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This work proposes a design methodology for creating representation systems for ro-

bots that operate in dynamic, uncertain domains. In order to be efficient and effective in

these domains, robot control must be achieved through a tight coupling of sensors and ef-

fectors and this constrains the design of representation.

My methodology attempts to guide the designer in creating representations that are effec-

tive for robots using these control systems. The methodology assists the designer in analyz-

ing the robot’s task, capabilities and environment to answer the questions of what to

represent, how to structure that representation and how to keep that representation consis-

tent with a changing environment.

The efficacy and validity of the methodology is documented through several agent de-

signs that were successfully carried through to implementation. The key feature of these

agents is the action-oriented portion of their architectures and the systems of representation

they employ.

Abstract



v

There are a large number of people who have contributed to this work in different ways

and it would be hard to thank them all. So, a heartfelt thank you to all of them (you know

who you are) and special thanks to the following people.

First, thanks to my parents and my sister for expressing a continual belief that I would

(eventually) finish. Thanks to all the various student members of the vision group that have

come through in my tenure here. Most particularly to Frank Brill, Gabe Ferrer and Jim Gun-

derson for helping to start the Robotics Group. My advisor, Worthy Martin provided in-

valuable assistance in leading me by what, at times, seemed to be an inscrutable master

plan, but did, in fact, get me to this point. I also need to thank Tom Olsen, whose advising

in the early days kept me interested enough to stay on for a Ph.D.

Finally, the road through graduate school is seldom travelled alone and I thank the cast

of characters that is sigbeer for being (perhaps too) willing to provide diversions from

drudgery. Also, I thank Aaron Cass, Anand Natrajan and John Jones for, at various times,

providing the means and the mechanisms for outstanding occasions.

Acknowledgments



vi

Table of Contents

Abstract .............................................................................................................. iv
Acknowledgments .........................................................................................................v
1 Introduction ..............................................................................................................1

1.1 Changing Views on Action Selection ..............................................................1
1.2 Representation Design .....................................................................................4

1.2.1 Design ......................................................................................................4
1.2.2 Representation Systems ...........................................................................5
1.2.3 Representation of Objects ........................................................................6
1.2.4 Action Oriented Architecture ...................................................................7

1.3 Applicability of Designs ..................................................................................8
1.3.1 Domain Characteristics ............................................................................9

1.3.1.1 The Environment is Dynamic ..........................................................9
1.3.1.2 The Task Contains Different Aspects ..............................................9
1.3.1.3 Knowledge of Large-Scale Space is Required .................................9
1.3.1.4 The Task Can be Decomposed .......................................................10
1.3.1.5 The Entire Plan Cannot be Made A Priori (or Replans Occur) .....10
1.3.1.6 The Environment is Suitably Quantifiable with Coarse Metrics ...11

1.3.2 Agent Architecture .................................................................................11
1.3.3 Agent Perception ....................................................................................14

1.4 Overview ........................................................................................................14
2 Related Work .........................................................................................................17

2.1 Perception and Representation ......................................................................17
2.2 Representations for Navigation .....................................................................20
2.3 Agent Architecture Design Methodologies ...................................................22
2.4 Psychological Representation ........................................................................28
2.5 Other Design Methodologies .........................................................................30
2.6 Scaling Problems ...........................................................................................33

3 A Representation Design Methodology .................................................................37
3.1 Task Domains ................................................................................................38
3.2 A Design Methodology ..................................................................................38
3.3 Task Decomposition ......................................................................................41

3.3.1 Example Task Decomposition ...............................................................42
3.3.2 Decomposition Rationale .......................................................................47
3.3.3 Decomposition Summary .......................................................................51

3.4 Identify Task Roles ........................................................................................51
3.4.1 Example Task Roles ..............................................................................51
3.4.2 Task Roles Rationale .............................................................................55
3.4.3 Summary ................................................................................................60

3.5 Representation of Task Roles ........................................................................60
3.5.1 Example Task Representation ................................................................61
3.5.2 Representation Rationale .......................................................................68
3.5.3 Representation Summary .......................................................................75

3.6 Perception ......................................................................................................76



vii

3.6.1 Example Task Perception ......................................................................77
3.6.2 Perception Rationale ..............................................................................79
3.6.3 Perception Summary ..............................................................................88

3.7 Communication ..............................................................................................88
3.7.1 Example Task Communication ..............................................................89
3.7.2 Communication Rationale .....................................................................91
3.7.3 Communication Summary .....................................................................96

3.8 Architecture ...................................................................................................98
3.8.1 Example Task Architecture ....................................................................98
3.8.2 Architecture Rationale ...........................................................................98
3.8.3 Architecture Summary .........................................................................100

3.9 Post Methodology ........................................................................................101
3.10 Methodology Summary .............................................................................102

4 Applying the Methodology (Bruce) .....................................................................105
4.1 Task Decomposition ....................................................................................106
4.2 Identify Task Roles ......................................................................................110
4.3 Representation of Task Roles ......................................................................112
4.4 Perception ....................................................................................................116
4.5 Communication ............................................................................................121
4.6 Architecture .................................................................................................124
4.7 Bruce Implementation .................................................................................126

4.7.1 Bruce’s Representation ........................................................................127
4.7.2 The PA Layer Main Loop ....................................................................129

4.7.2.1 PA Loop Step 1: Update Markers ................................................129
4.7.2.2 PA Loop Step 2: Instantiate Markers ...........................................130
4.7.2.3 PA Loop Step 3: Select/Execute Action ......................................131

4.7.3 Task Implementation ...........................................................................131
4.7.4 Inter-layer Communication ..................................................................133

5 Applying the Methodology (Spot) .......................................................................135
5.1 Task Decomposition ....................................................................................136
5.2 Identify Task Roles ......................................................................................139
5.3 Representation of Task Roles ......................................................................139
5.4 Perception ....................................................................................................141
5.5 Communication ............................................................................................145
5.6 Architecture .................................................................................................146
5.7 Spot Implementation ....................................................................................147

5.7.1 Spot’s Representation ..........................................................................147
5.7.2 Skill Layer Main Loop .........................................................................148
5.7.3 PA Layer Skills ....................................................................................149
5.7.4 Summary ..............................................................................................150

6 Applying the Methodology (Marcus) ..................................................................151
6.1 Task Decomposition ....................................................................................153
6.2 Identify Task Roles ......................................................................................168

6.2.1 Observations about Roles ....................................................................176
6.3 Representation .............................................................................................177
6.4 Perception ....................................................................................................191



viii

6.5 Communication ............................................................................................206
6.6 Architecture .................................................................................................211
6.7 Implementation ............................................................................................214

6.7.1 The PA Layer Main Loop ....................................................................216
6.7.1.1 PA Loop Step 1: Update Markers ................................................217
6.7.1.2 PA Loop Step 2: Instantiate Markers ...........................................218
6.7.1.3 PA Loop Step 3: Select/Execute Action ......................................219

6.7.2 PA Layer Behaviors .............................................................................219
6.7.3 The Task Executor ...............................................................................221
6.7.4 The TE Main Loop ...............................................................................223

6.7.4.1 Check Monitors ............................................................................223
6.7.4.2 Handle Completed Actions ..........................................................225
6.7.4.3 Determine/Execute Action ...........................................................227

6.7.5 Plan Step Structure ...............................................................................229
6.7.6 Summary ..............................................................................................230

7 Evaluation ............................................................................................................232
7.1 Requirements ...............................................................................................232
7.2 Evaluation of Other Design Methodologies ................................................239

7.2.1 The Subsumption Methodology ...........................................................239
7.2.2 The 3T Architecture .............................................................................240
7.2.3 The PURE Architecture .......................................................................243
7.2.4 The Soar Architecture ..........................................................................245

7.3 Evaluation of Design ...................................................................................247
7.4 Summary ......................................................................................................249

8 Conclusion ...........................................................................................................251
8.1 Action Selection Redux ...............................................................................251
8.2 Fundamental Representation Design ...........................................................252
8.3 Representation Maintenance ........................................................................254
8.4 Representation Organization .......................................................................257
8.5 Surprises ......................................................................................................258
8.6 Contributions ...............................................................................................260

Appendix A Robot Implementations .....................................................................262
A.1 Bruce Implementation .................................................................................262

A.1.1 Navigation System ..............................................................................262
A.1.2 Perception System ...............................................................................265
A.1.3 Task Executor .....................................................................................266

A.2 Marcus Implementation ..............................................................................267
A.2.1 Local-to-Global Coordinate Conversion (and vice-versa) ..................267
A.2.2 Pose Detection .....................................................................................270
A.2.3 Detecting Adjacency ...........................................................................273
A.2.4 Handling Completed Actions in Marcus’ Task Executor ...................275
A.2.5 How the TE Starts a New Plan Step ...................................................280

Appendix B Marcus Task Figures .........................................................................284
B.1 Marcus Task Flow Diagrams ......................................................................284
B.2 .Marcus Task Role Diagrams ......................................................................290
B.3 Marcus Role Mappings ...............................................................................295



ix

Appendix C Task Constraints ................................................................................297
C.1 Walk-the-dog Task Constraints ..................................................................297

References 298



x

List of Figures
Figure 1. Dog Walking Environment ...........................................................39
Task Specification 1. Walk-the-dog ................................................................................40
Figure 2. Walk-the-dog Decomposition Hierarchy ......................................44
Figure 3. Walk-the-dog Subtask Flow Diagrams .........................................45
Task Specification 2. Pour-a-cup-of-coffee .....................................................................47
Task Specification 3. Drive-to-the-store ..........................................................................48
Figure 4. Walk-the-dog Task Roles .............................................................53
Task Specification 4. Whack-a-mole ...............................................................................81
Task Specification 5. Pick-up-covered-pot ......................................................................82
Figure 5. Categories of Role Maintenance Requirements ............................85
Figure 6. Bruce and Opponents ..................................................................105
Figure 7. The Search Plan ..........................................................................106
Figure 8. Hide-and-Seek Task Decomposition ..........................................107
Figure 9. Hide-and-Seek Task Flow Diagrams ..........................................108
Figure 10. Hide-and-Seek Task Roles ..........................................................111
Figure 11. (a) Obstacle Avoidance (b) Look-Behind-Occluder ...................114
Figure 12. Groundline Image with Opponent ..............................................117
Figure 13. Spot .............................................................................................135
Figure 14. Serve-Patrons Task Decomposition ............................................138
Figure 15. Serve-Patrons Task Flow ............................................................138
Figure 16. Serve-Patrons Task Roles ...........................................................139
Figure 17. Marcus and the Arch in our Lab .................................................151
Figure 18. Marcus’ Environment - A Portion of Olsson Hall 227 ...............152
Figure 19. Top Level Task Decomposition for Marcus ...............................157
Figure 20. Top Level Task Decomposition for Marcus (continued) ............158
Figure 21. Locomotion and Building Task Decompositions for Marcus .....159
Figure 22. Manipulation Task Decompositions for Marcus .........................160
Figure 23. Door Task Decompositions for Marcus ......................................161
Figure 24. Door Location and Tracking .......................................................192
Figure 25. Local-to-global Coordinate Conversion based on Markers ........268
Figure 26. Example Stack Views .................................................................271
Figure 27. Zones Used in Determine-Item-Pose ..........................................271
Figure 28. Example Adjacency Measurements ............................................274
Figure 29. Marcus Task Flow Diagram (1) ..................................................285
Figure 30. Marcus Task Flow Diagram (2) ..................................................286
Figure 31. Marcus Task Flow Diagram (3) ..................................................287
Figure 32. Marcus Task Flow Diagram (4) ..................................................288
Figure 33. Marcus Task Flow Diagram (5) ..................................................289
Figure 34. Top Level Task Roles for Marcus ..............................................290
Figure 35. Top Level Task Roles for Marcus (continued) ...........................291
Figure 35. Top Level Task Roles for Marcus (continued) ...........................291
Figure 36. Locomotion and Building Task Roles for Marcus ......................292
Figure 37. Manipulation Task Roles for Marcus .........................................293
Figure 38. Door Task Roles for Marcus .......................................................294



xi

List of Tables

Table 3.1: Summary of Domain Characteristics ..................................................38
Table 3.2: Representation Component Summary ................................................97
Table 3.3: Representation Component Summary Reprise .................................103
Table 4.1: Task Controlling Capabilities ...........................................................125
Table 4.2: Components of Bruce’s Markers ......................................................127
Table 4.3: Mapping of Tasks to Activating Marker Components .....................132
Table 5.1: Components of Spot’s Markers ........................................................147
Table 6.1: Marcus Top-Level Decomposition Summary ...................................154
Table 6.2: Locomotion Task Descriptions .........................................................162
Table 6.3: Manipulation Task Descriptions .......................................................162
Table 6.4: Building Task Descriptions ...............................................................164
Table 6.5: Door Task Descriptions ....................................................................166
Table 6.6: Entities in the Environment that Fulfill Roles in Plan Step Tasks ....173
Table 6.7: Components of Marcus’ Markers .....................................................215
Table 6.8: Components of Marcus’ Protomarkers .............................................221
Table 6.9: Plan Step Components ......................................................................229
Table A1: Summary of Pose Zones ...................................................................273
Table A2: How TE Handles Completed PA Layer Actions ..............................276
Table A3: TE Actions when Starting a New Plan Step .....................................281
Table B1: Role Mappings ..................................................................................295



1

A fundamental question for the designers of physically embodied AI systems is how

those systems should decide what to do. The answer to this question is affected by the

choices of how often new decisions are made and what information is considered when

making them. These choices, in turn, put constraints on the types of computation used in

the decision making process. This thesis addresses the question of what information to con-

sider by providing a methodology for developing symbolic models of the environment that

are efficient and effective for use by agents that must quickly and continually make deci-

sions in dynamic environments.

1.1. Changing Views on Action Selection

“Action selection” refers to an agent’s procedure for deciding what to do, i.e. choosing

actions. Over time, many action selection mechanisms have been designed, some of which

have lead to a rethinking of what it means for an agent to “decide what to do”. In the 1970s,

action selection was done via deliberative thinking [58], i.e. planning. Planning involves

using a symbolic model of the agent’s goals, capabilities and environment to generate a se-

ries of actions that meet the agent’s goals. This plan is then carried out by an executive that

simply performs the actions and (therefore) achieves the goals. While it is possible to gen-

erate optimal plans with this approach, planning systems were fairly unsuccessful in dy-

namic, real-world domains because they made unrealistic assumptions about their models

Chapter 1 Introduction

The only duty we owe to history is to rewrite it.
- Oscar Wilde
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of the environment. The information considered in the action selection process, i.e. the

world model, was assumed to be complete, accurate and static (except for changes made

through the agent’s own actions). Neither the speed with which these agents generated

plans, nor the frequency with which they undertook this effort effected the correctness of

their selected actions. This was fortunate because inferencing over a collection of facts (the

world model) proved to be computationally complex [20] and slow in practice.

In the mid 1980’s, Brooks [17] challenged both the world model assumptions of planners

and the sense-plan-act model of robot architectures (e.g. [58]) with his subsumption archi-

tecture. In this architecture, there is no internal model of the world and thus there can be no

time consuming deliberation process. This changes the notion of action selection from de-

ciding upon a series of actions, to making a momentary decision on what to donow. Since

the agent stores no information about the world, it can only decide what to do based on its

current sensor values. It doesn’t make sense to select a series of actions to take, because

there is no information about past or future world states on which to base that selection. In-

stead, “actions” taken in the subsumption architecture are simple, short-lived effector com-

mands that are executed whenever particular patterns are detected on the agent’s sensors.

Each action takes very little time to execute and so the agent operates in a tight loop, select-

ing and executing actions based on current sensor data.

The action selection mechanisms of these “reactive” agents differed from those of their

predecessors because they decided what to do much more frequently and they considered

far less information when doing it. Since these agents stored no world model, they could

only use information about the part of the environment within their sensor range at a par-

ticular moment. This approach has the advantage that, since an agent continually senses the
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world and re-decides what action to take, it can quickly detect and respond to changes in a

dynamic environment. However, because no information about the world is stored, the

agents are fairly myopic. The agents proved difficult to design (except for simple tasks) be-

cause all information relevant to determining the next effector command cannot always be

determined by the agent’s sensors at any time.

The success of subsumption and similar reactive systems [17][48][50] pointed up the

problems with planning’s world model assumptions when operating in dynamic domains.

An agent’s knowledge of the world is rarely complete and the world changes due to factors

beyond the agent’s control. Realization of inherent problems with incomplete knowledge,

e.g. the frame problem [51], and Brooks’ assertion that human intelligence could be

achieved without representation [15], lead to the conclusion that an internal representation

of the world impeded action selection in these reactive agents. Not only would the com-

plexity of a useful world model, it was said, make it expensive to build, it would be expen-

sive to sort through the data to decide what to do. By the time the agent selected an action,

the world would inevitably have changed and so the selected action would be wrong. By

avoiding the temptation to have a representation of the world, the design could avoid mov-

ing back to the sense-plan-act paradigm.

This thinking concluded that representation, in and of itself, was an obstacle to perfor-

mance. Brill [14] has shown that this need not be the case. Representation does not inevi-

tably lead to planning and “reactive style” action selection mechanisms can benefit from

representation. The key to have a representation that the agent does not need to spend a long

time searching and that does not require the agent to use elaborate inferencing (planning)

to deduce the correct action. This thesis concentrates on designing such systems of repre-
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sentation for autonomous agents operating in dynamic domains.

1.2. Representation Design

In this thesis, I investigate thedesignof representation systemsfor theaction oriented

portions ofagent architecturesand put forward a design methodology. My thesis is:

This methodology can be used to produce systems of representation, for the action
oriented components of an agent’s architecture, that are efficient and effective for use
in dynamic domains.

In the remainder of this section, I give basic definitions of these terms that will be elab-

orated in later chapters.

1.2.1 Design

This thesis proposes a form of a task-oriented design for creating representation for agent

architectures. Task oriented means that the representations will be specialized to the task(s)

and capabilities of the agent under consideration (this is similar to the general software de-

sign process discussed in [86]). The tasks of interest to this thesis (see section 1.3) take

place in dynamic environments and so the agents are assumed to be selecting actions in the

rapid sense-act cycle typical of reactive systems. Of course, many agent architectures today

have multiple “action” selection mechanisms that decide on actions at various granularities,

e.g. one system may decide that the agent’s action should be to “drive to the store”, while

another system would decide on the particular motor commands to steer the car through un-

predictable traffic. Section 1.2.4 discusses the types of action selection mechanisms that are

applicable to this work.

An agent’s capabilities strongly influence the design process. Capabilities are anything

the designer is given to work with at the start of the design process. They may include hard-
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ware (what sensors are available? how accurate are they? are there wheels? wings?) and

software (sensor processing routines, device drivers, manufacturer provided libraries, etc.).

Capabilities define the designer’s starting point and determine both the basic actions that

the agent is capable of and the entities that can be represented (and thus perceived and ma-

nipulated). This methodology has the designer examine tasks and capabilities to create rep-

resentation that allows agents to be more efficient and effective at their tasks than they

would be without representation.

1.2.2 Representation Systems

By “representation”, I mean data structures that hold some information about the agent’s

environment. A representation system, then, is a collection of these data structures describ-

ing all or part of the environment in sufficient detail that the agent caneffectivelyandeffi-

cientlycomplete its tasks. In chapter 3, the reader will see that much effort is devoted to

representing what is required to make the agent effective, while not representing too much

so that the agent can remain efficient.

It is important to distinguish between the “explicit” representation considered by this the-

sis and the “implicit” representation used by many reactive agents. Explicit representation

refers to actual memory structures that store properties of the world. “Implicit” representa-

tion is often referred to by the catch-phrase “the world is its own best model” [16]. In other

words, no properties of the world need to be stored in memory because if the agent needs

to know them, it merely needs to observe the world and compute them. In a dynamic, phys-

ical environment with real sensors, implicit representation can be computationally expen-

sive and/or impractical since not all of the environment can be perceived at any one time

(see section 1.3.1). Hereafter, the word representation refers to the explicit variety.
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1.2.3 Representation of Objects

If representation describes the agent’s environment, what about the environment is rep-

resented? Fundamentally, I believe objects should be represented. Each unit of representa-

tion should store data about an object in the environment. An object is any “suitably

distinct” physical entity1 that the agent can act upon (or act with respect to, or use, or ma-

nipulate, etc.). Holding off on the definition of “suitably distinct” for the moment, objects

need to be what is represented because actions take place on (or with respect to) objects.

The purpose of a system of representation is to assist the agent in action selection and so

data that is important for action, i.e. objects, should be represented.

At some level, an object is defined by the actions that can be taken on it. A chair is some-

thing that I can sit on and any object that I can sit on can be said to be a chair. The actions

that can be taken on an object will also depend on the acting agent. Different agents will

have different capabilities and thus different possible actions. For example, a robot that can

plug itself into the wall would be built to understand that a wall socket is an object, while

a robot that does not have this capability may treat the socket as part of the wall.

This gets back to the notion of “suitably distinct”. An object must be distinct from its sur-

roundings, so for example, arbitrary points in space, or indistinguishable portions of the

carpet can not be treated as objects. What can be (or will be) distinguished will obviously

depend on the agent’s perceptual capabilities, but also on the agent’s task. For example, if

an agent wanted to write a note, it would need a writing implement. If the agent had per-

ceptual routines to detect pencils, a pencil could be used as the writing implement. The

agent could act on (write with) the pencil because it had the perceptual capabilities to treat

1. I say physical entity to clarify that I mean corporeal objects and not programming constructs.
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the pencil as a distinct object. Now suppose the agent makes a mistake and wants to erase

something. It could use the eraser on the end of the pencil. Previously, the eraser had not

been a separate object from the pencil because it was not involved in the writing action.

Even though the pencil detection routine may have needed the eraser to be present as part

of the sensory signature of the pencil, the agent need not give the eraser its own represen-

tation unless it needs to erase. In other words, the task determines what constitutes an ob-

ject.

At this point, it is worth mentioning that an object-based representation system is a dif-

ferent kind of representation system than those used by many other robots, e.g.

[42][53][55]. These robots have a representation of space (usually “free space”), but no no-

tion of how the occupied space segments into important objects.

1.2.4 Action Oriented Architecture

Stateless, reactive agents, while robust at certain tasks, proved difficult to design. The

lack of representation makes it difficult to scale such systems because the agent’s current

state can not be used to reduce the complexity of examining the environment for a large

number of perceptual stimuli [75]. Also, while planning may be inefficient for action selec-

tion in certain tasks, it is useful when time permits the consideration of alternate courses of

action and the cost of taking the wrong action is high.

In response to the limitations of reactive systems, many hybrid architectures were devel-

oped [10][29][69][71][3][5][22]. These hybrid architectures combine a traditional planner

with an executive. The executive may itself be divided into multiple components, all of

which I refer to as the “action oriented” portion of the architecture because they control the

agent’s interaction with the world. Although all parts of an architecture exert some control
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on the agent’s actions, the action oriented portion is the portion for which the timeliness of

deciding “what to do” is most critical. That is, any portion of the architecture that operates

in a tight “action selection loop” (in the sense-act paradigm) is in the action oriented portion

of the architecture. This leaves out any portion of the architecture that needs to do infer-

ence, such as a planner.

The representation systems that result from the use of the methodology in this thesis are

specifically targeted toward this portion of the agent architecture because of the speed with

which it must react to events in the world. This speed is what makes useful representation

for this portion of the architecture different from representation used by planners. In order

to be efficient and effective, these representation systems must provide useful information

to the agent without providing too much information. The agent must update its represen-

tation to correspond to the current state of the world and consult that representation to de-

termine its next action within a certain time frame. That time frame must be such that the

representation corresponds closely enough to the changing environment that the selected

action is appropriate.

1.3. Applicability of Designs

The representation systems developed by this methodology are useful for agents operat-

ing in domains possessing the characteristics described in section 1.3.1. These agents also

have fundamental similarity in the action oriented portions of their architectures, as de-

scribed in section 1.3.2. Finally, perception in an important agent capability and its impact

on representation design is discussed is section 1.3.3.
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1.3.1 Domain Characteristics

There are a number of characteristics that make an agent’s domain, i.e. task, capabilities

and environment, amenable to the representation systems designed by this methodology.

These characteristics are:

1.3.1.1 The Environment is Dynamic

A dynamic environment is one in which properties of the environment that are important

to the agent’s task change over time. This means that current sensor data is more valid that

previous sensor data.

1.3.1.2 The Task Contains Different Aspects

Different aspects means that different portions of the agent’s task can be handled by dif-

ferent portions of the agent’s architecture. When the task requires rapid interaction with the

environment, the agent can handle it with one mechanism, but when consideration of alter-

natives or sequencing of actions must be performed, other mechanisms are available. This

means that the task must involve different “types” of computation. In must not focus en-

tirely on real-time performance, but must provide some reward for deliberative thinking.

However, since the environment is dynamic, the agent cannot reduce its reaction time too

much with planning.

1.3.1.3 Knowledge of Large-Scale Space is Required

Large-scale space is an environment in which “spatial structure is at a significantly larger

scale than the sensory horizon of the observer” [42]. An agent in such an environment will,

at some time, not be able to perceive all important aspects of the environment. This agent

can benefit from some form of memory (i.e. representation) to remember important, previ-
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ously perceived data. Memory can also be used to hold expectations about what the envi-

ronment will be like. These may come from long-ago explorations or from a human

operator. Note that large-scale space is not disjoint from what this work refers to as local-

space. Local-space is the area about which the agent’s sensors and the representation in the

action-oriented portion of its architecture currently give it information. The existence of

large-scale space means there will be multiple local-spaces.

1.3.1.4 The Task Can be Decomposed

This means that the agent’s task can be decomposed into a hierarchy of tasks and subtasks

where the agent’s overall goals are achieved by tasks at the top and the agents capabilities

form the basis of the tasks at the bottom [86]. Of course, any task can be decomposed into

subtasks, but any decomposition past the given capabilities is not of interest (the fact that a

given library may translate a “move forward” command into motor voltages is beneath the

concern of the designer because the library abstracts that away). Different tasks should

view the world at different levels of abstraction. “Part and whole” is a common abstraction

where the agent will treat some object as “a whole” in one task, but as a collection of parts

in another task. For example, a task whose goal is to pick up a pot from the stove may rep-

resent the pot as a single entity. However, if the task’s decomposition (and thus the agent’s

capabilities) caused the agent to actually pick up the pot by the handles, individual handles

may be represented in the subtasks.

1.3.1.5 The Entire Plan Cannot be Made A Priori (or Replans Occur)

This characteristic means that the agent does not have complete knowledge of its envi-

ronment and so classical planning is ineffective. This is not to say that the agent has no

knowledge and must obtain all information through exploration. In fact, since the environ-
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ment is dynamic, it is likely that the agent will not be able to generate a complete plan that

can be blindly executed, even with complete knowledge, because the world state will

change from when the plan was generated. If sufficiently abstract plans [66] can be crafted

for the domain, the environment must be able to change such that replanning needs to oc-

cur. Note that while this thesis is not concerned with planning, either in how plans are gen-

erated, or in the organization of the planner’s representation, it is concerned with the use of

plans. The domain’s environment will be sufficiently complex that it will be difficult for a

traditional state-space planner (with its previously discussed world model assumptions) to

operate effectively. This means some intelligence must be embedded in the action oriented

portion of the architecture, i.e. it needs action selection machinery of its own, to execute

the plans.

1.3.1.6 The Environment is Suitably Quantifiable with Coarse Metrics

This means that crude maps of the environment are effective for the agent’s tasks. While

all environments are quantifiable to some degree, the important idea is that the agent does

not need precise metric information about its environment to get around. The agent’s sen-

sors can make up for inaccurate map information during task execution.

1.3.2 Agent Architecture

The methodology is designed for agents that have perception/action (PA) systems. Per-

ception/action systems operate in a tight-loop, coupling sensation to action. These control

loops are effective because they avoid a lengthy action selection process and I believe they

are practically necessary for agents operating in dynamic environments. Simple transforms

of the agent’s sensor values select among possible actions. An action itself is not an unin-
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terruptible process, as the agent is continually deciding whether to continue the current

course of action or switch to a new one. The action of picking up an object may involve

sending dozens of control commands to the effector motors over time. As long as the sen-

sors indicate that picking up the object is what the agent should be doing, it will continue

that action.

I assume (as do others, e.g. [5][10][29][50]) that a perception/action system is made up

of small control programs, often called skills [10] or behaviors [50]. These programs watch

the sensors and respond when appropriate. Often multiple skills will be active at the same

time and agent’s overall behavior is the combination of their output. Skills define “situated”

control rules for the agent to accomplish some goal. Situated means that the skills expect

to be operating in some context and interpret the agent’s sensor data accordingly. Recall

the agent with the goal of plugging itself into a wall socket. This agent’s skill to plug itself

in may interpret a short sonar reading as the approaching wall with the socket. A different

skill navigating the agent across the room may interpret the same sonar reading as an ob-

stacle to be avoided.

Skills in this thesis are similar to skills in traditional reactive agents, except they are too

complex to be purely stateless and so they use representation. These skills can be thought

of as sets of (situation, action) rules, where “situation” is some world state specified by both

current sensor values and data stored in the skill’s representation and “action” is the effec-

tor control command(s) to execute. The skill continually samples the environment to deter-

mine which “situation” is currently applicable and executes its “action”.

The representation of these skill are “variables” that are associated with objects in the en-

vironment at run time [7], such as a juggling skill that has a number of ball variables (rep-



13

resentation) that must be associated with some juggle-able objects. Making this association

is referred to as “binding” the representation. It doesn’t matter if the objects are rubber balls

or baseballs, as long as the agent can juggle them. The PA system’s skills then use the cur-

rent sensor valuesand the information contained in the representation as the context in

which they select their actions.

An important aspect of skills is that they are not designed to be fool-proof, but rather to

recognize when they fail. This is referred to as cognizant failure [27] and it allows a skill

to contain a small set of rules for interaction with the environment. Rather than try and han-

dle all exceptional cases (a seemingly impossible task), the skill merely reports that it has

failed and another skill (or portion of the architecture) tries to correct the problem. The prin-

ciples of cognizant failure and situated-ness allow skills to operate extremely fast since they

need not deal with the full complexity of the world. Instead they can make simplifying as-

sumptions about the world (to streamline their actions) and if the world moves outside of

those assumptions, they merely need to recognize this fact and report failure.

Even though this design methodology is concerned with agents that have PA systems, the

domain characteristics show that the agents must have other components to their architec-

tures as well. Specifically, this methodology is appropriate for agents with layered archi-

tectures. Some layers don’t deal directly with sensors and effectors, but are still in the

action oriented portion of the architecture because they do no planning. The agents devel-

oped in chapters 4 - 6 have three layered architectures, as do many current agent architec-

tures, e.g. [10][29]. However, this thesis is not concerned with architectural design (except

in that the agents developed by this methodology must have an architecture and so I do dis-

cuss how they were designed), but rather with the design of systems of representation to be
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used by an architecture. In this sense, any architecture that interacts with the world through

a PA system can be used.

In this thesis, the PA layer is referred to as the “lowest” layer because it is directly con-

nected to the actual environment. Other “higher” layers are connected only to the layers

above and below them. Typically, the “highest” layer is some sort of planner. It is worth

noting that most other existing robot architectures have two or three layers (PA layer and

planner or PA layer, sequencer and planner). There has been no compelling case given in

the literature for more layers. Some architectures have used more layers, [71][3][26] for ex-

ample, but these have either never been implemented for any real-world task that makes

use of these extra layers [71][26], divide the PA layer tasks into extra layers [3], or are not

designed to control mobile robots [3].

1.3.3 Agent Perception

Representation of a dynamic environment necessarily means updating the representation

as the world changes. This makes perception an important design consideration for any sys-

tem of representation. This thesis is mainly concerned with vision-based agents, i.e. agent

that derive most of their information about the world from vision. The issues explored in

the design methodology are applicable to all sensor modalities, but are discussed in terms

of vision because vision presents more computational problems than other sensors com-

monly used by robots.

1.4. Overview

This section provides an overview of the representation design methodology and the re-

mainder of this thesis. The methodology is designed to create hierarchical systems of rep-
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resentation to be used by agents acting in dynamic, uncertain domains. The methodology

itself is organized as a series of questions for the designer. Each question is designed to

highlight a certain aspect of agent design that has implications for the representations cre-

ated. The methodology is not an algorithm and so there is still some art involved in agent

creation. This is particularly true with regard to the methodology’s first step, decomposing

the agent’s task into subtasks (as with any applicable software engineering technique, e.g.

[11][84]). The methodology also advocates an iterative design process, where the designer

modifies their answers to previous methodology questions, if those answers are found to

produce “unworkable” representation systems. “Unworkable” means that the agent can not

be made to operate efficiently and/or effectively in its domain. This point could be reached

during the design phase or when building a prototype (chapters 4 - 6 contain several exam-

ples).

Once a task decomposition has been created, the individual tasks themselves are analyzed

to determine what information about the environment is important and how that informa-

tion can be extracted from the environment. This information can be stored in the agent’s

representation, but this involves a trade-off between the usefulness of the information and

the cost of verifying it in a dynamic world. The methodology advocates making this trade-

off based on how that information is used, how easy it is to compute that information and

how many skills/behaviors use that information.

After the methodology has been laid out, three different agent designs are presented in

chapters 4, 5 and 6. Each of these agents performs a different task and uses one or more

systems of representation designed by the methodology of chapter 3.

Evaluating any design methodology is difficult and in this case even a comparative anal-
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ysis is hard because few other methodologies address the design of representation systems

for the action oriented portion of an agent architecture. In chapter 7, I discuss how some

popular architecture design methodologies might address the task of the agent in chapter 6.

I develop 5 criteria to evaluate the efficiency and effectiveness of representation systems

and show how the other design methodologies can fail to create representation systems that

meet all or most of those criteria.

The main contribution of this thesis is a structured approach to design of representation

for autonomous robots. This and other contributions and conclusions are discussed in chap-

ter 8. Today, there is no debate about whether a robot should be totally reactive, or totally

deliberative, it needs elements of both. Similarly, there is no debate over whether robots

should have representation or not, representation can be useful though it comes with some

liabilities. This thesis explores how representations can be made both efficient and effective

by extending reactive systems to use a small amount of task dependent representation and

addressing the issues of what to represent, what structure that representation should take,

and how the data stored in that representations can be kept consistent with changes in a dy-

namic world.
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In this section I analyze previous work in both agent representation systems and agent

design methodologies. Few agents are designed without some methodological guidance.

However, most current methodologies do not explicitly address the problem of representa-

tion design and so the representation systems of the corresponding implemented agents

themselves must be examined.

2.1. Perception and Representation

The main goal of this work is the design of representations of the environment that are

effective for the action oriented portion of an agent architecture. Action in complex, dy-

namic worlds relies a great deal on perception to provide timely information about the en-

vironment. As such, an agent’s representation must be closely tied to its perception. In other

words, representation must be continually modified based on perceptual information. Many

researchers have developed agents that use representation in their perceptual system.

The Pengi system of Agre and Chapman [2] plays a video game (Pengo) in which the

simulated agent (a penguin) does battle with some enemies (bees) in a rectilinear maze of

ice blocks. The agent uses data structures known as markers [76]. These structures are as-

sociated with particular elements of the video game that are currently of importance to the

agent (when running away from a bee, you need to look ahead for the-block-that-is-block-

ing-my-route to determine if you can escape). These markers are similar to the representa-

Chapter 2 Related Work

The secret to creativity is learning to hide your sources.
- Albert Einstein
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tion used by the agents of chapters 4 - 6 inthat they store both the position and task function

of objects in the environment. Task function is important because the same ice block could

be the-block-that-is-blocking-my-route in one task and the-projectile-to-kick-at-the-bee-

near-me in another. Later, Chapman’s Sonja system [19] played a more complex video

game with fewer constraints on the agent’s actions.

In both Pengi and Sonja, markers are used to bridge the gap between early vision and

action. Markers hold locations of important entities in the environment and based on spatial

locations of markers, the agent can determine its next action. However, these markers are

only a limited form of representation because they only hold locations within the agent’s

two-dimensional omniscient (overhead) view. No memory is used to store important loca-

tions outside the current view or to allow markers to persist between perception/action cy-

cles. In addition, neither system addresses the perceptual problems of early vision. While

Sonja does compute early visual properties to determine locations for markers (Pengi di-

rectly accesses the video game’s internal data structures), it does not handle problems with

physical sensors, such as a limited field of view, first-person perspective, occlusion and the

unconstrained nature of the vision problem.

Kuniyoshi et. al. [45] have developed an agent that also uses data structures, which they

call markers, to hold positions of task-dependent points in space. This agent operates in the

real world and uses stereo and optical flow to update positions of markers. However, in

[65], Riekki and Kuniyoshi state that markers must be associated with perceivable features

and so they cannot move outside the field of view. In addition, a single marker in this sys-

tem can store positions of multiple points in space (markers can specify paths for example)

and as we’ll discuss in chapter 7, this can make them difficult to update.
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Brill [14] has created a simulated agent that operates in a 3-D, first person domain. This

agent represents important task dependent objects in its environment with markers that are

similar to those used by Pengi. These markers can, however, represent information outside

the current field of view. This expanded area, called the “effective field of view” [13], can

be used by a set of behaviors to choose the agent’s next action. The term “effective field of

view” denotes the area of the environment that the agent can access in its decision making

process. It includes the area currently within range of the agent’s sensors and certain, re-

cent, task-dependent percepts that are stored in the agent’s internal representation. This

stored data is treated as if it were another sensor and so the agent can continue to operate

in a “reactive” fashion, even though it may be selecting actions based on stored data [13].

Brill’s agent uses a system of representation that is similar to portions of the ones used by

the agents in chapters 4 - 6.However, I have expanded the concept of markers to make them

effective for inter-layer communication by defining the concept of marker instantiation and

by separating concepts that were entwined in Brill’s system. For example, the perceptual

properties of objects associated with Brill’s markers were determined by the object’s role

in the task (so all food was red and all red objects were food). Brill’s work addressed the

issue of whether representation could improve the performance of a perception/action sys-

tem while this work addresses the issue of the design of representation systems.

Horswill [32][33] has created agents that associate unary predicates with visual trackers

(to determine the truth value of some predicate, look at the position of the tracker). These

trackers can be inside or outside of the field of view (and are updated correspondingly by

odometry or vision). However, while his agents avoid the scaling problems inherent in an

Agre and Chapman like system (see section 2.6) by limiting the number of trackers,
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Horswill provides no theory or methodology for the design of a system to control their al-

location. In chapter 3, I discuss the design of multi-layered representation systems with this

goal in mind.

Ballard [8] discusses agents with animated (foveated) vision systems. These agents store

the coordinates of important objects that have previously been foveated by their visual sys-

tems. Ballard advocates storing the coordinates of these objects in object-centered coordi-

nates, that is, relative to other objects. In this way, the agent only needs to maintain a

transform from its current foveal position toan object since the stored object-to-object

transforms can be used to transfer the fovea to any other important entity. While this may

be more efficient in some cases than the ego-centric coordinate system proposed in chapter

3 (since every ego-centric coordinate must be updated when the agent moves), Ballard’s

approach is fragile if objects can move relative to each other. This thesis assumes that

agents designed by this methodology will be operating in dynamic environments where the

object-centered approach will be too brittle and so advocates paying the computational

price for an ego-centric representation.

2.2. Representations for Navigation

Maps of an agent’s environment are a common form of spatial representation. Since

many tasks for autonomous robots (including those in this thesis) require navigation, maps

are quite useful. Grid based maps, called occupancy or certainty grids, have been imple-

mented using sonar [12] [55] and stereo vision [54]. These representations describe the

free-space surrounding the robot and so are most suited for navigation and obstacle avoid-

ance. Since these techniques register only occupancy, their representation is not suitable for

a general representation of important properties of objects in the environment. Kuipers



21

[42][43][44] has developed maps for indoor and outdoor “large-scale” environments. His

TOUR model defines a semantic hierarchy of information where <view, action> pairs are

accumulated to form topological and then metric maps. A <view, action> pair means that

doing “action” should put the agent in a position where its sensors perceive “view”.

Both occupancy grids and the TOUR model’s maps (indeed all map representations), rep-

resents space and not objects. This means that computational effort must be expended to

“extract” object data from the map. Typical tasks for autonomous agents, including navi-

gation, are with respect to some object (e.g. “pick up the book”, “go to the store”, “hit the

ball”) and therefore will need object data. A perception/action system should not use map

representation as, for any large map, it will be prohibitively expensive to extract object in-

formation. However, other layers of the architecture can (and the agents in this thesis do)

use maps. Kuipers work is complementary to mine in that even though maps are an inap-

propriate representation for a PA layer to use in choosing actions, the PA layer can be used

to build a map using the TOUR model. The <view, action> pair are the right “granularity”

for a PA layer to generate because they correspond to the phases of the PA layer’s execution

loop, i.e. perception (view) and action. The synthesis process that builds the maps could be

performed by another layer of the architecture that receives these tuples from the PA layer.

Other researchers have also used map representations. Kosaka and Kak [41] have devel-

oped an agent that navigates using CAD models of its environment, visually matching

model features to perceived features. CAD representations are difficult to obtain (someone

has to create the model) and brittle. The brittleness is due to the fact that CAD models mod-

el the static properties of the environment, those portions that are thought not to change.

However, the agents of interest here exist in domains where dynamic (not static) features



22

of the environment are important. Miller [53] presents a mapping representation that is

based on regions. Each region defines the number of degrees of freedom about which the

robot can determine its position based on local sensory information. In an open area, the

robot can determine nothing about its position or orientation, while in a dense area of ob-

jects, the robot may be able to totally orient itself. Mataric [50] uses a topological map built

as a distributed collection of “behaviors”. Activation energy spreads outward from the node

at which the robot is located, activating nearby behavior-nodes to begin looking for their

associated sensory signatures in the sonar input. The main advantage of her technique is

that the map actively maintains itself, adding or removing links between nodes as the agent

travels or fails to travel between perceptually distinct areas of the environment. However,

these maps are non-metric and so cannot always be used to make efficient path plans (just

topologically short ones).

All of these representations are useful for self-localization, i.e. determining one’s posi-

tion with respect to a map, but are not a good representation for general tasks. This thesis

provides a means of breaking down large-scale spatial knowledge, such as that contained

in maps, and making it available to the PA layer as computationally affordable chunks of

local-space information.

2.3. Agent Architecture Design Methodologies

There are many agent design methodologies in existence today. Most are concerned with

dividing the agent’s tasks among various components of the agent’s architecture based on

the nature of the tasks. Although most scarcely address the design of representation systems

(Brooks [17] being the exception), they do each advocate the use of one or more represen-

tation systems.
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Early work in the design of agent architectures for dynamic environments was done by

Brooks [15][16][17]. He proposed eliminating all representation because it would invari-

ably become inconsistent with the state of the world and therefore lead the agent to make

incorrect decisions. While this approach has been rejected as heavy-handed by most re-

searchers (including the Representation subgroup of the 1995 AAAI Spring Symposium:

“Lessons Learned from Implemented Software Architectures for Physical Agents”), it did

cause a re-evaluation of the role and structure of representation in the perception/action

components of agent architectures [14]. Brooks himself used internal state, i.e. representa-

tion, in most of his robots [17].

The RAP system [28] has been used in a number of autonomous agents with multi-tiered

architectures, most often as part of the 3T architecture [10]. RAPs use lisp-style predicate

structures to describe the state of the world. While these have certain advantages (for sys-

tems written in lisp) such as the ability to perform unification and their ability to be used as

a fact database for a classical planning system, they are fairly unstructured for perception/

action systems. Unstructured means there is no limit on the number or content of these

predicates. The RAP system was not designed to operate in tight perception/action loops

with the environment and so it is not surprising that its representation system is inefficient

for such purposes. The original RAP work [27] used a simulated perception system that

wrote time-stamped sensor predicates to RAP memory. This required the RAP system to

search through its list of facts to determine which were current and required some form of

garbage collection. Such searches present an unacceptable time sink for agents in dynamic

environments and are the result of trying to make a PA system operate like a planner.

The 3T architecture [10] uses a layer below the RAP system called the skill layer. This
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layer sends “event” messages to the RAP system over a low-bandwidth channel, allowing

RAP memory to contain smaller numbers of “higher level” facts. For example, when pour-

ing a cup of coffee, instead of storing visual state used to accurately track the coffee pot

while aligning it with the cup, the RAP memory can simply hold the fact that the pot “is

aligned” with the cup (allowing the RAP engine to tell the skill layer to begin the pouring

task). While the accumulation of perception and action information into events reduces the

number of predicates and hence the search process of the RAP layer, this dissertation ar-

gues that any representation system can be made more efficient if it can be given appropri-

ate structure. Chapter 6 describes an agent that uses structured representation to encode

“higher level” properties of the world (such as those stored by the RAP system) without the

need to perform unification to derive them from a database of information.

It should be noted, however, that this work does not dismiss the RAP system’s sequenc-

ing capabilities or processing engine. In fact, the representation design methodology pre-

sented here is complementary to such a system, since RAPs do not address the design of

representation and this work does not address the structuring of agent processing capabili-

ties1.

As mentioned previously, the 3T architecture has at its lowest layer, a collection of in-

dependent, parallel behaviors called skills. These skills are typically arbitrary C code and

can pass arbitrary data structures between themselves and the RAP system. The 3T design

philosophy is concerned with deciding which tasks should be handled by which layers of

the agent architecture. The design of the processes that carry out those tasks is left to the

1. I do address the structure of an agent architecture in that I believe it should be multi-tiered, as with
many other architectures [10][29][5][71]. I also designed sequencing layers for the agents in chap-
ters 4 and 6, but I do not assert that my sequencing layers are superior to the RAP system, merely
that they perform similar functions.
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agent programmer. This thesis’ methodology proposes that arbitrary data structures are the

wrong representation for PA systems because they can force the PA system to do unaccept-

able amounts of work to sort through the represented data. This slows the PA system’s de-

cision making process. In addition, arbitrary amounts of data can take arbitrary amounts of

time to verify. The PA system can not check if arbitrary representation is consistent with

the world state and remain responsive.

Gat’s ATLANTIS [29] architecture has representation in all its layers. Skills in ATLAN-

TIS’s perception/action layer are written in a language called ALFA [30], which allows in-

ternal state variables. These variables, however, are simple data types (integers, floating

points, etc.) used to implement loops and such, and are not effective to model the environ-

ment. Of course, such data types can be used to encode information about the environment,

but since neither ALFA nor ATLANTIS place any limit or structure on the representation,

the representation has the same deficiency as the arbitrary data structure representation al-

lowed by 3T. Gat’s sequencer layer, which sits above the PA layer, is modeled after Firby’s

RAP system and so uses similar memory structures (with the same benefits and limita-

tions).

An alternative architectural layout is proposed by Simmon’s TCA architecture [69]. His

work is concerned with interleaving planning, sensing and execution through TCA’s plan

representation, a fundamentally different type of representation than that addressed by this

thesis. Although TCA’s modules appear to hold internal state, that state’s construction is

left to the module designer and thus suffers from the potential for arbitrary data structures.

The architecture of Noreils and Chatila [59] is somewhat similar to 3T in its division of

tasks between components of the architecture. While they also allow arbitrary data struc-
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tures, they do use a technique similar to my representation instantiation (see chapters 3

through 6). Beliefs about the world are expressed to sensory modules that then try and fit

world data to them. The Supervenience architecture [71] has many layers, each using the

LISP clause as the fundamental “unit” of information. The layers share a common memory

system and have the same problem as Firby’s RAP memory, i.e. it becomes expensive to

both find and “forget” (throw away) information among all the predicates.

Albus’s RCS architecture developed at NIST [3] was designed to control many types of

mechanical devices, not just mobile robots. It defines a general representation structure

used by all levels of an architecture in which higher layers have progressively more pow-

erful inferencing capabilities. Unfortunately, this allows planners and PA layers to use the

same representation structures. I believe that the techniques available to planners allow

them to use representational structures that are ineffective for perception/action systems. I

recommend creating separate (but linked) representations of the world for planners and PA

layers to avoid the temptation of using inference in the PA layer itself.

Arkin’s AuRA [5] architecture separates PA layer and planner functionality, but is main-

ly concerned with navigation at the PA layer. Its representation is geared toward potential

fields representing travel paths for the agent. Connell’s SSS architecture [22] has only lim-

ited representation of the environment’s geometry in its symbolic layer and none in its sub-

sumption or servo layers. This architecture has only been applied to navigation and so the

lack of representation was reasonable. As stated previously, I believe stateless systems are

not reasonable for general tasks.

CIRCA [56] is an architecture concerned with making real-time guarantees about its per-

formance. The authors do not address the design of efficient representation systems, but
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much like the RAP system, there is no reason why a well designed representation could not

be used in this architecture.

Certain extensions of the Soar architecture, such as Robo-Soar [46] or Air-Soar [62], rep-

resent cognitive architectures that control agents that interact with the world. Soar is a cog-

nitive architecture that can pursue a number of hierarchical goals simultaneously. The key

feature of the Soar architecture that makes it different than other multi-tiered architectures

is that each layer in Soar has the same control structure, it just operates in a different prob-

lem space [46]. Since I am interested in representation design, it is beyond the scope of this

thesis to address the advantages and disadvantages of this architectural structure vs. other

layered systems. Instead, I address the use of representation in this architecture.

Soar has a two level memory system, where “working memory” contain knowledge

about the agent’s environment and “long term memory” contains productions that contain

the control information that the agent uses to select and reason about actions. This thesis is

interested in designing representation whose function is akin to “working memory”. There

are a number of problems with the memory system in these versions of Soar, such as LISP-

predicate style representation and a uniform representation at all layers. These are dis-

cussed in more detail in chapter 7.

Uniform representation is used at all layers in Soar because all layers are essentially pro-

duction systems. The problem is that this means that the information used for long-term

planning and reactive in a dynamic environment is contained in the same structure. This

can tempt a designer to store information that is useful for planning in a layer concerned

with reacting. Without trying to constrain what is contained in the representation of the lay-

ers of the Soar systems that interact with the world, the Soar methodology allows these lay-
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ers to bog down trying to search through and maintain that information.

2.4. Psychological Representation

There has been considerable work by psychologists on the form and function of repre-

sentation used by the action oriented portions of the human cognitive architecture. That is,

how do humans represent information that is not for the purpose of symbolic, cognitive

thought (such as planning), but rather for sensori-motor system use when carrying out ac-

tions? Although some studies show that people will not use memory when that option is

available [7], none have proposed that humans have no representational system in the man-

ner of Brooks [17]. Particularly in the visual domain, representation plays an important

role. Aloimonos has shown how certain ill-posed vision problems (e.g. shape from motion)

become well posed when the agent can use multiple camera views with an understanding

of the motions between them [4]. This implies some memory of previous images, which

itself implies some representation to hold those memories.

Shimon Ullman proposes a model of the “intermediate” human visual system based on

small programs called visual routines [76]. An important concept used by these programs

is the ability to remember, or “mark”, portions of the image that have already been ana-

lyzed. He proposes a “marking map” that holds the location of portions of the scene de-

scribed by the incremental representations built during scene analysis.

Pylyshyn and Storm [63] propose the FINST model where a limited number of “reference

tokens” can be bound to visual features that they then track. Associating a FINST with a

visual feature is a prerequisite to further processing involving that feature. The FINST

model is an object-based model of attention, as opposed to a location-based model, in that

FINSTs do not point to particular locations in space, but to particular visual features (and
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continue to do so as the features move). It is different from other attentional models in that

it supposes that attention can be directed to multiple places in parallel. This position is fur-

ther supported by Yantis [85] whose experiments show that people can track multiple in-

dependent elements by imagining them as the vertices of a “virtual polygon”. While the

previous works have been concerned with targets in the visual field, Attneave and Farrar

[6] show that subjects can remember and track the locations of elements that were initially

within the visual field, but have since moved out of view. The parallel, object-based model

of attention, where targets can be in or out of the visual field, is consistent with the repre-

sentation systems designed by this thesis.

Other researchers have concentrated on how representations are used for action. Ballard

et. al. [7] describe how cognition on the scale of actions (approximately 1/3 of a second)

consist of small “programs” with “variables” that are bound at action time. These “vari-

ables” are bound to objects, parts of objects, or visual features of appropriate world aspects

that will be manipulated by the action program.

This thesis advocates the creation of linked layers of representation where the represent-

ed information gets more complex (requires more computation to determine) as the layers

that use it get further from the PA layer. Psychology researchers have investigated similar

links between representations used by different bodily systems. Feldman [25] investigates

the connection between the representation used by the visual-motor system and more cog-

nitive representations that might be used for other tasks. He describes a hierarchical repre-

sentation system with four levels. The first is the representation of space within the current

fovea and the second synthesizes various foveal fixations to (ego-centrically) represent the

“stable world”. This system, Feldman says, primarily interacts with the “environmental
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frame” that encompasses the other two levels and represents space in a non-body coordi-

nate system.

Although not strictly dealing with representation, the two-handed rod manipulation ex-

periments of Guiard and Ferrand [31] show the usefulness of multiple representations. Peo-

ple manipulate rod handled tools (like a rake or a broom) by having one hand perform

coarse motion and the other fine motion. The fine motion hand operates in a coordinate sys-

tem set by the coarse motion hand. While it seems plausible that people can represent a rod

handled tool as a single conceptual entity, if they need to manipulate it, representations of

the rod in different coordinate systems are needed. In the deictic program paradigm of Bal-

lard [7] variables for right and left hand positions would be bound to portions of the rod,

probably with one hand’s position defined in terms of the other’s.

2.5. Other Design Methodologies

Since designing the software for a robot architecture is an exercise in software engineer-

ing, methodologies in this field must be examined. There are two principal places in which

current software engineering design strategies can be applied: the decomposition of the

agent’s goals and the design of an agent’s representation. While the latter is the primary

concern of this thesis, the former is a necessary step in the methodology of chapter 3. No

current software engineering methodology addresses the design of representation systems

for autonomous robots, so I address the use of the methodologies in decomposing the

agent’s task and how that may lead to a system of representation.

Structured programming [84] decomposes the problem using a top-down approach. The

problem is divided into sub-problems, each of which are further divided until some basic

level of implementability is reached. The methodology presented here applies this ap-
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proach, as well as a bottom-up approach, to decompose the agent’s goals into a series of

tasks. Since structured programming is a tool for general software design, it has little to say

about the implementation of the various tasks in the decomposition and so is open to all the

problems of using arbitrary data structures for representation.

Object oriented design [11] espouses a philosophy of decomposing software not along

functional lines, but into a collection of cooperating entities, called objects, that encapsulate

both data and the functions that operate on that data. Object oriented design does not seem

to map to the problem of decomposing the agent’s tasks as well as structured programming.

Since the decomposition is not by function, the designer has to do something like creating

“goal objects” in which the agent’s capabilities represent functions that move the world

state (data) toward some goal. These goal entities would then have sub-goal entities that

moved portions of the parent goal’s world state toward a goal. While other possible inter-

pretations of the “objects” in the agent’s system are possible, a pure functional decomposi-

tion is what is needed in the end. The designer has to reason how to use the agent’s

capabilities to achieve its goals and the definition of “objects” here seems to get in the way.

However, unlike other methodologies, the object oriented approach has much to offer in

the design of representation systems. The representation systems developed in the follow-

ing chapters are “object based” where object refers to a relevant aspect of the world (often

a physical object). These representations encode both an object’s relevance to a particular

task and how a particular action will be carried out on that object. For example, if the

agent’s task were to pick up a soda can, the representation would indicate that some object

was a soda can, and as such, picking it up means positioning the effector(s) in a certain way.

Note that the action of picking up a dumbbell would require different effector positions and
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so a representation that indicated an object was a dumbbell would have to encode those.

This combination of function and data in a single structure is similar to the object-oriented

philosophy. In fact, the encapsulation/information hiding aspect of the object-oriented

model is particularly appealing because it maps well to this thesis’ concept of creating

“roles” in tasks that can be “filled” by various entities in the environment (see section 3.4).

The roles form equivalence classes of objects that can be used by the agent to perform some

function. The details of the selected object can be (more or less) hidden from the agent’s

action selector. The object-oriented paradigm’s abstraction of class hierarchies is also use-

ful, in the design of levels of representation. If different levels are used by different layers

of an agent architecture, different abstractions of the environment can be placed in different

levels so that the different layers can operate on data at the right “granularity” for their de-

cision making processes.

The object-oriented model does not, however, point out the issues that most effect the

structures that make up the agent’s representation. The methodology presented here directs

the designer in considering the structural impact of issues of perception, action and com-

munication.

Communication among the “functional units” (be they objects or functions) in a software

design is another important issue. Both data-driven [23] and event-based programming [67]

have been proposed to model communication between units. Since communication within

the agent architecture is of concern to this thesis, these paradigms can be of use.

Data-driven programming structures a program’s “units” into functional blocks where

data flows between them along defined pathways. Units are defined in terms of their inputs

and outputs with the internal design left to the designer (possibly using another methodol-
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ogy). Programs become data-flow graphs that define order of execution by data availability

and have no notion of a system wide program counter. Modeling communicating skill net-

works this way is appealing because any natural parallelism is exploited. However, data-

flow graphs themselves do not say anything about how the data should be structured, or

what data should be communicated. My design methodology addresses both these ques-

tions.

Another communication paradigm is the event based paradigm. In this paradigm, com-

putational units register with other units to receive notification when certain “events” take

place. This programming paradigm is often used in GUI systems to represent such asyn-

chronous events as mouse or key clicks [67]. In this paradigm, behaviors may communicate

by having the agent’s perceptual system generate events in response to certain changes in

world state. Those changes would be captured in specific data structures (representation)

for the event. Any behavior registered to receive notification of a particular event would

receive this representation when that event was generated. The agents developed in chap-

ters 4 - 6 have behaviors that communicate in a manner similar to a blackboard system [47]

and events could be used as the means of informing behaviors that new data is available on

the blackboard. However, this is an implementation detail and does not address the format

of the data as this thesis does.

2.6. Scaling Problems

Many researchers have investigated what I will term as the “scaling problem” for action

oriented architectures. That is, can these architectures be made to perform complex tasks?

The architectures of Brooks [17] and Agre and Chapman [2] differ in their use of state, but

both perform no planning and follow no plans. While following no pre-defined instruction
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sequence may make sense in some dynamic environments, researchers have questioned the

limits of the tasks that such agents can perform.

Kirsh [39] refutes Brooks’ claim that one can substitute control for representation in an

agent architecture. In order for this to be true, there must always be enough perceivable (in

view and not occluded) cues in the environment that an agent can select an action that will

have no adverse consequences down the road. This is the only way that an agent can (ulti-

mately) get away with not considering alternate courses of action, i.e. planning. Kirsh be-

lieves that reasoning (planning) is required for complex tasks and planning requires an

abstract, symbolic model of the world. Therefore the representations that Brooks seeks to

eliminate cannot be removed from the agent architecture entirely.

Tsotsos [75] also argues that the pure Brooksian approach to agent construction cannot

scale to human intelligence, by showing that visual search, a common activity in intelligent

agents, is NP complete without a target (actually, without an “explicit” target, meaning the

agent doesn’t have a description of its target that can be used to simplify the search pro-

cess). This “unbounded” visual search involves grouping random collections of pixels and

analyzing them to see if one of the agent’s stimuli is present (and so the agent should exe-

cute its response). Interestingly, Tsotsos also shows that with a small amount of state (a de-

scription of the target being sought), visual search is linear. A perceptual description would

have to be stored somewhere, i.e. in some representation. The representation designed by

this methodology provides targeted visual search.

Pengi [2] has some limited state in its visual system that can limit the complexity of the

search task. Agre and Chapman refer to systems with this limited state as deictic, or point-

ing, because the state “points to” (holds) only currently relevant aspects of the game. How-
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ever, as pointed out by Ballard [7], the Pengi architecture is a cognitive one and not a visual

one. That is, the advantage of such an architecture is the simplicity of the process of select-

ing the current action when behavioral “variables” (markers) can be bound to different ob-

jects in the game over time. The problem is not with what the agent stores in its internal

state, but with what it might have to store at any given moment. The agent must search the

entire (perceivable portion of the) environment, all the time, for all the stimuli to which the

agent has a response. Even after a marker is bound, it might need to be rebound to a differ-

ent object, e.g. when the-bee-closest-to-me changes to a different bee. Agre and Chapman

had access to their game’s internal data structures, which contained a unique labeling of

each object in the game. This allowed them to switch their markers to new targets at little

computational expense. However, for systems that must deal with physical sensors, the

more complex the domain, the more important aspects there will be to register and thus the

more computational burden there will be on the perception system.

Maes [48] creates a behavior-based system with a similar scaling problem. In her archi-

tecture, behaviors are connected to other behaviors whose preconditions they achieve. Sen-

sors put activation energy into the behavior network based on precondition predicates they

detect as true and when a behavior has all its preconditions activated, it will run (possibly

activating other behaviors). For a complex task, there can be huge numbers of predicates

that the agent needs to monitor for and since there is no behavior hierarchy, there is no

means of limiting the network to considering only those predicates needed by the current

task. In other words, the agent must always look out for stimuli related to all tasks that it

might ever want to execute because at any time the requisite predicates may become true

causing a switch in the agent’s activity. Bryson [18] argues that the complexity of creating,
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debugging and tuning such a fully parallel, behavior-based system (as opposed to one with

a control hierarchy) outweighs the benefits in reaction time that parallel systems may pro-

vide. In her study, the tuning of such a system was so difficult that it could not be made to

perform as well as a system with a behavior hierarchy, at the same task.

Neither the stateless nor the purely deictic behavior-based approach scales. As we’ll see

in succeeding chapters, my agents attempt to avoid this scaling problem by only looking

for aspects of the environment that are important to their current task, even though they lose

some ability to recognize serendipitous circumstances because of this.

A related piece of psychological work is presented by Patalano and Seifert [61]. They

show that humans can encode known future goals or goals that they have been sidetracked

from by associating them with objects required to complete them. If a subject sees some

item needed to complete a goal other than the one they’re currently pursuing, they may grab

it since they’ll need it soon. This is interesting because it shows the people can recognize

objects as useful, even when they are not related to their current activity. While this seems

to leave humans open to the same scaling problem, the experiments show that people do

not recognize more and more objects as useful as they get more and more goals. They seem

to strike a balance between the number of pending goals and the items they recognize as

important to achieving them. When there are too many goals, people will focus on one at a

time and fail to recognize important objects for pending goals. The methodology proposed

in this thesis does not preclude examining the environment for aspects that may be useful

in the future. It does however, caution the designer that the computational cost of too much

“look ahead” can ruin the reaction time of the agent.
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This chapter proposes a design methodology for autonomous agents operating in dynam-

ic environments. The main contribution of this methodology is a structured method of an-

alyzing an agent’s task and capabilities to guide the development of the agent’s

representation system. Agent designs based on this methodology are intended to interact

with the world in a rapid, stimulus-response fashion. That is, the time delay between per-

ception and action must be as small as possible. The component of the agent architecture

dealing with sensors and effectors is called the perception/action (PA) system and is con-

ceptualized as running in a “tight” loop using sensor data to control effectors and effectors

to manipulate objects and direct sensors. Due to the computational complexity, the PA sys-

tem must have almost no explicit inferencing capabilities to remain responsive. Agents de-

signed via this methodology are also assumed to operate in dynamic domains, i.e.

environmental change causes perceptions to become outdated.

It must be understood that this is a methodology and not an algorithm for agent software

design. As such, the methodology cannot generateprovablyoptimal agents along any lines.

In fact, there are no tasks that necessitate the use of this methodology. However, this meth-

odology can be a powerful tool to focus a designer’s attention on certain aspects of “agent-

ness” that are of critical importance to the creation of autonomous systems, particularly the

representation used within the control structure. I will argue that this methodology can help

Chapter 3                          ARepresentation
Design Methodology

By three methods may we learn wisdom; First by reflection, which is the noblest;
Second by imitation, which is the easiest; and third by experience, which is the bitterest.

- Confucius
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designers create agents that are efficient and effective at tasks in the domains of concern

defined below.

3.1. Task Domains

As discussed in section 1.3.1, the task domains of interest in this thesis share a number

of characteristics. They are summarized in table 3.1.

Domains with these characteristics are well suited to agents with perception/action sys-

tems. The methodology emphasizes aspects of the design process that are important in such

domains.

3.2. A Design Methodology

This section outlines a design methodology for autonomous agents. The steps of the

methodology take the form of a series of questions that the designer must answer. For each

Table 3.1: Summary of Domain Characteristics

1 The environment is dynamic Current sensor data is more valid than previous
sensor data.

2 The task contains different
aspects.

The different facets of the task can be handled
by “independent” architectural components
within the agent.

3 Knowledge of large-scale space
[43] is required.

The agent cannot perceive all important aspects
of the environment a priori or at any one time.

4 The task can be decomposed. The task can be described by a hierarchy of
tasks and subtasks and allows important envi-
ronmental entities to be viewed at different lev-
els of abstraction, e.g. part and whole.

5 The entire plan cannot be made a
priori, or replans do occur.

The task requires the agent to have on-going
“higher level” control.

6 The environment is suitable
quantifiable with coarse metrics.

The agent can use crude maps effectively.
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step, I briefly describe the questions and illustrate them with a running example of an agent

that is designed to “walk the dog”. I then discuss the rationale behind the questions and

summarize the contributions of the step to the design process.

At the start of the design process, certain facts about the agent, its task, and its environ-

ment must be known. For the task and the environment, a high-level specification must ex-

ist along with the availability of more detailed information if it becomes necessary. For the

agent, the designer needs a description of its capabilities. In the example task, the agent

must walk a dog along a planned route to the park (see figure 1) and then play fetch with

the dog. For exposition purposes, figure 1 represents a number of constraints on the task.

The agent must follow the indicated route, must stay on the sidewalk, must cross the street

where indicated, etc. A complete list of constraints appears in appendix C. The agent’s en-

vironment consists of a road, sidewalk, crosswalk, and dog. There are also several flower

beds along the route to the park and possibly cars in the street. The important agent capa-

rose
bed

tulips

Park

sidewalk

dog walking
route

road

crosswalk

Figure 1. Dog Walking Environment

car

corner

mailbox
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bilities include navigation abilities, a leash effector that can be reeled in to keep the dog

within various distances, a pressure sensor to detect which direction the dog is pulling the

leash, a vision system that can identify important landmarks, curbs, tulips, roses, the dog,

the leash, the ball, the mailbox and cars, as well as a reloadable ball launching system so

the agent can play fetch with the dog.

Throughout this

chapter, I will refer to

many agents and

their tasks (including

the “walk the dog”

agent). The task, en-

vironment and capa-

bilities of these

agents will be sum-

marized in insets like

task specification 1. This thesis broadly defines capabilities as anything that the designer

has to work with at the beginning of the design process. Capabilities can be anything from

detailed hardware descriptions like a stepper-motor to full behaviors like “navigate to a

landmark”. For the “walk the dog” example, agent capabilities are mostly given as behav-

iors (e.g., a navigation system that can maneuver to landmarks, instead of wheels and a

camera), but for other agents, bottom-up thinking is applied to turn capability descriptions

into behaviors (see chapters 4 - 6).

Finally, I use hyphenated phrases, e.g., walk-the-dog, as proper nouns to aid the reader

Task: Walk a dog to the park and play fetch with it. The dog
must be kept safe from cars and out of the flowerbeds
along the route.

Environment: The park and the surroundings of the route there
(street, sidewalk, cars, flowerbeds, crosswalk,
mailbox). Flower beds can contain either tulips or
roses.

Agent perception
capabilities:

Landmark detection system to identify “corner”,
“park” and “crosswalk”, obstacle detector for
navigation, sidewalk edge detector, tulip and rose bed
detector, dog and leash detector, dog tired-ness sensor,
proprioceptive sensors to detect own motion.

Task Specification 1. Walk-the-dog

Agent action
capabilities:

Leash effector with direction sensor (allowing agent to
keep dog close by, out of the street and moving
forward), reloadable ball launch system (allowing
agent to throw ball and get it back from dog),
navigation ability (allowing agent to move toward
objects and across the street).
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in understanding the goal of a task. While these phrases appear to make certain steps of the

methodology trivial, they are merely names that could be stripped of their semantic content

by using titles like task-37. However, it is easier to understand that the goal of the walk-the-

dog task is to have the dog walked, as opposed to the goal of task-37 being to have the dog

walked.

3.3. Task Decomposition

The first step in the methodology involves creating a hierarchical decomposition of the

agent’s tasks1. The agent will have certain capabilities (both hardware and software) that

are given to the designer. These can be thought of as the agent’s “primitive” skills, i.e. the

fundamental processes from which all of the agent’s actions are built (see section 1.3.2). If

the task decomposition is thought of as a tree with the original task specification at the root,

these skills are the leaves. The job of the designer is to bridge the gap between the task spec-

ification and the skills. When creating the decomposition, it is important to consider the fol-

lowing:

What are the agent’s primitive skills?The answer to this question depends on the agent’s

capabilities and the degree to which each can be viewed as a “black box”. Although the de-

sign begins by considering the skills, ultimately creating a task decomposition must be both

a top-down and bottom-up process. The designer must decide on the agent’s skills while

breaking down the overall task into a sequence of subtasks that achieve the agent’s goals.

This brings up several more important questions.

Which tasks can be decomposed into sequential subtasks? Which can be decomposed into

1. Task decomposition is a major part of general requirements analysis and it remains mostly an art
[66][84]. This methodology provides a structure in which to practice that art.
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parallel subtasks?Interior nodes of the decomposition tree will be broken into subtasks

whose overall outcome is meant to complete the parent task. In this way, the leaf skills can

be combined to achieve a greater range of behavior than that of the individual skills.

3.3.1 Example Task Decomposition

In figure 1, we can see that the dog must be taken along a certain route to the park (re-

member task specification 1 and figure 1 represent the given task constraints). First the dog

must be walked along the sidewalk to the street corner with the crosswalk. Then the agent

and dog must cross the street on the crosswalk and go into the park. Finally, the task spec-

ification says the agent should play fetch with the dog. We can derive further specifications

for the steps on the way to the park by examining the map in figure 1. For example, to keep

the dog on the sidewalk, the dog must be kept out of the street and out of the flowerbeds.

At the crosswalk, before crossing the street, the agent should look for oncoming cars.

A few more details can be discerned by careful thought about the processes involved.

When walking the dog, the agent moves and the dog is meant to follow. If the dog does not

follow, the agent must tug on the leash. Since the leash is the agent’s only mechanism for

controlling the dog, the leash must be manipulated to keep the dog “safe”, i.e. on the side-

walk, and to keep the dog moving forward. A good strategy for controlling the dog might

be to keep it nearby and just tug the leash when the dog’s heading needs to be changed, but

in the end this is up to the designer.

When the agent is in the park, it needs to play fetch with the dog by repeating the cycle

of throwing the ball and waiting for the dog to retrieve it. However, the game should come

to an end when the dog has had enough exercise and so the agent needs to periodically

check if the dog is beginning to tire.
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Figure 2 shows a hierarchical task decomposition of the walk-the-dog task as described

above. Ovals represent tasks and subtasks, while lines represent the “is subtask of” relation-

ship between the higher oval (the parent task) and the lower oval (a subtask). Each of the

subtasks in figure 2a, is further decomposed into additional subtasks in figures 2b-f.

The overall task of walking the dog is broken into five tasks that follow the pre-planned

route and give the dog some exercise. Each of these consists of a set of leaf tasks that can

be implemented based on the agent capabilities from task specification 1. For example,

keep-dog-moving-forward, keep-dog-out-of-street, keep-dog-close-by and reel-in-leash-

near-flowers are all leash control skills that monitor the dog’s position and tighten or loosen

the leash at various times. Keep-dog-out-of-street monitors the positions of the dog and the

street and tugs on the leash if they become too close to one another. Keep-dog-nearby al-

lows the dog a certain amount of leash depending upon the agent’s location along its route.

Walk-toward-corner, walk-toward-park and move-across-when-clear are all agent navi-

gation skills. Watch-for-flowers, watch-for-cars-at-crosswalk and wait-for-dog-to-return

are perceptual skills based on known characteristics of the agent’s vision system. Throw-

ball-to-open-area and get-ball-when-dog-returns are ball handling skills that make use of

the agent’s reloadable ball launching system. Is-dog-tired is a perceptual skill that deter-

mines if the dog is tired of playing fetch. Of course, most tasks make use of multiple capa-

bilities, such as throw-ball-to-open-area, which uses the vision system to detect a clear

place for the dog to run and the ball launching system to throw the ball. For this discussion,

the implementation of these tasks and the reasons for this specific decomposition are unim-

portant. What is important is that the leaf nodes all represent primitive actions based on the

agent’s capabilities and the actions overall effect produces the right qualitative behavior.
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Figure 2. Walk-the-dog Decomposition Hierarchy
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Figures 3a-f show the “flow of control” during task execution, i.e. the order in which sub-

tasks are executed to achieve parent task goals. Subtask ovals that are stacked above one

another indicate that these subtasks are executed in parallel. A solid arrow from one subtask

to another indicates that when the left subtask completes, control transfers to the right sub-

task. An arrow from a higher oval to a lower one indicates that the parent task executes one

or more of its child subtasks. A dashed arrow from a subtask back to a parent task indicates

that the child has achieved its goal and therefore the control flows back to the parent task.

Figure 3a shows the basic flow of the walk-the-dog task as it has been described (go to the

corner, cross the street, go to the park and play fetch with the dog). Figures 3c and 3e show

that a number of subtasks are executed in parallel when the agent walks the dog to some

location. Three subtasks control the dog to keep it safe (out of the street and nearby) and

keep it headed forward. The final subtask moves the agent toward its destination. The route

to the corner is lined with flower beds and so the agent must keep the dog out of them while

walking to the corner. Figure 3b shows the 2 parallel subtasks that monitor for flowers and

reel in the leash whenever they are detected. Figure 3b has no control flow back to the par-

ent indicating that the subtasks will continue to execute until some event (external to this

task) causes the agent to stop executing the parent task (and thereby stop executing its sub-

tasks). In this case, the agent will continue to run the subtasks of keep-dog-out-of-flowers

until walk-dog-to-corner completes. Figure 3d shows how the agent crosses the street. First

the agent checks for oncoming cars, then if there are none it crosses the crosswalk keeping

the dog close by. The play-fetch-with-dog task of figure 3f shows a series of tasks that play

fetch with the dog. The agent throws the ball, waits for the dog to return with the ball and

checks if the dog is tired. While the last subtask tests the dog’s status, there is no obvious
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change in control flow based on this information. However, the tiredness of the dog is

passed up to the play-fetch-with-dog task and that task determines whether to follow the

dashed arrow of figure 3f (to throw-ball-to-open-area) or the dashed arrow of figure 3a (to

walk-the-dog).

3.3.2 Decomposition Rationale

The purpose of this step in the methodology is to have the designer think about the rela-

tionship between the agent’s task and the agent’s capabilities. A hierarchical task decom-

position can provide a form of information hiding [60] to some tasks. The tasks at any one

layer of the hierarchy do not need to understand the internal workings of the tasks at the

other layers, only the mechanism to communicate with them (see Section 3.7). The design-

er needs to create this hierarchy from both the top-down and the bottom-up. That is, the de-

signer must think about what services a task at a certain layer of the decomposition should

have available from the layer below. At the same time, the designer must consider how the

goal-achieving behaviors of multiple tasks, at a certain layer, can be combined to present

an abstraction at a layer above. The tasks at the lowest layer of the decomposition (referred

to as “behaviors”) will come most directly from the agent capabilities, while the tasks at the

highest layers will rely on the abstractions of tasks from all the layers below.

The creation of the task decomposition

begins by designing the agent’s skills.

What exactly constitutes a skill will de-

pend on the agent’s given capabilities and

the abstraction they present, i.e. how

much they are a “black box”. For exam-

Task: pour coffee from a pot in a coffee
machine into a cup

Environ-
ment:

coffee machine with coffee pot in
machine, coffee cup

Agent: pair of 6-DOF arms with attached
grippers, visual sensor to detect pot/
cup alignment

Task Specification 2. Pour-a-cup-of-coffee
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ple, an agent with an arm and gripper effector has the capability tograspobjects, i.e. close

the gripper “fingers” around an object, but pre-made software libraries might allow the

same agent topick upobjects (involving moving the arm to the object, positioning the grip-

per, grasping and then lifting the object). From the agent’s point-of-view, this “pick up” be-

havior is a black box. As a further example, consider the agent capabilities described in task

specification 2. Given the agent hardware description, the designer might create behaviors

to grasp objects like a cup or coffee pot, pull such a pot from a coffee machine, align a pot

with a cup, and tilt a pot to pour coffee.

Once the agent’s basic behaviors have

been designed, the designer must decide

both how skills can be combined to

achieve various task goals (bottom-up)

and how various task goals can be decom-

posed into goals that can be achieved by

other tasks (top-down). This can be done by considering the effects of executing various

tasks (starting with the skills) in parallel or in sequence, as well as, how tasks can be broken

down into sequences of subtask or groups of parallel-executing subtasks2. For example,

pouring a cup of coffee (see task specification 2) consists of the sequence of grasping the

coffee pot’s handle, removing it from the machine, aligning it over the cup, and tilting it to

the proper angle. Other tasks are composed of subtasks that execute in parallel, such that

the desired behavior “emerges” [16]. For example, the driving task in task specification 3

2. The reader should note that the discussion of serial and parallel execution of tasks does not mean
that the task decomposition is an and/or tree [64]. Task decompositions used in this methodology do
not have “or” branches, though a particular subtask may select among various choices when deciding
what to do.

Task: drive car to the store

Environ-
ment:

car on road with other cars, lane
markings, street signs, traffic lights,
start in driveway

Agent: grasping/pulling effector,
obstacle/landmark/lane detector,
steering skill, color detector

Task Specification 3. Drive-to-the-store



49

might consist of steering to stay in your lane, avoiding other cars and watching for the next

location where you need to turn. These activities must be done in parallel in order to drive

safely and we consider them to all be part of normal driving. The designer should also look

to create behaviors bottom-up, by executing groups of more primitive behaviors in parallel.

For example, if the designer had watch-for-lane-changes and check-for-brake-lights behav-

iors, he might execute them in parallel to create the avoid-other-cars behavior. It is worth

pointing out that all subtasks will ultimately decompose to some kind of hardware-trig-

gered transitions in the agent’s electronics. However, such details are well below the “level

of abstraction” that is important at design time and the decomposition should stop at the

level of the agent capabilities.

The reader may ask, “since all agent behaviors ultimately arise from the execution of a

collection of the agent’s skills, why not decompose the agent’s task into a ‘flat’ ordering of

these skills?” While no argument can be made that a hierarchical decomposition is neces-

sary for any task, as we will discuss later, it allows the designer to create an agent architec-

ture that separates the agent’s deliberating and acting concerns to allow efficient and

effective operation in dynamic domains.

For any given task, there are multiple feasible decompositions. Sometimes a particular

decomposition will represent different possible orderings of steps in the agent’s task, or

choices among alternatives available to the agent. For example, the pour-a-cup-of-coffee

agent can align the cup with the pot or the pot with the cup. In this case, it probably doesn’t

matter and so the designer can just pick one. However, a car driving agent may be able to

take any of several routes and might want to select among them based on weather, traffic

conditions, etc. In this case, the designer will want to think of the various decompositions
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as being part of a larger tree, with a runtime decision as to which branch of the tree will

have its subtasks executed. The designer can think of this larger tree as an and/or tree,

where each node is a complete hierarchical decomposition of the type advocated in this

methodology (that is, without decision points in the tree itself, but possibly within the

nodes).

The designer should be aware that creating the task decomposition is an iterative process

with the rest of the methodology. The answers to the questions in the remainder of the

methodology are dependent on the task decomposition and so the designer can arrive at a

situation where some other question cannot be satisfactorily resolved without changing the

decomposition. For example, the designer may at first believe that a task will be used in

two different parts of the decomposition. Later in the perception question (section 3.6), the

designer discovers that the two situations in which the task is to be used, occur in suitably

different parts of the environment so that the perception needs to be different in each case.

This would involve changing the decomposition to have two different (situated) tasks in-

stead of the original one.

Once the designer has a task decomposition, task flow diagrams should be created. This

process should be assisted by the fact that when decomposing a task into subtasks, the de-

signer is likely to have imagined an ordering of those subtasks.

For the most part, creating the decomposition and task flow diagrams is part of the art of

agent design and this thesis has little specific to suggest. Software engineering provides a

number of methodologies for decomposing tasks into smaller conceptual units, e.g.

[11][23][67][84]. Some of the more popular methodologies are discussed in chapter 2.
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3.3.3 Decomposition Summary

In this step the designer is to create a hierarchical decomposition of the agent’s overall

task. This begins by deciding on the agent’s most primitive behaviors. Next the designer

considers how the agent’s “top-level” goals can be broken into subgoals, and how the be-

haviors can be combined to achieve those subgoals. This step takes advantage of domain

characteristics 2 and 4 (see sections 1.3.1.2 and 1.3.1.4) by exploiting the innate hierarchi-

cal structure of the task so that (in future steps) specialized representations for these tasks

can be created.

A hierarchical decomposition is useful in two ways. First, the hierarchy gives shape to

the final control structure of the agent (see Section 3.8). Second, tasks can hide operational

details from their parent task [60] so that the parent task need not spend its time considering

too many fine details.

3.4. Identify Task Roles

What are the task roles?After creating the task decomposition, the next step is to identify

therolesin each task. Task roles are the aspects of the environment that effect the outcome

of the task. Typically, they are the objects that the agent acts upon during the task (e.g. it’s

“the hat” when the agent’s task is to “put on the hat”).

What entities can fulfill those roles?Once the task roles are determined, the designer

must decide what entities in the agent’s environment can fulfill those roles.

3.4.1 Example Task Roles

Consider the environment shown in figure 1. The designer must first consider the entities

in the environment that are important when walking the dog to the corner. First, the agent
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needs to know about “the corner” in order to identify and navigate toward it. Obviously the

agent also needs to have a dog. The agent also needs to be conscious of the flowers along

the way and of the location of the street (or sidewalk edge) with respect to the dog. These

are the primary entities (corner, dog, street and flowers) needed to get to the corner in ac-

cordance with the task specification.

Next the designer must decide what aspects of the environment are important when cross-

ing the street. The agent needs to be conscious of oncoming cars, it needs to identify the

crosswalk (to get across in the legal manner) and, of course, it needs the dog. After crossing

the street, the task of walking the dog to the park is easier than walking the dog to the corner

because there are no flowers along that part of the route. So, the agent need only be con-

cerned with the location of the dog, the street and the park. Finally, when playing fetch with

the dog, the agent must be able to detect open areas to throw the ball to, as well as detect

the dog and the ball to retrieve the ball when the dog returns. Obviously, the dog is the im-

portant entity for determining if the dog is tired.

I have used various phrases such as, “know about”, “have the concept of” or “be con-

cerned with” to designate the aspects of the environment that are important to the agent dur-

ing a specific task. Describing a task with such phrases is a key to the designer that the

associated aspect is a role in the task. That is, these phrases signify that some object in the

environment possesses qualities that the agent must sense and respond to. There is a dog

role in all the tasks because the agent must monitor the dog’s location and redirect the dog

if necessary. If the agent has the perceptual capabilities to designate some portion of its en-

vironment as “the dog”, it can use that portion in actions with the task role “dog”. For con-

venience, I have repeated the decomposition of figure 2, with the roles in bold, in figure 4.
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keep-dog-out-
of-flowers

walk-dog-to-
corner cross-street

walk-dog-to-
park

play-fetch-
with-dog

walk-the-dog

(a) top level roles

watch-for-
flowers

reel-in-leash-
near-flowers

keep-dog-
moving-forward

keep-dog-
out-of-street

keep-dog-
close-by

walk-toward-
corner

keep-dog-out-
of-flowers

walk-dog-to-
corner

keep-dog-
close-by

throw-ball-
to-open-area is-dog-tired?

get-ball-when-
dog-returns

(b) keep-dog-out-of-flowers roles (c) walk-dog-to-corner roles

cross-street

play-fetch-
with-dog

(d) cross-street roles

(f) play-fetch-with-dog roles

Figure 4. Walk-the-dog Task Roles

keep-dog-
moving-forward

keep-dog-
out-of-street

keep-dog-
close-by

walk-toward-
park

walk-dog-to-
park

(e) walk-dog-to-park roles

watch-for-cars-at-
crosswalk

cross-crosswalk-
when-clear
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I caution the reader that while the hyphenated task name phrases of figures 2 and 3 appear

to make the selection of roles obvious, the designer will not have these well-crafted names

when developing the decomposition. One method that allows the designer to identify task

roles and create English language task names is to describe the task’s goals in words. Often

the nouns will be roles in the task. Skill in doing this will allow agent designers to create

the sort of semantically meaningful task names used throughout this thesis.

However, even with a goal describing task name, all roles may not be obvious and chap-

ters 4 - 6 contain many examples. Often, some roles arise from the interaction of tasks

(which is partly an implementation issue). For example, the agent in chapter 4 has a task

that detects obstacles and so this task has a role for an obstacle. However, another task the

agent’s wheels also has a role for an obstacle because the task steers the agent around them.

This second obstacle role was needed because detect-obstacles only finds obstacles, and ex-

pects some other task to steer around them.

The entities that can fulfill the task roles can also be determined from the environment

(in the present example, the information about the environment is encapsulated in figure 1).

First, there is thedog role. The task specification provides no details about our dog, except

that the agent has a dog detector. So, thedog role will be filled by whatever entity in the

environment is identified by this detector3. Thecorner must be that corner on the right side

of street at the crosswalk. Thepark must be the park on the other side of the street. While

walking the dog to the corner, theflowers can be either the tulips or the roses. Thestreet

will be anything beyond the edge of the sidewalk.

Note that from here on, I use boldface to denote the task role and plain text to denote ac-

3. This “dog detector” is given as an agent capability to simplify the discussion here, but it is an over-
simplification of a complex problem.
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tual entities in the world. So,dogrepresentsthedog (not necessarily explicitly as discussed

in section 1.2.2) that the agent is walking and while that dog may be just one of several dogs

in the environment, its the important one.

The designer must choose the important portion of the street to fill thestreet role in the

cross-street task. One solution is for thestreet to represent the area in between the two

curbs (edges of the sidewalks) on either side of the street at the crosswalk. Thecar role can

be fulfilled by any large moving object in the street. In this case, the role name is slightly

misleading since thecar does not have to be played by a car, but could be played by a truck,

a bus, or a grand piano rolling down the street toward the agent and its dog. Anything that

is large, in the street and moving toward the agent should be avoided.

The ball used to play fetch with the dog can be whichever ball the agent carries with it to

the park, but the agent should make sure the dog returns with the same ball that was thrown

(and this is done by the get-ball-when-dog-returns task). This means that ball will play the

role ball in the ball throwing and reloading tasks. The open-area in the park can be any

space which is clear of objects that the dog should avoid (more on how this is determined

in Section 3.6.1). This open-area will then play theopen-area role.

3.4.2 Task Roles Rationale

Roles are task specific descriptions of environmental aspects that influence the agent’s

behavior, i.e. what the agent must sense and act upon. In a dynamic environment the agent

cannot afford to be concerned with anything else [8]. This is why task roles are so impor-

tant. They force the designer to pick out what is important in a particular task and allow the

agent to concentrate its resources on just those entities [35]. This is not just a matter of ef-

ficiency, but of effectiveness. It is generally impossible for the agent to build a complete
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model of the world, which it keeps up-to-date in a reasonably dynamic environment4 [49].

There is simply too much information available to the agent for the agent to extract it all

and then decide what to use. The agent must concern itself with only the environmental as-

pects relevant to its current task. This allows the agent to be designed to accomplish each

of its tasks using tight perception/action loops that involve determining information about

object(s) associated with task role(s) and choosing corresponding effector commands.

The pour-a-cup-of-coffee task of task specification 2 requires some object to play the role

of thecoffee pot and some object to play the role ofthecoffee cup. Other environmental

aspects are not important. Cups other than the cup that is getting filled are not important

and neither are any of the myriad of other data which may be available to the agent’s sen-

sors (e.g. the contents of the kitchen cabinets or the color of the floor).

At this point it should be made clear that a role’s “description of environmental aspects”

does not necessarily refer to perceptual qualities, like red, or round, but possibly to qualities

that only have meaning within the current task. For example, a navigation task might have

to steer around obstacles while heading for a goal. Since obstacles and the goal determine

the agent’s route, there should beobstacleandgoal roles. Any entity fulfills theobstacle

role when it is positioned between the agent and its goal, regardless of its perceptual prop-

erties. For another task that same entity may play a different role or none at all. Of course,

4. I define a “reasonably” dynamic environment in a somewhat circular manner. That is, it is an envi-
ronment where changes occur at a rate that precludes the agent from acting quickly enough to
accomplish its goals if it tries to build a complete world model. This definition is clearer when
viewed from the perspective of how slowly such an environment would have to change for modern
computers to keep up. As an example, consider the robot Spot discussed in chapter 5. Spot uses
100% of a 200MHz Pentium MMX to monitor an area of approximately 50 pixels square in a
256x256 pixel image. Spot can compute stereo and motion information about this area approxi-
mately 10 times a second. This allows tracking of the object in this space at a slow walk. If Spot were
to perform his computations on the entire image, the process would be approximately 25 times
slower. As computers get faster, this factor will be reduced, but the agent will always be able to han-
dle a more dynamic environment by ignoring unimportant aspects of it.
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perceptual information can be important as well. If the agent wanted some entity to play the

role ofsandpaper, it might select any object with the perceptual quality of a rough surface.

So, the description of a task role may involve both perceptual information and task depen-

dent information.

The designer must understand that roles are more than just descriptions of properties that

entities in the environment must have, they contain semantic information. This semantic in-

formation allows tasks to be flexible because it tells the task how it should act with respect

to certain entities without providing specific descriptions of those entities. Theobstacle

role above tells the designer something about the associated entity beyond a perceptual de-

scription, i.e. it is in the agent’s path and should be maneuvered around.

The question of what are the roles in a task is deeply entwined with the question of the

entities that can fulfill those roles. I use the term “bound” to denote a role that has been as-

sociated with an object in the environment. That role is said to be bound to that object and

that object is said to fulfill that role. Sometimes the task will only achieve the “correct” re-

sult if its role(s) is bound to a specific entity (drive-my-car is only done correctly ifmy-car

is associated with the car owned by the agent). Other times, there can be multiple entities

that can fulfill a task role. For example, theflowers role in the walk-the-dog example could

be played by tulips or roses. For the pour-a-cup-of-coffee task, the coffee cup could be a

mug, a tea cup or a styrofoam cup. Task roles need not even be associated with single ob-

jects. Typically, these objects must bear some spatial relationship to each other. For exam-

ple, a task’sbowl-of-applesrole might be fulfilled by a bowl object with at least one apple

inside of it. Roles may also represent more nebulous entities, such as “the lawn” in mow-

the-lawn.
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It is also not necessary for the designer to exhaustively specify every entity that could ful-

fill a task role, rather a description of a class of entities can be used. For example, thecar

role in the watch-for-cars-at-crosswalk subtask of walk-the-dog can be bound to any entity

fitting the “large and moving toward the agent” description. In the actual implementation

of an agent’s perception system, a given perceptual description will always allow “recog-

nition” of any one of a set of entities. This is because these routines will necessarily contain

descriptions of perceptual qualities to search for and not unique object identifiers. The

number of entities that match a given description will depend on the capabilities of the

agent, the implementation of the agent’s perceptual system and the amount of noise in the

perceptual process.

The designer must also take note of when one role depends on another. This means that

any information the agent gets about the entity associated with one role effects the infor-

mation the agent has about the entities associated with other dependent roles. This often oc-

curs between a role in a parent task and roles in one or more of its child subtasks. For

example, thestreet in cross-street depends on thecrosswalk in cross-crosswalk-when-

clear and watch-for-cars-at-crosswalk because the important part of the street is defined by

the curbs on either side of the crosswalk. So position information about the curbs (and

hence the crosswalk) effects the agent’s notion of the position of the street. This primarily

occurs when one task uses more abstract properties of some entity than the other tasks, yet

each task has a role that should be associated with that entity (or some portion of that enti-

ty). For example, assume that the drive-to-the-store task had acar role for the car to be driv-

en and the pre-drive inspection contained a check-tire subtask with atire role. There would

be a dependence between this role and thecar role because if any tire is flat, the car is un-
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drivable. So, the agent may store the fact that the car is “undrivable” in thecar role without

any indication of why. The fact that this tire was flat would be stored in thetire role. Note

that a roles can be dependent on more than one other role, such as if the check-tire task had

separate roles for each of the car’s tires. Thecar would then be dependent on all 4tire roles.

Also, the dependency need not be symmetric, e.g. the “undrivability” of the car depends on

the state of the tires, but the state of the tires is not determined just because the car is un-

drivable (the car could be out of gas). Identifying dependencies is important in representa-

tion design because the representation must be structured to communicate information

between dependent roles. I return to this issue in section 3.7.

Since roles are very context dependent (i.e. their meaning is derived from the agent’s cur-

rent “situated” activity - as defined in section 1.3.2), tasks can be made simple and reusable.

If the agent needs to walk to a number of destinations, it can keep executing the walk-to-

destination task and just change the entity associate with thedestination. By using the

available task context, designers can create tasks that need not perform inferencing about

the environment (see Section 3.8 for a discussion of inferencing by tasks and when it must

be avoided). Rather, because the semantic meaning of an object associated with a role is

pre-defined, the task’s actions can be pre-defined also. The semantics of roles allow the de-

signer to make situational control rules that are flexible. The roles can be bound to different

entities, but the task will treat them the same.

In general, there is a trade-off between the flexibility of a task to bind its roles to many

different entities and the “situatedness” of that task. The more restrictive a task is about the

specific objects to which it will bind its roles, the more likely it is that the designer can op-

timize a task because it only has to operate on those entities. However, the more entities
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that a task can work with, i.e. bind to its roles, the easier it is to reuse that task in different

situations. This is particularly important for agents with planners because the tasks that the

agent can execute will determine the “operators” that the planner considers. The fewer

there are, the easier it is to plan, and of course, fewer tasks need to be implemented.

When deciding on task roles, it may be easiest for the designer to start with the task roles

for the leaf nodes in the decomposition hierarchy. As we will see later, the leaf subtasks

tend to be executed by the most responsive layer of the agent’s architecture, which places

strict time constraints on the amount of processing that can be done. The computationally

straightforward nature of the leaf subtasks means that the task roles are usually easy to iden-

tify. These subtasks can often be aptly described by simple verb-noun phrases like grasp

the coffee mug or openthe door.

3.4.3 Summary

The designer must identify task roles because the agent must focus its resources on only

the aspects of the environment that are important to the current task. Designing agents this

way addresses domain characteristic 1 (see section 1.3.1.1) because it allows the designer

to concentrate the agent’s processing when the dynamic environment makes it impossible

to monitor everything. Identification of the objects in the environment that can fulfill the

roles is important because information about those objects will structure the remaining

steps in the methodology.

3.5. Representation of Task Roles

What role bindings are shared between tasks?Recall that a task role/entity binding refers

to the agent having selected an entity in the environment to play a specific role in its current
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task. Thereafter, the task’s actions will take place on that object. For example, the pour-a-

cup-of-coffee task has acup role. The agent selects a particular cup to use (from the set of

all cups that fit the task role’s perceptual description), it is considered bound to thecup task

role and that entity will be filled with coffee. Sharing refers to roles in different tasks being

associated with the same object. It also refers to dependent roles that hold different infor-

mation or a different abstraction of the same entity. The designer must also remember that

tasks across levels of the decomposition hierarchy may share roles.

What information about the entity bound to a task role is needed for the task?

For what roles would it be useful to develop an explicit representation?Explicitly repre-

senting a task role means that some data structure exists to hold information (from the pre-

vious question) about the entity bound to that task role. See section 1.2.2 for a discussion

of implicit vs. explicit representation.

How often should the task role information be verified?That is, how often should the

agent check that its stored information is still valid? Throughout the remainder of the dis-

sertation, I use the term “maintenance” to refer to the active process of verifying the validity

of a piece of information (by allocating perceptual and computational resources to the task

of determining that information). Maintenance of information is in contrast to “storage” of

information, which refers to passively holding some data in memory. I sometimes refer to

deciding how often a task role’s information should be verified as deciding on the rate of

maintenance for that role.

3.5.1 Example Task Representation

In determining what role bindings are shared between tasks, we need to examine the task

environment and our decomposition. Thedog role occurs in almost all the tasks of walk-
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the-dog, not surprisingly, because the dog is central to the agent’s purpose. All these tasks

should have theirdog role bound to the same dog and so that role binding is shared. By the

route shown in figure 1, we can see that the agent needs to pay attention to only one of the

corner, crosswalkor park roles at a time, in order to accomplish the walk-dog-to-corner,

cross-street and walk-dog-to-park tasks, respectively. So these roles are not shared between

those tasks. However, these roles are shared within the various “subtrees” of their particular

task’s decomposition (see figure 2) and so we must consider those subtrees in more detail.

Walk-dog-to-corner consists of controlling the path of the dog with its leash while navi-

gating to the landmark namedcorner. At the same time, the agent must keep a lookout for

flowers and possibly do additional leash manipulation to keep the dog away from them. The

corner in walk-dog-to-corner should be the same physical corner as in walk-toward-corner,

socorner is shared between the parent and child tasks. Besidesdogandcorner, the impor-

tant roles in the tasks that are active at this time are theflowers and thestreet. Theflowers

are shared between the subtask that creates the role binding (watch-for-flowers) and the

leash control skill (reel-in-leash-near-flowers) because the leash control skill reacts when

flowers is bound by pulling the dog away. Obviously, both subtasks need to refer to the

same flowers. Thestreet in keep-dog-out-of-street will be bound to different parts of the

street as the agent walks along. It should correspond to the portion of the street within range

of the dog, given the current leash length. These roles (flowers andstreet) are not shared

with any other subtasks because other subtasks do not try to control the dog with respect to

the flower beds (they keeping the dog moving forward, etc.)5.

5. The reader may ask why keep-dog-out-of-street isn’t broken into watch-for-street and reel-in-
leash-near-street, in the same manner as keep-dog-out-of-flowers? It is an arbitrary decision I am
making here mainly for purposes of discussion.
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The street in cross-street is different than thestreet in keep-dog-out-of-street. Cross-

street’sstreet is bound to the crosswalk at the corner, i.e. the area between the two curbs.

This crosswalk is shared between the watch-for-cars-at-crosswalk and cross-crosswalk-

when-clear tasks because the agent should cross the same crosswalk that it has just deter-

mined to be free ofcars.

Walk-dog-to-park is similar to walk-dog-to-corner in that thepark role is shared be-

tween the parent and the walk-toward-park subtask. Thestreet is, again, not shared with

the other subtasks because the other subtasks are concerned with different aspects of the

dog’s motion.

The final task in walk-the-dog is play-fetch-with-dog. Thedog is again a shared role be-

tween this task and its subtasks, as is theball. The agent must throw the ball and retrieve it

from the dog (and it ought to be the same ball in both cases).

Throughout this chapter I have mentioned that the position of entities bound to task roles

is the information that the agent’s tasks need. This is because the agent’s tasks involve

moving itself and the dog along a certain path and not getting too close to particular points

(e.g. flowers). Therefore, position is the information that should be computed for task roles.

Now the designer must consider which of these shared roles should have some explicit

form of representation. Since thedog role is shared among most of the tasks and subtasks

in this domain, I argue that it should be represented. The dog’s position is important for all

the top level tasks. Since the dog will be moving all around the agent while the agent is

monitoring entities bound to other task roles, such as thestreet and theflowers, having a

dog representation will allow the agent to remember the dog’s position even when the dog

cannot be seen [14]. Information indicating the dog’s position must be shared by all the
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subtasks of walk-dog-to-corner and walk-dog-to-park. Providing an explicit representation

of the dog’s position not only allows for sharing among parallel subtasks, but for passing

of dog information between the subtasks.

In addition to thedog role, thecorner role and thepark role in the walk-dog-to-corner

and walk-dog-to-park tasks need to have some form of representation. The position of the

entities fulfilling these two task roles are used to drive the agent’s locomotion system.

Again, since the agent will at times be monitoring thedog, thestreetor theflowers, it will

not always be directly perceiving thecorner or thepark . The “limited field-of-view” ar-

gument [14] for representation applies here and is discussed in section 3.5.2. Basically, the

agent cannot perceive both the street and the flowers at the same time because they are on

opposite sides of the sidewalk and the agent’s vision system only covers a limited area.

However, the agent cannot forget about the existence of one of those entities, just because

it is looking at the other.

The case for representation of theflowers and thestreet in the keep-dog-out-of-flowers

and keep-dog-out-of-street tasks is similar, since the positions of these entities are used in

leash effector control. Detecting these entities and tracking their positions facilitates the

computation of geometric properties (such as proximity) between the entities and the dog.

While this is consistent with psychological literature, e.g. [19][63][76], the most compel-

ling reason to represent these entities is the limited field-of-view argument [14].

Thestreet in the cross-street task may not need representation. As stated in section 3.4.1,

thestreet is actually determined by the positions of the curbs on either side of the crosswalk

area. For the watch-for-cars-at-crosswalk task, the agent needs to be able to see the entire

crosswalk (i.e. both curbs, the area in between and some of the street before the crosswalk)
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at the same time in order to make sure no cars are coming. Since all important entities are

in view for the duration of the task, they need not be represented explicitly. However, for

the cross-crosswalk-when-clear task, it may be useful to have a representation for the curb

on the other side of the street (the side where the park is) because the agent can use this to

servo on. Since this task runs in parallel with keep-dog-close-by, the agent may have to di-

vert its attention to the dog and no longer be able to perceive the curb (again, the limited

field-of-view argument). So, the agent need not representstreet because no information

about the street is needed by later tasks. All that needs to be represented to get the agent

across the street is the crosswalk, which will be associated with the curb on the opposite

side from the agent.

It may seem that theball used in play-fetch-with-dog also does not need representation,

as long as the dog actually fetches it each time. This is because throw-ball-to-open-area as-

sumes the ball is in the agent’s ball throwing effector and get-ball-when-dog-returns always

puts it there. Since the dog presumably carries the ball in its mouth, knowing the dog’s po-

sition is sufficient to find the ball during get-ball-when-dog-returns. If the dog fetches the

ball, the agent need not be concerned with where the ball lands after it is thrown and so none

of the play-fetch-with-dog subtasks need to store any information about the ball. However,

if the agent does not begin the walk-the-dog task with the ball in its launching effector, but

say in a carrying pouch, a ball representation might be useful to store whether the ball was

in one of the known fixed locations (pouch or launcher) or “thrown”. The agent need not

represent theopen-areabecause the dog will go there and get the ball. Once the ball is

thrown, the agent does not need to know any more information about that area (and in fact,

a new open-area will be selected on each loop of the fetch task, so information stored about
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any particular open-area will not be useful for long).

Now the designer must consider the rate of representation verification. Since the agent

uses the positions of entities for effector control, the agent needs to verify the positions at

a rate as close as possible to the rate of effector control. This rate is needed so that changes

in important environmental entities will be detected and responded to as quickly as practi-

cal. Consider the dog’s position, which as mentioned above, is the information that must be

known about the entity associated with the role calleddog. The agent executing the keep-

dog-out-of-street task might, for example, pull on the leash with strength proportional to

the distance between the entities associated with thedogand thestreetrepresentations until

those entities are far enough apart.

Keep-dog-moving-forward might involve monitoring the dog’s position and pulling on

the leash until the dog is in front of the agent. The effectiveness of the agent’s leash control

depends on effective monitoring of the dog’s position. Since the positions of the entities

associated withcorner andpark are also used as feedback in effector control loops, this

information should also be verified at the same rate that these loops issue effector com-

mands. Verification of the ball’s position can be done much less often since the position is

either one of two fixed locations, or “thrown” and the transitions between these states take

place at well-known times (since they occur only by the agent’s actions).

If the agent has the computational and perceptual resources to verify the information in

all representations at the rate of effector control, then the verification design is done. How-

ever, most agents have only a limited perceptual field and so, regardless of computational

resources, cannot verify information stored in all representations because they cannot per-

ceive all relevant entities. Now the designer must make trade-offs between timeliness of in-
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formation and the cost of shifting perceptual resources to different areas of the

environment.

In the walk-dog-to-corner subtask there are several parallel activities. Recall from figure

1 that as the agent is walking toward the corner, it must keep the dog out of the street on

one side and the flowers on the other. The agent has to switch between verifying the posi-

tion of the entities associated withcorner, dog, street andflowers. Since the position of

the corner, street and flowers only change (with respect to the agent) due to the agent’s own

motion, the agent can estimate their locations with its proprioceptive sensors. A reasonable

algorithm might be to update the position of the flowers when the dog is on the right side

of the agent and the street when the dog is on the left side. Obviously the dog should be

monitored in both cases.

Since the bindings of both thestreetandflowers will change as the agent moves, it is not

necessary to monitor the associated entity’s position when the dog is on the opposite side

of the sidewalk (since whatever entity is currently bound to the role will likely be unimpor-

tant the next time the dog crosses over there). The agent must also periodically check its

position relative to the corner. This can be done opportunistically, when the dog walks in

front of the agent (when both the dog and corner are in the field of view) or based on the

accuracy of the proprioceptive sensors (when the dead-reckoning is known to become in-

accurate).

For the cross-street task, the agent can begin by trying to bindcar to any large object

moving toward the crosswalk. After a suitable length of time, ifcar has not been bound,

the agent can stop trying to bind it and begin moving across the street. If the agent has a

representation for the curb on the other side of the street from the corner (the other side of
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the crosswalk) then there is a trade-off between monitoring the dog and watching the servo

point used to cross the street. If not, the agent might just move forward one street width and

watch the dog.

Walk-dog-to-park has the same trade-off between verifying information about thedog

and thepark as between thedog and thecorner in walk-dog-to-corner. Again, the agent

can update the park’s position opportunistically or when dead-reckoning becomes inaccu-

rate. During play-fetch-with-dog, the agent does not need to monitor the position of the ball

since the dog will retrieve it. In fact, the agent may not even monitor the dog since it is go-

ing to come back with the ball. In this case, the agent just needs to perform a search in its

local area to determine when the dog has returned.

3.5.2 Representation Rationale

Task roles are variables that become associated with (bound to) entities in the world,

much like variables are bound to values in a program. For some roles it is useful to “save”

this association rather than recompute it whenever it is needed. Saving the association re-

fers to having an internal representation, i.e. a data structure, that stores information about

the entity bound to the task role. Representation can be a powerful tool for an agent design-

er because it can be used to share data between tasks and provide perceptual continuity over

both time and distance [13]. We examine the sharing of roles between tasks, since when

multiple tasks have roles that should be associated with the same object, it makes sense for

them to share a single role (and its binding) instead of each maintaining their own binding.

Role sharing is a principle reason for having an explicit6 representation for a role. I will

now discuss the advantages and disadvantages of representation in detail.

The creation and maintenance of role/entity bindings is a large part of the computational



69

load of the sensor/effector control component of an agent’s architecture (recall the discus-

sion of PA systems in section 1.3.2). The designer can reduce this load by taking advantage

of multiple tasks that use the same binding (so each subtask need not go through the binding

process). Often parallel subtasks in an emergent behavior scheme [16] will each effect the

same entity. The pour-a-cup-of-coffee task requires that the pot be aligned over the cup and

tilted at the correct angle. The tilting and aligning tasks occur in parallel and each refers to

the same pot.

Task role/entity bindings are also shared between sequential tasks. The pour-a-cup-of-

coffee agent must grasp the coffee pot’s handle, remove the pot from the machine and then

do the alignment/pouring task. Thepot role should be bound to the same object in each of

these for the overall task to make sense. After the first task makes a binding, that binding

should be used by the subsequent tasks.

One caution to the reader is that this thesis uses consistent names for all roles that are

shared between tasks. In other words, when two tasks share a role the role has the same

name in each task. However, the designer must often do some abstraction to see when mul-

tiple tasks have roles that can be filled by the same entity (and hence those tasks can share

the binding). Imagine that the skills for the pour-a-cup-of-coffee agent are being designed

by different teams. If the skill that removes the vessel with the coffee from the coffee ma-

chine represents that coffee container with a role namedpot, while the skill that pours from

the vessel into the cup represents the coffee container with a role namedkettle, the designer

must make sure thatpot andkettle are associated with the same object. As another exam-

6. Note that even the implicit roles will need to be taken into account in the coding of the agent’s
various behaviors. That is, the implicitly represented roles will still be use by the agent to decide on
its actions. A task will calculate some information about the entity fulfilling an implicit role, it just
won’t store it.
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ple, imagine that the pour-a-cup-of-coffee agent designers are borrowing a skill from a pre-

viously created agent that poured a glass of juice. This juice pouring agent had a skill called

pour-from-pitcher-to-glass that hadpitcher and glass roles. The pour-a-cup-of-coffee

agent designers might use this skill by sharing the binding of thepot role in remove-pot-

from-machine with thepitcher role in pour-from-pitcher-to-glass7.

The decision of what information about a particular entity is important for the task obvi-

ously depends on the needs of the task. In the walk-the-dog example, positions of entities

are important because all the agent’s actions are based on the proximity of various objects

(e.g. How close is the dog to the street? How close is the dog to me? Is there a car coming

at me?). In fact, I argue that position isthefundamental piece of data that needs to be stored

(and kept up-to-date) for every represented entity in the domains of interest to this thesis.

This is because, as stated in section 1.3.1.1, agents designed by this methodology are meant

to act in dynamic domains where current sensor data is more relevant than previous sensor

data. The tasks addressed by this thesis involve robots navigating around and reacting to

changes in their environment. In order to determine anything about the environment, an

agent first needs to know where to look, i.e. the position to direct perceptual resources, and

then other properties can be determined. This is not to say that some tasks may not need

other data about entities. For example, in the drive-to-the-store task of task specification 3,

when the agent is stopped at a traffic light, it must monitor the color of the signal. The

agent’s brake effector control process may monitor the color of the object associated with

thetraffic-signal  role and release the brakes when it turns green.

Once the designer has decided what information about an object associated with a role is

7. This is analogous to software reuse [74].
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needed by the task, role representation must be considered. Role representation has several

benefits. First, representing a task role allows the agent to deal with a limited field-of-view

[13]. The limited field-of-view argument for representation says that important entities that

can be outside the agent’s sensory field during a task should be represented so that the agent

doesn’t just forget about them. For example, the walk-the-dog agent’s vision system has a

limited field of view and so cannot perceive the roses and the street simultaneously. By rep-

resenting the position of the flowers and the street, no matter which one the agent is looking

at, it can react (based on the stored data) if the dog suddenly bolts for the other.

Note that not all information that a task needs to know about an entity must be stored in

that entity’s representation. Thetraffic-signal representation used by the drive-to-store

agent might just store the signal’s position so the agent can find it again if the agent looks

away while waiting at the red light (to change the radio station perhaps). The signal color

may not be stored since once it turns green, the agent releases the brake and is no longer

concerned with the signal.

Another advantage of representation occurs when a role is shared. Role sharing comes in

two different forms. First, when multiple tasks act with respect to the same entity, repre-

sentation allows those tasks to share the role data structure (and hence the cost of creation

and maintenance). Another form occurs between the dependent roles identified in section

3.4. This form of role sharing refers to sharing information about the entity bound to a role

because it effects the information the agent has about entities bound to other roles. Repre-

sentation can be useful here because the tasks that manipulate the data structures of depen-

dent roles can reflect any new information in these roles representation with a minimum of

communication with other tasks. If the roles are not represented, each time a task T wants
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information about an entity bound to a dependent role, it must gather data from the other

tasks with roles on which task T’s role depends. Depending on the architecture, this com-

munication can be expensive. Some roles represent more abstract properties of the environ-

ment than one or more other roles on which they depend. For example, thebowl-of-apples

role may store the fact that the entity associated with theapple role is inside the entity as-

sociated with thebowl role, while theappleandbowl roles themselves just store the posi-

tions of those entities. These dependent roles should be represented because these more

abstract properties are often expensive to compute and so the agent would like to be able to

store the result for some time.

The designer should not think that representing all task roles is beneficial. There are costs

associated with representing and not representing. These issues are at the heart of the ques-

tions of what information about the bound entity should be represented and how often that

information should be verified. Proponents of the reactive approach argue that the world is

its own best model [15] and so nothing needs to be stored internally. Information can al-

ways be determined by consulting the world when necessary. Implicit in this argument is

that the relevant entities can always be kept within sensor range, and if this is true for a par-

ticular task, the designer may consider not representing that task’s roles. However, always

computing a piece of information from the current sensor data requires the continued allo-

cation of perceptual and computational resources. The more information stored in a repre-

sentation, the more information the agent has access to when the associated entity is not in

viewable, but the more expensive the maintenance. The agent must strike a balance be-

tween the amount of information stored and the rate at which it is verified since either can

overburden the agent’s finite computational power. In much the same way that deciding on
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task roles caused the designer to focus the agent’s tasks on only what was currently impor-

tant, the selection of what entity information should be stored and how often it should be

verified serves to focus the tasks even more.

The designer should note that sometimes the agent’s capabilities obviate the need for rep-

resentation of a role. For example, if the dog walked in the walk-the-dog task had a GPS

transmitter in its collar and the agent had a GPS receiver, the dog might not need represen-

tation because it would effectively always be in sensor range.

Deciding how often information needs to be verified is also task dependent. There is a

time/usefulness trade-off between a high rate of maintenance (and thus high usefulness of

data) and computational load. Recall that the “rate of maintenance” refers to how often a

piece of information is verified. So, the higher the rate of maintenance on a piece of data,

the more useful that data is, but the more expensive it is in terms of perceptual and compu-

tational resources. Note that this maintenance need not be periodic. For some information,

it may be sufficient to verify it whenever the agent can schedule that computation in with

its other jobs.

Traditional reactive systems [17] place emphasis on usefulness of information and so pay

the maximum computational price. However, this methodology advocates examining the

agent’s task and capabilities to determine acceptable rates of maintenance. In fact, there ex-

ists the possibility that certain pieces of data cannot be verified given the current sensory

view. This is where the trade-off becomes a more complex decision. If all entities associ-

ated with represented task roles are always within the agent’s perceptual field, then the rate

of verification presents only a computational cost. However, if an entity can move out of

the perceptual field (either through its own motion or the agent’s) the agent must direct its
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perception system to a different location in order to verify information about that entity.

This means that other important entities may no longer be in view and so their information

cannot be maintained at any computational cost.

Maintenance can be arbitrarily complicated, possibly involving planning. Going down-

town to verify that the grocery store is still there is an extreme example. So, the designer

must create a “maintenance scheme”, i.e. a procedure for keeping representation verified at

required rates, that balances task needs for up to date information, computational cost, and

limited sensory horizons (areas perceivable by a sensor at any one time).

Two other factors that are important in representation maintenance are “opportunism”

and “effector vs. non-effector control”. “Opportunism” refers to the agent happening to get

the entities associated with multiple task roles within its perceptual field simultaneously.

The agent should be designed to take advantage of this, such as when the dog walks in front

of the dog-walking agent and the agent can see both the corner and dog in the same view.

Both representations can be updated at the same time.

“Effector vs. non-effector control” refers to whether or not a piece of information stored

in a role is used by that role’s task to directly control effectors or for some other purpose.

The reel-in-leash-near-flowers task uses the position of the dog and the flowers to directly

compute commands for the leash effector (how hard to pull and in what direction). Other

pieces of information that the agent may compute about the entities associated with task

roles may not be used by effector control tasks. Deciding if the pot has enough coffee will

determine if the pour-a-cup-of-coffee agent should even proceed with the pouring action,

but does not directly influence the motion of an agent effector. This sort of non-effector

control data will typically need to be verified much less often than the effector control data
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and so the agent designer should bias the maintenance process so that most of the agent’s

time is spent verifying the effector control data.

Since the majority of the agent’s maintenance computation will be devoted to effector

control data, the role representations used by the leaf tasks should store no non-effector

control information. For these tasks, non-effector control data is only excess baggage

whose maintenance will slow down the task’s operation. In order to understand this, con-

sider that all information stored in a role representation will need to be verified at some

point. If it doesn’t, then the information is unaffected by the dynamic nature of the environ-

ment and there is no benefit to explicitly representing it. Instead, the agent designer should

design that knowledge into the agent’s tasks with an implicit role. So, since all role data

needs to be verified, and the rate of verification determines the usefulness [14] of the role

information to its task, effector control tasks should not expend effort maintaining non-ef-

fector control information.

It is perhaps not obvious that representation should be deleted when a task completes,

providing the represented role is not shared with another task. Once a representation is no

longer useful, the agent should not maintain it, and so deleting these representations reduc-

es the agent’s maintenance work. Even when a role is shared between tasks, the designer

may want to have the agent delete that role’s representation if the sharing tasks are not ex-

ecuted closely in time. If the work required to recreate and re-bind the representation is less

than the work to maintain the representation in between tasks, it makes sense to delete the

representation.

3.5.3 Representation Summary

The designer must decide which task roles should be explicitly represented in the agent’s



76

control program. The two main reasons to have an explicit representation are to provide in-

formation about important entities outside the agent’s current perceptual field and to share

data. These address domain characteristics 3 and 5 (see sections 1.3.1.3 and 1.3.1.5) be-

cause the former provides a symbolic model that other tasks can use to help control the

agent and the latter provides a means to deal with large-scale space [43].

I have argued that a piece of information that must be stored in every role representation

is the position of the associated entity, if for no other reason than to direct the agent’s per-

ception system to the entity to determine other information. This takes advantage of domain

characteristic 6 because the agent can (at least coarsely) estimate positions. The designer

must also decide on an appropriate representation maintenance scheme. There must be a

balance between the usefulness of the stored information about each currently relevant en-

tities and the amount of computation involved in establishing that information.

3.6. Perception

What information can the agent extract from the environment to recognize the entities

that should be bound to the current task’s roles?The agent’s perceptual capabilities will

form the baseline for what it can identify in the environment. Those capabilities and any

task dependent information must be encoded into perceptual descriptions of task roles and

associated recognition processes. The term “primitive recognizable”, or PR, is used to de-

note any entity from the set of entities that the agent will matchdirectly to a given percep-

tual description. “Directly” means that object recognition is based on only the agent’s given

perceptual capabilities and not on any combinations of, or relationships between, separate-

ly recognized entities.
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How does the duration of the various role/entity bindings effect the perception system?

What level-of-detail (or resolution) is required in the information of the representation?

Resolution refers to the precision of the data stored in the representation.

3.6.1 Example Task Perception

For simplicity of exposition, I have specified that the dog walking agent has the percep-

tual capabilities to directly identify most of the entities that can fulfill its task roles (see task

specification 1). The dog, the ball, the corner, the park, flowers, curbs and cars can all be

directly recognized by the agent’s perception system and so are PRs. The street, however,

must be found in relationship to curbs. From figure 1, we can see that the keep-dog-out-of-

street task can be accomplished by keeping the dog away from the closest curb, which can

be identified by the agent’s sidewalk edge detector. Also, flowers come in two types, roses

and tulips (see figure 1) and so the agent must be able to recognize either of these. The

watch-for-flowers task will involve looking for roses, then looking for tulips, then back to

roses, etc. The perception system will need to handle multiple perceptual descriptions for

the same role.

It is tempting to say theopen-areain throw-ball-to-open-area can be recognized by the

lack of any of the entities that the agent wishes to keep the dog away from, i.e. no flowers,

curbs or cars. However, such “negative” recognition processes are problematic because

even if the agent finds no object that conflicts with theopen-areadescription, there may

be other entities present. The agent does not want to throw the ball into an open pit just be-

cause there are no flowers, curbs or cars there. These negative processes are similar to

PROLOG’s negation as failure model [68] because when the agent can not determine that

any known objects is in an area, the area is determined to be “open”. These kinds of prob-
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lems pervade perception systems on autonomous agents and I do not seek to eliminate them

here. If an agent’s perceptual capabilities do not allow it to identify necessary entities in the

environment by another means, then the agent’s capabilities are deficient and the best the

designer can do is be aware of the issue.

Next, the designer must examine the duration of the role/entity bindings for the roles in-

volved. Clearly thedog role has the longest binding duration (the length of the task). The

corner andpark remain bound for the length of the walk-dog-to-corner and walk-dog-to-

park subtasks. However, thestreetandflowers bindings change as the agent moves down

the street. Thecrosswalk in the subtasks of cross-street remains bound for the duration of

those tasks as does theball in the subtasks of play-fetch-with-dog.

The designer would like to take advantage of the fact that thedogbinding lasts for so long

by “foveating” the dog’s position to speed up the perceptual computation that determines

its position. “Foveating” refers to processing only a limited portion of the input image

around the entity’s (last known) position. Since thedog should always correspond to the

same dog, the agent need not look over a large area for other potential dogs, once the initial

binding is made. The same is true ofcorner andpark . However, the fact that the environ-

ment is dynamic and all these entities cannot be kept in view simultaneously may cause this

strategy to be modified slightly. When the agent looks away from the position of an entity

for some time, it may have to examine a larger (or entire) portion of the perceptual stream

when it returns to view that entity because the estimate of the entity’s position may have

become incorrect and an expanded search may be necessary.

Thestreet andflowers roles cannot be foveated since those roles can potentially be re-

bound to other flowers or parts of the street as the agent and dog move. However, since the
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crosswalk in the cross-street task remains bound to the same entity (the curb) for the en-

tirety of the task, it can be foveated and tracked. The ball does not need to be foveated be-

cause the agent does not have to continually track its position (since its position is stored

as “in pouch”, “in launcher” or “thrown”).

Finally, the designer must address the level-of-detail needed in the representation’s in-

formation. For most of the task roles, the agent needs to know the position of the associated

entity. When that role is a landmark (corner, park , or crosswalk) the accuracy of this po-

sition value can be less than the accuracy of the position stored in roles used for leash con-

trol (dog, street, flowers). This is because when starting toward any landmark, only the

general distance and direction are useful. The agent might dead-reckon the position of a

landmark, meaning the accuracy of the position estimate will decrease. Since coarse met-

rics are effective in this domain (as mentioned in Section 1.3.1.6), provided the agent peri-

odically verifies its estimates with its vision system, it can still navigate to the landmarks.

However, since the dog moves of its own accord and thestreet andflowers can be bound

to different entities at any time, estimating their positions with proprioceptive sensors is

risky. Of course, the agent will have to do just that if, say, the dog is not in the same view

as the corner, but thecorner’s location needs to be verified (such as when the agent be-

lieves its estimate of the corner’s position can no longer be trusted based on its understand-

ing of the limits of its dead-reckoning capabilities). Lastly, as mentioned above, the ball’s

position is stored as one of three states, which is a fairly course level-of-detail. This level

is acceptable because of the agent’s simple ball launching system.

3.6.2 Perception Rationale

This step seeks to impart some structure to the agent’s perception system based on the
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agent’s task and capabilities. Ultimately, the agent’s perception system is charged with the

creation and maintenance of the bindings between task roles and entities in the environ-

ment. The computational demands of maintaining task role information in a dynamic envi-

ronment means that the designer must carefully structure the perception system to be

efficient. The first step in this process is to consider how the task specification and agent

capabilities determine what information the agent can (and should) extract from the percep-

tual stream to recognize entities to be bound to task roles. In some ways, this is both a top-

down and a bottom-up process like creating the task decomposition.

There are some roles for which perception must come top-down from descriptions of par-

ticular objects that can fulfill them and the agent must somehow use its capabilities to detect

this description. In other words, the walk-the-dog agent cannot associate thedog role with

the mailbox just because it can easily detect the mailbox. On the other hand, perception for

roles such ascar in watch-for-cars-at-crosswalk can be thought of in a bottom-up manner.

Any capability the agent has can be combined to find “cars”. If the agent has a motion de-

tector, then its reasonable to use it to identifycars, and a “bumper detector” would work if

there were no parked (non-dangerous) cars. Some iteration with the task decomposition and

role selection steps may be necessary if the entities that can possible fulfill a role are not

detectable by the agent. Ultimately, if the agent cannot identify objects that it must act on

for its tasks, then the agent’s capabilities are insufficient.

As another example of how task and capabilities determine what perceptual data should

be used in the recognition process for a role, consider the whack-a-mole agent of task spec-

ification 4. This agent has the ability to detect and localize motion as well as determine col-

or. So, the agent could identify a mole as a brown object protruding above the game surface.
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Alternatively, the mole could be any fast moving object within the game area. Since the

task specifies that the game contains only moles (all of which should be whacked), the later

perceptual description could suffice, but not if the motion computation cannot proceed at

the rate that the moles pop up and down. Note that in either case, each mole is a PR.

The designer may need several recogni-

tion processes to detect the entity that

should be bound to a role, for a variety of

reasons. Some task roles are not filled by

single objects, such as thebowl-of-apples

role that is fulfilled by a bowl and some

apples with the correct spatial relationship between them. The designer will have to have

thought about combinations and relationships among the objects that fulfill roles when

identifying dependent roles in section 3.4. For example, consider the agent of task specifi-

cation 5 whose task is to pick up a covered pot from the stove. The agent may have a spe-

cialized “pot with lid” detector that can identify the vessel and cover as a single object, or

PR. On the other hand, if the agent can identify the pot and lid as separate PRs, thepot-

with-lid might be identified as apot with a lid above it. If the agent could determine the

position of the pot’s handles, then for the pick up task the agent could identify the pot by

the location of its handles (since handle position is the necessary information for that task’s

effector control).

There are other times when multiple perceptual routines are needed because the percep-

tion of all objects, and particularly these compound objects (“objects” consisting of indi-

vidually identified entities) is situation dependent. Consider a lamp and a lightbulb. The

Task: play whack-a-mole game (“mole”
pops up from set of holes & agent
must hit it before it goes down)

Environ-
ment:

game surface with 6 holes, brown
moles below each hole

Agent: positionable mallet effector to hit
moles, perception system can detect
motion and color

Task Specification 4. Whack-a-mole
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agent may be able to identify each individually, but when the lightbulb is screwed into the

lamp’s socket, the “socketed” relationship cannot be perceived except from an overhead or

underneath perspective. Similarly, a penny on top of the Empire State building would ap-

pear very small when perceived from the ground, if it could be seen at all.

Another important issue is that objects

can change their perceptual characteristics

when assembled. A knife and a wooden

knife-set holder have one appearance

when separate, but when the knife is put in

the holder, only the knife’s handle is visible. A sugar cube dropped into a cup of water loos-

es its cube shape. Of course, these two categories of perceptual difficulties are not so dif-

ferent. Both problems are the result of the fact that objects look different in different states.

A “different state” may result from the object being at a different location (the penny), in a

different spatial configuration (the light bulb), partially occluded (the knife), or being phys-

ically altered (the sugar cube). The effect of all this is that the agent may need multiple per-

ceptual descriptions of an object to recognize that object in different situations.

Once the designer has decided how entities associated with task roles can be recognized,

two necessary optimizations must be made by considering the effects of role/entity binding

duration and required precision of stored information. These “optimizations” are vital to

operate effectively in a dynamic environment.

We examine the duration of the role/entity binding because if the agent needs to monitor

some entity that is bound to a task role for a long period of time, it may be advantageous to

foveate the entity to detect changes in entity properties needed for tasks. For many agents,

Task: pick up a covered pot from the stove

Environ-
ment:

stove with several pots, one to be
picked up has 2 handles and a lid

Agent: two grasping effectors, vision
system

Task Specification 5. Pick-up-covered-pot
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e.g. [4][8], this means tracking the entity’s position. Reducing the area of the perceptual

field that must be searched, decreases the time needed to determine the needed entity infor-

mation. This increases the potential update rate for the entity’s representation, which for

tracking means the entity can move faster relative to the agent (and the agent will not loose

it). However, if a role is bound to several different entities during the duration of the task,

foveation may be less useful as the agent will still need to examine a (larger) portion of the

perceptual field for other entities that could be bound to the task role. For example, suppose

the play-wack-a-mole task consists of a single subtask, hit-whackable-mole. Thewhack-

able-molerole will be rebound to a variety of different moles during the game. Limiting

thewhackable-molesearch process to a single mole hole will only allow the agent to hit

one of the moles (and thus get a low score). There may be other cases where the agent both

foveates the currently bound entity and examines a larger portion of the perceptual field for

other entities that should be bound to the task role. For instance, the agent may implement

hit-whackable-mole by foveating the currentwhackable-moleand monitoring whether it

is still out of its hole. As long as the mole is “up”, the agent should continue the hit action

against this particular mole. At the same time, the agent is processing the current visual

field for moles that can be bound to thewhackable-molerole when the current mole has

been hit or retreats into its hole.

Determining if a binding duration is “long” depends on the execution time of various

tasks. Long binding durations arise in two different situations. One is when a single task

with a long execution time binds a role that stays bound to the same entity for a large por-

tion of that task’s duration. The second way a role can have a long binding duration is for

several shorter, sequential tasks to share a role that they all expect to be bound to the same
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entity. Of course, “a long execution time” and “a large portion” are still ill defined, but ba-

sically if a role is bound and the agent then does not need to look for other, more appropriate

entities to bind the role to, foveation of the target can save processing time.

The last question in this section addresses the fact that some tasks need more precise in-

formation about the entities bound to roles than other tasks. Some information can be de-

termined from multiple sensors. For example, the position of an object can be determined

by vision or by sonar. Some sensors provide more coarse data and so there is less data to

analyze. Other sensors are more precise and still others have a larger perceptual field. All

sensors can only detect certain environmental properties. Since sonar only provides posi-

tional information, data from a typical robot sonar system is much coarser than visual data.

However, it typically covers a larger perceptual field. Proprioceptive sensors provide only

a small amount of information, but the size of their perceptual field is not a concern. The

designer needs to examine precision requirements to create a representation maintenance

scheme. That is, a designer must determine when different sensors can be used to determine

information and develop some strategy for allocating sensor resources. In the walk-the-dog

example, the agent used a combination of proprioceptive sensors and vision to maintain its

representation. This was done because the agent cannot use its visual resource to acquire

all task relevant entities all the time and the lower accuracy sustained while an entity was

out of view was manageable.

Answers to this question, along with the designer’s decision on the required rate of main-

tenance (see section 3.5) define four basic classes of role maintenance requirements.
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Figure 5 shows the space of role maintenance requirements divided into four quadrants

based on precision and maintenance frequency. Exactly how a designer decides what con-

stitutes “high” and “low” precision or maintenance frequency depends on the agent’s task

and will be relative to the needs of the various tasks the agent must perform. However, plac-

ing the needs of a particular role into one of these classes will help the designer create an

appropriate representation maintenance scheme for the agent. Additionally, each quadrant

can be further divided into the same four classes and the design decisions discussed below

will apply to those finer divisions as well.

The four quadrants are as follows. Quadrant 1 contains roles that whose associated infor-

mation needs to be verified frequently and whose information must be precise8. These roles

put the most constraints on the agent’s maintenance scheme and they require the largest

amount of time for the high accuracy sensors. For example, the dog in walk-the-dog needs

to have the camera trained on it as often as possible because its position needs to be verified

frequently and the camera is the agent’s most precise position-determining sensor. Quad-

rant 2 represents roles that need to be verified often, but do not require much precision in

8. The information must always beaccurate. That is, the agent will perform worse with inaccurate
information than with correct information. The issue is, how exacting does that information have to
be? When position is specified, in how small a region does the agent have to localize the entity.

frequency of
maintenance

high

low

required precision

high low

1 2

3 4

Figure 5. Categories of Role Maintenance Requirements
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the information they contain. Hopefully, the agent can just use another, less precise sensor

to handle these roles as the most precise sensors will be tied up with maintaining the roles

in quadrant 1. For example, the agent in chapter 6 avoids obstacles with sonar. Sonar pro-

vides coarse position estimates for obstacles (compared to the visual estimate of the posi-

tion of the agent’s destination provided by the agent’s camera), but the avoidance task does

not need very precise information anyway because it tries to circumvent obstacles and not

squeeze through tights spaces. Roles in quadrant 3 are those that need to be updated infre-

quently, but need to contain precise information. Often these roles are ones that depend on

other roles and hold an abstraction of the information the dependent(s) contain. For exam-

ple, thepot role in the pour-a-cup-of-coffee task needs to store the pot’s position in one task

and the amount of coffee in the pot in another. The amount of coffee must be precise, to tell

if another cup can be poured, but it need not be checked often (only before each new cup).

Roles in this category will vie for time from the precise sensors with the roles in quadrant

1. The designer must create a scheme where by quadrant 3 role data can be occasionally

computed, with the bulk of the time being spent determining quadrant 1 role data. Finally,

quadrant 4 contains roles that neither need to be updated frequently, nor need to contain

precise information. Although there may be tasks that have roles fitting into this category,

the designer is advised to consider whether or not such roles really need (explicit) represen-

tation. Roles in this category may contain information that is needed by a scheduling or

planning system and so while their information may need to be determined, it may not need

to be held in a representation in the action-oriented portion of the agent’s architecture. For

example, a role that stores the answer to the question “is it raining?” might be in this quad-

rant if the agent believes that rain showers do not end quickly (and thus this data will not
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need frequent updates since it will be true or false for some time) and if the agent is not

concerned with how hard it is raining (so precision is not important). Instead of being stored

in a representation, this type of information could be sent to a planning system and stored

there, but this is beyond the scope of this work.

There is also a computational dimension to representation maintenance because comput-

ing arbitrary information can take arbitrary amounts of time. If the agent wants to verify

some complex property of an entity at a high rate, with high precision, it must have the

computational power to do so and the designer can do little to help if it does not. This brings

up the question of effector vs. non-effector control information from section 3.5.2. The

computational difficulty of determining some role information can effect all categories of

roles. Roles in quadrants 1 and 2 would be effected by any computation that slowed down

the rate at which the agent’s resources were available to verify their data. Roles in quadrant

3 often store information that is expensive to compute (which is why they are updated in-

frequently) and the agent will need to schedule that computation so as not to interfere with

other maintenance. Even roles in quadrant 4 can be problematic if their maintenance com-

putation needs to be done in an environment where the loss of cycles to other role updates

causes the agent to miss events. “Anytime algorithms” for determining the required prop-

erties of the environment allow the designer to make trade-offs between precision and com-

putation time. The amount of time available can be allocated between the roles so that their

information is at least of the desired precision relative to the other roles. Of course, sched-

uling of anytime computation is NP-complete [87] and this issue is not addressed by this

thesis. In addition, compositions of system components with different anytime algorithms

does not guarantee that the system as a whole behaves like an anytime algorithm [87].
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3.6.3 Perception Summary

In general, the designer will want roles in the leaf tasks of the task decomposition to be

fulfilled by PRs because these can more easily be maintained at rates commensurate with

the effector control loops that implement these tasks. This may cause the designer to iterate

between deciding which entities can fulfill a task role and which entities are PRs.

In this step, the designer must decide how the agent’s perceptual capabilities can be used

to recognize entities that can fulfill various task roles. For the represented roles of the leaf

tasks of the decomposition hierarchy, it is important that the entities bound to the roles be

PRs so that their representations can be maintained effectively. The duration of role/entity

bindings can allow the perception system to “foveate” the area around a bound entity and

thereby decrease processing time. Also, the level-of-detail required for particular data al-

lows the agent to allocate its resources to where they are most needed. The designer may

have to go back to a previous step of the methodology (perhaps to the task decomposition

or the selection of task roles) and try a redesign if all the current representations cannot be

maintained at the required precisions/rates. All these considerations are meant to address

domain characteristic 1 (see section 1.3.1.1) since that characteristic places demands on the

agent’s computational power and thus its ability to react.

3.7. Communication

What information is important in inter-task relationships?In other words, what data,

computed by one task, is needed by another? In Section 3.5, roles that are shared between

tasks were identified and so role information is clearly be exchanged between such tasks.

At this point it is important to also think about data other than the information stored in role
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representation (from section 3.5) that tasks may need to exchange. The results of (the ac-

tions of) previous tasks or the progress of other tasks in the system are examples.

3.7.1 Example Task Communication

In the walk-the-dog task, there are several kinds of information that are communicated

between tasks in this domain. First, there is the information about the environment that the

roles store (much of which has been mentioned in various descriptions of the tasks). Tasks

obviously communicate position information for the entities associated with their roles.

This communication takes place between parallel executing tasks that all base their actions

on that information (such as between the subtasks of walk-dog-to-corner and walk-dog-to-

park) and between sequential tasks such as depicted in figure 3a.

When the first subtask of figure 3a (walk-dog-to-corner) is executing, it maintains the po-

sition of stored incorner. When the task is complete, this information is communicated to

cross-street to help establish the initial position of the crosswalk. Cross-crosswalk-when-

clear reports the final position of the crosswalk (stored incrosswalk) to cross-street upon

completion so that this information can move on to walk-dog-to-park. There it is used to

determine the agent’s trajectory to the park.Dog is maintained by many tasks over time and

when each completes executing, that role information provides the next task with the posi-

tion to continue monitoring the dog.

Tasks also communicate both perceptual descriptions and binding information for the en-

tities to be bound (or that have been bound) to their roles. In this domain, many roles can

be bound to only one entity and so a perceptual descriptions of the entity could be built into

the tasks. However, perceptual information is still communicated. Consider theflowers

role. Watch-for-flowers will bind theflowers role when flowers are in sight, and a percep-
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tual description of those flowers will be communicated to reel-in-leash-near-flowers. This

is useful because, as shown in figure 1, the tulips are farther back from the road than the

roses and so the dog can be given more leash near them. The watch-for-cars-at-crosswalk

task needs to communicate the fact that thecar role has not been bound to an object (after

trying for some time). This triggers cross-crosswalk-when-clear. As another example, sup-

pose the agent were programmed with descriptions of several dogs that could be walked.

The walk-the-dog task would pass a description of the current dog to all its subtasks, which

would in turn pass the description to the leaf tasks. In one of these, the binding between the

dog anddog will be created and subsequent tasks can use the perceptual description to

maintain the dog’s position (although the agent may examine a smaller portion of its sen-

sory stream).

In addition to passing information about the entities bound to task roles between tasks,

the tasks exchange some notion of the confidence they have in that information. For exam-

ple, if the keep-dog-out-of-street task has been observing thedog, the confidence in the po-

sition stored in that representation will be high. This may allow the watch-for-flowers or

walk-toward-corner tasks to redirect the agent’s vision system to try and verify theflowers

or corner roles. Confidence is a function of the time since the agent has acquired the role’s

entity with its vision system and provides a means for implementing the representation up-

date algorithm discussed in section 3.5.1.

Tasks also communicate some data to indicate a task’s action’s result. Most of the agent’s

tasks just need to report success or failure and the next task in the sequence needs to decide

what to do with “failure”. I have not specified what happens if any task “fails”, except for

the is-dog-tired task, for which failure of its test means it should continue playing fetch.
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However, imagine an agent with more sophisticated abilities to deal with failure. Now ac-

tion results can be used to determine which task to execute next. For example, the agent

could walk the dog to the corner, but the dog could break free and run away. The agent

should not continue across the street, it should try and get the dog back. Note that the posi-

tion of the corner alone was not sufficient to determine the success or failure of the walk-

dog-to-corner task. The agent reached the corner, but it no longer had the dog.

Progress reports are another communicated item that represents a task’s estimate of how

well it is proceeding toward its goal(s). This form of communication often occurs between

tasks executing in parallel. For example, avoiding the mailbox on route to the corner (see

figure 1) is accomplished by the walk-toward-corner task. When the agent is in the process

of avoiding this obstacle, the task notifies keep-dog-out-of-street that thestreetshould not

be in view and watch-for-flowers that theflowers should be or vice versa (depending on

the direction of avoidance). Both walk-dog-to-corner and walk-dog-to-park should tell

keep-dog-moving-forward when they are avoiding obstacles so that the dog is not forced

into an obstacle.

3.7.2 Communication Rationale

The purpose of this step is to help the designer structure the task role representation. The

information communicated between tasks should be part of the role representation because

it is either about the entities bound to the role or about actions taken on those entities. There

is an intimate relationship between actions and entities because actions take place on ob-

jects in the world, not arbitrary points in space. Of course humans are capable of taking ac-

tions seemingly without any relation to objects in the world (e.g. grasp at the air), but these

are hardly the sort of actions that allow robots to do useful work. Actions do not make sense
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if they do not effect the physical world and roles are action-specific descriptions of the

physical world (this stance is softened somewhat in succeeding chapters for situations

where the agent’s sensors cannot detect the needed entity). So, by examining the types of

entity information that tasks exchange to support their actions, the designer can determine

what data needs to be in the role representation9.

The designer can determine a structure for the role by examining what is communicated

between tasks. Obviously, the information about the entity associated with the role (from

the questions of section 3.5) will be communicated because it is what tasks need to know

to accomplish their action(s). In addition, there are four principle classes of role informa-

tion that tasks use and may need to communicate. They areperceptual descriptions, ac-

tions, confidenceandprogress. These classes of role information can be summarized as

follows.

Perceptual descriptionsare routines used by associated recognition processes to examine

the sensory stream for entities that possess the “described” characteristics. These entities

can fulfill the role. Such descriptions are often exchanged between parent and child tasks.

Tasks, particularly leaf tasks, are often made “reusable” by allowing them to successfully

operate with a number of different entities bound to a role. The pour-a-cup-of-coffee agent

needs not have separate skills to manipulate mugs and tea cups, if it can operate with the

cup role bound to either. The parent task typically has the information to decide what entity

in the environment should be acted on by the child task and can therefore create an appro-

9. Admittedly, there is an engineering issue here as well. Since most of the information that is com-
municated between tasks is role information, it is efficient to add information to the role representa-
tion that is perhaps not strictly relevant to the role, but rather to the actions being taken on the role.
For example, action requests, results and progress are information about the internal state of some
process executing an action, rather than information about some entity in the world. However, since
roles only exist to support the execution of these acting processes, it is not such a leap to say that the
roles should carry all information that need be communicated between tasks.
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priate perceptual description and communicate it to the child. The child task will either bind

the role (if it is a leaf task) or create a new description appropriate for its child task. Con-

sider the pick-up-the-covered-pot agent of task specification 5. The pick-up-covered-pot

task might pass a perceptual description of thepot to the first of its subtasks (grasp-the-pot)

and that task may break down the pot description into PR descriptions, such ashandles,

which are passed to the grasp-pot-handles leaf task.

Since there is necessarily a set of entities that match a perceptual description, a child task

may report information about the actual bound entity back to the parent. For example, the

pour-a-cup-of-coffee agent may report whether thecup role was bound to mug or a tea cup,

so that the parent task can determine if there is enough coffee in the pot for that type of ves-

sel. In the walk-the-dog agent, reel-in-leash-near-flowers and watch-for-flowers communi-

cate the actual binding to theflowers role (to the tulips or roses) to determine the amount

of leash the dog can use.

Actionsare role information about the action to be performed and the results of that ac-

tion. A role’s representation may or may not contain the “action to be performed” portion

of the action information, depending on the implementation of a particular agent. For ex-

ample, an agent may possess a skill that is capable of performing multiple actions on the

roles that are passed to it. An agent with a grasping system might be able to hold a cup by

the handle (to drink from it), by the cup itself (to wash it) or by the cup’s base (to invert it

into the dishwasher). Agents without such multi-purpose skills may not need such action

information in the role representation. However, most skills require some form of parame-

terization based on the agent’s current state (see chapters 4, 5 and 6 for many examples).

Action parameterization can be complex, especially when coordinating multiple effectors.
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For example, an agent with two arms that has to shovel snow may require separate param-

eters for actions to be executed by each arm effector so that snow could be thrown to the

left or to the right.

For any action, the role representation should also contain the results of the action just

performed so that the next task can determine the outcome of the previous task. While it

may be possible for a task to determine the results of previous actions by examining the

state of the world (perhaps be examining the entity data stored in roles), the results of an

action are dependent on the context in which it is executed and that may not be adequately

captured by the role representation. For example, an agent that tried to open a door and

failed because the door was locked may want to report this fact to other tasks because by

observing the environment, those tasks can only determine that the action failed (since the

door is still closed), but not why. It may be helpful to have an action result stored in the role

representation even when the information can be determined by inspecting the environment

because it prevents other tasks from having to execute elaborate perceptual routines to infer

information that is known to the acting task. In addition, as we’ll discuss in Section 3.8,

doing a lot of inference can hurt the responsiveness of certain tasks.

Confidencedenotes the agent’s belief that the information stored in the role’s represen-

tation is still useful [14]. Confidence is valuable for action because it helps determine how

to allocate perceptual resources (to verify information in which there is low confidence)

and select courses of action (to operate on the entity in which there is the most confidence).

Confidence can be defined in a number of ways. When the role’s associated entity is out of

the agent’s field of view, the designer may decrease confidence because the entity can

move on its own and even if it did not, proprioceptive sensors are typically not as accurate
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as direct perception. Confidence can also be expressed as a measure of how well an entity

matches a role’s perceptual description. For example, the drive-to-the-store agent may have

a role for a particular street where it has to make a left turn. As the agent approaches the

street, it may be too far away to make out the street sign. So, the agent might have only 50%

confidence that the upcoming street sign is the correct street. Confidence is not just whether

a role is bound (though it can be) because in this case, the agent had bound the street-sign

to a role, but it may end up not being the sign the agent really wanted. In chapters 4 - 6, we

will see several examples of how confidence can be implemented for agents with different

capabilities.

Finally,progressis a measure of how a task is proceeding. Progress can be used by other

tasks to monitor the communicating task. Tasks may adjust their actions based on the

progress of other tasks. For example, the drive-to-the-store agent may have one subtask that

handles the navigation and another that watches for the store. If the navigation process has

only have a general idea of how far it is to the store, but not the store’s actual position, it

can report progress toward the store to the monitoring task. The monitoring task can then

devote increasing time to looking for the store, as the agent draws closer.

It is, of course, possible for a designer to create tasks that communicate information other

than that identified above as necessary for task inter-relationship. However, this informa-

tion is extraneous and must be some “internal” state of the task. This data can only be about

the task’s internal computations and not about important elements of the agent’s environ-

ment, otherwise it would be stored in the task’s role representations. Such “internal” data

should not be communicated between tasks because it provides no semantic information

about the environment. Significant inference or translation machinery would have to be
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built to interpret the internal state datafrom each task. Instead of this, I argue that groups

of tasks that communicate should express any important information about the environ-

ment or their actions in their role representations so they can communicate through a com-

mon role structure.

When creating role structures for an agent’s various tasks, the designer must take into ac-

count the dependent roles identified in section 3.4. These roles contain information that de-

pends on information stored in other roles. Role information must be communicated to

tasks with dependent roles as part of the agent’s inter-task communication. This means that

representation structures must contain information in a form that a task with dependent

roles can interpret in order to correctly update its roles. Task communication and appropri-

ate role structures are the means for establishing epistemological links between dependent

representations.

3.7.3 Communication Summary

This section discussed what information is communicated between tasks. Since tasks op-

erate on roles, they should be communicating information about the entities bound to those

roles, specifically the represented roles (since unrepresented roles are not needed outside

of their task). This leads to the proposal that representation should be the channel by which

tasks communicate (many other agent architectures, e.g. [10][65][71], have also used rep-

resentation for communication).

This section outlined a structure for role representation. Roles have six basic components

that I will call “Index”, “Property”, “Identify”, “Action”, “Confidence” and “Progress”.

These components are summarized in table 3.2.
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At this point, it is worth emphasizing that Index and Identify are independent of each oth-

er. That is, a single entity can play several roles (so the Identify component would be the

same, but the Index component would change) and a single role can be fulfilled by several

entities (so the Index component would remain fixed while the Identify component

changed). An example of the former would be if the pour-a-cup-of-coffee agent had to

throw away the cup after it was used. During the pour-a-cup-of-coffee task, the cup would

be associated with the role,cup. However, for the throw-trash-away task, the same cup

might be associated withtrash. An example of the latter occurs in the drive-to-the-store

task when different signs get assigned to thestreet-signrole for the read-street-signs task.

Table 3.2: Representation Component Summary

Component
Name

Component Contents

Index A task dependent label that indicates this representation’s role in the cur-
rent task, i.e. its role name.

Property Information about the bound entity that is stored in the representation
(and hence is a small amount)a.

Identify A perceptual description used to detect the entity associated with the role
in the sensory stream. Identify may contain the perceptual data used to
make the initial role/entity binding and information about how to main-
tain the binding after it has been made.

Action The action that the agent wishes to take on (or with respect to) the entity
bound to this role. It also contains the results of the action on the role
(when the action completes) and additional parameters needed by the
action (beyond those in the Property component).

Confidence A measure of the agent’s belief that the information stored in the role
representation is correct, i.e. it is a measure of usefulness [14].

Progress Denotes how well the current, ongoing action on the entity associated
with this role is proceeding.

a. For all the representations used by the walk-the-dog agent, this component could be called the
“where” component because it stores the position of the bound entity. However, I use the term Prop-
erty because different tasks (especially at different levels of the decomposition hierarchy) may store
different information in their representations.
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This role structure addresses domain characteristics 1, 2, 3, 5 and 6. The roles are de-

signed to carry only the information used by the current task and thus be maintainable in a

dynamic environment (1). The roles are used for communication between architectural

components (2 and 5) and finally they hold quantitative data (6) about the environment be-

yond the agent’s sensor horizon (3).

3.8. Architecture

How should the agent’s tasks be laid out in its architecture?The designer must now cre-

ate an architecture that uses and manipulates roles discussed in the previous sections.

3.8.1 Example Task Architecture

Since this thesis targets multi-layered architectures (see section 1.3.2), the walk-the-dog

tasks must be divided into layers. The tasks must be partitioned such that they can effec-

tively use the representations designed thus far. This means that tasks the control effectors

and bind their roles to PRs should be placed in the most responsive layer, i.e. the PA layer.

This includes all the leaf tasks of figures 2b - 2f. These tasks should be in the PA layer be-

cause the PA layer’s tight perception/action loops can keep representations bound to PRs

up-to-date.

The other tasks may or may not be in the PA layer. The more tasks that the PA layer needs

to handle, the more likely it is to be overburdened and thus reduce the agent’s reaction time.

These tasks are better off in a second layer of the architecture where they can activate the

PA layer tasks as needed.

3.8.2 Architecture Rationale

The previous steps of the methodology have guided the designer in choosing what to rep-
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resent and the trade-offs associated with representation. The purpose of this thesis is to

guide the design of representation, not architecture. However, agents need architectures

and so this section discusses the impact that representation may have on the structure of an

agent’s architecture. An issue that is fundamental to both representation and architecture

design is that of “cycle time”. “Cycle time” is the time for a task to perceive the environ-

ment (including representation maintenance), select an action and execute it. Executing the

action does not necessarily mean running it to completion, but rather issuing effector com-

mands that move toward the task’s goal within the current environment. The next time

through the perception/action loop, the task will choose new effector commands and these

may continue the previous “action” or they may start a new one.

Representation should be designed so that it can be maintained at a rate that is effective

for the particular task using the representation. The impact that this has on architecture is

that a task must be executed by an architectural component that has a rapid enough cycle

time to maintain that task’s representation at rates required by the tasks. This thesis assumes

that the designer will be using a layered architecture and these architectures map nicely to

the “role hierarchies” that tend to arise when dependent roles represent portions of the en-

vironment at different abstractions. This means that if a role is dependent on one or more

roles in one layer, that role’s task should be in a higher layer. The abstract property stored

in that role will typically be expensive to compute and so would slow down the cycle time

of the lower layer. Tasks that require high rates of representation maintenance should be

executed by the PA layer, but this must be tempered by the computational requirement of

that maintenance. Tasks that can get by with slower maintenance should probably be exe-

cuted by other layers of the architecture because the more complex the task that the PA lay-
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er has to be able to execute, the more likely the layer will be to slow down and ruin the

responsiveness of other tasks.

The division of tasks into layers, will also depend on a number of other engineering is-

sues, such as latency/bandwidth of inter-task communication, capabilities of layers of the

target architecture, amount of task inference and computational power required. Commu-

nication is perhaps the issue most effected by representation. Tasks that execute in parallel

and share a role (i.e. communicate role information) should be in the same layer of the ar-

chitecture because intra-layer communication is generally at a higher bandwidth and a low-

er latency. Tasks at different levels of the hierarchy communicate information about the

roles at different levels. For example, suppose role1 depends on role2 and role3, which are

in tasks at different layers of the architecture. There will necessarily be communication as

part of the maintenance of role1 and this communication represents the “link” between

these roles. The designer will want to consider the frequency of the communication when

placing the tasks in the architecture this way. Natrajan [57] discusses methods of automat-

ically updating role1 when either role2 or role3 is updated and such a scheme involves even

more communication. The designer needs to consider how often role information is ex-

changed under their particular maintenance scheme. Often, roles in tasks at different levels

of the decomposition can be at different layers of the architecture because the lower layers

of the architecture maintain the important details needed for effector control, while the

higher layers maintain other data that needs to be updated less frequently.

3.8.3 Architecture Summary

In this step, the agent designer must try and structure the tasks in the decomposition hi-

erarchy into “layers” of the agent architecture. The first step was to divide the agent’s tasks
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into PA layer and non-PA layer tasks. The PA layer tasks would be executed by a compo-

nent of the agent architecture that is responsive enough to events in a dynamic environment

to appropriately maintain those tasks representation. The non-PA layer tasks may them-

selves be divided into layers based on a number of characteristics. Often the final structure

of the non-PA portion of the architecture will be determined by implementation concerns

(e.g., latency/bandwidth of inter-task communication and computational power required).

This methodology is concerned with the design of representation systems, not the design

of agent architecture. Since each agent needs an architecture, this step approaches the ques-

tion of architecture design from the perspective of representation’s effect on it. However,

the final structure of the architecture is mostly an engineering issue, not a contribution of

this work.

3.9. Post Methodology

After completing the methodology questions, the designer will still have work to do. At

this point, the designer should have a layered system based on the agent’s capabilities and

the task decomposition. The designer should know what roles exist in the agent’s tasks and

what entities in the agent’s environment can fulfill those roles. Knowing which role/entity

bindings are shared and how long these bindings last will help the designer decide what

roles need representation in the agent’s architecture. Answering questions about the infor-

mation that the agent must store and maintain in these representations will help structure

the agent’s perceptual system. Understanding what information must be shared or commu-

nicated between tasks will help determine the flow of information within the system. Final-

ly, based on the flow of information and the nature of the tasks, the designer will partition

them into sets which can be executed by different “layers” of the agent’s architecture.
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At this point, the designer must implement the agent architecture such that it can effec-

tively manipulate the system of representation that has been designed. The agent must use

its perception abilities to maintain the information stored in the role representations and the

agent architecture must have a means of exchanging task role binding information between

tasks (at the same or at different layers).

3.10. Methodology Summary

This section repeats the important aspects of the methodology. The methodology is

meant to answer three questions about agent representation (sections that most directly ad-

dress those issues are given in parenthesis, though answers to the questions in those sec-

tions may depend on the answers to questions in previous sections).

What should be represented (see section 3.4)? How should that representation be

structured (see section 3.7)? How should that representation be maintained (see sec-

tions 3.5 and 3.6)?

The design can answer all these questions by answering the questions of the methodolo-

gy, which are repeated below.

• What are the agent’s primitive skills?
• Which tasks can be decomposed into sequential subtasks? Which can be

decomposed into parallel subtasks?
• What are the task roles?
• What entities can fulfill those roles?
• What role bindings are shared between tasks?
• What information about the entity bound to a task role is needed for the task?
• For what roles would it be useful to develop an explicit representation?
• How often should the task role information be verified?
• What information can the agent extract from the environment to recognize the

entities that should be bound to the current task’s roles?
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• How does the duration of the various role/entity bindings effect the perception
system?

• What level-of-detail (or resolution) is required in the information of the
representation?

• What information is important in inter-task relationships?
• How should the agent’s tasks be laid out in its architecture?

The final role structure developed by the methodology is also repeated in table 3.3 (see

section 3.7 for the culmination of the arguments for it).

This role structure addresses the domain characteristics laid out in section 1.3.1 because

the roles are:

• designed to carry only the information used by the current task and thus be maintainable

in a dynamic environment (section 1.3.1.1)

Table 3.3: Representation Component Summary Reprise

Component
Name

Component Contents

Index A task dependent label that indicates this representation’s role in the cur-
rent task, i.e. its role name.

Property Information about the bound entity that is stored in the representation
(and hence is a small amount)a.

a. For all the representations used by the walk-the-dog agent, this component could be called the
“where” component because it stores the position of the bound entity. However, I use the term Prop-
erty because different tasks (especially at different levels of the decomposition hierarchy) may store
different information in their representations.

Identify A perceptual description used to detect the entity associated with the role
in the sensory stream. Identify may contain the perceptual data used to
make the initial role/entity binding and information about how to main-
tain the binding after it has been made.

Action The action that the agent wishes to take on (or with respect to) the entity
bound to this role. It also contains the results of the action on the role
(when the action completes) and additional parameters needed by the
action (beyond those in the Property component).

Confidence A measure of the agent’s belief that the information stored in the role
representation is correct, i.e. it is a measure of usefulness [14].

Progress Denotes how well the current, ongoing action on the entity associated
with this role is proceeding.
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• specialized to the needs of particular tasks (section 1.3.1.4)

• used for communication within and between architectural components (sections 1.3.1.2

and 1.3.1.5)

• designed to hold quantitative data (section 1.3.1.6) about the environment beyond the

agent’s sensor horizon (section 1.3.1.3).

This chapter presented a design methodology for autonomous agent with representation

systems that specialized to the tasks and capabilities of the agent. The methodology is a se-

ries of questions to guide the designer in creating representation systems that are efficient

and effective for use in dynamic domains.
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The first agent designed by the design methodology laid out in chapter 3 was Bruce

[82][83]. Bruce’s task is to play hide-and-seek in our laboratory against a human controlled

opponent. Figure 6a shows Bruce and figure 6b shows the vehicles that he can play against

(though only one at a time). The human hides the vehicle somewhere within the game area

(see figure 7). Bruce will search the game area for the opponent and attempt to touch, i.e.

tag, it upon sight. Once Bruce has spotted the opponent, the human may drive it away from

Bruce. If Bruce looses his opponent during the chase, he should examine nearby objects to

see if the opponent is hiding behind them. If Bruce does tag his opponent, he wins and the

game is over.

Bruce was built at UVA and is based on the RugWarrior board [38]. He possess two in-

(a) (b)

Figure 6. Bruce and Opponents

Chapter 4 Applying the Methodology
(Bruce)

We ought never to do wrong when people are looking.
- Mark Twain
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dependent drive wheels with fairly coarse shaft encoders, a single color camera on a pan/

tilt platform and a “bump skirt” capable of detecting impact on the front, left and right sides.

Onboard processing is done by a pair of Motorola MC68HC11s. Bruce has a radio modem

to communicate with his host workstation, a Sun Sparc 10, where most of the processing is

done. Bruce also has a video transmitter that broadcasts the images from his camera to a

Datacube MV200 for image processing.

In this section I examine how Bruce’s software architecture was developed using the

methodology presented in this thesis. Figure 7 shows a plan to search the game environ-

ment that Bruce must execute. The numbers indicate steps in the plan with the solid line

representing the path to follow. The dashed lines indicate where and in which direction

Bruce should turn his camera to look for his opponent. Bruce and his field of view are

shown near the completion of step 3. The other shaded shapes denote objects in the game

zone. By following the methodology’s steps and answering its questions, a design to follow

this plan and play hide-and-seek emerges.

4.1. Task Decomposition

What are the agent’s primitive skills?The designer must now see what capabilities can

be combined into “black box” skills that can be used in the bottom-up portion of the de-

Figure 7. The Search Plan
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composition process. Bruce’s basic skills are navigation to a location and control of the

camera’s pan/tilt mount. The agent navigates to a location by combining motor and percep-

tual capabilities. By servo-ing toward the position of location-specific perceptual charac-

teristics detected in its camera, Bruce can move throughout his environment. By varying

these characteristics, the agent can move to a variety of static objects or chase the opponent.

Which tasks can be decomposed into sequential subtasks? Which can be decomposed into

parallel subtasks?As mentioned previously, playing hide-and-seek consists of searching

for the opponent, chasing the opponent (to tag it) and possibly performing another search

behind nearby objects if Bruce looses the opponent during a chase. These three tasks are

shown as subtasks of the play-hide-and-seek task in figure 8 and the control flow between

them, i.e. the order in which they execute, is shown in figure 9a. Note that in figure 4, ar-

rows denote flow control with dashed arrows indicating control flow between parent and

child tasks.

In order to search, the agent needs to go between landmarks looking for the opponent and

avoiding obstacles. In order to view the entire game area, Bruce will need to point his cam-

era at certain areas of the environment, but he need not navigate to them. So, the search task

search-for-
opponent

look-behind-
occluder

choose-
occluder

drive-past-
occluder

watch-for-
opponent

turn-back-
to-occluder

chase-
opponent

tag-opponent

play-hide-
and-seek

Figure 8. Hide-and-Seek Task Decomposition

move-toward-
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watch-for-
opponent

look-at-
region

detect-
obstacles
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consists of a navigation task (move-toward-landmark), an obstacle detection task (detect-

obstacles), a camera control task (look-at-region) and a task that monitors for the opponent

(watch-for-opponent), all operating in parallel. These are shown as subtasks of the search-

for-opponent task in figure 8. In figure 9b, these tasks are shown as stacked ovals, meaning

(a)

look-behind-
occluder

chase-
opponent

play-hide-
and-seek

search-for-
opponent

search-for-
opponent

move-toward-
landmark

watch-for-
opponent

look-at-
region

detect-
obstacles

look-behind-
occluder

choose-
occluder

drive-past-
occluder

watch-for-
opponent

turn-back-to-
occluder

watch-for-
opponent

watch-for-
opponent

chase-
opponent

Figure 9. Hide-and-Seek Task Flow Diagrams

(b)

(c)

(d)

tag-opponent
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they operate in parallel. The control flow arrows from the parent task show that they all be-

gin executing at the same time, but only move-toward-landmark and watch-for-opponent

can transfer control back to the parent (and thus end the execution of all four tasks). This

occurs when Bruce either reaches the landmark he is moving toward, or detects the oppo-

nent.

When the opponent is detected, Bruce should begin chasing it. In this situation, control

flows from the search-for-opponent task to the chase-opponent task (figure 9a) and from

the chase-opponent task to the tag-opponent task (figure 9d). The tag-opponent task simply

visual servos Bruce toward the opponent until Bruce’s “bump skirt” detects an impact (and

the opponent is close enough that Bruce believes he has impacted the opponent and not

something else).

If the opponent escapes while being chased, Bruce should look for it behind any object

in the vicinity of where Bruce lost visual contact. This process is handled by the look-be-

hind-occluder task and its sequential subtasks, shown in the right of figure 8. The control

flow of figure 9c shows that several sets of parallel subtasks are used to check if the oppo-

nent is hiding nearby. The watch-for-opponent task runs in parallel with every other task

so that Bruce switches to the chase-opponent task if the opponent is detected at any point.

When looking behind objects, Bruce must first select an object, near the opponent’s last

known position, that is possibly occluding his view of the opponent, i.e. the opponent is

hiding behind it. This is handled by the choose-occluder task. Then Bruce must drive “be-

hind” it (relative to his starting location). Due to the mechanics of Bruce’s drive system,

going behind the object involves moving until the rear (drive) wheels are past the object

and then turning back to face it. This sequence is performed by the drive-past-occluder and
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turn-back-to-occluder tasks. Note that in figure 9c, the watch-for-opponent subtasks only

transfer control back to the look-behind-occluder tasks while the other subtasks transfer

control to the next subtask in the sequence. This is because the other tasks are sequential

steps in “looking behind” an object, while watch-for-occluder indicates that a different

branch of the decomposition (chase-opponent) should take over.

4.2. Identify Task Roles

What are the task roles?The search-for-opponent task has three roles,opponent, land-

mark andregion, to represent the aspects of the environment important to searching the

game area. Its subtasks must deal with the complexity of navigation. So the move-toward-

landmark task haslandmark andobstacleroles since where it directs the agent is influ-

enced by the position of the goal landmark and any obstacles. The detect-obstacles task has

anobstaclerole. Watch-for-opponent has anopponent role to associate with the vehicle

Bruce must tag, and look-at-region has aregion role corresponding to the area of the game

environment at which Bruce must look.

The chase-opponent and tag-opponent tasks each have theopponent role since these

tasks are concerned only with driving toward the opponent. The various subtasks that make

up look-behind-occluder (choose-occluder, drive-past-occluder and turn-back-to-occluder)

all have theoccluder role. The drive-past-occluder task also has a role calledintermedi-

ate-target, which is not mentioned in the task name. This role is associated with an object

that Bruce can use to estimate his position relative to the occluding object (see figure 11b).

Figure 10 shows the same task decomposition diagram as figure 8 annotated with the task

roles. The roles are shown in bold when they occur in the task name and in callout boxes

otherwise.
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What entities can fulfill those roles?The four roles in the search portion of the hide-and-

seek game arelandmark , opponent, region and obstacle. The landmark role will be

played, at various times, by the various objects along the agent’s search route (see figure

7). Theopponent role can only be played by Bruce’s opponent, which is either the dump

truck or the racecar from figure 6b, but not both in the same game. The same is true for the

opponentrole in chase-opponent and its subtask. Theregion role can be filled by any por-

tion of the game area at which Bruce needs to look. In fact, this role can be better described

as a neck angle than as specific features of the environment. Finally, theobstaclerole is

filled by any object that is along the direct path between Bruce and his current navigation

goal.

In the look-behind-occluder portion of the game, theoccluderandintermediate-target

roles can be filled by any object that is in the correct position. That is, the occluder can be

any object that has approximately the same azimuth and is closer than the last known posi-

tion of the opponent while theintermediate-target can be associated with any object that

is off to the side of the occluder and further away than the occluder plus one Bruce-length.

This allows the same motor control system used in the move-toward-landmark task to be
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Figure 10. Hide-and-Seek Task Roles
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re-used to servo Bruce toward the intermediate-target. However, this time, he must stop

when he has passed the occluding object and not when he reaches the intermediate-target.

4.3. Representation of Task Roles

What role bindings are shared between tasks?For Bruce’s task, this is simple. Theland-

mark , region andopponent roles are shared between search-for-opponent, and its child

tasks move-toward-landmark, look-at-region and watch-for-opponent respectively. The

obstaclerole of the detect-obstacles task is shared with the move-toward-landmark task

since that task calculates how to move the agent’s wheels based on thelandmark andob-

stacleroles. Theopponentrole is also shared between the watch-for-opponent, chase-op-

ponent, tag-opponent) and look-behind-occluder tasks. From figure 9 we can see that both

the watch-for-opponent tasks in the decomposition hierarchy transition to their parent task

which transitions to the chase-opponent task. Theopponentbinding is shared so that Bruce

chases the detected vehicle. Finally, theoccluderrole is shared between the subtasks of the

look-behind-occluder task (choose-occluder, drive-past-occluder and turn-back-to-occlud-

er).

What information about the entity bound to a task role is needed for the task?In this do-

main, the agent must navigate through the environment searching for the opponent. The

tasks of move-toward-landmark, detect-obstacles, look-at-region, tag-opponent, drive-

past-occluder and turn-back-to-occluder all need the positions of the entities associated

with their roles to control the agent’s effectors. Watch-for-opponent and choose-occluder

both determine initial positions for the objects associated with their roles and pass this data

on to other tasks. So, the important information about the entities associated with task roles

in this domain is position. I chose to store positions in ego-centric, polar coordinates be-
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cause the agent’s capabilities make position estimates relative to its current location much

more accurate than position estimates relative to some external frame. In other words, any

position computed from information gathered by sensors mounted on the agent can be

turned into an agent-centric position by a simple transform (such as shifting by the current

camera pan angle or translating from the sensor’s position to the center of the agent’s body).

Although such positions can be converted to other coordinate frames, maintaining positions

in those frames requires either special sensors or knowledge of the positions of multiple

other landmarks to triangulate [21]. Since Bruce will not often be able to see many land-

marks (and his encoders are error prone), he is much more successful with an ego-centric

system.

For what roles would it be useful to develop an explicit representation?The landmark ,

opponent andoccluder roles can all benefit from explicit representation because Bruce

may have to take action with respect to them when they are outside his field of view. The

move-toward-landmark task may begin with the next landmark outside the current field of

view and a representation for that role will allow Bruce to begin moving toward it. The tag-

opponent task benefits from role representation because the opponent may drive outside of

Bruce’s field of view during the chase and Bruce may be able to reacquire the opponent by

turning in the direction where it was last seen. The object bound to theoccluder role will

necessarily go outside Bruce’s view during the look-behind-occluder task, specifically dur-

ing drive-behind-occluder. Theoccluder role needs representation so that Bruce can exe-

cute the turn-back-to-occluder task because the occluding object will not be visible after

completing the drive-past-occluder task (see figure 11b).

The intermediate-target role would seem to not need representation because, as shown
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in figure 11b, it is played by an object that is always within sight of the agent. However,

obstacle avoidance en-route could cause the intermediate-target to fall outside Bruce’s

field-of-view and so a representation for this role could be useful.

Theregion role is interesting because there is no object in the environment that the agent

should bind to this role, rather it is described by a head angle to pan the camera in search

of the opponent. As such, the head angle could just be a parameter for the “look-at” action

and the role needs no representation. However, I have opted to represent this role in order

to have a uniform communication structure between parent tasks and their children (see

Section 4.7 for a discussion on this communication interface).

The representation of theobstaclerole is an interesting issue that causes iteration be-

tween the representation and perception steps of this methodology. Bruce’s vision system

often mis-identifies obstacles (false positives). If theobstaclerole has a representation, it

may take longer for the agent to realize that the binding is incorrect than it would take in a

stateless system. This is the classic argument against representation put forward by Brooks
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Figure 11. (a) Obstacle Avoidance (b) Look-Behind-Occluder
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[15]. Since a stateless system cannot store information, it must re-evaluate the environment

whenever it wishes to act. This means it can forget previous erroneous percepts in the min-

imum possible time. A system with state or representation may continue to make decisions

based on previously determined, incorrect information. This argues that obstacles should

not have a representation since they are often misidentified and this may cause Bruce to

avoid empty space. However, due to the limited ability of the camera to pan, obstacles go

outside Bruce’s field of view, as shown in figure 11a, step 2. Without an obstacle represen-

tation, Bruce would invariably hit obstacles along his flank when his camera is past them,

but his drive wheels are not. This argues for a representation of local-space [14]. The de-

signer can choose to have a representation for theobstaclerole and try to improve the per-

ception or choose no role representation and try to improve the navigation control

algorithm to avoid obstacles outside the field of view. For Bruce, I use a representation

compromise. Obstacles that are detected at more than a certain distance away are not bound

to theobstaclerole, although Bruce’s navigation system will take their position into ac-

count on that cycle of his PA loop. This allows Bruce to be only somewhat fooled by far

away, false obstacles. When the obstacles are too close to Bruce, they are bound to theob-

staclerole so that they are represented should they pass outside the camera’s field of view.

Clearly, there should be multipleobstacleroles, since Bruce can be avoiding one obstacle

that he can’t see when another obstacle blocks his new path. However, Bruce’s simple vi-

sual avoidance algorithm cannot avoid two obstacles and try to move toward the goal1.

1. Part of the thinking in designing Bruce’s obstacle avoidance routine was that a stateless system
was almost capable of handling the avoidance. Representation was only needed to remember obsta-
cles that had passed outside the field of view. Since this thesis is about the design of representation
systems, significant effort was not spent in designing a routine to avoid multiple obstacles. Once the
obstacle role is bound, Bruce will not avoid other obstacles until this role is unbound.
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How often should the task role information be verified?Since the positions of the entities

associated with the roles are used to control Bruce’s effectors (wheels and camera plat-

form), they should be verified at the same rate as the effector control loop. The role main-

tenance scheme here is simple. The agent needs to know about the position of either a

landmark or occluder (depending on the current task), plus any obstacle in order to navi-

gate. He also must attempt to detect the opponent at all times. Therefore, for each pass

through the active task’s effector control loop, the agent must verify the position of the en-

tities associated with the current task’s roles and attempt to bind theopponent role.

4.4. Perception

What information can be extracted from the environment to recognize the entities that

should be bound to the current task’s roles?Bruce’s perception system consists of a single

color camera whose signal is transmitted to an off-board receiver and processed by a com-

bination of a Datacube MV200 image processor and a Sun Sparc 10. This hardware sup-

ports two primitive visual operations at speeds high enough to support Bruce’s task, edge

detection and color histogramming. Bruce’s visual identification routines are straightfor-

ward given the availability of these operations. First, Bruce finds the ground/non-ground

boundary, or groundline [34] as shown in figure 12. Large vertical discontinuities in this

line may represent the boundaries of objects (note the Sprite can). Object identification is

accomplished by comparing the color histogram of the pixels between pairs of discontinu-

ities with stored histograms for various objects [72]. So, by comparing the truck histogram

with the histogram of the pixels within discontinuity pair 1 and within discontinuity pair 2,

Bruce can determine that pair 2 delineates the truck, while pair 1 does not.

I designed Bruce with the necessary histograms to recognize the landmarks that appear
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along his search path, as well as the opponent he must chase. Obstacles can be detected as

any objects (i.e. pair of discontinuities) that are closer than Bruce’s current goal, and on a

direct path to the goal (see Appendix A, section A.1.1 for more on how the navigation sys-

tem works).

Bruce must be able to determine the positions of the entities associated with the task

roles. For this, the “ground-plane constraint” [34], which states that the ground is a flat hor-

izontal plane and all objects in the world rest on the ground, was used. This constraint al-

lows Bruce to calculate the distance to an object based on the smallest distance between the

bottom of the image and any of the points along the groundline between the object’s dis-

continuity boundaries. That is, using known camera geometry, we can relate distance from

the bottom of the image to depth. Bruce computes azimuth from an object’s position within

the image and the camera’s known angular field of view and pan angle. These polar coor-

dinates (azimuth and depth) are ego-centric, meaning with the agent at the coordinate sys-

discontinuity pair 1 discontinuity pair 2

Figure 12. Groundline Image with Opponent
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tem’s origin. Since Bruce’s tasks consist of moving himself toward objects in the world

(either to search or to chase) this works fine for the leaf tasks. However, the main search

task must convert from the landmark coordinates stored in Bruce’s game area map to ego-

centric coordinates for navigation and vice versa. I discuss this in Appendix A.

How does the duration of various role/entity bindings effect the perception system?First,

the binding duration of the roles in Bruce’s tasks must be determined. In particular, the de-

signer is interested in roles that have “long” binding durations. In other words, roles that

stay associated with the same object over long periods of time, i.e. are bound to different

objects infrequently relative to their task’s execution time. There is no single definition of

how much time is “a long time”, it is relative to the agent’s perceptual capabilities (how

often the binding could be changed) and the execution time of the agent’s tasks.

In general, there are two ways for a role to have a “long” binding duration. The first is

for a single task to have a role remain bound to the same entity for the duration of its exe-

cution (which is “a long time”). Bruce does this with thelandmark , region andinterme-

diate-target roles of the move-toward-landmark, look-at-region and drive-past-occluder

tasks respectively. Each of these roles should remain bound to a single object for the dura-

tion of the task that uses them. The second means of having a long binding duration is to

have many sequential tasks share a role that they expect to be bound to the same object.

Both theopponentandoccluderroles are shared by multiple, sequential tasks and all those

tasks expect the role to be bound to the same entity. The only role in this domain with a

“short” binding duration, i.e. one that is not long, is theobstaclerole. On each cycle of

Bruce’s perception/action loop, the detect-obstacles task will bind this role to any object

that is an obstacle to Bruce’s current destination, even if that object is the same object that
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was an obstacle last time. The catch is that there could be a long binding duration when an

obstacle goes outside the field of view of the front mounted camera, but can still be hit by

Bruce’s body with its rear mounted wheels. If the obstacle is close enough to the edge of

the field of view, the role must remain bound to it (so that Bruce remembers its location

until he is “past” it).

Now we can use the binding duration information to structure the perception system.

Bruce’s visual processing can be divided into two classes, location and tracking. Location

is the process by which a role is initially bound to an entity in the environment. Tracking is

the processes by which the information about the entity bound to a task role is maintained.

Most roles remain bound to the same entity for the duration of their task and (once bound)

the opponent and occluder roles remain bound across multiple tasks. This means that

Bruce can save a significant amount of visual processing by foveating the regions of space

occupied by entities bound to task roles. In this case, foveating means limiting visual pro-

cessing to a particular region of the image.

In principle the location and tracking processes could use completely different mecha-

nisms for identifying objects in the image(s). Presumably, the location process would be

slower but more accurate than the tracking process, while the tracking process could use

the context (previous position(s)) for assistance. Bruce, however, uses the exact same visu-

al operations (edge detection and color histogramming) for both location and tracking.

Tracking is faster because any discontinuity boundary pairs that are too far from the last

known position of any object are not matched to that object’s stored histogram. This means

fewer objects need to be analyzed and the computation can proceed faster.

One difficulty with this two process scheme is what to do if the associated object moves



120

beyond the tracking fovea. In other words, what happens if the associated object moves

faster than expected (or the agent moves slower) or goes out of the field of view? Bruce

needs a means of identifying when the tracking process is failing or has failed, so that he

can activate the location process again. Simple thresholding on the “amount of match” be-

tween the stored histogram and the histograms of any objects detected in the groundline

suffices for this purpose. The histogram matching process is a modified version of Swain

and Ballard [72] and Terzopoulos and Rabie [73]. It produces a percentage match value

equal to the number of pixels of matching color between the two histograms divided by the

total number of histogrammed pixels (see section A.1.2 in Appendix A for more details).

When this score becomes too low, Bruce can disable the tracking process and either begin

the location process again, or start the look-behind-occluder task.

What level-of-detail (or resolution) is required in the information of the representation?

This question must be answered for each of the primary subtasks of play-hide-and-seek.

For the search-for-opponent task, the information being used is the position of various land-

marks, obstacles, regions and, at some point, the opponent. Since this is being used for ef-

fector control, we want it to be as accurate as possible. This means that Bruce should be

estimating (dead-reckoning) such positions as little as possible, implying that he should be

pointing his visual resource at these objects as often as possible. During obstacle avoidance,

it is often impossible to keep the obstacle, the destination and the agent’s body’s current

heading in view at the same time. Bruce must be looking at the objects effecting his navi-

gation as often as possible, understanding that some trade-offs must be made based on how

long it has been since an important object was last seen (see the discussion on confidence

in Section 4.5).
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The chase-opponent task is similar in that the opponent’s position is used for effector

control and so must be as accurate as possible. This means Bruce should keep his camera

trained on the opponent as much as possible.

The look-behind-occluder task has different needs for theoccluder and intermediate-

target roles. The intermediate-target is an object selected for its spatial relationship to the

occluding object. Bruce’s physical layout (front camera, rear wheels) means he is more suc-

cessful navigating to a point that is fairly straight in front of him than to a point behind an

object he must maneuver around. This is because, at some point when moving around an

object, that object can typically not be seen by the camera and so the estimated position of

the object becomes inaccurate. So, Bruce selects an intermediate-target such that, if he nav-

igates toward it for a certain distance, he will be in the correct position relative to the oc-

cluder to execute the turn-back-to-occluder subtask. Bruce can afford to reduce the

accuracy of his estimate of the occluder’s position because his present concern is the inter-

mediate-destination, an object that has been specifically chosen for the purpose of getting

Bruce to a certain position relative to the occluder. He only needs to accurate enough

knowledge of the occluder’s position that he can turn around and view the area behind it

(remember he’s not really interested in finding the occluder, but the opponent).

4.5. Communication

What information is important in inter-task relationships?The play-hide-and-seek task

is divided into three groups of communicating subtasks. By examining each group, we can

discover the role information communicated between tasks. The search-for-opponent task

moves Bruce throughout the game environment attempting to find the opponent. This task

hasopponent, landmark andregion roles about which it communicates with the watch-
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for-opponent, move-toward-landmark and look-at-region subtasks respectively. The

search-for-opponent task gives the move-toward-landmark task a perceptual description of

a landmark to which it can bind itslandmark role and then maneuver the agent toward the

associated object. It also gives the watch-for-opponent subtask a description of the oppo-

nent so that theopponentrole in that task can be bound when it is detected (and trigger the

switch to the chase-opponent task). The look-at-region subtask receives a description (the

position) of the region to look at in hopes that the watch-for-opponent task will bind the

opponent role while the agent is looking there.

The search-for-opponent task must communicate this perceptual data to its subtasks be-

cause there are various landmarks and regions that Bruce needs to be concerned with

throughout the task. In other words, the move-toward-landmark task should not include

hard-coded perceptual information because the agent’s route plan will dictate what land-

marks the agent should move toward. By having the search-for-opponent task pass this role

information to its subtasks, the subtasks can be reused to execute each leg of the search

route (instead of having a different leaf task for each landmark or region). In fact, since the

agent can play the hide-and-seek game against different opponents (see figure 6b), the

watch-for-opponent task can be parameterized by opponent perceptual description. The

parent task will know what opponent to search for and communicate this to the subtask.

Another important kind of data that is communicated between search-for-opponent and

its subtasks is action input and output. Input means parameters that the task needs to per-

form its action(s) and output means the results of the actions(s). Move-toward-landmark

moves the agent to within a certain tolerance of the landmark. This tolerance is determined

by search-for-opponent to insure Bruce stops at the correct position (to perform a look-at-
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region for example). Move-toward-landmark reports when it has reached the specified

landmark and supplies the landmark’s current ego-centric position. This allows search-for-

opponent to determine the agent’s location in its map of the environment and decide on the

ego-centric position of the next landmark to be visited. Note that the landmark’s current po-

sition is already computed as the “information” that the task needs to know about the entity

associated with the role (as per section 4.3) and so the action result can be just a boolean

value (action completed successfully or action failed) if the position is communicated as

well. Both the watch-for-opponent and look-at-region tasks receive no configuration infor-

mation about how to perform their actions on their task role, and each communicates suc-

cess or failure to its parent task (watch-for-opponent signals “success” or “failure” by

binding or not binding theopponent role).

Note that detect-obstacles does not communicate with the parent task. This is because it

is a part of the search task that is abstracted away from search-for-opponent task. However,

it does communicate with the move-toward-landmark task by binding theobstaclerole.

This role and thelandmark determine the effector commands sent to the wheels by move-

toward-landmark.

Next, I examine the inter-task communication in the chase-opponent task. The chase-op-

ponent task consists of a single subtask, tag-opponent. These tasks communicate the per-

ceptual description of theopponentand whether or not the opponent has been “tagged”,

i.e. the result of the “chase” action. In addition, the tag-opponent task must communicate

some information to decide if control should transfer to the look-behind-occluder task. I

call this information “confidence” and it represents the agent’s belief that the stored posi-

tion of the opponent is correct. As long as the binding between theopponentand the op-
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ponent is being adequately maintained, i.e. the tracking function is finding the opponent in

the camera images, the confidence stored in theopponentrepresentation will remain high.

However, if the opponent slips outside the field of view or behind an occluding object, the

opponentconfidence will decrease over time, until the chase-opponent task transfers con-

trol to look-behind-occluder.

Finally, the look-behind-occluder task and its subtasks communicate similar perception

and action information. The choose-occluder subtask’s job is to select an object that is po-

tentially occluding the opponent, based on the opponent’s last known position. When the

occluderrole is bound, i.e. the choose-occluder task successfully completes, the perceptual

description of the bound object is passed up to the parent look-behind-occluder task so that

is can be distributed to that task’s other children. The drive-past-occluder and turn-back-to-

occluder inform their parent task when they have completed their respective missions (get-

ting within tolerance of the object associated with theintermediate-target and facing the

occluder). The fact that these tasks communicate this information to their parent task in-

stead of to the next task in the sequence is really a decision that results from implementation

control flow (see section 4.6 for an explanation).

4.6. Architecture

How should the agent’s tasks be laid out in its architecture?The first issue the designer

must tackle is determining which tasks have rapid perception/action cycles, bind their roles

to PRs (see section 3.6) and require no inference. Such tasks can be executed by the agent’s

PA layer. Typically, these processes control some sensor(s) and/or effector(s). Table 4.1

shows the tasks and sensor processing or effector they control.
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Most of the leaf tasks in the hide-and-seek decomposition control effectors, as shown by

the number of wheel and camera mount controlling tasks in table 4.1. Watch-for-opponent

and detect-obstacles control sensors, but also need to be PA layer tasks because their rep-

resentations are used by other PA layer tasks.Opponentandobstacleare both PRs and the

tasks that share these roles expect them to be maintained at effector control rates (so watch-

for-opponent and detect-obstacles need to be in the PA layer).

The other tasks in the decomposition tree

belong in other layers of the architecture.

The search-for-opponent task uses a map of

the game environment to direct its (now PA

layer) subtasks. The map is in a global coor-

dinate system that is different from the ego-

centric system used to store positions in the

PA layer tasks. Therefore, search-for-oppo-

nent uses a different representation. This

representation does not need to be updated

and so I place the search-for-opponent task in another layer of the architecture that I call

the task executor layer, or TE. I also place the look-behind-occluder task in this layer so

that it can sequence its subtasks to drive the agent behind an occluder. This is not the same

control flow shown in figure 9. Control flows to the parent between each subtask. I choose

to do this so the TE is in charge of activating and deactivating processes in the PA layer

(via markers). This reduces the amount of control flow with which the PA layer need be

concerned. Similarly, the chase-opponent task exists mainly to allow the switch between

Table 4.1: Task Controlling Capabilities

Task Name
Sensor/Effector

Controlled

move-toward-landmark wheels

drive-past-occluder wheels

turn-back-to-occluder wheels

tag-opponent wheels

look-at-region camera mount

choose-occluder camera mount

watch-for-opponent opponent
detection

detect-obstacles obstacle
detection
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phases of the hide-and-seek task (searching, chasing, etc.) to take place in the TE. As shown

in figure 9, search-for-opponent transitions to chase-opponent, and chase-opponent acti-

vates the tag-opponent PA layer task. Watch-for-opponent could directly transfer control

to tag-opponent, but I prefer control to flow through the TE.

Bruce does not need a planner to play hide-and-seek in this domain because he is given

a search plan to execute2. Thus, the play-hide-and-seek task (the root of the decomposition

tree) is not a separate task in the implementation. However, a more complex version of the

game can be imagined in which play-hide-and-seek has an actual implementation and it is

in a third layer of the architecture. Suppose that Bruce is chasing the opponent and he can

no longer locate it. At this point, Bruce can continue his current search pattern, but if he had

a route planner, he could compute a new search route based on his current location. Play-

hide-and-seek could be a route planning task that passed its search plan to search-for-op-

ponent. When a new plan was needed, control would transfer back to play-hide-and-seek

and a new plan would be generated. This task, then, should be placed in a new layer of ar-

chitecture because it requires more inference than the TE layer tasks. In fact, this task re-

quires a full inference (planning) engine, whereas the TE layer tasks merely set the context

for the PA layer to execute pre-defined plans. The TE tasks need no inference capabilities

and so to preserve their cycle time, the route planning task should be in a different layer of

the architecture.

4.7. Bruce Implementation

This section describes the result of the design process carried out in the previous sections.

This section details how the answers to the methodology’s questions were combined to

2. I generated a search route for Bruce to follow for the game layout shown in figure 7.
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form a working autonomous agent. The remainder of this section is organized as follows.

First, I describe the agent’s PA layer representation and the operation of the PA layer’s

main loop (including marker maintenance). I then describe the actual PA layer behaviors

and how they achieve the agent’s goals. Lastly, I discuss how representation is used for in-

ter-layer task communication.

4.7.1 Bruce’s Representation

First I will describe the structures that are used to represent task roles in the PA layer.

These representations are calledmarkersafter the work of Agre and Chapman [2]. Based

on the information communicated between tasks (section 4.5), each marker has compo-

nents for all the communicated information outlined in section 3.7.3, except “progress”. It

also has a “dependency list”. Table 4.2 summarizes what is contained in the various marker

components and the dependency list. These summaries will be explained in greater detail

as I discuss marker maintenance and the general operation of the PA layer’s main loop.

Table 4.2: Components of Bruce’s Markers

Component
Name

Component Contents

Index The role name used in combination with Action (see below) to select
the current action from the PA layer’s action table.

Property Ego-centric, polar (r,θ) coordinates of associated object

Identify Divided into Locate and Track subcomponents. Each has a color histo-
gram of the object that this role can be bound to an “amount of match”
threshold to declare a match successful. Although the histograms are
the same, the match thresholds are typically different and the region
searched for an appropriate object is different (see below).
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Bruce’s PA layer operates in a tight perception/action loop. However, since the PA layer

uses representation, it must have representation maintenance as part of that loop. In order

to understand the maintenance algorithm and the PA layer’s loop, I must first introduce the

concept of instantiated vs. uninstantiated markers. Simply, an instantiated marker is one for

which the PA layer has selected an entity in the environment to associate with the marker,

based on the marker’s Identify component. An uninstantiated marker then, is a marker that

has not yet been associated with an entity. An uninstantiated marker often reflects a higher

layer’s expectations about the world and the PA layer can confirm those expectations by

instantiating (binding) the marker to some object. For example, when Bruce has completed

step 3 of his search plan (see figure 7), object b3 is not within his field of view. Since b3 is

the landmark for the next invocation of the move-toward-landmark task (step 4), the TE

Action Used along with Index to determine an action to take from an action
table. Also contains an action result component to store data for parent
task about the outcome of a particular action. Note that this component
can be null, indicating no action to take on this marker. This happens
when a marker represents an object that is part of an action indicated
by the Action component of another marker (see Dependency List).

Confidence Contains a “found” flag that is set whenever the associated object is
detected in the current image and a counter for how many images have
passed without finding the associated object. Also contains the “instan-
tiated” flag indicating whether or not this marker is currently associ-
ated with an object in the world.

Dependency
List

A list of other markers in the PA layer that are needed to complete the
action specified in the Action component. This is how tasks with mul-
tiple roles are executed. A marker’s Action component contains the
action that completes the task and that task’s roles are represented by
the marker and the markers in its dependency list. For example, obsta-
cle markers are placed in the Dependency List of the landmark marker
for the move-toward-landmark task.

Table 4.2: Components of Bruce’s Markers

Component
Name

Component Contents
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layer search-for-opponent task will create an uninstantiatedlandmark marker with the ap-

propriate Identify component for b3. Although the move-toward-landmark task cannot im-

mediately detect object b3, thelandmark marker contains b3’s ego-centric position. Bruce

can begin to move toward the expected position of b3 and when b3 comes into view, he can

start running the marker’s Locate routine to try and detect the object. When the Locate rou-

tine finds an appropriate object, it is associated with the marker and the marker is said to

be instantiated.

4.7.2 The PA Layer Main Loop

The purpose of the PA layer’s perception/action loop is to select appropriate actions for

the agent. Other layers influence the PA layer’s decision, but ultimately, it is the PA layer

that controls the agent’s effectors. For the PA layer, actions will be closely coupled to cur-

rent and recent perceptions. Since Bruce’s PA layer has representation, the action selected

is a function of both the current perceptions and the information stored in the markers.

The main loop proceeds as follows. First, it executes its maintenance algorithm on the

instantiated markers and then it tries to instantiate any markers that remain uninstantiated.

Finally, the PA layer examines the Action component of each marker and executes the

specified action. I will explain each of the steps in detail.

4.7.2.1 PA Loop Step 1: Update Markers

This step verifies that the positions stored in the Property3 component of the markers are

consistent with the positions of their associated objects in the world. Positions are updated

by the following hypothesize-and-test algorithm. First, a new groundline is computed and

3. Recall that in section 3.7.3, I decided to call this component Property instead of Position (which
would be appropriate here) because different agents may store different data in their representations.
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“object regions” are segmented from it as in section 4.4. Next, new positions for all objects

associated with markers are hypothesized by transforming the positions stored in the mark-

ers based on the wheel encoder values read since the last update. For each instantiated

marker, if its position falls within the agent’s current field of view, the marker’s Track rou-

tine is used to analyze the objects detected in the groundline. The results of the Track rou-

tine and the distance between each object and the marker’s stored position are used to create

an ordered list of the detected objects by likelihood that they are associated with the marker.

After all instantiated markers have run their Track routines, each object creates an ordered

list of markers by likelihood that it is “the” object associated with the marker, i.e. by dif-

ferences between hypothesized marker position and detected object position. These or-

dered lists of markers to objects and objects to markers are passed to a stable marriage

algorithm [40] that determines marker-object correspondences. If an object is selected as a

marker’s correspondent, then the position of the object is stored in marker’s Property field

and its found flag (as mention in the Confidence component of table 4.2) is set. If no object

is selected as the marker’s correspondent, then the hypothesized position becomes the new

stored position.

4.7.2.2 PA Loop Step 2: Instantiate Markers

After the instantiated markers have been updated, the uninstantiated markers can be

matched to objects not associated with instantiated markers. Using the transformed posi-

tions from step 1, the agent proceeds through a similar matching process, using the results

of the markers’ Locate functions instead of Track functions. This system is biased toward

markers that are already instantiated because an object will only be allowed to correspond

to one marker. In other words, because the instantiated markers get matched to the objects
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first, an instantiated marker could be matched to an object that is “supposed to” match an

uninstantiated marker. This bias is allowed because an object associated with an instantiat-

ed marker has presumably been tracked over time, while an object associated with an un-

instantiated marker is based on expectations of the higher layers. So, if the foveal image

region searched by the Track function contains a matching object, it is more likely that that

object corresponds to the instantiated marker than an uninstantiated marker. This is because

perceptual context, i.e. previously executions of the PA loop, has lead the Track function

to consider that image region, but the uninstantiated marker has yet to be grounded in per-

ception. Bruce values perception over memory or expectations.

4.7.2.3 PA Loop Step 3: Select/Execute Action

After updating the markers, the PA layer looks through its list of markers to see if any

have Action components with actions. It searches the list, in order, and executes the first

non-null Action component it finds. This Action component specifies some action to be

done on (or with respect to) the object associated with the marker. The PA layer has access

to an action database indexed by the Action component and the Index component. Each of

the “actions” in this database consists of one or more tasks executed in parallel (though the

implementation is psuedo-parallel).

4.7.3 Task Implementation

The leaf tasks in the decomposition of figure 8 are implemented as behaviors or skills,

called PA processes. These PA processes use the information in the marker containing the

action and possibly information in other markers in that marker’s dependency list. Several

tasks can be started by the Action component of a single marker. Table 4.3 shows the map-



132

ping between leaf tasks and marker Action/Index components.

This section discusses how the representation activates PA processes and how they use

the representation. The GoTo action on alandmark marker begins the move-toward-land-

mark and detect-obstacles processes. These processes share thelandmark marker and any

obstaclemarker that is created in order to move Bruce toward a specific landmark. Actu-

ally, Bruce’s navigation system is more complex than just these two processes and is de-

scribed fully in Appendix A, but those details are unimportant to the discussion here.

The look-at-region, chase-opponent and turn-back-to-occluder are each implemented by

single PA process that are activated by the various marker Actions indicated in table 4.3.

The implementation of each of these processes is unimportant as their effects have been

amply described in previous sections.

Drive-past-occluder is activated by a GoTo action on anintermediate-destination

marker. This marker comes from the TE (see next section) and its position and GoTo Ac-

tion parameter are based on the occluder’s position. The parameter to the GoTo action (re-

Table 4.3: Mapping of Tasks to Activating Marker Components

Task Name Action and Index Component of Activating Marker

move-toward-landmark GoTo onlandmark  marker

detect-obstacles GoTo on marker with any Index

look-at-region LookAt onregion marker

watch-for-opponent (uninstantiatedopponent marker)

tag-opponent Chase onopponent marker

choose-occluder (uninstantiatedoccluder marker)

turn-back-to-occluder AlignWith onoccluder marker

drive-past-occluder GoTo onintermediate-destination marker
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call that parameters are also stored in a marker’s Action component) indicate how close

Bruce needs to get to his destination. This parameter is based on the position in the occluder

marker and should be close enough to the intermediate-destination to make sure Bruce can

turn around and see the area behind the occluder. The GoTo action can be used again be-

cause the PA processes that implement GoTo can navigate Bruce to the position stored in

any marker. In general, there need not be separate PA processes for each task because, for

example, move-toward-landmark and drive-past-occluder can be implemented by the same

ones.

The watch-for-opponent and choose-occluder tasks do not need implementing PA pro-

cesses because they’re handled by step 2 of the PA layer’s main loop. Theoccludermarker

has a special Locate routine that allows it to be bound to any object near the position stored

in theopponentand theopponentLocate routine has a histogram for the truck or car op-

ponent. The parent tasks in the TE monitor for these markers to be instantiated.

4.7.4 Inter-layer Communication

This section describes how the markers are used to communicate with the tasks in the TE

layer. When a PA layer action completes, the PA processes associated with that action are

deactivated and a reference to the marker whose Action component initiated the processes

is passed to the TE. I say “a reference” merely to indicate that the marker is not deleted from

the PA layer, and the TE is alerted that it should look at the marker’s contents. The TE’s

response to information it reads in markers is usually to create new markers and pass them

to the PA layer. The Action components of these markers will cause the PA layer to begin

new actions. Now the TE layer may choose to delete the old marker from the PA layer,

based on the completed task. For example, alandmark marker whose GoTo action has
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been completed will be deleted, but anopponentmarker that has been instantiated will not.

When a GoTo or LookAt action completes (meaning a landmark has been reached or a

region has been looked at), the marker’s Action result component is set to COMPLETE and

the marker is passed to the search-for-opponent task at the TE layer. Based on the

landmark or region’s position relative to the agent and the current step in the search plan,

this TE process generates the nextlandmark or regionmarker and passes it to the PA layer.

If the opponentmarker is instantiated, and the agent is executing the tag-opponent PA

process, the opponent marker’s confidence is assessed based on the count of the number of

frames since the correspondent was found in the image. When this number grows too large,

the tag-opponent PA process exits, placing the TARGET-LOST result code in the Action

result slot of the marker and passes the marker to the TE chase-opponent task. This task

then transfers control to the look-behind-occluder task.

The look-behind-occluder task generates anoccluder marker that is passed to the PA.

When this marker is instantiated, the TE creates anintermediate-destinationmarker with

a GoTo action. This begins the drive-behind-occluder task. When that task completes, the

TE places an AlignWith action on theoccludermarker. Theoccludermarker is not deleted

from the PA layer after instantiation and so it maintained during drive-behind-occluder.

Turn-back-to-occluder uses the occluder position to turn back and face the object. If the op-

ponent marker is instantiated at any point while executing this task, the same transfer of

control to the chase-opponent task as before.
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Spot [77][79][80] was developed as core technology for several projects at the Texas Ro-

botics and Automation Center (TRACLabs) in Houston, TX and is shown in figure 13.

While he represents a building block for a number of applications, I will motivate this work

by describing Spot in the context of one of those applications.

Spot’s task is to be a robotic waiter. The imagined scenario is that Spot is at a cocktail

party, serving hors d’oeuvres to attendees. As a waiter, the robot should just get within a

certain distance of the person to be served and that person will take an hors d’oeuvre from

Figure 13. Spot

Chapter 5 Applying the Methodology
(Spot)

Everyone takes the limits of his own
vision for the limits of the world.

- Arthur Schopenhauer
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the robot if they wish. Since there will be multiple people at the party, Spot should keep

circulating, moving between guests and offering them food. Every 30 seconds, Spot should

check on a new patron.

Spot is a Real World Interface B-14 mobile base with a Directed Perception pan/tilt cam-

era platform mounted on top. Three cameras are mounted on the platform, two grey-scale

cameras and a central color camera. The B-14 has an onboard Pentium 120 processor that

controls the agent’s drive system (wheels and encoders) and the pan/tilt platform, as well

as performing the color image processing. An offboard Pentium 200 MMX machine pro-

vides stereo imaging using the grey-scale cameras. In addition, this robot has the 3T agent

architecture [10] available and was targeted toward that architecture.

5.1. Task Decomposition

What are the agent’s primitive skills?In order to determine the agent’s primitive skills,

we need to examine its capabilities more closely. First, the B-14 base and its supplied con-

trol software allow the programmer to set forward and rotation speeds for the wheel base.

Encoder values for forward and rotational movement are also accessible. Second, the pan/

tilt camera mount can have either of its axes controlled by positional control. Since move-

ments can be interrupted before they complete, velocity control can be achieved by setting

an axis’ velocity and sending that axis to its position limit in a given direction. The stereo

vision system was also available at the beginning of the design process and can track ob-

jects in 3 dimensions using virtual fovea known as “proximity spaces” [36][77]. This sys-

tem can receive requests to start tracking objects at given positions within the current

camera view and outputs the current positions of all tracked objects within the camera’s

view. These positions are relative to the center of the baseline between the two cameras and
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not to the body of the robot. The proximity space system can also output if an object is with-

in a space’s area and this can be used to determine if a space has lost the target it was track-

ing. A built-in “search” behavior allows “empty” proximity spaces to try and reacquire

their targets by randomly moving in a sphere around their target’s last known location. Fi-

nally, Spot has a color vision system that can detect skin toned hues in the image.

Spot provides several examples of how capabilities can be used to “build” primitive

skills. First, the agent can combine the wheel base’s motor and encoder control to navigate

to a location. Second, the pan/tilt mount (referred to as the “head”) can either smoothly

track targets or rapidly redirect the agent’s attention (i.e. its cameras). Finally, the agent can

monitor the location of entities using the proximity spaces and detect patrons with the skin

tone system.

Which tasks can be decomposed into sequential subtasks? Which can be decomposed into

parallel subtasks?As part of Spot’s task, he must identify potential patrons (humans) and

maneuver up to them. He should follow and track them for some time. Then he should

move to other patrons and try to serve them. After some time, he should return to patrons

he’s served before and see if they want anything more. Due to the fact that Spot will not be

able to keep all patrons he’s ever served in view at one time, he will have to remember the

positions of previously served patrons, so he can return to them. A task decomposition di-

agram is shown in figure 14 and a task flow diagram is shown in figure 15.
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Serve-patrons knows about all the people who have been or should be served and directs

switch-to-next-patron to change the agent’s attention to one of them. This occurs when the

look-at-patron moves the camera’s pan/tilt mount to view the requested patron and identi-

fies the patron in the image. Then, attend-to-patron moves the agent to within a certain dis-

tance of the patron while tracking them. Move-to-patron accomplishes the locomotion,

while watch-patron handles the tracking.

serve-patrons

attend-to-
patron

move-to-
patron

switch-to-
next-patron

look-at-
patron

watch-patron

Figure 14. Serve-Patrons Task Decomposition
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Figure 15. Serve-Patrons Task Flow
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5.2. Identify Task Roles

What are the task roles?Each task in Spot’s domain has apatron role for the person that

is being attended to or should be attended. The serve-patrons task has multiplepatron roles

and directs its subtasks to switch the agent’s attention between the associated patrons. Fig-

ure 16 shows the decomposition diagram of figure 14 with the task roles in bold.

What entities can fulfill those roles?The patrons in this domain are all humans. The

serve-patrons task has an initial idea of where the people to be served are located and so the

patron roles in the other tasks can be filled by the humans at those locations.

5.3. Representation of Task Roles

What role bindings are shared between tasks?All tasks havepatron roles and the tasks

are all designed to operate on the same human (once switch-to-next-patron begins using a

patron role, all other tasks except serve-patrons effect the same patron). Therefore, thepa-

tron role is shared between all tasks. The serve-patrons task has multiplepatron roles

(each bound to different patrons) and can switch which one is being used by all the other

tasks in the decomposition.

serve-patrons

attend-to-
patron

move-to-
patron

switch-to-
next-patron

look-at-
patron

watch-patron

Figure 16. Serve-Patrons Task Roles
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What information about the entity bound to a task role is needed for the task?In order to

move between patrons, the agent needs to know their positions in the environment. So, like

Bruce, position is the piece of information that needs to be computed for the entity associ-

ated with each task role. Spot’s stores these coordinates as a 3-tuple of distance from the

agent (depth), azimuth and elevation angle.

For what roles would it be useful to develop an explicit representation?Thepatron roles

of the serve-patrons task need representation because the associated humans cannot all be

in view at the same time. Likewise, thepatron role in the switch-to-next-patron and look-

at-patron tasks needs representation because the patron that the agent wants to switch its

attention to may be outside the current field-of-view.

The patron role of attend-to-patron and its subtasks is an interesting case because the

agent’s capabilities effect the answer. As mentioned in section 5.1, the agent has a proxim-

ity space vision system to track the entities associated with roles. Each proximity space is

a fovea covering a certain region of 3-D space. Remembering the fovea’s position is essen-

tial because perceptual computations are only performed on data within that region. This

information seems to require representation forpatron roles so that there are data struc-

tures where foveal positions can be stored. However, as stated in section 5.1, the proximity

space system tracks objects and so whatever state it needs to do this is stored internally.

This vision system is an agent capability given to the designer and does not require role rep-

resentation just to store perceptual data.

However, other tasks in the decomposition share thepatron role with attend-to-patron

(and its subtasks) and these other tasks have a representation for that role. Recall that the

proximity space system outputs positions of tracked objects within the camera image and
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so cannot remember positions outside the field of view. Even though the associated patron

might always be in view during the attend-to-patron task, this role should be represented

because that representation can be shared with serve-patrons and store the position that al-

lows serve-patrons to have switch-to-next-patron get the patron back into view to restart

attend-to-patron.

How often should the task role information be verified?As with Bruce, the roles in at-

tend-to-patron and switch-to-next-patron (and their subtasks) are used for effector control

and so must be verified at the rate of the effector control loop. However, thepatron roles

in the serve-patrons task cannot all be verified at effector control rates, since all the associ-

ated humans are probably not in view. This is not necessary though since only one of the

patrons will be attended to at a time. Spot only needs to verify the positions of patrons often

enough that they do not move too far from where he last saw them. In general, how often

Spot should check on a previous patron depends on many factors, such as total number of

patrons to be served and the time that persons can be expected to stand in a group and not

circulate. For Spot’s task, a 30 second time window between attending to a patron is part

of the task specification.

5.4. Perception

What information can be extracted from the environment to recognize the entities that

should be bound to the current task’s roles?Spot has two different visual systems at his

disposal. First, there is the proximity space system [36][79][80]. This system rapidly tracks

the contents of small, spherical volumes of the agent’s environment. These volumes con-

tain texture patterns that can be correlated between stereo and temporal image pairs. Recall

that the proximity space system is a “black box” that allows Spot to estimate the position



142

of the objects associated with task roles by “placing” proximity spaces around them and

reading the positions of those proximity spaces as they track their objects through time.

The interface to the proximity space system, as described in section 5.1, places some con-

straints on Spot’s design. First, there is the need to initialize proximity spaces. The system

can be told to start tracking an object at a certain location, but how does the agent determine

that location? Second the agent architecture must activate and deactivate proximity spaces

as the field of view moves to contain or not contain the object being tracked. Also, the prox-

imity space system reports locations in head-centric coordinates, so the agent must convert

these coordinates to the ego-centric coordinates it uses. Given the known field of view of

the cameras, the agent can deactivate any space whose ego-centric position in not within

the current field of view. The agent architecture also controls the head and so when tracking

an object, the agent must move the head to point the cameras at the location of a given prox-

imity space.

The unanswered question is, how do proximity spaces get initially “placed” on objects?

The fact that using one skill (the proximity space system) requires another skill (to initialize

the proximity spaces) was not anticipated, but effects the representation. Spot initializes

proximity spaces using the color vision system. Recall that Spot’s single color camera is

used to find humans, the objects associated with thepatron roles, by examining the image

for the red hues associated with skin tones. Areas of the image that respond to the “skin

tone” filter are matched to a constraint model of human head and arm positions. A success-

ful match means a human has been detected and a proximity space should be initialized at

that location. However, since there is only a single color camera, Spot cannot accurately

derive the 3-dimensional position of the human. Therefore, Spot must search for the correct
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“depth” to initialize the proximity space. Conceptually, the color vision system produces a

vector from the color camera through the center of the head of the detected human (the head

is used since facial “texture” works well for the proximity spaces1). The human could be at

any point along this vector. The proximity space system “slides” a proximity space along

this vector until it “lands” on the feature detected by the color vision system. “Slide” means

keeping two of the three proximity space coordinates fixed and slowly increasing the depth

coordinate (the distance between the agent and the proximity space). “Lands” refers to the

proximity space detecting a pattern it can track and beginning the tracking process2. The

proximity space begins tracking when it finds enough texture that it can match in the left

and right images that it believes its volume is occupied by some object. The proximity

space system will communicate the fact that a particular space has begun tracking to the

agent architecture. A more comprehensive description of the initialization process can be

found in [77][79]. Note that humans are PRs because only the agent’s given capabilities are

needed to maintain information about them (the proximity space system can track them fast

enough for effector control and the color vision system can initialize the proximity spaces).

How does the duration of various role/entity bindings effect the perception system?The

duration of thepatron role/entity bindings in this domain is the length of the execution of

Spot’s application. That is, once a human is bound to apatron role, the agent should main-

tain that binding for the length of the party. As with Bruce, the long binding duration allows

1. Strictly speaking, the proximity space system is not a black box since I use knowledge of its inner
workings (like initializing the proximity space on the human’s head because I know heads are very
“trackable” using the system’s technique). However, the proximity space system is a powerful capa-
bility given to the designer and still provides benefits to the agent’s architecture.
2. An additional constraint on the design of the agent head control is that when initializing the posi-
tion of a space, the agent must not move the head because the proximity space system will be moving
a new sphere through space trying to determine an object’s depth from the agent. If the head (and
thus the cameras move), the proximity space will not end up on the object that triggered the color
vision system.
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Spot to make use of the proximity space system’s tracking capability. Spot can foveate each

entity with a proximity space, and so the active proximity spaces form the foci of attention

for the agent.

However, the long binding duration does present problems with accurately maintaining

the collection ofpatron roles. Since all the patrons will not be in view at the same time,

there is a possibility that some patron will move, from the last place the agent saw them,

while the agent is attending to someone else. This is a general problem with a limited visual

resource. Spot is designed based on the domain knowledge that people at parties mostly

stand in groups and don’t move much. Provided that the interval between times when the

agent attempts to view a patron is sufficiently small, the patron should not move much from

their last known location. If they have moved somewhat, the proximity space system’s

built-in search behavior may be able to find them.

What level-of-detail (or resolution) is required in the information of the representation?

The attend-to-patron task requires the position (or estimated position) of the human patron

to operate. Since this task uses the information to control effectors in keeping track of dy-

namic, moving targets, it requires the most accurate information available, i.e. the data

from the proximity space system, not the encoders. The switch-to-next-patron task could

also benefit from an accurate patron position estimate to redirect the agent’s cameras so the

proximity space system can reacquire the patron. However, since the patron is often not vis-

ible for some time, the position of thepatron role in switch-to-next-patron is allowed to be

less accurate, i.e. encoder based.
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5.5. Communication

What information is important in inter-task relationships?In order to answer this ques-

tion, let’s begin with a review of the task flow depicted in figure 15a. The serve-patrons

task has a collection ofpatron representations. It passes one of them to switch-to-next-pa-

tron, which redirects the agent’s attention to the human associated with that role. Control

passes to attend-to-patron, whose subtasks cause the agent to perform the normal tracking

and following that Spot uses for attention. At some point, serve-patrons will stop the attend-

to-patron task from following the current patron and select a new patron. Serve-patrons

passes the newpatron role to switch-to-next-patron and the cycle repeats.

Clearly, the information moved between all tasks includes the position of patrons. Since

the tasks all sharepatron roles, they exchange the position of patrons.

In this domain, all patrons are humans and they are all identified (skin tone detection) and

tracked (proximity spaces) in the same manner. This means that no perceptual information

needs to be communicated between tasks, since position is the only (perceivable) dynami-

cally changing data that distinguishes entities in this domain. While the proximity space

system is given to the designer, and so all information needed to track is held within it and

not in the tasks, the tasks could exchange information about how to initialize the proximity

space locations. We can imagine a more complex domain in which particular patrons need

to be attended to and we can distinguish them by clothing. A perceptual description of their

clothing could then be passed from serve-patrons to switch-to-next-patron to allow it to ini-

tialize the proximity space location for attend-to-patron. We can also imagine attend-to-pa-

tron periodically checking the proximity space for these perceptual cues to verify that the

space is still tracking the correct entity.
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Another piece of information that must be communicated between tasks is the confidence

the agent has in the position stored in its role representations. The confidence can be based

on either the time since the agent has had the associated proximity space in view (and hence

been tracking it) or whether or not the proximity space system says the given proximity

space has lost its target (implying the space should be in view). If the agent’s confidence in

a role is low because the agent has not seen the associated patron for too long, switch-to-

next-patron should be directed to bring the patron into view). If a role’s proximity space

has lost its associated entity, then watch-patron and move-to-patron stop controlling effec-

tors based on the space’s location. The proximity space system itself tries to reacquire its

target, so attend-to-patron’s subtasks just wait.

When switch-to-next-patron has located a human with the color vision system and is in

the process of searching for it with the proximity space, serve-patrons should not ask

switch-to-next-patron to try and acquire a new target. Depending on the distance from the

human to the agent, the proximity space initialization could take several seconds and so the

agent’s confidence in the role is high at this time. This fact is communicated to serve-pa-

trons to keep the attentive focus on this human until the initialization is complete.

5.6. Architecture

How should the agent’s tasks be laid out in its architecture?The first step is to identify

the PA layer tasks. The leaf tasks in figure 14 are PA layer tasks because they control the

agent’s effectors and bind theirpatron roles to PRs. Attend-to-patron and switch-to-next-

patron are also PA layer tasks because they merely activate their subtasks and pass them

the role that they receive from serve-patrons. The domain, as described here, specifies no

means of selecting among patrons except based on the agent’s confidence in their positions.
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This means that serve-patrons can also be a PA layer task because it chooses thepatron

role to send to the other tasks without any significant inference, i.e. just based on the time

since the patron was last seen. Since all Spot’s tasks can be placed in the PA layer, there is

no need for a multi-layered architecture. However, since the 3T architecture [10] is the giv-

en target architecture for this robot, I make use of its RAP layer (see section 5.7).

5.7. Spot Implementation

This section describes the PA layer representation that results from the decisions made

in the previous sections. I also discuss the operation of the agent architecture to show how

representation is an integral part. Since Spot uses the 3T architecture [10], I adopt its con-

ventions of referring to the PA layer as the “skill layer” and the tasks that execute there as

“skills”.

5.7.1 Spot’s Representation

The agent’s tasks are all in the skill layer and they all use the variouspatron roles. Each

patron role is associated with a marker data structure, similar to those used in Bruce. This

data structure contains the same Index, Property, Identify, Action and Confidence compo-

nents. The contents of the marker components are summarized in table 5.1.

Table 5.1: Components of Spot’s Markers

Component
Name

Component Contents

Index A task dependent identifier for the associated object’s role in the
current task. For Spot’s relatively simple domain, this is always set to
patron.

Property The 3-dimensional, ego-centric position of the associated patron.
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5.7.2 Skill Layer Main Loop

The skill layer main loop begins by updating the markers. The positions of all markers

are transformed, based on encoder values read since the last time through the loop. Any

markers with positions inside the field of view have the position of their proximity space

stored in their Property component. Proximity spaces whose markers indicate that the as-

sociated entity should be in view are activated while those whose entities should have gone

out of view are deactivated. The Confidence timers for markers with positions outside the

field of view start (or continue) counting down and the timers for markers with positions

Identify 1) Locate routine that handles skin tone model matching
2) ID for marker’s proximity space in proximity space system (Spot

reads data from the proximity space system over a network in the
form of <ID, coordinate> pairs. Coordinates of a proximity space
are placed in the Property component of the correct marker based on
this ID)

Action Requests for activation of skills: possible values
• GoToAndTrack - activates move-to-patron and watch-patron
• LookAt - activates switch-to-next patron

Confidence 1) Instantiation state: possible values
• instantiated - marker is associated with an object and a proximity

space is (presumably) tracking that object
• uninstantiated - marker is not associated with an object and the

agent is running the marker’s Locate routine
• partially instantiated - object has been detected by the marker’s

Locate routine and a proximity space is searching along the
generated vector for the object

2) Timer that counts time since proximity space was last in the field of
view (when it reaches 30 seconds, switch-to-patron will try to
reacquire this marker)

3) Bit holding whether or not the proximity space system is tracking its
target successfully (recall this is part of the proximity space
system’s output)

Table 5.1: Components of Spot’s Markers

Component
Name

Component Contents
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inside the field of view are reset to the highest value.

Next, any uninstantiated marker whose associated entity should be in view will have its

Locate routine run. If a candidate location is detected, the marker’s proximity space will be

moved along the vector generated by the Locate routine. The instantiation state of such a

marker is set to partially instantiated to keep the NeckControl skill from redirecting the

cameras. When the proximity space lands on its target (i.e. no longer reports its occupancy

as below the “lost” threshold), the marker is (fully) instantiated. If the proximity space

reaches the agent’s maximum vergable depth, failure is reported to the agent architecture

and the marker remains uninstantiated.

5.7.3 PA Layer Skills

The data stored in the markers drives the skill layer of the agent architecture. The original

skill layer of 3T responds to skill activation and deactivation requests from the RAP layer.

I have modified the skill layer main loop to handle the role representation used by Spot, and

so now markers are maintained before the normal operation of the skill layer begins, i.e.

running active skills.

Spot has two active skills called GoTo and NeckControl. The operation of these two

skills is driven by the Property and Confidence values of the markers. GoTo controls the

agent’s wheels to keep Spot within a fixed distance of the human he is attending, i.e. the

one whose marker has a GoToAndTrack action on it. On each run of the GoTo skill, it as-

sesses which of the humans associated withpatron markers Spot should attend, based on

the markers’ Confidence components. In this way, GoTo performs the function of the

serve-patrons task. If the marker whose human should be attended is not the marker cur-

rently being tracked by the GoTo skill, the skill the newpatron marker’s Action compo-
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nent to LookAt. However, if the current marker is in the partially instantiated state, the

GoTo skill will not set another marker’s Action component to LookAt until either the mark-

er is (fully) instantiated or the proximity space has been moved to maximum depth and the

proximity space system reports that no trackable texture was found there.

NeckControl handles both the look-at-patron and watch-patron tasks. If a marker has a

LookAt action on it, NeckControl will redirect the agent’s view to that marker’s position.

Otherwise, NeckControl will track the location of the proximity space associated with the

marker that has the GoToAndTrack action on it. Once a marker’s position has been brought

into view by a LookAt action, NeckControl sets the marker’s Action component to Go-

ToAndTrack.

The final question is how skill layer execution begins. The RAP layer [28] of 3T is used

to activate the GoTo and NeckControl skills and placepatron markers into the skill layer.

The demonstration application for Spot begins with the RAP system communicating with

the skill layer by passing it twopatron markers with estimates of the positions of two peo-

ple. One of these markers has a LookAt action on it, allowing the skill layer to execute the

agent’s task from there.

5.7.4 Summary

Spot’s architecture operates by manipulating markers. Two skills accomplish the agent’s

task by communicating through this shared representation. The most important character-

istic of Spot’s representation is that, by virtue of its use as a communication medium, it is

able to integrate multiple sensory systems into an existing agent architecture.
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Marcus [78] is an agent designed to build structures from blocks scattered throughout our

lab. He must navigate around, collect blocks, move them to a specific site and assemble

them. Marcus is given plans to build structures and in this chapter, he is designed in the con-

text of building an arch.

Marcus is an augmented Nomadic Technologies model 150 robot (see figure 17). He pos-

sesses a 3-wheel drive base with encoders, an independently (from the base) rotatable tur-

ret, and a ring of 16 sonar sensors. He also has a color camera on, a pan/tilt mechanism,

mounted on his top deck. All computation is performed onboard by a Pentium Pro 200 sys-

tem running Linux. Marcus has routines to perform two basic image processing operations,

Figure 17. Marcus and the Arch in our Lab

Chapter 6 Applying the Methodology
(Marcus)

Never confuse motion with action.
- Ben Franklin
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edge detection and blob coloring of image regions with specific RGB values. The results

of the image processing are displayed to the user on a laptop (carried on the top deck) with

a network connection to the internal computer. Marcus’ environment is the computer vision

laboratory in Olsson Hall 227 at the University of Virginia and the nearby hallway. Various

colored blocks, are placed throughout this environment and a map of their positions is made

available to Marcus. An assembly site is also specified on the map. The map is shown in

figure 18. The arrows represent approximate paths that Marcus must travel in building the

arch and the numbers represent the order in which these paths are followed. Marcus’ start-

ing position and the assembly site are represented by✘s and the various blocks are repre-

sented by colored rectangles.

Figure 18. Marcus’ Environment - A Portion of Olsson Hall 227
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6.1. Task Decomposition

What are the agent’s primitive skills?Marcus executes a plan to build an archway using

a variety of primitive skills. Marcus can control his camera mount to pan/tilt to any position

in approximately the hemisphere in front of his camera. Marcus’ independently rotatable

wheel base and turret decouple that hemisphere from being in the direction of motion, i.e.

the mount itself can be rotated, changing the positions that the pan/tilt axis can move the

camera to see. Marcus possesses skills to navigate to a location (implicitly orienting the

base and possibly the turret), rotate the base and/or turret to face a location, and realign the

camera’s mount point with the wheel’s “forward” direction. He can also use a speech syn-

thesizer to give directions to his human assistant. Marcus does not have any grasping effec-

tor and so, in this discussion, any operations that require such an effector (e.g. picking

things up, putting things down) are performed by the author. In addition, an area of his top

deck is designated as the “toolbelt”. He can both carry and move his camera to view objects

placed there. Finally, he can monitor his sonars by reading in current range data.

Although not typically thought of as a skill, the agent also possesses an assembly plan-

ner1. This planner generates assembly instructions for structures that the agent is to build.

The remainder of the design process is involved in the creation of an agent that can execute

those plans.

Which tasks can be decomposed into sequential subtasks? Which can be decomposed into

parallel subtasks?In order to analyze Marcus’ task, we must examine the plan that Marcus

executes to build the arch of figure 17. The task decomposition diagrams of figures 19 and

20 show the “top-level” steps in the arch building plan. Each of these steps can be further

1. This thesis is not concerned with planning or the creation of planners. The planning capabilities
of Marcus are limited in that the “planner” outputs a single plan, to build and arch.
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decomposed into collections of subtasks, as shown in figures 21 - 23. The notation under

each top-level plan step task indicates the figure that contains its subtask decomposition

(more details on this in section 6.2). Notice that a number of plan step tasks use the same

subtask decomposition because the tasks are trying to accomplish (very nearly) the same

goals. Task flow diagrams for all tasks can be found in Appendix B, figures 29 - 32.

The remainder of this section describes the task decompositions and task flows. Since the

arch building plan (figures 19 and 20) is given at the start of the design process, its decom-

position and flow are pre-defined. Table 6.1 provides a high-level summary of the tasks

Marcus must perform to build the arch. The “At Location” column refers to Marcus being

at the end of the indicated travel path number shown in figure 18. Since figure 18 does not

show all the tasks Marcus needs to do at a location, there are multiple table rows for each

location.

Table 6.1: Marcus Top-Level Decomposition Summary

At Location Task Performed

start go to the purple block (path #1)

1 search for base block, which can be either yellow or green

go to base block (path #2)

2 pick up base block

search for fastener block

go to fastener block (path #3)

3 put fastener block in toolbelt

search for assembly site (path #4 - doesn’t typically have to move to get
there)

4 put down base block

go to top block (path #5)



155

Since this plan is a linear series of steps, no flow diagrams are given. Some interesting

decisions have been designed into this plan based on known capabilities of Marcus. For ex-

5 pick up top block

go to assembly site (path #6)

6 stack top block on base block

go to fastener block near door (path #7)

7 turn to view door

go through door (path #8)

8 search for block stack in hallway

go to block stack (path #9)

9 pick up stack

go through door back into lab (path #10)

10 search for stack previously built at assembly site

go to that stack (path #11)

11 determine the orientation (pose) of the stack to determine agent’s relative
position

put down stack from hallway at position relative to stack already at site

search for spanning block

go to spanning block (path #12)

12 pick up spanning block

search for fastener near door

go to fastener near door (path #13)

13 turn to face stacks at assembly site

go to assembly site (path #14)

14 determine pose of first stack built at assembly site to determine agent’s
position and thus the position of the second stack

span first stack and second stack with the spanning block

Table 6.1: Marcus Top-Level Decomposition Summary

At Location Task Performed
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ample, Marcus gets to the base block (at the end of path #2) by first moving to the purple

block at the end of path #1. This is because the base block is not visible from Marcus’ start-

ing point and it is easier to navigate around the furniture by using the other block as a way-

point, than to use obstacle avoidance to get to a goal that the agent cannot see. In a similar

manner when going to the door that leads into the hallway or when going back to the as-

sembly site after getting the spanning block, Marcus is first instructed to go to the fastener

block near the doorway. This is due to the “detectability” of landmarks in both cases. Mar-

cus’ perceptual capabilities make it easier to get to his final destination by moving to the

easily detectable red fastener block and then looking in the nearby area for either the door

or the stack of blocks, than to try and detect the final destination from far away. A final

point is that Marcus picks up the fastener block at the end of path #3 because he needs it to

build the first stack at the assembly site. Part of the definition of Marcus’ domain is that

when stacks are assembled, they must be “held together” with a fastener.

Each of the plan steps in table 6.1 is decomposed into subtasks as shown in figures 21 -

23. Since many plan steps represent the same actions in different parts of the environment,

I describe the decomposition of the plan steps in general terms and, in later sections, I dis-

cuss how these subtasks are made specific to the context in which they are executed.

The plan steps can be broadly classified into four categories, locomotion, manipulation,

building and dealing with doors. The tasks in each of these categories are described in ta-

bles 6.2 - 6.5.
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Table 6.2: Locomotion Task Descriptions

Task Name Description

go-to-destination Moves the agent toward a specific destination.
Consists of three parallel subtasks:

• navigate-to-destination→ moves agent’s wheels toward its
destination

• look-at-destination→ turns camera to face destination
• avoid-obstacles→ seizes navigation control to steer around

objects blocking agent’s straight-line path to its destination

rotate-to-destination Turns agent’s wheel base & turret to face a particular location.:
Consists of one subtask:

• turn-to-destination→ rotates agent’s body to face the
destination

search-for-item Used to find an item when it is not detected at where Marcus
estimated it would be.
Consists of two sequential subtasks:

• turn-to-destination→ rotates agent to face position where
item should be

• look-at-item→ moves camera to several fixed positions
relative to agent’s turret to see if the item can be detected

Table 6.3: Manipulation Task Descriptions

Task Name Task Description

pick-up-item Picks an item up so the agent can carry it somewhere.
Consists of one subtask followed by two parallel subtasks:

• move-to-good-item-view→ moves the agent into a position
where the item can be viewed well, often this means backing
up. This is needed because even though Marcus does not
actually manipulate objects, he needs to visually determine
when manipulations have been completed.

• use-pick-up-effector→ asks human assistant to pick up the
item (draws mark on agent’s laptop screen to indicate item)

• watch-for-item-pick-up→ monitors for the item to be
removed from view. Since this is a situated task (see section
1.3.2) removal of the item from view is assumed to be due to
the item having been picked up.
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One note about the decomposition of pick-up-item and several other tasks is that move-

to-good-item-view (and its variants in other tasks) is necessary because Marcus has a single

camera and so must determine distances from some non-stereo cues. In this case, I use the

same groundplane constraints that Bruce used. Therefore, it is important to see where an

put-down-item Puts a held item at a certain location.
Consists of one subtask followed by two parallel subtasks:

• move-to-good-putdownloc-view→ moves the agent into a
position where the location for the item to be put down can be
viewed

• use-put-down-effector→ asks human assistant to put down
the item (draw a mark on the agent’s laptop screen to indicate
the desired position to the human)

• watch-for-item-put-down→ monitors for the item to appear in
the view at a specified position

put-item-in-toolbelt Picks up an item and places it on the agent’s top-deck in the loca-
tion designated as the toolbelt.
Consists of one subtask, then two parallel subtasks, and then one
more subtask:

• move-to-good-item-view→ same as in pick-up-item
• use-pick-up-effector→ asks human assistant to put the item in

the “toolbelt position” on the robot’s top deck (draws mark on
agent’s laptop screen to indicate item)

• watch-for-item-pick-up→ same as in pick-up-item
• check-toolbelt-for-item→ after watch-for-item-pick-up

determines that the item has been removed from view, this
task looks at the toolbelt position to see if the item has been
placed there

put-down-item1-
relative-to-item2

Places an object at a position specified in the coordinate system
of another object. Determines the position to put down item1 as a
function of the position of item2, then uses put-down-item to
accomplish that.

determine-item-
pose

Determines the orientation of an object relative to the agent.
Consists of two sequential subtasks:

• move-to-good-item-view→ same as pick-up-item
• calculate-item-pose→ determines the orientation of the item

relative to a canonical orientation

Table 6.3: Manipulation Task Descriptions

Task Name Task Description
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item meets the floor because it is that point in the image that should be used to determine

the distance to a item (and thus whether or not it’s where Marcus thinks it should be). This

may necessitate moving the wheels, possibly backing up.

Table 6.4: Building Task Descriptions

Task Name Task Description

stack-item1-on-item2 Used to create towers of blocks.
Consists of a subtask followed by two parallel subtasks:

• move-to-good-item2-view→ same as in pick-up-item
• use-stack-effector→ asks the human assistant to put

item1 on top of item2 (draws mark on agent’s laptop
screen to indicate what is item2)

• watch-for-item1-on-item2→ detects when item1 has
been placed on top of item2

span-item1-and-item2-
with-spanner

Places an object across the tops of two other objects.
Consists of five sequential subtasks:

• find-base-of-item1→ determines the position of the
base of item1

• find-topblock1-of-item1→ determines the position of
the block on top of construction item1

• find-base-of-item2→ determines the position of the
base of item2

• find-topblock2-of-item2→ determines the position of
the block on top of construction item2

• span-topblock1-and-topblock2-with-spanner→ see
below

span-topblock1-and-
topblock2-with-spanner

(Note: this is a subtask of span-item1-and-item2-with-span-
ner)
Consists of a subtask followed by two parallel subtasks

• move-to-good-topblock1-and-topblock2-view→ moves
to a position where both topblock1 and topblock2 can
seen in the same camera image

• use-spanning-effector→ ask the human to place the
spanning block across topblock1 and topblock2

• watch-for-spanner-to-cross-topblock1-and-topblock2→
detects when the spanning block is both adjacent to, and
above, both the topblocks
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Span-item1-and-item2-with-spanner is one of the more complicated tasks that Marcus

must perform. The first stage involves finding the appropriate parts of item1 and item2 to

be spanned. In Marcus’ domain, item1 and item2 are constructions of one or more blocks

and so the parts he is interested in finding are the “top” blocks of each item. This task de-

fines “spanning” as crossing the two top blocks with a third construction called the spanner.

In order to find the top blocks, Marcus executes the task of find-base-of-item1 before find-

topblock1-of-item1 and similarly find-base-of-item2 before find-topblock2-of-item2. The

reader should not be confused by the use of names like find-base-of-item and find-top-

block-of-item. What constitutes a “base” and a “top” block is specific to the kind of struc-

ture under consideration and them these names do not imply that these blocks are

necessarily the lowest and highest blocks of the structure. Marcus spans structures that are

towers and so establishing the position of the tower base allows accurate positioning of the

camera to find the top (due to the groundplane constraint). However, if the structure was a

collection of blocks placed side by side, the “top” of this structure would be whichever

block was to be connected to the spanner and the “base” would be any block that aided in

determining which block was the “top” one.
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Table 6.5: Door Task Descriptions

Task Name Task Description

find-and-go-through-
door

Moves the agent from the lab into the hallway.
Consists of two sequential subtask:

• move-to-door→ determines if there is a door in view and
moves the agent through it if so. If not, control transfers to
rotate-to-view-door.

• rotate-to-view-door→ changes the agent view by rotating
the body to a set of positions around the door’s estimated
position. Transfers control back to move-to-door after
rotating. Once all possible orientations have been tried, this
task transfers control back to find-and-go-through-door
reporting failure.

move-to-door (Note: this is a subtask of find-and-go-through-door)
Consists of a subtask followed by two parallel subtasks:

• find-door→ searches the image for a door. If one is found,
control transfers to the following subtasks, otherwise it goes
to rotate-to-view-door

• track-baseboard→ monitors the door’s position (via the
hallway baseboard - see section 6.4)

• move-through-door→ drive the agent through the door

rotate-to-view-door (Note: this is a subtask of find-and-go-through-door)
Consists of a single subtask:

• rotate-to-destination→ discussed in table 6.2

find-and-go-through-
hall-door

Moves the agent from the hallway to the lab.
Consists of 5 sequential subtasks:

• align-with-hallway→ rotates the agent until its camera and
wheels are facing the wall that the door to go through is on

• center-in-hallway→ moves forward/backward until the
agent is in the middle of the hallway (still facing the wall)

• rotate-base-toward-hall-door→ turns the wheel base (but
not the turret on which the camera is mounted) to be
perpendicular to the wall the agent is facing and in the
direction of the door

• find-hall-door→ moves agent down the hall, toward the
door, scanning the wall for the door frame

• align-base-and-turret→ moves the wheel base to point
through the door frame

• go-through-hall-door→ moves the agent through the door
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The final class of tasks deals with moving in and out of doors in Marcus’ domain. Two

aspects of the decompositions of these tasks were not initially thought to be necessary.

First, the fact that separate tasks are needed to move the agent through the same door from

align-with-hallway (Note: this is a subtask of find-and-go-through-hall-door)
Consists of two parallel subtasks

• rotate-toward-hall-door→ turns the agent in the direction of
the wall that the door is on

• watch-for-baseboard-alignment→ detects when the hallway
baseboard is horizontal in the image (meaning the agent is
roughly facing straight toward the wall)

center-in-hallway (Note: this is a subtask of find-and-go-through-hall-door)
Consists of a single subtask

• move-until-equidistant-from-walls→ uses the agent’s sonar
to determine the position of the wall in front of and behind
the agent and moves until their positions are roughly
equidistant

rotate-base-toward-
hall-door

(Note: this is a subtask of find-and-go-through-hall-door)
Consists of a single subtask

• rotate-base-to-item→ turns the agent’s wheel base to align
with item without turning the turret (this task also has a
subtask called turn-base-to-item, which actually handles the
moving)

find-hall-door (Note: this is a subtask of find-and-go-through-hall-door)
Consists of two parallel subtasks followed by a single subtask

• watch-for-hall-door→ monitors the wall for the door frame
• move-toward-hall-door→ moves the agent along the hall

toward the door’s estimated position. Also attempts to keep
the agent a certain distance from the wall (to help him see
the door)

• open-hall-door-if-necessary→ checks if the door is closed
and if so, asks the human assistant to open it. Also monitors
for when the door has been opened.

go-through-hall-door (Note: this is a subtask of find-and-go-through-hall-door)
Consists of a single subtask

• move-through-door→ same as move-to-door in find-and-
go-through-door

Table 6.5: Door Task Descriptions

Task Name Task Description
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different sides was not anticipated. This issue is one of situated routines, specifically situ-

ated perception. The door appears different from different sides because of factors such as

the agent having to detect the door at closer range in the hallway than in the lab and the

unpredictable nature of what will be visible through an open door from the hallway as op-

posed to the lab. More details on door detection are provided in section 6.4. The important

point is that intuitively similar tasks can be executed in different situations and therefore

need to take account/advantage of those situations with different task decompositions.

The second unanticipated aspect of the door task decompositions is in the find-and-go-

through-door task. The agent alternates between trying to detect (and then move through)

the door and rotating to a new position to change the agent’s view of the door. This strategy

was not thought necessary until the door detection routines were created (see section 6.4).

6.2. Identify Task Roles

What are the task roles?Marcus’ arch building task is more complex than the tasks of

the previous agents and so the task roles are also more complex. Still, the roles are those

entities that effect the agent’s actions during a task. While the usual task role diagrams ap-

pear in Appendix B, figures 34 - 38, in this section I discuss the reasoning behind them. The

remainder of this section describes the roles in the tasks of figures 21 - 23 and then the roles

in the plan step tasks.

In general, the reason that any particular task has those roles is based on the definition of

roles (see section 3.4.2) and the belief that actions take place on objects (see section 1.2.3).

In other words, a task has its roles because the objects associated with those roles are the

entities that effect the outcome of that task. For example, the go-to-destination task of fig-
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ure 21a maneuvers the agent toward a specific location in the environment.Destination is

a role because the location of the destination determines the goal point toward which the

agent servos. Likewise,destination is a role in the navigate-to-destination and look-at-des-

tination subtasks because these tasks handle the wheel and camera control to move toward,

and look, at the destination, respectively. The avoid-obstacles subtask hasobstacleand

destination roles because obstacles effect the agent’s movement toward its destination.

This task is designated to handle steering around an obstacle, which it does based on the

position of the destination.

Similar logic, i.e. thatX is a role because X effects the actions taken by a task, applies to

all the roles in all Marcus’ tasks and so I will not reiterate the argument for each. Instead, I

will discuss those tasks that have roles that are not obvious from the task name or that have

interesting relationships between their roles or between their roles and the roles of their par-

ent task.

Some roles are not obvious from the name of their task. For example, the find-topblock1-

of-item1 and find-topblock2-of-item2 tasks have not onlytopblock1 (or topblock2) and

item1 (or item2) roles, but abaserole as well. The base is used to determine where to look

for the topblock, based on the kind of structure with whichitem is associated. Another ex-

ample is the many use-X-effector tasks, where X can be pick-up, put-down, spanning,

stack, etc. These tasks ask for human assistance to perform various jobs and they need to

know the various portions of the environment to refer to in their request. So, the use-pick-

up-effector task has anitem role (the sameitem in the pick-up-item task) so it can know

enough about the item to ask the human to, for example “Pick up the purple block” and

draw a mark on the appropriate point in the image on the laptop screen.
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The put-down tasks (put-down-item and put-down-item1-relative-to-item2) haveput-

downloc roles that denote the position where the item should be placed. As we’ll see short-

ly, these tasks need to have this role to receive instructions from the plan steps and share it

with their subtasks. In the same vein, the align-with-hallway task has ahall-door role be-

cause its rotate-toward-hall-door subtask needs to be told the direction of the hall-door and

this information ultimately comes from a plan step task.

The tasks that move the agent through doors (go-through-hall-door and move-through-

door in figure 23a and find-door and move-through-door in figure 23b) havedestination

roles not mentioned in the task name. This is because each task is concerned with moving

the agent through the door, to a specific destination. In the case of the find-door task, it must

bind thedestination role to an object so that move-through-door can operate.

Another important aspect of roles in Marcus’ tasks is that certain roles are dependent on

other roles. It is important to notice these instances because any actions that effect the entity

associated with one role effect the entity associated with the other dependent roles. This

means that if the agent receives information about one entity, it may need to change its in-

formation about other entities to reflect this. For example, the find-base-of-item1 and find-

base-of-item2 subtasks of span-item1-and-item2-with-spanner havebaseand eitheritem1

or item2 roles. The interesting aspect of this is that the base is a sub-component of item1

or item2. In other words, ifitem1 were associated with a stack of blocks, thenbasewould

be associated with the block on the bottom. Ifitem1 were associated with a single block,

base would just be that block. Similarly, thetopblock1 and topblock2 roles of find-

topblock1-of-item1 and find-topblock2-of-item2 are associated with different sub-compo-

nents of item1 and item2, namely the topmost block. There is an epistemological link be-
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tween these roles because anything that happens to the bottom or top block of a structure

effects the structure as a whole (given that the blocks are connected).

Other role dependencies exist between subtasks of the find-and-go-through-hall-door

task of figure 23a. A dependency exists between thehallway role of the center-in-hallway

task and thefront-wall andback-wall roles of its move-until-equidistant-from-walls sub-

task. The front-wall and back-wall are sub-components of the hallway, i.e. they are the two

walls that define the hallway. A similar dependency exists between thebaseboardrole of

watch-for-baseboard-alignment and thehallway role of its parent task, align-with-hallway.

The angle of the baseboard tells the agent something about the hallway (its alignment rel-

ative to the agent). These dependencies represent the same sort of link between these roles

as exists betweenitem1 andbaseabove. That is, information about the front-wall, back-

wall or baseboard effects information about the hallway. Also, there is a dependency be-

tween thehall-door role and the other roles in the find-hall-door subtask (see figure 38a in

Appendix B). This is due to Marcus’ perceptual capabilities and is discussed in section 6.4.

For put-down-item1-relative-to-item2, theputdownloc role must be computed based on

configuration information for a plan step (where to put item1 in relation to item2) and the

item2 role. This meansputdownloc is dependent onitem2. However, nothing effects the

putdownloc (its just an empty spot at the assembly site) and so no information about it can

effect item2. This creates a situation in which the roles are not mutually dependent.Put-

downloc is dependent onitem2, but item2 is not dependent onputdownloc.

The final interesting issue about roles in the tasks in figure 21 - 23 is the roles that some

tasks donothave. This is important because sometimes domain knowledge can be used in

place of roles. For example, the put-item-in-toolbelt task does not have atoolbelt role. The
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toolbelt is special because it exists on the agent’s person and therefore its location is always

known. Also, the put-item-in-toolbelt task cannot put the item in any other location, just the

one pre-defined as the toolbelt. Since there is a single toolbelt and no need to know infor-

mation about an object “out” in the world, there are no dynamic toolbelt properties to main-

tain (except perhaps its contents). Therefore, this task does not have atoolbelt role even

though the toolbelt effects the task. The toolbelt merely represents a piece of domain

knowledge that can be encoded into the task. Similarly, the align-base-and-turret task (of

the find-and-go-through-hall-door task) has no roles. This task realigns the wheel base and

the turret so that the wheels are pointing in the same direction as the camera. Since roles

are aspects of theenvironmentthat influence the current task and this task only requires

knowledge of the agent’s own body (which can always be sensed) no roles are required.

At this point, the roles in all tasks except the plan step tasks (figures 19 and 20) have been

explained. The roles in the plan steps are straight-forward and are shown in figures 34 and

35 in Appendix B. The reason that these tasks have those roles is the same reason that most

roles of tasks of figures 21 - 23 have their roles, because those roles are the entities in the

environment that the tasks are designed to effect.

What entities can fulfill those roles?The answer to this question strongly impacts the

plan steps of figures 19 and 20. The roles in these tasks must be bound to specific objects2

in the environment in order to correctly execute the plan. For example, the block role in the

go-to-block task of figure 19a (the first step in the plan) should be filled by the purple block

2. Even though correct execution of the plan requires that the role be bound to one specific object,
any perceptual routine written to recognize that object will actually recognize a set of objects. The
size of this set depends on the perceptual routine and the environment. It is important to remember
that it is possible for Marcus to bind a role to an “incorrect” object even when only one object in the
environment can correctly fill the role. Recovery from such errors can be arbitrarily difficult depend-
ing on how far along the agent gets before the error begins to effect the plan’s execution. This doc-
ument does not address error recovery, but rather the design of representation systems.
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at the end of path #1 in figure 18.

The remainder of this section is divided into two parts. The first part provides a table that

describes the objects that are meant to fulfill roles in the plan steps. This table refers to the

path numbers in the environment diagram of figure 18. The second part discusses objects

that can fill the roles in the “plan implementation” tasks of figures 21 - 23. Section 6.2.1

looks at the roles in these tasks in light of the agent’s capabilities and provides insight into

the effect that roles in the plan step tasks may have on the design of the implementing tasks.

Table 6.6: Entities in the Environment that Fulfill Roles in Plan Step Tasks

Plan Step Task Name (role in bold) Entity that Fulfills Role

go-to-block purple block at end of path #1

search-for-base-block block at end of path #2 (but see below)

go-to-base-block same as previous

pick-up-base-block same as previous

search-for-fastener red block at end of path #3

go-to-fastener same as previous

put-fastener-in-toolbelt same as previous

search-for-assembly-site position of✘ at end of path #4

put-down-base-block block picked up from end of path #2

assembly-site role position of✘ at end of path #4

go-to-top-block purple block at end of path #5

pick-up-top-block same as previous

go-to-assembly-site base-block now at assembly site

stack-top-block-on-base-block
(the stack thus created is now referred to as
the stack at the assembly site or the first stack
at the assembly site)

top-block = purple block from end of
path #5

base-block = yellow block at assem-
bly site

go-to-fastener red block at end of path #7

rotate-to-door door that path #8 goes through
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The roles in the plan step tasks should be filled by specific objects in the environment.

The exception is thebase-blockrole that is used starting with the second step in the plan.

This role can be bound to either a yellow or a green block and even though the map of figure

18 indicates that a yellow block is at the end of path #2, Marcus does not have this infor-

go-through-door same as previous

search-for-stack purple and green block stack at end of
path #9

go-to-stack same as previous

pick-up-stack same as previous

go-through-hall-door door that path #10 goes through

search-for-stack stack now at assembly site

go-to-stack same as previous

determine-stacks-pose same as previous

put-down-stack1-relative-to-stack2 stack1 = stack picked up in hallway

stack2 = same as previous

search-for-spanning-block green block at end of path #12

go-to-spanning-block same as previous

pick-up-spanning-block same as previous

search-for-fastener red block at end of path #13

go-to-fastener same as previous

rotate-to-stack first stack at assembly site

go-to-stack same as previous

determine-stacks-pose same as previous

span-stack1-and-stack2-with-spanning-
block

stack1 = same as previous

stack2 = second stack at assembly site

spanning-block = green block from
end of path #12

Table 6.6: Entities in the Environment that Fulfill Roles in Plan Step Tasks

Plan Step Task Name (role in bold) Entity that Fulfills Role
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mation. He only knows that a base-block is there and that he should get it. Section 6.4 dis-

cusses the perception of base-blocks in more detail.

Now that we have looked at the roles in Marcus’ plan steps, we can examine the entities

that can play roles in the tasks that implement those steps. The roles in the parent tasks of

figures 21 - 23, i.e. the root node of each decomposition, can typically be filled by any ob-

ject in the environment (section 6.3 discusses how specific objects are selected). For exam-

ple, thedestination in go-to-destination can be any entity the agent needs to move toward.

The reason that the roles in these tasks can be filled by so many objects is that these tasks

are meant to be executed many times, by various plan steps, in different situations and must

work properly in each. The exceptions to this are thedoor andhall-door in the door tasks

of figure 23, which can only be filled by doors.

There are also entities that can fulfill roles in tasks “below” the level of abstraction of the

“root” tasks. For example, theobstaclerole in the avoid-obstacles subtask of the go-to-des-

tination task can be filled by any object that is blocking the agent’s path to its destination.

The span-item1-and-item2-with-spanner task of figure 21d hasbase, topblock1 and

topblock2 roles that are meant to be filled by the lowest block in a stack, the highest block

in stack1 and the highest block in stack2 respectively. The find-and-go-through-hall-door

task of figure 23a has a number of additional roles that need to be bound. Two subtasks

havehallway roles that can be played by any hallway in Olsson hall. Thebaseboardrole

in the watch-for-baseboard-alignment subtask can be bound to any baseboard strip in the

Olsson Hall hallways, but it should be the portion in the hallway nearest the agent and on

the same side of the hall as the hall-door. Thefront-wall andback-wall roles in the move-

until-equidistant-from-walls subtask can be played by any entities that reflect the agent’s
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front and rear sonar (presumably the walls of the hallway). Finally, thedestination role of

the go-through-hall-door and move-through-door subtasks can be played by any point be-

yond the door frame (in this case, 1 m beyond the door frame is used).

Move-through-door (figure 23b) has adestination role that can be played by the base-

board strip beyond the door in the hallway. Similarly, thebaseboardrole in track-base-

board can be played by the portion of the baseboard visible through the door. The

destination in find-door can be played by any position on the other side of the door and is

passed to move-through-door, which maintains that position using the baseboard.

6.2.1 Observations about Roles

For the leaf tasks of Marcus’ decomposition in figures 21 - 23, the entities that can fulfill

the roles depend on the agent’s capabilities. Marcus can manipulate blocks3, so for exam-

ple, theitem role in the use-pick-up-effector subtask of pick-up-item (figure 22a) canonly

be filled by a single block. This is true for all theitem roles in the leaf subtasks of the ma-

nipulation tasks of figure 22 (pick-up-item, put-down-item, put-item-in-toolbelt, put-

down-item1-relative-to-item2 and determine-item-pose). Many of the roles in the building

tasks of figures 21d and 21e can also be filled only by single blocks. Thebase, topblock1

and topblock2 roles of span-item1-and-item2-with-spanner’s subtasks, obviously, are

meant to be bound to particular blocks on the extent of structures bound to theitem1 and

item2 roles. Thespanner in use-spanning-effector must also be played by a single block

because this task uses Marcus’ manipulation capabilities. Similarly, since theitem1 role in

the use-stack-effector subtask of stack-item1-on-item2 will be manipulated by the agent’s

3. Since Marcus’ manipulator is, in fact, a human, this decision is somewhat arbitrary. However, it
allows illustration of the use of hierarchical representation to separate information into data that is
pertinent to, and only known by, different components of the agent’s architecture.
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effector, it must also be played by a block.

However, the parent tasks of these leaf tasks have no such restrictions on their roles. For

example, Marcus needs to be able to pick up stacks of blocks, so theitem role in pick-up-

item should be capable of being bound to a stack of blocks. The next section discusses how

the item role can be bound to different entities in parent and child tasks.

Marcus’ domain shows that the entities that can fulfill roles can influence the design of

tasks. Since the plan steps tasks are meant to be implemented by the tasks of figures 21 -

23, which are reused throughout the plan, the designer will want to make these implement-

ing tasks as general as possible. This means that they should be able to operate with their

roles bound to many different entities, so that they can be used in various situations. How-

ever, the designer may also use domain constraints to know the possible entities to which

a task might be asked to bind its role(s). The more of this knowledge the designer can apply,

the more “situated” the skills will be. The trade-off is between the efficiency of situated

skills and their inflexibility to novel situations. Marcus makes these sorts of trade-offs in

the implementation of the tasks of figures 21 - 23. For example, the go-to-destination task

is flexible because it can operate with most any entity bound to its destination role. The

find-and-go-through-hall-door task is less flexible because can only operate properly if its

hall-door role is bound to a door in Olsson hall.

6.3. Representation

What role bindings are shared between tasks?We examine the roles shared between

tasks because role sharing is a primary motivation for developing a representation for a giv-

en role (as discussed in section 3.5.2). One of the most common forms of role sharing in
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Marcus’ task is sharing of roles between the plan step tasks and the locomotion, building,

manipulation and door tasks of figures 21 - 23. This sharing is how a specific plan is created

from the general tasks that the agent can execute. This type of sharing for the arch building

plan is summarized in table B1 of Appendix B. For example, the go-to-block and go-to-

base-block tasks of figure 19a haveblock andbase-blockroles, respectively. These tasks

are implemented by the go-to-destination task of figure 21a by having itsdestination role

be associated with the same object as theblock (or base-block) role.

A key to understanding this form of role sharing in Marcus’ task is to realize that unlike

previous agents, Marcus’ actual plan is shown in the task decomposition (figures 19 and

20). Bruce, for example, can follow any route plan by changing the bindings of thedesti-

nation role in his move-to-destination task and thus his task decomposition applies to all

plans he can execute. The complexity of the structures that Marcus’ skills allow him to as-

semble make it impractical to create a task decomposition that encompasses all possible

plans. This means that there needs to be some standard way of taking the specific manipu-

lations denoted by a plan (in this case, the arch building plan) and implementing them with

Marcus’ general purpose assembly skills. This is done by mapping roles in the plan step

tasks to the roles in the tasks of figures 21 - 23. For example, the go-to-block task is imple-

mented by the go-to-destination task by having itsblock role and thedestination role in

the go-to-destination task refer to the same object.

Various other forms of role sharing exist in the tasks decompositions of figures 21 - 23.

Consider the go-to-destination task decomposition of figure 21a. Observe that all tasks

havedestination roles. This means that destination is a shared role since all tasks need it

to be bound to the same entity. There are two important classes of role sharing exhibited
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here. The first is sharing between parallel subtasks. The subtasks benefit from role sharing

by not having to maintain independent copies of the role information. The second is parent/

child role sharing (go-to-destination sharesdestinationwith its children). The benefit here

is that information stored in the parent task can be abstracted to the role used by the child

task. In other words, even though the roles in the parent and child tasks are bound to the

same object, different information about the entity bound to the role may be computed for

each task. The parent task may wish to provide the child task with a portion of the informa-

tion it knows about the entity in order to simplify the computation done by the child. This

will become more clear as more examples are discussed.

Consider the role sharing of two other tasks from figure 21. In the search-for-item task

(figure 21b), notice how both search-for-item and look-at-item haveitem roles. This role

is shared between these task, but also with the turn-to-destination task. Recall that the

names of roles need not be the same for two tasks to share a role. Thedestination role in

turn-to-destination is also played by the entity playing theitem role, because turn-to-desti-

nation must rotate the agent toward the entity if the camera cannot be panned far enough to

observe it. The reader may question why this task is not called turn-to-item and the answer

is because the task was designed as a subtask for rotate-to-destination (figure 21c). Here,

we can see that both these tasks havedestination roles that they share. The fact that turn-

to-destination can be used in other tasks makes its name seem inconsistent in those cases.

The three tasks mentioned so far exhibit the parent/child form of role sharing mentioned

above. This form of role sharing occurs in all the other tasks of figures 21 - 23. This only

makes sense because the parent task is accomplished by its subtasks acting on, or with re-

spect to, the entity playing the role in the parent task. From now on, except where noted, it
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will be understood that the roles of any parent task are shared with some subset of their chil-

dren. Interested readers can easily see this sharing in the task role diagrams of Appendix B

(figures 36 - 38) where similar names in parent and child tasks indicate shared roles. The

reader may have noted that this parent/child role sharing is similar to the plan step/imple-

mentor task role sharing. Theblock in go-to-block should be bound to the same object as

thedestination in go-to-destination, which is bound to the same object as thedestination

in navigate-to-destination. The important issue is that each of these tasks may retain differ-

ent information about the entity associated with the shared role binding.

Another important form of role sharing can be observed in the center-in-hallway subtask

of find-and-go-through-hall-door task (figure 23a). This task has ahallway role and its sub-

task hasfront-wall andback-wall roles. Thehallway role is actually a “combination” of

the roles in the move-until-equidistant-from-walls subtask. The position of the entities

playing thefront-wall andback-wall roles combine to form the agent’s notion of the po-

sition of the hallway (relative to the agent). Thehallway role can store the hallway’s posi-

tion as an abstraction of the information present in the subtask’s roles. This form of role

sharing (where multiple roles, possibly in multiple tasks, are “shared” by a single role in

yet another task) often occurs when roles are dependent on other roles as discussed in the

previous question. One role “combines” data from other roles into a more abstract view of

the entities associated with those roles. The degenerate case, when the number of roles that

combine to make up another role is one, is equivalent to the parent/child form of role shar-

ing. Different information, i.e. a different abstraction, is contained in each role. For exam-

ple, theitem in the pick-up-item task may be bound to a construction of blocks, while the

item in its subtasks must be bound to a single block (such as the one that the agent should
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maneuver with respect to in order to have a good view of the impending pick-up). Since the

agent’s capabilities force the item role in the subtasks to be associated with a single block,

the designer should make use information in pick-up-item’sitem role to determine the

block in the structure to bind to the otheritem role. Roles that are shared in this way and

need representation, must have their representations “linked” so that information about

bound entities can be captured in both representations (see section 6.5).

The remainder of the answer to this question concentrates on shared roles that are not

present in the parent task. The span-item1-and-item2-with-spanner task (figure 21d) has

subtasks containingbase, topblock1 andtopblock2 roles. Thebaserole occurs in both the

find-base-of-item1 and find-base-of-item2 tasks, but it is actually bound to different enti-

ties in each case.Base only remains bound long enough to establish the position of

topblock1 or topblock2. So,baseis shared by find-base-of-item1 and find-topblock1-of-

item1, but not by find-base-of-item2. Thetopblock1 andtopblock2 roles should be bound

to the same entities in the find-topblock tasks and the span-topblock1-and-topblock2-with-

spanner task (so that the same blocks are spanned) and thus these roles are shared.

The put-down-item1-relative-to-item2 task (figure 22d) is interesting because it has a

role (item2) that is not present in any of its subtasks. This is because the entity playing the

item2 role is used only to establish theputdownloc role. It is this role that is needed by the

put-down-item subtask, notitem2.

The hall-door role in the find-and-go-through-hall-door task (figure 23a) appears in

many of its subtasks. All these tasks either attempt to bind the role or move the agent with

respect to the role’s associated entity. Therefore, the tasks all needhall-door to be associ-

ated with the same entity and thus the role is shared. There are also two subtasks (align-
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with-hallway and center-in-hallway) that are concerned with the agent’s position relative

to the hallway and thus havehallway roles that they share. What is interesting is that the

hallway role does not appear to be shared with those task’s subtasks. However, thehallway

role in align-with-hallway is defined in terms of thebaseboardrole in watch-for-base-

board-alignment. That is, while thehallway role is meant to be played by a hallway in the

building, the visual feature that can be recognized and used for this task is the baseboard.

Marcus aligns himself with the hallway by turning until the baseboard appears horizontal

in the camera image. Information about the current angle of the baseboard can be used to

determine information about the current alignment of the hallway. So, for the purposes of

this task, thehallway and thebaseboardform a shared role. Thehallway role in center-

in-hallway is actual a “combination” of thefront-wall andback-wall roles of its subtask

as discussed above.

One final example of role sharing is in the find-and-go-through-door task (figure 23b).

One of its subtasks, move-through-door, has adestination role representing the location at

which the agent can consider itself “through” the door. Find-door determines where that lo-

cation is by detecting the door and determining a position beyond it. Therefore, these tasks

share thedestinationrole. Thebaseboardrole in the track-baseboard subtask is associated

with a recognizable feature whose position can be determined. Find-door binds thedesti-

nation to the baseboard because it can be seen through the door and can be tracked. This

means thatbaseboardanddestination are bound to the entity and so shared by all find-

and-go-through-door subtasks. Likewise, the rotate-to-destination subtask of rotate-to-

view-door shares binds itsdestination role to the same entity as thedoor role and so they

form a shared role. Since the door is the object that the agent wants to be facing, it is natu-
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rally the destination of the agent’s rotation.

In summary, we have seen two types of role sharing. One is when sequential or parallel

tasks each have roles that should be bound to the same entities. The second occurs when

information about entities bound to one or more roles, in one or more tasks, effect an entity

bound to a role in yet another task. This most often occurs between the roles of a parent task

and its subtasks with the parent holding some more “abstract” view of the entity bound to

the its role (such as thehallway being defined by sonar readings of the front and back

walls).

What information about the entity bound to a task role is needed for that task?This ques-

tion examines the information about the entities bound to task roles that is needed by the

tasks. This information, along with the role sharing, will determine if a role should be ex-

plicitly represented by the agent architecture.

For the vast majority of tasks, the position of the associated entity is needed. As discussed

in the chapters on previous agents, position is needed to determine any other information

about an entity because it is needed to direct the perception system. One exception to this

is the align-with-hallway subtask of find-and-go-through-hall-door. For this task, all that is

needed is the orientation of the hallway relative to the agent. The position of the hallway

(relative to the agent) is not important and, in fact, the subsequent center-in-hallway task

will deal with the agent’s position. Two other interesting tasks are determine-item-pose and

put-down-item1-relative-to-item2. They require not only the position, but the pose of the

entities associated with their roles. Determine-item-pose uses the position of the item to de-

termine its pose and put-down-item1-relative-to-item2 uses this pose to calculate itsput-

downloc.
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For tasks that require the positions of entities bound to roles, positions may be in different

forms. As discussed in chapters on previous agents, e.g. section 4.3, it is often more accu-

rate to maintain positions of objects in ego-centric coordinates. The tasks of figures 21 - 23

can use ego-centric positions because they control effectors. The agent’s effectors are fairly

centered on its “body cylinder”, and since they are at the origin of the ego-centric system,

such coordinates are a natural way to control them. The agent’s raw sensor data is also eas-

ier to convert to ego-centric coordinates than to non-ego-centric coordinates because less

information about the environment is needed to estimate ego-centric coordinates (non-ego-

centric coordinates require external reference points to “triangulate”). By contrast, the roles

in the plan steps should specify positions for the entities with which they should be associ-

ated, in non-ego-centric coordinates. Most of the entities involved in the plan are not per-

ceivable from the agent’s starting position, so the agent needs position data from some

other source to plan routes. These positions are encoded in a map and therefore are relative

to some map coordinate frame. The map could contain ego-centric positions for all objects

(based on the agent’s known starting position and orientation), but maintaining those posi-

tions accurately throughout the arch building task would be extremely error prone since

Marcus will not be able to see most of the objects, most of the time (and hence their posi-

tions will be dead-reckoned). It is more effective to have the map in some coordinate sys-

tem with a fixed origin and transform from those coordinates to ego-centric coordinates as

new objects become pertinent to the agent’s task. Marcus’ mechanism for doing this is dis-

cussed in section A.2.1 of Appendix A.

For what roles would it be useful to develop an explicit representation?The answers to

the previous two questions help determine what roles should be (explicitly) represented.
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First, let’s look at the roles in the tasks of figures 21 - 23. Many roles in these tasks need

representation because the entity associated with the role will not always be within the field

of view. These roles are thedestination in go-to-destination (figure 21a), theitem role in

search-for-item (21b), thedestination in rotate-to-destination (21c), thehall-door in find-

and-go-through-hall-door (23a) and thedoor in find-and-go-through-door (23b). Recall

that thedestination in the turn-to-destination subtask will be played by the same entity that

plays theitem in search-for-item and so it will have a representation by virtue of the fact

that item will be represented.

Another important reason to represent roles is due to role sharing. Shared roles can use

representation in two ways. First, multiple tasks can take advantage of the binding and

maintenance of a role by sharing a physical data structure. This means only one task needs

to do the binding/maintenance work and all others can just read from the shared data struc-

ture. Second, representation for shared roles can assist in inter-task communication. This is

discussed in more detail in section 6.5, but having an explicit representation allows two

tasks to communicate information about an entity in the environment.

The roles of the span-item1-and-item2-with-spanner task (21d) should have representa-

tion because they are shared among the subtasks (and also with the parent task). For exam-

ple, thetopblock1 andtopblock2 roles are bound by two different tasks and then passed

to the span-topblock1-and-topblock2-with-spanner task (which shares them with its sub-

tasks). Theitem1 anditem2 roles are similarly shared between the parent and the tasks that

bind thetopblock roles. Thespannershould be represented as well because it is shared by

four different tasks at different levels of the decomposition. Thebasein find-base-of-item1

is shared with find-topblock1-of-item1 and between find-base-of-item2 and find-
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topblock2-of-item2. This is somewhat an artifact of the decomposition and one could imag-

ine a find-topblock1-of-item1 task that “internally” computed the base position, and used

it to determine the topblock position with the base computation being invisible outside the

task. Here the task decomposition has created a role that might not have needed represen-

tation except that the dependency betweenbaseanditem1 (or item2) means that a repre-

sentation of the base makes a useful place to pass information about a portion of item1 (or

item2) to the find-topblock tasks.

The item1 and item2 roles in stack-item1-on-item2 (21e) should be represented due to

the fact that they are shared between the subtasks and with the parent task. The same argu-

ment applies to theitem role in pick-up-item (22a), put-item-in-toolbelt (22c), and deter-

mine-item-pose (22e) as well as theitem andputdownloc roles in put-down-item (22b).

The putdownloc and item1 roles in put-down-item1-relative-to-item2 (22d) both should

be represented to facilitate communication with the child subtask (remember thatitem1

maps toitem in the child). Theitem2 role does not necessarily need representation because

it is only needed to compute the position of the putdownloc. However, it may be useful to

representitem2 so that it can be passed in from some other task (like a plan step). Marcus

representsitem2.

Although thehall-door role in find-and-go-through-hall-door (23a) is already represent-

ed because it is typically outside the field of view until the end of this task, the fact that it

is extensively shared with its subtasks further motivates its representation (remember that

it also maps to theitem role in rotate-base-to-item and thedoor role in move-through-

door).

The find-and-go-through-door task (23b) has adoor role that is shared amongst most of
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its subtasks and so this role needs representation. Thedestination role of the move-

through-door task should have representation because it forms a shared role with thedes-

tination in find-door (where its position is initialized) and thebaseboardin track-base-

board (where its position is maintained).

Many other roles in Marcus tasks appear to not need representation. Some of them are

represented for various reasons. Thedestination role in the move-through-door subtask of

find-and-go-through-hall-door may not need representation, as it is played by some entity

that should always be visible through the door as the agent moves into the room. However,

destinationshould have a representation because it is shared with the go-through-hall-door

task that determinesdestination’s position based on the hall-door. Also, thedestination is

just a point in space (which goes against the types of entities that should be associated with

roles in section 1.2.3) that the agent needs to dead-reckon to and so some state is needed to

hold how far the agent has moved. This is done because the agent can’t be sure what will

be visible through the door and so its easier to just dead-reckon into the room. Thedoor

role does not need representation in the move-through-door task because during the task,

the door is always within sensor range. The agent can always sense the necessary informa-

tion about the door, i.e. the edges of the door frame, with its sonar. This information can be

used to maneuver the agent through the door, but it is difficult to use it to maintain the

door’s position since the azimuth information provided by the sonar is fairly coarse. Since

the agent is only really concerned with getting to thedestination at this point, it need not

try and maintain thedoor representation. So, while thedoor is still a role in this task be-

cause its associated environmental feature effects the task execution, its not represented by

this task. This is interesting becausedoor (which will not be represented) maps tohall-
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door (which is represented). This seems contradictory, but remember that the agent does

not need any information about the hall-door (only the destination), and so even though

hall-door conceptually maps todoor, the designer need not communicate any information

about the hall-door to the task if it is not needed.

The case for representation of the remaining roles in find-and-go-through-hall-door’s

subtasks (hallway, baseboard, front-wall andback-wall) is not clear-cut. Thehallway

role is common to two different subtasks, but they do not really exchange any information

about the hallway. One subtask is concerned with the orientation of the agent and the other

with the agent’s position. The aspects of the hallway that must be sensed to complete these

tasks are different and so one subtask’s sensory data cannot contribute to the other. There-

fore, thehallway role probably does not require representation. Note that although this is

contradictory with the previous discussion about the hallway role as a shared role, it is often

the case that there are arguments both for and against representation of a particular role. In

the case of thehallway, no representation is used because the data associated with the roles

in the subtasks is not needed outside those subtasks and so placing some form of it in the

hallway role is unnecessary. Thebaseboardin the watch-for-baseboard-alignment subtask

of align-with-hallway probably does not need representation either. While aligning with the

hallway, the agent turns toward the hall-door until the baseboard appears horizontal in the

image. Since the position of the hall-door controls Marcus’ rotation, the base-board is only

needed to tell when to stop. This highlights the possible iteration between the perception

and representation steps of the methodology. Marcus does not actually run a perceptual

routine to detect the baseboard and determine its angle. He uses a situated routine that just

determines if the baseboard is horizontal in the image. In other words, if the baseboard is
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not horizontal, Marcus will not even detect it. Since this role is not shared, the required role

information is always available to the agent’s sensors (given that not detecting the base-

board is ok) and previous orientations of the baseboard are not helpful (and can’t be deter-

mined), thebaseboardshould not be represented. However, the baseboard perception

could be changed to calculate the rate of change of the baseboard angle and estimate what

the current angle should be in each image. This would mean having to detect the baseboard

at a variety of angles. but would provide insurance against sensor errors that might cause

Marcus to “miss” the horizontal state. This would allow him to turn back, but it would also

require some representation to store previous role information. However, given the envi-

ronmental context of this task (a brown strip against a mostly featureless white wall), per-

ceptual errors are rare and the overhead of representing the baseboard is not necessary.

Similarly, the front-wall and back-wall roles of the move-until-equidistant-from-walls

task do not need representation because they are not shared and the required information

about the entities bound to those roles can always be gathered from the agent’s sensors. The

agent can always determine the current positions of the walls via sonar.

Representation for theobstaclerole in the avoid-obstacles subtask is also not straightfor-

ward. The argument against obstacle representation in Bruce was that representation would

prolong the time to recover from a false obstacle identification, of which there were many.

The argument for representation was that inevitably, obstacles pass outside of the sensory

field before the agent is actually clear of them. Representation would allow the agent to re-

member that the obstacle was there and fully move beyond it. Marcus has an advantage

over Bruce in that he has a 360° sonar ring, thereby increasing his sensory field. However,

it is more difficult to distinguish the destination from an obstacle with sonar than it is with
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vision and so having a memory of previous obstacle (or destination) positions might help

distinguish the two. In the end, Marcus’ capabilities provide for a limited representation for

obstacle. Marcus does not need to maintain information about any particular obstacle be-

cause he can continually rebind the role to any entity that is currently an obstacle. This may

be the same object or it may be a new one, but it doesn’t matter as long as it is an obstacle.

When the role is bound and Marcus subsequently tries and fails to detect any obstacles, he

should not immediately forget about the entity bound toobstacleand start going back to-

ward the destination. Instead he should continue on his present (obstacle avoiding) course

for a short period of time, in order to get “past” any obstacle that might be outside the sonar

sweep4, but still in his path to the goal. After this time interval, Marcus should forget the

current association betweenobstacleand its object (“unbind” the role). Marcus can use the

position of the obstacle when the role is bound to determine the motor commands to get

around it. He need not maintain any information about the obstacle because once he choos-

es an avoidance course he follows it for a while, independent of any data about the specific

obstacle. If Marcus has discontinued the association betweenobstacleand its previously

associated object, but that object is still an obstacle, Marcus can bind theobstaclerole to

the same object and start the whole process again.

Finally, there are the roles in the plan step tasks (figures 19 and 20). I argue that the roles

4. It may appear that nothing could be outside the agent’s angular sensor range when the agent has
a 360° sensory view. While this may be true, Marcus does not use all his sonars. He uses only the
front 4 sonars because he has a simple obstacle avoidance algorithm (since the purpose of this thesis
is not to develop sophisticated motor control strategies). A possible improvement would be to use
just the sonars in front of the agent to monitor where it is heading and some sonars facing the direc-
tion of the destination to tell when the agent has “cleared” an obstacle. The problem with this is that
Marcus’ encoders have a high rotational error, compared with their straight-line dead-reckoning per-
formance. When turning to avoid an obstacle, especially a close one that requires rapid turning, the
goal’s angular position can quickly become incorrect. Since angular position determines which
sonar(s) are appropriate to use, this is a serious problem. In fact, this causes a problem even when
trying to reacquire the destination with Marcus’ camera. I discuss that problem in section 6.5.
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in all the plan steps should be represented. As shown previously, each role in the plan step

tasks maps to some role in the tasks that implement that step. Since many of these roles are

represented, it is reasonable to represent the roles in the plan steps in order to facilitate com-

munication between the plan step tasks and the tasks of figures 21 - 23. At this point, no

further argument is made, but I will return to this issue in section 6.5.

How often should that information be verified?For the roles of the locomotion, building,

manipulation and door tasks, role information is used for effector control and, as such,

needs to be verified at the rate of the effector control loop. However, as we will discuss in

the next section, there are situations in which the entity bound to a task role will be “too

complex” for the perception system to maintain the role information and effector control

rates. This can also be the case for the entities bound to the plan step roles. In section 6.5,

I will show how the requirements of the agent’s task lead to a representation design that

addresses this problem.

6.4. Perception

What information can be extracted from the environment to recognize the entities that

should be bound to the current task’s roles?Marcus’ perceptual needs can be divided into

detection of blocks and detection of doors. I begin by discussing perception of doors, which

is complex and caused several iterations back to the task decomposition question. The door

detector is a situated skill [70] that uses’ Marcus’ edge detection capability to detects pat-

terns of edges that correspond to doors in Olsson Hall. The images in figure 24 were gen-

erated during the find-and-go-through-door task that moves Marcus from the lab into the

hallway. They show how Marcus’ edge detection and colored blob finding capabilities can

be used to find doors. Figure 24a shows an edge image, with overlaid graphics, during the
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initial door location process. Figure 24b shows the tracking involved in moving through the

door frame. Detecting a door from the inside of a room (as opposed to the hallway) can be

performed as follows. First a Hough transform [24] is performed to search for (nearly) hor-

izontal lines in the lower half of the image. The line is meant to be the edge between the

carpet and the door frame and it is visible whether the door is open or closed (if the door is

closed, the line is actually formed by the bottom of the door). This line is shown by the low-

er of the two red, horizontal lines in figure 24a. Note that the lines in this figure are drawn

across the entire image for display purposes and do not represent the length of the actual

detected edge. Also, some lines (like this one) are obscure most of the white edge pixels

because they are drawn over them. Once the lower line is found, a second Hough transform

searches the image area above the first line for a second (nearly) horizontal line. This line

should be the baseboard on the opposite side of the hallway from the door and will be vis-

ible only if the door is open. This serves to detect if the door is open or closed. While this

may seem a simple means of determining if the door is open, it is fairly effective because

when the door is closed, it forms a fairly featureless surface on which edges are rarely de-

Figure 24. Door Location and Tracking

(a) (b)
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tected. When the door is open, the contrast of the brown baseboard against the white hall-

way walls forms a strong edge that is rarely missed. This is an example of a situated routine

(see section 1.3.2).

Once the two horizontal lines have been established, two more Hough transforms search

for vertical edges in the left and right half of the image. The detected edges in figure 24a

are shown by the vertical red lines. These edges represent the edges of the door frame. The

intersections of the vertical lines with the lower horizontal line (denoted by the green marks

on or near those points) are used to determine the distance and direction to the edges of the

door frame.

Marcus determines if the distance between the two intersections is large enough for him

to fit through. If it is not, then this cannot be a door. To further verify that this edge pattern

is indeed a door, Marcus performs a search between the vertical lines and around the higher

horizontal line for the brown of the baseboard with white wall above it. He uses the same

technique used to detect adjacency between color blocks (discussed below). Note that pre-

viously, Marcus had just been looking for edges, but now is concerned with color. The area

searched is shown by the thin red box around a portion of the higher horizontal line in figure

24a. The small green and red rectangles within this region represent regions actually ana-

lyzed for the colors brown and white. All of this is performed by the find-door subtask of

find-and-go-through-hall-door. Since this task has already detected the baseboard, it can

bind thedestination role that it shares with move-through-door. This role is bound to a

point that is as far away as the baseboard and along an azimuth that is midway between the

azimuths of the two intersection points.

Once the door has been detected, perception of the roles in this task can change because
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the information the agent needs changes. The move-through-door subtask drives the agent

toward the position stored in thedestination. This subtask can use the sonar sensors slight-

ly left and right of the agent’s forward direction to steer the agent away from the door frame

edges while he moves forward. Assuming he is roughly in front of the door when the find-

and-go-through-door task begins, which he must be in order to detect the door (see below),

this technique will allow him to “wiggle” through. An interesting point here is that the find-

door subtask detects the door visually, while the move-through-door subtask detects the

door using sonar. This is a shared role meaning some form of sensor fusion must be going

on between the role information computed by the two tasks. In fact, shared roles are sup-

posed to be represented so that role information doesn’t have to be computed by each task

that uses the role. However, it turns out that if the door is detected by find-door (visually),

it will always be in perceptible to the move-through-door task (using sonar) for the duration

of time that is important (before the agent passes through the doorway). Since the agent can

always detect the door with sonar, it is not necessary to use thedoor representation in the

move-through-door task. The importance of this is that initial task decompositions had the

move-through-door subtask determine its destination based on the shareddoor role. How-

ever, since move-through-door does not update the door role’s position, it seemed better for

the find-door role to bind thedestination and share it with move-through-door5.

Once the door (and hence the baseboard) has been detected, the track-baseboard subtask

can maintain the position of the baseboard so that move-through-door can servo on its po-

sition. Remember that move-through-door’sdestination is shared with track-baseboard’s

5. It is a somewhat arbitrary choice to have the find-door skill bind thedestination role, a role that
it does not use. Move-through-door could just as easily compute the destination’s position from the
door role and then not access thedoor role again.
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baseboard. Tracking the baseboard is a simplified version of detecting it and is shown in

figure 24b. One Hough transform is used in the area around the last known location of the

baseboard6 (making use of thebaseboardrepresentation’s ability to store this information)

to detect candidate edges. These edges then have the brown/white adjacency check per-

formed along them and if they “pass”, then this position is used to updatedestination. Mar-

cus can determine the distance to the baseboard as the baseboard runs along the floor, but

cannot determine an azimuth because the baseboard runs across the entire width of the

door. The baseboard is effectively at all azimuths. So, to update the azimuth of thedesti-

nation Marcus must dead-reckon from the original value set in the find-door subtask. This

is reasonable because there is a limited range to the orientations that Marcus can have after

successfully navigating through the door and so any dead-reckoning errors can be compen-

sated for by using the search-for-item task to detect the agent’s next destination in the hall-

way.

Limits placed on the allowable angles for the “horizontal” and “vertical” lines used in

door detection limit the number of potential doors considered. However, this means that de-

pending on the agent’s orientation to the door frame when the find-and-go-through-door

task begins executing, the door may be too skewed in the image to be recognized. This un-

anticipated fact caused an iteration back to the task decomposition step of the methodology,

which resulted in the addition of the rotate-to-view-door subtask. This task rotates the agent

to several different orientations under the assumption that if the find-and-go-through-door

task is being executed, a door should be nearby and if find-door fails to detect it, it is prob-

ably due to the agent’s orientation.

6. The reader will note that this constitutes a form of foveation.
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Detecting the door from the hallway requires a different set of situated perceptual rou-

tines. The main difference is that from inside a room, the baseboard can be seen in the hall-

way through an open door. When looking into a room from the hallway, there is no

discernible feature that is always visible. Another issue is that the distance between the

agent and the door when the find-and-go-through-door (room side) task is executed is larg-

er than is possible in the (hallway side) find-and-go-through-hall-door task due to the width

of the hallway. In the hallway, the door takes up a larger portion of the image and so the

distortion of the camera’s wide angle lens becomes a factor. Its “fish eye” distortion causes

the straight door frame edges to appear curved when they are far enough from the center of

the image. In fact, the width of the door means it is not possible to view both left and right

door frame edges as vertical lines in the same image from the distances that Marcus will be

at in the hallway.

A conceptually simple solution to this problem would be to search the image for appro-

priate curves. However, this is computationally more complex than simple line finding and

the agent is moving down the hall (due to the move-toward-hall-door subtask) while per-

forming this computation. This means that the perceptual routine would have to be fast

enough to not allow the image with both curves to pass without being processed. Another

solution (that was adopted) is to introduce additional roles into the task.Left-edge and

right-edge roles hold the positions of straight lines detected near the center of the camera

image, where they actually appear vertical. When a potential edge, say the left-edge, is de-

tected the next line found is bound toright-edge. If the distance between left-edge and

right-edge is within tolerance for being a door, thehall-door role is bound to a position in-

between them. If not, the candidate right-edge becomes the new left-edge and the search
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continues. Again Marcus’ capabilities determine task roles and representation. At leastleft-

edgeneeds representation because it will not be detectable (since it will be curved) when

the right-edge is detected. Recall that thedoor in move-through-door did not need repre-

sentation and that the task was only concerned with thedestination role. By the task de-

composition, we can see that at this point in the task, only thedestination role matter,

Marcus does not need to track the hall-door and so representation of the left and right door

edges need not be maintained.

When thehall-door role is bound, the agent needs to be able to determine if the door is

closed. Again, the baseboard cannot be used for this purpose since it is not visible inside

the rooms, so the fact that some form of “visual clutter” is usually visible is used. When the

door is open, the image area between the door frame edges is usually full of edges from the

various objects visible inside the room. When the door is closed, its “flat” surface shows

few edges (the surface’s wood grain is not a problem). If the number of “edge pixels” be-

tween left and right door edge locations is above a certain threshold, the door is considered

to be open.

Now I can address the perception of the other important class of objects in Marcus’ do-

main, blocks. Many of the entities that are bound to the roles in the arch building task are

blocks or constructions of blocks. Blocks in this domain come in 4 different colors. Marcus

has capabilities to band filter the input camera image for the range of particular RGB values

that make up a color and blob color [9] the resulting binary image. In order to recognize

constructions of blocks (stacks), marcus must detect blobs of appropriate color and verify

that they appear appropriately adjacent in the image. He does this by testing the boundaries

of appropriately colored blobs to see if there are enough adjacent pixels.
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One perceptually interesting role is thebase-blockrole, which can be filled by either a

green or a yellow block. Marcus needs to run perceptual routines for both blocks when try-

ing to initially locate the base-block. Once an entity has been detected (and the role is

bound), only the color of the selected entity need be tracked.

Other tasks require more complex perception that often has effects on answers to other

questions in the methodology. For example, Marcus’ capabilities only allow determine-

item-pose to determine the pose of stacks of blocks. Each stack must have 2 blocks, one on

top of the other, as well as a red fastener block. Based on the visible amounts of these

blocks, the agent can determine the orientation of the stack compared to a canonical expect-

ed orientation (see Appendix A). Initially, it was thought that theitem role could be bound

to any block construction, but the pose perception computation only works for stacks.

Another perceptual important class of roles are those that can be bound toconstructions

of blocks. The perceptual routines to recognize arbitrary constructions of blocks can be ar-

bitrarily complex and the agent may well not be able to recognize a given construction from

all viewpoints (due to object range or partial component occlusion). This means it is diffi-

cult or impossible to recognize arbitrary constructions of blocks at effector control rates. If

a construction is bound to a role in a task that controls effectors (a leaf task), the agent can-

not perform that task effectively. However, Marcus needs to operate on collections of

blocks in the arch building task and so he needs to bind these constructions to roles in some

tasks. Furthermore, he needs to be able to recognize when the spatial relationships between

blocks that define particular constructions, exist and when they do not. For example, he

needs to be able to tell when blocks are stacked and when stacks of block have become “un-

stacked”. In other words, if Marcus needs to “pick up a block stack”, he has to maintain the
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position of that block stack for his effector control loop, but he also wants to verify that the

stack remains a stack. So, the question is how to balance these needs? How can Marcus’

perception system be structured so that it can provide timely role information for action

(such as the bound entity’s current position) yet maintain all required role information

(such as the entity’s structure)?

The answer lies in the fact that all the role information is not needed in the effector con-

trol loop. Performing an action on any construction of blocks, will generally involve effec-

tors contacting only a portion of the construct’s surface. Exactly how the effectors are used

to perform the action will depend on the action and type of construction. Marcus deals

mainly with stacks of blocks and blocks in this domain snap together vertically. This means

that, for example, if Marcus wants to pick up a stack of blocks he should lift the bottom

block in the stack because the rest of the blocks will move with it. If Marcus wanted to

move a row of blocks, he would have to move each one individually (since they do not in-

terconnect horizontally).

The perception system can be designed using knowledge of the actions that the agent

must take. Consider the go-to-destination task. The leaf subtasks of navigate-to-destination

and look-at-destination share thedestination role with the parent task, but they need infor-

mation about thedestinationat effector control rates. Thedestinationcould come from a

plan step like go-to-stack (which occurs, for example, in figure 19f) and so thedestination

would be bound to a construction. This points us to a division in perceptual responsibility.

Complex perception must often be divided into routines that run at effector control rates

and routines that cannot. The agent must have routines that can generate the information

needed for effector control at effector control rates. In order to meet this requirement the
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agent can often not have a single routine that determines all needed information about the

entity bound to a role. However, this is not a problem because information that is not need-

ed for effector control can typically be computed much less often. In fact, as stated in sec-

tion 3.8.2, information not related to effector control should not be computed in the effector

control loop because it slows down the PA layer (later, this stance is softened a bit for cases

where the agent has sufficient computational power to handle additional perceptual work

in the PA layer). So, when executing a leaf task that uses information about individual com-

ponents of a composite object, the agent can use perceptual routines that determine just the

position of the components needed to control that task’s effector(s). The agent can then pe-

riodically verify that the spatial relationship between components of the construction still

exists. The information gathered by both of these perceptual routines should be stored in

the task role. For the go-to-stack example, the agent needs to move toward the position of

the bottom block because it rests on the floor and Marcus uses the same groundplane con-

straint that Bruce uses to relate height in the image to distance from the agent. Since the

other blocks in the stack are off the ground, their positions will be incorrectly estimated.

Marcus can update the position of the bottom block in the effector control loop and verify

the “stacked” relationship between blocks before and/or after the go-to action.

All of the other locomotion and manipulation tasks function similarly. Their leaf tasks

can have their roles bound to individual blocks, while the roles in the parent tasks can be

bound to constructions. This means that Marcus can use his blob coloring routines to make

the individual blocks PRs for the leaf tasks and his adjacency detection routines (that use

multiple blob colorings) to detect block constructions.

The building tasks (stack-item1-on-item2 and span-item1-and-item2-with-spanner) are
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interesting because they are used to create constructions of blocks. Both tasks could bind

their item1 and item2 roles to any block structures and so their subtasks must bind their

roles to the blocks that determine when the stacking or spanning action is complete. For

example, the span-item1-and-item2-with-spanner task has subtasks to determine topblock1

and topblock2, i.e. the individual blocks that the spanning block will cross7. In principle,

the spanner could also be a composite object and thespannerrole in the leaf tasks would

have to be bound to the portion of the spanner that was going to contact the topblocks.

Even after splitting the perception process into those portions that can and must be inside

the effector control loop and those that do not have to be, there is still the important issue

of view-dependent perception [49]. Simply, this means that different entities look different

from different perspectives. This is a general problem in vision and this dissertation does

not develop novel vision techniques to solve it. However, it must be addressed in the design

of agents. I assume that the agent’s capabilities allow it to handle this problem for the do-

main’s PRs. The job of the agent designer is to assist the agent in recognizing composite

objects. In general, some parts of a construct may be partially or fully occluded. Also, cer-

tain spatial relationships may only be detectable from a certain distance. Marcus needs mul-

tiple perceptual routines to recognize different constructions in different situations and a

strategy for when to apply them. Knowing which perceptual routine to apply can itself be

a complicated question and the agent will need some guess as to the position and orientation

7. For other tasks, such as go-to-destination, the parent task determined if a role was bound to a com-
posite object and, if so, what portion of that object should be bound to the leaf task roles for that
action. Why then does span-item1-and-item2-with-spanner have separate subtasks to do this? The
decision is somewhat arbitrary in that I could have made go-to-destination’s decomposition contain
separate subtasks to do this. However, because this task must determine the topblock oftwodifferent
constructions, some camera movement is often required (unlike tasks that deal with only one con-
struction). Since this movement itself requires an effector action, it needs to be done by a leaf task
(since only they handle the effectors).
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of an object to select a routine. The problem in Marcus’ domain is that he cannot detect ad-

jacencies in constructs from a distance. This means that if he wants a stack of blocks, he

may have to guess that a far off block is actually part of a stack and be prepared to search

elsewhere if it is not.

The strategy Marcus uses to select perceptual routines is based on his capabilities. Mar-

cus has separate perceptual routines for individual blocks as well as stacks and spans of

blocks (in various color combinations). Which routine he uses depends on the task role.

Marcus needs to do three basic recognition tasks, recognize individual blocks, recognize

constructions of blocks, and recognize component blocks when they are part of construc-

tions. The first and last task may be different as discussed in section 3.6.2. If a task role is

bound to a PR, the first type of routine can be used. If a task role is bound to a construction,

Marcus will use a routine of the second type. Should that role be shared with a task that

needs to maintain information about some individual component of that structure, a percep-

tual routine of the third type is required. Marcus may have to use alternate routines of the

second and third types depending on his (estimated) perspective on the object. In order to

understand how perspective is used to select a routine, we must understand some details of

how Marcus detects constructs.

Marcus determines spatial relationships using a technique based on operators called

“springy dumbbells”. This technique provides a means of detecting color adjacency in the

image without the need for a precise description of the boundary between the colored ob-

jects. Each dumbbell is two rectangular regions separated by a variable distance. For Mar-

cus’ arch building task, it is sufficient for these regions to be separated only in the y

direction (in image coordinates). Detecting adjacency involves making some coarse esti-
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mate of the boundary’s location (usually just a horizontal line) and placing dumbbells along

it such that the two regions fall on opposite sides. Next, the two regions are analyzed. If the

top region contains enough pixels of the “top” block’s color and the bottom region contains

enough pixels of the “bottom” block’s color then this dumbbell votes for these blocks being

on top of each other. If the regions do not contain enough pixels of the appropriate color,

different vertical distance between the regions are tried. If enough dumbbells vote for a re-

lationship, Marcus decides it exists. Appendix A provides more details on this technique.

Marcus can use simple blob coloring to identify single blocks and the springy dumbbell

technique to identify constructions of blocks. When he needs to recognize a block that is

part of a structure, he needs to use the dumbbells to determine if a block is in the structure

and then he can monitor the block using blob coloring (note that blob coloring doesn’t ver-

ify that the block is still in the construction and so periodic verification of that fact is still

necessary). Details of how the various perceptual routines are swapped in and out in the

appropriate situation will be saved until section 6.7.

Having an understanding of Marcus’ perceptual capabilities, we can now address the per-

spective issue. Marcus can perceive individual blocks at all angles and distances (up to

some maximum) since they are primitive-recognizables. For constructions of blocks, the

problem is that spatial relationships may not be perceptible from a certain distance. Marcus

can handle this issue for stacks of blocks. If he estimates that a stack is too far away for

normal (dumbbell) recognition, he should use a different routine to recognize just one

block. This routine will yield the position of “candidate stacks”, i.e. the objects that might

be part of the desired stack. This routine should be different because, in addition to moni-

toring the position of the detected block, the routine should look for another block above
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the first. Marcus must move closer to the detected block and see if another block becomes

visible on top of the first (so the stack is detected). Once this happens, the perceptual rou-

tines can be changed to the normal stack/block routines. If Marcus gets close to the block

without another block being found on top, the agent is in a difficult situation. Possibly, this

block is part of the desired stack and it has just come unstacked or maybe this is just a sin-

gleton block. There is no general purpose solution for this problem. Marcus could search

the local area for either other candidate stacks or maybe for the block he thought should

have been on top of this one (indicating the stack had come undone).

In summary, we have now seen that Marcus has many perceptual routines for the various

task roles. In section 6.3, many of the roles in Marcus’ task decomposition were shown to

be shared roles. In fact, many roles were given representation for this reason. In this section,

we have seen how the perceptual routines can be structured to determine information about

the entity bound to a shared role where the tasks using that role need different information

about the entity. In the next section, we will see how the information determined by these

different perceptual routines can be propagated between tasks when it effects how a task

views the entity associated with its role.

How does the duration of the various role/entity bindings effect the perception system?

Most entities remain bound to roles for the length of the associated task. So, Marcus can

have separate locating and tracking functions for most entities. He possesses XLocate and

XTrack routines, where X is one of the colors he can recognize (e.g. PurpleTrack). These

routines are essentially the same except that XTrack is more restrictive in what objects it

will accept as matches because it assumes a reasonably accurate estimate of the position

has been determined by XLocate.
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For the location and tracking of composite objects, a trade-off exists. The designer must

decide on the amount of computation used in tracking and the amount used in locating (or

verifying that a composite object still retains the correct structure). Since tracking of indi-

vidual parts is at effector control rates, the more parts that are tracked, the more computa-

tional resources are consumed by the main perception/action loop. However, the periodic

verification of the relationships present in the construct is made easier by already having

positions for more of the parts. This means the agent needs to expend less effort reacquir-

ing, i.e. running the locate routines of, parts. Given the structures in Marcus’ domain and

the computational power available, all the parts can be tracked in the action loop. However,

one can imagine a more complex structure like those that exist in BridgeWorld [81]. In this

domain, structures have complex shapes and large numbers of parts. The agent will contin-

ually track only those parts with which it interacts. For example, to pick up an object, only

the parts where the agent places its “hands” are tracked. These parts then serve as “seed”

points for the reacquisition of the other pieces of the construction.

An issue now arises because despite earlier claims that information not needed for effec-

tor control (position of all components or the fact that the components still have the same

relationship) should not be maintained at effector control rates, Marcus can afford to do it.

Marcus has compound object perception routines of the form XonYLocate and XonY-

Track, where X and Y are both colors (e.g. GreenOnYellowTrack). The XonYLocate rou-

tines use the springy dumbbells technique described earlier. The XonYTrack functions just

use the bounding boxes of blobs of the correct colors to determine if the blobs are “adja-

cent”. This method is less accurate, but faster.

The question is, if all the pieces of a structure can be tracked in the effector control loop,
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why not just have a single task role for the entire construct? In other words, why have a role

for the whole object and separate roles for its parts? Why not just have the entire object fill

roles in all tasks? The answer is that the capabilities of this agent allow it to act on (or with

respect to) single blocks, not constructions of blocks. This means that some portion of Mar-

cus’ architecture must translate each plan step that effects a structure of blocks into effector

commands that manipulate only single blocks. This is why Marcus picks up a stack of

blocks by lifting the bottom block. The pick-up-stack task has been changed into a “pick-

up-block” task that will fulfill pick-up-stack’s goal. In addition, the separation of construc-

tions into components allow the agent to deal with different perspectives when relation-

ships are not discernible (as discussed above). If the structure could only be recognized by

a single monolithic routine in the effector control loop, there would have to be different

routines for each possible perspective. By having perception routines for individual com-

ponents, Marcus can derive some information about the environment even when the desired

relationships between components cannot be verified.

What level-of-detail (or resolution) is required in the information of the representation?

Most roles are used for effector control and so Marcus needs the highest accuracy available

(in this case, that comes from vision). However, as discussed above, entities bound to some

role can be perceived accurately enough with (coarser) sonar (such as the door in the move-

through-door skill, or the obstacle in avoid-obstacles).

6.5. Communication

What information is important in inter-task relationships?We have already seen several

important classes of information that are important to the relationship between tasks and

communicated between tasks. First, there is the information about the entity bound to a role
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that the tasks use (as decided upon in section 6.3). For the represented roles in Marcus’ task,

that information is the associated entity’s position. Tasks exchange this information for a

variety of reasons. Sometimes a parent task passes this information to one or more of its

child tasks as a way of representing expectations about where the entity should be. The

child tasks will then, presumably try to acquire the entity with the agent’s sensors. At other

times, a parent task will pass positional information about only a portion of the entity bound

to its role to a child task. This occurs then the child task does not need all the information

stored in the parent task’s role (such as data on the entirety of a structure when the child

will only operate on one piece). Two sequential tasks may exchange positional information

about an entity that one task has bound to a role when the next task shares that role. In emer-

gent behavior schemes [16] parallel tasks often exchange positional information since they

often each control different sensors/effectors that all take some action with respect to the

same entity.

A second kind of communicated information that has already been mentioned is percep-

tual information. Typically, one task will pass perceptual information about some entity to

another task in order to have that other task bind or maintain a shared role. For example,

search-for-base-block tells search-for-item that base-blocks can be yellow or green.

Search-for-item then binds the role to a block of one color or the other and reports the re-

sults back so that later tasks sharing that role need only track one color. Sometimes, a task

with a role filled by a structure will pass perceptual information about only a portion of it

to another task.

Another kind of exchanged information that has previously been hinted at is action input

and output. As with Bruce, action input refers to the parameters needed by the action. For
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example, when executing a go-to-destination task, the agent needs to know how close to

get to that object and that will depend on what action comes next. If the agent wants to pick

up the object, then it must get within effector range, but if the object was merely a conve-

nient target to servo on, the agent may not need to get very close at all. Although none of

Marcus’ actions require it, there could be parameters for multiple, parallel actions to be tak-

en on different parts of a compound object (recall the show shovelling example of section

3.7.2). Action output refers to the results of actions. Child tasks report their outcome to the

parent task which decides on the “meaning” of this result in the agent’s current context. For

example, in the find-and-go-through-door task, when find-door does not find a door, it re-

ports this fact to move-through-door. However, move-through-door does not necessarily

interpret this as meaning there is no door. Instead, it may have rotate-to-view-door change

the agent’s perspective because this is sometimes the cause of door finding failure. After

enough perspective changes, if the door can still not be found, move-through-door will re-

port to find-and-go-through-door that there is no door.

Another type of information that is communicated between tasks is progress information.

Progress is different than the results of actions because it represents how an ongoing action

is advancing. Progress can be used by tasks wishing to monitor how another task is pro-

ceeding. Tasks can interpret progress information using other information that only they

know. For example, a parent task may notice that a child task is not making adequate

progress and stop its execution in favor of another task. Alternately, tasks can change their

operation based on how another task is doing. Marcus uses progress information during the

go-to-destination task to denote when he is in the process of avoiding an obstacle (as op-

posed to heading straight for the destination). The problem is that when turning to avoid
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obstacles, the destination often goes outside the field of view. This means its position has

to be dead-reckoned. Marcus’ encoders have a high rotational error, i.e. dead-reckoned po-

sitions become highly inaccurate when Marcus is rotating, and so the estimate of the desti-

nation’s position drifts. When the obstacle has been avoided and Marcus faces the position

where he believes his destination is, he may not be able to match it to the task role because

either the object is not viewable or the actual and estimated positions differ too much. This

usually occurs after Marcus has had to turn sharply to avoid a close obstacle. Informing the

task that maintains thedestination that an obstacle is being avoided allows that task to ac-

cept larger discrepancies between detected and estimated position when doing the corre-

spondence for thedestination role.

Marcus also exchanges a form of confidence information between tasks. In this domain,

confidence is fairly simple except with respect to composite objects. Confidence that the

entity bound to a task role is the (or a) “correct one” is binary. If an object is acceptable to

an Identify routine, then the agent binds the role. If a role is bound, then the agent has

enough confidence to operate on that entity. If a role is not bound, then the agent does not

have enough confidence in any detected entity. However, for compound objects, there is a

complication because of the need to separate those objects into their components for the

perception/action loop. Marcus may be tracking the individual components of a stack, but

those could drift apart over time. The cue to periodically verify a component relationship

is based on confidence information. Whenever a relationship between components has

been verified, the confidence in that relationship is high. Over time it should decay until it

reaches a threshold at which Marcus verifies the relationship again. This should cause one

task to communicate the low confidence to a leaf task that can handle the verification by
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running a locate routine. Since Marcus has perception routines that verify the stack rela-

tionship at effector control rates, confidence in the roles with this relationship should al-

ways remain high.

As we have seen, all the information exchanged between tasks is about the entities bound

to the task roles. This is exactly what we were expecting since that is why we have roles in

the first place. The tasks that share roles are mutually concerned with the same entity in the

environment and so it is logically that they communicate information about the entity.

Now we can discuss how roles can be connected when they have an epistemological link.

Since certain information in Marcus’ domain can not be maintained at effector control

rates, there may be multiple data structures holding information about the same entity. For

example, the pose information returned by determine-item-pose is not maintained like po-

sition information. It is merely stored for use by other tasks until the agent moves from the

location where the pose was determined. Sometimes multiple roles in subtasks are linked

to a single role in the parent task. For example, thebaseandtopblock1 roles are linked to

item1 in the span-item1-and-item2-with-spanner task. Thebaseandtopblock roles need

to store the positions of those blocks whileitem1 stores the relationship between them. Re-

moving unnecessary detail, such as this, from the consideration of the perception/action

components of the architecture was a major motivation behind the concept of the task role

(see sections 3.4.2 and 3.5.2). Although the agent needs to operate on multi-part structures,

some tasks in the decomposition do not need to know about the entirety of the structure to

be effective [35]. Links between representations are created by communication between the

parent task and its children. The child task needs to report its role information to the parent

and the parent needs some function to synthesize the data from (possibly multiple) roles
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into its representation of the entity. In the case of the representation that stores the pose of

an entity, this function is fairly trivial, just store the action result of the subtask’s represen-

tation. For a representation such as the arch thearch that Marcus is building, the position

stored in the representation is determined by the positions of its components. There must

be a function to abstract the positions of the various pieces into a single arch position. For

Marcus, the arch position is defined as half-way between the positions of the two stacks

that are spanned. Each of the stacks is also a multi-part entity. If the agent needs to detect

some component of the arch, a function of the arch’s position and the agent’s knowledge

of arch structures can be used to make an initial estimate of the component’s position that

can subsequently be perceptually grounded. The key feature of these functions is that they

are defined by the kind of structure that the role represents. There will be functions for arch-

es, different functions for stacks, etc.

6.6. Architecture

How should the agent’s tasks be laid out in its architecture?The first step in defining the

architecture is to divide the agent’s tasks into PA layer and non-PA layer tasks. The leaf

tasks of figures 21 - 23 are all PA layer tasks because they bind their roles to PRs and they

perform their actions by controlling the agent’s effectors. These tasks have a short cycle

time because once an effector starts moving, a rapid perception cycle is needed to control

it properly. In other words, once the agent starts moving, it is a matter of critical safety that

it be responsive enough to stop in time. This implies that the representation of these tasks

must be well maintained and because of the PA layer’s cycle time, it can do this.

The top most task of figures 21a-c, 21e and 22a-e should not be PA layer tasks partly be-

cause their roles can be bound to composite objects that may be too expensive to maintain
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at PA layer rates. However, for stacks, Marcus can maintain the position/relationships of

all components and so these tasks could be in the PA layer. I do not place them in the PA

layer because they do not effect single blocks (which is all that is allowed by the PA layer’s

capabilities). The span-item1-and-item2-with-spanner task (21d) is not a PA layer task for

the same reason (sinceitem1 and item2 could be composite objects), but its span-

topblock1-and-topblock2-with-spanner subtask should be in the PA layer. While it is not a

leaf task, its roles are bound to PRs by the preceding tasks. This task does not control ef-

fectors (since it is not a leaf), it does share its roles with its children and they complete the

action.

The find-and-go-through-hall-door task, as well as some of its immediate children, are

not PA layer tasks. The align-with-hallway and center-in-hallway tasks are not PA layer

tasks because the hallway is not a PR and so their representation could not be appropriately

maintained. Rotate-base-to-hall-door is interesting. It uses the rotate-base-to-item task,

which would normally be a non-PA layer task becauseitem could be bound to a compound

object. However, rotate-base-to-item is not used at any other time during the arch building

task. It would be possible to place a restriction on the entities that could be bound toitem

and place it in the PA layer also. However, I have chosen to make rotate-base-to-item fit

the pattern of other similar tasks and be outside the PA layer. Since rotate-base-to-item is

a non-PA layer task, its parent task cannot be and so rotate-base-to-hall-door is a non-PA

layer task. Find-hall-door is a PA layer task since hall-door is a PR8 and find-hall-door uses

8. The reader may recall that the hall-door is actually identified by the left and right edges of the door
frame, two separate objects. It may seem that the hall-door cannot be a PR, but the left and right edge
representations are not used outside of the find-door task. The hall-door representation is bound to a
point between the left and right edges and is not updated perceptually based on them (it is just dead-
reckoned after it is bound). So, the hall-door is functionally a PR because its representation has no
parts to be identified and it can be maintained at effector control rates.
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its subtasks to manipulate effectors. Align-base-and-turret is also a PA layer task since it

has no roles, but it controls the wheel and turret effectors. Finally, go-through-hall-door

could be a PA layer task since hall-door is a PR and it is passed to move-through-door.

In the find-and-go-through-door task (figure 23b) the move-to-door and rotate-to-view-

door subtasks could be PA layer tasks since the door is a PR and their immediate children

handle the effectors. However, rotate-to-view-door uses rotate-to-destination which is not

a PA layer task and so it cannot be either.

In Marcus’ implementation, the first level of subtasks of both door tasks (figures 23a and

23b) are non-PA layer tasks even though some of them could be. This is to keep with the

ideal of limiting what goes on in the PA layer to those tasks that need high-bandwidth con-

nections between sensors and effectors. The first level subtasks of the door tasks are se-

quentially executed tasks that use other tasks to accomplish their goals. In some cases, they

make decisions based on context that is best not stored in PA layer representation. For ex-

ample, the find-and-go-through-door task remembers the different viewing angles that

have already been tried to recognize the door.

The plan step tasks are not PA layer tasks. They often bind their roles to non-PRs and

they have access to information that the PA layer tasks should not, such as maps of the en-

vironment. Since the PA layer tasks use local-space coordinates to control effectors, the co-

ordinates of the agent’s maps must be converted to be of use.

Now the question is, what if any division can be made among the non-PA layer tasks?

Here, the issue is tied to the knowledge available to a particular task. The more knowledge

a task brings to bear on a problem, the more processing time it requires. The plan step tasks,

for example, have the ability to use the results they receive from their children to determine
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the agent’s next step. They possess the context to interpret the result codes from the agent’s

actions and might be able to initiate replanning because they have access to a planning en-

gine9. Other non-PA layer tasks, such as, find-and-go-through-hall-door are simple se-

quencers for their child tasks. They follow a predefined pattern of tasks, but they relieve

the PA layer of having to decide what an action results means in the agent’s current state

and what action comes next.

The non-PA layer tasks should be divided into two different layers, one containing the

plan steps and the other containing the rest of the non-PA layer tasks. This division allows

one layer to hold data that does not need the PA layer’s continual maintenance and the other

to hold a planning engine (and possibly even more information). I make this division as-

suming that the agent’s next PA layer task can usually be selected without any inference.

In other words, a sequencer that maps action result codes to “next tasks” can be used. The

purpose of keeping the planner this far from the action selection process is to lessen the

temptation to use its “heavy weight” processing unless it is necessary, e.g. when the se-

quencer cannot decide on the next action.

6.7. Implementation

The implementation of Marcus’ representation system and architecture must follow the

design decisions made in the previous sections. There need to be multiple representations

for each represented task role that is shared between tasks at different layers. One needs to

be usable by the PA layer and another by a non-PA layer because there will be some infor-

9. As previously stated, Marcus does not have a planner. Rather, he has a pre-generated plan. Since
this thesis is not about the design or construction of planners, this pseudo-planner is acceptable
because it has a reasonable planner interface and the agent is designed with the consideration that
using the planning component is possibly a long, slow process.
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mation about the associated entity that should not be stored (and thus maintained in the PA

layer).

The structure of the representation used by tasks at each layer can be very similar because

the information that the representations must carry fits into the categories specified in sec-

tion 6.5. The difference is in the portion of the environment that the layers consider when

determining values for their representation components, e.g. some layers consider whole

objects and others consider parts. In the remainder of this section I will provide details of

the two representations used in Marcus’ architecture and how they perform the tasks of

building the arch. Then I will discuss how these representations are kept up to date with the

state of the world.

Marcus uses two forms of representation, one for his PA layer tasks and another for his

non-PA layer tasks. I call the PA layer representationsmarkers, as with previous agents. I

divide the non-PA layer portion of the architecture into the Task Executor (TE) and the

planner. The TE’s representations are calledprotomarkerswhile the planner’s representa-

tion is not the subject of this thesis.

Table 6.7 summarizes the components of the marker data structure. Marcus’ markers are

similar to the markers used by Bruce and Spot because similar information is communicat-

ed between tasks.

Table 6.7: Components of Marcus’ Markers

Component
Name

Component Contents

Index The role name used in combination with the Action component to
determine how the agent should act with respect to the object associ-
ated with the marker.

Property The ego-centric, polar (r,θ) coordinates of the associated object.
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6.7.1 The PA Layer Main Loop

Since Marcus’ PA loop performs the same basic functions as the PA loops of the other

agents, i.e. maintaining representation and selecting actions, it has a similar structure. First,

the PA layer attempts to update the Property components of any instantiated markers by

running their Identify routines (the Track routine in this case). Then the PA layer tries to

Identify Two routines, Locate and Track, that are used to initially bind the
marker to an object and to maintain the Property component thereafter.
These routines are manipulated by the TE based on the situation. Also
contains a “processed” flag to decide if one of this marker’s Identify
routines needs to be run (see below).

Action What the agent should do with (or with respect to) the object associ-
ated with the marker. Action is a pointer to a function that the TE
parameterizes. This component also stores the result code when the
action is completed.

Confidence Consists of an “instantiated” flag indicating that this marker has been
associated with an object in the environment.

Progress Contains a code indicating how the action being taken on the associ-
ated object is progressing. Often, this is simply “OK” because the
action is going according to plan.

Dependency
List

A list of other markers that are needed to either complete the action
specified in the Action component or update this marker. For example,
Marcus is capable of perceptually maintaining information about
whether or not the “stacked” relationship between entities in the PA
layer, but his capabilities still make it sensible for the entities to have
separate representations. Since determining if two blocks are stacked
requires determining the positions of both blocks, a single perceptual
routine is used to update the Property component of multiple markers.
Markers for blocks in a stack each have perceptual routines that update
the positions of all the stack’s markers. The marker whose routine runs
first will handle the updates to all markers and the Identify routines of
other markers will be skipped (on this cycle of the PA loop).

Table 6.7: Components of Marcus’ Markers

Component
Name

Component Contents
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instantiate any uninstantiated markers using their Locate routines. Finally, an action is se-

lected and performed. The remainder of this section discusses the difference between the

steps executed by Marcus and those executed by Bruce.

6.7.1.1 PA Loop Step 1: Update Markers

This portion of the loop proceeds in a similar manner to marker maintenance in Bruce

except that some markers have Track routines that can detect correspondents for multiple

markers. This happens when the PA layer verifies the relationship between some entities

and so has also determined their positions (and might as well update them). When one

marker has such an Identify routine, it has the other markers to update in its dependency

list. These markers set their “processed” flags and so their Identify routines will not be run

on this execution of the loop.

There is another difference with Bruce the creates a problem when trying to update or

instantiate markers. Bruce had a single means of image segmentation (the groundline) and

these segments, not the whole image, were analyzed by his Identify routines. Since all rou-

tines considered the same image regions, those regions could be ranked by how well they

matched a given marker. This made it reasonable to use the stable marriage algorithm,

which insured that two markers were never matched to the same image region (and thus

presumably the same object). Each of Marcus’ perceptual routines handles its own segmen-

tation, it is difficult to guarantee that multiple Identify routines are not detecting appropri-

ate objects in overlapping image regions. Solving this problem would involve keeping track

of image regions already associated with markers. However, the means of describing those

regions so as to include only the area that is really part of the object is computationally ex-

pensive with Marcus’ blob coloring routines (the main segmentation method) because only
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the bounding box is retained for each blob. It was empirically determined that Marcus need

not address this problem since important entities rarely look like each other (because their

colors are easily distinguishable) and overlap in the image (so previous position can resolve

which marker should be matched to a region).

6.7.1.2 PA Loop Step 2: Instantiate Markers

Marker instantiation is also similar to Bruce. If a correspondent for a marker is found, its

position is stored in the Property field and the “instantiated” flag is set. Multiple markers

can also be instantiated by finding a correspondent. As with the Track routine, a marker’s

Locate routine can instantiate other markers in the marker’s dependency list. Locate rou-

tines that instantiate other markers in the dependency list are trying to detect a group of

components, based on their spatial relationship, and associate each component with a mark-

er. Therefore, one correspondent for each dependent marker must be found or the relation-

ship cannot be verified. However, as discussed in section 6.4, it may not be possible to

detect the relationships necessary to find multiple correspondents from all perspectives and

so insisting that a Locate routine instantiate all or none of its dependent markers may be too

restrictive. Marcus deals with this problem by not placing an “all or nothing” Locate routine

in markers if he believes he is not in a good position for the required relationship to be vis-

ible. For example, when he is too distant from a stack that he wishes to go to, he will put a

“single block” Locate routine on the bottom block’s marker and a XonInstYLocate on the

top block’s marker (X and Y are block colors, e.g. green or yellow, and XonInstYLocate

detects a block of color X on top of a block of color Y that is associated with an instantiated

marker). The bottom block’s marker can be instantiated from any perspective (since its a

PR) and when the top block’s marker instantiates it signals the TE (see the discussion on
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monitor functions in the TE below). The TE will then change the Locate and Track func-

tions of both markers to be XonYLocate and XonYTrack. These routines will update/in-

stantiate both components or neither, but the agent should now be at a perspective where

this is possible.

6.7.1.3 PA Loop Step 3: Select/Execute Action

Marcus’ PA loop now selects and action for the agent to perform in a manner similar to

the one used by Bruce. Again, when multiple markers have values in their Action compo-

nents, the order in which the markers were added to the PA layer determines the order in

which the actions are performed.

6.7.2 PA Layer Behaviors

The actions that can be specified in the Action components of the markers are made up

of a collection of parallel tasks called PA processes (actual execution is pseudo-parallel).

These processes map readily to the leaf tasks of the decomposition. The implementation of

these processes (except those described in Appendix A) is not very important as their ef-

fects have been amply described in previous sections. So, the remainder of this section just

lists the cases where the PA processes for a task do not correspond to the exact layout of

leaf tasks in figures 21 - 23.

The go-to-destination task (figure 21a) combines the navigate-to-destination and avoid-

obstacles tasks into one PA process so that only one process needs to control the agent’s

wheels. This process looks for obstacles and if any are detected (or theobstaclerole is

bound) it avoids them, otherwise it moves toward the destination. A common pattern is to

combine move-to-good-X-view, use-Y-effector and watch-for-Z tasks into a single PA
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process. X, Y and Z depend on the task. For example, for stack-item1-on-item2 (figure

21e), X is item2, Y is stack and Z is item1-on-item2. I do this because the move-to-good-

X-view and watch-for-Z tasks are generally concerned with the same object(s), i.e. X is of-

ten part of Z as above. One tasks is looking for the conditions indicating that the human has

performed some action and the other is trying to position the agent so that it can observe

when these conditions occur. Unlike the flow indicated by the flow diagrams in Appendix

B, these operations go on continually so that the agent can always adjust its position to a

good view if something in the environment changes to ruin the old view. For example,

when Marcus is looking to see when item1 gets put on top of item2, if item2 moves, Marcus

needs to adjust his view so that he can still observe item2 properly. This combination of

subtasks occurs in the stack-item1-on-item2 (21e), span-topblock1-and-topblock2-with-

spanner (21d), pick-up-item (22a), put-down-item (22b), and put-item-in-toolbelt (22c)

tasks. A similar combination occurs with the move-to-good-item-view and calculate-item-

pose subtasks of determine-item-pose (22e).

Two other leaf task combinations occur in the find-and-go-through-hall-door task (23a).

The subtasks of align-with-hallway are combined into a single PA process that senses if the

baseboard is horizontal and if not sends a rotation command to the base. If it is, the base is

stopped and the PA process completes. The watch-for-hall-door and open-hall-door-if-nec-

essary subtasks of find-hall-door are also combined into one PA process. This process

checks if thehall-door role is bound and if it is, looks to see if the door is open (asking for

human assistance if it is not). If the role is not bound, the process continues monitoring the

wall trying to bind the role.

A final question that the reader may have is why there is a track-baseboard behavior in
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move-to-door?Baseboardis a role and roles are automatically maintained as part of the

main PA layer loop (section 6.7.1), i.e. they do not need separate maintenance behaviors.

This was done because tracking the baseboard did not fit into the usual interface for the

Track routines. Track routines normally produce (r,θ) coordinates for candidate correspon-

dents and the marker is matched to one of these. As mentioned in section 6.4, it is difficult

to estimate an azimuth for the baseboard, but this does not matter to task execution. So

track-baseboard just updates thebaseboard’s r and itsθ is dead-reckoned as part of normal

representation maintenance.

6.7.3 The Task Executor

Tasks in the TE layer are different than PA layer tasks because they do not have the same

restrictions on cycle time. They can use different representation structures with component

names similar to PA representations. The TE uses structures called protomarkers that are

summarized in table 6.8.

Table 6.8: Components of Marcus’ Protomarkers

Component
Name

Component Contents

Index The Index component consists of a unique identifier for each proto-
marker. Plan steps (defined below) can refer to a particular objects by
the Index of their associated protomarkers. When a plan step causes a
protomarker to be created (see below) the protomarker is given a
unique Index that further plan steps can use to refer to the associated
object.

Property The Property component is divided into two fields called Where and
Prop. The Where component contains the position of the associated
object. This is not in ego-centric coordinates, but relative to some other
object in the environment. Marcus uses assembly site relative coordi-
nates, i.e. coordinates relative to the position of the first object placed
at the arch assembly site. The Prop component stores information that
have been determined by the PA layer, but is not maintained in the PA
layer’s main loop. Marcus stores the pose of objects here.



222

The reader will note that there is no Action component as there is in the representations

of other agents. Marcus does not need a protomarker component that is processed by the

TE’s main loop to decide what action to take on the associated object. That information is

held in the current plan step. It would be simple enough to have the planning layer of the

architecture place this information in protomarkers as they are passed to the TE, but that is

not how Marcus is implemented.

The layout of tasks in the TE is as discussed in section 6.6 and does not need further dis-

cussion, except for one task. In the span-item1-and-item2-with-spanner task, the find-base

and find-topblock tasks are PA processes, as are the leaf tasks of span-topblock1-and-

topblock2-with-spanner. Span-item1-and-item2-with-spanner and span-topblock1-and-

Identify The Identify component of a protomarker is in charge of handling the
Identify routines of its dependent markers (see Dependency List). It
contains information about the relationship(s) between components of
the protomarker’s associated object (if there are more than one) and
how to manipulate dependent marker Identify routines for different
perspectives or situations.

Confidence A protomarker’s Confidence component contains a bit that is used to
decide when to reverify spatial relationships between its object’s com-
ponents. After the protomarker’s associated object goes outside the
field of view, the bit is set so that the next time the agent wishes to act
on the object, the relationship(s) specified in the Identify component
must first be verified. This is how the agent “periodically” verifies the
associated object’s structure. Newly created protomarkers have zero
confidence since their markers have not be instantiated.

Dependency
List

This component holds a list of the markers that are associated with this
protomarker. Each marker represents one of the parts of the object rep-
resented by the protomarker. There can be a single marker in a proto-
marker’s Dependency List. As we’ll see below, all plan steps refer to
protomarkers and so tasks that effect simple objects will create proto-
markers with one marker.

Table 6.8: Components of Marcus’ Protomarkers

Component
Name

Component Contents
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topblock2-with-spanner are in the TE. What is interesting here is that the span-item1-and-

item2 task sequences a number of other tasks, some of which are PA processes and one of

which is a TE layer task in and of itself. In this architecture, TE tasks can be nested, i.e. TE

tasks can execute other TE tasks, but PA processes are not permitted to activate other PA

processes. A PA process can perform some action (like binding a shared role) that causes

another PA process to also take action, but only the TE can start a PA process executing

(and thus monitoring for the cues produced by the other PA process). This protects the re-

sponsiveness of the PA layer, by not allowing any process to execute in that layer without

the explicit request of the TE.

6.7.4 The TE Main Loop

The task executors main loop consists of the following steps; check monitors, handle

completed actions and determine next action. I will explain each of these steps separately.

6.7.4.1 Check Monitors

Monitors are small pieces of code that are examine the TE’s protomarkers to determine

if specific environmental conditions have occurred. Monitors are used to implement several

of the behaviors discussed in the design of Marcus. Each monitor specifies a “firing condi-

tion” and what to do when that condition occurs. The firing condition is based on some state

of a protomarker or its associated markers. On each pass through its main loop, the TE will

check to see if any of these conditions exist. If so, the monitor function is executed and then

removed from the current monitors list.

In principle, monitors could be used to do any monitoring task, such as checking the

Progress component of a protomarker’s markers to see how an action is proceeding or wait-
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ing for component objects to be in certain positions. Marcus uses monitor functions to do

three jobs, each of which has a monitor condition based on the instantiation of markers.

First, monitors provide the mechanism for handling the switching of marker Identify rou-

tines when the agent’s perspective changes. Recall that when the agent is too far away from

a stack that it wants to associate with a protomarker, the TE creates a marker for the bottom

block with single block Identify routines. Then a second marker for the top block is created

with the XonInstYLocate routine as its Locate routine. A monitor is set up to watch for the

instantiation of this second marker. This will happen when the bottom block’s marker is

instantiated and the top block’s marker’s Locate routine has found a suitable block above

the bottom one. The monitor function switches the Identify routines of both markers in the

monitor function’s protomarker to the appropriate Locate and Track functions for this new

perspective. For the stacks in Marcus’ domain these functions are XonYLocate and XonY-

Track. These functions depend on finding correspondents for both markers, as opposed to

the previous function that allowed one marker (for the bottom block) to be updated inde-

pendent of the other.

The second use of monitor functions is in the span-item1-and-item2-with-spanner task.

At the start of this task, the agent must find the topblock of each construct since these are

the ones where the spanning action can be observed. The agent looks at the bottom block

and sets up a monitor function that keeps count of the number of times the agent has run

thetopblock marker’s Locate function (XonInstYLocate) and failed to find it. The monitor

function executes if either the marker is instantiated or the frame count exceeds a certain

threshold (10). If the marker was instantiated, then the monitor function merely exits and

is removed from the monitor list. However, if the frame count was exceeded, the TE deter-
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mines that the stack is no longer in place. The monitor function places a Stack action on the

bottom block’s marker and an uninstantiatedtopblock marker in its dependency list. This

should cause the stack to be re-created. The TE can then continue the spanning action.

The last use of monitor functions is in the instantiation ofbase-blockmarkers. In general,

a role can be played by many objects and while it is possible to have a single Locate func-

tion that can detect if any of them are present, there are times when the designer already has

a collection of separate functions that will do the job. This is the case with Marcus. Abase-

block marker can be associated with either a yellow or a green block. YellowLocate and

GreenLocate functions had to be developed anyway, so the easiest way to instantiate a

marker on either a yellow or a green block at a particular location is to put two different

uninstantiated markers in the PA layer. Abase-blockprotomarker is created in the TE and

when it is uninstantiated, it has two markers in its dependency list. One has a GreenLocate

function and the other has a YellowLocate function. Both have the same coordinates in

their Property components. When the agent tries to instantiate the base-block protomarker,

both markers are placed in the PA layer and a monitor that will fire when one of them is

instantiated is placed in the monitor list. The monitor function will remove the other (unin-

stantiated) marker from the PA layer and subsequent references to the protomarker will ef-

fect the single remaining marker. The protomarker can also store the color of the detected

base in the Prop field of its Property component, thought its marker already has the correct

Identify routines and so this information would only be for use by the TE or planner.

6.7.4.2 Handle Completed Actions

Once the monitor functions have been checked and run, the TE checks to see if the ac-

tions on any of the markers associated with its protomarkers have completed. If so, the PA
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layer will have passed a reference to a marker to the TE and the TE must search its proto-

markers to find the one that contains that marker. Next Marcus checks if the action that just

completed is the last of the plan step10 and if the plan step has a completion function. A

completion function is similar to a monitor function except that it fires when its associated

plan step is finished. When this function runs, it alters the state of the protomarker(s) ref-

erenced by the completed plan step. Marcus uses completion functions to set the position

portion of the protomarker’s Property component, usually after a put-down-item task. In

one case, the origin of the assembly-site coordinate system is set (the first stack built at the

site is set to be at (0, 0)). As other blocks are added, their assembly-site relative positions

are calculated based on the position of the original stack and the ego-centric coordinates of

the marker(s) for the new blocks.

After running any completion functions, the TE makes further modification to its repre-

sentations based on the action that was completed and the return code placed in the mark-

er’s Action slot. The TE must also check if it’s in the middle of a sequence of actions that

are part of a single plan step. This is because the completion of, for example, a rotate-to-

item task has different meanings if it was executed as part of the rotate-to-stack task or find-

and-go-through-door task. Table A2 in appendix A provides a list of the TE operations

when the various possible PA layer actions complete.

Next, Marcus deletes markers, if necessary. A marker with a completed Delete action has

been removed from the PA layer, but the actual memory cannot be freed until this point

10. The code that actually ran on Marcus had a bug in that it forgot to check if the action that just
completed in the PA layer was actually the last action of a particular step in the plan. Plan steps that
required multiple PA layer actions and had completion functions would have those functions run
when the first action completed. However, this bug did not effect Marcus because none of the plan
steps that would have triggered the bug had completion functions. The description above is what
Marcusshould do.
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when Marcus removes all references to this marker by other markers and protomarkers.

The last part of the this step of the TE main loop is to delete references to any markers in

the dependency list of the marker with the completed action. This is done because those

markers were there to support the completed action and are no longer needed (if they are

needed for another action, they will be added again). The problem is that sometimes mark-

ers are in the dependency list because there is a perceptual dependency, i.e. a relationship

between the markers is being verified in the PA layer. These references should not be re-

moved from the dependency list. Marcus knows which marker Index values indicate per-

ceptually dependent markers (e.g.topblock or fastener) and so all others are removed.

6.7.4.3 Determine/Execute Action

Once any completed actions have been dealt with, the TE can have the PA layer execute

new actions. Each step in the plan (see below) references the Index of a protomarker, or the

indices of a set of protomarkers, whose associated entities are involved in the step. If the

TE does not have a protomarker with a given Index, it will create a new one for the needed

object. Then markers (with appropriate Action components) are created for any new proto-

markers or for any needed protomarker that doesn’t have the necessary markers in its de-

pendency list. For example, a plan step to execute a pick-up-stack task on a stack at a

certain global coordinate (x, y) may create a newstack protomarker. Then two markers

would be created for this protomarker. Their Property components would be initialized us-

ing the global-to-local conversion of appendix A. The marker for the bottom block would

be anitem marker and it would have the pick-up-item action on it. The other marker would

be atopblock marker and both markers would have XonYLocate and XonYTrack Identify

routines (assuming that the agent is at the right perspective to observe the stack which it
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should be if its about to pick it up).

It is possible for a protomarker to have no markers in its dependency list after it is created

in the following way. Markers can be removed from the PA layer when their actions com-

plete by the delete-marker plan step. This is a good idea because any marker (even with a

null Action component) consumes resources when it exists in the PA layer since the PA lay-

er will be maintaining the marker’s Property component. Efficient plans (such as the arch

building plan) remove markers from the PA layer when their associated objects will not be

acted on by the agent in the near future. The protomarkers that contain those markers usu-

ally are not deleted from the TE, especially if the agent will need to deal with the associated

entity again. Protomarkers consume much less computational power because their data is

maintained only when the TE is about to act on their associated object. Allowing the pro-

tomarker to remain when the markers have been deleted allows the agent to remember cer-

tain environmental data at a low cost. The markers can be recreated again when the object

associated with the protomarker is acted on again. The important issue here is that when

recreating a marker, it may be difficult (or at least highly error prone) to estimate the asso-

ciated object’s ego-centric position as correctly as if that object’s marker had remained in

the PA layer and been maintained. So, a trade-off exists between the difficulty of re-estab-

lishing an object’s position and the computational resources that the designer/planner is

willing to allocate to maintaining that position.

Once the markers have been created and appropriate values have been placed in their Ac-

tion components, they can be passed to the PA layer. If the new markers are instantiated by

the PA layer, the TE knows that any spatial relationship specified by the protomarker exists

because the Locate routines check this. Later, if the protomarker’s markers are already in-
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stantiated, but the protomarker’s Confidence bit is set, the TE will verify the protomarker’s

relationship by uninstantiating the markers and seeing if they instantiate again. Once the

specified relationship has been verified successfully, the TE can initiate a new action by

changing the Action component of the pre-existing markers. Table A3 in appendix A sum-

marizes how the TE begins new plan steps (recall that subsequent PA layer actions that are

part of a plan step are initiated by the TE as described in table A2 of Appendix A). If the

relationship was not found between the markers of the protomarker, the TE must execute

an action to rebuild the structure, such as stack-item1-on-item2 or span-item1-and-item2-

with-spanner.

6.7.5 Plan Step Structure

The structure of the plan steps in Marcus’ plan are shown in table 6.9.

Table 6.9: Plan Step Components

Component
Name

Component Contents

Action The task the TE should execute. Note that this is not an action in the
PA layer, but a TE task, i.e. one of the root nodes of the decomposi-
tion diagrams of figures 21 - 23.

Protomarker
Tags

Specifies the Index fields of the protomarkers involved in this task.
Up to three can be specified in this implementation (the maximum
needed by any of Marcus’ tasks). A protomarker with the specified
Index is created if one does not already exist.

ID The Identify functions for the entities to be associated with the step’s
protomarkers. For example, XonY_ID indicates a stack with a block
of color X on a block of color Y and Red_ID means this protomarker
will be associated with a single red block. This field is only used
when new protomarkers are created.

Position The position of the entity to associate with the protomarker specified
in map coordinates.
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6.7.6 Summary

Marcus’ architecture is divided into three layers, the planner, the task executor and the

perception/action layer. The planner and PA layer each interface with the TE. The planner

communicates its plans as a linear series of plan step structures to the TE and the TE causes

the PA layer to execute the plan by sending it various markers. Markers (actually references

to markers) return from the PA layer when actions are complete. The TE interprets the re-

sults and sends more markers to the PA layer or manipulates components of existing mark-

ers. If the TE discovers that the planner’s plan has gone awry, it should send protomarkers

to the planner to give it information about the environment from which to replan11.

The plan steps all refer to protomarkers and it is up to the TE to translate from its repre-

sentation to the representation of the PA layer to have the plan steps carried out. The pro-

tomarkers group sets of markers together and the plan step can simply refer to the whole

collection of components at once. The TE is responsible for “distributing” the planner’s de-

sired action(s) among the components of an object. This allows the planner to take a more

abstract view of the environment and reduces the planning search space.

At the same time, the TE reduces the PA layer’s burden by keeping the active markers to

Parameters Parameters for the task. Used for data such as the stop radius on go-
to-destination actions, i.e. how close the agent should be to consider
the action complete.

Completion
Function

The function to run when the plan step completes.

11. Marcus’ planner does not handle replanning, but the BridgeWorld agent [81] which has a similar
planner/TE interface does.

Table 6.9: Plan Step Components

Component
Name

Component Contents
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a minimum. In other words, the PA layer expends computational resources to maintain each

marker in its memory even if it is not doing any action on that marker’s object. The assump-

tion is that if a marker is present in the PA layer, it is important to the current task (or will

soon be important) and is being maintained because the accuracy of its Property field is cru-

cial. However, this allows the designer to overload the PA layer with too many markers,

causing none of them to be maintained effectively. The TE handles the notion of the “cur-

rent task” by passing the PA layer just the markers needed to express the task to be done.

The PA layer can create additional markers on it own (obstaclemarkers for example), but

these will be automatically deleted by the PA layer when the action that caused them to be

created is completed. Markers created by the TE will be passed back (again, just a reference

is passed), but the TE is responsible for deleting them. This allows the TE to make trade-

offs between the computational load of the PA layer and the accuracy of the information

stored in the markers (and hence available to the agent). The protomarkers are used to store

information extracted from the environment by or the agent’s sensor/effector actions, but

that should not be maintained in the PA layer. Spatial relationships can be difficult to main-

tain at effector control rates and so they are kept in the TE and periodically verified by

changing the instantiation status and/or Identify routines of associated markers.
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In order to evaluate the usefulness of a representation system, we must first define what

makes a representation system effective. The methodology in this thesis is based on the idea

of task-oriented design, where control loops that closely couple sensors and effectors are

necessary to achieve a task’s goals. The computational demands of these loops lead to de-

signs based on task roles because task roles point the designer to the entities in the environ-

ment that are important to the task (and thus the agent should be built to spend its time and

computation on them). An agent, then, can use representation to store information about the

entities associated with task roles, if doing so makes it more efficient and/or effective at its

task than it would be without representation. I specify the criterion by which the influence

of a system of representation on an agent’s task performance can be judged with the fol-

lowing three requirements (some of which are similar to the “desired properties” used in

[44]).

7.1. Requirements

R1. The architectural components using the representation must be able to find
necessary information using a search of manageable combinatorics (where
what is manageable is dependent on the component’s “cycle time”, as defined
in section 3.8.2).

R2. The representation should aid the designer in creating tasks that manage the
agent’s limited computational resources. Representation systems can be
designed for different trade-offs between the accuracy of the information they
contain and the cost of maintaining that information.

Chapter 7 Evaluation

Nothing is so good as it seems beforehand.
- George Eliot
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R3. The representation should aid the designer in creating tasks that manage the
agent’s limited perceptual resources. Representation should assist tasks in
handling such perceptual problems as a limited “field of view”1 and
occlusion.

I argue that any system of representation should meet all of these requirements and not

meeting any is grounds to reject that system. R3 is important because this thesis addresses

the design of representation systems forphysicalrobots in dynamic domains. Such robots

typically receive sensor input from a first-person perspective in domains with occlusion. A

system of representation should augment the perceivable world by helping the agent re-

member important, but not currently perceivable information. (recall the “limited field of

view” argument for representation from section 3.5.2).

Of course R3 can only apply to the representation systems of layers that are directly con-

nected to sensors, i.e. PA layers. Other layers have no notion of occlusion or a limited field

of view. R3 must still be observed, however, because the PA layer grounds the representa-

tion used by higher layers.

R1 and R2 are similar in that they place constraints on the computation done by the PA

layer. This is of critical importance for agents with multi-tiered architectures because the

PA layer handles the agent’s interaction with the world. The agent’s ability to react, i.e. its

ability to adjust its actions to changes in the environment, depends on the PA layer’s ability

to devote all its computational power to perception and action. Therefore, the PA layer

should be efficient in its use of resources (R2) and not be asked to perform computation not

useful to the current task (R1).

R1 means there should be no searches of unpredictable length through the representation.

1. I use the term “field of view” even for non-visual sensors, though perhaps “perceptual field” would
be more accurate.
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No extended inferencing should be allowed, i.e. the data stored in the representation must

be in a form that is directly usable by the tasks that access it. This is why specific informa-

tion needed about entities associated with task roles is considered in the methodology (sec-

tion 3.5). Of course, reducing the search space for one task may mean increasing the search

space of another, and in such cases the representation should be more direct for the task re-

quiring the faster perception/action cycle.

R2 says the representation should be designed with an understanding of the trade-offs be-

tween the precision of the information stored in a representation, i.e. how closely it corre-

sponds to the current state of the world, and the amount of computation required to

maintain that information. These trade-offs will be based on a combination of the impor-

tance of the information to the ongoing task and the time required to compute that informa-

tion. Representations used by the PA layer are generally used in sensor/effector control and

so require frequent verification. The representations used by other layers can usually be

verified less often because their data is less crucial for moment-to-moment action (that’s

why the data is not stored in the PA layer) and maintenance at the same rate as the PA lay-

er’s representation would represent a significant computational burden to the agent.

A system of representation must meet R1, R2 and R3. A system that met R1 and R2, but

not R3 would be myopic in that it would loose track of important entities that went outside

the field of view or became occluded. A system meeting R1 and R3, but not R2 would ei-

ther have to represent only primitive recognizables (see section 3.6) or would bog down un-

der the computational load of maintaining a complex representation. Finally, a system

meeting R2 and R3, but not R1 might be designed to operate properly, but allows the de-

signer to imbed time-consuming search processes in the PA layer, hampering its efficiency.
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I present two additional “requirements” that are based on my belief that representation

forms an appropriate medium for communication both within [10][65] and between layers

[71] of the agent’s architecture (see section 3.7.2). These are not strictly requirements of

the representation system (since any communication protocol can be used), but do provide

additional benefits if they are met. If the designer develops a representation system that can

be used for communication in an agent architecture, the designer need not create a separate

communication system.

R4. The representation system should facilitate communicationwithin layers of
the architecture. In other words, since all tasks must know how to interpret the
representation, no communication protocol is necessary other than
exchanging representation.

R5.The representation system should facilitate communicationbetweenlayers of
the architecture. The methodology’s task/subtask decomposition provides a
natural linkage between roles in parent and child tasks. These tasks are
sometimes placed in different layers of the architecture and so the designer
should exploit this link for inter-layer communication.

R4 says that the communication between all tasks at a layer of the agent’s architecture

should be facilitated by representation. Note that this requirement restricts the processes

from communicating their “internal” state to each other. Internal state is any data that a pro-

cess does not place in the representation (because it does not fit in any of the representa-

tion’s components). A process has the context to interpret its own internal state, but other

processes will need to be told how to interpret such information. By restricting what infor-

mation is communicated, the designer is forced to carefully consider what that information

is used for and whether it really needs to be shared.

R5 says that representation should assist in the communication between tasks at different

layers. For example, one layer may hold information that is not needed for the agent’s cur-
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rent effector control. This information can be stored in the representation at one layer and

passed to the lower layer when it becomes crucial. Alternatively, the changes in represen-

tation of an entity at one layer can be interpreted by another layer to effect its representation

of the same entity (e.g. the way Marcus determines the positions of composite objects,

based on individual block positions, see section 6.5). In addition, higher layers can commu-

nicate their beliefs about the environment to lower layers that can ground those beliefs in

perception. Communication by placing and removing representation of some entity in an-

other layer’s memory is a simple way to do this.

The systems of representation developed by the methodology in chapter 3 meet require-

ments R1 through R3 and the representation of the agents developed in chapters4 - 6 also

meet R4 and R5. R1 is met by representing only the data needed by the tasks (see section

3.5). Other information about the environment is ignored. By representing only this data,

the search space is reduced. The crucial thing about this representation is that it contains

information of the form “my car is parked at (x, y)” as opposed to a map representation in

which the agent must search for the car to determine the (x, y) position of its parking place.

The search is further reduced by the designer limiting the number of representation ele-

ments that exist at any one time (see sections 3.4.2 and 3.5.2 for discussions on having few

roles and on deleting representations when their tasks are over). This is particularly impor-

tant in the PA layer for the maintenance process to be suitably fast. By deciding what roles

in the tasks need representation, the designer seeks to limit the number of elements active

at any one time (for example, Marcus never uses more than 6 markers at a time). The De-

pendency component of markers and proto-markers further serves to lessen the search for

information by pointing to elements that contain information needed by the task indicated
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by the marker’s Action component.

The methodology helps designers meet R2 by using the task role hierarchy that results

from the task decomposition (see section 3.7). The agent will need to compute some num-

ber of environmental properties during the execution of its tasks. For some tasks, the com-

putational load required to continuously verify these properties will reduce the agent’s

ability to react below acceptable levels. The natural epistemological link between roles in

different tasks provides a means of dividing up the storage of properties that the agent needs

to know about an entity. Those that are needed for effector control can be stored in the rep-

resentation used by the leaf tasks, while other properties can be stored in the representations

of “higher” tasks. By only updating such properties periodically, computation of all needed

information becomes feasible. For example, Marcus updates the positions of individual

blocks in the PA layer since they are needed for effector control, but only verifies the proto-

marker’s relationships between blocks when he is going to effect the associated object.

Sometimes, the link between roles in different tasks represents a constraint on the infor-

mation stored in each role. For example, the position of a stack determines the position of

its component blocks and the position of these blocks determines the position of the stack.

In such cases, properties stored in non-PA layer representations are simple functions of

properties stored in their component representations [57][81]. This may further simplify

processing since additional perceptual computations are not necessary to determine such

properties.

In addition, the perception portion of the methodology (section 3.6) addresses R2 by di-

rectly addressing the amount of perceptual computation that the agent needs to do to main-

tain its representation. By considering the binding duration and level-of-detail, the designer
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looks at the ability of the agent to use “context” in maintaining the representation. By con-

text, I mean using previous properties of the entities bound to the representation to help

compute the current properties.

The designer can use domain knowledge and task constraints to simplify the update pro-

cess, i.e. the tasks should exhibit “situated activity” (section 1.3.2). Spot’s marker’s Confi-

dence “timer values” (section 5.7.1) and the maintenance of representation in Marcus’ door

detection routines (section 6.4) are examples.

The methodology also asks the designer to consider the level-of-detail required in a rep-

resentation to assist the designer in creating an appropriate maintenance scheme. By con-

sidering when less than the maximum amount of precision is feasible, the designer can

develop an efficient allocation of computational and perceptual resources. The designer can

use precise (and presumable expensive) sensors only where needed and develop control

strategies to direct the agent’s sensors toward the portion of the environment where the cur-

rent, most important, information can be determined.

The methodology encourages the “effective field of view” paradigm [13][14] to help de-

signers meet R3 (see section 3.5.2). By designing agents that remember important entities

that are outside the perceptual field, the designer allows the agent to not only act using that

information, but to store context to assist in reacquiring the entity without the expense of

initial identification.

The PA layers of the agents described in chapters4 - 6 meet R4 by exchanging informa-

tion between PA processes via the markers (see sections 4.7, 5.7 and 6.7). This means of

communication is similar to a blackboard system [47] in that the PA processes are knowl-

edge sources who compute information (about entities) based on information posted by
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other knowledge sources. The PA processes post markers and thereby make their important

results, i.e. the ones concerning the task roles, available to other PA processes. The agents

meet R5 by having higher layers command lower layers simply by placing appropriate ex-

pectations in their representation, i.e. uninstantiated markers (see sections 4.7, 5.7 and 6.7).

For example, Marcus places markers in the PA layer and the Action components of those

markers triggers sensor/effector actions.

7.2. Evaluation of Other Design Methodologies

In this section, I analyze how current design methodologies can fail to produce represen-

tation systems meeting the requirements specified above. In doing so, I will consider how

these methodologies would be used to design an agent to execute the task that Marcus ex-

ecutes. Since the methodologies discussed here are not strictly representation design meth-

odologies, there is a certain amount of interpretation in deciding how they effect

representation. This can be good and bad in that the designer is free to use different design

techniques, but at the same time is more free to shoot himself in the foot.

7.2.1 The Subsumption Methodology

The subsumption methodology [17] needs to only be discussed briefly because it does

not provide for any form of representation. It cannot design agents to perform Marcus’ task

without serious contriving of the environment because all the blocks needed are not per-

ceivable at once. This means a subsumption system could not even turn to acquire the base-

block in step 2 of Marcus’ plan because once the first (purple) block is reached, there is no

perceptual cue to tell Marcus to turn toward the next block. This is a violation of R3.
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7.2.2 The 3T Architecture

The next methodology I examine is part of the 3T architecture [10]. 3T’s design method-

ology concentrates on decomposing a task and then deciding which of the resulting sub-

tasks belong in which layers of its architecture. This architecture has three layers, a planner

on top, a PA layer (called the “skill layer”) at the bottom and a sequencing layer (based on

the RAP system [28]) in between. The design methodology does not address the issue of

representation and this can cause problems.

The problems stem from the representation used in the sub-systems of 3T’s architecture.

The RAP system uses LISP predicates as its fundamental representation element, while the

skill layer uses arbitrary data structures (both within the skills and as the inputs and outputs

of communication channels between skills). Note that we are only interested in the bottom

two tiers of 3T, as planning is beyond the scope of this thesis.

In order to see where problems can occur, we first need to create a “3T decomposition”

for a portion of Marcus’ arch building task. Consider the goto-destination task that is exe-

cuted once Marcus has put down the initial base block at the assembly site and is heading

back to a previously seen (purple) block that will be used to create the first stack. The goto-

destination task (withdestinationbound to the purple block), is decomposed into navigate-

to-destination, look-at-destination and avoid-obstacles. These tasks should all be skills be-

cause they need to function in tight perception/action loops to control their effectors as the

agent moves through the world. One more skill, detect-destination, must also be added to

be the process that detects the destination in the sensory stream. The goto-destination task

itself should be a RAP because the skills that achieve it can be activated by the RAP sys-

tems and parameterized with the destination location.
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While the reader may question the use of the same task decomposition for a different ar-

chitecture, the tasks used are based on Marcus’ capabilities and not 3T’s. Avoid-obstacles

or detect-destination could be wrapped into navigate-to-destination, but this will not affect

3T’s ability to meet the requirements stated above.

Representation comes into play because we know that the skills cannot be written in a

purely reactive fashion (see section 7.2.1). Since 3T’s methodology does not address rep-

resentation, the designer could create representations that are the same as those outlined in

section 3.7, or that contained more or less data. If the representation elements developed by

the 3T designer turn out to have the same structure as the representation developed in sec-

tion 3.7, then the methodology of this thesis is superior because it aids the designer in cre-

ating such structures instead of hoping that they occur by chance. If the representation

elements have less data than those developed in this thesis, then the reader is referred to

section 3.7 for arguments as to why the representation will be ineffective.

Suppose the skills used a representation that contained more data than the markers used

by Marcus’ PA layer (section 6.7). The skills might have some map of the environment so

that they could figure out how to get from the assembly site to the purple block (and thus

the RAP system would only need to send them the name of the current destination). The

skills might also represent more properties of the world than the markers, such as the spatial

configurations of various blocks, e.g. on top. The former violates R1 and the later R1 and

R2 as discussed below.

R1 is violated because if the skill layer uses maps then it does not reduce the search space

considered by the skill layer’s action selection machinery. That is, R1 is violated because

the skills must look through the map (whatever form the map takes) in order to determine
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the position of the purple block. If the navigation skills just had information about the pur-

ple block, the task of determining that information would fall to the RAP system (or the

planner). This is in line with R1 because the skills have tighter PA cycles than the RAPs.

R1 would be violated if the representation stored properties of objects (such as configu-

rations of blocks) not needed by the skill layer’s tasks. R1 is violated because, as stated

above, the skills will have to search through unnecessary data about objects and properties.

In fact, any data stored in the skill’s representation that need not be (meaning the skills

should compute that information from current sensor values or get it from the RAP sys-

tems) violates R1.

R2 could also be violated because representation of information must be updated for it to

continue to be useful. Since 3T’s methodology provides no guidance with respect to repre-

sentation maintenance, there would be a temptation to update everything at the effector

control rate, i.e. the maximum rate required by any skill. This may cause the precision/com-

putation trade-off to be poorly made. That is, the representation could violate R2 if the de-

signer makes a poor trade-off by permitting the go-to-destination skills to get bogged down

verifying information that is not germane to the task.

So, if the skill’s representation contains more data than the representation developed for

this thesis, that representation violates R1 and R2. This means that skill should use the rep-

resentations designed by this thesis and this methodology could be used along with the 3T

methodology to design an agent’s skill (PA) layer.

3T uses multiple representation systems because the RAP layer’s representation is differ-

ent than the skill layer’s. Actually, the RAP layer’s representation is more strongly speci-

fied than the skill layer’s. The fundamental element is the LISP clause, e.g. (on block-5
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block-6) or (purple block-5). This type of representation violates R1 because its lack of

structure means it is not deictic [1]. Unification is used to determine if facts are stored in

RAP memory. Since there is no one place where the information about a particular entity

is stored, this look-up takes an unknown amount of time.

In addition, R1 can be violated because of the difficulty with removing facts from the

RAP memory. RAP memory contains time-stamped predicates that increase the RAP sys-

tem’s search time until they are removed by some form of garbage collection (which itself

might be computationally expensive and require unknown time). By using my methodolo-

gy, the designer finds roles in the agent’s tasks. The data contained in the representation of

these roles is known to be important to the role’s task and so when that task is over, it is

easy to find and remove data that is no longer necessary.

The methodology of this thesis avoids these problems by advocating the creation of a de-

ictic representation of important, task dependent, objects for all layers of an agent architec-

ture. Since the 3T methodology places either no restrictions (skill layer) or the wrong

restrictions (RAP layer) on representation, designs using my methodology can produce

more efficient and effective systems of representation.

7.2.3 The PURE Architecture

The PURE architecture [45][65] is a subsumption-like architecture, that unlike tradition-

al subsumption architectures [17] has a system of representation based on structures which

the authors also call “markers”. The main contribution of the work to the design of repre-

sentation is the architecture’s use of representation to coordinate/communicate between be-

haviors. However, PURE’s design methodology does not address the important issues of

how to decide what to represent, how to structure that representation and how to devise a
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scheme for effective representation maintenance.

Suppose Marcus was designed using ideas from the PURE architecture. Markers would

then be able to represent multiple points in the environment and specify a relationship be-

tween them (such as the trajectory markers used in PURE’s unblock task [65]). This would

make them similar to protomarkers except that all information would be kept in the PA lay-

er. There might, then, be an arch marker that contained the positions of the blocks in the

two stacks and the spanning block. If the agent tried to maintain the information in the arch

marker at effector control rates, that would violate R2 because no mechanism was given to

make trade-offs between accuracy and computation. However, the PURE system does pro-

vide a means of controlling marker updates via the gaze behavior. Whenever a marker’s

position is close to the fovea of the PURE robot’s stereo system, the agent tries to update

that marker. By controlling the gaze appropriately, the designer can implement a mainte-

nance scheme that prioritizes some information over others.

Putting this mechanism in the gaze behavior hides one of the crucial aspects of the data

contained in the markers, i.e. the usefulness [14] of each piece of information. Different

tasks require different precision in the information they use. The hierarchical representation

created by my methodology makes clear the priority that is placed on the precision of a

piece of information. This determines the rate at which a piece of information needs to be

maintained. By placing different information in different layers of the representation hier-

archy, the designer can tailor a maintenance scheme to the needs of the layer using the rep-

resentation. The gaze behavior, on the other hand, completely hides the importance of

information because it encodes it in terms of where the agent should be looking. This makes

it harder to change some information’s priority level or change how a priority level is main-
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tained. By providing a hierarchical representation system that can represent different data

at different levels and by providing a Confidence component, my representation makes it

clear what data is important and the priority with which it should be updated.

Another problem with the PURE architecture arises from the fact that the architecture has

a single layer. It has a default behavior that is active when no other behavior is and control

is transferred from behavior to behavior based on environmental conditions. This is similar

to Pengi [2] and, as discussed in chapter 2, suffers from the same scaling problem. The

more complex a task an agent must complete, the more aspects of the environment must be

registered to determine when to switch behaviors. This bogs down the PA layer and even-

tually violates R1 because the agent may have to search through representation that is not

used by the current task, but rather by some future task. My representation provides an easy

means of saving off information that the agent wants to store, but that it cannot afford to

maintain, i.e. verify, as part of its current task. The protomarkers, kept at another layer of

the architecture, allow Marcus’ PA layer to remove elements of representation that are not

needed for the current task, yet retain information that can be used to create them again

when they are next required. Although such designs can cause an agent to miss serendipi-

tous updates (e.g. when Marcus sees a structure that he has a protomarker for, but since its

markers are not in the PA layer at the time, no update is performed), the methodology

makes it easier for designers to create representation systems for agents with complex tasks

(and/or in complex environments) because the designer can decide how much “looking for

data that may be useful in the future” to do.

7.2.4 The Soar Architecture

The Soar architecture [46][62] has been extended to interact with the world. In particular,
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Robo-Soar [46] is used to control autonomous robots. The design methodology advocated

by the Robo-Soar is to cast the agent’s task and environment in a form usable by Soar’s

production system. All layers of a Soar architecture use the same representation, which is

divided into short and long term memory.

Both short and long term memory violate R1. Short term memory is a collection of (at-

tribute, value) pairs and so is not deictic. Such memory structures have the same drawbacks

(see section 7.2.2) as described for the RAP system’s memory [27]. Long term memory

contains productions used in Soar’s planning and learning processes. Since planning and

learning are beyond the scope of this work, long term memory is not the type of memory I

am concerned with here. The productions stored in long term memory store data about the

possible results of actions to assist in determining possible future world states. This means

there is extra data to sort through in order to determine the current world state (violating

R1).

R2 is violated because Soar does not address the maintenance of representation. Soar is

designed to be a general symbolic AI architecture that uses a database of facts (assumed to

be correct) about the environment. The (attribute, value) pairs in short-term memory are as-

sumed to be delivered there from an interface to the sensors, but there is no notion of feed-

back to that unit. That is, the sensors must have some method of generating the (attribute,

value) pairs that Soar’s engine needs because Soar does not tell the interface what to look

for, i.e. what is important to the current task. There is no guidance on how to distribute the

computational and perception resources to maintain the information efficiently. Section 3.6

of my methodology addresses such concerns in detail.
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7.3. Evaluation of Design

Another way to evaluate the methodology is to look at its effect on the design process.

The methodology is meant to provide a context in which the agent designers can work. By

guiding designers with its questions, the methodology puts the designer in the right frame

of mind to create efficient and effective representation systems to be used in the agent’s

perception and action component. Chapters 4, 5, and 6 provide evidence of the kinds of

workable designs that emerge from designs carried out in this context.

Let us examine how the methodology directs the designer to consider the design issues

of what to represent, how to structure that representation and how to maintain that repre-

sentation. Recall that these were question I set out to answer in section 1.4. First, the meth-

odology instructs the designer to consider only the objects that are important to each of the

agent’s tasks. This is done by the task-role concept, where important objects that the agent

needs to act on (or with respect to) are used as the basis for thinking about the systems that

will achieve the agent’s goals. By having the designer consider the importance of each role

in each task, the methodology encourages agent designs in which the agent considers only

a small subset of its environment when executing any given task. This encourages the de-

sign of situated behaviors and limits the scope of the entities that might be represented by

the agent. The final decision about representation will be based on roles and trade-offs in

representing each role that are discussed in section 3.5 (e.g. computational expense of ver-

ification vs. penalty for selecting an action based on stale information).

By asking questions about the specific data that is needed by tasks (section 3.5) and

about the data that is communicated between tasks (section 3.7), the methodology points

the designer toward a structure for the role representation. Types of information that are
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typically important for tasks handling perception and action are discussed in section 3.7.2.

This is important because by directly addressing the information contained in roles, the de-

signer is kept from representing arbitrary amounts of data. This is important not only to the

efficiency of the finished agent, but it saves time in the design process by simplifying the

design of the maintenance scheme.

The methodology addresses the design of the agent’s representation maintenance

scheme in section 3.6. Developing a strategy to assure that the stored information is up-to-

date can be difficult and so considering the trade-offs presented by the methodology is im-

portant. Since maintenance is usually computationally intense, the methodology also sug-

gests several optimizations to consider in designing the maintenance process (section 3.6).

Considering the optimizations can greatly help the designer discover computational sav-

ings that are often necessary for the agent to operate fast enough to perceive important

changes in the environment.

As the design process discussed in chapters 4, 5 and 6 show, the methodology provides

a setting in which the designer can craft solutions to the three basic design issues (section

1.4). For example, the Bruce designer can use the task-role concept to decide what should

be represented. In other words, Bruce should not represent every landmark on his search

route in the move-to-landmark task because this task only requires information about one

landmark at a time. This leads to Bruce’s inter-level control structure where information

about the layout of the entire environment is stored in one layer of the architecture and por-

tions of that information are passed down to the PA layer only as needed.

The methodology also helps in creating the structure of Marcus’ representation by hav-

ing the designer consider information communicated between tasks, particularly the epis-
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temological links between roles. Having the designer consider the relationship between the

abstractions of the block structures used by different tasks helps determine what informa-

tion needs to be computed by each task in order to keep the representations consistent with

the state of the world. Considering these links also helps develop maintenance and commu-

nication systems where tasks maintain their representation and communicate that informa-

tion to other tasks to help maintain the representations in those other tasks.

Finally, the methodology assists in the design of schemes to maintain representation,

keeping it consistent with a dynamic world. For example, Spot’s perception system is de-

signed with the understanding of Spot’s capabilities (stereo vision, limited field of view,

etc.). Since the designer knows that Spot must keep track of multiple objects that will not

all be within the field of view, the designer knows that Spot’s focus of attention will have

to be periodically shifted to different objects. By considering Spot’s task, the “confidence

component” of his representation was created as a trigger for when to shift the camera’s

view.

7.4. Summary

In this section I have evaluated my design methodology in two ways. The first is by com-

parison with other agent design methodologies. I have evaluated three other design meth-

odologies with respect to the task performed by Marcus. Each has failed to meet the

requirements for representation systems set forth in section 7.1. These analyses extend to

cover many other current architectures/design methodologies because they all fail to ad-

dress the design of representation systems.

The 3T architecture uses either arbitrary data structures or LISP predicates as represen-
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tation. Any other architecture that uses one or the other, or both, will be at risk for similar

problems. This includes most other layered architectures, such as ATLANTIS [29], RCS

[3] and TCA [69].

The PURE architecture uses a structured representation called “markers”, but does not

limit the number of markers in the system nor the information that they can contain. The

lack of an information hierarchy leaves open the potential to bog down the system with un-

necessary details. Similar systems, such as Pengi [2], Sonja [19] or Brill’s agent [14] would

have similar problems if used for complex tasks.

The Soar architecture has two memory systems, neither of which meet the representation

criterion. The short term memory consists of (attribute, value) pairs that have the same

problems as the LISP predicate memory of 3T. The long term memory contains produc-

tions that are used to predict the outcomes of actions and not represent the agent’s environ-

ment.

The second way the methodology was evaluated was by analyzing its effect on the design

process. Following the methodology should put the designer in the right context to create

effective and efficient systems of representation. I analyzed how the questions of the meth-

odology provide this guidance by discussing the trade-offs involved in determining an-

swers to these questions.
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This thesis presents a methodology for designing autonomous mobile robots. The main

contribution of this methodology is in the design of representation that can be used effi-

ciently and effectively by the agent architecture. The robots for which this methodology is

appropriate are expected to operate in dynamic, uncertain, physical domains. In order to be

efficient and effective in such domains, the robot’s control must have a close coupling of

sensors and effectors and this constrains the design of representation.

The efficacy and validity of the methodology is documented through several agent de-

signs that were successfully carried through to operating implementations. The key feature

of these agents is the action oriented portion of their architectures and their system(s) of

representation. This representation allows components of the architecture to be more effi-

cient and effective at meeting their goals.

8.1. Action Selection Redux

The debate over the use of representation in the action oriented portion of the architecture

(particularly the perception/action layer) has shifted away from an argument over whether

or not perception/action layers should be stateless, reactive systems, to a debate over the

form of effective representation. Work by researchers such as Agre and Chapman [2], Riek-

ki and Kuniyoshi [65], and Brill [14], as well as this work, demonstrate that agent’s can be

successful with simple PA layer representation systems. A common feature of all these

Chapter 8 Conclusion

If you’re not part of the solution, you’re part of the precipitate.
- Steven Wright
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works is that the representation is used in moment-to-moment effector control. That is, giv-

en current sensor values and a particular state of the agent’s representation, a simple trans-

form determines the behavior to engage in now. This work moves beyond previous work

by examining the issues that effect the use of representation in action selection; namely

what to represent, how to maintain representation and how to organize representation so

that it can be used effectively throughout an agent architecture. I address each of these is-

sues in turn in the next three sections.

8.2. Fundamental Representation Design

The most fundamental question in the design of a representation system is, what should

be represented? In order to have a coherent design process for perception/action systems,

one must have a task-oriented approach. A major implication of a task-oriented approach

is the concept of task roles, i.e. the aspects of the environment that influence the agent’s

behavior during a particular task. These roles focus the methodology in developing repre-

sentations that are efficient and effective for the agent’s tasks.

Intertwined with the issue of the roles in a task are the questions: what entity (or entities)

in the environment can fulfill those roles? and which (of the many possible) properties of

those entities should be stored in the representation? While an obvious means of deciding

what to represent is to base it on the data needed by a particular task, a less obvious basis

is the agent’s (computational) ability to verify the data stored in the representation as is re-

quired in a dynamic environment. I call this verification process, “maintenance”. The com-

putational complexity of general maintenance was the reason that representation-less

agents were proposed in the first place: representation just took too much time to update in

dynamic domains. My methodology calls for the designer to consider, in a structured way,
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the task requirements and possible trade-offs associated with verifying representation.

The notion of what entity fulfills a role depends on the abstraction with which a task

views the environment. The methodology encourages the designer to create role hierarchies

(where the roles in the hierarchy represent different abstractions of objects in the world) be-

cause in decomposing the agent’s task, the designer will often not just decompose the goals,

but also the aspects of the environment that need to be manipulated to accomplish those

goals.

The designer must also consider what data about the environment needs to be stored in a

role’s representation. The role hierarchies (and the layered nature of the agent architecture)

allow properties with different levels of “usefulness” to be represented. Some data is used

by tasks with sensor/effector control loops and so is used to determine moment-to-moment

actions. Other data helps determine which of multiple tasks should be active and so is typ-

ically accessed much less often than the sensor/effector control data. The more often a piece

of information is used, the higher the maintenance cost the agent should be willing to pay.

Role hierarchies allow designs in which different information about entities is represented

at different layers of the architecture. The methodology causes the designer to consider how

quickly each task requires the agent to respond to changes in the world and role hierarchies

allow the designer to create a maintenance scheme, for each layer of the hierarchy, that con-

forms to these requirements.

The major benefit to role hierarchies is that they allow information to be spread across

layers of the architecture. Typically, the more information that is represented at a particular

layer, the longer the tasks at that layer will take sorting through it. Even if the information

is (relatively) inexpensive to maintain, if it is not pertinent to the layer’s current task, it
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slows down the layer’s cycle time because tasks waste time examining the information to

determine if it is relevant. A role hierarchy allows information to be stored outside of a lay-

er, so that it will not reduce that layer’s responsiveness. However, since the agent is storing

that information somewhere, it can be passed back to a layer if that layer’s tasks need it.

8.3. Representation Maintenance

Representation maintenance is fundamental to representation use and so the methodolo-

gy examines the process of maintenance and how it can be made efficient. Having a repre-

sentation in the action oriented portion of the architecture means maintaining it. Data that

is merely stored will become useless in a dynamic environment. Given the necessity of

maintenance, the key to efficient use of representation is limiting what must be maintained.

The methodology advocates reducing the time required to maintain task roles by limiting

the amount of information represented by the agent. This is done by limiting thenumber

andsize of the data structures used for representation.

The methodology encourages the number of structures to be limited with the role con-

cept. The designer seeks to determine a “minimal” set of aspects of the environment that

determine the agent’s action(s) during a task. While a truly minimal set of roles is not re-

quired, the fewer entities that are represented, the faster the maintenance process can be and

thus the faster the PA layer’s cycle time.

The methodology also has the designer consider what information is stored in each rep-

resentation, in order to limit the size of each structure. Position is most likely necessary, but

other data can be in the Property component as well. The amount of information in a rep-

resentation data structure presents the same trade-off as the number of data structures. The
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more information, the more data the agent can use in selecting its actions, but the more ex-

pensive it is to maintain. Of course, having more data to use in selecting an action can also

be a burden, as it means that process takes longer. In general, the designer will want to rep-

resent as few properties of the entities bound to the roles as possible. Those decisions will

be based on usefulness (the importance of the information to the action selection process)

and maintenance cost (including the required accuracy and the cost of shifting perceptual/

computational resources to determine the information when it is needed).

The methodology further encourages efficiency in the maintenance process by having the

designer consider how situated-ness (see section 1.3.2) can be used to computationally sim-

plify the identification of the entities associated with roles. For example, Marcus can detect

doors using vertical edges (see section 6.4) because the door detection routines are expect-

ed to be used in Olsson Hall.

Once the designer has selected roles and entities that can fulfill them for a task, the meth-

odology suggests several more methods of optimizing the process of representation main-

tenance. First, the principle of situated activity can be applied by differentiating between

initially binding an entity to a representation and maintaining that binding (see section 3.6).

The example robot designs all use different methods to track objects associated with roles

and to initially locate those objects. This allows the tracking routines to use context estab-

lished by the locating routines. For example, in section 5.4, Spot makes use of the fact that

his Locate routine places a proximity space on a human and so tracking can be done by the

proximity spaces without them knowing what they are tracking (they just follow texture).

Another optimization is found by considering the level-of-detail needed for a particular

representation. When it is possible for a task to operate with less than the maximum possi-
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ble precision in its information, the designer should consider allocating perceptual and

computational resources elsewhere. In fact, the limited perceptual fields of most agent’s

means that some tasks may not be able to perceive all important entities at all times with

all sensors. The methodology encourages the designer to choose the entities to monitor

based on the agent’s sensor capabilities, the precision of entity information required by the

tasks and the likelihood that the information stored about an entity will become stale while

it is not being monitored.

The representation hierarchies developed using the design methodology allow the de-

signer further control over representation maintenance. These hierarchies present the pos-

sibility that properties stored at one level of the hierarchy can be computed as an

aggregation of the properties of representations at a lower level. The position stored in Mar-

cus’ arch representation is the aggregation of the positions of the blocks that make up the

arch. This technique is useful when similar properties are used by different tasks, but those

properties are at different levels of abstraction (such as Marcus’ ego-centric vs. assembly-

site relative coordinates from section 6.3). When such aggregation is possible, separate per-

ceptual computation to determine the properties used by non-PA layer tasks are not neces-

sary and automatic maintenance of non-PA layer representation is possible by propagating

the results of PA layer maintenance to the non-PA layers [81]. Dis-aggregation [57], which

refers to using domain knowledge to decompose an abstract entity into its components, al-

lows one task to express domain knowledge to another task, in the form of default values.

For example, since Marcus is designed with the knowledge that a stack is made up of blocks

on top of each other, as well as, how big the blocks are, he can estimate the positions of the

component blocks given the position of a stack [81].
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Another benefit of role hierarchies to representation maintenance is that layers of an ar-

chitecture are typically designed to update all representation at the same rate. This is be-

cause representation must be maintained as part of a task’s main loop and it is presumed

that all representation is pertinent to the current task (or else it would have been removed

from that layer’s memory). If all representation is maintained in a task’s main loop, then it

must all be maintained such that the representation that requires the most frequent updates

can be maintained properly. The single maintenance rate at each level means that informa-

tion about entities that is computationally expensive to determine impedes the responsive-

ness of the entire layer. The methodology encourages role hierarchies as a means of storing

some information at a layer where it can be maintained at an appropriate frequency.

8.4. Representation Organization

The methodology assists the designer in structuring the agent’s representation so that

tasks have access to information they need and do not have access to information not need-

ed. While this last part may seem obvious or trivial, the value of some information is rarely

cut and dry, but rather involves several trade-offs, discussed below.

The designer is encouraged to examine role sharing and to build semantic links between

the representation at different layers. This design allows the agent’s tasks to communicate

through an efficient channel. This includes both inter- and intra-layer communication. Con-

sider intra-layer communication. If all tasks in one layer process representations of the

same form, the representation forms an efficient communication medium since all tasks un-

derstand its structure and it contains only the information that is needed by the tasks (see

section 3.7).
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Semantic links between role representation in different layers allows for inter-layer com-

munication. This communication takes the form of hierarchical control of lower layers by

higher layers. Communication occurs when one layer sets the context for another by pass-

ing selected information down the task hierarchy to control what the agent treats as impor-

tant and how it acts. By having the designer consider the semantic links between roles, the

methodology aides the designer in discovering how the information in the representation

of one layer can be converted to the information needed by tasks at a lower layer. This in-

formation can be placed by the higher layer, in the lower layer’s representation, thereby

controlling the actions of the lower layer.

8.5. Surprises

Having used the methodology to design several robots, there are some aspects of the de-

sign process that still surprise me and these are important to keep in mind. One surprising

aspect is that general engineering concerns often appear to make it worthwhile to separate

perception and action. It often seems like good engineering practice to divide up the robot

design problem into separate components and then connect them together later. Particular-

ly, it is tempting to create a perception system that is dissociated from the needs of the

agent’s actions. In other words, one is often tempted to create a perception system that gen-

erates information about the environment that is placed in some database that a separate ac-

tion system can read and then decide what to do. The rationale for this separation is that the

perception system does not have to know about the action system’s current activity. The

separation simplifies the communication between the two, but it means that the perception

system must try and generate all information that the agent needs for all of its tasks, all the

time. The difficulty is that since the perception system does not know what information is
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needed now, it must generate all possible information so that the action system will have

whatever it needs available. This means the perception system will be either inefficient or

bogged down depending on how much information it is trying to generate.

My methodology tries to steer the designer away from this by first examining the task

roles, objects that fulfill them, required information about those objects and representation

for those roles before addressing perception. The intention is that when the designer has this

information available with a task-based organization, the designer will make a perception

system that is strictly task-oriented. By generating only the required information about the

objects associated with the roles in the current task, the perception system can be made suf-

ficiently efficient to be effective in rapidly changing environments.

Another surprising fact was that representation for the perception/action component of

an agent’s architecture is fairly independent of that architecture. In other words, the design

of representation is mostly unaffected by the choice of an agent’s architecture. I say “most-

ly” because, while nothing in the methodology explicitly refers to the form of the agent ar-

chitecture, the representations I designed over the course of this thesis were designed

assuming a layered architecture. The layered architecture assumption leads rather immedi-

ately to hierarchical systems of representation, as discussed in this thesis, with more com-

plex object properties (that are more expensive to maintain) stored at higher layers and

simpler to compute properties (possibly computed using only the agent’s primitive capabil-

ities) stored at the lower layers. However, the layered-architecture assumption is not re-

quired. Instead the methodology urges the designer to segregate the properties to be

represented according to the difficulty of maintenance and include only the simple to com-

pute properties in the perception/action component of the agent. Thus, the sensor and ef-
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fector control process will not bog down with representation maintenance processing.

A further point is that there are many layered architectures in the literature and this rep-

resentation design methodology does not depend on the definition of layer used by any one.

Late in the design process, the designer must choose which “computational unit” (perhaps

the architecture calls it a layer, perhaps not) will execute which tasks and this will depend

on the unit’s ability to maintain the representation used by the task. However, the represen-

tation has already been designed based on the needs of the task, not the architecture.

8.6. Contributions

This thesis contributes to the field of autonomous-robot software design by describing a

task-oriented design methodology for agents operating in dynamic environments that re-

quire tight sensor/effector control loops. The specific contributions of this thesis are:

 1. This thesis presents a design methodology for representation systems for the action

oriented portion of an agent architecture. Specifically, the design methodology

• presents the trade-offs between precision (benefit) and maintenance (cost).

• assists the designer in considering hierarchies of representation in order to deter-
mine an appropriate allocation of computational and perceptual resources.

• encourages the use of representation for communication between behaviors by
role sharing.

• encourages the use of representation for communication and control between lay-
ers of the agent architecture.

• is quasi-architecture independent in that it can be used with any of today’s multi-
tiered architectures (e.g. [10]) or for any agent with a perception/action layer.

 2. This thesis presents three physically implemented agents performing different tasks as

validation that agents designed by this methodology can be implemented and operate

effectively in a dynamic environment.
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This thesis has presented a design methodology for creating systems of representation,

for the perception/action component of an agent’s architecture, that are efficient and effec-

tive for use in dynamic environments. The validity and efficacy of this methodology have

been shown by its use in the design of multiple physically implemented agents. While I ar-

gue in chapter 7 that the methodology is superior to other methodologies in the area of rep-

resentation design, the methodology should actually be seen as complementary to other

work in autonomous robot architectures, e.g. [10] and robot development languages/envi-

ronments [46][52]. Designers, even working with the constraints of current architectures,

will only be successful if they incorporate efficient and effective representation and I con-

tend that adhering to the methodology presented in this thesis will establish a context in

which the creation of such representation is possible.
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A.1. Bruce Implementation

This section provides details of Bruce’s software that have been described more abstract-

ly in chapter 4. In particular, I address the navigation/obstacle avoidance system, the color

histogram matching of the perception system and the Task Executor’s role in interpreting

the search plan and doing the local-global coordinate system conversions.

A.1.1 Navigation System

The GoTo action, which Bruce places in the Action component oflandmark markers as

part of the search-for-opponent task, is used to navigate Bruce through the game environ-

ment. This action consists of 4 PA processes called move-toward-landmark, detect-obsta-

cles, look-at-landmark and find-path that execute in (pseudo) parallel. These processes

implement the move-toward-landmark and detect-obstacles tasks shown in the decomposi-

tion diagram of section 4.1. These PA processes are not shown as leaf tasks in the decom-

position because, at design time, it was not anticipated that the navigation system would

take this form.

In the actual implementation move-toward-landmark has two roles,landmark andinter-

mediate-destination. Detect-obstacles has anobstaclerole and look-at-landmark shares

the landmark role with move-toward-landmark. Find-path haslandmark , intermediate-

Appendix A Robot Implementations

To be, is to be the value of a bound variable
- Willard van Orman Quine
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destination andobstacleroles. The first two are shared with move-toward-landmark and

the last with detect-obstacles. All roles are represented by markers to facilitate inter-process

communication.

The operation of these four PA processes is as follows. Move-toward-landmark controls

the agent’s wheels to servo toward the position stored in thelandmark marker or thein-

termediate-destinationmarker, if it is instantiated. If this processes is servoing to thein-

termediate-destinationmarker, it also decreases the marker’s confidence value. When the

value drops below a certain threshold, the marker is deleted.

The detect-obstacles process checks the “objects” found in the groundline by the marker

maintenance routine (section 4.4). If any of these objects is not the goal, is closer to Bruce

than the goal and is within a path of one Bruce-width centered on the goal’s azimuth, it is

declared an obstacle (see [14] for a discussion of projecting the agent’s path into an image

to find obstacles). Anobstaclemarker is created with its position set to the closest point of

the obstacle object to Bruce.

The look-at-landmark PA process turns the agent’s camera to look at thelandmark ’s po-

sition, as long as this is possible. Since Bruce’s pan/tilt camera mount can pan to view only

an approximately 180 degree field in front of the agent, sometimes it is not possible to view

the goal, particularly when avoid obstacles.

Finally, the find-path PA process does nothing until anobstaclemarker is created by de-

tect-obstacles. Thisobstaclemarker causes the process to create anintermediate-destina-

tion marker along a path that is free of obstacles (see below). The move-toward-landmark

task should move toward this destination for some time and then start going toward the

landmark again. At this point, if the same object (or a new one) is an obstacle, detect-ob-
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stacles will flag it again.

Any obstaclemarker that is created by detect-obstacles is analyzed by find-path to deter-

mine if it needs a move persistent representation. As mentioned in section 4.3, obstacles are

not represented unless they are near the edge of the field of view (and therefore likely to be

unviewable soon). If an obstacle is close to the bottom edge of the image, itsobstaclemark-

er is preserved, otherwise it is deleted.

Find-path chooses a path for the agent to follow that is toward the goal, but around any

obstacles. These paths are represented by creating anintermediate-destination marker

that will become the agent’s new destination (based on move-toward-landmark’s behav-

ior). The path, and hence the intermediate-destination’s position, is chosen by performing

a 3 image scan of the nearby area. That is, when anobstaclemarker is created, find-path

computes the groundline in three images, taken at three separate pan angles representing

the 180° sweep “in front” of the agent. Using these groundlines, the agent can estimate the

distance to objects and hence the free space, at every point. The agent chooses an azimuth

for theintermediate-destinationmarker based on the goal’s azimuth, the azimuth’s of any

represented obstacles (those that have not been deleted) and the amount of free space cur-

rently available along an azimuth. The chosen direction is the one that is closest to the goal,

does not run through any obstacles, and has at least a certain amount of free space. Since

the intermediate-destination is not the agent’s real goal, it is not necessary that the agent

reach that location, merely head in that direction. Therefore the radius stored in the marker

can be any suitable large value. Move-toward-landmark will delete this marker after some

time and so the agent will start heading toward the goal landmark again.
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A.1.2 Perception System

Bruce’s ability to distinguish landmarks and the opponent is based on color histogram in-

tersection [72]. Histogram models of each landmark and the opponent were captured and

stored in the Locate and Track functions of the various Identify components that the TE

could place in a marker. These models were matched against histograms of the area be-

tween pairs of discontinuities in the groundline. This area was bounded on the left and right

by the discontinuities and on top by the lowest (closest to the image bottom) point on the

groundline between the left and right edges. The top was the top of the image.

Each pixel was hashed to a 9 bit value, made up of the 3 highest order bits of the red,

green and blue image bands. The “degree of match” between a histogram h and a model m

was measured by the formula of Swain and Ballard [72] as

I also use the iterative scaling technique of Terzopoulos and Rabie [73], shown below:

The idea here is that the scale at which the model was taken and the size of the current

region being histogrammed are frequently not the same. Therefore, based on the results

from the last histogram intersection, we scale the model down (the model histogram is cre-

ated with the object close to the camera and so the model rarely gets scaled up) until either

the match value becomes very high or the results start to decrease. This final match value

for each region is one of the parameters used to rank objects and markers in the marker

maintenance scheme of section 4.4.

It is worth noting that even though the segmentation and identification techniques that

min h i[ ] m i[ ],( )
i 29buckets∈

∑

while ((d < .9) && (lastd < d))
lastd = d
for all i, m[i] *= d // scale model
d = sum i (min(h[i], m[i])) // intersect



266

Bruce used were sufficient for this task in this environment, they were fairly problematic.

I believe there are several causes for this. First, the buckets in the histogram hashing func-

tion were uniformly distributed. However, the camera was always down on the laboratory

floor where it is considerably darker than at the height where people stand or sit. This meant

that colors tended toward the dark end of the spectrum and the highest order bit of any par-

ticular color band was seldom “on” unless the overall color was a fairly saturated white.

This lead to fewer buckets being important to the histogram and more objects with seem-

ingly different colors being only moderately distinguishable. In addition, the camera’s au-

tomatic gain control was probably damping down the bright colors some, but it was

necessary because otherwise the floor was too dark for Bruce to distinguish much of any-

thing.

Bad segmentation, i.e. discontinuities in the groundline not corresponding to the “real”

boundaries of objects, led to histograms of “incorrect” regions being matched against the

model histogram (which was segmented from the background by a human). This further de-

pressed intersection match scores.

A.1.3 Task Executor

For Bruce, the PA layer of the architecture can be adapted to perform other tasks by mere-

ly adding other PA processes and Identify routines. The TE, however, is not so flexible.

Since Bruce has no route planner, the search route is encoded in the TE. It is encoded as a

series of local coordinates to visit. I use the term “local coordinates” because the route plan

is expressed as a series of steps that make assumptions about the agent’s state when the pre-

vious step completes. For example, one step might encoded “given that you’ve just com-
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pleted step 4, the garbage can is at (radius = 1520mm,θ = π/2)”.

The TE assumes that Bruce will be at a particular point when a certain stage of the plan

completes. This point varies based on the step of the plan, but the local-space coordinate

for the next point is with respect to this point. The TE will adjust the azimuth of the next

landmark based on the azimuth stored in the marker of the current landmark, i.e. new land-

markθ = old landmarkθ + mapθ value.

The Task Executors of other agents, for example Marcus, face more difficult problems

with local to global coordinate conversion because their maps are truly encoded in a global

coordinate system. However, those systems are more robust to error than Bruce.

A.2. Marcus Implementation

In this section, I present the details of Marcus’ agent architecture. I discuss how the Task

Executor converts between the global coordinates of its maps and the ego-centric coordi-

nates used by the PA layer. I also discuss Marcus’ pose detection system and the TE oper-

ations when beginning or ending an action in the PA layer.

A.2.1 Local-to-Global Coordinate Conversion (and vice-versa)

Marcus converts map coordinates into local-space (ego-centric) coordinates throughout

the execution of the arch building task. The process takes two known local-space coordi-

nates and locates the agent’s position in the map of figure 18 in chapter 6. Then using that

position, the local-space position of the next object of interest can be determined. Figure 25

shows an example.
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The grey pentagram is the agent and the dashed line is its heading. The agent maintains

2 markers, one corresponding to the location of the last place visited (the previous destina-

tion) and one corresponding to the landmark used as the current destination. The radii of

these two markers (r1 and r2) put Marcus at one of two locations. Those locations are indi-

cated by the block dots at the intersection points of the two circles derived from the radii.

In global coordinates, Marcus defines the previous destination to be at (0, 0) and the current

destination to be at (i, j). By solving some equations, he can determine the coordinates of

those two intersection points in a coordinate system centered on the previous destination.

It is a simple matter to translate that coordinate system to the map’s origin. If the two circles

do not intersect, then the intersection equation will fail. I allow r1 to be made slightly larger

or smaller in an attempt to get an intersection. R2 could also be perturbed, but in general r1

has been dead-reckoned while r2 comes from visual data and so is likely to be more correct

than r1.

The question now is, which one of the two intersection points is Marcus’ true location?

(rx, ry)

r3

θ1

θ2

θ3

+x

+y

(i, j)

(0, 0)

r2

r1

“current”
destination

previous
destination

next
destination

Figure 25. Local-to-global Coordinate Conversion based on Markers

(dx, dy)
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This point is called (rx, ry). Marcus uses some domain assumptions to resolve this issue. In

particular, he uses the azimuths of the two markers and the coordinate (i, j). The azimuths

of the markers are shown asθ1 andθ2 in figure 25. As with Bruce, Marcus definesθ to be

positive in the counter-clockwise direction and negative in the clockwise direction.

If the point (i,j) is closer to the x-axis than the y-axis and i > 0, i.e. if ((abs(i) > abs(j))

&& (i > 0)), then if θ1 > 0 Marcus is at the intersection point with the lower y value. If in-

stead,θ1 <= 0, he is at the point with a higher y value. If (i,j) is still closer to the x-axis than

the y-axis, but i < 0, Marcus will be at the opposite intersection points. That is, ifθ1 > 0,

then he is at the point with the higher y value andθ1 is <= 0, then he is at the point with the

lower y-value.

Instead, if (i, j) is closer to the y-axis, and j > 0, then ifθ1 is > 0, Marcus is at the point

with the greater x value. Ifθ1 is <= 0, he is at the point with a lower x coordinate. Finally,

if (i, j) is closer to the y-axis, but j < 0, ifθ1 > 0 Marcus is at the point with a lower x coor-

dinate and ifθ1 <= 0, he is at the point with a greater x coordinate. It is also possible for

there two be only one intersection point. Although it is difficult for the values of r1 and r2

to ever be exact enough to yield this outcome, when the previous destination is almost di-

rectly behind the agent (θ1 being close toπ or -π), it is assumed to be the case. This means

the agent is on a direct line from (0, 0) to (i, j) and (rx, ry) can be calculated as the point on

that line that intersects the circle of radius r2 centered at (i, j).

Once Marcus knows his location in global coordinates, he can calculate the local-space

position of the marker for his next destination, (r3, θ3). The coordinates of the next desti-

nation are in the map and are expressed in “previous destination” coordinates as (dx, dy),

so . The azimuth,θ3, can be found by using the cosine rule on a tri-r3 dx rx–( )2
dy ry–( )2

+=
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angle with vertices of (dx, dy), (i, j) and (rx, ry). Once Marcus has calculated the position

of the new marker, he stores the coordinate of his “current” destination in the task executor.

This allows him to treat this point as (0, 0) next time and adjust the map coordinates of all

other points relative to it. The reason I do this is just because the circle intersection equa-

tions are simpler if one of the circles is centered at the origin.

I chose to use this method for coordinate system conversion as opposed to other triangu-

lation methods [21] because, even though it allows for two different (rx, ry) points, it is sim-

pler than other methods. The domain assumptions that allow Marcus to disambiguate his

location work well because his navigation system tends to follow a fairly direct path to the

goal. That means he is rarely at the other possible location for (rx, ry) because to arrive

there with the same values for r1,θ1, r2 andθ2 would mean Marcus took a more circuitous

route. While this is possible due to obstacle avoidance, for example, the cost of keeping a

third marker up to date is too high. This is especially true considering that in the situation

where the two markers for previous destinations are the least expensive to maintain, they

are the most inaccurate because they are being dead-reckoned.

A.2.2 Pose Detection

Marcus determines the pose of a block stack based on visibility of the stack’s compo-

nents. The implemented pose detection routine requires that there be three blocks. If the

base block is said to have a footprint of size 4, one top block can be said to have a footprint

of size 2 and the final top block of size 1. Figure 26 shows several views of an example

stack. Based on the visibility of the various blocks in the stack, Marcus determines which

of several viewing zones he must be in relative to the stack, the following overhead view
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(figure 27) shows the different zones. The zones are differentiated by the relative size and

position of the widths of the bounding boxes of the blobs associated with the different

blocks. The solid black lines separate the major zones that define where the red block’s

bounding box falls within the yellow box’s width. The dotted lines define additional tran-

side view front view top view

Figure 26. Example Stack Views

back view

zone
1

zone
2

zone
3

zone
4zone

5
zone

6

zone
7

zone
8

zone
9

zone
10

Figure 27. Zones Used in Determine-Item-Pose
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sitions between areas where the relationship between the coordinates of the bounding boxes

appear differently.

The perceptual conditions for determining which zone the agent is in, as well as what it

means to be in that zone are summarized in table A1. The notation Xmin of P stands for the

screen coordinate of the left edge of the purple block’s bounding box, while Ymax of Y

would be the bottom edge of the yellow block’s bounding box. Finally, “R is mostly left”

means that the red block’s bounding box occupies mostly the left portion of the area within

the yellow block’s bounding box width. These visibility criteria were determine empirical-

ly.

The angle returned by the pose detector defines zone 5 as the canonical orientation of the

block stack. That is, this position is 0 degrees. The pose detection routine cannot distinguish

between the stack being at a fixed position with the agent being at a different locations

around it, and the agent being at a fixed position with the stack being rotated on its Z axis.

In other words, the pose detector can only determine the local orientation of the stack with

respect to the agent and not the agent’s position in global coordinates. The agent uses the

stack’s pose to determine the orientation of a local assembly site coordinate system. If the

plan does not care about the orientation of the construction in global coordinates, this am-

biguity is not a problem. However, if the construction needs to be at a certain position in

global coordinates, the agent must translate between the local assembly-site coordinates

stored in the stack representation and the global coordinates of the map. In this case, Mar-

cus must make an assumption about the pose of the stack. That is, he must assume that any

changes in pose are due either to his position around the stack, or to the stack’s own rota-

tion. Marcus has a system for converting between local and global coordinates, so he uses
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that to determine his position in the map. He then assumes that any change in the stack’s

pose is due to the rotation of the stack on its own axis (entities in Marcus’ domain are some-

times moved by devious users when Marcus’ back is turned!).

A.2.3 Detecting Adjacency

Marcus detects color adjacency using a technique called “springy dumbbells”. Each

dumbbell consists of two square images regions separated by a certain distance along a line

segment. This is shown in figure 28 where the dumbbell ends are shown as black rectangles

connected by a black line. The line segment determines the kind of adjacency the dumb-

Table A1: Summary of Pose Zones

Major Zone
Pose
Zone

Condition Angle

R is mostly right
(at least 80% of R’s
width is to the right of
the midpoint of Y’s
width)

1 (Ymax of P - Ymax of R) > -1 180

2 (Ymax of P - Ymax of R) <= -1 -135

R is occluded
(no portion of R is visi-
ble)

3 (Xmin of P - Xmin of Y) > 5 -90

4 (Xmin of P - Xmin of Y) <= 5 -35

R is mostly left
(at least 80% of R’s
width is to the left of the
midpoint of Y’s width)

5 abs(Xmin of P - Xmax of R) < 5 0

6 Xmin of P is within right 55% of R’s width 34

7 Xmin of P is right of the left 20% and left
of the right 55% of R’s width

68

8 Xmin of P is within left 20% of R’s width 90

R is in the middle
(R is neither 80% left
nor 80% right of the
midpoint of Y’s width)

9 Xmaxof P is within right 20% of R’s width 124

10 Xmax of P is within left 80% of R’s width 158
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bells can detect. For example, a vertical segment checks for the “stacked” relationship, i.e.

one block on top of another. A horizontal segment can be used to detect the “next to” rela-

tionship, i.e. two blocks side by side. In general, the line can be described by any means

(e.g. slope/intercept), but Marcus only implements horizontal and vertical lines and only

uses vertical lines for the arch building task.

Detecting adjacency begins with blob coloring the input image on the two colors (which

I will call color1 and color2) for which Marcus wants to check adjacency. For example, if

Marcus wants to look for a yellow block with a particular adjacency to a green block, he

must first find all the green and yellow blobs. Dumbbells are placed at various locations

within a search region. Once one dumbbell end is placed, it is a “fixed point” and the loca-

tion of the other end will be determined based on the line segment. If enough pixels within

one dumbbell end are of color1 and enough in the other end are of color2, then the dumbbell

votes for the adjacency. Marcus’ dumbbells are 10x10 pixels and at least 75% of them must

be of the correct color (75 pixels). If a dumbbell votes for a relationship, another dumbbell

is tried moving from left to right (at the same y-coordinate) within the search region. If a

dumbbell does not vote for the adjacency, two different measures are taken. First, the

Figure 28. Example Adjacency Measurements

(a) (b)
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dumbbell separation is altered (hence the dumbbells are “springy”). The dumbbells shown

in figure 28b are at the maximum separation, while those of 28a are not. If all possible sep-

arations have been tried and none has made the dumbbell vote for the adjacency, the “fixed”

dumbbell end can be moved. The dumbbell moves up and down, left to right through the

search region. This search pattern is used because when an adjacency is found, the next

dumbbell starts at the same y-coordinate as the last one. This is useful when looking for

mostly vertical adjacencies which are most common for Marcus’ task.

The search region in which the dumbbell analysis is carried out is defined by the bound-

ing rectangles of the colored blobs. The region extends from the larger of the two left

bounding box edges to the smaller of the two right bounding box edges. It also runs from

the smaller of the bottom of box1 and the top of box 2 to the other. The dashed lines of fig-

ure 28b illustrate the minimal bounding box region. This region is then extended, top, bot-

tom, left and right by the size of one dumbbell end (10 pixels here).

The adjacency routine compares the number of positive voting dumbbells to the total

number of attempted dumbbell positions. If more than a certain percentage (70%) voted for

the relationship, then Marcus believes it exists. The dumbbells of figure 28a all vote for

their adjacency and so these blocks would be called stacked. The dumbbells in figure 28b

do not vote for their adjacency and so the blocks would be considered separate.

A.2.4 Handling Completed Actions in Marcus’ Task Executor

Table A2 summarizes what happens when the PA layer completes an action and passes

a marker to the TE. Based on the current plan step and the result of the completed action,

the TE will modify its own state, the state of the protomarker associated with the returned
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marker and possibly other protomarkers and markers as well. Note that some completed ac-

tions are treated differently depending on whether the TE is involved in sequencing a set of

PA layer actions for a single plan step. Columns with “in the midst of...” in parenthesis in-

dicate how completed actions are handled during an ongoing sequence. Unless otherwise

stated, the Completion result for the action is SUCCESS (the universal code for the action

completed as expected). The ordering of the table is the order in which the completed action

and its result code are examined.

Table A2: How TE Handles Completed PA Layer Actions

Completed PA Layer Action TE’s Response

align-with-hallway (in midst of find-
and-go-through-hall-door)

Change marker’s Action component to center-
in-hallway.

center-in-hallway (in midst of find-
and-go-through-hall-door)

Create adestinationmarker in middle of hall-
way on same side of Marcus as the door and
put a rotate-base-to-item action on it (put
door marker in its dependency list).

rotate-base-to-item (in midst of find-
and-go-through-hall-door)

Change marker’s Action component to find-
hall-door.

find-hall-door (in midst of find-and-
go-through-hall-door)

This marker should be adestination marker
with thedoor marker and anotherdestination
marker associated with a position inside the
detected door, in its dependency list. Put an
align-base-and-turret action on the inside the
door destination marker and delete the marker
for the completed action. Also update the cur-
rent and previous destinations for the local-to-
global conversion described in section A.2.1.
The current destination will be the insidedes-
tination  marker and the previous destination
will be thedoor marker.

align-base-and-turret (in midst of find-
and-go-through-hall-door)

Change marker’s Action component to go-
through-hall-door

go-through-hall-door (in midst of find-
and-go-through-hall-door)

The action is complete. Increment the plan
step counter to move to the next plan step.
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delete-marker (in midst of find-and-
go-through-hall-door)

Same as delete-marker below. This is handled
separately in here because all completed
actions during a find-and-go-through-hall-
door are diverted to a separate handler.

move-to-door with result NO_DOOR
(in midst of find-and-go-through-door)

Create newdestination marker at a new posi-
tion and place a rotate-to-item action on it.
The new positions will be progressively larger
angular offsets from the door’s original posi-
tion, alternating in both directions. This is
how rotate-to-view-door is implemented.

rotate-to-item (in midst of find-and-
go-through-door)

Set thedoor marker’s Action to find-door
again and delete thedestination marker. The
agent will now look for the door again and
hopefully the image will be better aligned.

move-to-door with result SUCCESS
(in midst of find-and-go-through-door)

The action has completed and Marcus should
now be in the hallway. Adjust the current and
previous destinations for the local-to-global
conversion. Current destination should be the
destination marker in the hallway (the one
estimated by the baseboard’s position) and the
previous position should be thedoor marker.
Increment the plan step counter.

delete-marker (in midst of find-and-
go-through-door)

See delete-marker (in midst of find-and-go-
through-hall-door)

delete-marker (in midst of delete-
marker plan step)

Remove this marker from the proto-marker
dependency list that it is in. If protomarker for
this marker has multiple markers then they
will all be deleted, so don’t increment the plan
step counter until the last one comes back
with a completed delete action.

search-for-item (in midst of span-
item1-and-item2-with-spanner)

Change marker’s Action component to look-
at-item so that it gets centered in the view and
add a monitor to wait for thetopblock marker
of the stack to get instantiated.

Table A2: How TE Handles Completed PA Layer Actions

Completed PA Layer Action TE’s Response
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Either the item1 stack was just re-stacked and
so thetopblock1 marker is instantiated, or the
monitor function just fired (also meaning the
topblock1 marker is instantiated). Now, place
a search-for-item action on the base marker
for the protomarker specified by the plan step
as representing item2.

Either the item2 stack was just re-stacked and
so thetopblock2 marker is instantiated, or the
monitor function just fired (also meaning the
topblock2 marker is instantiated). Put the
topblock2 marker and thespannermarker in
thetopblock1 marker’s dependency list and
put the span-topblock1-and-topblock2-with-
spanner action in its Action component.

put-down-item (in midst of put-down-
item or put-down-item1-relative-to-
item2) with result CANT_FIND

The putdownloc is not in view and so the
agent must rotate to view it. This happens
because the move-to-good-putdownloc-view
task does not account for the azimuth of the
point it is trying to view (it simply figures out
what image Y coordinate the putdownloc
should be at and if its not far enough from the
bottom of the image, it backs Marcus up).
This is compensated for by putting a rotate-to-
item action on the putdownloc marker.

rotate-to-item (in midst of put-down-
item or put-down-item1-relative-to-
item2)

Put a put-down-item action on the marker.

Table A2: How TE Handles Completed PA Layer Actions

Completed PA Layer Action TE’s Response

stack-item1-on-
item2 (in midst of
span-item1-and-

item2-with-
spanner)

marker’s
Index is
topblock

OR

the protomarker for this marker
has an Index indicating it is item1

AND

stack-item1-on-
item2 (in midst of
span-item1-and-

item2-with-
spanner)

marker’s
Index is
topblock

OR

the protomarker for this marker
has an Index indicating it is item2

AND
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put-down-item (in midst of put-down-
item or put-down-item1-relative-to-
item2) with result SUCCESS

If this marker’s protomarker represents a
stack, make sure that the two markers are in
the PA layer and have the correct Identify rou-
tines (their associated objects can now be seen
by the camera). Set all the markers in the pro-
tomarker to uninstantiated and increment the
plan step counter.

delete-marker This is an “out of order” deletion completing,
i.e. the current plan step is not a marker delet-
ing step. Look through the Dependency List
of each protomarker and delete this marker if
its there. Don’t increment the plan step
because this is out of order and so doesn’t rep-
resent the end of a step.

put-item-in-toolbelt Set the position in the Property component of
the protomarker to “in toolbelt” and increment
the plan step

pick-up-item Set the position in the Property component of
the protomarker to “in hand” and increment
the plan step.

go-to-destination Set the “previous” destination to be this
marker. Increment the plan step counter.

stack-item1-on-item2 (in midst of a
determine-item-pose)

Marcus has just completed a restack that was
needed because determine-item-pose could
not find a stack as expected. Create a marker
for the fastener block if it doesn’t already exist
and place a determine-item-pose action on it.
Place markers for top and bottom blocks in its
dependency list. All three markers should be
in the protomarker’s dependency list.

Table A2: How TE Handles Completed PA Layer Actions

Completed PA Layer Action TE’s Response
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A.2.5 How the TE Starts a New Plan Step

Table A3 shows what actions the TE takes when beginning any of the various plan steps.

Before doing any of these actions, the DetermineAction step of the TE’s main loop creates

protomarkers and markers (including the global-to-local coordinate conversion) for the

step, if they are needed. If markers are created, they are added to the PA layer. Note that

when markers are created for a stack, the bottom marker is placed in the dependency list

first and will be the marker that all actions are placed on unless otherwise specified.

stack-item1-on-item2 Set the Index of the marker for item2 totop-
block and set its Property to the same position
as the bottom block. Then set the Identify rou-
tines of both theitem1 anditem2 markers to
be the appropriate XonY Locate and Track
routines. Set Index of one of the protomarkers
(either foritem1 or item2) to ‘stack’ and
place both markers in its dependency list.
Delete the other protomarker since there is
now a single, multi-part entity associated with
the stack protomarker. Increment plan step
counter.

rotate-to-item Increment plan step counter.

determine-item-pose Store the result code in the Prop field of the
Property component of the protomarker. This
is the pose returned by the action and it should
be stored in Prop because that is where data
known about the associated object, but not
maintained by the PA layer is stored. Incre-
ment plan step counter.

all other actions with result SUCCESS Increment plan step counter.

any action still unhandled Abort program and halt agent.

Table A2: How TE Handles Completed PA Layer Actions

Completed PA Layer Action TE’s Response
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Table A3: TE Actions when Starting a New Plan Step

Plan Step Wants This Action
to be Executed

TE’s Actions

add Create a marker at the agent’s location to initialize the
“previous” destination in the global/local converter.

delete-protomarker Deletes the specified protomarker from the TE. Its
markers (if any) should have already been deleted by
previous steps.

go-to-destination (where des-
tination is an entity at some
location in the map)

Make the “current” destination be the “previous” desti-
nation and make the newly createddestination marker
be the “current” destination. From now on I refer to this
as moving the local/global origin. The marker created at
the start of the TE’s DetermineAction step will have the
correct ego-centric position and go-to-destination in its
Action component.

find-and-go-through-door Place find-door action ondoor marker. Protomarker
needs to already have adoor marker in its dependency
list.

rotate-to-item Place rotate-to-item action on this protomarker’s
marker and make that marker’s Indexitem.

search-for-item If the protomarker represents a stack, change the bot-
tom block marker’s Locate routine to YLocate and the
top block marker’s Locate routine to XonInstYLocate.
Set up a monitor to watch for the top block marker’s
instantiation. Put the search-for-item action on the bot-
tom block marker (for stacks) or on the single block’s
marker (if the protomarker does not represent a stack).
Set that marker’s Index toitem.

pick-up-item The associated object should be in view, so verify the
relationship specified by the protomarker. If the rela-
tionship is not present, then set the action on any
detected component’s marker to recreate the relation-
ship. For stacks, the bottom block’s marker will get a
stack-item1-on-item2 action. If the protomarker’s rela-
tionship is verified, set the appropriate block’s marker’s
Action to pick-up-item (so the bottom block for stacks,
or just the block for singletons).
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put-item-in-toolbelt If protomarker is a stack, verify that the blocks are still
stacked. Then place a put-in-toolbelt action on the
appropriate marker.

put-down-item Find the protomarker for the putdownloc. If it does not
have aputdownloc marker, create one using the global-
to-local conversion based on the agent’s location and
the position for the object specified in the plan. Add
putdownloc marker to appropriate object marker’s
dependency list and set that marker’s Action to put-
down-item. Addputdownloc marker to PA layer.

put-down-item1-relative-to-
item2

Find protomarker for item2 and calculate the putdown-
loc position based on item2’s location and the relative
offset specified in the plan step. Then convert this to a
local space coordinate and create aputdownloc marker.
The remainder is the same as put-down-item.

make-from This action is used to initialize the local/global conver-
sion system. The “add” action initializes the first “pre-
vious” destination and make-from initializes the first
“current” destination. It creates a newfrom  marker at
the same position as the marker in this step’s protomar-
ker.

delete-marker Put a delete-marker action on all the markers in this
step’s protomarker’s dependency list.

stack-item1-on-item2 Find protomarkers for item1, item2 and the fastener
block. The agent needs to have a fastener in hand or in
the toolbelt to do the stacking action, but the PA layer
does not look for it to know that the stack is built prop-
erly). Set the Identify routines for the markers of item1
and item2 to be XonYLocate and XonYTrack and put
them in each other’s dependency lists. Place the stack-
item1-on-item2 action on item1’s marker. Note that
while it should be possible for this action to be taken on
any block structure, Marcus only has it implemented
for stacking two singleton blocks.

Table A3: TE Actions when Starting a New Plan Step

Plan Step Wants This Action
to be Executed

TE’s Actions
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find-and-go-through-hall-
door

Determine which side of the hallway the door is on (left
or right relative to agent). This is based on agent’s posi-
tion and position of the door in the map. Setdoor pro-
tomarker’s marker’s Action to align-with-hallway.

determine-item-pose Find protomarkers for bottom and top blocks and verify
that the relationship between then still exists (remember
this action only works on stacks). If the stack has a fas-
tener marker, put the determine-item-pose action on it,
otherwise create the marker and then place the action
on it.

span-item1-and-item2-with-
spanner

Find protomarkers for item1 and item2 and create
markers for them if necessary. If thebase marker for
item1 is uninstantiated, put a search-for-item action on
it. Otherwise, if thebasemarker for item2 is uninstanti-
ated, put a search-for-item on it. If both are instantiated,
and thetopblock markers are also instantiated, put
them in thespannermarker’s dependency list and put a
span-item1-and-item2-with-spanner action on the
spannermarker. Note that the implementation does not
allow the spanner to be a compound object.

say Add the say action to the protomarker’s marker with the
“string to speak” specified in the plan step as a parame-
ter. This step is just used to say “plan completed suc-
cessfully” at the end of plan execution.

Table A3: TE Actions when Starting a New Plan Step

Plan Step Wants This Action
to be Executed

TE’s Actions
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B.1. Marcus Task Flow Diagrams

This section presents task flow diagrams for the task decomposition shown in chapter 6,

figures 21 through 23. The “double arrows” (see figure 30a) show a continuation of control

flow from one sub-diagram to another. The flow diagram for the assembly plan shown in

chapter 6, figures 19 and 20 is not shown here because those tasks simply execute sequen-

tially, in alphabetic order.

Appendix B Marcus Task Figures
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Figure 29. Marcus Task Flow Diagram (1)
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span-item1-and-
item2-with-spanner
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Figure 30. Marcus Task Flow Diagram (2)
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(c)

(d)

(b)

put-down-
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use-put-down-
effector

move-to-good-
putdownloc-view

watch-for-item-
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(a)

put-down-item1-
relative-to-item2

put-down-
item

put-item-
in-toolbelt

use-pick-up-
effector

move-to-good-
item-view

watch-for-item-
pick-up

check-toolbelt-
for-item

determine-item-
pose

move-to-good-
item-view

calculate-item-
pose

Figure 31. Marcus Task Flow Diagram (3)
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Figure 32. Marcus Task Flow Diagram (4)
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Figure 33. Marcus Task Flow Diagram (5)
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B.3. Marcus Role Mappings

This table summarizes the mappings between the roles in the steps of Marcus’ assembly

plan and the roles in the tasks that implement it.

Table B1: Role Mappings

Plan Step Implemented Using Plan Step Role
Mapped to

role

go-to-block go-to-destination block destination

search-for-base-block search-for-item base-block item

go-to-base-block go-to-destination base-block destination

pick-up-base-block pick-up-item base-block item

search-for-fastener search-for-item fastener item

go-to-fastener go-to-destination fastener destination

put-fastener-in-toolbelt put-item-in-toolbelt fastener item

search-for-assembly-
site

search-for-item assembly-site item

put-down-base-block put-down-item base-block item

assembly-site putdownloc

go-to-top-block go-to-destination top-block destination

pick-up-top-block pick-up-item top-block item

go-to-assembly-site go-to-destination assembly-site destination

stack-top-block-on-
base-block

stack-item1-on-item2 top-block item1

base-block item2

go-to-fastener go-to-destination fastener destination

rotate-to-door rotate-to-destination door destination

go-through-door find-and-go-through-
door

door door

search-for-stack search-for-item stack item

go-to-stack go-to-destination stack destination

pick-up-stack pick-up-item stack item
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go-through-hall-door find-and-go-through-
hall-door

hall-door hall-door

search-for-stack search-for-item stack item

go-to-stack go-to-destination stack destination

determine-stack-pose determine-item-pose stack item

put-down-stack1-
relative-to-stack2

put-item1-relative-to-
item2

stack1 item1

stack2 item2

search-for-spanning-
block

search-for-item spanning-block item

go-to-spanning-block go-to-destination spanning-block destination

pick-up-spanning-
block

pick-up-item spanning-block item

search-for-fastener search-for-item fastener item

go-to-fastener go-to-destination fastener destination

rotate-to-stack rotate-to-destination stack destination

go-to-stack go-to-destination stack destination

determine-stack-pose determine-item-pose stack item

span-stack1-and-
stack2-with-spanning-
block

span-item1-and-item2-
with-spanner

stack1 item1

stack2 item2

spanning-block spanner

Table B1: Role Mappings

Plan Step Implemented Using Plan Step Role
Mapped to

role
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This appendix contains a list of constraints for the walk-the-dog task of chapter 3. These

constraints also appear throughout chapter 3, particularly in figure 1 and task specification

1. However, they are repeated here for convenience.

C.1. Walk-the-dog Task Constraints

1. The agent’s environment consists of 2 intersecting roads with sidewalks, a crosswalk, a
park, at least one dog, moving cars, a mailbox on the sidewalk, tulips, roses, a ball and
a leash.

 2. The cars will always be in the street and moving.
3. The dog to be walked (as distinct from other dogs that may be in the environment) can

move on its own.
 4. This dog should be on a leash.
 5. The agent should walk the dog to the park along the route specified in figure 1 (along

the sidewalk on the right side of the street, across the one crosswalk, and then into the
park).

 6. The dog must be kept out of the street (except when crossing at the crosswalk).
 7. Both the dog and the agent should avoid cars in the street.
 8. The dog must be kept out of the flowers (tulips and roses).
 9. The dog must be kept on the sidewalk.
10. The agent can only control the dog’s position by using the leash, i.e. the agent cannot

pick up the dog and carry it to the park.
 11. The agent should play fetch with the dog after reaching the park.
 12. The agent should use the ball to play fetch.
 13. The dog will retrieve the ball when it is thrown.
 14. The agent should stop playing fetch when the dog appears tired.

Appendix C Task Constraints
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