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Abstract

Graphene is the first of now several two-dimensional materials that has garnered significant interest for

its potential application as a transistor for digital and radio-frequency applications. Its natural chemical

’flat-land’ has several advantages unique to its hexagonal network of carbon atoms. First, graphene has a

measured mobility of 230,000 cm2/V − s compared to silicon mobility of 1400 cm2/V − s, which means

electrons in graphene can respond to faster changes input voltage or higher clock cycles. Second, graphene’s

atomically thin body allows for ease of channel conductance modulation. The third advantage its intuitive

compatibility to advanced planar fabrication processes already developed for silicon complementary-metal-

oxide-semiconductor (Si-CMOS) transistors. However switching a graphene field effect transistor(FET) off

remains a challenge. In the literature, various methods of reducing OFF-currents and achieving output

current saturation have resulted in the reduction in mobility. While it may seem graphene’s future in the

context of the CMOS switching paradigm is unsalvageable, how we can reduce OFF-current and extend

current saturation without hurting the ON-current or mobility through momentum filtering aided by gate

geometry engineering.

This work starts by investigating the limitations on electron transport in a conventional graphitic-FET

with no band gap at low and high biases through a unified physics based model for graphene IV from

ballistic to diffusive limits and from low to high bias. At low-bias, we show how band structure is tied to

the fundamental material trade-off between opening bandgaps and mobility. We find that band gap opening

increases effective mass and reduces scattering time due to increase in band-edge density of states, thus

reducing mobility by a factor of 1/E2. This happens for all graphitic derivatives. Also at low bias, we show

how the minimum conductivity behaves in the ballistic and diffusive limit in the presence of impurities. We

extracted the entire phase space and showed a flip in curvature followed by a saturation with increased

impurity density. At high bias, our model benchmarked with experiments and converted device model to

Verliog for use in Cadence for circuit level simulations. We also show how optical phonons influence the high

bias current voltage behavior leading to current saturation. Finally we address in particular the trade-off

between mobility and opening a bandgap with a proof-of-concept way to bypass these material limits for

ii



Abstract iii

narrow band gap channel through contact engineering which is unique to the device community.

The real merit of our model is the simplicity, and the use of contact engineering alone for momentum rather

than energy filtering to reduce OFF-current and extend current saturation without hurting the ON-current

(Fig.5.8) that made graphene so promising in the first place. Gates are uniquely positioned and biased to

cascade their local narrow bandgaps along a staircase potential profile (Fig.5.1), suppressing the transmission

of intermediate conducting modes between the highest conduction band and the lowest valence band (Fig.5.4).

The effective mode- filtering widen a gap in the transmission spectrum. The conventional approach of

widening a real bandgap in the channel to reduce OFF-current comes at the expense of ON-current due

to decrease in mobility. We show a way to bypass this fundamental material limitation. We established a

proof-of-concept with a 5nm wide graphene nanoribbon and 2-D bilayer graphene, with bandgaps less than

200meV were convenient channels for simulation, but the concept of gate engineering can be generalized to

other narrow bandgap materials with higher mobility.
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Chapter 1

Introduction

Graphene is the first demonstrated incarnation of two-dimensional(2D) materials. The Graphene ’flat-

land’ is atomically thin making it compatible to planar fabrication processes currently developed for

Silicon Complementary-Metal-Oxide-Semiconductor (Si-CMOS) devices. With electron mobility above

230,000cm2/V s[14] for suspended samples and 10,000cm2/V s[15] to 40,000cm2/V s[16] for supported samples

at room temperature, graphene became attractive for high-frequency and even logic applications. The

large mobility at least an order of magnitude higher than Silicon allows for faster clock cycles and more

operations, because the electrons are capable of responding to the fast changes in gate potential. The intrinsic

two-dimensional nature allows for better modulation of channel conductance in the presence of an applied

electric field. Furthermore, graphene operates in the quantum capacitance limit as it is two-dimensional by

nature with massless Fermions near its Dirac point. The advantage of a device operating in the quantum

capacitance limit is the reduction in load capacitance in a circuit and corresponding RC delay. However the

story of graphene in context of the CMOS switching paradigm is anything but perfect.

From a device perspective, in light of the excellent electronic properties for the ON state of a field effect

transistor, the main concern with graphene and its carbon derivatives is their inability to adequately suppress

OFF-current in the sub-threshold biasing regime. The advantages of the high graphene ON-current are

compromised by the lack of a band-gap near the intrinsic Fermi level. In theory, the lack of an energy

band-gap can be remedied through edge quantization, as predicted and experimentally demonstrated in

carbon-nanotubes (CNTs) and armchair-edge graphene nanoribbons (AGNRs) [17, 3, 10]. Edge quantization

of graphene brings a whole set of well known practical fabrication challenges [18] to achieve device performances

comparable to Si-CMOS, but what is under-appreciated are the fundamental limitations imposed by the

graphene band-structure or dispersion relation that can compromise mobility as the effective mass increases

1
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near the bottom of the band when we introduce an energy band-gap. Does the road end for graphene as a

suitable switch?

While transistor scaling has satisfied the economic demand for more functionality in our central processing

units(CPU) for nearly 5 decades, the emphasis of the device community has been solely on scaling even

when evaluating new materials. Due its high mobility, graphene should be able to achieve more functionality

or operations every cycle compared to silicon. The requirement for graphene to start scaling where silicon

field-effect transistors have left off is not necessary. Therefore, the end goal of this dissertation is to address

graphene as a field-effect transistor in a way that mitigates the obstacles (i.e., high OFF-current) while trying

to preserve its strengths (i.e., excellent ON-current). In other words, bypass the material limits of imposed

by the graphene band-structure through contact engineering and mode or momentum filtering.
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Figure 1.1: (left) Graphene and most other common group IV and III-V semiconductors follow the general
trend of decreasing mobility versus bandgap. This is a fundamental trend independent of fabrication issues.
In terms of devices this means materials with low bandgap and high mobility produced device output (center)
and transfer (right) characteristics that follow the blue curves. Meanwhile devices with large bandgap but
drastically lower mobility show device behavior resembling the red-curves. This dissertation introduces
the idea of producing the black curve, where the mobility is left high but the OFF-current is lower and
simultaneously current saturation as a result is more pronounced.

In addressing the material limitations of graphene as field-effect transistor, we first quantify the obstacles

that stem from its chemistry and electronic band-structure. The methodology taken starts from chemistry to

hierarchical device abstraction for circuit level simulations. From the bulk-bandstructure of two-dimensional

graphene, we determine the scaling properties of graphene and make connections with experimental results.

Particularly we look at the role of edge chemistry and roughness on the energy band-gap opening near the

intrinsic Fermi level and their corresponding influence on field-effect transistor performance. Also based on

what we learned from calculating the band-structure the groundworks for a hierarchical device abstraction is

developed, where each element is described by physical derivable equations unified by the Landauer Formula.
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Furthermore, by computationally tracking the evolution of the graphene band-structure from 2D to 1D, we

noted a consistent departure from graphene’s noted linear photon-like dispersion, the source of massless

Dirac Fermions in condensed matter. It turns out that graphene’s bandstructure imposes a fundamental

material limited trade-off between energy band-gap and mobility, which translates to a trade-off between

ON-OFF current ratio (i.e., reliability) and switching speed (delay). Projected trade-offs for different graphitic

materials are presented in section(4.1). The key question and indeed the core of this dissertation is how

can we bypass the fundamental limitations imposed by the graphene channel or any narrow band-gap high

mobility channel.

The outline of this dissertation is as follows:

• Provide a general overview of Landauer Formula in context of building a analytical device compact

model for graphene transistor, and overview the Non-Equilibrium Green’s Function (NEGF) formalism

used for atomistic electron transport simulations

• Quantify the electronic properties and transport properties for a conventional graphene device at low

and high biases.

– At low bias we describe the trade-off between opening a band gap and mobility (i.e. downside to

energy filtering).

– Minimum conductivity in context to impurity scattering is investigated on the phase space from

ballistic to diffusive limits using a unified Landauer based model, which is also used to examine

current flow at high bias.

– NEGF with scattering within the self-consistent Born Approximation is then used to understand

optical phonon drives current saturation in nanotubes.

• Getting past the trade-off in conventional graphitic-FETs, we present proof-of-concept idea based on

mode or momentum filtering that can reduce OFF-current, extend current saturation while preserving

mobility and ON-current.



Chapter 2

Synopsis of Graphene Advantages and

Challenges

2.1 The Wonder Material

Regardless of imminent usefulness in conventional electronics, graphene is without doubt one of the most

exciting materials in that recently emerged in condensed matter physics. The symmetry of its hexagonal

lattice allows electron waves to interfere in a way that gives rise to interesting electronic properties never

before seen. The orthogonal nature of the equivalent two-atom basis allows the surface pz orbital based

bonds to cross at a single point called the Dirac-point. Near the intrinsic Fermi-level at the Brillouin Zone

boundaries the band crossing produces a photon-like dispersion giving rise to massless Fermions. In fact it is

not straightforward to define the effective mass(m∗), which we do this in chapter 4. From the dispersion or

band-structure, it has been theoretically predicted and experimentally confirmed that the low-energy Fermi

velocity of graphene is 300 times smaller than the speed-of-light(106m/s). Another interesting feature of this

band-crossing near the intrinsic Fermi-level is that the density-of-states vanishes at the Dirac-point in the,

making graphene neither a metal or semiconductor, but rather a semi-metal.

The s and px and py orbitals hybridizes into sp2-bonds which give graphene its inherent two-dimensional

hexagonal (honeycomb) configuration, leaving a lone pz-orbital that creates the band-crossing near the

intrinsic Fermi-level. The in-plane rigidity of the hybridized orbitals ensures that out-of-phase optical phonon

vibrations occur at frequencies higher than most other known crystals (1600cm−1)). The strengths of

the in-plane hybridized bonds are seen from their energies sitting far way from the intrinsic Fermi-level.

In-phase acoustic phonon vibrations are largely insignificant because the orthogonal nature of the eigenstates

4
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representing the symmetric two-atom basis ensures that direct backscattering is disallowed. An important

consequence of disallowed backscattering from acoustic phonons and far away optical phonons is that the

mean-free-paths of graphene are on the order of microns. Therefore graphene has a giant electron mobility

measured to be greater than > 230, 000cm2/V − s for suspended graphene exfoliated samples and 10, 000 for

graphene supported on an insulating substrate. The immediate appeal is room-temperature mobility near 100

times that of silicon (Si) Long mean free paths also allow for room temperature quantum hall measurements

that show signatures of resistance quantum (h/2q2).

A unique electronic property of graphene is its measured minimum conductivity of 4q/h, where q is

the electron charge, h is Planck’s constant, and the pre-factor of 4 for spin and degeneracy, at the Dirac

point with zero density of states is surprising at first glance. In the ballistic limit where the width of the

graphene channel is much greater than the length, both experiments [19] and Landauer based theory [20]

predict a minimum conductivity of 4q2/πh. In the diffusive limit, existing theory [21, 22] and experiment [23]

investigate the minimum conductivity in the presence of impurities, where a Boltzmann model is used for

the theory. Authors Yang et al. in their work [24] have modeled the minimum conductivity in the ballistic

limit with only three data, points without identifying the origin of missing π factor. The disconnect between

ballistic and diffusive limits is addressed in this dissertation using a unified Landauer based model detailed in

section 4.2.

Exploring ways to open a band-gap(i.e., energy filtering) in graphene’s bandstructure is a sought after

way to suppress leakage currents. Confinement and breaking of sub-lattice symmetry in layered or substrated

graphene can open energy band-gaps on the order of tens to a couple hundred milli-electron-Volts. For

confined graphene nanoribbons, widths less than 10 nanometers are required to open a band-gap greater

than 400meV. With precision of material processing to date it is still challenging to manage features less

than 10 nanometers [25, 17].

A key advantage of graphene over silicon nanowires and many III-V semiconductors for high-frequency

applications is that its single atom thickness allows for easy modulation of channel conductance. The

approximate electric screening length for a dual gated semiconductor is,

λ =

√
εsdsdox
εox

(2.1)

,where εs and εox are dielectric constants for the semiconductor and oxide, respectively. ds and dox are

semiconductor and oxide thicknesses, respectively. Eq. 2.1 provides some useful approximate insights about

electrostatic response of semiconductors by giving a figure of merit for the minimum channel length below

which short channel effects dominate the channel conductance [26]. The electric screening length, λ, is one
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of the figure of merits that has led for the push for Silicon-on-Insulator(SOI) channels but scaling silicon

and other III-V semiconductor bodies also degrades the electron mobility. Graphene is the perfect material

because its one-atom thick body(0.22nm) ideally means that for 3nm silicon-dioxide(SiO2) or 3nm of h-BN,

the electric screening length is on the order of several angstroms or less. This means graphene and other

emerging two-dimensional materials are highly scalable. Of all the recent emergent class of two-dimensional

materials graphene still has the highest mobility with zero-bandgap, while other 2D-like chalcogenides have

wide-bandgap with extremely low mobilities.

2.2 Graphene Device Challenges

Roadmap : What are the problems to solve ?!

6
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Figure 2.1: Roadmap of current and emerging technologies. Issues with graphene field-effect transistors are
highlighted red. Bandgap opening and abundance of leakage currents are key challenges that are addressed in
this dissertation. [1]

Many of today’s main semiconductor device applications are in digital logic and radio-frequency applica-

tions. An economically driven semiconductor industry desires more functionality per dollar. For years the

semiconductor industry has perfected the planar fabrication processing of silicon and has managed to squeeze

more functionality through scaling. Scaling for more functionality has worked for the past 5 decades. However

the industry is down to 22nm and below, so not only are we running out of room in the bottom but the

electrostatics from three terminals are becoming increasing difficult to control as noted by Eq. 2.1. Continued

scaling also means the semiconductor industry must continue to push their fabrication equipment toward the
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limit of atomic precision, as surface roughness further decreases mobility through scattering. What does this

all mean for graphene?

Graphene was initially seen as prospective replacement for Silicon in the context of CMOS switching.

Since there has been significant physics unraveled that causes us to rethink how computing could be done.

For now these ideas are still on paper and largely far-fetched for what industry is currently ready for. As

mentioned in the previous section, graphene’s high mobility and inherent two-dimensional nature means

that it is electrostatically more advantageous than sdilicon. On the flip slide, CMOS relies on a barrier to

switch the resistance in the channel which graphene inherently lacks. However as mentioned in the section

above, there are various means or opening a band-gap, however the reliability of methods is still questionable

for mass-production. Assuming fabrication methods are reliably in the limit of atomic precision, there is a

less appreciated fundamental trade-off associated with opening an energy band-gap in graphene that will be

described in section(4.1).

For digital logic applications, traditional Silicon based N and P-type devices complement each other

to increase speed and decrease static power leakage. For graphene the lack of an energy barrier means

the field-effect transistor is always in ON-state. The perpetual leakage of current in a graphene field-effect

transistor has a number of negative consequences discussed in more detail in Section 8.2 where a version of

physics based compact-model is used to determine basic inverter circuit level performance. Due to the lack of

current saturation in the output IVs and high OFF-currents from lack of a barrier a traditional graphene

field-effect transistor is highly susceptible to noise. The calculated and measured voltage-transfer curves

(VTC) show gain away from the VDD/2 as the transistor never turns off. In other words, for logic it is more

important to have the rail voltages saturate in a VTC. However non-saturating rail voltages also deteriorates

the gain in the transition of meta-stable region in the VTC [7], see Fig. 2.2.

For radio-frequency applications, we are more interested in the gain and less worried about high OFF-

current. The state-of-the art graphene field effect transistor can achieve cut-off frequencies up to 100GHz for

conventional gates[27] and 300GHz with nanowire gates [28]. This is done primarily by taking advantage

of the lack of short channel effects in graphene as discussed in the previous section. Less appreciated is

the need to saturate the output IV, as this will increase gain (gm/gds), where gm is the transconductance

(dI/dVgs) and gds is the output conductance. So if output current saturates, gds tends to zero and gain

improves. Increasing transistor cut-off frequency is frequently attributed to a decrease in parasitic resistance

and capacitance, but it is clear that decreasing output conductance,gds is equally important [29].

To address the issue of leakage current in graphene, a bandgap of at least 400meV is necessary for adequate

reliability in digital logic applications and gain for radio-frequency applications. Energy bandgap opening

through confinement requires features less than 10 nanometer, which is possible using chemical means, but
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Graphene Electronics : Still a long road to go!

7
Figure 2.2: Graphene’s zero band gap contributes to an abundance of source-drain leakage current. Since a
graphene transistors are always ON a voltage division at the output voltage introduces gain at the input
voltage extremes.

challenging for using lithographic processes designed for mass production of Silicon based electronic device

technologies not to mention the difficulty of roughness control at those dimensions. Epitaxial Graphene or

Graphene grown on Silicon Carbide (SiC) have demonstrated bandgaps up to 260meV[30], depending how the

gaphene layers are stacked during growth. Similar interlayer symmetry breaking induced bandgaps have been

demonstrated with Bernal Stacked Bilayer Graphene(BLG) with bandgaps up to 300meV, while bandgaps

less than 100meV are predicted with graphene on hexagonal-Boron Nitride(h-BN). Overall confined graphene

can produce the largest bandgaps; however, large scale transferring and processing of CNTs and chemically

derived GNRs is not yet possible. Until then leakage current in Graphene is still a fundamental issue, as

seen in Fig. 2.1, and one which this dissertation details a possible way forward using gate engineering for

momentum filtering, rather than energy filtering.



Chapter 3

Device Modeling: Chemistry to

Devices Overview

The purpose of this chapter is to present an overview of two methods used in the dissertation to describe

transport and current flow in graphene devices. The first method is Landauer formalism where transport is

described by lumped analytical expressions like mode density and transmission probability that can provide

a more intuitive and computationally less expensive understanding of transport in graphene. The second

method is the Non-Equilibrium Green’s Function (NEGF) formalism which solves Schrodinger’s Equation

atomistically with open boundary conditions at the contacts. Since NEGF is an atomistic quantum mechanical

treatment of the channel and contacts, it can be computationally expensive depending on the number of

atoms in the calculation. Although the purpose of this section is to provide a brief overview and review of

the NEGF and Landauer formalisms, this section presents a unique way to quantify electron transport in

graphene in the presence of scattering centers.

3.1 Bottom-Up(Atomistic) Approach to Modeling Electronic De-

vice Properties

3.1.1 Building analytical model for electron transport in Graphene

Capturing Bandstructure

Graphene’s hexagonal atomic configuration has a repeatable two-atom basis and its Hamiltonian can be

described by the following 2x2 simplified Hamiltonian that is valid within ±1eV from the intrinsic , where

9
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v ≈ 106m/s is the constant Fermi velocity and εA and εB represent the on-site energy of the AB-sublattice

atoms.

Hk =




εA ~v(kx + iky)

~v(kx − iky) εB


 (3.1)

The eigenvalues of the 2x2 Hamiltonian are E = ±~v
√
k2
x + k2

y. An asymmetry in the AB-sublattice

will open a bandgap proportional to the size of the asymmetry, εA − εB. The dispersion then becomes,

±
√

(εA − εB)2 + (~v)2(k2
x + k2

y) . From the bulk analytical dispersion, we can gain some meaningful estimates

regarding the required scaling of graphene widths in order to yield a meaningful bandgap for logic(i.e,

Eg ≤ 400meV ). From E = ±~v
√
k2
x + k2

y, with hard wall boundary conditions, we get:

Eg = ~v
π

W
(3.2)

, where W is the confined width of a graphene nanoribbon. Eq.(3.2) describes the number of half-

wavelengths that satisfy the transition across a given energy bandgap (Eg). Therefore to achieve a bandgap

of 400meV , the width of a graphene nanoribbon has to be less than 10nm in agreement with the numerically

calculated trend presented in Fig.4.7 and experiments [10].

From the analytical bulk graphene dispersion relation, the bulk density of states is:

D(E) =
|E|
π~2v2

(3.3)

Eq. 3.3 represents the pristine graphene density of states with a Dirac-point; however, realistically in

experiments, graphene rests on an insulating substrate, such as silicon dioxide, with embedded charged

impurities that can locally dope graphene creating an in-homogenous potential distribution. Scanning

tunneling microscopes (STM) have probed and characterized the potential in-homogeneity in graphene as a

normal or gaussian distribution of potentials [2], as seen in Fig. (3.1). Averaging the ideal graphene density

of states over a normal distribution of potentials (Eq.3.4) removes the Dirac-point and creates a non-zero

raised minimum density of states (Fig.3.2).

〈DOS〉 =
∑

i

|E + µ+ Ui|
π~2v2

e
− (E+µ−Ui)

2

2σ2o

σo
√

2π
(3.4)

When we convert Eq.(3.4) to an integral we get an exact average density of states, Eq. 3.5 with statistically

relevant parameters that describe charge in-homogeneity.
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Figure 3.1: Scanning Tunneling Microscope image of electron-hole puddles that statistically follow a normal
distribution.[2]
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Figure 3.2: Averaging the pristine graphene density of states(left) with a normal distribution of random
potentials(middle) erases the Dirac point(right).
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〈DOS〉 =
S

π~2v2

[√
2

π
σoe

−(E+µ)2

2σ2o + erf

[
E + µ√

2σo

]
|E + µ|

]
(3.5)

In Eq. 3.4, Ui represents a single potential in the normal distribution of potentials, σo represents the

standard deviation and µ is the average potential of the normal distribution of charges. The average density

of states can be written in a simpler form as Eq. 3.6, that incorporates the low-energy parabolic nature of the

average density of states and the linear density of states at high energy. Between Eq. 3.5 and Eq. 3.6 the

quantitative deviation in the non-zero minimum point in the density of states is matched with a universal

factor α = 2/π. Fig. 3.2 illustrates the averaging of a normal distribution of potentials and the process of

matching the minimum density of states making Eq:3.6 quantitatively accurate. Both equations capture the

significant role of charged impurities at low energy.

〈DOS〉 =

√
(E + µ)2 + ασ2

o

π~2v2
. (3.6)

The presence of charged impurities in the substrate imposes a random variation of potentials that statisti-

cally follows a normal distribution. Of particular importance is the variance (σ2
o) of the normal distribution

of potentials, which itself is a self-consistent solution dependent on the charge impurity concentration(nimp)

and graphene channel screening. The details of the variance(σ2
o) are worked by Li and Sarma in [31]. Eq. 3.7,

Eq. 3.8, and Eq. 3.9 is presented for completeness.

σ2
o = 2πnimpq

2

∫
[Ak]2k dk (3.7)

Ak =
2e−κz0Zq sinh(k d)

kκinscosh(k d) + (kκv + 2 qTFκ)sinh(k d)
(3.8)

qTF =
2πq2

κ
〈DOS〉 (3.9)

Eq. 3.8 comes from solving Poisson’s equations in cylindrical coordinates. κv and κins are the respective

vacuum and insulator dielectric constants, while κ is their average. Eq. 3.9 is the Thomas-Fermi screening

wave-vector which depends on the average density of states (Eq. 3.6). Ak is the potential solved from Poisson’s

equation which accounts for the distance of the impurities (zo) inside the oxide, thickness of the oxide (d) and

the screening length (1/qTF ). Solved self-consistently we determine the variance of the normal distribution of

potentials [31].
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This modified density of states averaged over a random normal distribution of carriers was derived

independently of Li and Sarma [31], but the conclusions are the same. However this dissertation goes further

by using the averaged density of states to look at current flow in graphene all the way from low bias minimum

conductivity to the high-bias current flow that shows saturation and subsequent band-to-band tunneling.

Before presenting the role of impurities, we need to briefly introduce the Landauer formalism for current flow,

which is the basis for all analytical models of graphene presented in this dissertation.

Intuitive Model for Electron Transport : Landauer Formula

T(E)Contact{i} Contact{j}

Figure 3.3: Schematic of terminal currents

The Landauer formalism is a unified way to understand charge transport and current flow from the

nanoscale ballistic-limit to the large scale diffusive-limit. Landauer’s formalism expresses current flow as

result of a difference in agenda between source and drain contacts. Assuming reflectionless contacts and a

ballistic channel transmission probability, T (E) = 1, the total current is the difference between the influx and

out flux at a terminal, as illustrated in Fig. 3.3. To conserve current, the total current must equal the current

transmitted on the opposite contact as expressed by Eq. 3.10

I = I+
i − I−i = I+

j (3.10)

The individual currents at terminal i shown in Fig. 3.3 can be expanded to the following expression:

I+
i = 2q/hM [µi − µj ] and I−i = 2q/hM(1− T (E))[µi − µj ]. µi and µj are the electrochemical potential in

the contacts and M = ~v/L 〈DOS〉, is the number of conducting modes. Plugging terminal i currents back

in to Eq. 3.10 gives the zero temperature low-bias current.

I =
2q

h
MT (E)[µi − µj ] (3.11)

Assuming non-zero temperature Eq. 3.11 becomes Eq. 3.12 ,where fi,j(E−µi,j) are the finite temperature

Fermi functions in the contacts. The transmission probability T (E) is phenomenologically expressed as
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λ/(λ+ L), where λ is inversely proportional to the scattering rate(1/τ), determined from Fermi’s Golden

Rule. Appendix IV works out the scattering rate for impurities, optical and acoustic phonons.

I =
2q

h

∫ ∞

−∞
M T (E) [fi(E − µi)− fj(E − µj)] dE (3.12)

An alternative form of Eq. 3.12 is Eq. 3.13, where we convolve the product of the number of modes and

transmission probability by a thermal broadening function, FT (E) = df/dE = 1/4kT sech2(E/2kT )[32].

I =

∫ µj

µi

M(E)T (E)⊗ FT (E) dE (3.13)

The advantage of the Eq. 3.13 is that the limits of integration can be taken at finite, zero-temperature

bounds at µi and µj versus taking infinite bounds, which serves two purposes: 1) for ease of computation

and 2) easier to derive analytical expressions. The thermally broadened Landauer formula (Eq. 3.13) can be

rewritten in a more intuitive form that separates the ballistic(left half of Eq. 3.14) and scattering(right half

of Eq. 3.14) currents.

I =

∫ µj

µi

M(E)⊗ FT (E) dE −
∫ µj

µi

M(E)
L

L+ λ
⊗ FT (E) dE (3.14)

Given a known low energy dispersion relation or bandstructure we can construct a simplified model for

current flow based on the Landauer Formula. The Landauer Formula provides a convenient and unified way

to understand current flow in a nanoscale devices from the ballistic (λ/L = 1) to diffusive limit (λ/L < 1).

In chapter 4 and in appendix II, we show both full analytical and quasi-analytical models for current voltage

characteristics converted to a physics based compact model for a graphene field effect transistor that matches

well with experiments and apply the models to Cadence for basic circuit level simulations.

3.1.2 Non-Equilibrium Green’s Function Formalism for Atomistic Resolved Elec-

tron Transport

Chemically Sensitive Bandstructure : Tight-binding to Extended Huckel Theory

Before modeling current flow we need to construct the Hamiltonian matrix which describes the coupling

between neighboring atoms. This section focuses on orthogonal tight-binding(TB) and non-orthogonal

Extended Huckel Theory(EHT), the methods used to calculate the Hamiltonian matrix to determine the

band structure for graphene and graphene nanoribbons.

The real-space tight-binding Hamiltonian matrix is determined using the following conditions:
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〈φn |H|φn〉 = ε

〈φn |H|φm〉 = −t ,m = n± 1

〈φn |H|φm〉 = 0 ,m > n± 1

ε is the onsite energy of atom and t ≈ 2.5eV is the energy coupling between each atom. For graphene,

the pz-orbital overlaps are the weakest and therefore closest in energy to the Fermi level compared to the

in-plane sp2-hybridized bonds. Therefore, in general for electron flow we can get away with a single orbital

nearest neighbor TB-model. Note that the single pz-orbital basis used for tight-binding is only applicable

for an ideal in-plane hexagonal network of carbon atoms with uniform bond length of 1.42Å, with only the

nearest neighbor interactions. When we investigate the role of edges later in this chapter we will see that this

model fails to predict the lack of metallicity in armchair edge graphene nanoribbons(Fig. 3.4 far left)[3]). A

third nearest neighbor tight-binding model is needed worked out by [33] to capture the accurate confinement

induced band gap opening.

Figure 3.4: Tight-binding 1-orbital calculations show three chiral curves, one of which is metallic. Figure
borrowed from [3]

To capture edge effects in graphene nano ribbons, we opted to use Extended Huckel Theory (EHT),

whose more complicated, non-orthogonal and detailed valence band basis set is applicable to changes in

chemical environment and bond distortions. EHT valence band orbitals are each described by Slater-type

wave functions, whose general form is Eq. 3.15.

Ψ(r) = rn[c1e
−ζ1r + c2e

−ζ2r + c3e
−ζ3r]Ylm(θ, φ) (3.15)

n is the atomic number. c1, c2, c3, ζ1, ζ2, ζ3 are the coefficients and exponents that are unique to each



Device Modeling: Chemistry to Devices Overview 16

orbital. In particular Carbon has 4 valence bonds: one s and three p. The coefficients and exponents for

each valence orbital are determined by benchmarking the bulk band structure of graphite against density

functional theory with appropriate corrections. Once the bulk-bandstructure is benchmarked, the same

parameters can be used to construct a Hamiltonian for strained or bond disordered systems without the need

for reparameterization. The parameters used in this work can be found in [34][35]

Sνµ = 〈φν |φµ 〉 (3.16)

Hνµ = KEHTSνµ(Hνν +Hµµ)/2 (3.17)

Operationally, Extended Huckel Theory first calculates an overlap matrix (Sνµ) using Eq. 3.16, where ν

and µ are atomic orbital indices. From the overlap matrix the Hamiltonian of graphene is constructed using

Eq. 3.17.

H =




[α11] [β12] [β13] [β14] · · · [β1N ]

[β21] [α22] [β23] [β24] · · · [β2N ]

[β31] [β32] [α33] [β34] · · · [β3N ]

[β41] [β42] [β43] [α44] · · · [β4N ]

...
...

...
...

. . .
...

[βN1] [βN2] [βN3] [βN4] · · · [αNN ]




(3.18)

H(k) = [αnn] +
∑

m,m 6=n
[βnm]eikRmn (3.19)

Extracting block elements from the general Hamiltonian in Eq. 3.18 , we can use construct a reciprocal

space Hamiltonian Eq. 3.19 whose eigenvalues gives us band structure for graphene (Fig. 3.5(right)). The

band crossing near E=0 arise from the pz-orbitals while the higher energy bands are the sp2 hybridized

σ-bonds.

The bonding environment for GNRs at the edges deviates from the center as edge carbon atoms see

only two carbon atoms whereas each atoms is nearest neighbor with three other carbon atoms. Along

the armchair-edge, carbon atoms tend to dimerize analogous to polyacetylene. The obstruction of lateral

symmetry in polyacetylene opens a known bandgap proportional to the difference between inter and intra-

dimer bond coupling strengths. The bonding environment in graphene is slightly more complicated compared

to polyacetylene, but the role of edge strain is nonetheless manifested in the dimerization of carbon edge
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Figure 3.5: Graphene dispersion from (left) experiment from ARPS[4] and (right) from Extended Huckel
Theory.

Figure 3.6: Polyacetylene molecule resembles the edge chemistry of strained armchair edge graphene nanorib-
bons.

atoms on bandgap opening as seen in the density of states in Fig.( 3.8b).

To confirm our simple explanation on the impact of strained edge bonds on the electronic structure,

we calculated the density of states (DOS) of a uniformly wide armchair GNR with edge strain using EHT.

The role of edge passivation is shown in Fig. 3.8, where we can see the explicit removal of edge-induced

midgap states by hydrogenation. Fig. 3.8b show the role of edge strain. In contrast to pz-orbital based

nearest neighbor one orbital tight-binding theory, a small bandgap opens. While CNTs have precise periodic

boundary conditions along their circumference, the edge atoms do not provide an exact hard wall boundary

condition, as the electrons tend to tunnel out into the surrounding region. In the presence of edge strain, the

bandgap increases because of the aforementioned dimerization, removing any semblance of metallicity from

the bandgap vs. width plots Fig. 3.9. Hidden third nearest neighbor interactions are included automatically
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Figure 3.7: Graphene nano ribbon density of states simulated from the same Extended Huckel Theory
parameters used for graphene.

Figure 3.8: EHT captures the proper GNR chemistry, including (a) mid-gap states near the Fermi energy
(-4.5 eV) arising from armchair edge dangling bonds (inset: local density of gap states). (b) H-passivation
removes edge states, while soft edge boundaries prevent metallicity. A 3.5% edge strain further enhances the
band-gap, Eg.
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with EHT.

Figure 3.9: (c) Applying EHT to GNR dispersion relation across a range of sub- 10nm armchair edge widths
finds an oscillating bandgap. (d) Strain of edge bonds that are hydrogen terminated widens the energy
bandgap for 3p and reduces the gap for 3p+1 GNRs. Eg vs. width results are within the range of experimental
data points [5]) and also in agreement with DFT predictions

Atomistic Modeling of Current Flow

This dissertation is concerned with a current flow in the direct-current (DC) limit. Therefore, when we

model nanoscale devices dominated by quantum mechanical behavior, we start with the time-independent

Schrodinger’s equation with open-boundary conditions for the injection and removal of carriers, Eq. 3.20.

EΨ = [H + U ]Ψ + ΣΨ + {s} (3.20)

H is the Hamiltonian matrix describing the on-site energies and hopping between neighbor atoms.

Orthogonal tight-binding and non-orthogonal Extended Huckel Theory are two methods, discussed in the

last section that can be used to construct, H. U is a potential matrix dependent on the electrostatics of the

device, and is at the heart of any device operation. Σ is called the self-energy matrix describes the interaction

between the carriers in a material system with its surrounding environment. In context of electronic devices,

Σ can be broken down as the sum of contact self-energies (Σ1,Σ2) and scattering self-energy (Σs). ΣΨ

describes the outflow of carriers, while {s} describes some arbitrary inflow. In general, the self-energy is a

complex matrix of complex numbers, where the inverse of its imaginary component(Γ) describes the lifetime

of the particle.

Relating the output response of the wave function(Ψ) to an arbitrary response s is the expression,

Ψ = G{s}. G is the retarded Green’s function, which from Eq. 3.20 is:

G = [EI −H − U − Σ]−1 (3.21)
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Charge density is defined as
〈
Ψ†Ψ

〉
, where

〈
ss†
〉

= Σin is the in-scattering . The charge density or electron

correlation functions is :

Gn =
〈
ΨΨ†

〉
= G

〈
ss†
〉
G† (3.22)

The expectation value of the inflow contribution, Σin can be written the inflow from all contacts including

scattering, where we assume the self-energies for the contact 1 and contact 2 are equal, and Γ = i(Σ− Σ†) is

the broadening.

Σin = f1Γ1 + f2Γ2 + Σins (3.23)

Similarly we can define a correlation matrix for holes, Gp = GΣoutG
†, which is simply difference between

the spectral function, A = G[Γ1 + Γ2 + Γs]G
†, and the electron correlation matrix, Gn (Eq. 3.22). Σout is the

self-energy describing outflow and has the same form as Σin in Eq. 3.23, except the device contact Fermi

functions, f1,2 are replaced by 1− f1,2.

Having defined terms that describe the inflow and outflow of carriers, we can define a terminal current

analogous to Eq.3.10. From this point on in this section, we will see how get an expression for current that is

similar to the Landauer formula, Eq. 3.12.

The terminal current is the net flow of charge carriers as expressed in Eq. 3.12. In terms of the terminal

inflow and outflow self-energies and electron and hole correlation matrices, the terminal current is:

I =
2q

h

∫
dE ΣinGp − ΣoutGn (3.24)

Using the identities, Gp = A−Gn and Γ = Σout + Σin, Eq. 3.24 can be written in a form often expressed

in texts, Eq.3.25.

I(E) =
2q

h

∫
dE (Σini A− ΓiG

n) (3.25)

However this Eq. 3.25 does not resemble the Landauer Formula Eq. 3.12 as promised earlier, but has the

advantage of explicitly including scattering. In the ballistic limit (i.e. no scattering), where Σs = 0, using

the identities defined above(A = G[Γi + Γj ]G
† and Σin

i = fiΓi) with the correlation matrix (Eq.3.22), the

terminal current becomes:

I =
2q

h

∫ −∞

∞
Trace{ΓiGΓjG

†} [fi(E − µi)− fj(E − µj)] dE (3.26)
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Eq 3.26 is more intuitive form of the non-Equilibrium Green’s Function(NEGF) formalism as it resem-

bles the Landauer Formula (Eq. 3.12), where M(E)T (E) = Trace[ΓiGΓjG
†]. Note that M(E)T (E) =

Trace[ΓiGΓjG
†] means that the total transmission is the sum of propagating and evanescent modes/

In problems where inelastic scattering is important, Σs is no longer zero and needs to calculated self-

consistently with with the correlation functions (Gn and Gp). The condition for convergence is the conservation

of currents with respect to all terminals including the scattering terminal defined by scattering self-energy (Σs).

When incorporating inelastic scattering, we need to define a broadening function for scattering (Γs) which is

proportional to the inverse lifetime of for particular scattering process. Γs is the sum of the in-scattering and

out-scattering self-energy matrices defined in Eq. 3.27 and Eq. 3.28, respectively.

Σins (E) =

∫
dωDo(ω) [(Nw + 1)Gn(E + ~ω) +NωG

n(E − ~ω)] (3.27)

Σouts (E) =

∫
dωDo(ω) [(Nw + 1)Gp(E + ~ω) +NωG

p(E − ~ω)] (3.28)

Assuming the phonons are in equilibrium, the Bose-Einstein statistic gives a temperature dependent

phonon number shown in Eq. 3.29. Since later on we calculated the role of a narrow band of optical phonons

which correspond to the optical density of states, Do(ω) equals the deformational potential of 0.07eV 2 [36]

times the optical phonon density of states (Eq. 4.23)

Nω = [exp [~ω/kBT ]− 1]
−1

(3.29)

The broadening function for scattering is then used to determine the scattering self-energy in Eq.3.30,

which goes back in the self energy (Σ) term in the retarded Green’s function (Eq. 3.21), where Σ = Σi+Σj+Σs

Σs =
iΓs
2

(3.30)

Typically, Eq.3.26 is used for ballistic systems, where Σs = 0. For disordered systems such as graphene

nano ribbons with edge roughness (Appendix I), where scattering is elastic (conserved energy and momentum),

averaging over many coherent results with disorder embedded in the Hamiltonian generates phase independence

and incoherence . Essentially this average is a way to capture elastic scattering by brute force numerics

without having to determine Σs. When we are interested in phonons where Σs is non-zero, Eq. 3.24 or

Eq. 3.25 are more convenient to use. In chapter 4, Eq. 3.24, Eq. 3.27, and Eq.3.28 will be used to determine

high-bias current saturation due to optical phonon scattering.



Chapter 4

Understanding Graphene transport

from Low to High Bias

4.1 Introduction

The overall purpose of this chapter is to investigate the role of band structure on low-to-high bias current

using a unified model based on the Landauer Formula presented in the last chapter. The focus is on the role

of charged impurities and phonons at both biasing extremes.

We will start at low-bias and break-down the fundamental band structure related trade-offs between

opening a band gap to reduce OFF-current and its affect on mobility or ON-current. Quantifying this trade-off

is important in motivating the purpose of the final chapter, where we present a way to bypass this mobility

versus band gap trade-off. Projections and conclusions will be made on acoustic phonon limited mobility

for various graphitic derivatives. Also at low bias charge impurities play a significant role on the minimum

conductivity. Using a Landauer based model for conductivity we spell out for the first time the entire phase

space of the minimum conductivity at both ballistic and diffusive limits in the presence of charge impurities

and reveal both a high impurity saturation and an aspect ratio (W/L) depend flip in the conductivity.

Next at high bias we present a Landauer based device model that matches experiments at both the

device and circuit level. Traditionally, compact models are constructed with equations fitted to experimental

parameters. However the Landauer formula provides us with a solid physics based model. The first model we

present is simple, assuming a pristine graphene density of states which works well for long channels. We show

matches against both experimental device IVs and circuit voltage transfer curves.

22
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4.1.1 Bandstructure limited mobility: redefining how we think of effective mass
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Figure 4.1: General projection of mobility versus band gap opening for graphene in comparison to the other
common group IV and III-V semiconductors [6]. The projected trend is for photonics band structures with a
simplified model for scattering. Experimental data points for the mobility of other semiconductors includes a
large mixture of scattering mechanisms that can create variation in the Eg − µ trade-off.

Various efforts to engineer a band-gap have consistently seen gaps narrower than 400meV. However

opening a band-gap in single-layer graphene(SLG), bilayer graphene(BLG), or graphene nanoribbons(GNRs)

imposes a fundamental consequence on the low energy mobility due to the asymptotic constraint on the

high-energy band- structure. While it is well understood that interfacial surface roughness, edge roughness

due to patterning, and phonons from graphene and its interfaces can additionally degrade mobility through

scattering, the scattering independent contribution from band-structure alone is often overlooked. Fig. 4.1 is

a projected result as a function of bandgap.

Mobility is conventionally defined as, µ = q 〈τ〉 /m∗, where the effective mass, m∗ is usually defined by

the inverse curvature at the band bottom, while scattering time,〈τ〉 is defined at the Fermi level. Due to

band-related constraints this definition is suitable for wide-band-gap graphene or materials where the carrier

kinetic energy varies slowly with change in crystal momentum. For consistency we want the effective mass at

the Fermi level, m∗F , which requires careful consideration for different graphitic derivatives 4.4.

Our general approach for defining mobility and effective mass stems from a low temperature, low bias

form of Landauer formalism for transport (4.1),

I =
2q

h

∫ µ1

µ2

dE T (E)M(E) ⊗ (−dfo
dE

) (4.1)

where M(E) = π~v(E)
L D(E) is the number of modes, T (E) = λ(E)

L is the transmission per mode. At

low temperature and bias
∫
dfo
dE dE = µ1 − µ2 is just the drain bias qVd. Normalizing with respect to drain

bias gives the conductance and ultimately the conductivity, σ. To make the connection with mobility and
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Figure 4.2: (a) Atomistic Extended Huckel Theoretical AGNR bandstructures confirm that reducing GNR
width opens the bandgap while preserving the high energy bandstructure (in other words, a distortion of the
bands rather than just a translation along the energy axis . (b)Carrier mobility degrades as Fermi level is
biased deeper into the band (ie, increas- ing gate overdrive). (c) Low-bias mobility for bandgapped BLG
shows a shows a non-monotonic dependence on gate overdrive. There is a sweet spot because while the
effective mass reduces towards the band-edge, the density of states increases as well (Fig. 4.5a) and makes
inter-subband scattering more effective.
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ultimately m∗F we relate σ from (4.1) to Einstein relation for a degenerate conductor, σ = q2DoD(E), where

Do is the diffusion constant and D(E) is the density of states. To equate the degenerate conductivity in

terms of mobility we must define the diffusion constant as Do = nsµ/qD(E), where ns is the charge density.

Sparing the details of specific graphitic derivatives for later, the general form for mobility boils down to

µ = qλ/~kF , where λ is the scattering length, ~kF is the crystal momentum. From which we can define

effective mass as m∗F = ~kF /vF , which is consistent with a carrier group velocity (vF = 1
~
dE
dk ) at the Fermi

level.

For a more rigorous derivation of the Fermi level dependent effective mass we start with the cyclotron

effective mass defined in Eq. 4.2

m∗ =
~

2π

dA(E)

dE
(4.2)

A(E) is the area in the crystal momentum space of the electron orbit in the presence of a magnetic field

at a particular energy. Since graphene’s Fermi surface is isotropic, we can define A(k) = πk2. Using chain

rule, Eq. 4.2 can be rewritten in the form shown in Eq. 4.3.

m∗ =
~2

2π

dAk
dk

dk

dE
=
d(πk2)

dk

dk

dE

~2

2π
= ~2 kdk

dE
=

~k
v

(4.3)

Graphitic band-structures (Eq.(4.4)) have the general form, E = ±
√
Eg2/4 + (~vok)2, where vo ∼

108cm/s is the carrier saturating velocity. A commonality among SLG, BLG, GNR is the high energy

constraint on the band-structure, but the dynamics of bandgap (Eg) opening are particular to the different

graphitic derivatives, which present similar yet unique trends in their mobility and effective mass.

E =





√
|t1 − t2|2 + (~vok)2, SLG

√
U2

4 +
t2⊥
2 + s

√
4~2v2ok

2(U2+t2⊥)+t4⊥
2 + (~vok)2 BLG

√
(En)2 + (~vnkx)2, GNR

(4.4)

4.1.2 Trade-off between band gap and mobility

Having presented the general projected trends for acoustic phonon limited mobilities for bilayer and single-layer

graphene,next we breakdown the Fermi level dependent effective mass and velocity and how both play a role

on mobility.
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band-gap correlates with a corresponding reduction in Fermi velocity, vF (inset), and (b) a slowly varying
effective mass, m∗F . The variability of m∗F is higher for narrower band-gaps.

Single-Layer and Bilayer Graphene

Asymmetry induced bandgap opening is a common theme between SLG and BLG. Adsorption of Lithium

atoms on SLG induces bond length distortions that create two types of couplings (t1, t2), inducing a bandgap

equal to 2 |t1 − t2| [37]. Meanwhile a interlayer coupling(t⊥) and an out-of-plane potential difference(U) in

BLG extends a bandgap equal to U t⊥√
U2+t2⊥

[38, 39]. As there are other methods of inducing bandgaps in

two-dimensional graphene and more to be discovered, we assume that opening a bandgap in two-dimensional

graphene preserves the isotropic constant energy surface, which allows us to define k2 = k2
x + k2

y for both SLG

and BLG. From which the density of states (D(E)) for SLG is D(E) = 2WLE
π~2v2o

Θ(|Ef | ≥ Ec) and for BLG is:

D(E) =
4

π~2v2
o





∆+ Θ

(
|Ef | ≥ Ut⊥

2
√
U2+t2⊥

)

∆+ + ∆− Θ(|Ef | ≥ t⊥)

BLG (4.5)

,where ∆± =

[
|E| ± |E|(U2+t2⊥)√

4E2(U2+t2⊥)−U2t2⊥

]
.

The density of states elucidates the role of distorted band-structure on effective mass and mobility.

Plugging the number of modes, M(E) into Landauer equation(Eq. 4.1) we get the conductivity for SLG

(Eq.4.6) and BLG(Eq.4.7).

σ =
4q2

h

√
E2 − E2

c

π~vo
λ (4.6)
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Bernal stacked layers. The resulting Van-Hove singularities amplify phonon scattering at the band-edge.
Coupled with reduction in effective mass at band-edges, the result is a maximum in mobility at intermediate
values of the overdrive (Fig.4.2c)

σ =
4q2

h

λ

~vo

√

E2 +
V 2

4
±
√

4E2(V 2 + t2⊥)− V 2t2⊥
2

(4.7)

Meanwhile using Fermi’s Golden Rule, 1
τ = 2π

~ 〈ψ2 |Us|ψ1〉2D(E) we determine the acoustic phonon

scattering rate for SLG and BLG:

1

τF
=





D2
AkBT

4ρmv2sv
2
o~3E SLG

D2
AkBT

2ρmv2sv
2
o~3 ∆ BLG

(4.8)

,where the lattice strain from acoustic phonons described by the interaction potential(Us) promotes a state

transition from ψ1 → ψ2. The deformation potential, DA is 18±1eV for SLG and 15eV for BLG, while

longitudinal acoustic phonon velocity (vs = 2.1× 106cm/s) and mass density( ρ = 7.6× 10−7kgm−1) are the

same for SLG and BLG [40, 41]. The energy dependent role of scattering rate on mobility is proportional

to the number of available states for carriers to scatter [42] or D(E)(Fig. 4.4a, 4.5a), which increases with

gate-overdrive and extended band-edges or band-gaps.

In addition to the ∼ 1/E from τ , an energy dependent, band-related m∗F = ~kF /vF further degrades

mobility(Fig. 4.2b,c). The asymptotic constraint on the bandstructure enforces an energy dependent mobility

trade-off. Mobility monotonically decreases with bandgap, but the non-monotonic behavior of BLG, D(E)

amplifies 1/τ and m∗F (Fig. 4.4b, 4.5b) near band-edge and creates a sweet-spot in the mobility that varies

with band-gap:
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max(µBLG) : qVg =
1

2

√
3
√
U4t4⊥(U2 + t2⊥)2 + U2t2⊥

U2 + t2⊥
(4.9)

Eq. 4.9 is how far into the band we need to go to reach the minimum in effective mass (Fig. 4.5b) and

corresponding maximum in the mobility (Fig. 4.2c). Note that the bandgap is related to the potential U

between the two layers through Eg = Ut⊥√
U2+t2⊥

. In general, m∗ ∼ Eg, τ ∼ 1/Eg, therefore the mobility goes

as : µ ∼ 1/Eg2.
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Figure 4.6: (a) Wider GNRs with a denser array of sub-bands have a greater probability of multiple sub-band
crossings by the Fermi level compared to narrower GNRs. (b) Phase plot of m∗ versus bandgap and Fermi
level position inside the band illustrates the influence of multiple sub-band crossings on the transport effective
mass.

The introduction of sub-bands in one-dimensional GNRs and CNTs raises the question of how to define m∗F

when gate-overdrive positions the Fermi level inside across multiple sub-bands? This question is particularly

relevant for GNRs with widths between 20nm and 50nm as the density of sub-bands is proportional to

ribbon GNR width or equivalent CNT diameter. As presented in Eq. 4.4, GNR band-structure is nearly

identical to SLG, except for the n-th sub-band cut-off energy (En) and saturating velocity (vn) are chiral

specific quantities parameterized using third nearest neighbor tight-binding and benchmarked against Density

Function Theory(DFT) [33] and Extended Huckel Theory(EHT) predicted band-structures.

In the case of crossing multiple sub-bands the mobility is defined as µF = qλ
~〈kFx〉 , where 〈kFx〉 =

1
N

∑N
n=1

1
~vn

√
E2
F − E2

n and N is the number of sub-bands crossed. The average momentum ~ 〈kFx〉 can be

rewritten as 〈∑m∗FnvFn〉 from which effective mass across multiple sub-bands can be extracted.



4.1 Introduction 29

The general form for effective mass is m∗F = ~kF /vF , where vF is the average velocity across relevant sub-

bands. Following the general approach presented earlier and noting that diffusion constant, Do = τ 〈vFx〉2 /2,

the 1-D GNR average velocity is 〈vFx〉 = N

[∑N
n=1

|EF |
vn
√
E2
F−E2

n

]−1

. From which the effective mass is just

m∗Fx =
1

〈vFx〉
∑

m∗FnvFn (4.10)

Fig. 4.6a interestingly show jumps in m∗F as the Fermi level reaches sub-band edges. By now m∗F

understandably increases with number of k-states, however at the edge of a sub-band the velocity contributed

that particular sub-band is zero, therefore the decrease in 〈vFx〉 increases m∗F . Fig. 4.6b is a phase plot

illustrating the same trend across different overdrive and band-gaps for armchair-GNR(3p+1,0), where p are

integers and 3p+ 1 denotes the GNR chirality. The brighter/ yellow curves and dots correspond to sub-band

crossing and associated jumps in m∗F . 1−D graphitic mobility also follow the 1/Eg2 trade-off at the bottom

of the band.

4.1.3 Concluding Remarks

Regardless of how scattering is or can be reduced, the band-related trade-off on mobility is unavoidable.

The high energy constraint universal to the graphitic band-structure imposes increased parabolicity arises

near band-edge with band-gap widening. Therefore, a parabolic to linear transition forces an increase in

effective mass and decrease in mobility. Each graphitic derivative follows a similar yet unique band-gap versus

mobility curve. The influence on mobility can be separated into scattering dependent (τ) and scattering

independent (m∗F ) quantities. We projected the acoustic phonon limited mobility(Fig. 4.3) for suspended

graphene. With the focus being on the scattering independent or band-related trade-offs we extracted

effective mass for various SLG(Fig. 4.4b), Bernally-stacked BLG(Fig. 4.5b) and armchair-GNRs with edge

strain(Fig. 4.6). We found that the non-monotonic nature of the density of states for BLG and GNRs had a

distinct influence on mobility and effective mass compared to SLG. Thus we projected a sweet-spot in BLG’s

mobility versus overdrive. In general all graphitic derivatives follow a 1/E2
g dependence. Understanding the

role of this universal high-energy constraint on graphitic band-structure is an important design consideration

for graphene-based electronic devices.
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4.2 Finding the missing π: Quantifying Low-Bias Minimum Con-

ductivity in the Presence of Impurities

Figure 4.7: (top) Analytical results and (bottom) NEGF results courtesy of Redwan Sajjad for minimum
conductivity versus nimp

A unique electronic property of graphene is its minimum conductivity on the order of a single conducting

mode, 4q/h, where q is the electron charge, h is Planck’s constant, and the pre-factor of 4 for spin and

degeneracy, even at its zero-density point or the Dirac point. In the ballistic limit where the width of the

graphene channel is much greater than the length both experiments [19] and Landauer based theory [20]

predict a minimum conductivity of 4q2/πh. In the diffusive limit existing theory [21] and experiment [23]

investigate the minimum conductivity in the presence of impurities, where a Boltzmann model is used for the

theory. Authors Yang et al. in their work [24] have modeled the minimum conductivity in the ballistic limit

with only three data points without conclusively showing the missing π.This section aims to describe away to

analytically rationalize the minimum conductivity between the limits of low to high impurity concentration

and small to large graphene aspect ratio.

The general Landauer conductivity is:

σ = G
L

W
=

2q2

h
T
L

W
(4.11)

The total transmission is T is the number of modes times the probability per mode summed over all

transverse modes, propagating and evanescent, Eq.4.12.
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T =

n=∞∑

n=−∞
Tn = Mp

λ

λ+ L
+MeTe (4.12)

,where the index p refers to propagating and e refers to evanescent modes. The scattering length of the

charge impurities λ is derived analytically (see Appendix iv) from Fermi’s Golden Rule is only valid for

propagating modes. The transmission probability Tn comes from solving a particle on a step, where the

contact Fermi level is high doped compared to the graphene channel. The graphene transmission probability

is similar to its free particle analogue,

Tn =

∣∣∣∣
k

k cos(k L) + i (Vrms/~v) sin(k L)

∣∣∣∣
2

(4.13)

Vrms represents the change in potential in the channel, k =
√

(Vrms/~v)2 − q2
n is the transverse wave-

vector in channel that is summed over to get the total transmission. When k is real the the transverse modes

are propagating, while when k is imaginary the transverse modes become evanescent. Imaginary k changes all

the trigonometric functions to hyperbolic functions giving us the 1/cosh(k L) normally seen in the literature,

assuming Vrms is zero.
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Figure 4.8: The minimum conductivity with no charged impurities at different aspect ratios.

Introduced back in chapter 3 in Fig. 3.2, the presence impurities erases the Dirac-point in the density

of states. Charge impurities create a non-uniformity which means ideally we need to solve a particle in a

non-uniform step potential. A particular impurity concentration will increase the minimum density of states

to
√
ασ2

o/(π~2v2), where σ2
o is the statistical variance of the normal distribution of potentials throughout the

graphene. However, Eq. 4.13 comes from a solving the particle on a uniform step. We can approximate the
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variation in the potential as a lumped element by defining the increase in the impurity affected density of

states as an energy shift away from the Dirac point in the pristine graphene density of states (eq : idealDOS).

In other words, we can treat Vrms in the Transmission probability(Eq. 4.13) as
√
ασ2

o .

Treating in the increase in impurities as an increase in the channel potential Vrms introduces more

propagating modes (i.e., when k =
√

(Vrms/~v)2 − q2
n is real). Phase breaking incoherent scattering is

accounted for in λ/(λ+ L). λ = vτ is the scattering length where v is the Fermi velocity (˜106m/s) and τ is

the scattering time derived in Appendix iV. from Fermi’s Golden Rule and shown in Eq.4.14

τ =
2π

~
Z2q4

4π28ε2oε
2
s

[
π

k(E)2
+
πκ(E)2

2k(E)4
− πκ(E)2

2k(E)4

√
κ(E)2 + 4k(E)2

κ(E)2

][√
(E + µ)2 + ασ2

0

~2v2
o

]
nimp (4.14)

Plugging all the elements in to Eq.4.11 while noting that only propagating modes have phase broken

transmission probability per mode λ/λ+ L(Eq.4.12), we arrive at the results shown in Fig.4.9.
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Figure 4.9: Phase plot of minimum conductivity for a fixed width of 500nm and aspect ratio varying from

0.124 to 2. Note that the smallest minimum conductivity is exactly at 4q2

πh . The two important features seen
for the first time in the graphene literature are (1) saturation at high impurity and (2) flip in curvature at
low impurity.

Our modified Landauer based theory matches the numerics from NEGF calculations at the same dimensions

very well(Fig.4.7). Overall we see a general convergence or asymptotic behavior at high charge impurity

concentration for wide width graphene. The ballistic behavior of the minimum conductivity is the rise in

the minimum conductivity which agrees with the NEGF results courtesy of Redwan Sajjad, and follows the
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general trend presented in [24]. The same unified Landauer based model also predicts the diffusive limit

which matches qualitatively and possibly even quantitatively to [21, 23] assuming the dimension are known.

For the first time an entire phase plot of graphene’s minimum conductivity is presented with a unified model.

4.3 High-bias current : Impurity and Optical Phonon induced

saturation

4.3.1 Analytical Compact Modeling of Graphene IV

From section 3.1.1 we saw that given a analytical band structure or dispersion relation, current voltage

characteristics can be predicted using the Landauer formula, Eq.3.12. The band dispersion of graphitic

materials, ranging from epi-G to sG, BLG, CNTs and GNRs are all described by a universal formula [43]

E = ±
√
E2
C,V + ~2v2

0k
2 (4.15)

where the band-edges are at EC,V while the high energy velocity in the linear regime is v0 ≈ 108 cm/s. From

the dispersion, we can readily extract the 2D density of states and band velocities

D(E) =

(
2WL

π~2v2
0

)
|E|
[
θ(E − EC) + θ(−EV − E)

]

v(E) = v0

√
1− E2

C,V /E
2 (4.16)

There is an additional energy dependence in the scattering length λsc. For ballistic channels, this is energy-

independent, while for charge impurity and edge roughness scattering, λsc ∝ E, while for acoustic phonon

scattering, λsc ∝ 1/E. The actual dependences are a bit more complicated, but these are reasonable

approximations to adopt.

The algebra becomes particularly simple if we ignore the energy-dependence of λsc. We can then do the

Landauer integral, leading to

I =
8q

h

(
λW

π~v0L

)
I0 (4.17)

where the shape function I0 depends on the current flow regime. Assuming we start with an n-doped graphene

with a bandgap, we get
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Figure 4.10: A typical I-V output shows how the I-V tends to saturate at the Dirac point even without a
bandgap. The shift in the Dirac point indicates the Laplace potential drop along the channel, eventually
leading to band-to-band tunneling.

I0 =





1
2

[
µ1

√
µ2

1 − E2
C − E2

C cosh−1

(
µ1

EC

)
− µ2

√
µ2

2 − E2
C + E2

C cosh−1

(
µ2

EC

)]

if qVD < EF − EC ,

1
2

[
µ1

√
µ2

1 − E2
C − E2

C cosh−1

(
µ1

EC

)]

if EF − EC < qVD < EF + EV ,

1
2

[
µ1

√
µ2

1 − E2
C − E2

C cosh−1

(
µ1

EC

)]
− 1

2

[
µ2

√
µ2

2 − E2
V − E2

V cosh−1

(
µ2

EV

)]

if qVD > EF + EV .

where µ1 = EF and µ2 = EF − qVD. The expressions can be further simplified. In the linear regime, the

current looks like

Ilinear ≈ 2G0M

(
v0

vF

)2

VD (4.18)

where G0 = q2/h, the number of modes M ≈ 2W/(λF /2), and the Fermi velocity vF = v0

√
1− E2

C/E
2
F . The

saturation current

Isat ≈ 4G0M

(
EF
2q

)
(4.19)

while the band-to-band tunneling current at high bias varies quadratically as

IBTB ≈ 4G0M

(
v0

vF

)
VD

(
qVD
2EF

)
(4.20)
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Fig. 4.10 shows typical I-Vs based on the Eq. 4.20. These results agree with more involved, atomistic

models for EHT coupled with non-equilibrium Green’s function based simulations [44]. The current shows a

point of inflection at the Dirac point, which is shifted by the gate bias (bandgaps would give more extended

saturating regions, as we will see for our three terminal I-Vs later on). The subsequent rise in current is

indicative of band-to-band tunneling. Furthermore, a prominent I-V asymmetry, consistent with experiments

on SiC, can be engineered into our I-Vs (Fig. 4.11) readily by shifting the Fermi energy to simulate a charge

transfer ‘doping [45]’ of 470meV through substrate impurities, back-bonding and/or charge puddle formation

with SiC substrates. A mean-free-path(λsc) that varied inversely with gate voltage was implemented in the

left figure in Fig. 4.11. For n-type conduction λsc ranged between 18nm to 40nm and 20nm to 31nm for

p-type. Typically we would expect at least 100nm for low bias conductance and down to 10nm as the biasing

approaches the saturation and band-to-band tunneling regions. Chosen λsc represents an average scattering

length for the different regions. A more accurate model for scattering is necessary of which impurity scattering

is derived in Appendix IV and acoustic phonons are presented in Eq. 4.8. In contrast, SiO2 seems to dope

the sheets minimally and the measured I-Vs show the expected symmetry between the electron and hole

conducting sectors.
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Figure 4.11: (Left) Theoretical and (Right) experimental I-Vs for graphene. The calculations on the left
assume a ‘doping’ of the sheet by a charge density that shifts the K-point relative to neutrality. We also
assume an inverse relation between the scattering length λsc and the applied voltage on the n-side, consistent
with scattering by charge puddles associated with the above doping charge. The data on the right are for
graphene on SiC, where charge puddles and/or back-bonding are expected to transfer a net charge density to
the sheet [46].

The analytical current voltage expressions for a graphene three terminal device based on Landauer formula

were translated into device model in Verilog to simulate a basic graphene CMOS-type circuits. The captured
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Figure 4.12: (left) Device model of graphene transistor showing an inflection in the IV due to tunneling
currents. (right) Device model in Verliog used to simulate voltage transfer curve in Cadence of a graphene
CMOS-type inverter. Solid line is experimental data and dotted line are from analytical compact model.The
calculated and measured voltage-transfer curves (VTC) show gain away from the VDD/2 as the transistor
never turns off. In other words, for logic it is more important to have the rail voltages saturate in a VTC.
However non-saturating rail voltages also deteriorates the gain in the transition of meta-stable region in the
VTC [7]

upturn in the current voltage characteristic is responsible for the the poor pull-up of the output voltage at

low input bias(VIN ) and poor pull-down of the output voltage at high input bias(VIN ). This is due to the

non-complementary behavior of pull-up and pull-down networks as both N and P type graphene transistors

are always ON creating a voltage division at the output instead of voltage railing. More details are given in

Appendix II for work done in collaboration with Dincer Unluer.

4.3.2 Non-saturating IVs in the presence of impuritiesSTM Probe of Graphene on Conventional Oxide vs. h-BN !

h-Boron Nitride"Silicon Dioxide"

Impurity Density : Silicon oxide >> h-Boron Nitride"

35LeRoy, Nat. Mat. 2011

Figure 4.13: Spatially resolved potential profile in graphene on (left) silicon dioxide and (right) hexagonal-
Boron Nitride [8].

Section 4.2 presented how charge impurities are responsible for increasing the minimum density of states

which accounts for the missing factor of π in the minimum conductivity. At high-bias the quasi-current
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saturation seen in section 4.3 turns near Ohmic for graphene field effect transistors less than 500nm on

conventional oxides such as silicon dioxide and hafnium dioxide [47]. However on hexagonal-Boron Nitride, the

quasi-current saturation is recovered in experiments. In a separate experiment, pulsed current-voltage(I-V)

measurements which removing signatures of charge impurities trapped in the substrate recover the quasi-

saturation in the IV. Scanning tunneling microscope (STM) images of the graphene potential landscape

shown in Fig. 4.13 depicts a heavily doped and less uniform potential variation for graphene on conventional

oxides. This section presents a high-bias current model based on Landauer formula with statistical parameters

regarding charge impurity induced potential variation in the channel.

I =
2q2W

hL

∫ µ2

µ1

√
(E + µ)2 + ασ2

o

π~v
dE =

√
ασo
π~v

∫ √
tan2(Θ) + 1

√
ασosec

2(Θ) dΘ (4.21)

I =
2q2W

hL

ασ2
o

π~2v2

{
(E + µ)

√
(E + µ)2 + ασ2

o

ασ2
o

+ ln

∣∣∣∣∣

√
(E + µ)2 + ασ2

o + E + µ√
ασo

∣∣∣∣∣+ C

}∣∣∣∣∣

Ef−qVd

Ef

(4.22)

Using the puddled density of states( Eq.3.6) and Landauer formula (Eq.3.12) can analytical express the

current voltage behavior of graphene transistor in the presence of impurities with one equation evaluated from

the electrochemical potential of the source-end(Ef ) to the electrochemical potential on the drain-end(Ef−qVd),

Eq. 4.21. The complete form of the analytical I-V expression with statistical parameters is presented in

Eq. 4.22 and plotted Fig. 4.14. In the short channel limit where phonon scattering is not less significant, the

current-voltage characteristics in Fig. 4.14 illustrate charge impurities washing out any semblance of a Dirac

point in the IV presented in section 4.3 due to the increase in the minimum density of states.
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I =
2q2W

hL

↵�2
o
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+ ln

�����
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Figure 4.13: Output current voltage characteristics : (left) High impurity concentration, (right) Low impurity
concentration.

4.3.3 IV saturation in the presence of Phonons

At room temperature, crystal vibrations intrinsic to the channel and even from the surrounding are a

non-negligible e↵ect. Low energy vibrations are dominated by the acoustic phonon branch while the optical

branch occurs much later at a high energy. Acoustic phonons are low energy phonons where the lattice

vibrations are in phase. In graphene, we saw that the acoustic phonon mean free path is microns long and

resulting in mobility upwards past 100,000 cm2/V � s. The optical branch has a more significant e↵ect

and is known to saturate metallic carbon nanotube IVs when electron energy proportional to the applied

drain voltage is large enough to emit an optical phonon corresponding to integer multiples of the optical

phonon frequency (1600 cm�1 or 190meV) [8, 46]. The linear (Ohmic) to non-linear (saturating) transition

in the metallic carbon nanotube IVs have only been reproduced with a Monte Carlo Simulations [47]. In

this section, we use NEGF with self-consistent Born Approximation treatment of phonons, to reproduce this

phonon induced saturation of a metallic nanotube with its length dependence, anticipating a similar e↵ect in

graphene. Experiments have shown this length dependence for long channels [48].

The general formalism to include scattering is discussed in section 3.1.2, where ⌃s = D ⌦ Gn. The

electron-optical phonon coupling for graphene is 0.07eV 2 according to [35]. A simple Debye (single-mode) and

a more realistic banded-mode for the optical phonons are used to simulate the role of optical phonon induced

saturation graphitic (nanotube) current-voltage characteristics. Fig.4.14 illustrates di↵erence between the
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(A

)"
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Figure 4.14: Output current voltage characteristics : (left) High impurity concentration, (right) Low impurity
concentration.

This section uniquely presents a high bias current model based on Landauer formula with statistical
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parameters with respect to the random potential variation that can be induced by charged impurities

embedded or trapped in oxides. Conventional oxides and h-BN for the same channel length show different I-V

characteristics which can be attributed to different concentration of charged impurities. Overall the merits of

a single current-voltage equation are its intuitiveness based on real statistical parameters describing a random

channel potential and it being applicable as a device model abstraction for circuit level simulations as seen

with a more simple example in appendix ii.

At channel lengths on the order of microns, experimental I-Vs recover current saturation due to optical

phonon scattering [48, 47]. The next section presents the role of in-elastic optical phonon scattering on

current saturation in carbon nanotube using NEGF with self-consistent Born Approximation.

4.3.3 IV saturation in the presence of Phonons

At room temperature, crystal vibrations intrinsic to the channel and even from the surrounding are a

non-negligible effect. Low energy vibrations are dominated by the acoustic phonon branch while the optical

branch occurs much later at a high energy. Acoustic phonons are low energy phonons where the lattice

vibrations are in phase. In graphene, we saw that the acoustic phonon mean free path is microns long and

resulting in mobility upwards past 100,000 cm2/V − s. The optical branch has a more significant effect

and is known to saturate metallic carbon nanotube IVs when electron energy proportional to the applied

drain voltage is large enough to emit an optical phonon corresponding to integer multiples of the optical

phonon frequency (1600 cm−1 or 190meV) [9, 49]. The linear (Ohmic) to non-linear (saturating) transition

in the metallic carbon nanotube IVs have only been reproduced with a Monte Carlo Simulations [50]. In

this section, we use NEGF with self-consistent Born Approximation treatment of phonons, to reproduce this

phonon induced saturation of a metallic nanotube with its length dependence, anticipating a similar effect in

graphene. Experiments have shown this length dependence for long channels [48].

The general formalism to include scattering is discussed in section 3.1.2, where Σs = D ⊗ Gn. The

electron-optical phonon coupling for graphene is 0.07eV 2 according to [36]. A simple Debye (single-mode) and

a more realistic banded-mode for the optical phonons are used to simulate the role of optical phonon induced

saturation graphitic (nanotube) current-voltage characteristics. Fig.4.15 illustrates difference between the

Debye model and the banded model. The difference in implementation when calculating Σs is that Einstein

model accounts for one phonon mode while the banded model requires a sum over a band of modes.

For the banded model, a Lorentzian function (Eq.4.23) similar to the thermal broadening function FT (E)

is adopted to an optical phonon density of states with a finite bandwidth. The bandwidth ∆~ωop is dependent
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Figure 4.15: Einstein model vs Banded model for graphene optical phonon density of states.

on the phonon-phonon coupling parameter typically extracted from Density Function Theories, and outside

the realm of this dissertation.

Dω(E) = sech2(
E − ~ωop
2∆~ωop

) (4.23)

Fig. 4.16 shows the NEGF calculation of a metallic nanotube with ohmic behavior transition to an current

voltage characteristic with phonon induced saturation. The banded phonon model with the Lorenztian model

for the optical phonon density of states saturates the current as the Σs is now a sum over all frequencies.

Fig. 4.17 shows the dependence on length seen in experiments and modeled with Monte Carlo methods.

Increased channel length pronounces the current saturation as the channel length extends beyond the phonon

mean-free-path increasing the chances of scattering. Carbon nanotubes are known to saturate around 29µA

which is given Eq. 4.24 for an optical phonon emission at 190meV. Fig. 4.16 and Fig. 4.17 results do not

include the double degeneracy there missing a factor of 4. Therefore our model for optical phonon induced

saturation matches the expect current saturation (29µA) within a factor of 4.

Iopsat =
4q2

h
~ωop (4.24)

This section presented showed optical phonon scattering turn-on in carbon nanotubes consistent with

experiments [9]. As expected a metallic nanotube which normally would have Ohmic current-voltage

characteristics saturates when the energy of the electrons proportional to an applied source-drain bias excites

graphene optical phonon emission between 160meV to 190meV . Realistically substrates with significantly
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Figure 4.16: Ohmic(blue-curve) to non-linear saturating current voltage characteristics in the presence a
single optical phonon(green-curve) and a Lorentzian band of optical phonons (red-curve).*Note that the IV
curves on the right have not accounted for the double degeneracy in nanotubes.

Figure 1) as a voltage probe to measure the voltage drop Vtt
at the tip-tube drain junction. From this, we can deduce
the voltage V ) Vsd - Vtt and hence the I-V curve that
corresponds to just the left contact and the SWNT segment
between this contact and the tip. By moving the tip to
different locations along the tube, I-V measurements of the
same SWNT for different channel lengths L are obtained.27
Because the left contact is always the same and the voltage
drop associated with the right AFM contact is subtracted,
measurements at different channel lengths can be directly
compared. The shortest channel length that we can measure
in this way depends on the stability of the AFM and the
size of the tip, but it is typically L ≈ 50 nm.
Figure 2 is the result of measurements of I versus V on a

10-µm-long metallic SWNT at six different tip-contact

separations L. We first concentrate on the low-bias region
where the I-V characteristic is linear. In Figure 3a, the low-
bias resistance Rlow ) dV/dI is plotted for each length. For
L between 50 and 200 nm, Rlow is almost constant, but it
increases linearly with L for longer lengths. The slope of
this line is the 1D resistivity F ) dRlow/dL ≈ 4 kΩ/µm.
Similar resistivity is found for several other metallic SWNTs.
The resistivity of a 1D channel with four subbands in the

incoherent limit is given by28

where l is the electron mean-free path for backscattering.
From the measured slope, we infer that llow ≈ 1.6 µm. For
measurements with L , llow, the transport is essentially
ballistic. The measured resistance is just the contact resistance
associated with the source contact and is constant.
Now we consider the high-bias regime. The slope of the

I-V curve decreases with increasing V. For long channel
lengths, the current saturates to an approximately constant
value of ∼20 µA as reported previously.7 For shorter lengths
L < 500 nm, however, different behavior is observed. The
current again increases linearly with V at high bias but with
a slope much lower than at low bias.
The inverse slopes of I-V curves at high bias, Rhigh )

dV/dI, from four devices with diameters in the range of
1.8< d/nm< 2.5 are shown in Figure 3b. Rhigh scales linearly
with L, with a slope of dRhigh/dL ) 800 kΩ/µm. This high-
bias resistivity is 200 times larger than at low bias. If we
use eq 1 to infer a mean-free path, then we obtain lhigh ≈
10 nm.
We now compare these results to expectations for electron-

phonon scattering in NTs. The electron-phonon coupling
is described by the Hamiltonian

where q and R label the phonon wavevector and branch,

Figure 1. Schematic of the three-probe measurement setup. The
two electrodes and the Au-coated AFM tip serve as a voltage source
(left electrode), voltage probe (right electrode), and current probe
(AFM tip), respectively. The active length L of the SWNT device
can be changed by moving the AFM tip.

Figure 2. Current I versus voltage V at different lengths for an
SWNT device of overall length 10 µm and tube diameter 1.8 nm.
The measured length L of the tube is indicated next to each curve.

Figure 3. (a) Low-bias resistance Rlow ) dV/dI near zero bias as a function of L for the SWNT in Figure 2. (b) High-bias resistance
Rhigh ) dV/dI versus L from four different SWNTs. The diameters of the SWNTs are 1.8 nm (b, from the device in Figure 2), 2 nm
(9, 0), and 2.5 nm (4). The line is a linear fit to the data.
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Figure 4.17: (left) Experiment of metallic nanotube current saturation due to phonons at different channel
lengths. [9] (right) NEGF simulation showing current saturation with increased channel length, where
L1 < L2 < L3 < L4. *Note that the IV curves on the right have not accounted for the double degeneracy in
nanotubes.
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lower optical branches (i.e., silicon dioxide: ∼ 55meV and h-BN: ∼ 100meV ) can remotely induced scattering

and current saturation as seen with nanotubes (Fig. 4.17) at long channel lengths as demonstrated in

experiments. A NEGF simulation using nano wires was presented due to the computation cost associated

with simulating micron size channel length with the self-consistency within the Born Approximation.

4.4 Conclusion

This chapter builds a unique understanding of charge transport through in graphene in the presence of charged

impurities across all its transport regimes, from ballistic to diffusive, low to high bias. A Landauer based

device model captures the essential physics through the low energy bandstructure, where the channel is treated

as lumped parameter. Charge impurities are important when conduction is through the lower energy density

of states near Dirac-point. At low bias, we investigated the role of charge impurities on minimum conductivity

at diffusive(W − L) and ballistic(W >> L) aspect ratios showing for the first time in the graphene literature

the a complete phase transition with a turn-around when the aspect ratio W/L is approximately 0.5 to 1.

At high-bias the presence of the Dirac-point creates an inflection in the current-voltage characteristic that

disappears creating a more Ohmic curve in the short channel limit with increased impurity concentration.

However at high-bias optical phonons are a competing scattering mechanism that can saturate the current.

For this dissertation optical phonon induced saturation is demonstrated for a metallic nanotube. Furthermore,

this chapter introduces in detail the fundamental band-related trade-off when a band gap is opened to reduce

OFF-current or extended current saturation at the expense of effective mass and mobility. Quantifying the

band gap-mobility trade-off is the main motivator for investigation in the next chapter where we show how to

bypass material limits with gate engineering.



Chapter 5

Bypassing Material Limits: getting

more from narrow bandgap graphitic

channel

Recap : Graphene’s mobility, structural flatness and tunable bandstructureare sought after features in

the quest replace conventional silicon complementary metal oxide semiconductor(Si-CMOS) technology

for both logic and RF-applications. As investigated in the previous chapters, graphene’s large mobility

< 230, 000cm2/V s is a consequence of its zero-bandgap, which however makes a graphene field-effect transistor

impossible to turn off by conventional means. This inability to turn off a graphene-FET was quantified

at the end of chapter 3 where a quasi-analytical physics based compact model for a graphene field-effect

transistor was presented. However opening a structural bandgap whether through confinement in graphene

nanoribbons or broken sub-lattice symmetry with substrate doping or a perpendicular electric field in bernally

stacked bilayer graphene, will invariably compromise the high-mobility due to the increased effective mass

and increased scattering, as quantified in Chapter 4. The question confronted by the device community is if

we can fabricate the most pristine channel material for high mobility but also have to engineer bandgap?

This chapter restates it on asking a slightly differently on how to turn off a high mobility (narrow band gap)

channel in a field effect transistor. So far there have been no suggestions on this to the best of our knowledge.

42
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5.1 Introduction

The gateability of graphene is limited by its material constraint, specifically, an inverse relation that exists

between its bandgap and effective mass. Indeed, its high anticipated mobility relies critically on its zero-

bandgapped, linear dispersion that also makes it hard to suppress OFF-currents [51, 1]. Distorting this

pristine linear dispersion with a structural bandgap, opened through quantum confinement [17, 25] or a

disruption of its sublattice symmetry [52], decreases its OFF-current exponentially. At the same time, the

wider bandgap also increases its transport effective mass [51, 29] and the density of states available for

low energy scattering [42], hurting the overall mobility and thus the ON-current. We must thus carefully

calibrate when we have a net positive in terms of ON-OFF ratio, mobility, transconductance, current drive

and switching speed, as well as current saturation and its effect on the overall output conductance and device

gain.

In this section, we use gate engineering (Fig.5.1 a,b) to form a staircase potential (Fig.5.1c) along a

graphene sample with a small structural bandgap: a 5nm wide graphene nanoribbon (GNR) with an intrinsic

bandgap of 170meV, which could in principle be single-layer graphene with a bandgap [52, 30], and a

bernal stacked 2-D bilayer graphene (BLG) with a field induced bandgap of 150meV. The cascaded partially

overlapping local bandgaps conspire to generate an effective wider transmission gap (Fig.5.4), filtering out

transport through the intermediate conduction and valence bandgaps. Eliminating the staircase in the

ON-state restores the mobility and thus preserves the ON-current even as we reduce the OFF-current and

achieve a sizable current saturation in the output characteristics (Fig.5.8). Critical to the current-voltage

characteristics is the biasing illustrated by the large-signal device layout in Fig.5.2.

We demonstrate proof of concept by numerically solving for the transfer (I−VG) and the output (I−VDS)

current-voltage characteristics of the cascaded gate FET from an atomistic treatment of the device, using

the Non-Equilibrium Green’s Function (NEGF) formalism coupled with fully self-consistent 3-D Poisson’s

equation, exploiting the open-source code NanoTCAD ViDES [53, 54]. Our simulation shows a reduction in

OFF-current by two orders of magnitude in the I−VG, and improved room temperature current saturation in

I − VDS , while fully preserving the ON-current (Fig.5.8). Since the underlying principle is quite general, the

method can be adapted to any narrow bandgap material with high mobility to improve gain in radio frequency

(RF) as well as digital switching applications [29].
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5.2 Description of NanoTCAD ViDES

NanoTCAD ViDES is the primary tool used for this particular investigation. In addition to solving the

same NEGF equations described in Chapter 3, it includes a 3D self-consistent Laplace-Poisson solver. Due

to the computational complexity of determining the Green’s function, NanTCAD ViDES uses recursive

algorithm to determine the inverse of relevant diagonal blocks. The recursive algorithm reduces computational

complexity from order O(N3) to order O(N). NanoTCAD ViDES predominately uses nearest neighbor

tight-binding model for graphene, nanoribbons, nanotubes, and bilayer graphene, but is expandable to handle

non-orthogonal Hamiltonians from density functional theory(DFT) if additional chemical details are needed.

Furthermore the self-consistent potential is solved using finite element with Newton-Raphson for convergence.

NanoTCAD ViDES also handles multi-threading and communication between different computers for

parallelization using messaging passing interface for python(mpi4py). To conduct the work presented in this

chapter NanoTCAD ViDES was integrated with University of Virginia’s FIR Linux Cluster, which has 8-core

computing nodes with 32GB of RAM per node. The parallelization makes the 100nm channel graphitic

channel lengths for both a 5nm wide nanoribbon and 2D bernal stacked bilayer graphene computationally

manageable with 3D grids and self-consistent Poisson potential.

5.3 Unconventional gate-layout.

The layouts for the GNR (Fig.5.1 a) and BLG (Fig.5.1 b) are different because the bilayer graphene requires

a vertical field to induce a bandgap, and this field must stay constant across the staggered sections as we

misalign the gaps. Fig.5.2 shows a bias diagram that applies to both structures. Referring to Fig.5.1 a, we

simulated two vertically staggered top-gates that cover two-thirds of the graphene nanoribbon channel and

are separated by gate dielectric thicknesses of d1=4 nm and d2=12 nm hexagonal Boron Nitride(h-BN). The

back-gate covering the entire length of the channel is separated by 4nm of h-BN. The symmetry between the

first top-gate dielectric thickness of 4 nm and the back-gate dielectric ensures that the cascade of bandgaps

starts around Efi = 0eV . The conductance of the remaining one-third underlapped region of the channel

sitting next to the drain is modulated by the back-gate. For bilayer graphene (Fig.5.1b), three sets of top

and embedded split back-gates are spaced equidistant across a 100 nm channel with 10 nm spacing between

neighboring gates [55]. As long as the top to bottom differential gate bias, |VTG − VBG|, is held constant

among the three set of gates while varying VTG and VBG, the field induced bandgap between the gates will

stay the same even as we electrostatically dope the different segments of the graphitic channel away from

EFi = 0 eV by the average potential between top and bottom layers, (VTG + VBG)/2 [38].
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a b

c

Figure 5.1: (a) Layout for 5nm nanoribbon channel with bandgap of 170meV . d1 = 4nm, d2 = 12nm,
top-gate lengths = 35nm, |VTG| = |VBG| = 0.310V (b) Layout for 2D bilayer graphene. Gate lengths are
25nm and spaced apart by 10nm. |VTG − VBG| = 4.00V maintains field induced bandgap of 150meV :
VTG1 = 2.00V , VBG1 = −2.00V , VTG2 = 2.20V , VBG2 = −1.80V , VTG3 = 2.40V , VBG3 = −1.60V . (c)
Staircase potential profile synonymous with the layouts from (a,b) promotes conduction through the highest
conduction-band the lowest valence-band to prolong current saturation and reduce OFF-currents (Fig.5.8).
The contact doping is 0.20eV ( Fig.5.3)

Figure 5.2: Large signal diagram for devices in Fig.5.1a and Fig.5.1b where DC voltages (VTG, VBG) are tied
to input voltage VIN . The supply voltage (VDD) is the source-drain bias (Vds) for the devices.
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Figure 5.3: Computed self-consistent band diagram of the staircase potential profile at (a) VIN = 0V (OFF-
state) and (b) VIN = 0.24 V (ON-state) both constant drain-source bias of V ds = 0.30 V . The intrinsic Fermi
energy in each case is assumed at 0 V . Band-profile begins to flatten due to potential build-up from charges
in the channel as the cascaded bandgap transistor is biased toward ON-state. The influence of staggered
gates on channel potential depends on each gates transfer factor which decreases with distance from the
channel. Shift in channel potential will be different per VIN .

5.4 Transmission Gap: Filter conducting modes with a narrow

band gap.

The deliberate misalignment of the local bandgapped regions allows transmission of electrons only above

the highest available conduction band and below the lowest available valence band (Fig.5.1c). Between

these two limits, the intermediate modes can transmit through inelastic processes, and to a lesser extent,

by direct, ballistic quantum tunneling. The ballistic Landauer resistance is given by R = (h/2q)MT̄ , where

T̄ is the mode-averaged transmission and M is the number of modes at the Fermi energy, proportional to

the band velocity and density of states. The series combination of Landauer resistances along the staircase

potential is set by an equivalent parallel combination of the conducting modes available in each gated segment,

M ≈
(
M−1

1 +M−1
2 + . . .

)−1
. The idea behind the cascaded gate device is to have all modes available in the

ON-state (hence its high conductivity), but misalign the modes so that the overall mode-averaged transmission

T̄ goes down in the OFF-state.

Fig.5.3 illustrates the NEGF-computed energy band profile biased for the ON-state at VIN = 0.456 V

(Fig.5.3b) and for the OFF state at VIN = 0V (Fig.5.3a), with a fixed source-drain voltage Vds = 0.3 V . We

apply the concept of parallel modes to both 1-D GNR and 2-D BLG and see a consistent widening of the

transmission gap (Fig.5.4a and Fig.5.4c), even as the the mode averaged transmission above the highest

conduction band and below the lowest valence band remains unaffected. Inside the transmission gap, the

exact quantum mechanical tunneling probabilities are shown in Fig.5.4b and Fig.5.4d extracted from the

retarded Green’s function, and the broadening matrix obtained from a recursive treatment of the contacts,
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assumed to be gate free extensions of the same core device structure to infinity.

The transmission coefficient computed through NEGF formalism is a numerically exact quantum mechanical

solution that can be approximated with the Wentzel-Kramer-Brillouin(WKB) Approximation. Within the full

energy range of a bandgap the elliptical nature of the energy dependent wavevector cannot be captured by

real wavevectors describing propagating modes [56, 57]. Instead complex wavevectors are needed to describe

the evanescent modes inside the bandgap, which are simply determined by solving the k • p 2x2 graphene

Hamiltonian with a bandgap (Eg) and the relation k = iκ.




E − U(x) ~v (kx − iky)

~v (kx + iky) E − U(x)− Eg


 (5.1)

Hence, complex energy dependent wavevector inside the bandgap with a spatially varying potential along

the channel, U(x) can be expressed as,

κ(E) = 2
√

[E − U(x)][Eg + U(x)− E]/~v (5.2)

Its reciprocal (1/κ) describes the decay length which increases with decreasing bandgap. The total

tunneling probability created by the staircase U(x) is just TWKB ' exp[−2
∫ L

0
κ(E)dx]. The approximate

OFF-current which depends on how well the modes inside the transmission gap are suppressed by the staircase

U(x) for a given narrow bandgap is Itunneling =
∫
TWKB ⊗ FT dE [32, 58], where the FT is the thermal

broadening function and the limits are defined within the transmission gap with bandwidth proportional to the

drain-source bias(∼ qVds). Fig.5.6 is comparison of TWKB against numerically calculated transmission from

NEGF. Due to the split gate geometry for BLG and the self consistent Poisson potential, the NEGF potential

variation between each gate is slightly more complicated than the simple cascaded potentials (Fig. 5.5) used

in our quasi-analytical TWKB results, which is the source of a small quantitative discrepancy in Fig.5.6b.

The qualitative difference between bandgap and transmission gap is clearly seen in Fig.5.4b and Fig.5.4d.

In contrast to an increasing structural bandgap where the OFF-current reduces exponentially, the increasing

transmission gap for the cascaded gate device merely expands the low current region to the wings of the

transmission gap that extend beyond the actual bandgap (here, < 200 meV). The net effect is still a hundred

fold decrease in OFF-current and corresponding increase in saturation proportional to the width of the

transmission gap. The minimum transmission, however, does not reduce upon further stacking of the cascaded

gates, although it still benefits the saturation and thus the output impedance (Fig.5.8b , Fig.5.8d).

For N-type conduction a downward staircase potential profile cascades the bandgaps toward the original

valence band energies. Fig.5.3 is an example for the nanoribbon where the downward staircase potential
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Figure 5.4: (a) Widening transmission gap for 5nm GNR with (red) staggered top-gate layout compared
to (blue) conventional uniform gating. The transmission of the conducting modes stays pristine while (b)
intermediate modes between the highest conduction band and the lowest valence band, revealed on a semilog-
plot, are suppressed over a wider energy window as tunneling modes. (c) Widening transmission gap for
2-D BLG with an initial field induced gap of 150meV. The staggered gates widen the transmission gap to ∼
400meV, even as the transmission of the conducting modes outside gap (and thus the ON-state mobility) are
preserved. (d) Plotted on a log scale, we see the effect on the tunneling intermediate modes.
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Figure 5.4: (a) Widening transmission gap for 5nm GNR with (red) staggered top-gate layout compared
to (blue) conventional uniform gating. The transmission of the conducting modes stays pristine while (b)
intermediate modes between the highest conduction band and the lowest valence band, revealed on a semilog-
plot, are suppressed over a wider energy window as tunneling modes. (c) Widening transmission gap for
2-D BLG with an initial field induced gap of 150meV. The staggered gates widen the transmission gap to ⇠
400meV, even as the transmission of the conducting modes outside gap (and thus the ON-state mobility) are
preserved. (d) Plotted on a log scale, we see the e↵ect on the tunneling intermediate modes.
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Figure 5.5: Comparison between (red) NEGF transmission and (blue circle-marker) TWKB using (E) from
Eq. 1 for (a) graphene nanoribbon and (b) bilayer graphene with a staircase potential profile. TWKB results
are approximated with a simple series of three cascaded steps.

profile is closest to Efi. VTG and VBG have positive and negative bias, respectively. For P-type conduction an

upward staircase potential profile does the opposite and cascades the bandgaps toward the conduction band,

Figure 5.5: Cascade step potential. The total transmission is the product of the tunneling transmission
probability from each section. Results are shown in Fig. refTranslog

profile is closest to Efi. VTG and VBG have positive and negative bias, respectively. For P-type conduction an

upward staircase potential profile does the opposite and cascades the bandgaps toward the conduction band,

ensuring the lowest valence band is closest to Efi. Likewise the VTG and VBG polarities can be reversed for
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Figure 5.6: Comparison between (red) NEGF transmission and (blue circle-marker) TWKB using κ(E) from
Eq. 1 for (a) graphene nanoribbon and (b) bilayer graphene with a staircase potential profile. TWKB results
are approximated with a simple series of three cascaded steps.

P-type conduction. See. Fig. 5.7.
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Figure 5.7: Transmission spectra that are preferential for N (solid) and P (dotted) conduction for (a) GNR
and (b) BLG. A downward staircase potential(Fig.5.3) makes N-type conduction easier while an upward
staircase potential makes P-type conduction easier.

5.5 Realizing the best of both worlds: Reduced OFF-current ,

Preserving ON-current / high mobility

The usefulness of the cascaded gate geometry is captured by Fig.5.8. In the gate transfer characteristics,

the effect is a decrease in OFF-current (and thus standby power dissipation) by two orders of magnitude
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Figure 5.8: (a) Transfer and (b) output characteristics comparing a uniform potential profile(blue) and
staircase potential profile(red) for 5nm GNRFET (Fig.5.1 a). (c) Transfer and (d) output characteristics
comparing a uniform potential profile(blue) and staircase potential profile(red) for 2D-BLGFET (Fig.5.1 b).

(red curve) even as the ON-current stays pinned to the original single gate device (blue curve). This also

corresponds to a significant improvement in saturation in the I − Vds characteristics across a 400 meV

source-drain bias (red), compared to original (blue). Since all the modes are aligned and preserved in the ON

state but merely misaligned in the OFF-state, the ON-current is demonstrably unaffected. This is also clear

from the quantitative entries in Table I. Another significant improvement is a greater than 80% reduction

in subthreshold slope, still bound by thermionic emission at 60meV/decade. Along with OFF-current, the

direct source-to-drain tunneling current also decreases by at least a factor of two for a source-drain bias up to

800 mV.

One possible concern is that electrons can also cascade down the staggered potential through optical

phonon emission when the source-drain bias reaches the optical phonon energy of either the graphene (190meV)

or the BN-substrate(100meV). The ON-current is then expected to decrease while reduced OFF-current due
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Conventional GNR Staircase Potential GNR

SS (mV/decade) 553 77
IOFF (A/m) 625 4.01
gds (A/V) 1.44×10−5 1.10×10−6

gm (A/V) 6.64×10−5-5 6.64×10−5

Conventional BLG Staircase Potential BLG

SS (mV/decade) 1000 180
IOFF (A/m) 1990 56

gds 3.48×10−3 1.10×10−3

gm 13.21×10−3 17.98×10−3

SS: subthreshold slope, IOFF : OFF-current, gds: output conductance,
gm: transconductance

Table 5.1:

to the cascaded geometry can increase. However the phonon absorption process is more difficult and an

the upward cascade for P-type conduction would see a reduced effect of phonon induced currents. [59]. In

general, we believe the affect of phonons should be small; however at the consequence of a longer channel,

a combination of downward followed by an upward cascade potential could filter phonon induced electron

currents from emission, which is a topic of future work.

The split gate geometries shown here have not been optimized for electrostatics, in particular, parasitic

capacitances between split gates. This is especially true for the BLG layout, where there are three sets

of voltages for VTG and VBG. The parasitic problem could be mitigated for a GNR by the progressive

stacking of top-gates tied to a common supply voltage VTG. A possible way to remedy the parasitics is to

use side-gates [60] that can also be engineered to dope a staircase profile, for the GNR, BLG, and other 2D

materials. The advantage of side-gates is that the field lines are less dense compared to top-gates, and this

should help with the parasitics [51]. The optimization of the electrostatics is an important concern that needs

further design. We defer that to future studies, and focus here on establishing proof of concept - i.e., a way

to preserve the ON-current and reduce the OFF-current - thereby exploiting the strength of graphene while

bypassing its obvious material weakness.

5.6 Conclusion

The real merit of our model is the simplicity, and the use of contact engineering alone for momentum rather

than energy filtering to reduce OFF-current and extend current saturation without hurting the ON-current

(Fig.5.8) that made graphene so promising in the first place. Gates are uniquely positioned and biased to

cascade their local narrow bandgaps along a staircase potential profile (Fig.5.1), suppressing the transmission

of intermediate conducting modes between the highest conduction band and the lowest valence band (Fig.5.4).
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The effective mode- filtering widen a gap in the transmission spectrum. The conventional approach of

widening a real bandgap in the channel to reduce OFF-current comes at the expense of ON-current due

to decrease in mobility. We show a way to bypass this fundamental material limitation. We established a

proof-of-concept with a 5nm wide graphene nanoribbon and 2-D bilayer graphene, with bandgaps less than

200meV were convenient channels for simulation, but the concept of gate engineering can be generalized to

other narrow bandgap materials with higher mobility.
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Conclusion

In conclusion, this dissertation has made the following contributions:

• Built a unified physics based model for graphene I-V from ballistic to diffusive limits and from low to

high bias.

• Benchmarked with experiments and converted device model to Verliog and Cadence.

• Show how the minimum conductivity behaves in the ballistic and diffusive limit in the presence of

impurities. We extracted the entire phase space and showed a flip in curvature followed by a saturation

with increased impurity density.

• Showed how band structure is tied to the fundamental material trade-off between opening bandgaps

and mobility. We find that band gap opening increases effective mass and reduces scattering time due

to increase in band-edge density of states, thus reducing mobility by a factor of 1/E2. This happens for

all graphitic derivatives.

• Show how optical phonons influence the high bias current voltage behavior leading to current saturation.

• Finally show how we can reduce OFF-current and extend current saturation without hurting the

ON-current or mobility through momentum filtering aided by gate geometry engineering.

The work presented in this dissertation also contributes a series of unique physics based models derived

from Landauer formula were developed which would useful for building device models for circuit level

simulations. A circuit simulation is demonstrated with a simpler analytical physics based device model.

The real merit in addressing the first question is the simplicity and affiliation with traditional gate

structures and conventional electron transport physics to reduce OFF-current and extend current saturation
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without hurting the ON-current (Fig.5.8). Gates are uniquely positioned and biased to cascade local narrow

bandgaps forming a staircase potential profile (Fig.5.1) that suppresses the transmission of intermediate

conducting modes between the highest conduction band and the lowest valence band (Fig.5.4). The effective

mode- filtering widens a gap in the transmission spectrum. The conventional approach of widening a real

bandgap in the channel to reduce OFF-current comes at the expense of ON-current due to decrease in

mobility. We it is possible to bypass this fundamental mobility and band gap limitation. A 5nm wide

graphene nanoribbon and 2-D bilayer graphene with bandgaps less than 200meV were convenient channels

for simulation, but the concept of gate engineering can be generalized to other narrow bandgap materials

with higher mobility.

The work done in addressing the final two questions contributed to the understanding of conduction

in a conventional graphene device from low to high bias in the presence of phonons and charge impurities,

which the later is unique to the community. The beauty of using Landauer based models to look at mobility,

minimum conductivity, and high bias current is its unified framework for conduction. This demonstration

across a wide range of conduction is unique in the community. Future work could apply the more complicated

models with charge impurities to investigate influences on circuit level performance.

.
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Appendix i

Graphene nanoribbons (GNRs) are widely being explored as potential channel materials for nanoelectronic

devices [61]. GNRs share many advantages with carbon nanotubes (CNTs), including high mobility [61, 62]

and minimal top surface dangling bonds. In addition, they raise the possibility of wide-area fabrication using

top-down lithographic methods compatible with well established planar silicon CMOS technologies, as well

as bottom-up chemical control through edge doping and intercalation. While the structural robustness of

CNTs enables high-quality devices, it creates considerable challenges with chemical tunability and placement

for circuit-level integration [63, 64]. Conversely, the structural amorphousness of GNRs opens them up to

tunability and control, but increases their sensitivity to structural non-idealities that could degrade their

current voltage (I-V) characteristics.

Figure 7.1: EHT captures the proper GNR chemistry, including (a) mid-gap states near the Fermi energy
(−4.5 eV) arising from armchair edge dangling bonds (inset: local density of gap states). (b) H-passivation
removes edge states, while soft edge boundaries prevent metallicity. A 3.5% edge strain further enhances the
band-gap Eg. (c) The experimental lack of chirality and a strong clustering instead around AGNR (3p+1,0)
[10] are attributed to chiral ‘mixing’ by edge roughness that favors the largest transmission bandgap among
different segment widths (Fig. 7.2).
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Crucial to GNRFET analysis is the employment of a well-benchmarked electronic structure theory that

circumvents the computational complexity (and bandgap inaccuracies) of LDA-DFT [34], while capturing the

complex chemistry and severe strain effects through transferable parameters that simple tight-binding cannot

capture. Hence in this work we employ a bandstructure model based on EHT to properly capture the distortion

chemistry in graphene [34], coupled with a NEGF formalism to explore the role of structural non-idealities on

GNRFET performance. Starting with a reconciliation of the anomalous bandgapped structure and absence of

prominent chirality dependence in experimental GNRFETs [5, 10], we catalogue some of the most influential

non-idealities. We also identify critical parameters where these scattering events are most effective, as well

as features in the I-Vs that are most robust to these variants. Since our analyses focus on the atomic and

electronic structures, we considerably simplify the device electrostatics with a capacitive network, and discuss

the complexities of their electrostatic potentials elsewhere [57].

Edge roughness and absence of chirality dependence. Experiments show that chemically derived, ultra-

smooth GNRs narrower than 10nm have ‘anomalous’ bandgaps [10], in contrast to straightforward single-

orbital tight-binding predictions. Similarly our EHT predictions in Fig. 7.1 shows this suppression of

metallicity by the porosity of the GNR edges to transverse waves, amplified for narrow (< 10nm) ribbons

by a 3.5% strain [3] at the edges introduced using geometry-optimized using classical molecular dynamics.

Ab-initio [3, 17] and EHT theories both predict an oscillatory dependence of bandgap on ribbon width,

superposed on an inverse power law (Fig. 7.1(c)). Such chirality dependences are absent in experiments of

“ultrasmooth” GNRs [10] (dashed segments), showing instead a cluster around the 3p+1 nanoribbon results.

Our simulations suggest (Fig. 7.2) that this arises from chiral mixing by edge roughness, that promotes the

largest transmission band-gap among different width segments.

Figure 7.2: Edge roughness can be categorized as (a) mixed width (∆m=.246nm) vs (b) width dislocations
(∆m=.123nm). (c) The transmissions with both kinds of roughness (∆m = .246 and .123 nm, Lm = 9 nm,
ribbon length L = 18nm) increase at energies corresponding to GNR (3p+1,0) band-edges showing the
dominance of the largest band-gapped segment. However this bandgap dominance comes at the expense of
suppressed transmission from mode-misalignment and electron backscattering near band-edges .
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Figure 7.3: Using the same roughness patterns (∆m=.123nm and Lm =2 nm, Lm= 5nm) with multiple seeds
on a narrow and wide AGNR we found that(a) narrower (∼ 1.2 nm) nanoribbons (GNR(10,0)) with more
roughness (Lm 2nm) suppresses transmission near band-edges to create psuedo-bandgap in the transmission.
(b) While on a wider(∼ 2 nm) nanoribbon (GNR(19,0) with Lm= 2nm raises the transmission at the dominant
3p+1 GNR band-edge.

Atomistic fluctuations at GNR edges can be classified as width modulation, width dislocation or a

combination of both (Fig. 7.2 (a,b)). We model edge roughness with a stochastic distribution following an

exponential autovariance function [65] parametrized by a roughness amplitude (∆m) and a correlation length

(Lm). The two classes of edge roughness produce significantly differing results, especially within the first

0.5 eV of the band-edge. Indeed, the modulating width creates significant backscattering at low energies

where the mode count is sparser [62]. For longer correlations (Lm = 5 nm), Figs. 7.3 demonstrate that edge

roughness is dominated by the largest energy bandgap corresponding to the (3p+1) segment. The absence of

interband transitions in elastic edge scattering favors the higher HOMO (highest occupied molecular orbital)

or lower LUMO (lowest unoccupied molecular orbital) level depending on n or p-type conduction. Faster

edge oscillations with a small Lm = 2 nm, suppresses higher energy modes, opening an additional 0.50 eV

pseudo-transmission bandgap (Fig. 7.3 (a)). The pseudo-bandgap explains how the rough-edge band-gaps could

exceed the (3p+1) prediction, although the effect vanishes for wider segments (Fig. 7.3b). The net effect is

an effective wash-out of chirality dependences, thus classifying AGNRs into (a) ultra-wide, semi-metallic,

and (b) ultra-narrow, semiconducting segments, in agreement with experiments [5, 10].

Device Performance and Design. The salient features in the transmission from even small amounts of

edge roughness are evident in the current-voltage characteristics of FETs (Fig. 7.4). I-Vs are calculated using

NEGF by integrating the transmission energetically over the operating bias window imposed at the contacts.

Since OFF currents depend exponentially on threshold voltage while ON currents vary linearly for a ballistic

device, the former is affected more than the latter. To make a meaningful comparison, however, we adjusted

the I-Vs to achieve a match of the OFF current and focused instead on the ON-OFF ratio at Vds=500mV.
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Figure 7.4: (a)Variance in drain current versus gate voltage characteristics for a narrower GNR(10,0) under
multiple seeded roughness parameters ( ∆m=.123nm and Lm =2 nm (shaded) , Lm= 5nm (hatched)) with
average OFF currents pinned at VG=0. Better quality GNR edges (Lm=5nm) have less ON current and
transconductance variance . (b) Threshold voltage is constrained by any variance in the transmission bandgap
before additional applied Vds causes Zener tunneling. Bottom table shows certain device performance metrics
for wide and narrow GNR channel FETs.

As expected, shorter Lm and larger ∆ms degrade the device mobility, sub-threshold slope, on-current

and increases variance in device performance. The transconductance(gm) which scales with mobility can

be remedied with wider widths as conduction mode count is denser. Narrower nanoribbons with Lm > 5

nm can achieve a faster turn off of drain current with a sub-threshold slopes (S) at 60 mV/dec comparable

to that of a corresponding smooth-edge GNR. While shorter edge roughness correlation lengths degraded

sub-threshold slope by at least 20 mV/dec. Similarly OFF current and threshold voltage is influenced as

there is a large variance in the transmission around the transmission band-edges that can potentially open

pseudo-transmission bandgaps. The variance in threshold voltage of at least 0.5V is an important design

parameter considered for CMOS circuits such as SRAM (static random access memory).
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As drain voltage has less influence on the GNR channel, threshold voltage is limited by size of the

transmission bandgap and any variance due to edge roughness. An applied drain bias beyond the transmission

bandgap creates band-to-band (Zener) tunneling (Fig. 7.4 (b)) [66]. We note that our channel length (L=10nm)

[67]is subject to tunneling, which slightly raises the OFF current and lowering ON-OFF ratio. Furthermore

performance metrics in the table show that the denser mode count in wider GNRs (2.3nm) are less susceptible

to effects of edge roughness as variance in ON-OFF ratio is less compared to the narrower GNR (1.2nm). We

also found that stiff C-C bonds in graphene lattice prevent out-of-plane step heights even up to 0.5nm from

influencing electronic properties and subsequently device performance GNRFETs [68].

In summary, chiral signatures enjoyed by CNTs are washed away for GNRs by edge roughness, especially

for narrow ribbons. Hence ribbon width becomes the dominant parameter determining metallicity. This

implies that absolute control of GNR widths is unnecessary, and the concept of an all-graphene wide-narrow-

wide GNRFET is plausible even with structural nonidealities. The resulting large band-gaps make them

gateable, but open them up to larger device-to-device fluctuations. Nonetheless, the devices are characterized

by excellent sub-threshold slope, Ion/Ioff, and on-current, not to mention the considerable benefits that 2-D

electrostatics, Ohmic contacts and high-k dielectrics in a wide-narrow-wide geometry can bring in addition

[57].
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Appendix ii

8.1 Compact Model Equations

To simulate the performance of such a circuit, let us first outline a compact model. This will require us to

outline (a) an equation for the bandstructure that includes effects due to edge strain and roughness, (b) an

equation for the scattering length that depends on the phonon spectrum and edge roughness, (c) equations for

the 2D electrostatics due to the source and drain contacts, and (d) the resulting I-Vs obtained by integrating

the transmission over the relevant energy window.

To recap, the bandstructure of GNRs, including edge strain, can be written in a tight-binding form as

E = ±
√
E2
C,V + ~2v2

0k
2. Specific expressions for EC,V and v0 for variously strained graphitic materials exist

in Ref. [69].

The next term is the scattering λsc, which is related to the scattering time through an angle averaged

geometrical factor and the overall Fermi velocity. The scattering time is extracted from Fermi’s Golden Rule.

For short range scattering by edge roughness and phonons, τsc ∝ 1/|E|, while for long ranged unscreened

Coulomb scattering, τsc ∝ |E|. Explicit expressions exist in the literature [70] [71].

The tricky part that does not exist in the literature are the electrostatic capacitances associated with

the 2D electrostatics from the planar source and drain contacts, competing with the top and bottom gates

through their individual dielectrics. We are in the process of extracting formulae based on knowledge of

planar micro-strip line electrostatics, with geometrical factors calibrated with our numerical MOM solutions

for a variety of geometries [72].

Once we have the electrostatic, band and scattering parameters, we can then use Eq. 3.12 to extract the

I-Vs. For energy-independent λsc, this was already shown earlier. We will generalize it to various scattering
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configurations in our future work.

We thus have a comprehensive compact model that captures the chemistry and bandstructure, scattering,

electrostatic and transport parameters needed for our circuit simulations. We will report one example here,

and report further results in our subsequent publications.

8.2 Digital circuits:

Static complementary CMOS gates utilize pull-up (PUN) and pull-down (PDN) networks to achieve low

power dissipation and large noise margin in logic circuits such as the inverter, NAND, and NOR gates. CMOS

logic circuits are composed of some series and parallel combinations of n and p-type FETs. An inverter

illustrated in Fig. 8.1 is the simplest logic element and the focus of this section of the review.

Figure 8.1: GNR inverter geometry and voltage transfer curve. This inverter design uses the WNW
(metal-semiconductor-metal) all graphene structure for pull-up and pull-down networks. In this design
CNT interconnects make direct contact with device level graphene. CNT/graphene interface has been
experimentally demonstrated by Fujitsu Laboratories Ltd [11, 12].

When the input into the common gate is Vin=0 the p-type FET (PUN) is active while the n-type FET

(PDN) is cut-off, hence the circuit will pull the output voltage up toward the supply voltage (Vdd) or high,

Vout=1. Likewise when Vin=1, n-type FET is active and p-type FET is cut-off pulling the circuit down

toward ground, Vout=0. Usually it is impossible to pull-up or pull-down to exact values of 1 or 0, so threshold

voltage and tolerance are designed for each circuit to help distinguishing between these two logic levels.
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Circuit designers allow some tolerance in the voltage levels used to avoid conditions that generate intermediate

levels that are undefined. For example, 0 to 0.2V on the output can represent logic (0) and 0.3 to 0.5V can

show (1), making the 0.2 to 0.3V range invalid, not metastable, since the circuits cannot instantly change

voltage levels.

The voltage-transfer curve (VTC) of an inverter circuit captures the DC or steady-state of specific input

versus output voltages and provides a figure of merit for the static behavior of the inverter. VTCs for logic

circuits provide information on operating logic-levels at the output, noise margins, and gain. Ideally we want

the VTC to appear as an inverted step-function, indicating precise switching between the on and off stages,

but in real devices there is a continuous transition between on and off states. From the VTC we can extract

noise margin (Fig. 8.2), which provides a measure of circuit reliability and predictability. Biasing outside the

noise margin puts the logic circuit in an unpredictable state. Circuit designers want to maximize the noise

margins.

Figure 8.2: showing the importance of balancing CMOS transistor sizes to achieve equal high and low noise
margins(NM). The noise margin is graphically represented by the largest square that fits inside the enclosed
space outlined by normal and rotated VTCs.

A significant advantage of graphene is its intrinsic electron-hole effective mass symmetry. In the absence

of extrinsic doping a graphene based FET the I-V characteristics for n and p-type conduction would be the

symmetric. However, asymmetry can be introduced into the system through charge-transfer doping [45] (e.g.

Fig. 4.11) or by contact induced doping [73]. Significant screening of charge impurities in the substrate should

bring Fermi level closer to its intrinsic value at the Dirac or K−point, therefore recovering symmetric n and

p-type I-V characteristics. On a circuit level this symmetry means the response of PUN and PDN would be

equal and opposite, which is important for circuit reliability, and not to mention ease of circuit design. In

conventional Si-CMOS logic circuits, the asymmetry in the electron-hole effective mass is compensated by

scaling the physical width of the p-type FETs in the PUN so the I-Vs are equal and opposite with the PDN.

Graphene’s natural electron-hole symmetry would allow circuit designers to bypass this design issue.

A major impediment to GNR based logic circuits is its narrow bandgap ( 6 200meV ), as the device
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elements in the PUN and PDN are prone to sub-threshold leakage from band-to-band tunneling. The two-fold

effect on an GNRFET-based inverter where the channel has a narrow bandgap is demonstrated in Fig. 8.3.

The first effect is a large voltage swing of approximately 0.4V. The second effect is a significantly diminished

noise margin. Band-to-band tunneling in narrow bandgap GNRFETs prevents either the PUN or the PDN

from completely cutting off when its complement network is active.
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Figure 8.3: Comparison of VTC curves for narrow bandgap GNR and 45nm CMOS Technology. Narrow
bandgap GNRFETs will be more susceptible to noise than CMOS due to smaller noise margins.

Fig. 8.1 shows the physical layout of a functional graphene inverter composed of WNW P-type and N-type

GNR device arrays and the voltage transfer curve. The inverter voltage-transfer curve and gain can be

calculated readily from the current-voltage characteristics. As expected the gain of the device determined

by the electrostatics, geometrical parameters, and mobilities which ultimately determine the P and N-type

GNR transconductances. The VTC above with gain of 4 is derived from the I-V shown in Fig. 8.1 for the

8.66nm device by using the methodology described in detail in [74]. These I-Vs generated in SPICE can be

used to simulate other complex layouts such as NAND or NOR gates (The results of these logic gates will be

reported in future publications).

Propagation delay can be measured by pulsing the input voltage between 0 and 1 and observing the

output transient response. The transit time for a GNRFET is approximately L/v, where L is the length of

the channel and v is an energy dependent velocity defined in Eq. 4.16. Intrinsic and extrinsic device level

scattering mechanics could also influence transit time. However, a cascade of inverters or some other logic

elements in series, the load capacitance between each logic stage typically dominated by Cinterconnect would

be responsible for the majority of the delay.

Beyond individual logical elements (ie., inverter, NAND, NOR), an important CMOS circuit design
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parameter is fan-out, which estimates the number of logic stages or CMOS gates that can be consecutively

driven before signal attenuation is no longer tolerable. Past the maximum fan-out a repeater or amplifier

is necessary to drive subsequent logic stages in a circuit. The maximum fan-out scales proportionally with

propagation delay; therefore circuits designed for low frequency applications have a larger maximum fan-out

compared to circuits designed for higher frequency applications. If graphene is to indeed follow the MOSFET

and CMOS paradigm fan-out would be important circuit design trade-off to consider and a topic we will

discuss in an upcoming work.
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Appendix iii

Figure 9.1: WNW dual gated all graphene device, showing local E − ks (top), top view (center) and side
view (bottom) with the device parameters listed.

The structure of an imagined WNW graphene nanoribbon field-effect transistor (GNRFET) is shown in

Fig. 9.1. The wide regions are metallic and the narrow ones semiconducting. There are planar gates both at

the top and the bottom, the top ones for gating and the bottom ones for electrostatic ‘doping’ (see figure

later for inverters). Let us first discuss how we simulate the I-V of one of these WNW devices.
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Solving quantum transport and electrostatic equations

The calculations we will show couples a suitable bandstructure/density of states for the graphene channel with

full 3D Poisson’s equation for the electrostatics and the Non-Equilibrium Green’s Function (NEGF) formulation

for quantum transport [43]. The wider contact regions are captured recursively by computing their surface

Green’s functions g1,2(E). The corresponding energy-dependent self-energy matrices Σ1,2(E) = τ1,2 g1,2 τ
†
1,2

project the contact states onto the channel subspace, where the τ matrices capture the bonding between the

contact and channel regions. In order to capture the interfacial chemistry properly, we extend the device a

couple of layers into the wider regions and calculated its Hamiltonian H matrix. The Coulomb matrix U is

computed using the method-of-moments, described below [75].

From the above matrices, the retarded Green’s function G = (ES −H − U − Σ1 − Σ2)−1 is computed,

and thence the charge density matrix ρ =
∫
dE GΣinG†/2π, whose trace gives us the total charge. Σin =

(Γ1f1 + Γ2f2) in the simple limit where the only scattering arises at the contact channel interface. In

the previous equation, Γ1,2 = i(Σ1,2 − Σ†1,2) give the contact broadenings (the matrix analogues of the

injection rates γ1,2 introduced in section 18.2.1), while f1,2(E) = 1/[1 + e(E−µ1,2)/kBT ] represent the contact

Fermi-Dirac distributions, with µ1,2 being the bias-separated electrochemical potentials or quasi-Fermi

energies in the contacts [44]. The charge density matrix is then used to recompute the Coulomb matrix U

self-consistently through Poisson’s equation. Finally, the converged Green’s function is used to compute the

current I = (2q/h)
∫
dE T (E)[f1(E)− f2(E)], where the transmission T (E) = trace(Γ1GΓ2G

†) [43].

Let us now get into a few details on the 3D Poisson equation we solve, using the method of moments

(MOM) numerically. MOM captures the channel potential by setting up grid points on the individual device

atoms with a specific charge density δnD, and on the contact atoms with a specific applied voltage φC [75].

Using the notations ‘C’ for Contact and ‘D’ for Device, we get

φd = (UdCU
−1
CC)φC︸ ︷︷ ︸

Laplace

+ (Udd − UdCU−1
CCUCd)︸ ︷︷ ︸

Single Electron Charging Energy

∆nd (9.1)

where we imply vector notations for the potentials φ and matrix notations for the Coulomb kernels U . ∆nd

is calculated relative to its neutrality value N0 by tracing over ρ above, while N0 is calculated analogously,

while grounding all the contact potentials (this would depend on the workfunction of the contacts, as in MOS

electrostatics). The matrix elements in U need to be computed with the correct dielectric constants. Let us

describe it in the simpler case with a dielectric constant κ for the top gate and a dielectric constant unity for
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the bottom (trivially generalized to multiple dielectrics). Using the method of images,

U(~r1, ~r2) =
q

4πε0ε1

[
1

|~r1 − ~r2|
−
(
ε2 − ε1
ε2 + ε1

)
1

|~r1 − ~r′2|

]
(in the same medium)

=
q

2πε0(ε1 + ε2)|~r1 − ~r2|
(in different media) (9.2)

where ~r′2 is the image of the charge at ~r2 [76] [77]. A tricky point is to avoid the infinities at the onsite

locations, for instance, when x1 = x2 and y1 = y2. We can avoid these using the Mataga-Nishimoto

approximation, where we replace terms like 1/|~rs1 − ~r2| with an atomistic correction 1/
√
|~r1 − ~r2|2 + a2,

with the cut off parameter a adjusted to represent the correct onsite Coulomb (Hubbard) charging energy

given by the difference between the atomic ionization energy and the electron affinity [78].

Let us now discuss the observed electrostatic characteristics in the WNW device, which explains the

geometric advantages of this particular structure.

Improved electrostatics in 2-D

Figure 9.2: (Left) The two-terminal potential shows the vanishing fields near the channel, implying the
superior gate control and the improved short-channel effects with the 2D contacts. (Right) The 3D potential
shows the non-linear flat potential in the middle of the channel.

We simulate a device patterned monolithically from a two-dimensional sheet of graphene with a wide

dilution of widths from the source and drain contacts to the active channel region. Simulated WNW (35-7-35)

GNRFETs compose of (7,0) armchair graphene nanoribbon (GNR) narrow regions for the channel and (35,0)

armchair GNR regions for the contact and interconnect regions. A metallic gate is placed on top of the

channel region, while a wide grounded substrate is placed at the bottom of the channel. For calibration with

the conventional CMOS technologies, the unique two-dimensional (2D) contacts of the GNRFET are replaced
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with 3D bulk metal contacts (whose surfaces act as parallel plate capacitors) for the same device, gate, and

dielectric geometry.

A particular advantage of the WNW structure is the low capacitance of the 2D source drain contacts

[72]. In a conventional MOSFET, the gate electrode needs to compete electrostatically with the source and

drain for control of the channel charge. Indeed, a majority of developments in transistor technology over

the last few decades have concentrated on making the field lines gate controlled rather than source/drain

controlled. This is becoming harder with aggressive size scaling. The 2D source and drain contacts with a top

gate makes the S/D capacitances lower, as they can only influence the channel through their fringing fields.

Note that a 2D side gate geometry, as advocated in many device designs, would eliminate that electrostatic

advantage, as the gate needs to compete with the S/D electrodes.

Figure 9.3: Comparison of planar source drain vs 3D source-drain. Denser field lines on the channel from
the 3D contacts correlate to stronger source coupling and DIBL. For the given material and geometrical
parameters listed in Fig. 9.1, the CG/CD ratios are 4.95 and 5.80 respectively. Top and bottom gates were
grounded while the source was simulated with a potential of 0.3V and conducting channel had a potential of
0.1V

As the channel length gets shorter with the aggressively scaled technologies, the 3D contacts start to

influence the channel potential as their surfaces act as parallel capacitor plates flanked by the insulator at the
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top and bottom. In the case of the monolithically patterned 2D GNR contacts, the charges on the contact

surfaces are line charges so that the applied source-drain field decays into the channel, creating a non-linear

channel potential even in the absence of a gate (Fig. 9.2, left). Moving on to a three-terminal, dually gated

structure, Fig. 9.2 (right), shows that the gate contact holds the channel potential flat against the action of

the drain, thereby reducing short-channel effects.

Figure 9.4: Comparison of top vs side gate. Denser field lines from the top gate ensure better gate control
which is reflected by larger gate capacitance. For the given material and geometrical parameters listed in
Fig. 9.1, the CG/CD ratios are 5.80 and 3.82 respectively. Gates were biased at 0.4V , while the conducting
channel had a potential of 0.1V.

Figs. 9.3, 9.4 show that for the same channel geometry, the top gate with 2D side contacts has the largest

capacitance, followed by the top gate with 3D side contacts and finally the lowest gate to drain capacitance

ratio is obtained when all electrodes are co-planar. The corresponding field line diagrams are also shown in

these figures. Note also that in addition to the source, drain and dual gate electrodes, one needs to worry

about the quantum capacitances, which are automatically included from our density matrix calculations that

enter Poisson’s equation.

The capacitance ratio can be extracted by plotting the channel transmission (T) for two scenarios:

maintaining a constant drain voltage (Vd) while sweeping gate voltage (Vg) , and analogously, maintaining

a constant Vg while sweeping Vd. Sweeping the Vg creates a larger energy shift in the transmission of the

GNRFET channel than the sweeping of the Vd. From the shifting rates of these transmissions and the charge

density calculations from the MOM, we can extract the capacitance values of the contacts. With shifts in

transmission plots, we once again find that 2D contacts indeed help the gate exercise superior control over
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the channel [72].

We will now explore the effect of the improved short channel effect on the computed I-V characteristics.

9.0.1 Three terminal I-Vs

The computed three terminal I-Vs (Fig. 9.5) show excellent short channel effects, at least over a small voltage

range given by the bandgap. Plotted vs gate voltage, the current shows excellent saturation characteristics with

a large output impedance. Plotted vs gate voltage, the current shows little drain bias dependence (so-called

drain induced barrier lowering or DIBL). Taken together, the curves signify that the device electrostatics in

the geometry is nearly ideal, making the outputs relatively robust with process variations. It is interesting to

note that instead of enhancing the gate capacitance as in regular CMOS devices, the trick in WNW devices

has been to reduce the source and drain capacitances in comparison.

The simulations results of the model in the Fig. 9.5 demonstrate a Subthreshold Swing (SS) of 84.3

mV/dec and a Drain-Induced Barrier Lowering (DIBL) of 24 mV/V. We note that unless otherwise specified

all simulations refer to material and geometrical parameters shown in Fig. 9.1 The value of the DIBL and the

SS can be further improved by increasing the length of the channel (currently 1:8.6 ratio of HfO2 thickness

to channel length). These values calculated are better (smaller) than the estimated values of DIBL = 122

mV/V and the SS = 90 mV/dec for the double gate, 10 nm scaled Si MOSFETs [79]. Also in addition to

showing improved short-channel effects, the GNRFET structure with the 2D contacts also shows controlled

switching behavior. The on-current (Ion) of the system equals to 2670.62 A/µm with the off-current (Ioff)

set at 4.07 A/µm; thus giving a Ion/Ioff ratio of 656. The ON-OFF ratio, however, ends up being modest,

and is a critical challenge in GNRFETs, especially in the light of its seemingly inverse relation with the

charge mobility (section 18.2.2).

With the scaling of the channel length, the short-channel effects started to have a huge influence on the

device parameters such as the DIBL and SS. As the channel lengths get shorter, the DIBL and SS of the

device increases due to the Cg/Cd ratio of decreasing with length. The line charges with the 2D contacts

endow the gate with more control over the channel and interface states compared to the 3D contacts by

lowering the drain capacitance.

9.0.2 Pinning vs. Quasi-Ohmic contacts

In today’s semiconductors, Ohmic contacts are a desired to help achieve linear and asymmetric I-V charac-

teristics. The potential profile inside the channel can be influenced by increasing the drain-source voltage

(Vds) or the gate voltage (Vgs). For carbon nanotubes, this has been a particular challenge, as the metal



Appendix iii 71

0 0.2 0.4
0

1000

2000

3000
Vds Sweep

Vds(V)

I
d
(

µ
A
/

µ
m
)

 

 

Vgs=0.4V
Vgs=0.3V
Vgs=0.2V
Vgs=0.1V
Vgs=0.0V

0 0.2 0.4

10
2

Vgs Sweep Log Scale

Vgs(V)

I
d
(

µ
A
/

µ
m
)

 

 

Vds=0.4V
Vds=0.3V
Vds=0.2V
Vds=0.1V

Figure 9.5: I-V curves for a n-type GNRFET confined to create a large bandgap (in this case, a (7,0) armchair
GNR with a bandgap nearly 1 eV). Such an extreme geometry postpones the onset of band-to-band tunneling.
More importantly, the point of the I-V is to show the effect of better electrostatics which is independent of
bandgap issues – resulting in a high current saturation, low DIBL and SS.

carbon bonds at the ends have predominantly created Schottky barriers [80]. In our WNW geometries,

since the bulk metal contacts are relegated to the ends of the device array, the bonding configuration near

the wide-narrow interfaces are controlled by C-C covalent bonding. As our simulations show, this seems

to promote a quasi-Ohmic behavior. The better bonding increases the decay lengths of the corresponding

metal-induced gap states (MIGS) entering from the wide regions. The partial delocalization reduces the

single-electron charging energy (that enters through our MOM treatment), thus making it harder for the

contact regions to pin the Fermi energy and reducing the effectiveness of the Schottky barrier.

Schottky barrier FETs behave qualitatively different from MOSFETs In the latter, an applied gate bias

reduces the channel potential and controls the thermionic emission over the voltage-dependent interfacial

barrier. In the former, the gate reduces the thickness of the Schottky barrier and controls the tunneling of

electrons through a voltage-independent, pinned barrier height. The question is what the potential profile

looks like in the channel, and whether the contact MIGS are effective in pinning this potential adequately.

As seen in the Fig. 9.6, the lowering of the potential throughout the entire graphene channel region with

applied gate bias is a characteristic of the regular ohmic contact FETs rather than the Schottky barrier FETs,

whose potentials would otherwise be pinned to the midgap by the charging of the interfacial states [81].

The MIGS due to the tail ends of the metal states in the contacts, leak in the semiconductor. Even with

this 2D contact geometry, the MIGS will be present because of the contact-channel interfaces [72]. Our

WNW all-graphene structure can filter these quickly decaying states, resulting in no significant contribution

to the electron transmission. In the case of our device with the channel length of 8.66 nm, the MIGS do not

travel all the way from source to the drain, but only extend approximately 0.7 nm into the semiconducting

channel (Note a typo in one of our earlier papers, where we wrongly quoted this as 0.07 nm) [72]. The decay
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Figure 9.6: At Vds = 0.0V and Vds = 1.0V, variation of channel potential with different gate voltages shows
no barrier pinning at the contacts, implying Ohmic contacts.

length of these MIGS can be calculated by plotting the wavefunction of the channel electrons at specific

energies, as well as by evaluating the complex E-k diagram. The intensity of these MIGS at a given distance

x can be calculated by using the equation I0*e(−x/2λ), where I0 is the intensity of MIGS at the interface and

λ is the decay length.

Note that issues similar to those discussed here have been discussed in the context of pentacene molecules

with CNT contacts. While CNTs would offer even better 1D electrostatic gains, a trade-off arises with the

increasing series resistance in CNTs due to a paucity of modes. For GNR source/drain analogously, we will

need to imagine wide blocks simultaneously contacting many GNR devices, so that the contact resistance is

minimized by extending its width.
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Appendix iv.

10.1 Charge Impurity Scattering fo Graphene
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Working out the Scattering Rate
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Defining k and κ

If we assume no charge puddling then k and κ are defined as follows:

k(E) =
|E|
~vo

For the screening term κ we use the Thomas Fermi wavevector [Ashcroft+Mermin pg.342]:

κ(E) =
4πq2

εoεs

dn

dµ

where dn/dµ is really just the density of states per unit area:

κ(E) =
4πq2

εoεs

|E|
π~2v2

o

Assuming we have charge puddles:

The density of states per unit area in the presence of charge puddles is :

DOS =

√
(E + µ)2 + ασ2

o

π~2v2
o

µ is the mean potential and σ = niπ~2v2
o is the variance the potential distribution defined in terms of the

number of impurities per unit area.

We can work backwards from :
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√

4πn

,where n =
∫
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trigonometric functions. Trigonometric identities help simplify the integral.
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Note that the integral with respect to k with the delta function gives us the density of states which we

already know since we actually worked backwards from a known density of states :
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Putting everything together and expressing the scattering rate in terms of energy I get:
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Typically ni is between 3 − 15 × 1011cm−2 [82]and standard deviation σo of potential distributions is

around 50meV[13].
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Useful Integrals : Gradshteyn and Ryzhik (G+R)
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Figure 10.1: Black solid lines come from the analytical expression for scattering time derived in this write-up.
The red dashed line is from Ref.([13]) where scattering rate is measured. Impurity density was set between
2.2× 1011cm−2 and 14.6× 1011cm−2 .
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Appendix iv.

11.1 Contact Resistance
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therefore the resistance of one contact is:

Rc(x) =

√
Rsρc
W

cotanh(
√
Rs/ρcx)
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