalization is based on the idea that
an equation representing physical effects must have consistent units within and between each term
of the equations. In this case the momentum, mass, and energy conservation in the Navier-Stokes
equations each have consistent units within each conservation. The continuity or mass conservation
equation has units of [ms™!] [m] = [s~!]|, momentum conservation has units of force, and energy
conservation typically has units of temperature ( though sometimes other units are used ). Thus
each piece of a physically meaningful equation can be gathered into dimensionless IT groups,
so called from the Buckingham = theorem, where the number of dimensionless =’s is based on
the number of variables minus the number of physical dimensions involved. In the case of the
Navier-Stokes equations there are seven basic variables contributing to the change in momentum:
position, velocity, density, viscosity, pressure, force and duration. These variables are based on
physical dimensions of length, time and mass. This suggests that there should be 4 dimensionless
paramters as coefficients for the non-dimensionalized variables. To determine these II groups, one
first takes each physical dimension and obtains scaling parameters to non-dimensionalize them,
these scaling parameters are given in Table A.1. Note that while all of the phyiscal dimensions
must be represented in these scaling parameters, it is not necessary for the scaling parameters to

contain only the physical dimension.

Table A.1: Non-dimensional Scaling Parameters

Variable | Scaling Parameter | Physical Dimensions | Sl Units
Position L.=2H" L [m]
Velocity | U. = max (u,w,v) ¢ LT ! [2]

Pressure AP, ML-1T2 %]

Frequency f T-1 [%]

The equations are then re-written by defining non-dimensional variables, Equation A.4, in
terms of the dimensional variables and the scaling factors and substituting these non-dimensional
variables into the original equation with the equivalent change of variables operations. The original
RANS momentum equation in vector form is Equation A.2 and the substition is performed in

Equation A.5. In between steps, the body force is neglected as it is not used in this body of work,
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this also means that one of the IT groups will not be discussed further as it, the Froude Number,

relates to the scaling of this body force by gravitational acceleration. Every term of Equation A.5 has

dimensions of [mL~?:~2| so multiplying through by L“Q_ non-dimensionalizes the whole equation.

pcU,

Note that to preserve compressibility, the division is in terms of a characteristic density rather than

the actual density at each point.

F =5 (A.4a)
i ZZ_ (A.4b)
V =2HV* (A.4c)
t=f" =Qr* (A.4d)
P =P;—]I:ef (A.4e)

Note that the time non-dimensionalization is based on the whirl speed, Q rather than the rotor
speed, w. This is because the expression in the exponent of the perturbation term, 7 (Qr* + 0) is
already non-dimensional with a 1 x s. This results in the first order equation having a Strouhal
number based on the whirl speed while the rotor speed contributions come from the zeroth order
velocity and pressure terms. The exponent of the perturbation then becomes simply ¢ (¢ + 6). For
model simplicity, the Strouhal number was folded into the discrete time step when performing the

numerical calculations.

C@(ﬁ[;ﬁ) +IL]—§pﬁ~V®ﬁ=—ALf:CVP+LiCV- [U—zy (QE—E[V-L_Z] I)+%2,ut§—Ug§pk I]
(A.5)
Zif(;—f+ﬁ-V®ﬁ:—/iIZ%VP+chlcUcV- [,u(2I=E—§[V-ﬁ]I)+2,u’I=E—§k-I} (A.6)
L&?Z—If+ﬁ-V®ﬁ=—EuVP+V- [é (2I=E—§M’I)+2$I=E—§k-l] (A7)
St(;—f+ﬁ-V®ﬁ:—EuVP+V-[2(é+é)§—§k-1} (A.8)

From left to right, the non-dimensional IT group coefficients in A.7 are identified as the Strouhal
Number on the time derivative, the Euler Number on the pressure gradient, and the Reynolds

Number on the viscous diffusion terms, seen combined in A.8. When dealing with the incompressible
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form of the equations, the p’s are removed as the characteristic p.. is equivalent to the instantaneous

p. Also, choose AP, = p.U? so that the Euler Number becomes one.

ou 1 1 2
—+4u-VQu=-VP+V. - |2|—+—|E-=k I A9
St&t +u QU + [ (Re+Re{)= 3k } (A.9)

Convert the components of the Navier-Stokes Equations into first order vector operation form to

allow conjugate vector operators that reverse the vector space translation.
U-Veiu=(i-V)i
:(Vxﬁ)xﬁ+%V(ﬁ-ﬁ) (A.10)
:N(ﬁ)+%V(ﬁ-ﬁ)
VPT:1V(ﬁ-ﬁ)+VP (A.11)

2

V2 = V(V~i) - VXV Xi

=-VxVxi (A-12)
=—C[E(ﬁ)]
i 1 1 1 2
ou DX+ =V (i) = — oy m o g 2. 1
St6t+(V><u)><u+2V(u i) VP+Re{ VxVxi}+V [QRefg 3k I] (A.13)

0@ _oi oy i
ot ot Ot dy

570 (A.14)
= jsii' + s (Rs — y) 2L
Ox
9ii° — 1 1 = —[.1 2
- =1 - _ e A Y Total\ _ -~ — = — E-Zr.1
oSt + ieSt (Rs =) -+ N (@) G(P ) ReReCC @ +P (2 7E -2k ]
=l ) ou’ .
reStu- = —7eSt (RS—X)a——N(u)
1)( (A.15)
_ G [ pTotall _ = 0~ (2
G(P ) =—CC (@)
+9 2L|_E—gk.1]
Re’= 3
E =% [ (i) + &7 (i) ] (A.16)
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ww = v
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nv —wu

vPT =G (PT)
oPT
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— | oPT
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apT
9z

CC (i) =VxVxii

=VXw
19¢ _ dw
r 06 az
| e _ac
dz or

r

1 [0(rw) on
A\ e ~ar
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(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

The Prandtl one-equation turbulence model is given by Equation A.24."2% In this kinetic energy

transport equation, every term has the units of Ll The equation is non-dimensionalized by
t

applying a multiple of % to each term to obtain Equation A.27. The specific turbulent kinetic energy

(TKE), TKE per fluid density, is non-dimensionalized by the square of the characteristic velocity
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scaling parameter. Similarly, the Kolmogrov length is scaled by the characteristic length used in the

Reynolds number calculation. The turbulent eddy viscosity u; is approximated by Equation A.26 in

dimensional form. When non-dimensionalized turbulent Reynolds number corresponding to the

eddy viscosity is given by Equation A.30, note that the o scaling parameter is typically assumed to

be equal to one.

kb =k, U?
ok U. 2
4 —x ®7 %) _ * i) = 2 * _ lu_f *
i Vik) =z, (vi®iy) - o =+ [ (““ak)v‘k
2us
= —E——k 19
qu [PO 3 q3]qs
:;qq=2k
1. 1
e =pek 26} = pe (K7 Ue) (20 L)
ok, U3 1 U, 02 U -
f— —< (ug -V k;)z[QUCL k;¢;—E-UZ<kso ® — (Vs ®iig)
Lc s s chy Lc c3 qs o5 L s q
3
vk} o1 1 e\ U2
-—=Cp—+—Vs-|— — | =<Vik
L. Df{+Lc * Lo ’uo+0—k L. st
Ok , Le ud . L. 52 U, .
U? f—L + =S =< (ily - Vsky) =— |2UcLc szi«—E —ks6 ® — (Vs ®u
c 8t Ug) Lc N N UC C3 qs g5 LC ( S q)
3
LU  k; L. 1 [1( W)UQ. ]
-—=—Cp—+——V,-|— +— | =<Vk
Uch Df{ Uch * PO Ho ok ) Le¢ st
L. 0ky 1 2 -
f==—" 4 (iiy-V k¢)=[2k2f{}=ﬂ——k¢6 } ® (Vs ®iig)
U at S S A 3 qs g5 S q
"
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-Ccp-Lt , +— | Vsk
Df{ chcUc K (,U() O-k) s i‘]
1
1 cki2s 1
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Re{ pCLCUC chcUc
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(A.28)

(A.29)

(A.30)

(A.31)



Appendix B

Discrete Mimetic Operator Derivation:

Divergence & Adjoint Gradient

Divergenc and gradient are vector calculus operators that act on variables that represent field
values. The divergence operator acts on a vector field to calculate the scalar outward flux density
of a differential volume. For the purposes of this study, the divergence operator (Drc—cc) is a
primary discrete operator and represents the mass conservation part of the Navier-Stokes equation.
Drc—cc Will act on the velocity vector components stored in the face centered (FC) vector space
and translate it to a scalar value held in the cell centered (CC) nodal vector space.’’''® The CC
vector space stores flow variables such as pressure, viscosity, density, turbulent kinetic energy and
turbulent kinetic energy dissipation. The derived operator based on Drc_,cc must act as translation
opposite to it, going from the CC vector space to the face centered space. This derived operator
acts as the gradient of pressure, determining the vector rate of change of a scalar field, and is

represented by G¢e_pc.2891117

-

B.1 Divergence Operator, Dpc_cc () =V - u

The divergence operator is defined in a continuous invariant space using Equation B.1.

.1 oo
V-u:&l{rlw)v‘;lg/(u,n) ds (B.1)
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The (u, n) is the inner product of the velocity vector field and the outward normal to the boundary
S of volume V, inner product being a generalization of dot product that reduces a pair of vector/tensor
objects to scalar through multiplication and summation. The discrete vector operator for divergence
is constructed by performing a finite volume analysis of the integral in Equation B.1. As each
velocity vector component exists in the center of a single cell face’s outward normal direction, it
is convenient to assume that vector component value for the entire cell face of a given cylindrical
shell element. Equation B.2 is the divergence primary operator definition in standard cylindrical

coordinates.

1

Dpc_ i) = — [AGA —Fy_qUp_
rcocc (1) riAriAHAzk[ 2k (reug x = re—1up—1 k)

+ AriAzi (Viomok = Viom—1.k) + riAriAO (Wi p — wi,n_l)] (B.2)

(rfuf,k - rf—luf—l,k) (Vi,m,k - Vi,m—l,k) n (Wi,n - Wi,n—l)
I"iAI"i I”iAQ AZk

This standard cylindrical coordinate operator is transformed for annular seal analysis by substi-
tution and chain rule to the eccentrically perturbed coordinate system. This variable transformation

changes the radial and circumferential terms, but leaves the axial terms in the same form. The

resulting primary discrete operator is given by Equation B.3. The rl and Airi terms are approximated

by Taylor series to avoid ending with perturbation parameters in the denominator which would
later prevent the first order terms from having the same scales of . The circumferential derivative
has also replaced by a discrete equivalent that includes the effects of the perturbed variable

transformation and chain rule.

0 0
. 1 Xelp o= Xe-1Up_q i
Drcocc () =0=— (1+e¢)
Xi Axi

1 [Xfu},k +(Rs — x¢) M(},k] - [Xf—w;_l,k +(Rs = xr-1) uy_y 4
+e—
Xi Axi

0 0
_ (Bs —xi) Xl = Xe-1ts i (B.3)

X? Axi

0 _ .0
Visrk ~ Vi-1Lk

Axiv1 +20x; +Axia

vie+2(Rs = xi)

o1
+ 16—
Xi

0 _ .0 1 1
Win " Wina1 Win =" Wina

+ t+e
Azy Azg
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B.2 Discrete Divergence Operator, Zeroth Order: D° (i)

0o _ 0 0 _ .0
1 XeUy (o = Xe-1Up_q g N Win = Wino1

(B.4)
Xi Axi Az

Do (@) =0 =

B.3 Discrete Divergence Operator, First Order: D! (i)

. _ 1 xeup = Xe-1uy_y 1 (Rs=x)ul = (Rs = xe=r)uy_,
Dycyce () =0=— +—
Xi Axi Xi Axi
_ (Rs — ¢ Xeg = Xe-1Ug_y N l)(fu}”,k —Xe-1tp_y
X2 Axi Xi Axi

0 _ 0 1 _ 0
Viel,k ~ Vi-1,k Win =W

114
+e—|v;, +2(Rs — xi +
LXi Vi +2(Rs = xi) Axiv1 +2Ax; + Axi-1 Azg

B.3.1 Discrete Divergence Operator, Real First Order: D¥ (i)

0
R . 1 Xf”g,k - /W—lug—l,k Rs ”2,k TUp gk
DR, (i) =0=— p oS Gk oLk
Xi Axi Xi Axi

Rs Xﬂ‘g,k _/\/f—lug—l,k 1 Xf”?,k _Xf_lug—l,k
_—— + —_—
X7 Axi Xi Axi

R _ R
1 VI " Wi,n Wi,n—l
xi "k Azg

B.3.2 Discrete Divergence Operator, Imaginary First Order: D’ (i)

I I
DI (17) —0= 1 Xfuf’k _Xf—luf_l’k
Fc—cc (U) =U=—
f Axi
X X (B.7)

1| g Vitlk — Vi-1,k in Win-1
+—[vi, +2(Rs — xi - - + — -
xi | Bk ( x) Axiv1 +2Axi + Axi-1 Az
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B.4 Derivation of the Adjoint Gradient Operator, Gcc_rc

Using the support operator method, the adjoint gradient operator (Gcc_.rc) must be constructed as
the negative conjugate of the divergence operators. The adjoint discrete gradient operator must
map between vector spaces in a reverse of the discrete divergence operator.''®'"” The discrete
gradient operator maps from the cell centered vector space (CC) to the face centered vector space
(FC). The construction of the paired support operators enforces the properties and identities of
the vector calculus operations involved.?8116 Equation B.8 describes the relationship between
these paired operators and is based on integration by parts from the Gauss-Green Divergence
Theorem. Notice, the RHS of this relationship covers directly including boundary conditions into the

discretization and will be discussed later in Sections B.5 and C.3.88:146

/ECCHFC (P)-ﬁd%+/ PD (i) d%:jfp(ﬁ.ﬁ) ds (B.8)
Va Va S

For any given cells within the domain, the volume integral must apply discretely, so for grid

locations that are not bordering the domain Equations B.11 and B.10 apply.

/E(P)-ﬁd%:—/PD(ﬁ) dv (B.9)
Va v

<E(P) , ﬁ)FC _ <ﬁ,D (ﬁ))CC (B.10)

The inner product is a generalized dot product that measures the magnitude of the inner space
between the contributing terms. As a magnitude, a complex conjugate must be used on each side
to ensure that it continues to work with the complex valued perturbed flow variables. One of the
scalars or vectors in the inner product space is selected to be the complex conjugate, and the
other term must be conjugate for the different inner product space. The gradient operator and the
inner product relationship is developed by selecting an arbitrary internal cell (i,k) and collecting all
contributions to that cell’s degrees of freedom by including the FC vector space contributions from
neighboring cells. As a gradient, the neighboring cells in each coordinate direction will contribute
to the terms that must equal the divergence in our arbitrarily chosen CC vector space cell of i,k.%"

Notice that the velocities are shown unperturbed and the circumferential derivative is given as an



B.4 \ Derivation of the Adjoint Gradient Operator, Gcc_rc 151

operator, otherwise it is impossible to directly equate the operators for divergence and gradient
as the circumferential derivative operator results only in first order values for the derivative of 6.
Similarly, the equations are maintained in their un-expanded form without any higher order ¢ terms
removed to maintain the possibility of equating the operators. This means that the operators will not
be perfectly adjoint in the long run, but the error should be no worse than that included inherently in

the perturbation method.

(P.o @) <P_k (xi +2 [Rs = xil) Axi (1 - £) A6z, {

CC(i,k) -
e +& (Rs = xo)l [u2 + ul |

(I1+¢)
Ayi

1 (Rs — xi)
Xi X;

[xz-1+&(Rs — xr-1)] [ug_l,k + 8“,%;_1,,{]

Axi

0 _ .0
Vistk ~ Vic1k

Axiv1 +2Ax;i + Axi1

1 (Rs — xi)
Xi X;

1 (RS_l
— ¢ s
Xi ;)(,-

0 _ .0 1 1
+Wi,n Wi,n—1+gwi,n Win-1
Az Az
k k CC(ik)

(1+¢)

+ iev}’k +27e (Rs — x)

(B.11)

Begin with radial terms only from the Divergence inner product for cells (i) and (i+1), with extra
A’s canceled as appropriate because they will be in the conjugate gradient inner product also.
The product of (1 - ) (1 + &) can be left out at this step as it results in (1 + £24%) and the squared

perturbation parameters are dropped.
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<ﬁD (ﬁ)>CC(i,k) * <ﬁD (ﬁ)>CC(i+1,k) -

Pix lxvi+&(Rs — xi)] Ay {

1 (Rs - xi) [xs+&(Rs — xe)lue i
- - 8—2 (1 + 8)
Xi i A/\/l
L 8(RS .0 (1+8) xe-1+&(Rs — xe-1)]ur-1.x
Xi 7 Ax; (B.12)

+ Pir1k [xis1 + & (Rs — xis1)] Axis {

[xz+1+ & (Rs = xee1) Uik

1 (Rs — xi+1)
£

- (1+¢)
Xi+l X2 AXin
1 (Rs — xis1) [xe+&(Rs —xe)|ue i
-& 5 (1+¢)
Xi+l Xis1 Axis

Collect us x terms in the gradient inner product space to match with the divergence terms.

(_ <a (P)- ﬁ>FC,cell(i,k)) ) (<FD (ﬁ)>CC(i,k) " <FD (ﬁ)>CC<i+1,k>) B

ug ug k
Pixlxi+&(Rs — xi)] Axi (1 +¢) {

1 (Rs — xi)
——¢

Xi )(i2

Axi

[xs+e(Rs—xr)l W,k}
+Pir1k [xis1 + & (Rs = xir1) ] Axiv1 (1 + &) {

1 (Rs = xi+1)
- —-&

[xs +&(Rs — xe)lus i }

Xixl X2, Axi+1
(B.13)
_ R Axi .
(— <G (P) - M>FC " k)) == TX {[)(f +&(Rs — xz)] ”f,kGCCHFCXPi,k}
R e (B.14)
_ Axin

5 {[Xf +&(Rs — xz)] Mf,chc_chPi,k}
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—% (Axi +Axis1) {MMCCHFCXPLI(} =
Pix Lxi+& (Rs — xi)] Axi (1 +e){
LxeteRs=x) uex
Axi

1 (Rs = xi)
- e _
Xi X;

(B.15)

+Pir1k [xiv1 + & (Rs = xis1) | A (1 + &) {

L g(RS = Xi+1)
2 Ayt

Xi+1 Xiv1

0Py i . 2(1+e)
ox Axi +Axin

—_— 1 (Rs — xi+1)
Pk [xis1 + & (Rs = xir1)] -& 2/\/ .
Xi+l Xit

|

At this step the higher order ¢ terms are discarded to obtain the final discrete radial gradient

E/\/(P):

(B.16)
(Rs — xi)
E——

Xi )(,-2

~Pix xi+&(Rs — xi)]

operator. This operator is the equivalent of a standard finite difference estimation of the radial
pressure derivative, but with the nodal pressure values scaled by the difference between the true

radial location and the approximated inverse radial location.

— 0Py i 2(1+¢) 0 1 0 1
G, (P) = = = Pt o pY =
o) Ox  Axit Ay || R T
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+8Pi+1’kXi+1)E —&P;  xi—
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Next, perform a similar analysis for the circumferential terms of the inner product equivalence.
Select cells (i-1,k), (i,k), and (i+1,k) for analysis as they all contain v; ; terms due to the radial

derivative in a% term. Note the truncation of higher order ¢ terms.

Axi+2Axi-1+ xi-2

Pi_1x [xi-1 +e(Rs—xi—1)] Axi—1A0Az; (1 - &) {
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1 R¢ — v: v Py
— 8( S M‘ [z’svl +2¢e (Rs — x) i+2.k Lk
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evi, +2¢e (Rs — x)

Xi+l X Lk Axiv2 +2Axin + xi

|

Collect only the coefficients of v; x to equate to the gradient operator inner product since the

circumferential derivative is a known function of 6 at any given node.

(_ <a (P) - IZ>FC)v- k - (<ﬁD (IZ)>CC(i—1,k) " <ﬁD (ﬁ)>CC(i,k) * <FD (ﬁ)>CC(i+1’k)) )
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} (B.21)
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((E(P) i) +(G(p)-a) )
FC,cell(i,k) FC,cell(i,j+1,k)
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i,k i,j+1,k (B 22)
AxiAOAzZ (1 - G G |
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XieAxiv1 | 1 ) Piy1
+ 272e (Rs — x) :
‘ {/ﬁ [ Axiv2 + 2Axi41 + Ay

|

The obtained circumferential scalar gradient operator, Equation B.24, is maintained with a
nominal circumferential derivative of the first order pressure while the additional chain rule term is
defined with a non-standard finite difference where nodal zeroth-order pressure values are scaled
by the difference between the true radial location and the approximated inverse radial location along
with a differential area that includes the surrounding cells. Note that the derived gradient operator is
the conjugate and the pressure terms used at this step are complex conjugates of pressure, only

relevant for the first order pressure terms.

0
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As previously discussed, the axial component of gradient is unaffected by the variable change

except the first order term being a complex conjugate. Thus the whole discrete support operator for

gradient, Equation B.27 is obtained by combining Equations B.17, B.25, and B.26. It is then split

into zeroth and first order perturbation components as with the divergence operator.
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B.4.1 Discrete Conjugate Gradient Operator, Zeroth Order: G (P)
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B.4.2 Discrete Conjugate Gradient Operator, First Order: G (P)
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Discrete Conjugate Gradient Operator, Real First Order: e (P)
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Discrete Conjugate Gradient Operator, Imaginary First Order: G (P)
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B.5 Boundary Conditions from Conjugate Gradient Operator

Currently the mimetic discretizations of divergence and gradient operators, establilshed in Seciton
B.4, use data that is entirely within the domain or on the domain’s boundary, except for the
circumferential gradient of pressure. The circumferential momentum equiation requires a pressure
gradient calculation at every cell location in the domain causing i+1 adn i-1 indices to extend out of
the domain on the rotor and stator boundaries. This means that the rotor and stator boundaries
require their ghost cells to have defined pressures. This pressure value is not obvious, but a
value consistent with the physics of the problem and the discretization can be obtained through
application of standard no-penetration and no-slip wall boundary conditions.

To obtain a consistent ghost cell value for pressure, the conjugate gradient operator can be
used to determine the radial gradient at the # =0 (i = 4) and £ = N, (i = N, + 1). If this gradient is
set equal to zero, the values for the ghost cells can be directly determined using Equations B.32

and B.33.
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_ 2

=————— P}, — P} +&P], — &P}
Axo + Axis { 1,k 0,k 1,k O,k} (832)

0 1 _ po 1
Po,k +8P0’k = Pl,k +sPLk

— 2
G, (P :0:—{130 ~P%  4ePl . _gpl }
v ( )NX+%,k Axi+ Ayins | Netlk Nk TEON 41,0 80N, & (8.33)

0 1 _ pO 1
PN tePN 1.0 = P,k T €PNk

By extending the divergence operator to the boundary using the identity given by Equation B.8,
the value of the pressure on the boundary can be calculated from the values within the domain.
This is not strictly necessary, since the radial gradient of pressure along the radial boundaries is
zero, the value on the boundary is approximately equal to the value of the first cell center within the

domain.



Appendix C

Discrete Mimetic Operator Derivation:

Curl & Adjoint Curl

Curl is a vector calculus operator used to calculate the rate of rotation in a vector field. Two
sequentially applied curl operators, are related by vector identity to the laplacian. This work employs
the curl operator and its adjoint discrete operator to calculate the laplacian of the velocity vector field
and thus the flow diffusion. This means that the curl and adjoint curl operators must respectively
end and start in the face centered (FC) so that they can be used in the Navier-Stokes momentum
equations for each coordinate direction. As the curl vector operator, results in a vector as well, the
intermediate vector space must have individual locations for each vector component like the FC.
This transitional vector space that the curl operators map to and from is located on the edge center,
(FC) of each positive cell face. The primary operator curl, C (i), is chosen to translate from the EC
vector space to the FC vector space based on the equivalent similar work done by Oud®' and the
review of Lipnikov.88 The adjoint curl, C (ii), performs the translation in reverse from FC to EC and

represents the vorticity vector field of the fluid flow.

C.1 Curl Operator, Cgc_yc (©) = VX

The coordinate invariant definition of curl in a continuous vector field is given by Equation C.1.88.115.174
The left surface integral is performed over the positive outward normal face of a given cell in each

axial direction and the right line integral is performed around the perimeter of each positive face.
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So, 7 is a unit vector directed tangentially along the face perimeter in a standard right hand rule
orientation. @ is the EC vector space projection of the flow vorticity vector. Operating on the EC

vector space, this definition is particular to the primary discrete curl operator.

/CEC—>FC (Wgc) - ndS = %@EC -td¢
s ’ (C.1)

- - 1 .
(1, Cec—re (WEe)) = lim - ‘;g (&gc, 1) df
S—0 S K

The discrete curl vector operator is formed by discrete integration at each EC location on
the outward normal faces defined around FC. Oud®' defines this discrete operator in cylindrical
coordinates using Equation C.2. For convenience, the discrete circumferential derivatives from
Oud’s equations are replaced in advance by the circumferential partial derivative as this is known
due to the geometric perturbation and assumed perturbation form of each variable’s solution. Note
carefully the different usage of r, and r; depending on the radial location of the vector component

in the FC vector space.

6( Wy n—W¢ pn-1
- 192 _ 9 1 (_) _ Wen=@rn
C (a))f,k 790 " oz re \ 06 2.k Az
- _ > - _ an O _ Nijn—Nin-1 _ $ek=8r-1,k
Cec—rc (Dpc) = VXD =|C (&) | = - = Ao A (C.2)
- 1 (0(rw)  On 1 | reWen—Te-1We-1n _ [(O7
C(D)in r [ or 00 ri Ar; 39 );

Equation C.2 is adapted for this work by translation to the geometrically perturbed coordinate
system through substitution and the chain rule resulting in Equation C.3. As with the discrete
divergence operator, inverse radii are approximated through Taylor series to avoid perturbation
parameters in the denominator. Equation C.3 is the form that will be needed to construct the adjoint

support operator for curl.
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0 0 .
1 (Rs=xo) || . ) Covik ~Sro1k
— —s—=2L""||ze +7e(Rg — yyp) —— =
X¢ X7 Sk (Rs = xe) Axi +Axin
_ W¢ n — We,n-1
Azk
] ; Min —Min-1 Gk —&r-1k 1
C (D)1 Az Axi l-¢
Crorc (@) = | € @ik 1 Rs—x) { (C.3)
Xi )(1-2
C (&) [xe +&(Rs = x¢2)] we,n (1+8)
- . Axi
1+ &(Rs — yo- _
_xe1+8(Rs — xe-1)] we-1n (1+e)
Ayxi
0 0
Mot — 10
.1 . i+1,n i-1,n
- - +27e (Rs — xi
[wnl’n ve (Rs Xl)AXi—1+2AXi+AXi+1 }

To complete the primary operator, before moving on to the support operator, the perturbed flow

variables are substituted and higher order powers of the perturbation variables are discarded to

result in Equation C.4. This equation is then split into its zeroth and first order perturbation terms

for usage in the numerical code.

Cec—rc (©) =

C (D)

1
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5 is{;,k+is (Rs — x¢)
Xe

0 0 1
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0 0 _
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0 0 1 1
(Q,k - gf—l,k gf,k - 5/—1,1(
- +&

1

1
ni,n
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C (‘T))i,n

1
Xi
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|
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Axi

[xr-1+&(Rs — xr-1)] [wg_l,n +e
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(C.4)
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C.1.1

C%C—>FC (@) =

Discrete Mimetic Operator Derivation: Curl & Adjoint Curl

Discrete Primary Curl Operator, Zeroth Order: C° (o)

0 0
- 0 . _wf,n - wf,n—l
C(@er| | Azk
0 0 0 0
-0 Min = Min-1 Sk~ Sr-1k
c (w)i,k = AZk - AX
1
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C ((,t))l n i 2 ‘.n -1 -1,n
- Xi Axi

C.1.2 Discrete Primary Curl Operator, First Order: C' (&)
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Curl Operator, Cgcorc (0) = VX @

Discrete Primary Curl Operator, Real First Order: CR (o)
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Discrete Primary Curl Operator, Imaginary First Order: C’ (&)
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C.2 Derivation of the Adjoint Curl Operator, Crc_kc

Like the adjoint discrete gradient operator constructed in the previous chapter, the adjoint operator
to the discrete curl operator must translate between vector spaces in reverse of the primary operator.
The primary curl operator was selected to map EC — FC, so it’s adjoint pair will map FC — EC.
The primary operator supports the construction of its discrete adjoint through the vector calculus
identity given in Equation C.10.""” The volume integrals correspond to inner products of each
vector and operator combination, while the surface integral is applied to extend the operators to
the domain boundary to meet the specified boundary conditions. When the grid is rectangular,
the surface integral on the LHS is zero by definition of the velocities since the velocity vectors are
parallel to the outward normals of the boundary. For any vector space locations within the domain,
the identity relationship must be enforced, so by collecting the primary operator terms that contain a
given vector @gc at one vector location in the EC vector space, it is possible to derive the operator
to define the adjoint curl mapping. Using the inner product to define this relationship, Equation C.11

must hold for all internal nodes.

/CECﬁFC (@)-ﬁd%:/ & - Creogc (i) d%—f&(ﬁxﬁ) ds (C.10)
Va Va S

<A%CEC—>FC (&) ’§>FC = <A75, Crc_EC (ﬁ)>EC (C.11)

Recall that the adjoint curl operator defines vorticity, SO 1; », wz.», and ¢z x correspond to the
individual vector components of the adjoint curl operator: C (ii); ,,, C (ii);.,, and C (ii), . Oud’s
work®! defines the inner product on the FC and EC vector spaces for cylindrical coordinates. The
equivalent inner products for the 2-D grid in this work are given by Equations 3.18 and 3.19. The
following equations apply that definition with a coordinate change to define the components of inner
product at a given vector space location I that corresponds to the faces or edges of cell (i,k). First
the LHS of C.11 is defined with Equation C.12, and equated with Equation C.14, then the linear

operator can be determined through algebraic manipulation.
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. = Ay; (1 — &) ABAzZ
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Cyo, = £ (Min-1:7ins Co-1.0> L2 k) (C.13c)
Cr.., =/ (W11, 0 n-1,Mi-1.0-1, Nin—1, Mis1.n-1) (C.13d)
C)(Zn = )f (a)f—l,n’ We nsNi-1,nsMNi,n» 77i+1,n) (C1 se)
v = B Ayi (1 — &) ABAz;
<w, C (u)>EC - (Zk:) 2 {
xi +& (Rs — xi)] [ni,n—laﬂj,znq + Ui,naaj,zn]
wf—l,n—la)(f-1,zn-1 + wf—l,na)(f-l,zn
+[xr-1+&(Rs — xe-1)]

2 (C.14)

Wt n-1Cy, 201 + We.nCy, 2y,

+ [xe+&(Rs — xr)l

2
i+ xi-1+&(2Rs — xi — xi-1 C
. Xit Xi ) Xi — Xi )Q_chxf-l"gj
vl + 2Rs — xi — Xi C
+ Xi+ Xir1 +&( - S — Xi Xl+1)§f,kc)(f,9j}

Collecting all contributions for n; , in both inner product spaces spans FC and EC locations
corresponding to cells (i,k),(i,k+1), (i+1,k), (i+1,k+1), (i-1,k), and (i-1,k+1). The i+1 and i-1 cells
are included due to the expansion of dependence caused by the circumferential derivative of n
requiring extra radial locations for the %% term. To fit the equation on the page, the radii in the

1+1 and 1-1 terms were combined to cancel each other out in advance.
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Axi-1 [xi-1+&(Rs — xi-1)] [

— C(-_ ,,_’,)]
Axi [xi +&€(Rs — xi)] Wi-1,nzn \Mli=2,n, T1i=1,n5 {flion

+ [Wi,nczn (Ui—l,n, ik ’771'+1,n)]

1
+ S —
(Azk + Azg41) {

+ 20277 Co ( Mo Mo (C.17)

+2A2141Vi k41 Co; ( Nin s Ui,n+1)}

N Axis1 [xis1 + & (Rs = xis1)] [
Axi [xi+&(Rs— xi)l

Wi+1,nCzn ( Ni.n > MNi+l,n» 77i+2,n)]
= ni,n C(")j,Zn

Equating the inner products, canceling like terms, and combining the Az terms in the LHS leads

to Equation C.17. Substituting the primary curl operator into Equation C.17 leads to Equation C.19.
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Here the flow variables are expanded into their perturbed forms and the higher order eh terms

are removed. Note that this formulation is similar to that of Oud,®! with the substitution of the known

circumferential derivative and the addition of the 252 terms.
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Next gather the w,_, terms in each inner product from cells (i,k), (i+1,k), (i,k+1), and (i+1,k+1).
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Again the flow variables are expanded into their perturbed forms and the higher order eh terms
are removed. This is also similar to the form of Oud’s w vorticity term, with the difference being the
complex conjugates in the first order components.
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Next the ¢, terms in each inner product were gathered from cells (i k), (i+1,k), (i-1,k) and
(i+2,k).
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To ensure the equation is more readable, r and 1 terms are canceled as the curl operator is

substituted into the next equation. Even when the % term is taylor approximated, the resulting error

from the cancelation is a second order & term and thus discarded.
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Each nominal velocity was substituted with zeroth and first order perturbation components and

simplifed to remove higher powers of .
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C.2
C.2.1 Conjugate Curl Operator: C (i) = V x ii
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C.2.3 Conjugate Curl Operator, First Order: C! (i)
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Conjugate Curl Operator, Real First Order: CR (ii)
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Conjugate Curl Operator, Imaginary First Order: C’ (ii)
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C.3 Boundary Conditions for Velocity and Vorticity from Discrete

Curl Operators

The discretizations of the curl operators that have been created are mimetic for infinite domains.
However, any turbomachinery flow analsyis is within a finite domain. These finite domain boundaries
are given Dirichlet, Neumann, or Robin boundary conditions based on the flow physics, but the
boundary conditions also have to be applied within the context of the grid and DVTC operators to
maintian the mimetic identities. This is in contrast to a direct linear interpolation of the boundary
values to the boundary nodes, though the ideas are not incompatibile with correctly chosen
interpolation methods. As the divergence and gradient operators only employ nodes that are
directly on the boundaries or in the cell centers, the context for the velocity boundary conditions
comes from the curl operators. Particularly of interest, the n and ¢ vorticities’ derivatives in the
circumferential direction require these vorticities be calcualted at the ghost and boundary nodes of
the rotor and stator boundaries. This becomes problematic because the conjugate curl operator
that defines n and ¢ would then require information for w and u velocities, respectively, outside the
domain and single layer of ghost cells in the radial direction. Thus, the first boundary definition to
address is how to select values for those second layer ghost cell velocities or calculate vorticities or
velocities along the boundaries that are consistent with the mimetic scheme.

Starting with the rotor boundary, the inner product contribution for the first radial layer of cells,
i = N,, within the domain is written to collect the ¢, x = {NX+%J< vorticity terms in Equation C.39.
Unlike Equations C.26 and C.27, the inner product formulation does not include cells (i+1,k) or
(i+2,k) because it represents the volume integral over the fluid domian domain of the inner product
space. This exclusion of cells outside the domain is only a workable method of directly determining
homogeneous boundary conditions due to the discrete volume integral not containing points on the
wall for every velocity in this discretization. However, the derived homogeneous boundaries can

then suggest the form of non-homogeneous boundary values.
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A similar expression can be derived for w,_, and n; ,. However, the w vorticity component does
not have any variable transformed circumferential derivatives to make it more complicated than
the boundary conditions derived by Oud®' aside from the perterbation of the velocities involved.
The n voriticity component does have an additional circumferential derivative, however the axial
velocity ghost cells also have to meet the requirements of w so there is no need to specifically
derive separate radial boundaries for axial velocity from n. The remaining boundaries velocities for
velocities in their own component directions, i.e. radial velocity in the radial direction, have trivial

derivations for Dirichlet boundary types since the FC vector space exists on the rotor and stator
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surfaces for radial velocity and on the inlet and outlet surfaces for the axial velocity. The Neumann
type BC’s for any velocity and boundary can be derived by setting the vorticity component related

to that velocity and surface to be zero.

C.3.1 South (Rotor Surface) and North (Stator Surface) Boundaries

Applying the no penetration and no slip condition, uy ;. must have a homogeneous Dirichlet bound-

ary condition for the entire rotor and stator surfaces. The circumferential derivative of the radial

or 0

velocity’s first order component goes to zero also along the walls plus the 5z 5

term. The required
ghost cell for radial velocity can be obtained from setting Equation C.41 equal to the standard ¢ vor-
ticity definition from Equation C.34 and equate the radial velocity components of the equations. This
results in a ghost cell dirichlet value, Equation C.44, for radial velocity necessary when calculating ¢
directly on the walls. The equivalent ghost cell value on the Rotor wall surface is given by Equation
C.45. Both of these radial velocity ghost cells are the equivalent of a standard mirrored boundary

condition across the wall. The homogeneous Neumann boundary condition is obtained from the

radial derivative defined by the divergence operator in Equation B.3. This results in Equation C.46.
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The stator wall ghost cell boundary condition for circumferential velocity is also obtained from
the wall surface conjugate vorticity using Equation C.47 and the original definition of Z. The resulting
boundary condition is given by Equation C.49 and shows ghost cell boundary condition assuming
that there is no contribution, and therefore no work, from outside the face centered nodes in the
domain, i.e. no wall velocity. It is then noted that the ghost cell value, vy, «, is equivalent to a
reflection ghost boundary condition obtained by Taylor approximation of the stator surface speed
based on the radial derivative defined in the conjugate curl operator’s ¢ term with a zero rotor wall
velocity. This equivalence is shown in Equation C.50. Note that the first order component of the
ghost boundary value is still a complex conjugate of the circumferential velocity’s first order value.
However, this complex conjugate does not actually change the assigned boundary value as there

are no additional « multiples to change the sign from the RHS to LHS.
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A zero wall speed is fine for the stator surface, but it is a trivial case in turbomachinery analysis
for the rotor surface, i = % It is necessary to obtain a relationship for the ghost cell boundary
value that allows a non-zero wall speed. As previously noted, the originally derived boundary for
circumferential velocity is equivalent to a Taylor series approximation using the combined rv as the
expanded variable with a radial derivative approximation. The ghost cell value for a moving rotor
surface is provided in Equation C.51. A similar ghost cell value can be derived for a moving stator,

but is not presented in this work.
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(C.51)

(C.52)

It can be demonstrated that the same procedure performed for the 5 vorticity terms and the

axial velocity second layer ghost cells, results in the same outcome. The second layer of ghost

cells is assumed to have a zero valued velocity and the first layer of ghost cells can be assigned by

linear interpolation through Taylor series approximation using the directional derivatives defined in

the derived conjugate curl operators of Equation C.34. These inerpolations to the boundary are

equivalent to the simpler boundaries assumed in Oud’s work®' when the boundary is homogeneous
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and the rotor eccentricity is assumed zero (collapsing the perturbed coordinate system back to
standard cylindrical).

The rotor/stator ghost cell values for Dirichlet axial velocity are defined in Equation C.53 based
on w’s radial derivative component in Equation C.34. Neumann BC'’s for the same surfaces are
given by Equation C.59. Obviously, for nearly all cases the axial rotor and stator boundaries will
have a homogeneous dirichlet BC, the fully boundary forms are included for completeness and in

case of modeling upstream/downstream conditions or slip along the walls.
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C.3.2 West (Inlet) and East (Outlet) Boundaries

The axial derivative components in the w and n vorticities from the derived conjugate curl operator
are used to calculate consistent ghost node values for the East and West boundaries of radial and
circumferential velocities respectively. The ghost cell values for Dirichlet and Neumann boundaries
of Radial velocity are given by Equations C.55 and C.56, while the circumferential ghost cell values

are given by C.57 and C.58. As with the radial velocity and the rotor/stator boundaries, the east/west
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boundaries for axial velocity are trivial when a Dirichlet condition is used. Equation C.59 provides

the appropriate boundary cell value for a Neumann condition on the axial velocity.
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Appendix D

Discrete Mimetic Operator Derivation:

Tensor Gradient & Divergence

The DVTC for tensor operators functioned the same way as those for vector operators. A primary
operator was selected, in this case the tensor gradient operator. This tensor gradient operator was
derived from the coordinate invariant definition of the partial gradients using Equation D.1. Acting
on the vector valued velocity stored in the cell face centered locations to produce a 3 by 3 tensor
of velocity gradients; and based on the relationship between the tensor gradient (Equation D.2a),
the strain rate tensor (Equation D.2b), and the spin tensor (Equation D.2d); it was clear that the
tensor gradient terms in the off-diagonals are stored in the EC vector space. Similarly, since the
relationship between strain tensor and vector divergence is given by Equation D.3, the diagonal
terms were stored in the CC vector space. Note that the coordinate invariant definition of the
gradient operator here does not match the equivalent derivatives obtained in the derived support

operator for vorticity due to the adjoint conjugate nature of the derived operators.
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D.1 Discrete Tensor Gradient Operator, &, (ii,)

Applying Equation D.1, the discrete derivatives from Appendix B, and Section 3.1 to the tensor
decomposition and trace definitions of the velocity gradient tensor allowed for the construction of
the discrete tensor gradient operator for velocity. The discrete divergence operator from Equation
B.5 was split into each of the three diagonal terms representing the tangential gradients. Note that
special attention needs to be given to the tangential velocity gradient of the radial velocity because
the divergence operator is in conservative form, combining the radial gradient into a single term
rather than the expanded form of Equation D.4. To maintain consistency of Equation D.3, the radial
gradient term’s form is not changed and instead the additional # term is subracted from the radial
gradient of radial velocity and added to the circumferential gradient of circumferential velocity. This
fraction of radial velocity and radial position is of course averaged by a simple linear interpolation as
seen with the convection terms in Section 3.6.3. The resulting discretized derivatives and averages
of velocity are given in Equations D.6 to D.8. Equation D.9 shows the effect of these chain rule

changes on the tensor gradient as a whole.
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D.2 Discrete Strain Rate Tensor: E

The discrete strain rate tensor is composed from the gradient tensor as seen in the previous
section’s Equation D.2b. All of the discrete operators are known, so E is constructed term by term
in Equation D.11. Note that there are only 6 terms because the strain rate tensor is symmetric.
This also negates the need to distinguish between Div (o) and V - o which are related through the

transpose of o. For completness, the following section defines the discrete tensor divergence as

Div (o).
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Zeroth Order Discrete Strain Rate Tensor Operator: E° (i)
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D.3 Derivation of Discrete Tensor Divergence Operator, I ; (os)

Like in Appendix B, the support operator method is used to construct an adjoint pair to the primary

operator. However, for the tensor operators, the gradient operator is the primary and the tensor

divergence is it’s adjoint support operator. Equation D.17 is the tensor equivalent to the inner

product relationship of Equation B.10. Note that here the tensor gradient terms of the inner product

are summed as EC and CC to properly represent a discrete integration over a given cell centered on

(i,k) due to the vector space locations that store the tensor gradient values. The tensor divergence is

stored in the FC vector space as it must be incorporated directly into the conservation of momentum

equations that are solved in the FC vector space. The inner products on the left and right hand
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sides of Equation D.17 are then summed three times by collecting all terms that contain a single
value of each of the three velocity components. This is analagous to steps performed in Sections
B.4 and C.2, where each direction component of the tensor divergence in the FC vector space will

be solved through the collection of the inner product terms that contain a single value of component

velocity.
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D.3.1 Collect Radial Discrete Tensor Divergence Terms in Inner Product

Begining by collecting all inner product contributions that contain u, x from cells (i,k) and (i+1,k)
of the FC inner product space of the RHS; and cells (i,k-1), (i+1,k-1), (i-1,k), (i,k), (i+1,k), (i+2,k),
(i,k+1), and (i+1,k+1) from the CC and EC inner product spaces of the LHS.
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D.3.2 Collect Circumferential Discrete Tensor Divergence Terms in Inner Product

Then collect inner product contributions that contain v; x from cell (i,k) of the FC inner product space

of the RHS; and cells (i,k-1), (i-1,k), (i,k), (i+1,k), and (i,k+1) from the CC and EC inner product
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spaces of the LHS.
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D.3.3 Collect Axial Discrete Tensor Divergence Terms in Inner Product

End by collecting inner product contributions that contain w; , from cells (i,k) and (i,k+1) of the
FC inner product space of the RHS; and cells (i-1,k)2, (i,k)4, (i+1,k)2, (i-1,k+1)2, (i,k+1)4, and
(i+1,k+1)2 from the CC and EC inner product spaces of the LHS.
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D.3.5 First Order Discrete Tensor Divergence Operator: 2! (o)

The collected first order tensor divergence vector

is given below in Equation D.35.
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Real First Order Discrete Tensor Divergence Operator: 2F (o)
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Imaginary First Order Discrete Tensor Divergence Operator: 2/ (o)
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D.4 Boundary Conditions for Strain Rate Velocities from Discrete

Tensor Operators

Like Section C.3, the discrete tensor operators are calculated for infinite domains. Adjustments
have to be made for the discrete locations along or near the boundaries to prevent the discrete
operators from requiring information that does not exist in the domain. The strain rate operators in
the trace do not require any velocity information from beyond the existing domain and ghost points
that have been defined in previous sections. The symmetric off-diagonal terms are summed using
the EC inner product and have circumferential derivatives that use an expanded central difference
requiring points above and below the local value. The discrete tensor divergence operator requires
i=1to i=N,_; and k=1 to i=N, for the radial terms, where C’f{i needs radial ghost velocity values

for the radial velocity on the rotor and stator. As before, the second layer ghost cell values for
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radial velocity is equivalent to the negative of the first cell inside the domain because it is zero
on the boundary with a constant gradient on the boundary, creating a standard mirror condition
across the physical boundary u_; x = —u; x and ugx = usx = 0. The circumferential terms are
calculated at i=1 to i=N, and k=1 to i=N, and require second layer ghost cell values for both radial
and circumferential velocity. The axial terms require second layer ghost cell values for axial velocity
when calculated at i=1 to i=N, and k=1 to i=N_ — 1 for o-f,f. These second layer ghost cell values for
circumferential and axial velocity are more complicated because there is already a mirror condition
at the first ghost layer. Instead, the second layer value is equal to the first ghost layer weighted by

distance from the physical boundary v_i x = 3vox = —3vix and w_i , = 3wo, = —3w1 .



Bibliography

" Dara Childs. Turbomachinery Rotordynamics. John Wiley & Sons, Inc, New York, NY, 1993.

2 HF Black. Effects of hydraulic forces in annular pressure seals on the vibrations of centrifugal
pump rotors. Journal of Mechanical Engineering Science, 11(2):206—213, 1969.

3 Dara W Childs, Luis E Rodriguez, Vito Cullotta, Adnan Al-Ghasem, and Matthew Graviss.
Rotordynamic-coefficients and static (equilibrium loci and leakage) characteristics for short,
laminar-flow annular seals. 2006.

4 F. Simon and J. Frene. Analysis for Incompressible Flow in Annular Pressure Seals. Journal of
Tribology, 114(3):431-438, July 1992.

5K. M. Becker and Joseph Kaye. Measurements of Diabatic Flow in an Annulus With an Inner
Rotating Cylinder. Journal of Heat Transfer, 84(2):97—104, May 1962.

6 FM White. Fluid mechanics (mechanical engineering). 2015.

7 Joseph Kaye and E.C. Elgar. Modes of adiabatic and diabatic fluid flow in an annulus with an
inner rotating cylinder. Trans ASME, 80:753-765, 1958.

8 Julius Weisbach and Gustav Herrmann. Lehrbuch der ingenieur- und maschinen mechanik.
Erster theil: Theoretische mechanik. [Textbook of engineering and machine mechanics]. 1875.

9Henry Darcy. Recherches expérimentales relatives au mouvement de I'eau dans les tuyaux.
1857.

10 Sydney Goldstein. The similarity theory of turbulence, and flow between parallel planes and
through pipes. Proceedings of the Royal Society of London. Series A-Mathematical and
Physical Sciences, 159(899):473—-496, 1937.

1S Suzuki. On the leakage of water through clearance space. Journal of Fac. of Eno., Univ. of
Tokyo, 18(2):71, 1929.

12 Yutaka Yamada. Resistance of flow through an annulus with an inner rotating cylinder. Journal
of JSME, 27(180):1267-1276, 1961.

13 Yutaka Yamada. On the pressure loss of flow between rotating co-axial cylinders with rectan-
gular grooves. Bulletin of JSME, 5(20):642—-651, 1962.

4 Yutaka Yamada. Torque resistance of a flow between rotating co-axial cylinders having axial
flow. Bulletin of JSSME, 5(20):634—-642, 1962.

206



Bibliography 207

15 Yutaka Yamada, Koichi NAKABAYASHI, and Kozo Maeda. Pressure drop measurements of the
flow through eccentric cylinders with rotating inner cylinders. Bulletin of JSME, 12(53):1032—
1040, 1969.

16 Yutaka Yamada and Satoru Watanabe. Frictional moment and pressure drop of the flow through
co-axial cylinders with an outer rotating cylinder. Bulletin of JSME, 16(93):551-559, 1973.

17 Gilles Gerardus Hirs. Fundamentals of a bulk-flow theory for turbulent lubricant films. 1970.
18 John Zuk. Fundamentals of fluid sealing. 1976.

19 Joseph K Scharrer. Theory versus experiment for the rotordynamic coefficients of labyrinth gas
seals: Part —a two control volume model. Journal of Vibration and Acoustics, 110(3):270-280,
1988.

20 Patrick J Migliorini, Alexandrina Untaroiu, Houston G Wood, and Paul E Allaire. A compu-
tational fluid dynamics/bulk-flow hybrid method for determining rotordynamic coefficients of
annular gas seals. Journal of tribology, 134(2), 2012.

21 X. Yan, Jun Li, and Zhenping Feng. Validation of two-control-volume bulk flow method for
rotordynamic characteristics of hole-pattern seals. Hsi-An Chiao Tung Ta Hsueh/Journal of
Xi'an Jiaotong University, 43:24-28, 2009.

22 G.F. Kleynhans. A Two-Control-Volume Bulk-Flow Rotordynamic Analysis for Smooth-
Rotor/Honeycomb-Stator Gas Annular Seals. Texas A & M University, 1996.

23 Rohan J. D’'Souza and Dara W. Childs. A Comparison of Rotordynamic-Coefficient Predictions
for Annular Honeycomb Gas Seals Using Three Different Friction-Factor Models. Journal of
Tribology, 124(3):524-529, July 2002.

24 Tae Woong Ha and An Sung Lee. A rotordynamic analysis of circumferentially-grooved pump
seals based on a three-control-volume theory. KSME international journal, 14(3):261-271,
2000.

25 Cori Watson. Computational Modeling of Helical Groove Seals. PhD thesis, University of
Virginia, Charlottesville, VA, April 2018.

26 | Prandtl. Uber ein neues Formelsystem fur die ausgebildete Turbulenz, Nachrichten von der
Akad. der Wissenschaft in Gottingen, Math. 1945.

27 DL Rhode and SR Sobolik. Simulation of subsonic flow through a generic labyrinth seal cavity.
In Turbo Expo: Power for Land, Sea, and Air, volume 79382, page VO01T03A024. American
Society of Mechanical Engineers, 1985.

28 R Nordmann and P Weiser. Evaluation of rotordynamic coefficients of look-through labyrinths
by means of a three volume bulk flow model. Technical report, NASA, 1991.

29 JT Han. Fluid mechanics model to estimate the leakage of incompressible fluids through
labyrinth seals. Technical report, Oak Ridge National Lab., TN (USA), 1978.

30 Neal R Morgan, Alexandrina Untaroiu, Patrick J Migliorini, and Houston G Wood. Design
of experiments to investigate geometric effects on fluid leakage rate in a balance drum seal.
Journal of Engineering for Gas Turbines and Power, 137(3), 2015.



Bibliography 208

31 Neal R Morgan, Houston G Wood, and Alexandrina Untaroiu. Numerical optimization of leak-
age by multifactor regression of trapezoidal groove geometries for a balance drum labyrinth
seal. In Turbo Expo: Power for Land, Sea, and Air, volume 56659, page V02CT45A021. Ameri-
can Society of Mechanical Engineers, 2015.

32 NR Morgan, HG Wood, PJ Migliorini, and A Untaroiu. Groove geometry optimization of balance
drum labyrinth seal to minimize leakage rate by experimental design. In 13th EDF/Pprime
Workshop: Energy Saving in Seals, Poitier, France, Oct, volume 2, 2014.

33 Alexandrina Untaroiu, Neal Morgan, Vahe Hayrapetian, and Bruno Schiavello. Dynamic
response analysis of balance drum labyrinth seal groove geometries optimized for minimum
leakage. Journal of Vibration and Acoustics, 139(2), 2017.

34 JA Brighton and JB Jones. Fully developed turbulent flow in annuli. Journal of Fluids Engineer-
ing, 86(4), 1964.

35D, Elrod, C. Nelson, and D. Childs. An Entrance Region Friction Factor Model Applied to
Annular Seal Analysis: Theory Versus Experiment for Smooth and Honeycomb Seals. Journal
of Tribology, 111(2):337-343, April 1989.

36 F. J. Dietzen and R. Nordmann. Calculating Rotordynamic Coefficients of Seals by Finite-
Difference Techniques. Journal of Tribology, 109(3):388-394, July 1987.

37 R. Nordmann, F. J. Dietzen, and H. P. Weiser. Calculation of Rotordynamic Coefficients and
Leakage for Annular Gas Seals by Means of Finite Difference Techniques. Journal of Tribology,
111(3):545-552, July 1989.

38 FJ Dietzen and R Nordmann. A 3-dimensional finite-difference method for calculating the
dynamic coefficients of seals. Technical report, NASA, 1989.

39 M. Athavale, A. Przekwas, and R. Hendricks. A finite-volume numerical method to calculate
fluid forces and rotordynamic coefficients in seals. In 28th Joint Propulsion Conference and
Exhibit, Nashville,TN,U.S.A., July 1992. American Institute of Aeronautics and Astronautics.

40 MM Athavale, Robert C Hendricks, and Bruce M Steinetz. Numerical simulation of flow in a
whirling annular seal and comparison with experiments. 1995.

41 M. M. Athavale and R. C. Hendricks. A Small Perturbation CFD Method for Calculation of Seal
Rotordynamic Coefficients. International Journal of Rotating Machinery, 2(3):167—177, 1996.

42 Tomohiko Tsukuda, Toshio Hirano, Cori Watson, Neal R Morgan, Brian K Weaver, and Hous-
ton G Wood. A numerical investigation of the effect of inlet preswirl ratio on rotordynamic
characteristics of labyrinth seal. Journal of Engineering for Gas Turbines and Power, 140(8),
2018.

43 Cori Watson and Houston Wood. Evaluating configurations of double surface helical groove
seals using computational fluid dynamics. In Turbo Expo: Power for Land, Sea, and Air, volume
51012, page V02CT42A053. American Society of Mechanical Engineers, 2018.

44 Cori Watson and Houston Wood. Second stage optimization of helical groove seals using
computational fluid dynamics to evaluate the dependency of optimized design on preswirl. In
Fluids Engineering Division Summer Meeting, volume 51579, page VO03T12A028. American
Society of Mechanical Engineers, 2018.



Bibliography 209

45 Wisher Paudel, Cori Watson, and Houston G Wood. The impact of adding a labyrinth surface to
an optimal helical seal design. In ASME International Mechanical Engineering Congress and
Exposition, volume 52101, page VO07T09A092. American Society of Mechanical Engineers,
2018.

46 Wisher Paudel, Cori Watson, and Houston G Wood. Mixed helical labyrinth groove seal
optimization using computational fluid dynamics. In Turbo Expo: Power for Land, Sea, and Air,
volume 50794, page V02BT41A004. American Society of Mechanical Engineers, 2017.

47 Cori Watson and Houston G Wood. Developing an optimal helix angle as a function of pressure
for helical Groove seals. In Fluids Engineering Division Summer Meeting, volume 58042, page
VO1AT05A020. American Society of Mechanical Engineers, 2017.

48 Cori Watson and Houston G Wood. Optimizing a helical groove seal with grooves on both the
rotor and stator surfaces. In Turbo Expo: Power for Land, Sea, and Air, volume 50794, page
V02BT41A044. American Society of Mechanical Engineers, 2017.

49 Cori Watson, Wisher Paudel, Houston G Wood, and Brian K Weaver. Quantifying the linearity
of the fluid dynamics for noncontacting annular seals. In ASME International Mechanical
Engineering Congress and Exposition, volume 50541, page VO4AT05A041. American Society
of Mechanical Engineers, 2016.

50 Cori Watson, Alexandrina Untaroiu, Houston G Wood, Brian K Weaver, Neal Morgan, and
Hanxiang Jin. Response surface mapping of performance for helical groove seals with
incompressible flow. In Turbo Expo: Power for Land, Sea, and Air, volume 49842, page
V07BT31A036. American Society of Mechanical Engineers, 2016.

51 DL Rhode, SH Ko, and GL Morrison. Leakage optimization of labyrinth seals using a Navier-
Stokes code. Tribology transactions, 37(1):105—-110, 1994.

52 \olker Schramm, Jens Denecke, Siegfried Kim, and Sigmar Wittig. Shape optimization of
a labyrinth seal applying the simulated annealing method. International Journal of Rotating
Machinery, 10, 2004.

53 SP Asok, K Sankaranarayanasamy, T Sundararajan, K Rajesh, and G Sankar Ganeshan. Neu-
ral network and CFD-based optimisation of square cavity and curved cavity static labyrinth
seals. Tribology International, 40(7):1204—1216, 2007.

54 Alexandrina Untaroiu, Houston G Wood, Paul E Allaire, and Timothy W Dimond. Calculation of
dynamic coefficients for a magnetically levitated artificial heart pump using a CFD approach. In
ASME International Mechanical Engineering Congress and Exposition, volume 48630, pages
537-543, 2008.

55 A Bellaouar, BV Kopey, and N Abdelbaki. Methods of the rational choice of a labyrinth seal
design for gas pumping units. MECHANIKA, 19(1):81-86, 2013.

5 KM Becker and Joseph Kaye. Closure to “Discussion of ‘Measurements of diabatic flow in an
annulus with an inner rotating cylinder” (1962, ASME j. Heat transfer, 84, pp. 104—105). 1962.

57 Pijush K Kundu and Ira M Cohen. Fluid Mechanics. Academic Press, 3rd edition, 2004.

58 Kuei-Yuan Chien. Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-
Number Turbulence Model. AIAA Journal, 20(1):33-38, January 1982.



Bibliography 210

59 G. Chochua, W. Shyy, and J. Moore. Thermophysical modeling for honeycomb-stator gas
annular seal. In 35th AIAA Thermophysics Conference, Anaheim,CA,U.S.A., June 2001.
American Institute of Aeronautics and Astronautics.

60 Rui Xu, Yaoyu Hu, Junlian Yin, Jiangtao Zhang, and Dezhong Wang. A transient CFD research
on the dynamic characteristics of liquid annular seals. Annals of Nuclear Energy, 120:528-533,
2018.

61 Yahya Dogu, Mustafa C Sertcakan, Ahmet S Bahar, Altug Piskin, Ercan Arican, and Mustafa
Kocagul. CFD investigation of labyrinth seal leakage performance depending on mush-
room shaped tooth wear. In Turbo Expo: Power for Land, Sea, and Air, volume 56734, page
V05CT15A034. American Society of Mechanical Engineers, 2015.

62 Alexandrina Untaroiu, Cheng Liu, Patrick J Migliorini, Houston G Wood, and Costin D Un-
taroiu. Hole-pattern seals performance evaluation using computational fluid dynamics and
design of experiment techniques. Journal of Engineering for Gas Turbines and Power, 136(10),
2014.

63 J. Jeffrey Moore. Three-dimensional CFD rotordynamic analysis of gas labyrinth seals. Journal
of Vibration and Acoustics, 125(4):427—-433, 2003.

64V Schramm, K Willenborg, S Kim, and S Wittig. Influence of a honeycomb facing on the flow
through a stepped labyrinth seal. J. Eng. Gas Turbines Power, 124(1):140-146, 2002.

65 K. Willenborg, V. Schramm, S. Kim, and S. Wittig. Influence of a honeycomb facing on the
heat transfer in a stepped labyrinth seal. Journal of Engineering for Gas Turbines and Power-
transactions of The Asme, 124(1):133-139, 2002.

66 Sivakumar Subramanian, A.S. Sekhar, and B.V.S.S.S. Prasad. Rotordynamic characterization
of rotating labyrinth gas turbine seals with radial growth: Combined centrifugal and thermal
effects. International Journal of Mechanical Sciences, 123:1-19, 2017.

67CJ Chen and SY Jaw. Reviews-Fundamentals of turbulence modeling. Journal of Fluid
Mechanics, 371:379-379, 1998.

68 Virendra C. Patel, Wolfgang Rodi, and Georg Scheuerer. Turbulence models for near-wall and
low Reynolds number flows - A review. AIAA Journal, 23(9):1308—1319, September 1985.

89 V. C. Patel and H. C. Chen. Turbulent wake of a flat plate. AIAA Journal, 25(8):1078—1085,
August 1987.

70H. C. Chen and V. C. Patel. Near-wall turbulence models for complex flows including separation.
AIAA Journal, 26(6):641-648, June 1988.

71 M. Wolfshtein. The velocity and temperature distribution in one-dimensional flow with turbu-
lence augmentation and pressure gradient. International Journal of Heat and Mass Transfer,
12(3):301-318, 1969.

2 Larry A. Villasmil, Dara W. Childs, and Hamn-Ching Chen. Understanding friction factor
behavior in liquid annular seals with deliberately roughened surfaces. Journal of Tribology-
transactions of The Asme, 127(1):213-222, 2005.



Bibliography 211

73 Wiodzimierz Wroblewski, Daniel Fraczek, and Krzysztof Marugi. Leakage reduction by optimi-
sation of the straight—through labyrinth seal with a honeycomb and alternative land configura-
tions. International Journal of Heat and Mass Transfer, 126:725-739, 2018.

74 Andrei V Ivanov and Aleksandr V Moskvicev. Influence of geometry on vortex configuration and
dimension in LRE turbopump labyrinth seal. Procedia Engineering, 106:126—131, 2015.

75 Hasham H Chougule, Douglas Ramerth, and Dhinagaran Ramachandran. Low leakage
designs for rotor teeth and honeycomb lands in labyrinth seals. In Turbo Expo: Power for Land,
Sea, and Air, volume 43147, pages 1613—1620, 2008.

76 Tuncer Cebeci. Turbulence Models and Their Application: Efficient Numerical Methods with
Computer Programs. Horizons Pub, Long Beach, Calif, 2004.

77 William T Snyder and Gerald A Goldstein. An analysis of fully developed laminar flow in an
eccentric annulus. AIChE Journal, 11(3):462—467, 1965.

8 Noriyasu Mori, Mitsuhiro Yagami, Takaaki Eguchi, Kiyoji Nakamura, and Akira Horikawa. Pres-
sure flow of Non-Newtonian fluids between eccentric double cylinders with the inner cylinder
rotating. Journal of the Textile Machinery Society of Japan, 33(3):73-77, 1987.

9 Edoardo Alinovi and Alessandro Bottaro. A boundary element method for Stokes flows with
interfaces. Journal of Computational Physics, 356:261-281, March 2018.

80 Chang-Yong Choi and Elias Balaras. A dual reciprocity boundary element formulation using the
fractional step method for the incompressible Navier—Stokes equations. Engineering Analysis
with Boundary Elements, 33(6):741-749, June 2009.

81 Keng-Cheng Ang. Introducing the boundary element method with MATLAB. International
Journal of Mathematical Education in Science and Technology, 39(4):505-519, June 2008.

82 OP Gupta. Finite and Boundary Element Methods in Engineering. CRC Press, 1999.

83 Jichun Li and Yi-Tung Chen. Computational Partial Differential Equations Using MATLAB®. Crc
Press, 2019.

84 Randall J LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. SIAM, 2007.

85 S Gerace, K Erhart, E Divo, and A Kassab. Adaptively refined hybrid FDM-RBF meshless
scheme with applications to laminar and turbulent viscous fluid flows. Computer Modeling in
Engineering & Sciences(CMES), 81(1):35-67, 2011.

86 MA Bués and C Oltean. Numerical simulations for saltwater intrusion by the mixed hybrid
finite element method and discontinuous finite element method. Transport in Porous Media,
40(2):171-200, 2000.

87 TJ Chung. Computational Fluid Dynamics. Cambridge university press, 2010.

8 Konstantin Lipnikov, Gianmarco Manzini, and Mikhail Shashkov. Mimetic finite difference
method. Journal of Computational Physics, 257:1163—1227, January 2014.

89 José E Castillo and Guillermo F Miranda. Mimetic Discretization Methods. CRC Press, 2013.



Bibliography 212

90 Lourengo Beirao da Veiga, Konstantin Lipnikov, and Gianmarco Manzini. The Mimetic Finite
Difference Method for Elliptic Problems, volume 11. Springer, 2014.

91 G.T. Oud, D.R. van der Heul, C. Vuik, and R.A.W.M. Henkes. A fully conservative mimetic
discretization of the Navier—Stokes equations in cylindrical coordinates with associated singu-
larity treatment. Journal of Computational Physics, 325:314-337, November 2016.

92 G.T. Oud. A Dual Interface Method in Cylindrical Coordinates for Two-Phase Pipe Flows. PhD
thesis, Delft University of Technology, 2017.

93 Dejan Brki¢. Review of explicit approximations to the Colebrook relation for flow friction. Journal
of Petroleum Science and Engineering, 77(1):34—48, April 2011.

94 Cyril Frank Colebrook, T Blench, H Chatley, EH Essex, JR Finniecome, G Lacey,
J Williamson, and GG Macdonald. Correspondence. turbulent flow in pipes, with particu-
lar reference to the transition region between the smooth and rough pipe laws. Journal of the
Institution of Civil engineers, 12(8):393—422, 1939.

95 Heinrich Blasius. Grenzschichten in fliissigkeiten mit kleiner reibung. 1907.

9 SJ Davies and CM White. A review of flow in pipes and channels. Engineering, 128:69-72,
1929.

9 Re Jo Cornish. Flow of water through fine clearances with relative motion of the boundaries.
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character, 140(840):227-240, 1933.

98 Ludwig Prandtl. liber Flussigkeitsbewegung bei sehr kleiner Reibung. Verhandl. Ill, Internat.
Math.-Kong., Heidelberg, Teubner, Leipzig, 1904, pages 484—491, 1904.

99 Dara W Childs and John B Dressman. Testing of turbulent seals for rotordynamic coefficients.
Technical report, NASA, 1982.

100 JRMCRHS Fenwick, R DiJulio, MC Ek, and R Ehrgott. Linear force and moment equations for
an annular smooth shaft seal perturbed both angularly and laterally. 1982.

101 JW Polkowski. Turbulent flow between coaxial cylinders with the inner cylinder rotating. 1984.

102 C. Gazely. Heat Transfer Characteristics of the Rotating and Axial Flow Between Concentric
Cylinders. ASME Transactions, 80:79—89, 1958.

103 H, F. Black and D. N. Jenssen. Paper 9: Dynamic Hybrid Bearing Characteristics of Annular
Controlled Leakage Seals. Proceedings of the Institution of Mechanical Engineers, Conference
Proceedings, 184(14):92-100, September 1969.

104 GG Hirs. A systematic study of turbulent film flow. 1974.

105D, W. Childs. Dynamic Analysis of Turbulent Annular Seals Based On Hirs’ Lubrication Equa-
tion. Journal of Lubrication Technology, 105(3):429—-436, July 1983.

106 HF Black, PE Allaire, and LE Barrett. The effect of inlet flow swirl on the dynamic coefficients
of high-pressure annular clearance seals. In Ninth International Conference in Fluid Sealing,
BHRA Fluid Engineering, Leeuwenhorst, the Netherlands, 1981.



Bibliography 213

107 ewis F Moody. Friction factors for pipe flow. Trans. Asme, 66:671-684, 1944.

108 C. C. Nelson and D. T. Nguyen. Comparison of Hirs’ Equation With Moody’s Equation for
Determining Rotordynamic Coefficients of Annular Pressure Seals. Journal of Tribology,
109(1):144-148, January 1987.

109 Zhou Yang, Luis San Andres, and Dara W. Childs. Thermal Effects in Cryogenic Liquid Annular
Seals—Part I: Theory and Approximate Solution. Journal of Tribology, 115(2):267-276, April
1998.

10 |_uis San Andres, Zhou Yang, and Dara W Childs. Thermal effects in cryogenic liquid annular
seals—Part Il: Numerical solution and results. 1993.

1 Dara W Childs and Patrice Fayolle. Test results for liquid “damper” seals using a round-hole
roughness pattern for the stators. 1999.

"2 F Simon and J. Frene. Static and Dynamic Characteristics of Turbulent Annular Eccentric
Seals: Effect of Convergent-Tapered Geometry and Variable Fluid Properties. Journal of
Tribology, 111(2):378-384, April 1989.

13 HG Elrod Jr and CW Ng. A theory for turbulent fluid films and its application to bearings. 1967.

114 C. C. Nelson. Rotordynamic Coefficients for Compressible Flow in Tapered Annular Seals.
Journal of Tribology, 107(3):318-325, July 1985.

15 J.M. Hyman and M. Shashkov. Natural discretizations for the divergence, gradient, and curl
on logically rectangular grids. Computers & Mathematics with Applications, 33(4):81-104,
February 1997.

116 Mikhail Shashkov and Stanly Steinberg. Support-Operator Finite-Difference Algorithms for
General Elliptic Problems. Journal of Computational Physics, 118(1):131-151, April 1995.

17 James M. Hyman and Mikhail Shashkov. Adjoint operators for the natural discretizations of the
divergence, gradient and curl on logically rectangular grids. Applied Numerical Mathematics,
25(4):413—-442, December 1997.

118 Francois Treves. Topological Vector Spaces Distributionsand Kernels. Pergamon Press, 1967.

19 HH Schaefer-MP Wolff and HH Schaefer. Topological vector spaces. Graduate Texts in
Mathematics, 3, 1999.

120 J. Hyman, M. Shashkov, and S. Steinberg. The effect of inner products for discrete vector
fields on the accuracy of mimetic finite difference methods. Computers & Mathematics with
Applications, 42(12):1527-1547, December 2001.

121 J M. Hyman and S. Steinberg. The convergence of mimetic discretization for rough grids.
Computers & Mathematics with Applications, 47(10-11):1565-1610, May 2004.

122 Osborne Reynolds. 1V. On the dynamical theory of incompressible viscous fluids and the
determination of the criterion. Philosophical transactions of the royal society of london.(a.),
(186):123-164, 1895.

123 David C Wilcox et al. Turbulence Modeling for CFD, volume 2. DCW industries La Canada, CA,
1998.



Bibliography 214

124 Andrey Nikolaevich Kolmogorov. The local structure of turbulence in incompressible viscous
fluid for very large Reynolds numbers. Cr Acad. Sci. URSS, 30:301-305, 1941.

125 Andrej Nikolaevich Kolmogorov. On degeneration (decay) of isotropic turbulence in an incom-
pressible viscous liquid. In Dokl. Akad. Nauk SSSR, volume 31, pages 538-540, 1941.

126 peter Bradshaw and J Blair Perot. A note on turbulent energy dissipation in the viscous wall
region. Physics of Fluids A: Fluid Dynamics, 5(12):3305-3306, 1993.

127 ). Boussinesq. Thorie Analytique de La Chaleur Mise En Harmonie Avec La Thermody-
namique et Avec La Thorie Mcanique de La Lumi_re: Refroidissement et Chauffement Par
Rayonnement, Conductibilit’des Tiges, Lames et Masses Cristallines, Courants de Convec-
tion, Thorie Mcanique de La Lumi_re. 1903. Xxxii, 625,[1] p. Cours de Physique Mathmatique
de La Facult Des Sciences. Gauthier-Villars, 1903.

128 N Nd Mansour, John Kim, and Parviz Moin. Reynolds-stress and dissipation rate budgets in a
turbulent channel flow. 1987.

129 Geoffrey Ingram Taylor. Statistical theory of turbulence-Il. Proceedings of the Royal Society of
London. Series A-Mathematical and Physical Sciences, 151(873):444—-454, 1935.

130 Amgad Salama, Shuyu Sun, and Mohamed F El Amin. A novel numerical approach for the
solution of the problem of two-phase, immiscible flow in porous media: Application to LNAPL
and DNAPL. In AIP Conference Proceedings 4, volume 1453, pages 135-140. American
Institute of Physics, 2012.

131 Shuyu Sun, Amgad Salama, and MF El Amin. Matrix-oriented implementation for the numerical
solution of the partial differential equations governing flows and transport in porous media.
Computers & Fluids, 68:38—46, 2012.

132 Qiang Sun, Evert Klaseboer, Boo Cheong Khoo, and Derek Y.C. Chan. A robust and non-
singular formulation of the boundary integral method for the potential problem. Engineering
Analysis with Boundary Elements, 43:117—123, June 2014.

133 Tao Zhang, Amgad Salama, Shuyu Sun, and Hua Zhong. A Compact Numerical Implementa-
tion for Solving Stokes Equations Using Matrix-vector Operations. Procedia Computer Science,
51:1208-1218, 2015.

134 Michael Lee Scott. Programming Language Pragmatics. Morgan Kaufmann, 2000.
135 Benjamin C Pierce and C Benjamin. Types and Programming Languages. MIT press, 2002.
136 Uwe Kastens. Programming languages and compilers. 2006.

137 Edward B Magrab, Shapour Azarm, Balakumar Balachandran, James Duncan, Keith Herold,
and Gregory Walsh. Engineers Guide to MATLAB. Prentice Hall Press, 2007.

138 ANSYS CFX-Solver Theory Guide. Technical report, ANSYS, Inc., Canonsburg, PA, 2019.
139 ANSYS CFX Reference Guide. Technical report, ANSYS, Inc., Canonsburg, PA, 2019.
140 ANSYS CFX Introduction. Technical report, ANSYS, Inc., Canonsburg, PA, 2019.



Bibliography 215

141 BG Galerkin. Rods and plates. Series occurring in various questions concerning the elastic
equilibrium of rods and plates. Eng. Bull.(Vestnik Inzhenerov), 19:897-908, 1915.

142 A R. Mitchel and R. Wait. The Finite Element Method in Partial Differential Equations. Wiley,
New York, NY, 1977.

143 Carl Friedrich Gauss. Methodus Nova Integralium Valores per Approximationem Inveniendi.
apvd Henricvm Dieterich, 1815.

144 Kenneth Arthur Stroud and Dexter J Booth. Advanced Engineering Mathematics. Palgrave,
2003.

145 Wolfgang Hackbusch. Multi-Grid Methods and Applications, volume 4. Springer Science &
Business Media, 2013.

146 J.M. Hyman and M. Shashkov. Approximation of boundary conditions for mimetic finite-
difference methods. Computers & Mathematics with Applications, 36(5):79-99, September
1998.

147J. Hyman, J. Morel, M. Shashkov, and S. Steinberg. Mimetic Finite Difference Methods for
Diffusion Equations. Computational Geosciences, 6(3):333—352, 2002.

148 Ali H Nayfeh. Perturbation Methods. John Wiley & Sons, 2008.

149 TJ Dekker. Finding a zero by means of successive linear interpolation. Constructive aspects of
the fundamental theorem of algebra, pages 37-51, 1969.

150 Richard P. Brent. An algorithm with guaranteed convergence for finding a zero of a function.
The Computer Journal, 14(4):422—425, 1971.

151 CH Edwards. The calculus according to cauchy, riemann, and weierstrass. In The Historical
Development of the Calculus, pages 301-334. Springer, 1979.

152 Joanna Maria Papakonstantinou. Historical development of the BFGS secant method and its
characterization properties. Technical report, 2010.

153 Germund Dahlquist, Ake Bjorck, et al. Numerical Methods. Prentice Hall, 1974.

154 Norman R Draper and Harry Smith. Applied Regression Analysis, volume 326. John Wiley &
Sons, 1998.

155 p M. Gresho, Robert L. Sani, and M. S. Engelman. Incompressible Flow and the Finite Element
Method : Advection-diffusion and Isothermal Laminar Flow. John Wiley and Sons, Inc, 1999.

156 Richard Courant, Kurt Friedrichs, and Hans Lewy. "U on the partial difference equations of
mathematical physics. mathematical annals, 100(1):32—74, 1928.

157D John and JR Anderson. Computational fluid dynamics: The basics with applications. P
Perback, International ed., Published, pages 4-30, 1995.

158 Yu Pan, Zhen-Guo Yan, Joaquim Peir6, and Spencer J Sherwin. Development of a balanced
adaptive time-stepping strategy based on an implicit JFNK-DG compressible flow solver. Com-
munications on Applied Mathematics and Computation, pages 1-30, 2021.



Bibliography 216

159 | uis San Andrés and Xueliang Lu. Leakage, drag power, and rotordynamic force coefficients
of an air in oil (wet) annular seal. Journal of Engineering for Gas Turbines and Power, 140(1),
2018.

160 | udwig Prandtl. 7. Bericht iber untersuchungen zur ausgebildeten turbulenz. ZAMM-Journal
of Applied Mathematics and Mechanics/Zeitschrift flir Angewandte Mathematik und Mechanik,
5(2):136—139, 1925.

161 Edward R Van Driest. On turbulent flow near a wall. Journal of the aeronautical sciences,
23(11):1007-1011, 1956.

162 7Y Li, T-C Hung, and W-Q Tao. Numerical simulation of fully developed turbulent flow and heat
transfer in annular-sector ducts. Heat and mass transfer, 38(4):369-377, 2002.

163 Johann Nikuradse et al. Laws of flow in rough pipes. 1950.

164 Brian Edward Launder and Dudley Brian Spalding. The numerical computation of turbulent
flows. In Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, pages
96-116. Elsevier, 1983.

165 Examining Spatial (Grid) Convergence. https://www.grc.nasa.gov/www/wind/valid/tutorial/spatconv.html,
2022.

166 Fychang Gao and Lixing Han. Implementing the Nelder-Mead simplex algorithm with adaptive
parameters. Comput Optim Appl, 51(1):259-277, January 2012.

167 Mohsen Jalaeian-F. Augmented Downhill Simplex a Modified Heuristic Optimization Method.
page 6, 2012.

168 |zt0k Fajfar, Arpéd Blrmen, and Janez Puhan. The Nelder—Mead simplex algorithm with
perturbed centroid for high-dimensional function optimization. Optim Lett, 13(5):1011-1025,
July 2019.

169 | yis San Andrés and Xueliang Lu. Leakage, Drag Power, and Rotordynamic Force Coeffi-
cients of an Air in Oil (Wet) Annular Seal. Journal of Engineering for Gas Turbines and Power,
140(1):012505, January 2018.

170 pascal Jolly, Mihai Arghir, Olivier Bonneau, and Mohamed-Amine Hassini. Experimental and
Theoretical Rotordynamic Coefficients of Smooth and Round-Hole Pattern Water-Fed Annular
Seals. Journal of Engineering for Gas Turbines and Power, 140(11):112501, November 2018.

71 R Schaback. A Practical Guide to Radial Basis Functions. page 58.

172 Satoru Kaneko, Takashi Ikeda, Takuro Saito, and Shin lto. Experimental Study on Static and Dy-
namic Characteristics of Liquid Annular Convergent-Tapered Damper Seals With Honeycomb
Roughness Pattern. Journal of Tribology, 125(3):592-599, July 2003.

173 Rajat Mittal and Gianluca laccarino. Immersed boundary methods. Annu. Rev. Fluid Mech.,
37:239-261, 2005.

174 James M. Hyman and Mikhail Shashkov. The Orthogonal Decomposition Theorems for Mimetic
Finite Difference Methods. SIAM J. Numer. Anal., 36(3):788-818, January 1999.



	Contents
	Introduction and Motivation
	Annular Pressure Seals in Turbomachinery
	Literature Review
	Bulk-Flow and Empirical Factors
	CFD Applied to Annular Pressure Seals
	Modeling Turbulence in Annular Pressure Seals
	 CFD Methods Not Specific To Annular Seals

	Dissertation Plan

	Background on Methods
	Rotordynamics of Annular Pressure Seals
	Bulk-flow Analysis of Annular Pressure Seals
	Friction Factors Models for Seals
	Perturbation of Flow Variables
	Two and Three Control Volumes
	Hybrid CFD/bulk-flow method for first order results

	The General Mimetic Finite Difference Method
	Natural Discretizations of Continuous Operators
	The Adjoint Support Operators

	Turbulence Modeling
	Reynolds Averaging
	Transport of Turbulent Kinetic Energy
	The Boussinesq Hypothesis: Linear Eddy Viscosity Model
	Prandtl 1-Equation Model

	The Shift-Matrix Coding Method
	Commercial CFD Software - ANSYS CFX
	Finite Element Method
	ANSYS Turbulence Models


	2-D Grid Laminar Annular Pressure Seal Code By Mimetic FDM 
	Mimmetic FDM in Perturbed Cylindrical Coordinates 
	 Coordinate Perturbation, Definition, & Transformation 

	Discrete Staggered 2-D Grid for the Navier-Stokes Equations
	Mass Conservation,    
	Discrete Divergence Operator, Zeroth Order: 0= (  )0
	Discrete Divergence Operator, Real First Order: 0= (  )R
	Discrete Divergence Operator, Imaginary First Order: 0= (  )I

	Discrete Pressure Gradient, PT 
	Discrete Pressure Gradient Operator, Zeroth Order: ( PT )0
	Discrete Pressure Gradient Operator, Real First Order: ( PT )R
	Discrete Pressure Gradient Operator, Imaginary First Order: ( PT )I

	Discrete Viscous Diffusion,  C C (  ) =  
	Discrete Viscous Diffusion, Zeroth Order: (  )0
	Discrete Viscous Diffusion, Real First Order: (  )R
	Discrete Viscous Diffusion, Imaginary First Order: (  )I

	Discrete Convection, N(,) = (  )  
	Gathering i,n terms for circumferential/axial convection 
	Gathering  ,k terms for radial/circumferential convection 
	The Convection Averaging Operator
	Discrete Convection, Zeroth Order: N0(,) = (  ) 0
	Discrete Convection, First Order: N1(,) = (  )  
	Discrete Convection, Real First Order: NR(,) = (  )  
	Discrete Convection, Imaginary First Order: NI(,) = (  )  

	Boundary Conditions of Smooth Annular Pressure Seals
	Numerical Iteration to RANS Solutions
	Zeroth Order Iteratation
	First Order Iteratation
	Adaptive time-stepping

	Validation of RANS Code Solutions Without Reynolds Stresses
	Poiseuille Flow Validation
	Couette Flow Validation


	Eddy Viscosity Turbulence Model by Mimetic FDM
	Discrete Turbulence Modeling
	Discrete Eddy Viscosity Diffusion

	Discrete Turbulent Kinetic Energy Transport: Prandtl 1-Equation
	Turbulent Length Scale, and Turbulence Model Empirical Coefficients

	Solution of the TKE Transport Equations by Numerical Iteration

	Annular Pressure Seal Validation Cases for Seal2D
	Case 1: San Andres 2018
	Zeroth-order Solution: Concentric Cylinders
	First-order Equation Simulation Results -  Eccentric Annular Region

	Case 2: Jolly et. al. 2018
	Zeroth-order Solution: Concentric Cylinders
	First-order Equation Simulation Results -  Eccentric Annular Region


	Conclusions
	Expected Publications
	Mimetic Finite Difference Implementation of Turbulence In Concentric Annuli
	Mimetic Finite Difference Annular Seal Modeling in 2-D and Hybrid Bulk Flow

	Recommendations for Future Work
	Generalized Geometry
	Turbulence Modeling


	 Non-dimensionalization and Reynolds Averaging 
	Discrete Mimetic Operator Derivation: Divergence & Adjoint Gradient 
	 Divergence Operator, DFC CC (  ) =   
	Discrete Divergence Operator, Zeroth Order: D0 (  )
	Discrete Divergence Operator, First Order: D1 (  )
	Discrete Divergence Operator, Real First Order: DR (  )
	Discrete Divergence Operator, Imaginary First Order: DI (  )

	Derivation of the Adjoint Gradient Operator, GCC FC
	Discrete Conjugate Gradient Operator, Zeroth Order: G0 ( P )
	Discrete Conjugate Gradient Operator, First Order: G1 ( P )

	Boundary Conditions from Conjugate Gradient Operator

	Discrete Mimetic Operator Derivation: Curl & Adjoint Curl
	Curl Operator, CEC FC (  ) =   
	Discrete Primary Curl Operator, Zeroth Order: C0 (  ) 
	Discrete Primary Curl Operator, First Order: C1 (  ) 

	Derivation of the Adjoint Curl Operator, CFC EC
	Conjugate Curl Operator: C (  ) =   
	Conjugate Curl Operator, Zeroth Order: C0 (  )  
	Conjugate Curl Operator, First Order: C1 (  )  

	Boundary Conditions for Velocity and Vorticity from Discrete Curl Operators
	South (Rotor Surface) and North (Stator Surface) Boundaries 
	West (Inlet) and East (Outlet) Boundaries 


	Discrete Mimetic Operator Derivation: Tensor Gradient & Divergence 
	Discrete Tensor Gradient Operator, [1.0pt][1.0pt] s0.9ex0.095ex0.9ex0.095ex(q)
	Discrete Strain Rate Tensor: [1.0pt][1.0pt]E0.9ex0.095ex0.9ex0.095ex 
	Zeroth Order Discrete Strain Rate Tensor Operator: [1.0pt][1.0pt]E0.9ex0.095ex0.9ex0.095ex0 (  )
	First Order Discrete Strain Rate Tensor Operator: [1.0pt][1.0pt]E0.9ex0.095ex0.9ex0.095ex1 (  )

	Derivation of Discrete Tensor Divergence Operator, [1.0pt][1.0pt] ,s0.9ex0.095ex0.9ex0.095ex ( qs )
	Collect Radial Discrete Tensor Divergence Terms in Inner Product 
	Collect Circumferential Discrete Tensor Divergence Terms in Inner Product 
	Collect Axial Discrete Tensor Divergence Terms in Inner Product 
	Zeroth Order Discrete Tensor Divergence Operator: [1.0pt][1.0pt] 00.9ex0.095ex0.9ex0.095ex (  ) 
	First Order Discrete Tensor Divergence Operator: [1.0pt][1.0pt] 10.9ex0.095ex0.9ex0.095ex (  ) 

	Boundary Conditions for Strain Rate Velocities from Discrete Tensor Operators

	Bibliography

