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Abstract
In coastal Virginia, water quality variables such as temperature, salinity, dissolved

oxygen (DO), chlorophyll-a (Chl), and apparent oxygen utilization (AOU) are important

biogeochemical measures of water status. Accurate monitoring and modeling of these variables

is vital in order to characterize the processes driving seasonal and geographic patterns. Using

harmonic analysis, a method that fits sine and cosine functions to seasonally varying data, I

investigated the differences in the date and value of minimum/maximum observations as well as

seasonal amplitudes for the respective water quality variable on spatial and temporal scales.

High and low frequency monitoring sites provide contrasting cases for harmonic analysis and for

investigation of storm impacts on coastal water quality anomalies. On both time and space

scales, subsampled short term high frequency (4-6 years of 15 minute resolution) inland sites

were compared to long term low frequency (30 years of quarterly sampled resolution)

environmentally variable water quality sites on the Eastern Shore of Virginia. Strong seasonal

patterns were observed, with all sites being dominated by the first harmonic for temperature, DO,

and AOU, and a mix of first and second harmonic dominating for salinity and Chl. Long term

changes in temperature, salinity, Chl, and AOU were found in many of the sites. Specifically at

high frequency sites, simulated quarterly sampling was performed and error variability was

calculated between the successive years of subsampled and full model values using logarithmic

regression. Above 25 years was found to be the ideal time period of low frequency monitoring to

limit the year to year variability in error, with 50 years reaching a plateau in this error. This

analysis provided an understanding of baseline seasonal patterns as well as anomalies. Diurnal

anomalies were examined in both magnitude and directional changes due to weather factors

based on a storm and seasonal scale. Correlations with water quality variables were seen across
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all seasons and storm types, with temperature, salinity, DO, and Chl being the most frequent with

water level anomalies and precipitation. These correlations related to disturbances may become

more severe and/or frequent as the amount and severity of storms and flooding increase due to

global warming and sea level rise.
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1. Introduction

Coastal lagoons are water bodies enclosed seaward by barrier islands and downstream of

coastal rivers and creeks landward (Scanes et al., 2007). They are usually shallow with

submerged, often vegetated flats and intermittent openings to the sea (Scanes et al., 2007).

Lagoons include or are adjacent to important habitats such as wetlands, mangroves, salt-marshes,

and seagrass meadows that host high biodiversity and provide services such as fishing,

freshwater storage, hydrological balance, climate regulation, flood protection, water purification,

oxygen production, recreation and ecotourism (Newton et al., 2018). Lagoon water quality is

influenced greatly by evaporation, precipitation, groundwater input, surface runoff, and exchange

with the ocean (Anthony et al., 2009). However, they are vulnerable to water quality degradation

due to habitat destruction, pollution, water withdrawal, overexploitation, and invasive species, as

well as the rising threat of climate change (Newton et al., 2018).

The coastal Virginia lagoon system is very specific, as it is the largest expanse of

undeveloped coastline that is rural, allowing for higher water quality, especially low nutrient

loading and water column chlorophyll concentrations (Carr et al., 2012). It also lacks significant

inputs of fluvial sources of freshwater and sediment (Safak et al., 2015), and due to the lack of

riverine input its salinity varies very little from that of full marine salinity (Oreska, 2021). It

historically hosted large scallop fisheries due to the abundance of Zostera marina seagrass beds

until a massive dieoff event in the 1930s (Hondula & Pace, 2014). Due to large scale restoration

efforts, reseeding has allowed for 4000 acres of beds to return as of 2014 (Hondula & Pace,

2014). In this area, climate is the most dominant driver of ecological change, especially sea level

rise, storms, and higher temperature shifts (VCR/LTER Proposal 2018, 2018). The water quality

varies as a function of season, current, wind, and storm conditions (Hondula & Pace, 2014). The
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Virginia Coast Reserve (VCR) houses 13 long term low frequency water quality monitoring sites

on the Eastern Shore of Virginia with varying site types, water depths, and residence times

(Safak et al., 2018). Most of these sites are relatively shallow (1-2 m MSL) and oligotrophic,

with a mean semi-diurnal tidal range of 1.2 m (Oreska et al., 2021). The Virginia Institute of

Marine Science (VIMS) at the Eastern Shore Laboratory (ESL) houses 2 shorter term high

frequency water quality monitoring sites that are both inland.

Water quality is an important metric of measuring the status of bodies of water, especially

variables such as temperature, salinity, dissolved oxygen (DO), apparent oxygen (AOU), and

Chlorophyll-a (Chl). These measures tell important information about the biogeochemical

properties of the system, and are likely to experience significant changes due to climate change.

They are also highly interconnected, for example warming water temperatures can allow for

algal blooms (elevated levels of Chl), which can lead to the formation of hypoxic and anoxic

zones (low to no DO), which in turn can influence the community metabolism (AOU which

depends on temperature, salinity, and observed DO values).

Establishing consistent and adequate water quality monitoring is essential to protecting

these areas. High frequency monitoring collects in-situ measurements using automated sondes

that are able to collect at a high temporal frequency (for example every 15 minutes) without the

time intensive labor needed for manual collection. However, these are mostly confined to shore

based sites due to power demands and subject to sensor malfunction with consequent loss of

consistent time series. Low frequency monitoring is collected using a manual sonde and lab

extraction methods and has a lower temporal frequency (monthly to quarterly). It is limited by

both labor costs and availability, as well as being restricted to good weather conditions.
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However, in coastal Virginia these data sets have the advantage of longer data availability and

more sites with higher geographic spread, as well as being less prone to sensor malfunction.

Modeling seasonal patterns can be accomplished using harmonic analysis, a method that

represents fluctuations in a time series from the sum of sine and cosine functions that have

different time periods (or frequencies) (Wilks, 2011). This method can accommodate gaps in the

data as well as being applicable for multi-year analysis, making it ideal for both high and low

frequencies of water quality collection. Higher harmonics indicate higher frequencies, with the

first harmonic (also called the fundamental harmonic) representing the full cycle completed in

the designated period of time, one year in terms of seasonal data, indicating an annual cycle

(Wilks, 2011). The second harmonic indicates two full cycles within the year time frame, a

semi-annual cycle with seasonal data. Higher harmonics can be computed, however for this

project only the first and second harmonics were calculated to make comparisons between

variables efficiently. The relative importance of each of these harmonics can be quantified using

their respective variances, with a larger variance correlating with a greater importance. Most

variables have their variance captured by these first two harmonics. For example, the first

harmonic accounts for 90% or more of the total seasonal variance for water temperatures

(Kothandaraman & Evans, 1972). A composite harmonic, the addition of the first and second

harmonic, allows for the relative importance of each harmonic to be seen in the resulting curve

and elements. For example, a harmonic curve with 90% first harmonic and 10% second

harmonic, would look almost identical to the first harmonic, while a harmonic curve with 45%

first harmonic and 55% second harmonic would have elements of both.

Harmonic elements such as amplitude, phase shift and minimum/maximum values can

reveal important information about seasonal cycles. The phase shift indicates the location in the
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curve of the peak value, and can be expressed as day of year to highlight when the maximum

occurs. The minimum/maximum value indicates the most extreme value in the cycle, and the

seasonal amplitude quantifies the difference between them divided by two. These values are easy

to compare between both sites and frequencies. To account for more data availability in high

frequency sites, during comparisons with low frequency sites random subsampling methods can

be used in order to get an average harmonic fit and elements with confidence intervals via

bootstrapping.

Deviations from day of year harmonic fits can indicate anomalies, also known as

deseasonalized data, which allow for documentation of trends in long term data. These anomalies

on a diurnal scale can also be investigated to see if there are seasonal or weather based events

that can account for very high magnitude values using methods such as Generalized Least

Squares (GLS) at high frequency sites.

2. Literature Review

2.1 The Importance of Selected Water Quality Variables

Water quality is a vital way to monitor bodies of water in changing climate conditions.

Water temperature in slow-moving shallow water sources can change rapidly and is strongly

impacted by air temperature (Anthony et al., 2009), radiant heat, the temperatures of river and

groundwater inputs, and heat transfer at the water’s surface (Yu et al., 2021). In coastal Virginia,

higher temperatures are of concern, as they could push species beyond tolerance thresholds,

increase the competitive advantage of potential invasive species, and allow for more southerly

species to invade (VCR/LTER Proposal 2018, 2018). Model predictions show that seagrass

meadows at the VCR can be threatened by longer summer periods of warmer temperatures (Carr

et al., 2012). Additionally, prolonged increases in temperature can trigger algae blooms
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(Trombetta et al., 2019), increase the chance of hypoxia events, and impact the phenology in

coastal organisms (Anthony et al., 2009).

Dissolved oxygen (DO) levels are directly linked to temperature, with higher

temperatures having lower oxygen saturation levels and vice versa (Anthony et al., 2009). In

coastal Virginia, changes in storms and precipitation can influence the amount of freshwater and

nutrients as well as increasing turbidity, which can in turn lower DO (VCR/LTER Proposal 2018,

2018). It can also be lowered by excess organic matter decomposition stimulated by

anthropogenic nutrient and organic matter runoff (Perna et al., 2005), droughts creating longer

periods of low flow which increases the relative amount of pollutants (Muholland et al., 1997),

and a more intense (higher) spring runoff which changes the density gradient and limits

atmospheric oxygen diffusion (Kennedy et al., 1990). This decrease in DO can stress aerobic

organisms, specifically benthic communities, and this issue can be made worse in lagoons with

low flushing rate (Anthony et al., 2009).

With rising sea level, salt water can intrude further into lagoons, increasing salinity

(Kennedy et al., 1990). In coastal Virginia, sea-level rise is a main climatic driver of state

change, with the shallow slope of coastal barrier landscapes making them particularly vulnerable

to both this rise and storm events (VCR/LTER Proposal 2018, 2018). The current rate of relative

sea level rise in this area is about 4 mm/yr and is one of the highest on the Atlantic Coast (Safak

et al., 2018). Periods of higher salinities that are followed by high precipitation that rapidly

decreases salinity can cause species die offs as many species may not be able to tolerate this

extreme changes in a short period of time paired with the influx of nutrients and sediments

(Havens, 2018).



6

Chlorophyll-a (Chl) concentrations depend on all of the above-mentioned variables,

especially temperature, which in coastal Virginia is increasing (VCR/LTER Proposal 2018,

2018). High Chl concentrations indicate algal blooms and increase when there is weaker water

exchange (Kuang et al., 2020) and a discharge of excess nutrients into the water source (Boyer et

al., 2009) from sources such as fertilizers, septic systems, sewage treatment plants and urban

runoff (EPA, n.d.). Eutrophication can kill off seagrasses and other slower growing benthic

macroalgae, replacing it with faster growing and higher oxygen demand macroalgae in the water

column that thrive in larger nutrient load environments (Perez-Ruzfana et al., 2019). These algal

blooms reduce light penetration in the water column, and lower the productivity of seagrasses

and benthic organisms, further worsening nutrient loads, and causing a positive feedback loop of

more water column phytoplankton growth (Boyer et al., 2009). This cycle can lead to hypoxia

events, nutrient imbalances, and changes in species patterns and community structures

(Perez-Ruzfana et al., 2019).

Apparent Oxygen Utilization (AOU) is the difference between equilibrium saturation

concentration of water at a temperature and salinity and the observed dissolved oxygen value at

that time (Biological & Chemical Oceanography Data Management Office, n.d.). In coastal

Virginia, this derived value will be impacted by sea level rise, storm events, and higher

temperatures (VCR/LTER Proposal 2018, 2018). The difference between these values arises due

to factors such as atmospheric gas exchange, ventilation of carbon export (Emerson et al., 2004),

and biological activities (Biological & Chemical Oceanography Data Management Office, n.d.).

A negative AOU indicates that supersaturation is occurring, likely due to algal photosynthesis

and higher productivity, while positive AOUs indicate high respiration and consumption (Yuan et
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al., 2011). As coastal lagoons are highly productive systems and support a high number of

organisms, AOU can quantify this net community metabolism.

2.2 High Frequency vs Low Frequency Water Quality Monitoring

High frequency monitoring provides close to real time data, allowing for very high

temporal resolution. This can allow for accurate forecasting models, compliance monitoring,

baseline characterization, and event based impacts (Coraggio et al., 2022). It can also allow for

sub-seasonal variation to be observed, and limit the bias of fair weather sampling, and diurnal

and non-storm dependent changes (Granger et al., 2018). This data can help provide more

accurate information on factors such as streamflow, which can have widely varying discharges

on a monthly, weekly, and daily scale (Dalley, 1986). Additionally, hotspots of poor water quality

due to short term impacts such as boat traffic can be monitored using such frequent observations

(Briciu-Burghina et al., 2014). These measurements can help improve environmental models,

with one study finding that tides, solar irradiation, water temperature, and offshore wind speeds

are the most important variables in their model (Searcy & Boehm, 2021). Using models such as

the Extended Kalman Filter, DO, water temperature, and salinity can be linked to meteorological

forcings and lower frequency variables such as nutrients (Pastres et al., 2003). However, there

can be issues in more noise and bias in the data that can arise from environmental and instrument

variables (Granger et al., 2018). These high amounts of data can also cause issues in storing,

processing, and costs (Coraggio et al., 2022), as well as geographic limits in where stations will

have enough power to sample.

Low frequency sampling, while having lower temporal resolution, is more cost-effective

and less prone to sensor malfunctions. Pairing that with long term data sampling, over many

years, it allows for clearer pictures of water quality patterns over time. Long term low frequency
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data are obviously necessary in examining long-term changes, and allow more context than

shorter term data (Burt et al., 2011). Low frequency observations are especially helpful for when

the intended outcome is to characterize seasonal variation and trends in water quality over a long

period of time (Coraggio et al., 2022) For data that vary on a longer term scale, accurate

estimates can still be made (Burt et al., 2011). Long term water quality data is essential to

revealing patterns in complex systems with slow emerging signals (Burt et al., 2014). These

longer datasets can indicate larger scale regional hotspots in poorer water quality and link those

to specific anthropogenic influences and climate change impacts (Bugica et al., 2020). This can

indicate specific areas of concern to be targeted in mitigation efforts. However, the issues with

lower frequency sampling can restrict our knowledge of hydrological variability and only partial

understanding of a system (Burt et al., 2014). Additionally, in smaller study areas, low frequency

may not be appropriate due to discharges and atmospheric events causing more sudden changes

(Coraggio et al., 2022).

2.3 Relationship between storm events and water quality

Storm events impact water quality variables. In general, storms induced a decrease in

temperatures in streams during the event (Brown & Hannah, 2007). Predictably, water quality

changes after a large storm event, such as lower salinities, decreasing water clarity and

increasing turbidity (Davis, et al., 2004). Diurnal variability signals for temperature and DO are

overwritten during storm events (Saraceno et al., 2009). During high discharge events, such as

storm events, DO and Chlorophyll-a values tend to decrease due to higher suspended sediments

(Bukaveckas et al., 2020). For chlorophyll-a, there is a large variation during storm events, with

the direction depending on hydrological factors and flow regimes, but an increase after storms

due to higher water temperatures can be seen (Liao, 2021). Storm events predictably wash out
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floating photosynthetic organisms, decreasing productivity (increasing AOU) and increasing DO

during storms due to mixing (Liu et al., 2020).

Winds can induce currents, waves, and turbidity in bodies of water, which can re-aerate

water and increase DO concentrations (Elbaradei & Alsadeq, 2019). Water levels change

diurnally to semi-diurnally due to changing tides phases, and can be impacted by storm events.

Storm surges are an abnormal rise in sea level during a storm, over that of the normal predicted

level due to the astronomical tide (NOAA, 2023). They can bring in high salinity water, decrease

DO concentrations, and can increase sedimentation and nutrient loading (Aquatic, n.d.). Air

pressure can impact the dissolving of oxygen into water, with more being able to dissolve in

higher air pressure (Fondriest Staff, 2010). Low pressure also allows for sea levels to rise and

rapid evaporation, driving wind and storms (New Jersey Sea Grant, n.d.). Precipitation can cause

increases in nutrient loading, and cause potential algal blooms and anoxic zones (National

Science Foundation, 2017). It decreases both salinity because of increased freshwater input and

water clarity because of turbulent waters (Swartwood, 2022).

3. Research Questions

Using harmonic analysis to investigate seasonal patterns, I focused on the following questions

1) Are there differences between harmonic elements of high and low frequency data sites

over site types, inland or ocean facing, and do these differences remain consistent during

subsampling of the same frequencies?

1a. How many years of simulated quarterly sampling are needed until the average

variability in error plateaus?
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2) Are seasonal components and/or storm events linked to large magnitude anomalies in

water quality variables and does the direction (positive or negative) of these have

consistent significant relationships with weather factors across sites?

2a. Do these significant correlations indicate changing weather patterns due to climate

change will significantly impact water quality?

4. Methods

4.1 Site and Data Descriptions

The sites of interest in this project are on the ocean side of the Eastern Shore of Virginia.

The Virginia Institute of Marine Science (VIMS) at the Eastern Shore Laboratory (ESL) has high

frequency YSI EXO2 Sonde land-based pumps at sites at Wachapreague (W) and Willis Wharf

(WW) (Ross & Snyder, 2020). Water quality data has been provided by the College of William

and Mary’s Virginia Institute of Marine Science Eastern Shore Laboratory (VIMS ESL) with the

assistance of ESL’s Darian Kelley. Site W is located on a channel creek that occurs near sites of

extensive aquaculture, and is described as having offshore weather impacts, deep channels, and

tidal currents, and site WW is also located in a creek near commercial hatcheries (Ross &

Snyder, 2020). For site W, the data start 3/25/2016 and end 12/31/2022 and for site WW, the data

starts 10/12/18 and ends 12/24/2022 (Ross & Snyder, 2023). However, there are also large gaps

in the measurements for both sites (Ross & Snyder, 2023). At both sites, these water quality

measurements were taken at 15 minute intervals, with the raw data averaged to one measurement

per day for seasonal and hourly for diurnal harmonic analysis. Hourly water levels were recorded

at a National Oceanic and Atmospheric Administration (NOAA) site at site W (Station ID:

8631044) (NOAA Tides & Currents, 2022). Weather data for wind speed and direction, and air
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pressure was recorded from the same site at 6 minute intervals (National Data Buoy Center,

2022), and was then averaged to hourly intervals for the purpose of data analysis. Precipitation

data for hourly intervals were collected from National Aeronautics and Space Administration

(NASA) Prediction of Worldwide Energy Resources (2022) using the site’s latitude and

longitude. Tidal lag and weather differences between sites were determined insignificant, and

were used for both site W and WW.

The second set of water quality sampling sites are low frequency as part of the Virginia

Coast Reserve (VCR) which houses lagoons as well as barrier islands (VCR/LTER Proposal

2018, 2018). Data (doi: knb-lter-vcr.247.17) were retrieved from the VCR website. Data was

manually collected using a YSI Datasonde lowered from a small boat or from the shore at each

site; chlorophyll was calculated from collected discrete water samples extracted using an

acetone, methanol and deionized water solution and quantified with a spectrophotometer

(McGlathery et al., 2022). Tidal cycles were recorded during time of measurement, but due to the

sampling strategy, all data points were recorded during falling tides and are biased to good

weather and safe boating conditions (McGlathery et al., 2022). Water residence times were

estimated using a three-dimensional finite-volume coastal ocean model (FVCOM) and then

validated with field observations (Safak et al., 2018). Values were estimated from the closest

coordinate to each water quality site using high tide and no wind conditions, the most similar

conditions to those of sampling (Safak et al., 2018).

Table 1 shows the location and dates measured of the VIMS and VCR Sites.
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Table 1. Names, Coordinates and Dates Measured of Each Site

Site Location Latitude
(Degree)

Longitude
(Degree)

Dates Measured

W (Wachapreague) Channel Creek 37.60772 -75.68581 3/25/16 to 12/31/22

WW (Willis Wharf) Tributary Creek 37.51228 -75.80622 10/12/18 to
12/24/22

Ramshorn Channel Creek
(RCC)

Mainland Creek 37.302883 -75.904642 8/26/04 to 10/11/22

Redbank Creek Mouth
(RBCM)

Mainland Creek 37.460083 -75.816 8/26/04 to 10/10/22

Cattleshed Creek Mouth
(CCM)

Barrier Creek 37.44292143 -75.68927765 7/28/92 to 10/10/22

Little Cobb Island (LCI) Back-Barrier 37.305273 -75.792273 8/26/04 to 10/11/22

Machipongo Inlet (MI) Ocean Inlet 37.36764 -75.73592 7/31/97 to 10/10/22

New Marsh (NM) Lagoon Shoal 37.290609 -75.856815 8/26/04 to 10/11/22

Oyster Harbor (OH) Harbor 37.28919 -75.92427 7/28/92 to 10/11/22

Phillips Creek Mouth
(PCM)

Mainland Creek 37.44484653 -75.83420277 7/28/92 to 10/10/22

Quinby Inlet (QI) Ocean Inlet 37.46709235 -75.66833496 8/25/92 to 10/10/22

Red Banks (RB) Lagoon Shoal 37.46406076 -75.80665112 7/28/92 to 10/10/22

South Hog (SH) Barrier Creek 37.38199 -75.71811 7/31/97 to 10/10/22

Shoal Site (SHS) Lagoon Shoal 37.417028 -75.761194 8/26/04 to 10/10/22

Sand Shoal Inlet (SS) Ocean Inlet 37.29038 -75.784927 8/26/04 to 10/11/22

Bolded sites indicate VIMS sites, while non-bolded are in the VCR.
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Figure 1. Spatial map created in ArcGIS using Imagery (WGS84) basemap showing the locations of
the VIMS sites as purple dots, and the VCR sites as pink dots.

4.2 Data Analysis

4.2.1 Harmonic Analysis of Seasonal Cycles

For this project the data analysis was done in Matlab and R, unless otherwise specified,

using the aforementioned data sets.

Chavuent’s Criterion was used for outlier removal on the raw data in raw and hourly

averaged forms. Chlorophyll-a was normalized by first adding 1 to all values to account for

values of 0 ug/L, and then the common logarithm (log10) was taken.
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Data for each site were compiled into climatological day of year graphs, and a model

estimate, ym(t), was constructed using 1st and 2nd harmonics (sine curves) fit using the formula

(Wilks, 2011):

(1)𝑦𝑚 𝑡( ) =  𝑦 +  
𝑘

2

∑ 𝑎
𝑘
𝑐𝑜𝑠 2π𝑘𝑡

𝑛⎡⎣ ⎤⎦ + 𝑏
𝑘
𝑠𝑖𝑛 2π𝑘𝑡

𝑛⎡⎣ ⎤⎦  ( )
where k is the respective harmonic, is the mean of the y values (water quality variables), is𝑦 𝑎

𝑘

the cosine coefficient of the kth harmonic, t is day of year format, n is time period (365 days),

and is the sine coefficient of the kth harmonic. , and were found using a least squares𝑏
𝑘

𝑦 𝑎
𝑘

𝑏
𝑘

method in Matlab for each respective harmonic. Confidence intervals for the computed model

parameters were calculated.

The amplitudes were found using

(2)𝐴
𝑘

= (𝑎
𝑘
)2 + (𝑏

𝑘
)2

Phase shifts were found using

> 0 (3)ϕ
𝑘

= 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑏

𝑘

𝑎
𝑘

) 𝑎
𝑘

+ < 0 (4)ϕ
𝑘

= 𝑎𝑟𝑐𝑡𝑎𝑛(
𝑏

𝑘

𝑎
𝑘

) π  𝑎
𝑘

Date of the maximum values were found

(5)𝑡
𝑘

= 𝑛
2π ϕ

𝑘

Variances were found (Burroughs, 2003).

(6)σ
𝑘
2 =

𝐴
𝑘
2

2

With the total variance ( ) being the sum of the first and second harmonic variances.σ2
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Percent variance for harmonic k is:

(7)𝑝𝑉
𝑘
=

σ
𝑘
2

σ2

The reduced chi squared value was found (Glover et al., 2012)

= (8)χ
𝑣
2 1

𝑣
𝑖=1

𝑁

∑
(𝑦

^

𝑖
−𝑦

𝑖
)2

σ
𝑖
2

Where

(9)𝑣 = 𝑁 − 𝑚

With being the number of observations, is the number of calculated variables, is the𝑁  𝑚 𝑦
^

𝑖

model fit estimate, is the observed value, and is the variance of the observed data.𝑦
𝑖

σ
𝑖
2

The local minimum ( ) and maximums ( ) of the composite harmonics were𝑡
𝑚𝑖𝑛

𝑡
𝑚𝑎𝑥

computed using the zero-points of the first derivative with respect to time, t, using Equation 1.

The amplitude of the composite harmonics was found from:

(10)𝐴
𝑚𝑎𝑥

=
𝑡

𝑚𝑎𝑥
−𝑡

𝑚𝑖𝑛

2

Confidence intervals were calculated for the harmonic elements by subsampling and

bootstrapping between the previously calculated model parameters confidence intervals 200

times.

Using the Matlab Code by Mertens (1996), oxygen saturation was calculated by

(11)𝑂
𝑠𝑎𝑡

= 𝑒𝑥𝑝(𝑐
1
 +  

𝑐
2

𝑡 + 𝑐
3
𝑙𝑜𝑔(𝑡𝑒) +  𝑐

4
𝑡 + 𝑠(𝑑

1
+ (𝑑

2
+ 𝑑

3
𝑡)𝑡)
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Where is -173.4292, is 249.6339, is 143.3483, is -21.8492, is -0.033096, is𝑐
1

𝑐
2

 𝑐
3

𝑐
4

𝑑
1

𝑑
2

0.014259, is -0.0017, with s (salinity (ppt)) and te (temperature )) being the inputted𝑑
3

(◦𝐶

values. This yielded values in mL/L, which is converted to mg/L by dividing by 0.7000.

AOU was calculated by

(12)𝐴𝑂𝑈 =  𝑂
𝑠𝑎𝑡

− 𝐷𝑂

Where DO is the measured value (mg/L) at the time of the respective .𝑂
𝑠𝑎𝑡

Random subsampling was performed on the composite harmonic formula at the same

frequency of the VCR inland sites for each parameter at the VIMS sites (202 temperature, 190

salinity, 175 DO, 164 log10(Chl), 164 AOU values selected for each trial) 200 times. For each

trial, a composite harmonic was fit using Equation 1. Averages, standard deviations, standard

error, and confidence intervals were calculated for each parameter in the formula and harmonic

element.

(13)𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑉

1
−𝑉

2| |
(𝑉

1
+𝑉

2
)

2
⎡⎢⎣

⎤⎥⎦

× 100

Where is complete data harmonic element and is the average subsampled value.𝑉
1

𝑉
2

Percent differences were calculated using Equation 13, between the complete and

averaged subsampled values for each parameter at W and WW.

Spatial maps of the sites were made in ArcGIS using the calculated dates and values of

the composite harmonic maximums (temperature, salinity, and log10(Chl)), AOU) or minimums

(DO), as well as the seasonal amplitudes.

4.2.2. Generalized Least Squares analysis of synoptic anomalies

(14)𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 =  𝑦
𝑖

− 𝑦
𝑖
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Generalized Least Squares (GLS) allows for linear fits to be created when assumptions of

linear regression are violated, such as absence of serial correlation (temporal autocorrelation)

(Taboga, 2021). Points that are closer together are more similar than points that are farther apart,

and a correlation structure must be used to account for this to see accurate relationships. GLS

was performed on parameter anomalies over time calculated using Equation 14 in order to see if

there were any long term changes for each of the sites and variables.

4.2.3 Simulated Quarterly Sampling

The respective daily averaged values for sites W and WW were sorted into seasons

(winter (December, January, February), spring (March, April, May), summer (June, July,

August), and fall (September, October, November). Picking the season with the most values to

represent the maximum years of quarterly sampling ( ), values are randomly subsampled 2:𝑚
𝑦

𝑚
𝑦

times per season and harmonic analysis is performed 200 times, and an average was taken of

each harmonic formula element to compute a fit for each year.

(15)𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝑀𝑒𝑎𝑛( 𝐹𝑢𝑙𝑙 𝑀𝑜𝑑𝑒𝑙 𝑃𝑜𝑖𝑛𝑡 − 𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑀𝑜𝑑𝑒𝑙 𝑃𝑜𝑖𝑛𝑡| |)

Using equation 15, the average error (in terms of uncertainty in model variables due to

sampling frequency) for each data point 1:365 is taken for each successive year, and is plotted

against its respective year, creating a decaying curve scatter plot.

(16)𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 =
𝑋

2
−𝑋

1| |
𝑋

1
× 100

Where is the fitted value point previous value and is the current fitted value point.𝑋
1

𝑋
2

A logarithmic regression model was fit on the average error vs years of sampling scatter

plot using R. This method was chosen as it allows for decay to be consistent in direction

(downwards) to make meaningful calculations of relative change, as the raw values show some

natural variability in direction as time goes on. Relative change was calculated using Equation 16
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between each year’s fitted value of average error generated from the logarithmic model. Relative

change values were then standardized using the mean and standard deviation of all of the relative

change values in order to compare across variables. Thresholds of 1%, 0.5%, and 0.25%

standardized relative change were chosen as they indicate plateauing of relative change between

years. While standardized variables are unitless, the percentage (%) unit is used to guide

audiences in what the variable represents.

The same steps were performed using the average percent difference across harmonic

elements (date and value of minimum/maximum and seasonal amplitudes) between the

subsampled and full model calculated using Equation 13 to validate the results.

4.2.4 Diurnal Anomalies

For diel cycles at sites W and WW, parameter data was converted to hourly averages, and

for each week of the year was converted to an hour of day format in order to run harmonic

analysis as done above, using n=24 instead of 365 in Equation 1. Variables were grouped by

week of year to minimize anomalies due to changes throughout months that may be very

different at the beginning versus the end, such as in spring, to focus on high magnitude

anomalies that were solely deviations from the normal cycle. Anomalies were computed using

differences from the model fit in Equation 14. A positive anomaly represents a value that is

higher than expected while a negative anomaly represents a value that is lower than expected.

The top and bottom 5% of these anomalies were calculated, and then separated into negative and

positive groupings, and then sorted seasonally, into winter (December, January, February), spring

(March, April, May), summer (June, July, August), and fall (September, October, November).

(17)𝑊𝑎𝑡𝑒𝑟 𝐿𝑒𝑣𝑒𝑙 𝐴𝑛𝑜𝑚𝑎𝑙𝑖𝑒𝑠 = 𝑊
𝑒𝑥𝑝

− 𝑊
𝑜𝑏𝑠
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Where is the expected hourly water level value predicted by NOAA, and is the hourly𝑊
𝑒𝑥𝑝

𝑊
𝑜𝑏𝑠

observed value.

Using R, a GLS with a correlation term to account for temporal autocorrelation was

performed to test for significant relations to weather factors (wind speed (m/s), water level

anomalies (m) (calculated using Equation 17), air pressure (mb), and precipitation (mm/hr)) for

each season and direction (positive or negative) of anomalies.

For the diurnal anomalies relation to storm events, these events were classified using the

NOAA Storm Events Database, which identified the date and type of event in sites W and WW

using their county and verified by signals seen in the weather data at the sites. Only storms over

12 hours were investigated in order for long enough time periods and changes to be seen. Heavy

rain is categorized as a large amount of rain that does not cause a flash flood, but does cause

damage (National Weather Service. 2021). Tropical storms are categorized as a tropical cyclone

in which the 1-minute sustained surface wind ranges from 39 to 73 mph (17 to 33 m/s) (National

Weather Service, 2021). Winter weather is categorized as a winter precipitation event that causes

death, injury, or significant impact to commerce/travel, while a winter storm is categorized as a

winter weather that has more than one significant hazard (ex: heavy snow, ice, etc.), and are

grouped together due to their similarities (National Weather Service, 2021). A coastal flood is

defined as flooding due to strong, persistent onshore winds, high astronomical tide, and/or low

atmospheric pressure resulting in damage or injuries (National Weather Service, 2021).

Hurricanes were identified using the NOAA Historical Hurricane tracks website, and selected

using latitude and longitude of respective sites, and subsequent weather events due to these

tracks were noted. A hurricane is categorized as a tropical cyclone in which the maximum

1-minute sustained surface wind is 74 mph (33 m/s) or greater (National Weather Service. 2021).
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Table 2. Classification of Weather Events

Storm Event Discrete # of Events (W) Discrete # of
Events (WW)

Tropical Storm
Heavy Rain

Winter Storm/Winter Weather
Coastal Flood

2
7
4
4

1
4
2
2

Hurricane 1 3

Time series data was categorized as before event, during event, and after event, all the

same length as the event itself. Analysis was done in R, using a GLS model with a correlation

term, in order to account for temporal autocorrelation to test for significant relationships between

weather factors and water quality parameter anomalies before, during, and after that event.

5. Results and Discussion

5.1 High vs Low Frequency Seasonal Harmonic Analysis

5.1.1 Temperature

For all sites, the first harmonic cycle dominates, indicating an annual cycle (Table A1,

Figure 2). Annual temperature changes are primarily driven by meteorological factors and

physical hydrological characteristics (Benyahya et al., 2007). The harmonic curves strongly

show that the warmest temperatures are in summer and coolest in the winter, highlighting the

impact of seasonal air temperature and solar radiation changes (Figure 2).
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Figure 2. Temperature Composite Harmonic Fits. (a) All VIMS (W and WW) and VCR sites (CCM,
LCI, SH, MI, QI, SS, SHS, NM, OH, RB, PCM, RBCM, and RCC). (b) Ocean facing and mid-lagoon

sites. (c) Inland sites.

Inland sites generally have slightly earlier dates for summer peak temperatures (average

of 213.6 ± 1.566 days), and higher maximum peak values (average of 29.21 ± 0.6093℃) and

seasonal amplitudes (average of 11.77± 0.08151℃) compared to ocean facing sites (average of

218.3 ± 2.405 days, 27.51 ± 0.6649℃, and 11.26 ± 0.2987℃) (Figures 2 and 3, Table A1).
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Inland sites are more impacted by freshwater inputs with shallower depths that allow for more

rapid and intense temperature changes, while ocean facing sites are routinely exposed to cooler

ocean water limiting large temperature variations, paired with their much lower residence times

(Safak et al., 2018, Figure 3). Site QI had both a lower seasonal peak temperature (26.18 ±

0.05263℃) and amplitude (10.58 ± 0.03692℃) that could be related this site having the longest

time series of the 3 inlets, perhaps giving a more accurate temperature model or water inflow

patterns being more optimal for lower maximum temperatures and amplitudes (Figure 3, Table

A1).

Figure 3 Spatial maps of VCR and VIMS sites, where site codes are as in Figure 2. (a)Maximum
temperature values. (b) Seasonal amplitudes.

Comparing full vs subsampled data for sites W and WW, there was a less than 0.12%

average percent difference between the harmonic elements, indicating that 202 samples is

enough to show almost the same harmonic results as a full high frequency dataset (Table A6).

5.1.2 Salinity
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For salinity there was a mix of dominating harmonics at the sites, with all inland sites

being dominated by the first harmonic and most ocean facing sites being dominated by the

second harmonic besides sites QI and NM (Table A2, Figure 4). Salinity variations throughout

the year depend on the effects of mixing, evaporation, precipitation, and atmospheric circulation

(Sachithananthan, 1969). The seasonal fluctuations in freshwater input on the inland sites force a

more annual cycle, while the ocean facing sites are more mitigated with the stronger impact of

tidal flushing of the nearby ocean which has an overall more stable seasonal cycle due to its large

size and dependence on the global water cycle (Figure 5, NASA, n.d.). Sites QI and NM having a

more impactful annual cycle indicates other factors being greater than tidal flushing (Figure 5).
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Figure 4. Salinity Composite Harmonic Fits. (a) All VIMS and VCR sites. (b) Ocean facing and mid
lagoon sites. (c) Inland sites.

In general, ocean facing and mid-lagoon sites show less intra-site and temporal variability

than inland sites (Figure 4). Most sites have dates of maximum values generally contained to mid

to late year (inland sites average of 227.1 ± 26.96 days and ocean facing and mid-lagoon sites

average of 219.0 ± 56.44 days), however sites SHS (61.55 ± 5.755 days) and MI (165.4 ± 4.769

days) fall earlier, possibly related to the inflow of ocean water at that inlet (Figure 4, Table A2).

The inland sites have more variable maximum values (average of 31.16 ± 0.7618 ppt) and higher

seasonal amplitudes (average of 1.606 ± 0.8415 ppt), likely due to their differences in freshwater

input and/or longer residence times, while ocean facing and mid-lagoon sites have consistently

higher maximum values (average of 31.51 ± 0.05530 ppt) and lower amplitudes (average of

0.4520 ± 0.0576 ppt), due to tidal impacts (Figure 5, Table A2).
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Figure 5. Spatial maps of VCR and VIMS sites, where (1) indicates first harmonic dominating and (2)
indicates second harmonic dominating. (a)Maximum salinity values. (b) Seasonal amplitudes.

There was a larger difference between the bootstrapped and full data sets of salinity at

VIMS sites W and WW. Site W had an average of 2.558% difference between the harmonic

elements, with the highest being the seasonal amplitude (4.286%) (Table A6). Site WW had a

lower 0.4703% average difference across its harmonic elements (Table A6). Site W having a

higher percentage means more uncertainty in the bootstrapping, meaning 190 data points are not

able to show as concise a picture as temperature, with harmonic models benefiting from more

data availability.

5.1.3 DO

For DO, all sites were dominated by the first harmonic (Table A3, Figure 6). DO has an

inverse relationship with temperature, where the warmer water in the summer months leads to

lower concentrations of DO (Figure 6). This dip can also be accounted for by annual factors such

as air temperature, as well as circulation, vertical mixing, air-sea gas exchange, photosynthetic

oxygen production, and use of oxygen due to decomposition of organisms (Kim et al., 2018).
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Figure 6. DO Composite Harmonic Fits. (a) All VIMS and VCR sites. (b) Ocean facing and mid
lagoon sites. (c) Inland sites.

Inland sites generally have earlier to mid dates of minimum DO (average of 216.4 ±

8.586 days), with the exception of site OH (236.9 ± 3.439 days) being much later, and more

variable minimum DO values (average of 5.555 ± 0.4243 mg/L) and seasonal amplitudes

(average of 2.564 ± 0.1171 mg/L) (Figures 6 and 7, Table A3). Site OH being later could be

related to it having a much longer residence time, than other inland sites, with its semi enclosed

shape not allowing for much flushing (Safak et al., 2018, Figure 6). The inland sites having more
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variation in their harmonic elements is likely related to the range of residence times and water

depths (Figure 7, Safak et al., 2018). Ocean facing and mid-lagoon sites have higher minimum

values (average of 6.093 ± 0.3587 mg/L), save for site CCM (5.108 ± 0.04057 mg/L), and more

low to mid range seasonal amplitudes (average of 2.559 ± 0.1619 mg/L), with inlet sites QI

(2.238 ± 0.02600 mg/L) and MI (2.229 ± 0.03301 mg/L) being much lower and site NM (3.003 ±

0.03457 mg/L) being much higher (Figure 7, Table A3). Site NM is a lagoon shoal, and therefore

experiences higher seasonal variability in both vegetation and water depth, while inlet sites QI

and MI are more regulated by cooler ocean water mitigating large DO swings (Figure 7).

Figure 7. Spatial maps of VCR and VIMS sites. (a)Minimum DO values. (b) Seasonal amplitudes.

There was a smaller difference between the bootstrapped and full data sets DO with both

VIMS sites W and WW having less than an average 0.22% average percent difference across

their harmonic elements (Table A6). DO is inversely related to temperature, so both variables

being similar in their percent differences is consistent with the harmonic models of temperature,

and 175 values is enough to give an accurate harmonic model of the site.

5.1.4 Chlorophyll-a
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Chlorophyll-a (Chl) is a measure of phytoplankton biomass and was log transformed

prior to analysis. For log10(Chl), inland sites generally had a mix of dominating harmonics, while

ocean facing sites were generally 1st harmonic save for sites QI and CCM (Table A4, Figure 8).

Sites QI and CCM are likely mitigated from stronger seasonal cycles due to ocean water inflow

(Figure 8). Seasonal cycles of chlorophyll can be impacted by nutrient inputs, temperature, light

availability (del Carmen Jiménez-Quiroz et al., 2021), as well as tide mixing, seasonal winds,

upwelling, and stratification (Robles-Tamayo et al., 2020). Specifically, in lagoons, the

concentrations seem to be most impacted by hydrology, meaning meteorological factors like

wind, rainfall, and evaporation, and river runoff (Salas-Perez & Gonzalez-Gandara, 2016).
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Figure 8. Log10(Chl) Composite Harmonic Fits. (a) All VIMS and VCR sites. (b) Ocean facing and
mid lagoon sites. (c) Inland sites.

In general all sites had very close dates of maximum log10(Chl) values around mid year

(inland sites having an average of 214.8 ± 6.516 days and ocean facing and mid-lagoon sites

having an average of 234.6 ± 27.06 days), with site SS (323.5 ± 4.955 days) being much later

(Figure 8, Table A4). The peak value that late in the year is very interesting and not seen at other

sites and is likely related to water factors such as potentially high flushing rates during the

summer that dampen the concentrations at that time (Figure 8). The inland sites have higher

maximum values (average of 8.817 ± 0.2747 ug/L) and seasonal amplitudes (average of 1.018 ±

0.1964 ug/L), save for sites RB (0.3806 ± 0.01635 ug/L) and RCC (0.5201 ± 0.02167 ug/L)

(Table A4). These sites are more likely to experience stagnant nutrient rich waters due to their

longer residence times, increasing their peaks and amplitudes (Figures 8 and 9, Safak et al.,

2018). Sites RB and RCC being lower than other inland sites could be due to experiencing more

mixing and lower nutrient availability, dampening both the maximum values and seasonal

amplitudes (Figure 9). Ocean facing and mid-lagoon sites have lower maximum values and

seasonal amplitudes (averages of 6.175 ± 0.1658 ug/L and 0.4909 ± 0.05748 ug/L) (Figure 8 and
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9, Table A4). These site types being lower in both maximum value and seasonal amplitude is

likely related to tidal flushing mixing the water column and cooler ocean water that is less likely

to carry nutrients (Figure 9).

Figure 9. Spatial maps of VCR and VIMS sites where (1) indicates first harmonic dominating and (2)
indicates second harmonic dominating. (a)Maximum Chl values. (b) Seasonal amplitudes.

There was a smaller degree of difference between the bootstrapped and full data sets of

log10(Chl) at the VIMS sites, with site W having an average of 0.1948% difference across

elements and site WW having a higher 0.5417% average difference across its harmonic elements

(Table A6). This indicates that 164 values is enough to give a pretty accurate sense of the

seasonal patterns at these sites (Table A6).

5.1.5 AOU

For AOU, all sites were dominated by the first harmonic (Table A5, Figure 10). AOU is

related to many of the same factors as DO, as well as biological activity and depth to the surface

(Biological & Chemical Oceanography Data Management Office, n.d.). The solubility of oxygen

is directly related to temperature, being lower in warmer air temperatures (Boyer et al., 1999),
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which in turn would lead to summer months having lower oxygen solubility, as well as DO. In

previous studies, higher concentrations of AOU were found in the summer and fall months, with

values closer to zero in the spring and winter time (Calleja et al., 2019).

Figure 10. AOU Composite Harmonic Fits. (a) All VIMS and VCR sites. (b) Ocean facing and mid
lagoon sites. (c) Inland sites.

In general, inland sites had later dates of maximum values (average of 240.8 ± 26.49

days) of AOU, save for sites W (201.6 ± 1.212 days) and WW (194.2 ± 3.012 days), while ocean

facing and mid-lagoon sites were more variable (average of 211.5 ± 19.23 days) (Figure 10,
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Table A5). The inland sites had mid to higher maximum values (average of 1.129 ± 0.3170

mg/L) and seasonal amplitudes (average of 0.7677 ± 0.08016 mg/L), while ocean facing and

mid-lagoon sites were generally slightly lower (averages of 0.6343 ± 0.3952 mg/L and 0.7004 ±

0.1335 mg/L) except for site CCM (1.630 ± 0.04602 mg/L and 0.9924 ± 0.03533 mg/L) (Figures

10 and 11, Table A5). Site CCM had a deviation from the general pattern of DO for ocean facing

sites as well, indicating that something there is impacting productivity and/or respiration (Figure

11). Inland sites having higher maximum values indicate higher respiration and consumption,

which could be related to proximity to marsh and sediment that experience higher bacterial

respiration (Figure 11). Ocean facing and mid-lagoon sites are deeper and more turbulent with

shorter residence times, explaining the lower AOU (Figure 11).

Figure 11. Spatial maps of VCR and VIMS sites. (a)Maximum AOU values. (b) Seasonal amplitudes.

There was a smaller degree of difference between the bootstrapped and full data sets of

AOU, with VIMS site W having an average 0.3576% and site WW an average 1.149%

difference (Table A6). This indicates that the 164 values give pretty accurate results in modeling

AOU, more so at site W than site WW.
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5.1.6 Long Term Changes

Log10(Chl) had the most long term changes at 8 sites, followed by salinity at 6 sites,

temperature at 3 sites, AOU at 3 sites , and DO at 0 sites (Figure 12).

At all sites except for site WW, log10(Chl) increased over time, which is likely related to

the length of the data set and low frequency allowing for the noise of high frequency data over a

shorter period of time to be ignored (Figure 12). At the inland mid-lagoon cluster of sites, there

is a co-occurence of increasing temperature and log10(Chl) values, which makes sense as warmer

temperatures are ideal for algal growth (Figure 12). Log10(Chl) is also increasing at 2 inlet sites,

QI (0.01985ug/L/year) and MI (0.04354 ug/L/year), as well as ocean facing site SH (0.04201

ug/L/year), indicating that these changes are not just limited to inland, and that even areas with

lower concentrations of log10(Chl) and high rates of flushing are still being impacted (Figure 12,

Table A7). Site WW (-0.1474 ug/L/year) decreasing could be related to hydrodynamic factors, as

it is a creek, or the shorter time of measurement, potentially currently experiencing temporary

decreases over the last few years that could change as monitoring continues (Figure 12, Table

A7). Site RCC had the largest positive increase (0.5364 ug/L/year), likely related to nutrient

availability there (Table A7).

Salinity was increased over time at many inland sites, and at 2 ocean facing sites, QI

(0.06781 ppt/year) and CCM (0.06723 ppt/year) (Figure 12, Table A7). At the same mid lagoon

cluster mentioned previously, salinity increases co-occur with temperature and log10(Chl), likely

related to both saltwater intrusion and warmer water temperatures due to climate change that also

fosters growth (Figure 12). The ocean facing sites increasing in salinity could be related to sea

level rise increasing salinity there (Figure 12). Site W had the most noticeable and largest

increase in salinity per year (0.2890 ppt/year), likely related to the shorter time series as well as
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higher frequency of sampling allowing for smaller variations to be observed as well as sampling

through all tidal phases (Table A7).

Temperature increases were limited to the mid lagoon inland site cluster, likely related to

shallower waters being more susceptible to changing temperatures (Figure 12). Site RBCM had

the largest increase in temperature per year (0.09140 °C/year), likely related to the co-occurring

decrease in AOU, as the lower AOU indicates higher productivity which can increase in higher

temperatures (Table A7).

AOU increased at just one site, indicating higher consumption rates, and decreases at 2,

indicating higher productivity, likely related to higher algal rates that co-occur there (Figure 12).

The positive trend in AOU at site W (0.04180 mg/L/year) could be related to rise in salinity

negatively impacting productivity and flora (Figure 12, Table A7). The largest negative trend for

AOU was at site RBCM (-0.06560 mg/L/year), which also has the highest increase in

temperature, likely due to higher temperatures potentially being able to increase productivity

(Table A8).

Figure 12. Spatial map of significant long term changes in water quality variables at VCR and VIMS
sites.
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5.1.7 Simulated Quarterly Sampling

Estimating the average errors in the estimate of the harmonic seasonal cycles between the

full data set and a subsampled year, referred to as average are for the rest of this section, can be

accomplished using simulated quarterly sampling. For temperature, both sites W and WW take

25-29 years to reach less than 1% standardized relative change between years and 54-62 years to

reach less than 0.25% (Figure 13 and Table A8). For salinity, it takes both sites 25 years to reach

1% standardized relative change between years, and 44-54 years to reach 0.25% (Table A8). For

DO, sites take 24-27 years to reach less than 1% standardized relative change between years, and

52-57 to reach 0.25% (Table A8). For log10(Chl), sites take 24-25 years to reach less than 1%

standardized relative change, and 51-53 years for 0.25% (Table A8). Finally, for AOU it takes

25-26 years to reach less than 1% standardized relative change and 53-54 years to reach 0.25%

(Table A8). These results are validated by performing the same methods on average percent

difference of harmonic element values, the dates of reaching the thresholds only varying around

1-2 years (Table A9). The variables are very similar in reaching less than 1% standardized

relative change between years, but there is more variability in reaching 0.25%, the “true” plateau

(Table A8). DO and Log10(Chl) are the variables that reach the 1% threshold first, while salinity

is the first to reach the 0.25% threshold (Table A8).
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Figure 13. Example of logarithmic regression of average error between subsampled and full
temperature model versus successive years of quarterly sampling for temperature at site Wachapreague.

In general, it takes all variables at both sites around 25-30 years to reach less than 1%

standardized relative change, meaning that if researchers want to decrease the variability in

average errors in their models of low frequency observations, they should plan to monitor for at

least this long. If they want to reach the plateau, they should plan on monitoring for at least

50-55 years to minimize the variability in average error in their harmonic modeling.

5.2 Seasonal High Frequency Anomaly Analysis

5.2.1 Positive Anomalies

For site W, salinity had a positive correlation with water level anomalies and a negative

correlation with precipitation in winter (p=6.00* and p=0.0108) and spring (p=8.00*10−6 10−5

and p=1.00* ). Predictably, as precipitation increases, surface water is more diluted,10−4

lowering salinity. Positive water level anomalies indicate lower than predicted water levels, so

increased salinity in these conditions is potentially due to higher evaporation rates leaving behind

high saline water. Water level anomalies had a positive relationship with DO in summer
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(p=5.00* ) and fall (p=.0358), possibly due to shallower water having less stratification and10−4

higher gas exchange with the atmosphere, increasing DO concentrations.

For site WW, water level anomalies had a positive correlation with temperature and a

negative correlation with salinity in both winter (p=0.0201 and p=0.0152) spring (p=0.0107 and

p=8.00* ). Solar radiation is more impactful in shallower water, more effectively elevating10−4

water temperature. Higher water levels than expected (negative anomalies) could indicate storm

surges and/or a greater tidal flow, increasing salinity.

Both sites had negative correlations between air pressure and temperature in summer

(p=5.28* and p=0.0180) and fall (p=0.0211 and p=0.0204). Warmer water temperatures10−26

decrease air pressure, increasing evaporation and potentially fueling storms (NOAA Technical,

n.d.). Both sites also had positive correlations between water level anomalies and DO in fall

(p=0.0358 and p=4.00* ), again related to less stratification (Figure 14).10−4

Figure 14. Example of positive correlations of positive DO anomalies and water level anomalies at
sites W (residual standard error=0.2277) and WW (residual standard error=0.1526).

5.2.2 Negative Anomalies

For site W, water level anomalies had a negative correlation with salinity in all 4 seasons

(p=0.00110, 1.00* , 2.00* , 0.0148). Salinity was lower in higher than expected water,10−4 10−5
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again likely related to evaporation increasing salinity. This is a temporally strong relationship,

occurring in all seasons, so when salinities are lower than expected, they are very impacted by

changes in water levels.

Both sites had negative correlations of water level anomalies and salinity in spring

(p=1.00* and p=0.0233) and fall (p=2.00* and p=0.0341), likely relating to higher10−4 10−5

evaporation rates increasing salinity (Figure 15).

Figure 15. Example of negative correlations of negative salinity anomalies and water level anomalies
at sites W (residual standard error=0.0784) and WW (residual standard error=0.07933).

5.2.3 Summary of Seasonal Anomaly Analysis

In general, temperature, salinity, and DO were the only variables that had repeated

significant relationships across both seasons and sites. Salinity increased over time at one high

frequency site (W), which could impact future relationships there. All three variables had

significant relationships with water level anomalies, and are likely to increase in frequency and

magnitude as storm patterns change and sea level rise and saltwater intrusion increase. The

significant relationships were seen across seasons, and could increase in severity throughout the

year in the future. These relationships are important to examine in order to predict potential

changes in water quality due to climate change.
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5.3 Storm Event High Frequency Anomaly Analysis

5.3.1 Heavy Rain

At site W, heavy rain had a negative correlation between before storm wind speed and

temperature on 6/17 (p=0.0361) and 7/17 (p=0.0497). Increasing winds cause mixing which can

decrease surface water temperatures. There was a negative correlation between before storm air

pressure and temperature on 9/19/16 (0.00332) and 6/21 (p=0.0255), as storms that are forming

in lower air pressures can use warmer water as fuel. There was a positive correlation between

during storm air pressure and temperature on 6/17 (p=0.0000658), 8/17 (p=0.00516), and 6/21

(1.20* ). During a storm, there is a co-occurrence of dropping water temperatures and air10−6

pressures are rapidly dropping, as mass evaporation cools the surface water. There was a

negative correlation with during storm water level anomalies and DO on 9/19/16 (p=0.0382) and

10/16 (p=9.87* ), as when the water is higher than expected, potentially due to the increase10−5

in precipitation, rainfall can cause higher saturation of oxygen concentrations (EPA, 2022). There

was a negative correlation between during storm precipitation and log10(Chl) on 9/19/16

(p=0.0151) and 6/17 (p=0.0151), as more mixing from rainfall disrupts chlorophyll

concentrations. There was a negative correlation with after storm salinity and water level

anomalies on 9/28/19 (p=0.000438) and 7/17 (p=0.0266), as the shallower recovered water has

higher salinity than the deeper diluted water. Finally, there was a positive correlation with after

storm water level anomalies and log10(Chl) on 7/17 (p=0.0162) and 3/22 (p=0.0102), as the water

level returning to normal levels allows for chlorophyll concentrations to rebound and benefit

from the potential increase in nutrients brought in.

For site WW, heavy rain had a positive correlation between after storm temperature and

water level anomalies on 2/20 (p=0.0286) and 3/22 (p=0.0476), as the recovered water levels are
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shallower and warmer than during the storm. Site WW also had a negative correlation between

after storm precipitation and log10(Chl) on 2/20 (p=0.0351) and 9/20 (p=0.0416), as there is less

precipitation and mixing after the storm, allowing the chlorophyll concentrations to recover.

5.3.2 Tropical Storm

Both sites had positive correlations between during storm air pressure and temperature

(p=0.0264 and p=0.0495) and after storm precipitation and temperature (p=0.000313 and

p=0.00376) and negative correlations between during storm water level anomalies and log10(Chl)

(p=0.00775 and p=0.0137) on 9/19 (Figure 16). As mentioned, during storms the air pressure and

temperatures are both rapidly dropping, and after the storm the temperature is lower due to the

intensity of the tropical storm, taking longer to recover. As the water is elevated during the

storm, there can be more nutrients from suspended sediments that can increase the water column

chlorophyll concentrations.

Figure 16. Example of negative correlations of during tropical storm log10(Chl) anomalies and water
level anomalies at sites W (residual standard error=1163) and WW (residual standard error=2191) on

9/19.

5.3.3 Hurricane

For site WW, there was a negative correlation between during storm precipitation and

temperature on 10/19 (p=2.84 ) and 7/21 (p=0.000584), as increased rainfall during the* 10−8

storm causes mixing that cools the water down.
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Both sites had negative correlations between during storm precipitation and temperature

(p=0.000397 and p=0.000584), and after storm salinity and water level anomalies (p=0.00173

and p=0.00412) on 7/21 (Figure 17). As mentioned the more precipitation increases mixing that

cools water, and after the storm as the shallower recovered water is higher salinity than diluted

water during the storm.

Figure 17. Example of negative correlations of during hurricane temperature anomalies and
precipitation at sites W (residual standard error=1.331) and WW (residual standard error=1.334) on

7/21.

5.3.4 Coastal Flood

For site W, there was a positive correlation between before storm wind speed and DO on

10/9/21 (p=0.0425) and 5/22 (p=0.0425), as the higher wind speed causes greater mixing. There

was a negative correlation between before storm wind speed and AOU on 10/9/21 (p=0.0442)

and 10/29/21 (p=0.00103), as greater mixing can decrease consumption and respiration. There

was a positive correlation with after storm air pressure and temperature on 5/22 (p=0.0245) and

9/22 (p=0.0451), as the pressure increases after a storm event, so does the temperature as it

recovers. There was a negative correlation with after storm wind speed and log10(Chl) on

10/29/21 (p=0.0164) and 9/22 (p=0.00243), as higher winds cause more mixing that can disrupt

chlorophyll concentrations.
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Across sites, both had positive correlations between before storm DO and wind speed

(p=0.0424 and p=0.000549), and negative correlations between before storm temperature and

precipitation (p=0.0121 and p=0.00464), and during storm precipitation with salinity (p=0.0439

and p=0.000119) and DO (p=0.0113 and p=0.00404) on 5/22 (Figure 18). Increased winds cause

mixing which increases DO, and as precipitation increases approaching a storm, temperatures

decrease. Increased precipitation during a storm dilutes the water and lowers salinity. Both sites

had positive correlations between before storm precipitation with temperature (p=1.08* and10−6

p= 0.000923) and log10(Chl) (p=0.0108 and p=0.000140) on 9/22. Interestingly this is the

opposite relationship as 5/22, and could be related to a stronger storm system of warmer water

that impacted this flood or the season, as this storm occurred in the spring. The chlorophyll

concentrations increasing before the flood could be related to resuspension of sediments.

Figure 18. Example of negative correlations of before coastal flood temperature anomalies and
precipitation at sites W (residual standard error=0.05280) and WW (residual standard error=0.5122) on

5/22.

5.3.5 Winter Storm

For site W, there was a negative correlation between after storm salinity and water level

anomalies on 12/20 (p=0.0188) and 1/22 (p=0.00758), as the shallower water is more salinated.

There was a positive correlation between after storm AOU and water level anomalies 12/20
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(p=0.000800) and 1/22 (p=0.00349), as deeper storm surge water is likely to be more turbid and

faster moving, limiting consumption.

5.3.6 Cross Storms and Sites

Across storms and sites, there was a negative correlation between before storm

precipitation and temperature in heavy rain, tropical storms, and coastal floods, as these storms

have massive amounts of precipitation and high wind speeds that can cause the temperature to

rapidly drop beforehand. There was a negative correlation between during storm water level

anomalies and log10(Chl) in tropical storms, hurricanes, and coastal floods as the mixing of

nutrients from deeper water and resuspension of sediments could cause elevated levels of

chlorophyll. There was a positive correlation between during storm air pressure and temperature

in heavy rain, tropical storms, and winter storms, as mentioned both the temperature and air

pressure are rapidly dropping during the storm event. There was a negative correlation between

during storm precipitation and salinity in tropical storms, hurricanes, coastal floods, winter

storms, as the increase in rain dilutes the salinity. There was a negative correlation between

during storm precipitation and log10(Chl) in heavy rain, tropical storms, and hurricanes, as more

precipitation can increase mixing and dilute the concentrations. There was a negative correlation

between after storm water level anomalies and salinity in all storm events, the most widespread

relationship, as the shallower water is more salty than deeper diluted water. Finally, there was a

negative correlation between after storm precipitation and DO in heavy rain, coastal floods, and

winter storms, as when the rain slows down there is less saturation via rainfall and the DO is not

as elevated.

5.3.7 Summary of Storm Anomaly Analysis
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Repeated significant relationships are seen across all storm types. Specifically, the cross

site types relationships were restricted to tropical storms, coastal floods, and hurricanes, which

are the more intense storm types that can cause higher threat to coastal infrastructures and human

lives. The variables in those relationships are temperature, salinity, and DO, also seen in

seasonal, and log10(Chl), and these relationships occurred most during the storms. Additionally,

salinity has been found to be increasing and log10(Chl) has been found to be decreasing over time

at the high frequency sites, which could impact future relationships. Specifically, temperature

had the most significant relationships, however these baseline temperatures are likely to increase

in the near future, potentially impacting these relationships. Across storm and site types however,

including all storms, had the same 4 variables of temperature, salinity, DO, and log10(Chl). In

both of these relationships, precipitation had the most significant relationships. As precipitation

intensity is likely to increase in the future, more severe and more potential relationships with

precipitation could develop.

6. Summary

Water quality is a vital metric to measuring the status of a body of water, especially in

coastal areas. Strong seasonal patterns are seen in all water quality variables in both the high and

low frequency sites. For temperature, DO, and AOU, all sites are dominated by the first

harmonic, indicating one peak per year, while salinity and log10(Chl) have a mix of dominating

harmonics between sites and site types. Sites near the ocean or more inland generally show more

cohesiveness within their geographical types, with the exception of salinity at the inland sites.

The differences in salinity are likely related to higher environmental variability and seasonal

changes in freshwater inflow and depths at these land adjacent sites. When subsampling the high
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frequency sites at the rate of low frequency inland measurements, they tend to show relatively

low percent differences, with salinity at site W and AOU at site WW being the only two

variables over 1% percent difference. This indicates that the VCR’s consistency of measurements

estimated seasonal cycles well due to the long term (up to 30 years) data sets.

For long term changes, an increase in log10(Chl) was the most frequent trend, followed by

increase in salinity, temperature, and decrease in AOU, with DO not having any long term

changes at any sites. At the 2 high frequency sites, site WW had opposite relationship with

log10(Chl) (negative) and site W with AOU (positive), likely related to their higher frequency

monitoring having more noise and catching smaller variations, as well as shorter time frames of

measurements (4-6 years). These changes indicate that these variables are not static, and

consistent and continual monitoring must be in place to mitigate long term negative effects.

In simulating quarterly sampling, there was high variability in error between years in the

first 5-15 years, indicating sites with that minimal of data availability are not the best option for

harmonic analysis on a low frequency scale. The variables took about 25-30 years to reach less

than 1% standardized relative change, and over 50 to plateau around less than 0.25%

standardized relative change. This indicates that 25 years is adequate enough to model using

harmonic analysis, but at least 50 years of data is required to reach a plateau .

Focusing on the high frequency sites anomalies, on a seasonal scale there were repeated

significant relationships with the variables of temperature, salinity, and DO. As mentioned at site

W salinity e increased, which could impact these relationships in the future. All seasons had at

least one significant relationship, indicating this could be a year round issue that is likely to be

exacerbated by climate change. Water level anomalies had the most frequent significant
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relationships, again, a factor that is likely to become more frequently severe as storm surges are

larger and more frequent and sea level rise and salt water intrusion becomes more severe.

On a storm scale, across both sites W and WW, tropical storms, coastal floods, and

hurricanes had the only significant relationships with temperature, salinity, DO, and log10(Chl).

These were most frequently with precipitation, which is likely to become more frequent and

intense in a changing climate. Across both sites W and WW and all storm types, the same

variables had significant relationships across all storm types, the most frequent being tropical

storms, an intense and potentially life threatening storm to people residing in coastal areas.

Again, the most frequent relationship was with precipitation, which is likely to increase in both

intensity and frequency.

7. Conclusions and Future Directions

Using harmonic analysis, temperature, salinity, DO, log10(Chl), and AOU show strong

seasonality and variation on a temporal and spatial scale. These changes are driven by climatic

factors, both of which are likely to change in the near future due to anthropogenic influences. All

variables except for DO had long term changes over time using GLS, indicating these are not

stable and instead likely to be under increasing pressure to change as the environment changes.

Simulating quarterly sampling of these variables, 25 years are needed to limit the variability in

error (less than 1% standardized relative change between years), and ideally over 50 will cause a

plateau (less than 0.25% standardized relative change between years). The VCR has long term

water quality data sets that range up to 30 years, indicating that they have hit the below 1%

standardized relative change threshold and are doing a relatively good job limiting error

variability, and will continue to be more accurate as more years are collected. This is important
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information as it guides researchers establishing water quality monitoring sites as well as how

many years of sampling they should plan on having to have the most accurate model of seasonal

patterns using harmonic analysis. This can be expanded to water quality variables that are not yet

measured or just beginning to be measured at long term low frequency sites, using a reference

high frequency station nearby if available.

Results show that high frequency sites’ water quality anomalies have significant

relationships with both seasons and storms that are not limited to singular seasons or storm types.

For seasons, temperature, salinity, and DO had the most frequent significant relationships,

especially with water level anomalies, which large negative values can be indicative of potential

storm surges. As storminess increases in frequency, these relationships could become more

pronounced and common and have adverse impacts on water quality. Future work could involve

breaking down seasonal analysis by year and/or season and seeing if these trends are still

significant. For storms, temperature, salinity, DO, and log10(Chl) were the most common

significant relationships across storm type and site type, with log10(Chl) and salinity the high

frequency sites over time. These most commonly were significant with precipitation, which

again is likely to increase with increasing storminess. Future research could investigate if similar

relationships are seen at different high frequency water quality sites, as well as at other high

frequency water quality sites with longer data availability and less gaps that would allow for

more storm events to be captured. Additionally, sites that are not just in coastal waters, such as

lakes or inland streams, could also be monitored during storm events. These results are important

to recognize in the face of climate change, and serve as a starting point for specific analysis on

water quality anomalies in terms of seasons and storms.
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8. Appendix

Table A1. VCR and VIMS Sites Temperature Composite Harmonic Wave Elements

Site 𝑝𝑉
1

𝑝𝑉
2

𝑡
𝑚𝑖𝑛

Min
value

𝑡
𝑚𝑎𝑥

Max
value

𝐴
𝑚𝑎𝑥 χ

𝑣
2

RBCM
91.44 8.559

19.04 ±
0.7691

6.532 ±
0.1174

213.4 ±
0.6246

30.18 ±
0.1091

11.81 ±
0.07356 0.1083

CCM
96.28 3.715

22.80 ±
0.5017

5.468 ±
0.06067

216.0 ±
0.4252

27.34 ±
0.0702

10.94 ±
0.04239 0.1018

LCI
94.14 5.862

27.76 ±
0.5349

4.381 ±
0.08229

218.1 ±
0.6020

27.48 ±
0.07845

11.55 ±
0.05199 0.06501

MI
96.32 3.680

26.02 ±
0.5049

5.132 ±
0.07037

219.6 ±
0.5029

27.46 ±
0.07568

11.16 ±
0.04807 0.08747

NM
94.42 5.581

22.22 ±
0.5822

4.781 ±
0.08964

216.9 ±
0.5823

28.46 ±
0.09455

11.84 ±
0.05997 0.08183

OH
95.46 4.542

17.56 ±
0.4370

6.132 ±
0.06949

215.1 ±
0.3944

29.34 ±
0.06913

11.61 ±
0.04472 0.09989

PCM
95.87 4.126

14.78 ±
0.4819

5.653 ±
0.07131

213.2 ±
0.4378

29.33 ±
0.08099

11.84 ±
0.04904 0.1217

QI
97.27 2.727

28.95 ±
0.4210

5.020 ±
0.05600

219.3 ±
0.3908

26.18 ±
0.0526

10.58 ±
0.03692 0.0819

RB
95.89 4.114

20.37 ±
0.4196

5.161 ±
0.06246

213.4 ±
0.3823

28.69 ±
0.06209

11.76 ±
0.04317 0.08472

RCC
94.39 5.610

22.52 ±
0.5069

4.898 ±
0.09308

216.3 ±
0.5525

28.45 ±
0.08594

11.77 ±
0.05637 0.07222

SH
95.58 4.419

22.03 ±
0.4687

5.257 ±
0.07630

218.4 ±
0.5073

27.81 ±
0.06847

11.28 ±
0.04967 0.09725

SHS
92.16 7.844

23.45 ±
0.7004

5.605 ±
0.09962

215.8 ±
0.6257

28.63 ±
0.08999

11.53 ±
0.05907 0.08948

SS
94.10 5.896

28.50 ±
0.5318

4.268 ±
0.08045

222.7 ±
0.5615

26.71 ±
0.08535

11.22 ±
0.05678 0.06800

W (Full) 99.39 0.6067 19.01 5.287 212.2 28.76 11.74 0.07591

W (Sub) 18.74 ±
0.3700

5.264 ±
0.06006

212.3 ±
0.2966

28.79 ±
0.03789

11.76 ±
0.03228

WW
(Full) 99.78 0.2227 16.49 6.011 211.8 29.66 11.82 0.06268

WW
(Sub)

16.73 ±
0.3311

6.004 ±
0.05897

211.7 ±
0.3177

29.69 ±
0.03664

11.84 ±
0.03291

Where (%)is the percent variance of the first harmonic, (%) is the percent variance of the second harmonic, (days)𝑝𝑉
1

 𝑝𝑉
2

𝑡
𝑚𝑖𝑛
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is the date of minimum value (°C) , (days) is the date of the maximum value (°C), and (°C) is the amplitude.𝑡
𝑚𝑎𝑥

𝐴
𝑚𝑎𝑥

.

Table A2. VCR and VIMS Sites Salinity Composite Harmonic Wave Elements

Site 𝑝𝑉
1

𝑝𝑉
2

𝑡
𝑚𝑖𝑛

Min
value

𝑡
𝑚𝑎𝑥

Max
value

𝐴
𝑚𝑎𝑥 χ

𝑣
2

RBCM
66.90 33.10

330.3 ±
2.409

29.05 ±
0.09615

212.4 ±
2.830

31.98 ±
0.08480

1.499 ±
0.0746 0.9007

CCM
27.97 72.03

44.71 ±
3.452

30.28 ±
0.03983

303.4 ±
3.178

31.38 ±
0.03994

0.5538±
0.03045 0.9937

LCI
24.60 75.40

312.1 ±
2.843

30.64 ±
0.03930

219.0 ±
3.416

31.57 ±
0.04745

0.4801 ±
0.03338 0.9851

MI
57.91 42.09

56.60±
4.952

30.88 ±
0.03830

165.4 ±
4.769

31.60 ±
0.3582

0.3720 ±
0.02716 1.021

NM
54.35 45.65

329.7 ±
4.672

30.80 ±
0.40949

213.1 ±
5.833

31.56 ±
0.03960

0.3874 ±
0.02971 1.024

OH
59.27 40.73

32.91 ±
3.257

28.83 ±
0.07342

280.7 ±
4.672

30.24 ±
0.6832

0.7370 ±
0.05587 1.007

PCM
85.15 14.85

61.45 ±
2.131

24.46 ±
0.1108

202.4 ±
4.084

29.57 ±
0.1185

2.552 ±
0.08339 0.9064

QI
60.61 39.39

48.66 ±
3.392

30.13 ±
0.04619

293.5 ±
4.655

31.28 ±
0.04663

0.5923 ±
0.031646 1.004

RB
95.76 4.237

53.84 ±
3.359

28.82 ±
0.05784

277.4 ±
4.300

30.76 ±
0.06416

0.9721 ±
0.04440 0.9677

RCC
65.33 34.67

320.4 ±
4.153

30.75 ±
0.03464

206.9 ±
5.759

31.47 ±
0.03595

0.3642 ±
0.02800 1.030

SH
22.40 77.60

40.31 ±
3.584

30.76 ±
0.03988

292.6 ±
4.848

31.53 ±
0.03732

0.4035 ±
0.02640 1.019

SHS
44.92 55.08

308.3 ±
4.731

30.62 ±
0.05266

61.55 ±
5.755

31.61 ±
0.05263

0.5067 ±
0.03628 1.032

SS
17.17 82.83

303.7 ±
4.444

30.93 ±
0.03317

202.9 ±
4.980

31.56 ±
0.03148

0.3205 ±
0.02601 1.025

W (Full) 94.62 5.384 46.49 28.76 186.4 31.59 1.417 0.7926

W
(Sub-sa
mpled)

46.17 ±
1.206

28.71 ±
0.04501

192.2 ±
2.710

31.7 ±
0.03434

1.479 ±
0.02907

WW
(Full) 95.48 4.515 57.67 25.20 215.6 32.49 3.646 0.3573
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WW
(Sub-sa
mpled)

57.23 ±
0.6475

25.21 ±
0.05455

218.1 ±
1.941

32.49 ±
0.03267

3.636 ±
0.02890

Where (%) is the percent variance of the first harmonic, (%) is the percent variance of the second harmonic,𝑝𝑉
1

 𝑝𝑉
2

𝑡
𝑚𝑖𝑛

(days) is the date of minimum value (ppt) , (days) is the date of the maximum value (ppt), and (ppt) is the amplitude.𝑡
𝑚𝑎𝑥

𝐴
𝑚𝑎𝑥

.

Table A3. VCR and VIMS Sites DO Composite Harmonic Wave Elements

Site 𝑝𝑉
1

𝑝𝑉
2

𝑡
𝑚𝑖𝑛

Min
value

𝑡
𝑚𝑎𝑥

Max
value

𝐴
𝑚𝑎𝑥 χ

𝑣
2

RBCM
98.25 1.750

223.0 ±
4.303

6.1537 ±
0.06486

25.00 ±
1.197

11.15 ±
0.07013

2.499 ±
0.04633 0.5741

CCM
97.91 2.088

213.4 ±
1.552

5.108 ±
0.04066

32.49 ±
1.000

10.46 ±
0.04011

2.679 ±
0.02736 0.4291

LCI
97.45 2.549

214.7 ±
3.284

6.448 ±
0.05632

36.90 ±
1.369

11.74 ±
0.06213

2.648 ±
0.03778 0.4352

MI
99.81 0.1885

225.6 ±
3.178

6.257 ±
0.04758

31.38 ±
1.095

10.84 ±
0.05075

2.291 ±
0.03301 0.5156

NM
98.44 1.555

219.6 ±
2.723

5.658 ±
0.05179

29.80 ±
0.9734

11.66 ±
0.05282

3.003 ±
0.03457 0.3307

OH
99.74 0.2632

236.9 ±
3.439

6.228 ±
0.04122

30.03 ±
1.547

10.93 ±
0.05597

2.352 ±
0.03523 0.5498

PCM
99.81 0.1947

208.9 ±
2.973

4.916 ±
3.439

26.31 ±
0.7929

10.36 ±
0.04174

2.721 ±
0.02871 0.4735

QI
98.82 1.175

209.3 ±
2.393

6.265 ±
0.03695

31.46 ±
1.073

10.74 ±
0.04051

2.238 ±
0.02600 0.5216

RB
98.95 1.053

206.2 ±
2.318

5.496 ±
0.03927

26.99 ±
0.9468

10.41 ±
0.03748

2.460 ±
0.02400 0.4836

RCC
97.01 2.987

222.9 ±
2.303

5.849 ±
0.05174

26.81 ±
1.130

11.21 ±
0.0542

2.680 ±
0.03693 0.3677

SH
99.59 0.4093

217.6 ±
3.412

6.072 ±
0.06580

24.71 ±
1.080

11.05 ±
0.05189

2.500 ±
0.03320 0.5116

SHS
95.49 4.512

225.1 ±
2.383

6.382 ±
0.0543

21.08 ±
1.300

11.18 ±
0.05252

2.401 ±
3.412 0.4231

SS
96.30 3.701

217.9 ±
3.045

6.555 ±
0.05671

35.49 ±
1.441

11.97 ±
0.06018

2.709 ±
0.04209 0.4352

W (Full) 99.99 0.002216 205.8 5.184 24.81 10.38 2.597 0.1095

W
(Sub-sa 211.0

4.920 ±
0.3173

24.07 ±
0.007157

10.53 ±
0.009804

2.808 ±
0.005677
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mpled)

WW
(Full) 99.49 0.5102 205.8 5.184 24.81 10.38 2.597 0.1203

WW
(Sub-sa
mpled)

205.8 ±
0.6926

5.172 ±
0.01413

24.81 ±
0.3786

10.38 ±
0.02070

2.605 ±
0.01170

Where (%) is the percent variance of the first harmonic, (%) is the percent variance of the second harmonic,𝑝𝑉
1

 𝑝𝑉
2

𝑡
𝑚𝑖𝑛

(days) is the date of minimum value (mg/L) , (days) is the date of the maximum value (mg/L), and (mg/L) is the𝑡
𝑚𝑎𝑥

𝐴
𝑚𝑎𝑥

amplitude.

Table A4. VCR and VIMS Sites Log10(Chl) Composite Harmonic Wave Elements

Site 𝑝𝑉
1

𝑝𝑉
2

𝑡
𝑚𝑖𝑛

Min
value

𝑡
𝑚𝑎𝑥

Max
value

𝐴
𝑚𝑎𝑥 χ

𝑣
2

RBCM
56.61 43.39

333.1 ±
1.491

0.4664 ±
0.01185

221.2 ±
1.400

1.094 ±
0.01208

0.3148 ±
0.01030 0.6365

CCM
46.10 53.90

322.3 ±
1.611

0.3899 ±
0.007790

216.0 ±
1.152

0.7212 ±
0.007552

0.1680 ±
0.006534 0.8369

LCI
67.57 32.43

110.2 ±
3.463

0.5783 ±
0.01066

235.2 ±
3.6811

0.8897 ±
0.009757

0.1559 ±
0.007786 0.8947

MI
53.56 46.44

117.3 ±
1.970

0.5071 ±
0.009190

230.3 ±
2.116

0.8782 ±
0.01015

0.1842 ±
0.007861 0.8818

NM
28.11 71.89

122.9 ±
2.741

0.5102 ±
0.009866

228.4 ±
2.936

0.7595 ±
0.01070

0.1283 ±
0.007851 0.9391

OH
83.20 16.80

340.1 ±
3.687

0.1438 ±
0.01223

205.3 ±
1.065

0.9942 ±
0.01155

0.4340 ±
0.008547 0.6572

PCM
61.43 38.57

325.4 ±
2.447

0.3969 ±
0.008387

201.1 ±
0.8110

1.087 ±
0.008149

0.3442 ±
0.006431 0.6590

QI
32.38 67.62

110.5 ±
1.698

0.5456 ±
0.007712

215.9 ±
1.602

0.8145 ±
0.007954

0.1340 ±
0.005924 0.9407

RB
44.95 55.05

323.1 ±
2.334

0.4420 ±
0.008683

212.4 ±
2.083

0.7312 ±
0.008219

0.1432 ±
0.007042 0.9485

RCC
49.06 50.94

115.6 ±
2.640

0.4999 ±
0.01068

228.4 ±
2.588

0.8665±
0.01205

0.1819 ±
0.009311 0.8466

SH
50.23 49.77

322.3 ±
1.495

0.3945 ±
0.008537

215.7 ±
0.9116

0.8686 ±
0.008528

0.2375 ±
0.007217 0.7142

SHS
51.43 48.57

320.9 ±
2.320

0.6154 ±
0.01061

211.4 ±
1.429

1.022 ±
0.01095

0.2051 ±
0.008813 0.7113

SS
74.58 25.44

117.5 ±
3.218

0.5805 ±
0.01208

323.5 ±
4.955

0.8843 ±
0.01927

0.1748 ±
0.01567 0.9384
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W (Full) 52.41 47.59 326.7 0.4392 221.3 1.102 0.3316 0.4550

W
(Sub-sa
mpled)

315.2 ±
0.2259

0.3048 ±
0.003282

205.6 ±
0.1821

1.066 ±
0.001977

0.3810 ±
0.002348

WW
(Full) 38.52 61.48 326.7 0.4392 221.3 1.102 0.3316 0.5848

WW
(Sub-sa
mpled)

326.6 ±
0.5477

0.4347 ±
0.006014

220.8 ±
0.4685

1.106 ±
0.005657

0.3352 ±
0.004869

Where (%) is the percent variance of the first harmonic, (%) is the percent variance of the second harmonic,𝑝𝑉
1

 𝑝𝑉
2

𝑡
𝑚𝑖𝑛

(days) is the date of minimum value (log10(ug/L)) , (days) is the date of the maximum value (log10(ug/L)), and𝑡
𝑚𝑎𝑥

𝐴
𝑚𝑎𝑥

(log10(ug/L)) is the amplitude.
.

Table A5. VCR and VIMS Sites AOU Composite Harmonic Wave Elements

Site 𝑝𝑉
1

𝑝𝑉
2

𝑡
𝑚𝑖𝑛

Min
value

𝑡
𝑚𝑎𝑥

Max
value

𝐴
𝑚𝑎𝑥 χ

𝑣
2

RBCM
85.23 14.77

37.29 ±
2.514

-1.117 ±
0.05464

277.9 ±
4.538

0.6904 ±
0.04950

0.9092 ±
0.03655 0.9572

CCM
94.57 5.427

40.87 ±
3.165

-0.3479 ±
0.04028

210.6 ±
4.600

1.630 ±
0.04602

0.9924 ±
0.03533 0.8207

LCI
98.61 1.386

49.67 ±
3.898

-1.165 ±
0.06360

196.0 ±
5.368

0.2480 ±
0.06432

0.7110 ±
0.04349 0.9880

MI
90.00 10.00

37.42 ±
2.876

-0.6943 ±
0.03904

171.7 ±
4.591

0.5796 ±
0.03768

0.6393 ±
0.02845 0.9768

NM
87.05 12.95

46.25 ±
3.999

-0.6580 ±
0.05469

225.3 ±
3.4682

1.079 ±
0.04981

0.8532 ±
0.03697 0.8513

OH
78.08 21.92

32.81 ±
2.567

-0.7930 ±
0.04129

276.1 ±
3.328

0.6336 ±
0.03724

0.7170 ±
0.02927 0.9713

PCM
92.15 7.845

37.12 ±
1.885

0.07197 ±
0.04003

272.1 ±
4.064

1.771 ±
0.03498

0.8594 ±
0.02695 0.9137

QI
85.50 14.50

44.17 ±
3.005

-0.4531 ±
0.03544

175.3 ±
3.539

0.6787 ±
0.03140

0.5679 ±
0.02639 0.9537

RB
99.79 0.2111

26.96 ±
3.462

-0.2934 ±
0.4979

221.7 ±
5.092

1.173 ±
0.03443

0.7328 ±
3.005 0.9018

RCC
88.49 11.51

46.28 ±
4.365

-0.6578 ±
0.06532

242.0 ±
3.501

0.8668 ±
0.04798

0.7529 ±
0.03865 0.9110

SH
97.51 2.494

24.69 ±
2.610

-1.002 ±
0.04500

250.5 ±
3.763

0.6890 ±
0.03763

0.8458 ±
0.03311 0.9040
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SHS
96.70 3.299

47.47 ±
4.967

-0.6984 ±
0.05998

246.8 ±
4.671

0.1307 ±
0.06234

0.4310 ±
0.03915 1.035

SS
92.57 7.434

55.67 ±
4.562

-1.080 ±
0.06136

219.9 ±
4.911

0.03939±
0.06920

0.5627 ±
0.04299 1.005

W (Full) 98.50 1.500 37.98 -0.09267 201.0 1.539 0.8157 0.4104

W
(Sub-sa
mpled)

37.45 ±
0.7903

-0.1042 ±
0.01197

201.7 ±
1.212

1.539 ±
0.01250

0.8215 ±
0.008081

WW
(Full) 97.49 2.51 34.37 0.07480 190.2 1.227 0.5759 0.6316

WW
(Sub-sa
mpled)

34.03 ±
1.362

0.07031 ±
0.01430

194.2 ±
3.012

1.232 ±
0.01873

0.5808 ±
0.01155

Where (%) is the percent variance of the first harmonic, (%) is the percent variance of the second harmonic,𝑝𝑉
1

 𝑝𝑉
2

𝑡
𝑚𝑖𝑛

(days) is the date of minimum value (mg/L) , (days) is the date of the maximum value (mg/L), and (mg/L) is the𝑡
𝑚𝑎𝑥

𝐴
𝑚𝑎𝑥

amplitude.
.

Table A6. Percent Differences between Full and Subsampled High Frequency Sites

Site Parameter Min/Max Date
(%)

Min/Max
(%)

Amplitude
(%)

Overall Average (%)

W Temperature 0.01518 0.09329 0.2262 0.1115

Salinity 3.107 0.2823 4.286 2.558

DO 0.1506 0.3843 0.1152 0.2167

Log10(Chl) 0.1284 0.1409 0.3149 0.1948

AOU 0.3439 0.01175 0.7171 0.3576

WW Temperature 0.01247 0.1018 0.1613 0.09185

Salinity 1.147 0.005413 0.2588 0.4703

DO 0.01641 0.2348 0.3058 0.1857

Log10(Chl) 0.2068 0.3235 1.095 0.5417

AOU 2.105 0.4970 0.8434 1.149
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Table A7. Significant Long Term Changes in Water Quality Parameters

Parameter Site Rate of Change

Temperature RBCM 0.07497 °C/year

PCM 0.06771 °C/year

RB 0.05249 °C/year

Salinity CCM 0.06723 ppt/year

OH 0.08015 ppt/year

PCM 0.09906 ppt/year

QI 0.06781 ppt/year

RB 0.07490 ppt/year

W 0.2890 ppt/year

Log10(Chl) RBCM 0.01191 log10(ug/L)/year)

MI 0.01851 log10(ug/L)/year)

PCM 0.009720 log10(ug/L)/year)

QI 0.008537 log10(ug/L)/year)

RB 0.009563 log10(ug/L)/year)

RCC 0.01865 log10(ug/L)/year)

SH 0.01787 log10(ug/L)/year)

WW -0.06924 log10(ug/L)/year)

AOU RBCM -0.0565 mg/L/year

SH -0.04413 mg/L/year

W 0.04180 mg/L/year

Table A8. W and WW Years of Quarterly Data Sampling Average Difference

Site Parameter Standardized
Relative Change

Years to Reach Average
Difference

W Temperature 1 29 0.03495℃
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0.5 45 0.03164℃

.25 62 0.02922℃

Salinity 1 25 0.05068 ppt

0.5 39 0.04949 ppt

.25 54 0.04862 ppt

DO 1 27 0.01648 mg/L

0.5 42 0.01572 mg/L

0.25 57 0.01520 mg/L

Log10(Chl) 1 24 0.01307
log10(ug/L)

0.5 37 0.01303
log10(ug/L)

0.25 51 0.01301
log10(ug/L)

AOU 1 25 0.01308 mg/L

0.5 39 0.01283 mg/L

0.25 53 0.01265 mg/L

WW Temperature 1 25 0.03434℃

0.5 39 0.03132℃

.25 54 0.02911℃

Salinity 1 25 0.02959 ppt

0.5 35 0.02543 ppt

.25 44 0.02294 ppt

DO 1 24 0.01254 mg/L

0.5 38 0.01176 mg/L

0.25 51 0.01126 mg/L

Log10(Chl) 1 25 0.004710
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log10(ug/L)

0.5 39 0.004310
log10(ug/L)

0.25 53 0.004035
log10(ug/L)

AOU 1 26 0.01102 mg/L

0.5 40 0.009916 mg/L

0.25 54 0.009144 mg/L

Table A9. W and WW Years of Quarterly Data Sampling Average Percent Difference

Site Parameter Standardized
Relative Change

Years to Reach Average Percent
Difference

W Temperature 1 29 0.1327 %

0.5 45 0.1198 %

.25 62 0.1105 %

Salinity 1 24 1.900 %

0.5 37 1.892 %

.25 51 1.885 %

DO 1 27 0.3120 %

0.5 43 0.2920 %

0.25 59 0.2785 %

Log10(Chl) 1 24 1.331 %

0.5 37 1.328 %

0.25 51 1.326 %

AOU 1 26 0.8067 %

0.5 40 0.7849 %

0.25 54 0.7697 %

WW Temperature 1 26 0.1360 %
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0.5 40 0.1220 %

.25 54 0.1122 %

Salinity 1 23 0.3703 %

0.5 33 0.3249 %

.25 42 0.2963 %

DO 1 22 0.7503 %

0.5 34 0.7409 %

0.25 46 0.7344 %

Log10(Chl) 1 25 0.5296 %

0.5 38 0.4976 %

0.25 52 0.4737 %

AOU 1 26 1.150 %

0.5 40 1.044 %

0.25 54 0.9690 %
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