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Abstract

This thesis provides a new gauge-theoretic construction of 4-dimensional hyperkäh-

ler ALE spaces.
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Chapter 1

Introduction

In this paper, we give a new gauge-theoretic construction of all the 4-dimensional

hyperkähler ALE (asymptotically locally Euclidean) spaces. These spaces are origi-

nally constructed by Peter Kronheimer in his Ph.D. thesis [21]. They are in one-to-

one correspondence with the finite subgroups of 𝑆𝑈(2) and have deep connections

with representation theory, singularity theory and low-dimensional topology. Topo-

logically, these spaces are plumbings of the 4-ball where the plumbing graph is

described by the ADE-type Dynkin diagrams of semi-simple Lie algebras. Geometri-

cally, they are the resolution of singularity of C2/Γ, where Γ is a finite subgroup of

𝑆𝑈(2) and the blowup diagram naturally corresponds to the plumbing graph. The

interesting connections these spaces share with representation theory, singularity

theory and low-dimensional topology are captured by the McKay Correspondence

[23]. In Kronheimer’s construction, each of them is realized through a hyperkähler

reduction of a finite-dimensional vector space. We will review this construction in

Section 2.

On the other hand, non-compact hyperkähler spaces frequently arise in gauge

theory as the moduli spaces of solutions to gauge theoretic equations. Well-known

examples include the Hitchin moduli spaces of solutions to self-duality equations on

Riemann surfaces [14], and gravitational instantons as moduli spaces of monopoles

[4]. Here we give a new construction of 4-dimensional hyperkähler ALE spaces –

a class of gravitational instantons, using a gauge theoretic approach. More specif-
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ically, we realize each 4-dimensional hyperkähler ALE space as a moduli space of

solutions to a system of equations for a pair consisting of a connection and a sec-

tion of a vector bundle over an orbifold Riemann surface, modulo a gauge group

action. This new construction parallels Kronheimer’s original construction in [21]

and leads to different directions for generalizations.
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Chapter 2

Symplectic and kähler geometry

In this chapter, we give the basic definitions and constructions in symplectic and

kähler geometry leading to the construction of ALE spaces given by Kronheimer

which will be introduced in detail in chapter 4. We will follow [6] for the discussion.

2.1 Basic definitions in symplectic geometry

Definition 2.1.1 (symplectic vector space).

Let 𝑉 be a vector space over R. A symplectic form on 𝑉 is a bilinear map

𝜔 : 𝑉 × 𝑉 → R such that

∙ 𝜔 is skew-symmetric, that is, 𝜔(𝑣, 𝑤) = −𝜔(𝑤, 𝑣).

∙ 𝜔 is non-degenerate: 𝜔(𝑣, 𝑤) = 0, ∀𝑤 if and only if 𝑣 = 0.

We say that (𝑉, 𝜔) is a symplectic vector space.

Definition 2.1.2. A linear map 𝐴 : (𝑉, 𝜔) → (𝑉 ′, 𝜔′) is a (linear) symplectomorphism

if it’s an isomorphism and 𝐴*𝜔′ = 𝜔, where 𝐴*𝜔′(𝑣, 𝑤) = 𝜔′(𝐴𝑣,𝐴𝑤).

Definition 2.1.3 (symplectic manifold). Let 𝑀 be a smooth 2𝑛-dimensional mani-

fold. A symplectic form on 𝑀 is a differential 2-form 𝜔 ∈ Ω2(𝑀) such that

∙ 𝜔𝑝 ∈
⋀︀2 𝑇 *

𝑝𝑀 is non-denegerate for each 𝑝 ∈𝑀 .
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∙ 𝜔 is closed: 𝑑𝜔 = 0.

We say that (𝑀,𝜔) is a symplectic manifold.

Example 2.1.4. Below are some examples of symplectic manifolds:

∙ (R2𝑛, 𝜔𝑠𝑡𝑑)

∙ (C𝑃 𝑛, 𝜔𝐹𝑆)

∙ (Σ𝑔, 𝜔𝑣𝑜𝑙)

2.2 Hamiltonian action and moment maps

Definition 2.2.1 (symplectomorphism). Let (𝑀1, 𝜔1) and (𝑀2, 𝜔2) be 2𝑛-dimensional

symplectic manifolds, and let 𝑔 : 𝑀1 → 𝑀2 be a diffeomorphism. Then 𝑔 is a symplec-

tomorphism if 𝑔*𝜔2 = 𝜔1. Let Sympl(𝑀,𝜔) denote the group of symplectomorphisms

of (𝑀,𝜔).

Definition 2.2.2 (symplectic action). Let (𝑀,𝜔) be a symplectic manifold and 𝐺 a

Lie group. Let 𝜓 : 𝐺 → Diff(𝑀) be a smooth action. Then 𝜓 is a symplectic action if

im(𝜓) ⊂ Sympl(𝑀,𝜔) ⊂ Diff(𝑀).

Definition 2.2.3 (Hamiltonian action and moment map). Let 𝜓 : 𝐺→ Sympl(𝑀,𝜔)

be a symplectic action on (𝑀,𝜔). Then 𝜓 is hamiltonian if there exists a map 𝜇 :𝑀 →

g* satisfying:

(1) For each 𝑋 ∈ g, 𝑑𝜇𝑋 = 𝜄𝑋♯𝜔, where

∙ 𝜇𝑋 :𝑀 → R, 𝜇𝑋(𝑝) = ⟨𝜇(𝑝), 𝑋⟩, is the component of 𝜇 along 𝑋.

∙ 𝑋♯ is the vector field on𝑀 generated by the one-parameter subgroup {exp(𝑡𝑋)|𝑡 ∈

R} ⊂ 𝐺.

In other words, 𝜇𝑋 is a hamiltonian function for the vector field 𝑋♯.

(2) 𝜇 ∘𝜓𝑔 = 𝐴𝑑*𝑔 ∘𝜇, for all 𝑔 ∈ 𝐺, where 𝐴𝑑* denotes the coadjoint representation

of 𝐺 on g*.

We say 𝜇 is a moment map of 𝜓.
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2.3 Symplectic reduction and moment map equation

Theorem 2.3.1 (Marsden-Weinstein-Meyer). Let (𝑀,𝜔,𝐺, 𝜇) be a hamiltonian 𝐺-

space for a compact Lie group 𝐺. Let 𝑖 : 𝜇−1(0) →˓ 𝑀 be the inclusion map. Assume

that 𝐺 acts freely on 𝜇−1(0). Then

∙ the orbit space 𝑀𝑟𝑒𝑑 = 𝜇−1(0)/𝐺 is a manifold,

∙ 𝜋 : 𝜇−1(0) →𝑀𝑟𝑒𝑑 is a principal 𝐺-bundle, and

∙ there is a symplectic form 𝜔𝑟𝑒𝑑 on 𝑀𝑟𝑒𝑑 satisfying 𝑖*𝜔 = 𝜋*𝜔𝑟𝑒𝑑.

Definition 2.3.2. The pair (𝑀𝑟𝑒𝑑, 𝜔𝑟𝑒𝑑) is called the reduction of (𝑀,𝜔) with respect to

𝐺, 𝜇, or the reduced space, or the symplectic quotient, or the Marsden-Weinstein-Meyer

quotient, etc.

2.4 Basic definitions in kähler geometry

Definition 2.4.1. A complex structure on a real vector space 𝑉 is an automorphism

𝐽 : 𝑉 → 𝑉 such that 𝐽 ∘ 𝐽 = −𝐼𝑑𝑉 . Such a structure gives 𝑉 the structure of a

complex vector space 𝑉 ⊗ C → 𝑉 , namely, 𝑣 ⊗ (𝑠+ 𝑖𝑡) = 𝑠𝑣 + 𝑡𝐽𝑣.

Definition 2.4.2. Let 𝑉 be a vector space with 𝜔, 𝐽 a symplectic form and a complex

structure. We say that 𝜔 and 𝐽 are compatible if

∙ 𝜔 tames 𝐽 , meaning 𝜔(𝑣, 𝐽𝑣) > 0,∀𝑣 ̸= 0.

∙ 𝜔 is 𝐽-invariant, meaning 𝜔(𝐽𝑣, 𝐽𝑤) = 𝜔(𝑣, 𝑤),∀𝑣, 𝑤 ∈ 𝑉 .

Remark 2.4.3. If 𝜔 and 𝐽 are compatible in this sense, then define 𝑔𝐽(𝑣, 𝑤) = 𝜔(𝑣, 𝐽𝑤).

This is

∙ Symmetric: 𝑔𝐽(𝑤, 𝑣) = 𝑔𝐽(𝑣, 𝑤).

∙ Positive definite: 𝑔𝐽(𝑣, 𝑣) > 0,∀𝑣 ̸= 0.

Hence, we get a compatible metric 𝑔𝐽 .
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Definition 2.4.4 (almost complex manifold). An almost complex structure on a man-

ifold 𝑀 is a smooth field of complex structures on the tangent spaces:

𝑥 ↦→ 𝐽𝑥 : 𝑇𝑥𝑀 → 𝑇𝑥𝑀 linear, and 𝐽2
𝑥 = −𝐼𝑑.

The pair (𝑀,𝐽) is then called an almost complex manifold.

Definition 2.4.5 (complex manifold). A complex manifold of (complex) dimension 𝑛

is a set 𝑀 with a complete complex atlas

𝒜 = {(𝒰𝛼,𝒱𝛼, 𝜙𝛼), 𝛼 ∈ index set 𝐼},

where 𝑀 =
⋃︀
𝛼 𝒰𝛼, the 𝒱𝛼’s are open subsets of C𝑛, and the maps 𝜙𝛼 : 𝒰𝛼 → 𝒱𝛼 are

such that the transition maps 𝜓𝛼𝛽 are biholomorphic as maps on open subsets of C𝑛:

𝒰𝛼
⋂︀

𝒰𝛽

𝒱𝛼𝛽 𝒱𝛽𝛼

𝜙𝛽

𝜙𝛼
𝜓𝛼𝛽=𝜙𝛽∘𝜙−1

𝛼

where 𝒱𝛼𝛽 = 𝜙𝛼(𝒰𝛼
⋂︀

𝒰𝛽) ⊂ C𝑛 and 𝒱𝛽𝛼 = 𝜙𝛽(𝒰𝛼
⋂︀
𝒰𝛽) ⊂ C𝑛, and 𝜓𝛼𝛽 being biholo-

morphic means that 𝜓𝛼𝛽 is a bijection and that 𝜓𝛼𝛽 and 𝜓−1
𝛼𝛽 are both holomorphic.

Definition 2.4.6 (integrable almost complex structure). An almost complex structure

𝐽 on a manifold 𝑀 is called integrable if and only if 𝐽 is induced by a structure of

complex manifold on 𝑀 .

Definition 2.4.7 (kähler manifold). A kähler manifold is a symplectic manifold (𝑀,𝜔)

equipped with an integrable compatible almost complex structure. The symplectic form

𝜔 us then called a kähler form.

Definition 2.4.8 (hyperkähler manifold). A hyperkähler manifold is a Riemannian

manifold (𝑀, 𝑔) endowed with 3 integrable almost complex structures 𝐼, 𝐽 , 𝐾 that are

kähler with respect to the Riemannian metric 𝑔 and satisfies the quaternionic relations

𝐼2 = 𝐽2 = 𝐾2 = 𝐼𝐽𝐾 = −1.
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Example 2.4.9 (4-dimensional hyperkähler manifolds). In the case of 4-dimensional

hyperkähler manifolds, the noncompact ones are ALE spaces, ALF spaces, ALG spaces,

ALH spaces; the compact ones are 𝑇 4 and 𝐾3.

2.5 Kähler and hyperkähler reduction

Definition 2.5.1. Let (𝑀, 𝑔, 𝜔) be a kähler manifold. Suppose 𝐺 is a compact Lie

group acting freely on 𝑀 and preserving both the metric and the symplectic form, then

symplectic quotient 𝑀𝑟𝑒𝑑 defined previously is a kähler manifold. We call this a kähler

reduction.

Definition 2.5.2. Let (𝑀, 𝑔, 𝜔) be a hyperkähler manifold. Let 𝐺 be a compact Lie

group of isometries acting freely on 𝑀 and preserving the structures 𝐼, 𝐽 , 𝐾. The

group 𝐺 preserves the three kähler forms 𝜔1, 𝜔2, 𝜔3 corresponding to the three complex

structures, so we may define three moment maps 𝜇1, 𝜇2, 𝜇3. More invariantly these

can be written as a single map:

𝜇 :𝑀 → g* ⊗ R3.

Then, the quotient 𝜇−1(0)/𝐺 is a hyperkähler manifold. We call this a hyperkähler

reduction.

7
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Chapter 3

Basic representation theory

In this chapter, we review the basic representation theory of Lie algebras for

understanding Kronheimer’s construction of ALE spaces in the following chapter.

We will follow [16] for the discussion.

3.1 Basic definitions

Definition 3.1.1. A vector space 𝐿 over C, with an operation 𝐿 ⊗ 𝐿 → 𝐿, denotes

(𝑥, 𝑦) ↦→ [𝑥𝑦] and called the bracket or commutator of 𝑥 and 𝑦, is called a Lie algebra

over C if the following axioms are satisfied:

1. The bracket operation is bilinear.

2. [𝑥𝑥] = 0 for all 𝑥 in 𝐿.

3. [𝑥[𝑦𝑧]] + [𝑦[𝑧𝑥]] + [𝑧[𝑥𝑦]] = 0, for all 𝑥, 𝑦, 𝑧 in 𝐿.

The last axiom is called the Jacobi identity.

Definition 3.1.2. A subspace 𝐼 of a Lie algebra is called an ideal of 𝐿 if 𝑥 ∈ 𝐿 and

𝑦 ∈ 𝐼 together imply [𝑥𝑦] ∈ 𝐼.

Definition 3.1.3. The center of a Lie algebra 𝐿, denoted 𝑍(𝐿), is defined as 𝑍(𝐿) =

{𝑧 ∈ 𝐿|[𝑥𝑧] = 0,∀𝑥 ∈ 𝐿}. The center 𝑍(𝐿) is an ideal of 𝐿.
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Definition 3.1.4. If 𝐿 has no ideals except itself and 0, we call 𝐿 simple.

Definition 3.1.5. A representation of a Lie algebra 𝐿 is a homomorphism 𝜑 : 𝐿 →

gl(𝑉 ), where 𝑉 is a vector space over C.

Definition 3.1.6. Let the derived series of 𝐿 be defined as 𝐿(0) = 𝐿,𝐿(𝑖) = [𝐿(𝑖−1)𝐿(𝑖−1)].

We say 𝐿 is solvable if 𝐿(𝑛) = 0, for some 𝑛.

Proposition 3.1.7. There exists a unique maximal solvable ideal, called the radical of

𝐿, denoted Rad(𝐿). We say 𝐿 is semisimple if Rad(𝐿) = 0.

Definition 3.1.8. Let the lower central series of 𝐿 be defined as 𝐿0 = 𝐿,𝐿𝑖 = [𝐿𝐿𝑖−1].

We say 𝐿 is nilpotent if 𝐿𝑛 = 0, for some 𝑛.

3.2 Semisimple Lie algebras

Definition 3.2.1. Let 𝐿 be a Lie algebra, and let 𝑥, 𝑦 ∈ 𝐿. Define

𝜅(𝑥, 𝑦) = Tr(ad𝑥 ad𝑦).

Then 𝜅 is a symmetric bilinear form on 𝐿, called the Killing form. The Killing form 𝜅

is associative, that is, 𝜅([𝑥𝑦], 𝑧) = 𝜅(𝑥, [𝑦𝑧]).

Theorem 3.2.2. Let 𝐿 be a Lie algebra. Then 𝐿 is semisimple if and only if its Killing

form is nondegenerate.

Let 𝑉 be a C-vector space, and let 𝑥 ∈ End(𝑉 ). We say 𝑥 is semisimple if 𝑥 is

diagonalizable; we say 𝑥 is nilpotent if 𝑥𝑛 = 0, for some 𝑛.

For 𝑥 ∈ End(𝑉 ), there exists a decomposition, called the (additive) Jordan-

Chevalley decomposition of 𝑥 such that 𝑥 = 𝑥𝑠 + 𝑥𝑛, where 𝑥𝑠 is semisimple and

𝑥𝑛 is nilpotent, and 𝑥𝑠, 𝑥𝑛 commute. We also have that any endomorphism that

commutes with 𝑥 commutes with both 𝑥𝑠 and 𝑥𝑛.
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3.3 Representations of sl(2,C)

First, we specify the generators of sl(2,C): 𝑥 =

⎛⎝0 1

0 0

⎞⎠, 𝑦 =

⎛⎝0 0

1 0

⎞⎠, ℎ =⎛⎝1 0

0 −1

⎞⎠. Then, we have [ℎ𝑥] = 2𝑥, [ℎ𝑦] = −2𝑦, [𝑥𝑦] = ℎ.

Let 𝑉 be an arbitary sl(2,C)-module. We have that ℎ is semisimple and it acts

on 𝑉 diagonally. This yields a decomposition of 𝑉 as direct sum of eigenspaces

𝑉𝜆 = {𝑣 ∈ 𝑉 |ℎ · 𝑣 = 𝜆𝑣}, 𝜆 ∈ 𝐹.

When 𝑉𝜆 isn’t 0, we call 𝜆 a weight of ℎ in 𝑉 and we call 𝑉𝜆 a weight space.

Lemma 3.3.1. If 𝑣 ∈ 𝑉𝜆, then 𝑥 · 𝑣 ∈ 𝑉𝜆+2 and 𝑦 · 𝑣 ∈ 𝑉𝜆−2.

Provided the previous lemma, we say that a vector 𝑣 is maximal of weight 𝜆 if it

lies in some 𝑉𝜆 ̸= 0 such that 𝑉𝜆+2 = 0. The weight of a maximal vector is always a

nonnegative integer, and we call it the highest weight of 𝑉 .

Theorem 3.3.2. Let 𝑉 be an irreducible sl(2,C)-module.

1. Relative to ℎ, 𝑉 is the direct sum of weight spaces 𝑉𝜇, 𝜇 = 𝑚,𝑚 − 2, ...,−(𝑚 −

2),−𝑚, where 𝑚+ 1 = dim𝑉 and dim𝑉𝜇 = 1 for each 𝜇.

2. 𝑉 has (up to nonzero scalar multiples) a unique maximal vector, whose weight

is 𝑚.

3. The action of sl(2,C) on 𝑉 is given explicitly as follows: choose 𝑣0 ∈ 𝑉𝑚 and set

𝑣−1 = 0, 𝑣𝑖 = 1
𝑖!
𝑦𝑖 · 𝑣0, 𝑖 ≥ 0, then we have

∙ ℎ · 𝑣𝑖 = (𝜆− 2𝑖)𝑣𝑖,

∙ 𝑦 · 𝑣𝑖 = (𝑖+ 1)𝑣𝑖+1,

∙ 𝑥 · 𝑣𝑖 = (𝜆− 𝑖+ 1)𝑣𝑖−1, 𝑖 ≥ 0.

In particular, there exists at most one irreducible sl(2,C)-module (up to isomor-

phism) of each possible dimension 𝑚+ 1, 𝑚 ≥ 0.
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Corollary 3.3.3. Let 𝑉 be any sl(2,C)-module. Then the eigenvalues of ℎ on 𝑉 are all

integers, and each occurs along with its negative (an equal number of times). Moreover,

in any decomposition of 𝑉 into a direct sum of irreducible submodules, the number of

summands is precisely dim𝑉0 + dim𝑉1.

3.4 Cartan subalgebra

Definition 3.4.1. Let 𝐿 be a semisimple Lie algebra. A toral subalgebra of 𝐿 is a

subalgebra of 𝐿 consisting of semisimple elements.

We remark that nonzero toral subalgebras exist, and it is abelian. Now fix a

maximal toral subalgebra 𝐻 of 𝐿. Then, we have that 𝐿 is the direct sum of the

subspaces

𝐿𝛼 = {𝑥 ∈ 𝐿|[ℎ𝑥] = 𝛼(ℎ)𝑥, for all ℎ ∈ 𝐻}, where 𝛼 ranges over 𝐻*.

Notice that 𝐿0 is simply 𝐶𝐿(𝐻) the centralizer of 𝐻, which contains 𝐻.

Definition 3.4.2. Let Φ denote the set of all nonzero 𝛼 ∈ 𝐻* for which 𝐿𝛼 ̸= 0. The

elements of Φ are called the roots of 𝐿 relative to 𝐻. With this notation, we obtain the

root space decomposition of 𝐿 given by

𝐿 = 𝐶𝐿(𝐻)⊕
∐︁
𝛼∈Φ

𝐿𝛼.

Proposition 3.4.3. Let 𝐻 be a maximal toral subalgebra of 𝐿. Then 𝐻 = 𝐶𝐿(𝐻).

Proposition 3.4.4. The restriction of the Killing form 𝜅 to 𝐻 is nondegenerate.

The above proposition allows us to identify 𝐻 with 𝐻*: to 𝜑 corresponds the

(unique) element 𝑡𝜑 ∈ 𝐻 satisfying 𝜑(𝐻) = 𝜅(𝑡𝜑, ℎ) for all ℎ ∈ 𝐻. In particular, Φ

corresponds to the subset {𝑡𝛼|𝛼 ∈ Φ} of 𝐻.

Proposition 3.4.5. 1. Φ spans 𝐻*.
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2. If 𝛼 ∈ Φ, then −𝛼 ∈ Φ.

3. Let 𝛼 ∈ Φ, 𝑥 ∈ 𝐿𝛼, 𝑦 ∈ 𝐿−𝛼. Then [𝑥𝑦] = 𝜅(𝑥, 𝑦)𝑡𝛼.

4. If 𝛼 ∈ Φ, then [𝐿𝛼𝐿−𝛼] is one dimensional, with basis 𝑡𝛼.

5. 𝛼(𝑡𝛼) = 𝜅(𝑡𝛼, 𝑡𝛼) ̸= 0, for 𝛼 ∈ Φ.

6. If 𝛼 ∈ Φ and 𝑥𝛼 is any nonzero element of 𝐿𝛼, then there exists 𝑦𝛼 ∈ 𝐿−𝛼

such that 𝑥𝛼, 𝑦𝛼, ℎ𝛼 = [𝑥𝛼𝑦𝛼] span a three dimensional simple subalgebra of 𝐿

isomorphic to sl(2,C) via 𝑥𝛼 ↦→

⎛⎝0 1

0 0

⎞⎠ , 𝑦𝛼 ↦→

⎛⎝0 0

1 0

⎞⎠ , ℎ𝛼 ↦→

⎛⎝1 0

0 −1

⎞⎠ .

7. ℎ𝛼 = 2𝑡𝛼
𝜅(𝑡𝛼,𝑡𝛼)

; ℎ𝛼 = −ℎ−𝛼.

3.5 Root system

Since the restriction of the Killing form to 𝐻 is nondegenerate, we can transfer

the form to 𝐻* by letting (𝛾, 𝛿) = 𝜅(𝑡𝛾, 𝑡𝛿), for all 𝛾, 𝛿 ∈ 𝐻*. We know that Φ spans

𝐻*, so we can choose a basis 𝛼1, ..., 𝛼𝑙 of 𝐻* consisting of roots. If 𝛽 ∈ Φ, the write

𝛽 uniquely as

𝛽 =
𝑙∑︁

𝑖=1

𝑐𝑖𝛼𝑖, 𝑐𝑖 ∈ C.

It can be shown that 𝑐𝑖 are in fact in Q. Consider the real vector space spanned by

the roots equipped with an inner product given by the Killing form, denoted by 𝐸.

Theorem 3.5.1. Let 𝐿, 𝐻, Φ, 𝐸 be as above. Then:

1. Φ spans 𝐸, and 0 does not belong to Φ.

2. If 𝛼 ∈ Φ, then −𝛼 ∈ Φ, but no other scalar multiple of 𝛼 is a root.

3. If 𝛼, 𝛽 ∈ Φ, then 𝛽 − 2(𝛽,𝛼)
(𝛼,𝛼)

∈ Φ.

4. If 𝛼, 𝛽 ∈ Φ, then 2(𝛽,𝛼)
(𝛼,𝛼)

∈ Z.
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3.6 Weyl group and Weyl chamber

We resume the discussion with the same notations developed from the previous

subsection. For a nonzero vector 𝛼 ∈ 𝐸, let 𝜎𝛼 denote the reflection generated by

𝛼 with reflecting hyperplane given by 𝑃𝛼 = {𝛽 ∈ 𝐸|(𝛽, 𝛼) = 0}. More explicitly,

𝜎𝛼(𝛽) = 𝛽 − 2(𝛽,𝛼)
(𝛼,𝛼)

𝛼. We abbreviate 2(𝛽,𝛼)
(𝛼,𝛼)

by ⟨𝛽, 𝛼⟩.

Definition 3.6.1. A subset Φ of𝐸 is called a root system in𝐸 if the following properties

are satisfied:

∙ (R1) Φ is finite, spans 𝐸, and does not contain 0.

∙ (R2) If 𝛼 ∈ Φ, the only multiples of 𝛼 ∈ Φ are 𝛼 and −𝛼.

∙ (R3) If 𝛼 ∈ Φ, the reflection 𝜎𝛼 leaves Φ invariant.

∙ (R4) If 𝛼, 𝛽 ∈ Φ, then ⟨𝛽, 𝛼⟩ ∈ Z.

Definition 3.6.2. Let Φ be a root system in 𝐸. Denote by 𝒲 the subgroup of 𝐺𝐿(𝐸)

generated by the reflections 𝜎𝛼, 𝛼 ∈ Φ. We call 𝒲 the Weyl group of Φ.

Definition 3.6.3. A subset Δ of Φ is called a base if:

∙ (B1) Δ is a basis of 𝐸.

∙ (B2) Each root 𝛽 can be written as 𝛽 =
∑︀
𝑘𝛼𝛼(𝛼 ∈ Δ) with integral coefficient

𝑘𝛼 all nonnegative or all nonpositive.

The roots in Δ are then called simple and |Δ| = 𝑙. The expression for 𝛽 in (B2) is

unique and we call
∑︀

𝛼∈Δ 𝑘𝛼 the height of 𝛽.

Definition 3.6.4. Let 𝛾 be a vector in 𝐸.

1. Let Φ+(𝛾) = {𝛼 ∈ Φ|(𝛾, 𝛼) > 0} denote the set of roots lying on the positive side

of the hyperplane orthogonal to 𝛾.

2. We say 𝛾 ∈ 𝐸 is regular if 𝛾 ∈ 𝐸 ∖
⋃︀
𝛼∈Φ 𝑃𝛼, and singular otherwise.
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3. When 𝛾 is regular, Φ decomposes into Φ = Φ+(𝛾)∪−Φ+(𝛾). We say 𝛼 ∈ Φ+(𝛾) is

decomposable if 𝛼 = 𝛽1+𝛽2 with 𝛽1, 𝛽2 ∈ Φ+(𝛾), and indecomposable otherwise.

Theorem 3.6.5. Let 𝛾 ∈ 𝐸 be regular. Then the set Δ(𝛾) of all indecomposable roots

in Φ+(𝛾) is a base of Φ, and every base is obtainable in the manner.

Definition 3.6.6. The hyperplanes 𝑃𝛼 partition 𝐸 into finitely many regions. We call

the connected components of 𝐸 ∖
⋃︀
𝛼∈Φ 𝑃𝛼 the (open) Weyl chambers of 𝐸. For each

indecomposable 𝛾, let C(𝛾) denote the Weyl chamber containing 𝛾. Write C(Δ) = C(𝛾)

if Δ = Δ(𝛾), and call this the fundamental Weyl chamber relative to Δ.

Theorem 3.6.7. Let Δ be a base of Φ.

1. If 𝛾 ∈ 𝐸 is regular, there exists 𝜎 ∈ 𝒲 such that (𝜎(𝛾), 𝛼) > 0 for all 𝛼 ∈ Δ, so

𝒲 acts transitively on Weyl chambers.

2. If Δ′ is another base of Φ, then 𝜎(Δ′) = Δ for some 𝜎 ∈ 𝒲, so 𝒲 acts transitively

on bases.

3. If 𝛼 is any root, there exists 𝜎 ∈ 𝒲 such that 𝜎(𝛼) ∈ Δ.

4. 𝒲 is generated by the 𝜎𝛼 with 𝛼 ∈ Δ.

5. If 𝜎(Δ) = Δ, 𝜎 ∈ 𝒲, then 𝜎 = 1, so 𝒲 acts simply transitively on bases.

3.7 ADE type dynkin diagrams

Definition 3.7.1. We call Φ irreducible if it cannot be partition into the union of two

proper subsets such that each root in one set is orthogonal to each root in the other.

Definition 3.7.2. Fix an ordering 𝛼1, ..., 𝛼𝑙 of the simple roots. The matrix 𝑀𝑖𝑗 =

(𝛼𝑖, 𝛼𝑗) is called the Cartan matrix of Φ, and its entries are called the Cartan integers.

Definition 3.7.3. 1. Define the Coxeter graph of Φ to be a graph having 𝑙 vertices,

with the 𝑖-th joined to the 𝑗-th (𝑖 ̸= 𝑗) by ⟨𝛼𝑖, 𝛼𝑗⟩⟨𝛼𝑗, 𝛼𝑖⟩ edges. (The number

⟩⟨𝛼𝑗, 𝛼𝑖⟩ can only be 0, 1, 2, or 3.)
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2. When a double or triple edge occurs in the Coxeter graph of Φ, we add an arrow

pointing to the shorter of the two roots. We call the resulting figure the Dynkin

diagram of Φ.

Recall that Φ is irreducible if and only if Φ cannot be partitioned into two proper,

orthogonal subsets. Hence, Φ is irreducible if and only if its Coxeter graph is con-

nected.

Proposition 3.7.4. Φ decomposes (uniquely) as the union of irreducible root systems

Φ𝑖 (in subspaces 𝐸𝑖 of 𝐸) such that 𝐸 = 𝐸1 ⊕ ...⊕ 𝐸𝑡 (orthogonal direct sum).

Theorem 3.7.5. If Φ is an irreducible root system of rank 𝑙, its Dynkin diagram is one

of the following (l vertices in each case): 𝐴𝑙(𝑙 ≥ 1), 𝐵𝑙(𝑙 ≥ 2), 𝐶𝑙(𝑙 ≥ 3), 𝐷𝑙(𝑙 ≥ 4),

𝐸6, 𝐸7, 𝐸8, 𝐺2.

16



Chapter 4

Kronheimer’s construction of ALE

spaces

We use the following section to give a review of Kronheimer’s construction of

ALE spaces in [21] which will be of great importance the main gauge-theoretic

construction which will be given in the last chapter. Additional basic representation

theory of finite groups can be found in [10].

4.1 Kronheimer’s construction of ALE spaces

We review Kronheimer’s construction of ALE spaces via hyperkähler reduction

in [21] in this subsection.

Let Γ be a finite subgroup of 𝑆𝑈(2) and let 𝑅 be its regular representation.

Let 𝑄 ∼= C2 be the canonical 2-dimensional representation of 𝑆𝑈(2) and let 𝑃 =

𝑄⊗ 𝐸𝑛𝑑(𝑅), where 𝐸𝑛𝑑(𝑅) denote the endomorphism space of 𝑅. Let 𝑀 = 𝑃 Γ be

the space of Γ-invariant elements in 𝑃 . After fixing a Γ-invariant hermitian metric

on 𝑅, 𝑃 and 𝑀 can be regarded as right H-modules. Now, choose an orthonormal

basis on 𝑄, then we can write an element in 𝑃 as a pair of matrices (𝛼, 𝛽) with

𝛼, 𝛽 ∈ 𝐸𝑛𝑑(𝑅), and the action of 𝐽 on 𝑃 is given by

𝐽(𝛼, 𝛽) = (−𝛽*, 𝛼*).
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Since the action of Γ on 𝑃 is H-linear, the subspace 𝑀 is then an H-submodule,

which can be regarded as a flat hyperkähler manifold. Explicitly, a pair (𝛼, 𝛽) is in

𝑀 if for each

𝛾 =

⎛⎝ 𝑢 𝑣

−𝑣* 𝑢*

⎞⎠ ,

where 𝑣* and 𝑢* denote the complex conjugate of 𝑣 and 𝑢, respectively, we have

𝑅(𝛾−1)𝛼𝑅(𝛾) = 𝑢𝛼 + 𝑣𝛽, (4.1.1)

𝑅(𝛾−1)𝛽𝑅(𝛾) = −𝑣*𝛼 + 𝑢*𝛽. (4.1.2)

Let 𝑈(𝑅) denote the group of unitary transformations of 𝑅 and let 𝐹 be the

subgroup formed by elements in 𝑈(𝑅) that commute with the Γ-action on 𝑅. The

natural action of 𝐹 on 𝑃 is given by the following: for 𝑓 ∈ 𝐹 ,

(𝛼, 𝛽) ↦→ (𝑓𝛼𝑓−1, 𝑓𝛽𝑓−1).

Again, the action of 𝐹 on 𝑃 is H-linear and preserves 𝑀 . On the other hand,

since 𝐹 acts by conjugation, the scalar subgroup 𝑇 ⊂ 𝐹 acts trivially, and hence, we

get an action of 𝐹/𝑇 on 𝑀 that preserves 𝐼, 𝐽 , 𝐾.

Now, let f/t be the Lie algebra of 𝐹/𝑇 and identify (f/t)* with the traceless

elements of f ⊂ 𝐸𝑛𝑑(𝑅). As the action of 𝐹/𝑇 on 𝑀 is Hamiltonian with respect to

𝐼, 𝐽 , 𝐾, we obtain the following moment maps:

𝜇1(𝛼, 𝛽) =
𝑖

2
([𝛼, 𝛼*] + [𝛽, 𝛽*]),

𝜇2(𝛼, 𝛽) =
1

2
([𝛼, 𝛽] + [𝛼*, 𝛽*]),

𝜇3(𝛼, 𝛽) =
𝑖

2
(−[𝛼, 𝛽] + [𝛼*, 𝛽*]).

Let 𝜇 = (𝜇2, 𝜇2, 𝜇3) :𝑀 → R3 ⊗ (f/t)*. Let 𝑍 denote the center of (f/t)* and let
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𝜁 = (𝜁1, 𝜁2, 𝜁3) ∈ R3 ⊗ 𝑍. For 𝜁 lying in the “good set", we get 𝑋𝜁 = 𝜇−1(𝜁)/𝐹 is a

smooth 4-manifold diffeomorphic to C̃2/Γ.

Proposition 4.1.1 (cf. Proposition 2.1. in [21]). Suppose that 𝐹 acts freely on

𝜇−1(𝜁). Then

1. 𝑑𝜇 has full rank at all points of 𝜇−1(𝜁), so that 𝑋𝜁 is a nonsingular manifold of

dim𝑀 − 2 dim𝐹 (resp. dim𝑀 − 4 dim𝐹 ),

2. the metric 𝑔 and complex structures 𝐼 (resp. 𝐼, 𝐽 , 𝐾) descend to 𝑋𝜁 , and

equipped with these, 𝑋𝜁 is kähler (resp. hyperkähler).

Now, we review some basic representation theory regarding to the McKay Corre-

spondence [23] mentioned in [21]. Let 𝑅0, ..., 𝑅𝑟 be the irreducible representations

of Γ with 𝑅0 the trivial representation, and let

𝑄⊗𝑅𝑖 =
⨁︁
𝑗

𝑎𝑖𝑗𝑅𝑗

be the decomposition of 𝑄 ⊗ 𝑅𝑖 into irreducibles. The representations 𝑅1, ..., 𝑅𝑟

correspond to the set of simple roots 𝜉1, ..., 𝜉𝑟 for the associated root system of one

of the ADE-type Dynkin diagrams. Furthermore, if 𝜉0 = −
∑︀𝑟

1 𝑛𝑖𝜉𝑖 is the negative of

the highest root, then we have that for all 𝑖,

𝑛𝑖 = dim𝑅𝑖.

Hence, the regular representation 𝑅 decomposes as

𝑅 =
⨁︁
𝑖

C𝑛𝑖 ⊗𝑅𝑖,

and 𝑀 decomposes as

𝑀 =
⨁︁
𝑖,𝑗

𝑎𝑖𝑗𝐻𝑜𝑚(C𝑛𝑖 ,C𝑛𝑗),

and 𝐹 can be written as

𝐹 = ×𝑖𝑈(𝑛𝑖).
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Consequently, we get

dimR𝑀 =
∑︁
𝑖,𝑗

2𝑎𝑖𝑗𝑛𝑖𝑛𝑗 =
∑︁
𝑖

4𝑛2
𝑖 = 4|Γ|,

and

dimR 𝐹 =
∑︁
𝑖

𝑛2
𝑖 = |Γ|.

The center of the Lie algebra f is spanned by the elements
√
−1𝜋𝑖, where 𝜋𝑖 is

the projection 𝜋𝑖 : 𝑅 → C𝑛𝑖 ⊗ 𝑅𝑖 (𝑖 = 0, ..., 𝑟). Let ℎ be the real Cartan algebra

associated to the Dynkin diagram, then there is a linear map 𝑙 from the center of f

to ℎ* defined by the following:

𝑙 :
√
−1𝜋𝑖 ↦→ 𝑛𝑖𝜉𝑖.

The kernel of 𝑙 is the one-dimensional subalgebra t ⊂ f , so on the dual space, we

get an isomorphism

𝜄 : 𝑍 → ℎ.

For each root 𝜉, we write

𝐷𝜉 = ker(𝜉 ∘ 𝜄).

Proposition 4.1.2 (cf. Proposition 2.8. in [21]). If 𝐹/𝑇 does not act freely on 𝜇−1(𝜁),

then 𝜁 lies in one of the codimensional-3 subspaces R3⊗𝐷𝜉 ⊂ R⊗𝑍, where 𝜉 is a root.

Hence, the “good set" mentioned earlier in the subsection refers to the following:

(R3 ⊗ 𝑍)∘ = (R3 ⊗ 𝑍) ∖
⋃︁
𝜉

(R3 ⊗𝐷𝜉).

4.2 Relevant theorems

The following theorems are also proven in [21] and [22], and together, they

give a complete construction and classification of ALE spaces. For all the theorems

below in this subsection, let (𝑋, 𝑔) be a 4-dimensional hyperkähler manifold.
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Theorem 4.2.1 (cf. Theorem 1.1. in [21]). Let three cohomology classes 𝛼1, 𝛼2, 𝛼3 ∈

𝐻2(𝑋;R) be given which satisfy the nondegeneracy condition (*):

∙ for each Σ ∈ 𝐻2(𝑋;Z) with Σ ·Σ = −2, there exists 𝑖 ∈ {1, 2, 3} with 𝛼𝑖(Σ) ̸= 0.

Then there exists on 𝑋 an ALE hyperkähler structure for which the cohomology classes

of the kähler form [𝜔𝑖] are the given 𝛼𝑖.

Theorem 4.2.2 (cf. Theorem 1.2. in [21]). Every ALE hypherkähler 4-manifold is

diffeomorphic to the minimal resolution of C2/Γ for some Γ ⊂ 𝑆𝑈(2), and the coho-

mology classes of the kähler forms on such a manifold must satisfy the nondegeneracy

condition (*).

Theorem 4.2.3 (cf. Theorem 1.3. in [21]). If 𝑋1 and 𝑋2 are two ALE hyperkähler

4-manifolds, and there is a diffeomorphism 𝑋1 → 𝑋2 under which the cohomology

classes of the kähler forms agree, then 𝑋1 and 𝑋2 are isometric.
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Chapter 5

Basic gauge theory

We follow [6], [19] and [20] for the discussion of basic gauge theory in the

following several sections. For the discussion of orbifolds and orbifold bundles, we

mostly follow [3].

5.1 Vector bundles and principal bundles

Definition 5.1.1 (principal bundle). A principal 𝐺-bundle over 𝐵 is a manifold 𝑃

with a smooth map 𝜋 : 𝑃 → 𝐵 such that

∙ 𝐺 acts freely on 𝑃 (on the left),

∙ 𝐵 is the orbit space for this action and 𝜋 is the point-orbit projection, and

∙ there is an open covering of𝐵 such that to each set 𝒰 in that covering corresponds

a map 𝜙𝒰 : 𝜋−1(𝒰) → 𝒰×𝐺 with 𝜙𝒰(𝑝) = (𝜋(𝑝), 𝑠𝒰(𝑝)), and 𝑠𝒰(𝑔 ·𝑝) = 𝑔 ·𝑠𝒰(𝑝),

for all 𝑝 ∈ 𝜋−1(𝒰).

The 𝐺-valued maps 𝑠𝒰 are determined by the corresponding 𝜙𝒰 . The third condition is

called the property of being locally trivial.

Example 5.1.2. 𝑆3 as a principal 𝑆1-bundle with base 𝑆2 via the Hoxpf fibration. The

explicit construction is as follows:

𝑆3 = {(𝑧1, 𝑧2) ∈ C2 : |𝑧1|2 + |𝑧2|2 = 1}.
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The 𝑆1-action on 𝑆3 is given by the following: for 𝑔 = 𝑒𝑖𝜃 ∈ 𝑆1,

(𝑧1, 𝑧2)𝑔 = (𝑒−𝑖𝜃𝑧1, 𝑒
−𝑖𝜃𝑧2).

If we think of 𝑆2 as C𝑃 1 with the standard homogeneous coordinates, we get the

following projection map for the Hopf fibration: 𝜋 : 𝑆3 → C𝑃 1, (𝑧1, 𝑧2) ↦→ [𝑧1 : 𝑧2].

Definition 5.1.3 (associated bundles). Let 𝑉 be a complex vector space and 𝑆1 acts

on 𝑉 . Let 𝐸(𝑉 ) be defined as follows: 𝐸(𝑉 ) = 𝑆3 × 𝑉/ ∼, where [𝑝, 𝑣] ∼ [𝑝𝑔−1, 𝑔𝑣],

for all 𝑔 ∈ 𝑆1. Thus, we can think of 𝐸(𝑉 ) as an associated bundle of 𝑆3 with base 𝑆2

and fiber 𝑉 .

Example 5.1.4 (hyperplane bundle). Let 𝑉 = C. Then E(V) is a complex line bundle

over 𝑆2 = C𝑃 1. Recall, the hyperplane bundle 𝐻 over C𝑃 1 is a complex line bundle

given by the following trivialization: let 𝑈1 = {𝑧1 ̸= 0} and 𝑈2 = {𝑧2 ̸= 0} be the

two charts covering C𝑃 1. On 𝑈1 ∩ 𝑈2, the transition map is given by 𝑔12 = 𝑧2
𝑧1

and on

𝑈2 ∩ 𝑈1, the transition map is given by 𝑔21 = 𝑧1
𝑧2

.

Now, let 𝑧 be a complex number. Using the previous trivialization for 𝐻, we can

show that the following map 𝜑 : 𝐸(𝑉 ) → 𝐻, where 𝜑([(𝑧1, 𝑧2), 𝑧]) = ([𝑧1 : 𝑧2], 𝑧),

is a well-defined bundle isomorphism. Hence, the hyperplane bundle over C𝑃 1 is an

associated bundle of 𝑆3.

5.2 Sections and connections

Definition 5.2.1 (Section of a vector bundle). Let 𝜋 : 𝐸 → 𝑀 be a vector bundle

over 𝑀 , a section of 𝐸 is a smooth map 𝑠 :𝑀 → 𝐸 with 𝜋 ∘ 𝑠 = 𝑖𝑑𝑀 .

Definition 5.2.2 (section of a principal bundle). Let 𝜋 : 𝑃 → 𝑀 be a principal

𝐺-bundle over 𝑀 , a section of 𝑃 is a holomorphic map 𝑠 :𝑀 → 𝑃 with 𝜋 ∘ 𝑠 = 𝑖𝑑𝑀 .

Remark 5.2.3. A principal bundle admits a section if and only if it is trivial.

Definition 5.2.4 (connection on a principal bundle). We give two equivalent defini-

tions here:
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1. Let 𝑃 be a principal 𝐺-bundle and let g denote the Lie-algebra of 𝐺. Fix a basis

𝑋1, ..., 𝑋𝑘 of g, let 𝑋♯
1, ..., 𝑋

♯
𝑘 denote the linearly independent vector fields generated

by the one-parameter groups {exp(𝑡𝑋𝑖(𝑒))|𝑡 ∈ R}. A connection form on 𝑃 is a choice

of splitting 𝑇𝑃 = 𝑉 ⊕ 𝐻 such that 𝐻 is a 𝐺-invariant horizontal subbundle of 𝑇𝑃

complementary to the vertical bundle 𝑉 , where 𝑉 is the vertical subbundle generated

by 𝑋♯
1, ..., 𝑋

♯
𝑘.

2. A connection form on a principal 𝐺-bundle 𝑃 is a Lie-algebra-valued 1-form

𝐴 =
∑︀𝑘

𝑖=1𝐴𝑖 ⊗𝑋𝑖 ∈ Ω1(𝑃 )⊗ g such that:

(a) 𝐴 is𝐺-invariant, with respect to the product action of𝐺 on Ω1(𝑃 ) (the pullback

action induced by the action on 𝑃 : 𝑔 · 𝛼 = 𝑔*𝛼) and on g (the adjoint representation)

(b) 𝐴 is vertical, in the sense that 𝜄𝑋♯𝐴 = 𝑋 for any 𝑋 ∈ g.

Definition 5.2.5 (connection on a vector bundle). Let 𝑀 be a smooth manifold

and 𝐸 → 𝑀 a smooth complex vector bundle. A connection on 𝐸 is a linear map

∇ : 𝐶∞(𝑀,𝐸) → 𝐶∞(𝑀,𝑇 *𝑀 ⊗ 𝐸) satisfying the Leibiniz rule: for 𝑓 ∈ 𝐶∞(𝑀) and

𝜎 ∈ 𝐶∞(𝑀,𝐸), ∇(𝑓𝜎) = 𝑑𝑓 ⊗ 𝜎 + 𝑓∇𝜎.

Definition 5.2.6 (curvature 2-form). The curvature of ∇ is 𝐹∇ ∈ Ω2(𝑀 ;𝐸𝑛𝑑(𝐸))

given by 𝐹 (𝑋, 𝑌 )𝜎 = ∇𝑋∇𝑌 𝜎 − ∇𝑌∇𝑋𝜎 − ∇[𝑋,𝑌 ]𝜎. Locally, let {𝑒1, ...𝑒𝑛} be a local

frame for 𝐸, then the connection 1-forms for ∇ are given by 𝐴𝑗𝑖 ∈ Ω1(𝑀), where ∇𝑒𝑖 =

𝐴𝑗𝑖 ⊗ 𝑒𝑗. In other words, ∇ is locally given by a matrix of 1-forms 𝐴 ∈ Ω1(𝑀 ;𝐸𝑛𝑑(𝐸))

and hence 𝐹∇ is locally given by 𝐹 = 𝑑𝐴+ 𝐴 ∧ 𝐴.

Definition 5.2.7 (covariant exterior derivative). Given a connection ∇ on 𝐸, let 𝑑∇

be defined as follows: for 𝜔 ∈ Ω𝑝(𝑀), 𝜎 ∈ 𝐶∞(𝑀,𝐸), 𝑑∇(𝜔⊗𝜎) = 𝑑𝜔⊗𝜎+(−1)𝑝𝜔∧

∇𝜎. This gives rise to the following sequence:

...→ Ω𝑝−1(𝑀 ;𝐸) → Ω𝑝(𝑀 ;𝐸) → Ω𝑝+1(𝑀 ;𝐸) → ...

In particular, for 𝛽 ∈ Ω𝑝(𝑀 ;𝐸), 𝑑∇ ∘ 𝑑∇(𝛽) = 𝐹∇ ∧ 𝛽.

Definition 5.2.8 (Hermitian connection). Let ℎ : 𝐸 ⊗ 𝐸̄ → C be a hermitian inner

product on 𝐸. A connection ∇ on 𝐸 is hermitian with respect to ℎ if for all sections
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𝜎, 𝜏 ∈ 𝐶∞(𝑀,𝐸), we have 𝑋(ℎ(𝜎, 𝜏)) = ℎ(∇𝑋𝜎, 𝜏) + ℎ(𝜎,∇𝑋𝜏).

Lemma 5.2.9. (1) The space 𝒜(𝑃 ) of connections on a principal bundle 𝑃 over 𝑀 is

modeled on the affine space Ω1(𝑀 ; 𝑎𝑑(𝑃 )).

(2) The space 𝒜(𝐸) of connections on𝐸 is modeled on the affine space Ω1(𝑀 ;𝐸𝑛𝑑(𝐸)).

(3)The space 𝒜ℎ(𝐸) of hermitian connections on 𝐸 is modeled on the affine space

Ω1(𝑀 ; 𝑠𝑘𝑒𝑤𝐸𝑛𝑑(𝐸)) where 𝑠𝑘𝑒𝑤𝐸𝑛𝑑(𝐸) = {𝐵 ∈ 𝐸𝑛𝑑(𝐸)|ℎ(𝐵𝑣,𝑤) + ℎ(𝑣,𝐵𝑤) =

0, 𝑣, 𝑤 ∈ 𝐸}.

Below, we illustrate a way to construct a connection on an associated bundle

from a connection on the principal bundle:

Given a connection 𝐴 on a principal 𝐺-bundle 𝑃 → 𝑀 , as in a previous defi-

nition, we can think of 𝐴 as an element in Ω1(𝑃,g) such that 𝐴 is 𝐺-invariant and

vertical. Hence, locally on a trivializing neighborhood 𝑈 ⊂𝑀 , we can push 𝐴 down

and write 𝐴 as 𝐴𝑈 ∈ Ω1(𝑈,g); in other words, 𝐴 is locally a 1-forms on 𝑈 with val-

ues in g. Now let 𝑉 be a 𝐺-representation, that is, we have 𝜌 : 𝐺 → 𝐺𝑙(𝑉 ), and let

𝐸(𝑉 ) be the associated bundle of 𝑃 with fiber 𝑉 . We get a connection ∇𝐴 on 𝐸(𝑉 )

induced by 𝐴 as follows: locally on 𝑈 , ∇𝐴 can be expressed as a matrix of 1-forms

given by 𝛼𝑈 = 𝜌* ∘ 𝐴𝑈 ∈ Ω1(𝑈,𝐸𝑛𝑑(𝑉 )), where 𝜌* : g = 𝑇𝑒𝐺 → 𝑇𝑒𝐺𝑙(𝑉 ) = 𝑔𝑙(𝑉 ) =

𝐸𝑛𝑑(𝑉 ). Hence, we can think of the space of connections on 𝑃 as a subset of the

space of connections on an associated bundle.

On the other hand, for the case of 𝑃 = 𝑆3 and 𝐺 = 𝑆1 ∼= 𝑈(1), we can iden-

tify the space of hermitian connections on 𝐻 ∼= 𝐸(C) precisely with the space of

connections on 𝑆3, that is, 𝒜ℎ(𝐻) ∼= 𝒜(𝑆3).

5.3 Holomorphic structures

Definition 5.3.1 (holomorphic vector bundle). Let 𝑀 be a complex manifold and

𝐸 → 𝑀 a complex vector bundle over 𝑀 . Then 𝐸 is holomorphic if either one of the

following equivalent conditions holds:
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(1) 𝐸 is a complex manifold, 𝜋 : 𝐸 → 𝑀 is holomorphic and local trivializations

{𝜙𝛼} can be chosen to be holomorphic as well.

(2) The transition maps 𝑔𝛼𝛽 : 𝑈𝛼 ∩𝑈𝛽 → 𝐺𝑙𝑛(C) can be chosen to be holomorphic.

Example 5.3.2. With the transition maps given in Example 4.5, the hyperplane bundle

𝐻 over C𝑃 1 is a holomorphic line bundle.

Definition 5.3.3 (holomorphic section). Let 𝜋 : 𝐸 → 𝑀 be a holomorphic vector

bundle over 𝑀 , a section of 𝐸 is a holomorphic map 𝑠 :𝑀 → 𝐸 with 𝜋 ∘ 𝑠 = 𝑖𝑑𝑀 .

Before we proceed, note that for a complex manifold 𝑀 , we have the following

linear operators: 𝜕 : Ω𝑝,𝑞(𝑀) → Ω𝑝+1,𝑞(𝑀) and 𝜕 : Ω𝑝,𝑞(𝑀) → Ω𝑝,𝑞+1(𝑀). Now, let

𝐸 → 𝑀 be a holomorphic vector bundle over 𝑀 . Then there exists a unique linear

operator 𝜕𝐸 : Ω𝑝,𝑞(𝑀 ;𝐸) → Ω𝑝,𝑞+1(𝑀 ;𝐸) satisfying 𝜕(𝑓𝜔) = 𝜕𝑓 ∧ 𝜔 + 𝑓𝜕𝐸𝜔, for

𝑓 ∈ 𝐶∞(𝑀) and 𝜔 ∈ Ω𝑝.𝑞(𝑀 ;𝐸); moreover, we have 𝜕2𝐸 = 0. Given ∇ a connection

on 𝐸, we can write 𝑑∇ = 𝜕∇ + 𝜕∇ : Ω0(𝑀 ;𝐸) → Ω1,0(𝑀 ;𝐸) ⊕ Ω0,1(𝑀 ;𝐸), where

𝜕∇ = 𝜋1,0 ∘ 𝑑∇, 𝜕∇ = 𝜋0,1 ∘ 𝑑∇.

Definition 5.3.4 (holomorphic connection). Let 𝐸 be a holomorphic vector bundle.

A connection ∇ on 𝐸 is compatiable with the holomorphic structure if 𝜕∇ = 𝜕𝐸.

Lemma 5.3.5. Let 𝐸 be a complex vector bundle and fix a Hermitian structure on 𝐸.

Then there is a one-to-one correspondence between the Hermitian connections and the

holomorphic structures on 𝐸.

5.4 Actions on the configuration space

Definition 5.4.1 (gauge group). Let 𝑃 be a principal fiber bundle with base 𝑀 and

fiber 𝐺. Then a diffeomorphism 𝑓 : 𝑃 → 𝑃 is a gauge transformation if 𝑓 commutes

with the 𝐺-action on 𝑃 and the induced map on the base is the identity, that is 𝑓(𝑝𝑔) =

𝑓(𝑝)𝑔. The group of all gauge transformations is called the gauge group, denoted 𝒢.

Definition 5.4.2 (complexified gauge group). The complexifed group group is defined

as the complexification of 𝒢, that is, 𝒢 ⊗ C.
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Example 5.4.3 (the gauge group of 𝑆3). In the case of 𝑆3, the gauge group 𝒢 is given

by 𝒢 = 𝑀𝑎𝑝𝑠(𝑆2, 𝑆1) and the Lie algebra of 𝒢 is given by 𝐿𝑖𝑒𝒢 = 𝑀𝑎𝑝𝑠(𝑆2,R) =

𝐶∞(𝑆2). Let 𝒢0 be the based gauge group of 𝑆3, 𝒢0 = {𝑔 : 𝑆2 → 𝑆1 | 𝑔(𝑥0) = 1, 𝑥0 ∈

𝑆2}, and 𝒢𝑐0 the complexified based gauge group, 𝒢𝑐0 = {𝑢 : 𝑆2 → C* | 𝑢(𝑥0) = 1, 𝑥0 ∈

𝑆2}.

Lemma 5.4.4. Let 𝒢 be the gauge group and let 𝒢𝑐 be the complexified gauge group

of 𝑃 . Then 𝒢 and 𝒢𝑐 act on the space of connections 𝒜(𝑃 ) as follows: for 𝐴 ∈

Ω1(𝑀 ; 𝑎𝑑(𝑃 )) and 𝑔 ∈ 𝒢, 𝑔 · 𝐴 = 𝑔𝑑𝐴𝑔
−1 + 𝑔𝐴𝑔−1. Similarly, for 𝑢 ∈ 𝒢𝑐, 𝑢 · 𝐴 =

𝑢−1 ∘ 𝜕𝐴 ∘ 𝑢− 𝑢*−1 ∘ 𝜕𝐴 ∘ 𝑢*.

Below, we introduce a symplectic structure on 𝒜ℎ(𝐻) × 𝐶∞(𝑆2, 𝐻) taken from

[25]. The symplectic 2-form Ω on 𝒜ℎ(𝐻) × 𝐶∞(𝑆2, 𝐻) is given as follows: for

𝛼1, 𝛼2 ∈ 𝑇𝐴𝒜ℎ(𝐻), 𝜃1, 𝜃2 ∈ 𝑇Θ𝐶
∞(𝑆2, 𝐻), Ω((𝛼1, 𝜃1), (𝛼2, 𝜃2)) = −

∫︀
𝑆2 𝛼1 ∧ 𝛼2 +∫︀

𝑆2 Im⟨𝜃1, 𝜃2⟩𝜔𝑣𝑜𝑙

5.5 Orbifold vector bundles

For this section, we follow mainly [3] for the discussion of orbifolds and orbifold

bundles.

Definition 5.5.1 (orbifold chart). Let 𝑀 be a topological space. An orbifold chart

(𝑈̃ ,Γ, 𝜑) of dimension 𝑛 for an open set 𝑈 ⊂ 𝑀 consists of a connected open subset

𝑈̃ ⊂ R𝑛, a finite group Γ acting smoothly and effectively on 𝑈̃ and a continuous

Γ-invariant map 𝜑 : 𝑈̃ →𝑀 that induces a homeomorphism between 𝑈̃/Γ and 𝑈 .

Definition 5.5.2 (orbifold embedding). An embedding 𝜆 : (𝑈1,Γ1, 𝜑1) → (𝑈2,Γ2, 𝜑2)

between two orbifold charts is a smooth embedding 𝜆 : 𝑈1 →˓ 𝑈2 that satisfies 𝜑2 ∘ 𝜆 =

𝜑1.

Definition 5.5.3 (orbifold atlas). An orbifold atlas for 𝑀 is a collection of orbifold

charts {(𝑈𝑖,Γ𝑖, 𝜑𝑖)} that covers 𝑀 and are locally compatible in the following sense:
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for any two charts (𝑈𝑖,Γ𝑖, 𝜑𝑖), 𝑖 = 1, 2, and 𝑥 ∈ 𝑈1 ∩ 𝑈2, there is an open neighbor-

hood 𝑈3 ⊂ 𝑈1 ∩ 𝑈2 containing 𝑥 and an orbifold chart (𝑈3,Γ3, 𝜑3) for 𝑈3 that admits

embeddings in (𝑈𝑖,Γ𝑖, 𝜑𝑖), 𝑖 = 1, 2.

Definition 5.5.4 (orbifold). An orbifold 𝒪 is an underlying topological space |𝒪| =𝑀

together with an orbifold atlas 𝒜.

Definition 5.5.5 (orbifold smooth map). Let 𝒪 and 𝒫 be orbifolds and let |𝑓 | : |𝒪| →

|𝒫| be a continuous map between the underlying topological spaces. We say that |𝑓 |

is smooth at 𝑥 ∈ |𝒪| when there are charts (𝑈̃ ,Γ𝑥, 𝜑) and (𝑉 ,Γ|𝑓 |(𝑥), 𝜓) around 𝑥 and

|𝑓 |(𝑥), respectively, such that |𝑓 |(𝑈) ⊂ 𝑉 and there exists a smooth local lift of |𝑓 | at

𝑥, that is, a homomorphism 𝑓𝑥 : Γ𝑥 → Γ|𝑓 |(𝑥) together with a smooth map 𝑓𝑥 : 𝑈̃ → 𝑉

such that 𝑓𝑥(𝑔𝑦) = 𝑓𝑥(𝑔)𝑓𝑥(𝑦), for each 𝑔 ∈ Γ𝑥, 𝑦 ∈ 𝑈̃ and the following diagram

commutes.

𝑈̃ 𝑉

𝑈 𝑉

𝜑

𝑓𝑥

𝜓

|𝑓 |

A smooth map 𝑓 : 𝒪 → 𝒫 consists of a continuous map |𝑓 | : |𝒪| → |𝒫| that is smooth

at every 𝑥 ∈ |𝒪|.

Definition 5.5.6 (fiber orbibundle). Let ℰ and ℬ be smooth orbifolds. A smooth map

𝜋 : ℰ → ℬ is a fiber orbibfold if |𝜋| is surjective and there is a third orbifold ℱ such

that, for all 𝑥 ∈ |ℬ|, there is an orbifold chart (𝑈̃ ,Γ𝑥, 𝜑) around 𝑥, an action of Γ𝑥

on ℱ and a diffeomorphism (ℱ × 𝑈̃)/Γ𝑥 → ℰ||𝜋|−1(𝑈) such that the following diagram

commutes, where Γ𝑥 denotes the stabilizer subgroup of some 𝑥̃ sitting over 𝑥.

(ℱ × 𝑈̃)/Γ𝑥 ℰ

𝑈̃/Γ𝑥 ℬ

Definition 5.5.7 (vector orbibundle). When ℱ is a 𝑘-dimensional vector space with
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a linear action of Γ𝑥, then 𝜋 : ℰ → ℬ is a vector orbibundle.

Example 5.5.8 (tangent orbibundle and differential). (1) We can define the tangent

bundle of an orbifold as follows. Let (𝑈̃ ,Γ, 𝜑) be an orbifold chart. Observe that the

Γ-action on 𝑈̃ induces an a Γ-action on 𝑇 𝑈̃ as follows: 𝛾(𝑥̃, 𝑣) = (𝛾(𝑥̃), 𝑑𝛾𝑥̃𝑣). This

gives rise to an orbifold chart (𝑇 𝑈̃,Γ, 𝜙), where 𝜙 : 𝑇 𝑈̃ → 𝑇𝑈 = 𝑇 𝑈̃/Γ. We also get

a projection map |𝜋| : 𝑇𝑈 → 𝑈 . For 𝑥 = 𝜑(𝑥̃), |𝜋|−1(𝑥) ∼= 𝑇𝑥̃𝑈̃/Γ𝑥.

(2) Similarly, we can construct the cotangent bundle of an orbifold. Again, let

(𝑈̃ ,Γ, 𝜑) be an orbifold chart. Then the Γ-action on 𝑇 *𝑈̃ is given by 𝛾(𝑥̃, 𝜂) = (𝛾(𝑥̃), 𝜂∘

𝑑𝛾−1
𝛾(𝑥̃)). Using these charts, we produce 𝑇 *𝒪 as a vector orbibundle over 𝒪.

(3) Let ℰ1 and ℰ2 be two vector orbibundles over ℬ each given by the quotient of a

Γ-action. Then we can define the following Γ-action: 𝛾(𝑥̃, 𝑣⊗𝑤) = (𝛾(𝑥̃), 𝛾(𝑣)⊗𝛾(𝑤)).

This gives rise to ℰ1 ⊗ ℰ2 as a vector orbibundle over ℬ. The same construction also

works for ℰ1 ⊕ ℰ2.

5.6 Additional structures on a vector orbibundle

Definition 5.6.1 (complex orbifold chart). A complex orbifold chart is an orbifold

chart (𝑈̃ ,Γ, 𝜑) where 𝑈̃ ⊂ C𝑛 and Γ acts not just smoothly, but in fact holomorphically.

We can also make similar definitions for holomorphic embedding and holomor-

phic orbifold atlas. Hence, we arrive at the following definition:

Definition 5.6.2 (complex orbifold). A complex orbifold 𝒪 is an underlying topolog-

ical space |𝒪| =𝑀 together with a complex orbifold atlas 𝒜.

A holomorphic map between two complex orbifolds can be defined similar to a

smooth map between orbifolds where we replace 𝑠𝑚𝑜𝑜𝑡ℎ with ℎ𝑜𝑙𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐.

Definition 5.6.3 (orbibundle section). Let 𝜋 : ℰ → ℬ be a complex vector orbibundle.

Then a section of ℰ is an orbifold smooth map 𝑠 : ℬ → ℰ such that 𝜋 ∘ 𝑠 = 𝑖𝑑ℬ.

Definition 5.6.4 (orbibundle connection). Given a vector orbibundle ℰ → ℬ, a con-

nection on ℰ is a linear map ∇ : 𝐶∞(ℬ, ℰ) → 𝐶∞(ℬ, 𝑇 *ℬ ⊗ ℰ) satisfying the Leibiniz

rule: for 𝑓 ∈ 𝐶∞(ℬ) and 𝜎 ∈ 𝐶∞(ℬ, ℰ), ∇(𝑓𝜎) = 𝑑𝑓 ⊗ 𝜎 + 𝑓∇𝜎.
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Definition 5.6.5 (Hermitian structure on an orbibundle). Let ℰ → ℬ be an orbibun-

dle with complex fibers. Then a hermitian structure on ℰ is a section ℎ of (ℰ ⊗ ℰ̄)* such

that for 𝑥 ∈ ℬ, ℎ𝑥(𝜂, 𝜁) = ℎ𝑥(𝜁, 𝜂), 𝜂, 𝜁 ∈ ℰ𝑥 and ℎ𝑥(𝜂, 𝜂) > 0, for 𝜂 ̸= 0.

Definition 5.6.6 (holomorphic orbibundle). Let ℬ be a complex orbifold and ℰ → ℬ

a complex orbibundle over ℬ. Then ℰ is holomorphic if ℰ is a complex orbifold, |𝜋| :

ℰ → ℬ is holomorphic and local trivializations {𝜙𝛼} can be chosen to be holomorphic

as well.

Definition 5.6.7 (holomoprhic orbibundle section). Let 𝜋 : ℰ → ℬ be a holomorphic

orbibundle. Then a holomorphic section of ℰ is an orbifold holomorphic map 𝑠 : ℬ → ℰ

such that 𝜋 ∘ 𝑠 = 𝑖𝑑ℬ.

Definition 5.6.8 (global quotient). (1) An orbifold 𝒪 is a global quotient of a man-

ifold 𝑀 by a finite group Γ if Γ acts smoothly on 𝑀 (note that we do not assume

effectiveness of the action). In other words, 𝒪 can be given an orbifold atlas consisting

of charts of the form (𝑈̃ ,Γ, 𝜑).

(2) An orbibundle 𝜋 : ℰ → ℬ is a global quotient of a vector bundle 𝜋̃ : 𝐸 → 𝐵 if ℬ

is a global quotient of 𝐵 by Γ and for each 𝑥 ∈ 𝐵, Γ𝑥 acts smoothly on the fiber 𝑉𝑥 of

𝐸 over 𝑥. In this case, ℰ is also a global quotient of 𝐸, for which the Γ-action respects

the bundle structure of 𝐸, that is, 𝜋̃ ∘ 𝛾 = 𝛾 ∘ 𝜋̃, for all 𝛾 ∈ Γ.

Definition 5.6.9 (smooth point). Let 𝑥 be a point in an orbifold 𝒪. Then 𝑥 is a

smooth point if locally around 𝑥, the group action induces a covering map.

Lemma 5.6.10. Let ℰ → 𝒪 be a global quotient of a vector bundle 𝐸 →𝑀 by a finite

group Γ such that at a smooth point 𝑥 ∈ 𝒪, Γ𝑥 acts trivially on the fiber 𝑉𝑥. Then:

(1) The space of vector orbibundle sections of ℰ can be identified with the space of

Γ-equivariant sections of 𝐸.

(2) The space of vector orbibundle connections of ℰ can be identified with the space

of Γ-equivariant connections of 𝐸.

Proof. (1) Let 𝑠 be a Γ-equivariant section of 𝐸, that is, for 𝑥 ∈ 𝑀 , 𝑠(𝛾(𝑥)) =

𝛾(𝑠(𝑥)). Hence, 𝑠 descends to a map between the underlying orbifolds, |𝑠| : |𝒪| →
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|ℰ|. Observe also that |𝜋| ∘ |𝑠| = 𝑖𝑑𝒪. We want to check that |𝑠| is an orbifold smooth

map, which amounts to finding a Γ-equivariant local lift of |𝑠|, but 𝑠 satisfies the

required properties precisely.

Conversely, let 𝑠 be a section of ℰ , as at a smooth point 𝑥, Γ𝑥 acts trivially on the

fiber, we get a well-defined local lift of 𝑠 which is Γ-equivariant by construction.

(2) Recall, a connection on 𝐸 is a linear map ∇ : 𝐶∞(𝑀,𝐸) → 𝐶∞(𝑀,𝑇 *𝑀⊗𝐸)

satisfying the Leibiniz rule: for 𝑓 ∈ 𝐶∞(𝑀) and 𝜎 ∈ 𝐶∞(𝑀,𝐸), ∇(𝑓𝜎) = 𝑑𝑓 ⊗ 𝜎 +

𝑓∇𝜎. Let ∇ be a Γ-equivariant connection of 𝐸, that is, ∇𝛾(𝜎) = 𝛾(∇𝜎). Now,

let 𝜎 be a Γ-equivariant section. Then ∇𝛾(𝜎) = ∇𝜎 = 𝛾(∇𝜎). Hence, ∇ acts on

the space of Γ-equivariant sections on 𝐸. Moreover, for a Γ-equivariant function 𝑓 ,

∇(𝛾(𝑓𝜎)) = 𝑑𝑓 ⊗𝜎+ 𝑓∇𝜎 = 𝛾(∇(𝑓𝜎)), so ∇ also satisfies the Leibiniz rule. Thus, ∇

descends to a connection ∇ℰ on ℰ , where ∇ℰ : 𝐶∞(𝒪, ℰ) → 𝐶∞(𝒪, 𝑇 *𝒪 ⊗ ℰ). The

converse holds as well similar to the previous case.

Lemma 5.6.11. Let ℰ → 𝒪 be a complex vector orbibundle arising as the global

quotient of a complex vector bundle 𝐸 → 𝑀 by a finite group Γ such that at each

smooth point 𝑥 ∈ 𝒪, Γ𝑥 acts trivially on the fiber 𝑉𝑥. Fix a Γ-equivariant hermitian

structure on 𝐸 which descends to a hermitian structure on ℰ . Then there is a one-to-

one correspondence between the hermitian connections and the holomorphic structures

on ℰ .

Proof. We know that there is a one-to-one correspondence between the hermitian

connections on 𝐸 and the 𝜕-operators on 𝐸. By similar arguments as in the previous

lemma, the hermitian structure on ℰ comes from a Γ-equivariant hermitian struc-

ture on 𝐸. Let ∇ be a Γ-equivariant hermitian connection on 𝐸. Then ∇ induces an

exterior covariant derivative 𝑑∇ = 𝜕∇ + 𝜕∇ : Ω0(𝑀 ;𝐸) → Ω1,0(𝑀 ;𝐸)⊕ Ω0,1(𝑀 ;𝐸),

where 𝜕∇ = 𝜋1,0 ∘ 𝑑∇, 𝜕∇ = 𝜋0,1 ∘ 𝑑∇. In particular, 𝜕∇ = 𝜋0,1 ∘ 𝑑∇ : Ω0(𝑀 ;𝐸) →

Ω0,1(𝑀 ;𝐸). Let 𝜎 ∈ Ω0(𝑀 ;𝐸). Then 𝜕∇(𝛾(𝜎)) = 𝜋0,1 ∘ 𝑑∇(𝛾(𝜎)) = 𝛾(𝜋0,1 ∘ 𝑑∇𝜎)) =

𝛾(𝜕∇(𝜎)). This shows that Γ-equivariant hermitian connections correspond to Γ-

equivariant 𝜕-operators which further implies that there is a one-to-one correspon-
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dence between the hermitian connections and the holomorphic structures on ℰ .
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Chapter 6

Analytic tools in gauge theory

We review the analytic foundations of gauge theory in this chapter. We will use

[24] as a reference.

6.1 Linear differential operators

Definition 6.1.1. Given 𝑥 ∈ 𝑀 , let m𝑥 ⊂ 𝐶∞(𝑀) be the ideal consisting of 𝑓 ∈

𝐶∞(𝑀) such that 𝑓(𝑥) = 0.

Definition 6.1.2. Let 𝐸,𝐹 → 𝑀 be vector bundles. A linear map 𝐷 : Γ(𝐸) → Γ(𝐹 )

is a linear differential operator (LDO) of order 𝑘 if 𝑘 is the smallest integer such that

for each 𝑥 ∈𝑀 , and every 𝑓 ∈ (m𝑥)
𝑘+1, and every section 𝜎 ∈ Γ(𝐸), we have

𝐷(𝑓𝜎)|𝑥 = 0.

Example 6.1.3. A linear differential operator on R𝑛 of order 𝑘 can be expressed as a

combination of partial derivatives of order less than or equal to 𝑘. If 𝐼 = {𝑖1, ..., 𝑖𝑘} us

a multi-index. We write

𝜕𝐼𝜑 =
𝜕𝑘

𝜕𝑖1 ...𝜕𝑖𝑘
(𝜑).
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Then an order 𝑘 LDO can be written as

𝐷𝜑 =
∑︁
|𝐼|≤𝑘

𝑎𝐼𝜕
𝐼𝜑,

where 𝑎𝐼 is a (smooth) matrix-valued function.

Definition 6.1.4. Let 𝐷 : Γ(𝐸) → Γ(𝐹 ) be a 𝑘-th order LDO. Fix 𝑥 ∈𝑀 and covectors

𝛼1, ..., 𝛼𝑘 ∈ 𝑇 *𝑀 , we define a map 𝜎𝐷(𝛼1 ⊗ ...⊗ 𝛼𝑘) : 𝐸𝑥 → 𝐹𝑥 as follows:

Choose any 𝑓1, ..., 𝑓𝑘 ∈ m𝑥 such that (𝑑𝑓𝑗)𝑥 = 𝛼𝑗. Let 𝑣 ∈ 𝐸𝑥 and choose any

𝜑 ∈ Γ(𝐸) such that 𝜑(𝑥) = 𝑣. Then let

𝜎𝐷(𝛼1 ⊗ ...⊗ 𝛼𝑘)(𝑣) =
1

𝑘!
𝐷(𝑓1...𝑓𝑘𝜑)|𝑘 ∈ 𝐹𝑥.

Remark 6.1.5. This defines a linear map 𝐸𝑥 ∈ 𝐹𝑥 independent of choices of 𝑓1, ..., 𝑓𝑘

and 𝜑. In fact, 𝜎𝐷 defines a bundle map

𝑆𝑦𝑚𝑘(𝑇 *𝑀) → 𝐻𝑜𝑚(𝐸,𝐹 ).

On the other hand, there is an identification of

𝑆𝑦𝑚𝑘(𝑉 *) = {symmetric multilinear maps 𝑉 × ...× 𝑉 → R}

with

𝒫𝑘(𝑉 ) = {homogeneous functions 𝜌 : 𝑉 → R of degree 𝑘, 𝜌(𝑡𝑣) = 𝑡𝑘𝑝(𝑣)},

given by the following correspondence

𝑆𝑦𝑚𝑘(𝑉 *) → 𝒫𝑘(𝑉 ),

𝜎 ↦→ 𝜌 : 𝜌(𝑣) = 𝜎(𝑣 ⊗ ...⊗ 𝑣).

The inverse map is given by “polarization".
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Definition 6.1.6. A linear differential operator 𝐷 : Γ(𝐸) → Γ(𝐸) is elliptic if the

map 𝜎𝐷(𝛼) : 𝐸𝑥 → 𝐸𝑥 is an isomorphism for all nonzero 𝛼 ∈ 𝑇 *
𝑥𝑀 . Here, 𝜎𝐷(𝛼) =

𝜎𝐷(𝛼⊗ ...⊗ 𝛼).

Proposition 6.1.7. Let 𝐷 : Γ(𝐸) → Γ(𝐸) be a 𝑘-th order LDO, and choose a connec-

tion on 𝐸. Then

𝐷𝜑 = (𝜎𝐷 ∘ ∇𝑘)𝜑+𝐾(𝜑),

where 𝐾 is a linear differential operator of order less than or equal to 𝑘 − 1.

Thus, any 𝑘-th order LDO can be expressed as:

𝐷 = 𝜎𝐷 ∘ ∇𝑘 + 𝜎
(𝑘−1)
𝐷 ∘ ∇𝑘−1 + ...+ 𝜎

(1)
𝐷 ∘ ∇+ 𝜎

(0)
𝐷 ,

for some collection of lower order symbols 𝜎(𝑙)
𝐷 .

6.2 Functional framework

We work on a compact, oriented, Riemannian manifold (𝑀, 𝑔), and a vector

bundle 𝐸 → 𝑀 equipped with a metric and compatible connection. For a section

𝜑 ∈ Γ(𝐸), we can consider its 𝑘-th covariant derivative ∇𝑘𝜑, which has a norm

|∇𝑘𝜑| ∈ 𝐶∞(𝑀). As 𝑀 is oriented, we also have a volume form 𝜇𝑔 on 𝑀 .

Definition 6.2.1. For 𝑝 ≥ 1, an 𝐿𝑝 norm of a section 𝜑 ∈ Γ(𝐸) is defined as follows:

‖𝜑‖𝑝 = (

∫︁
𝑀

|𝜑|𝑝𝜇𝑔)
1
𝑝 .

Definition 6.2.2. Given integer 𝑘 ≥ 0 and 𝑝 as above, the (𝑝, 𝑘) Sobolev norm of

𝜑 ∈ Γ(𝐸) is given by

‖𝜑‖𝑝,𝑘 = ‖𝜑‖𝑝 + ‖∇𝜑‖𝑝 + ‖∇2𝜑‖𝑝 + ...+ ‖∇𝑘𝜑‖𝑝.

The Sobolev space 𝐿𝑝,𝑘(𝐸) is the completion of Γ(𝐸) with respect to this norm.
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Remark 6.2.3. 1. 𝐿𝑝,𝑘(𝐸) is a Banach space.

2. The norm ‖·‖𝑝,𝑘 depends on the choices of metric and connection ong 𝑀 and 𝐸.

If 𝑀 is compact, the different choices give equivalent norms, that is, there exist

constants 𝐴,𝐵 > 0 such that for all 𝜑 ∈ Γ(𝐸), we have

𝐴‖𝜑‖1𝑝,𝑘 ≤ ‖𝜑‖2𝑝,𝑘 ≤ 𝐵‖𝜑‖1𝑝,𝑘.

3. If 𝑝 = 2, the spaces 𝐿2,𝑘(𝐸) are Hilbert spaces, that is, the norm arises from an

inner product:

⟨𝜑, 𝜓⟩𝑘 =
∫︁

⟨𝜑, 𝜓⟩+
∫︁
⟨∇𝜑,∇𝜓⟩+ ...+

∫︁
⟨∇𝑘𝜑,∇𝑘𝜓⟩.

6.3 Sobolev embedding theorem

We resume the same setup as in the previous subsection. Let (𝑝, 𝑘), (𝑞, 𝑙) be

given, such that 𝑘 > 𝑙 and such that

𝑘 − 𝑛

𝑝
≥ 𝑙 − 𝑛

𝑞
, (6.3.1)

where 𝑛 is the dimension of 𝑀 .

Definition 6.3.1. A bounded linear map 𝐴 : 𝑉 → 𝑊 between Banach spaces is com-

pact if whenever {𝑣𝑛} ⊂ 𝑉 is a bounded sequence, the image sequence {𝐴(𝑣𝑛)} ⊂ 𝑊

has a convergent subsequence.

Remark 6.3.2. 1. The identity map 𝐿𝑝,𝑘(𝐸) →˓ 𝐿𝑞,𝑙(𝐸) is a continuous inclusion if

(3) is satisfied. If the inequality in (3) is strict, the inclusion is a compact linear

map.

2. The existence of such continuous inclusion is equivalent to the existence of 𝐶 > 0

such that

‖𝜑‖𝑞,𝑙 ≤ 𝐶‖𝜑‖𝑝,𝑘,∀𝜑 ∈ Γ(𝐸).
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Now, let 𝒞𝑘(𝐸) be the space of 𝒞𝑘-sections of 𝐸. It can be made into a Banach

space as follows: for 𝜑 ∈ 𝒞0(𝐸), let

‖𝜑‖𝒞0 = sup
𝑥∈𝑀

|𝜑(𝑥)|,

and let

‖𝜑‖𝒞𝑘=
𝑘∑︁
𝑖=0

‖∇𝑖𝜑‖𝒞0 .

Let 𝒞𝑘,𝛼(𝐸) be a Hölder space where 𝛼 ∈ [0, 1], that is, 𝜑 is in 𝒞𝑘,𝛼(𝐸) if 𝜑 has

continuous derivatives up to order 𝑘 and the 𝑘-th derivative satisfies the Hölder

condition with exponent 𝛼 given by

|𝑓(𝑥)− 𝑓(𝑦)| ≤ 𝐶‖𝑥− 𝑦‖𝛼.

For given 𝑘, 𝑝, the strength of 𝐿𝑝,𝑘 is the quantity 𝑘 − 𝑛
𝑝
; for 𝒞𝑘,𝛼, the strength is

𝑘 + 𝛼.

Theorem 6.3.3 (Sobolev embedding theorem). 1. If 𝑘 ≥ 𝑙 and 𝑘 − 𝑛
𝑝
≥ 𝑙 − 𝑛

𝑞
,

then the identity extends to a continuous map from 𝐿𝑝,𝑘(𝐸) →˓ 𝐿𝑞,𝑙(𝐸). If the

inequality is strict, then this is a compact embedding.

2. If 𝑘 ≥ 𝑙 and 𝑘− 𝑛
𝑝
≥ 𝑙+𝛼, then 𝐿𝑝,𝑘(𝐸) →˓ 𝒞𝑙,𝛼(𝐸), and if the inequality is strict,

this is a compact embedding. Note, here we must have 𝛼 > 0.

6.4 Elliptic Regularity

Definition 6.4.1. Let 𝐷 : Γ(𝐸) → Γ(𝐹 ) be a linear differential operator over a (com-

pact) Riemannian manifold, and let 𝜑 ∈ 𝐿1(𝐸) and let 𝜓 ∈ 𝐿1(𝐹 ). We say 𝜑 is a weak

solution of the equation

𝐷𝜑 = 𝜓
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if for any smooth section 𝑠 ∈ Γ(𝐹 ), we have

∫︁
𝑀

⟨𝐷*𝑠, 𝜑⟩ =
∫︁
𝑀

⟨𝑠, 𝜓⟩.

Definition 6.4.2. Let 𝑈 be an open subset of R𝑛 and let 𝑢, 𝑣 be locally integrable

functions in 𝐿1
loc(𝑈). Let 𝛼 be a multi-index, we say 𝑣 is the 𝛼-th weak derivative of 𝑢

if ∫︁
𝑈

𝑢𝐷𝛼𝜙 = (−1)|𝛼|
∫︁
𝑈

𝑣𝜙,

for all infinitely differentiable functions 𝜙 with compact support in 𝑈 .

Theorem 6.4.3. Let 𝐷 : Γ(𝐸) → Γ(𝐹 ) be a 𝑘-th order elliptic linear differential

operator on a compact manifold, and suppose 𝜑 ∈ 𝐿𝑝(𝐸) is a weak solution to𝐷𝜑 = 𝜓,

where 𝜓 ∈ 𝐿𝑝,𝑙(𝐹 ). Then 𝜑 ∈ 𝐿𝑝,𝑘+𝑙(𝐸) and furthermore:

‖𝜑‖𝑝,𝑘+𝑙 ≤ 𝐶(‖𝐷𝜑‖𝑝,𝑙 + ‖𝜑‖𝑝),

for some constant 𝐶 depending on 𝐷, 𝑙, 𝑝.

Likewise, if 𝜑 lies in 𝒞0,𝛼(𝐸) for some 𝛼 > 0 and 𝜓 ∈ 𝒞𝑙,𝛼(𝐹 ), then 𝜑 lies in

𝒞𝑘+𝑙,𝛼(𝐸) and

‖𝜑‖𝒞𝑘+𝑙,𝛼 ≤ 𝐶(‖𝐷𝜑‖𝒞𝑙,𝛼 + ‖𝜑‖𝒞0,𝛼).

Remark 6.4.4. Suppose 𝐷𝜑 = 0. Since 0 ∈ 𝐿𝑝,𝑙, for all 𝑝, 𝑙, elliptic regularity implies

that 𝜑 ∈ 𝐿2,𝑘+𝑙, for all 𝑙. Then, by the Sobolev embedding theorem, we have that

𝜑 ∈ 𝒞𝑙,𝛼, for all 𝑙. Hence, 𝜑 is smooth.
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Chapter 7

Various constructions of hyperkähler

spaces

In this chapter, we give a few different constructions of hyperkähler spaces.

7.1 Hitchin’s construction of moduli spaces of solu-

tions to the self-duality equations on Riemann

surfaces

Hitchin constructs moduli spaces of a special class of solutions to the self-dual

Yang-Mills equations through dimension reduction in [14]. The moduli spaces can

be naturally equipped with hyperkähler structures. We recall his construction in

this section.

Let 𝑀 be a Riemann surface. Let 𝐺 be 𝑆𝑈(2) or 𝑆𝑂(3). Let 𝑃 be a principal

𝐺-bundle over 𝑀 . Let 𝐴 be a connection of 𝑃 and let Φ be a Higgs field, that is, a

(1, 0)-form on𝑀 with values in the (complex) Lie algebra bundle of 𝑃 . Equivalently,

we can consider the associated vector bundle 𝑉 of 𝑃 which is a holomorphic rank-2

vector bundle over 𝑀 together with a holomorphic section Φ of End𝑉 ⊗𝐾, where 𝐾

is the canonical bundle of 𝑀 . Hence, we can write down and consider the following
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equations:

𝑑′′𝐴Φ = 0 (7.1.1)

𝐹 (𝐴) + [Φ,Φ*] = 0. (7.1.2)

Theorem 7.1.1 (cf. Theorem (2.1) in [14]). Let (𝐴,Φ) satisfy the 𝑆𝑂(3) self-duality

equations on a compact Riemann surface𝑀 and let 𝑉 be the associated rank-2 complex

vector bundle. If 𝐿 ⊂ 𝑉 is a Φ-invariant subbundle, then

1. deg(𝐿) ≤ 1
2
deg(Λ2𝑉 ), and

2. if equality holds then (𝐴,Φ) reduces to a 𝑈(1) solution.

Theorem 7.1.2 (cf. Theorem (2.7) in [14]). Let (𝐴1,Φ1), (𝐴2,Φ2) be two solutions

of the self-duality equations on a principal 𝑆𝑂(3) bundle over a Riemann surface 𝑀 .

Let 𝑉 be the associated rank-2 complex vector bundle and assume that there is an

isomorphism

ℎ : 𝑉 → 𝑉

such that

𝑑′′𝐴2
ℎ = ℎ𝑑′′𝐴1

, (7.1.3)

Φ2ℎ = ℎΦ1. (7.1.4)

Then (𝐴1,Φ1), (𝐴2,Φ2) are gauge-equivalent solutions.

Now, we introduce the stability condition that will give rise a correspondence

between holomorphic vector bundles coupled with a holomorphic 1-form and solu-

tions to the above equations 7.1.1 and 7.1.2.

Definition 7.1.3 (cf. Definition (3.1) in [14]). Let 𝑉 be a rank-2 holomorphic vector

bundle over a compact Riemann surface 𝑀 and Φ a holomorphic section of End𝑉 ⊗𝐾
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where 𝐾 is the canonical bundle of 𝑀 . The pair (𝑉,Φ) is defined to be stable if, for

every Φ-invariant rank-1 subbundle 𝐿 of 𝑉 ,

deg𝐿 <
1

2
deg(Λ2𝑉 ).

Proposition 7.1.4 (cf. Proposition (3.3) in [14]). Let 𝑀 be a compact Riemann

surface of genus 𝑔 > 1. A rank-2 vector bundle 𝑉 occurs in a stable pair (𝑉,Φ) if and

only if one of the following holds:

1. 𝑉 is stable;

2. 𝑉 is semi-stable and 𝑔 > 2;

3. if 𝑉 is semi-stable and 𝑔 = 2 then 𝑉 ∼= 𝑈 ⊗𝐿 where 𝑈 is either decomposable or

an extension of the trivial bundle by itself;

4. 𝑉 is not semi-stable and dim𝐻0(𝑀 ;𝐿−2
𝑉 𝐾 ⊗ 𝑉 ) is greater than 1, where 𝐿𝑉 is

the canonical subbundle;

5. 𝑉 is decomposable as 𝑉 = 𝐿𝑣 ⊕ (𝐿*
𝑉 ⊗Λ2𝑉 ) and dim𝐻0(𝑀 ;𝐿−2

𝑉 𝐾 ⊗Λ2𝑉 ) = 1.

Proposition 7.1.5 (cf. Proposition (3.4) in [14]). Let 𝑀 be a compact Riemann

surface of genus 𝑔 > 1. A rank-2 vector bundle 𝑉 occurs in a stable pair (𝑉,Φ) if and

only if there is a Zariski open subset 𝑈 ⊂ 𝐻0(𝑀 ; End𝑉 ⊗𝐾) such that if Φ ∈ 𝑈 , then

Φ leaves invariant no proper subbundles.

Proposition 7.1.6 (cf. Proposition (3.15) in [14]). Let (𝑉1,Φ1) and (𝑉2,Φ2) be stable

pairs with Λ2𝑉1 ∼= Λ2𝑉2 and Ψ : 𝑉1 → 𝑉2 a non-zero homomorphism such that

ΨΦ1 = Φ2Ψ. Then Ψ is an isomorphism. If (𝑉1,Φ1) = (𝑉2,Φ2), then Ψ is a scalar

multiplication.

The following theorem is the key theorem that establishes the aforementioned

correspondence between holomorphic data and solutions to gauge-theoretic equa-

tions.
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Theorem 7.1.7 (cf. Theorem (4.3) in [14]). Let 𝐴 be an 𝑆𝑂(3) connection on a bun-

dle 𝑃 over a compact Riemann surface𝑀 of genus 𝑔 > 1, and let Φ ∈ Ω1,0(𝑀 ; ad𝑃⊗C)

satisfy 𝑑′′𝐴Φ = 0. Let 𝑉 be an associated rank-2 vector bundle with complex structure

determined by 𝐴. If (𝑉,Φ) is a stable pair, then there exists an automorphism of 𝑉 of

determinant 1, unique modulo 𝑆𝑂(3) gauge transformations, which takes (𝐴,Φ) to a

solution of the equation 𝐹 (𝐴) + [Φ,Φ*] = 0.

Corollary 7.1.8 (cf. Corollary (4.22) in [14], Narashimhan and Seshadri). Every

stable rank-2 bundle 𝑉 over a compact Riemann surface 𝑀 of genus 𝑔 > 1 is associated

to a flat 𝑆𝑂(3) connection, unique up to gauge transformations.

By studying the elliptic complex given by equations 7.1.1, 7.1.2 and the gauge

group action, one can show that the moduli space is smooth and calculate its di-

mension.

Theorem 7.1.9 (cf. Theorem (5.7) in [14]). Let 𝑉 be a rank-2 vector bundle of odd

degree over a compact Riemann surface 𝑀 of genus 𝑔 > 1, and let ℳ be the moduli

space of solutions to the self-duality equations on 𝑉 , with fixed induced connection on

Λ2𝑉 . Then ℳ is a smooth manifold of dimension 12(𝑔 − 1).

Theorem 7.1.10 (cf. Theorem (5.8) in [14]). Let 𝑀 be a compact Riemann surface

of genus 𝑔 > 1. The moduli space of all stable pairs (𝑉,Φ), where 𝑉 is a rank-2

holomorphic vector bundle of fixed determinant and odd degree, and Φ is a trace-free

holomorphic section of End𝑉 ⊗𝐾, is a smooth manifold of real dimension 12(𝑔 − 1).

Theorem 7.1.11 (cf. Theorem (6.1) in [14]). Let 𝑀 be a compact Riemann surface

of genus 𝑔 > 1 and ℳ the moduli space of solutions to the self-duality equations on a

rank-2 vector bundle 𝑉 of odd degree. Then the natural metric on ℳ is complete.

By thinking of equation 7.1.1 as a complex moment map and coupling it with

equation 7.1.2, one can interpret equations 7.1.1 and 7.1.2 together giving rising

to a hyperkähler moment map equation and hence obtain the moduli space as a

hyperkähler reduction. As a result, the moduli space is hyperkähler.
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Theorem 7.1.12 (cf. Theorem (6.7) in [14]). Let 𝑀 be a compact Riemann surface

of genus 𝑔 > 1 and ℳ the moduli space of irreducible solutions to the 𝑆𝑂(3) self-

duality equations. Then the natural metric on the 12(𝑔 − 1)-dimensional manifold ℳ

is hyperkählerian.

Finally, one can use the following Morse-Bott function coming from the 𝑆1-

symmetry to study the topology of the moduli space.

Consider the following function

𝑓(𝐴,Φ) = 2𝑖

∫︁
𝑀

Tr(ΦΦ*) = ‖Φ‖2𝐿2 .

We can think of 𝑓 as a Morse function on ℳ, and use it to study the topology of ℳ.

Proposition 7.1.13 (cf. Proposition (7.1) in [14]). The function 𝑓 = ‖Φ‖2𝐿2 on ℳ

has the following properties.

1. 𝑓 is proper.

2. 𝑓 has critical values 0 and (𝑑− 1
2
)𝜋 where 𝑑 is a positive integer less than or equal

to 𝑔 − 1.

3. 𝑓−1(0) is a non-degenerate critical manifold of index 0, and is diffeomorphic to

the moduli space of stable rank-2 bundles of odd degree and fixed determinant

over 𝑀 .

4. 𝑓−1((𝑑− 1
2
)𝜋) is a non-degenerate critical manifold of index 2(𝑔+2𝑑− 2), and is

diffeomorphic to a 22𝑔-fold covering of the (2𝑔 − 2𝑑− 1)-fold symmetric product

𝑆2𝑔−2𝑑−1𝑀 of the Riemann surface. The covering is the pullback of the covering

Jac(𝑀) → Jac(𝑀) given by 𝑥 ↦→ 2𝑥 under the natural map 𝑆2𝑔−2𝑑−1𝑀 →

Jac(𝑀) which associates to a (2𝑔 − 2𝑑 − 2) − 𝑡𝑢𝑝𝑙𝑒 of points of 𝑀 its divisor

class.
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7.2 Moduli spaces of monopoles

In this section, we give another construction of hyperkähler spaces via monopoles.

The program of constructing hyperkähler spaces as moduli spaces of monopoles is

originally proposed by Cherkis-Kapustin [4]. We follow the Ph.D. thesis of Lorenzo

Foscolo for this construction [8].

Let (𝑋, 𝑔) be an oriented Riemannian 3-manifold and let 𝑃 → 𝑋 be a principal

𝐺-bundle, where 𝐺 is a compact Lie group. In practice, 𝐺 will be taken to be 𝑈(1),

𝑆𝑈(2), 𝑈(2) or 𝑆𝑂(3). We can equivalently work with associated vector bundles to

𝑃 , as in the previous subsection.

Definition 7.2.1. Magnetic monopoles are gauge equivalence classes of solutions (𝐴,Φ)

to the Bogomolny equation

*𝐹𝐴 = 𝑑𝐴Φ, (7.2.1)

where * denotes the Hodge star operator of (𝑋, 𝑔), 𝐹𝐴 is the curvature form of a

connection 𝐴 on the principal bundle 𝑃 , and Φ is a section of the adjoint bundle ad𝑃 .

The gauge group is Aut(𝑃 ), and the equivalence is with respect to the gauge group

action.

Just as we can think of Hitchin’s construction of moduli spaces of solutions to

anti-self-dual equations on Riemann surfaces as a dimensional reduction of the

Yang-Mills equation on 4-manifolds, we can think of the Bogomolny equation as

well as a dimensional reduction as follows:

Consider the 4-manifold 𝑋 × R𝑠, then (𝐴,Φ) is a solution to (6) if and only if

𝐴 = 𝐴 + Φ ⊗ 𝑑𝑠 is an anti-self-dual (ASD) connection on 𝑋 × R𝑠 invariant under

translations along the 𝑠-axis, where 𝑋×R𝑠 is equipped with the product metric and

the volume form 𝑑𝑠 ∧ 𝑑vol𝑔, and 𝐴 is ASD if *4𝐹𝐴 = −𝐹𝐴.

When 𝑋 is compact, smooth monopoles are trivial in the sense that 𝐴 is a flat

connection and Φ is a parallel section. However, on the other hand, this special

case yields the interesting study of instanton Floer theory. Hence, to find non-trivial

solutions to the Bogomolny equation, one needs to consider the cases where 𝑋 is
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non-compact or monopoles are allowed to have singularities.

Now, we specialize to the case where 𝑋 = R3 and 𝐺 = 𝑆𝑈(2).

Definition 7.2.2. Let the Yang-Mills-Higgs energy of a pair (𝐴,Φ) be defined as fol-

lows:

𝒜(𝐴,Φ) =
1

2

∫︁
𝑋

|𝐹𝐴|2 + |𝑑𝐴Φ|2.

We will assume that the energy 𝒜(𝐴,Φ) is finite and impose the boundary con-

dition

lim
|𝑥|→+∞

|Φ| = 1.

Definition 7.2.3. Let the charge 𝑘 ∈ Z≥0 of a solution (𝐴,Φ) to (6) be defined as the

following quantity:
1

4
lim
𝑅→∞

∫︁
𝜕𝐵𝑅

⟨Φ, 𝐹𝐴⟩.

Note that this quantity is also equal to minus the degree of the map

|Φ|−1Φ : 𝜕𝐵𝑅 → 𝑆2,

for large enough 𝑅.

Fix some 𝑘 ∈ Z≥0, and let 𝒞𝑘 be the space of smooth pairs (𝐴,Φ) on the trivial

𝑆𝑈(2)-bundle on R3 with finite energy, charge 𝑘 and such that lim|𝑥|→+∞ |Φ| = 1.

Let

𝑔 ∈ 𝒢 =𝑀𝑎𝑝(R3, 𝑆𝑈(2)),

then 𝑔 acts on a pair (𝐴,Φ) ∈ 𝒞𝑘 as follows:

𝑔 · (𝐴,Φ) = (𝐴− 𝑑𝐴𝑔𝑔
−1, 𝑔Φ𝑔−1).

Let 𝑐 = (𝐴,Φ), then we can also denote the above action as

𝑔 · 𝑐 = 𝑐+ (𝑑1𝑔)𝑔
−1,

where 𝑑1𝑔 = −(𝑑𝐴𝑔, [Φ, 𝑔]). Now let the gauge group 𝒢 be the space of bounded
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gauge transformations such that (𝑑1𝑔)𝑔−1 ∈ 𝐿2, and let 𝒢0 be the subspace of gauge

transformations which are asymptotic to the identity.

We can regard the Bogomolny equation as a map Ψ : 𝒞𝑘 → Ω1(R3; su(2)), and

we can define the following moduli spaces of monopoles on R3 with charge 𝑘:

𝑀𝑘 = Ψ−1(0)/𝒢0,

𝑁𝑘 = Ψ−1(0)/𝒢.

Now, we want to sketch the arguments for showing that 𝑀𝑘 is a hyperkähler

manifold. We will think of 𝑀𝑘 as the quotient of a hyperkähler reduction in the fol-

lowing sense: we regard the map Ψ : 𝒞𝑘 → Ω1(R3; su(2)) as a hyperkähler moment

map for the action of 𝒢0 on 𝒞𝑘 and the Bogomolny equation as the vanishing of the

moment map, where the kähler forms on Ψ−1(0) are given by the following:

𝜔ℎ(𝜉, 𝜉
′) =

∫︁
R3

⟨𝛾(𝑑𝑥ℎ)𝜉, 𝜉′⟩,

with 𝛾(𝑑𝑥ℎ), ℎ = 1, 2, 3, denoting the almost complex structures on Ψ−1(0). Hence,

𝑀𝑘 can be thought of as the corresponding hyperkähler quotient which is itself a

hyperkähler manifold.

7.3 Gibbons-Hawking construction

The Gibbons-Hawking construction for hyperkähler manifolds is a non-gauge-

theoretic construction that yields hyperkähler manifolds with a 𝑈(1)-symmetry. We

will describe this construction by following the Ph.D. thesis of Saman Habibi Esfa-

hani [7]. In this section, let 𝑋 be a 4-manifold with a 𝑈(1)-action.

Definition 7.3.1 (The Gibbons-Hawking Ansatz). Let 𝑈 ⊂ R3 be an open subset

with coordinates 𝑢1, 𝑢2, 𝑢3, and let 𝑝1, ..., 𝑝𝑛 be 𝑛 distinct points in 𝑈 . Let 𝜋 : 𝑋 →

𝑈 ∖ {𝑝1, ..., 𝑝𝑛} be a principal 𝑈(1)-bundle. Let 𝑡 be the coordinate along the fibers,

normalized to have period 2𝜋, with 𝜕𝑡 the corresponding vector field of the 𝑆1-action,
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𝜃 a connection 1-form on 𝑋 such that 𝜃(𝜕𝑡) = 𝑖. Let 𝛽 be the curvature 2-form defined

by 𝑑𝜃 = 𝜋*(𝛽), and 𝑉 : 𝑈 → R a positive harmonic real-valued function such that

*𝑑𝑉 =
1

2𝜋𝑖
𝛽.

The hyperkähler metric on 𝑋 can be expressed as follows:

𝑔𝑉 = 𝑉
3∑︁
𝑖=1

𝑑𝑢2𝑖 + 𝑉 −1𝜃20 ∈ Γ(𝑇 *𝑋 ⊗ 𝑇 *𝑋).

The kähler forms are the following:

𝜔1 = 𝑑𝑢1 ∧ 𝜃0 + 𝑉 𝑑𝑢2 ∧ 𝑑𝑢3,

𝜔2 = 𝑑𝑢2 ∧ 𝜃0 + 𝑉 𝑑𝑢3 ∧ 𝑑𝑢1,

𝜔3 = 𝑑𝑢3 ∧ 𝜃0 + 𝑉 𝑑𝑢1 ∧ 𝑑𝑢2.

The corresponding almost complex structures are given by:

𝐼(𝑑𝑢2) = −𝑑𝑢3, 𝐼(𝑑𝑢1) = − 1

𝑉
𝑑𝜃0,

𝐽(𝑑𝑢3) = −𝑑𝑢1, 𝐽(𝑑𝑢2) = − 1

𝑉
𝑑𝜃0,

𝐾(𝑑𝑢1) = −𝑑𝑢2, 𝐾(𝑑𝑢3) = − 1

𝑉
𝑑𝜃0.

Now, we give two examples of the constructions.

Example 7.3.2 (Multi-Eguchi-Hanson spaces). Let 𝑝1, ..., 𝑝𝑛 be distinct points in R3

and let 𝑈 = R3 ∖ {𝑝1, ..., 𝑝𝑛}. Let 𝑉 : 𝑈 → R be the harmonic function defined by

𝑉 (𝑥) =
𝑛∑︁
𝑖=1

1

4𝜋|𝑥− 𝑝𝑖|
.

The induced metric 𝑔𝑉 on 𝑋 can be extended smoothly to 𝜋−1(𝑥𝑖), for all 𝑖. The

resulting hyperkähler manifold 𝑋 is cannled a multi-Eguchi-Hanson space. A multi-
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Eguchi-Hanson metric is ALE.

Example 7.3.3 (Multi-Taub-NUT Spaces). Let 𝑚 > 0. Let 𝑝1, ..., 𝑝𝑛 be distinct points

in R3 and let 𝑈 = R3 ∖ {𝑝1, ..., 𝑝𝑛}. Let 𝑉 : 𝑈 → R be the harmonic function defined

by

𝑉 (𝑥) = 𝑚+
𝑛∑︁
𝑖=1

1

4𝜋|𝑥− 𝑝𝑖|
.

The induced metric 𝑔𝑉 on 𝑋 can be extended smoothly to 𝜋−1(𝑥𝑖), for all 𝑖. The

resulting hyperkähler manifold 𝑋 is cannled a multi-Taub-NUT space. A multi-Eguchi-

Hanson metric is ALF.
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Chapter 8

A new gauge-theoretic construction

of 4-dimensional hyperkähler ALE

spaces

In this chapter, we present the new results of this thesis.

8.1 Basic setups for the gauge-theoretic construction

We start off by considering 𝑆3 as a principal 𝑆1-bundle over 𝑆2 via the dual Hopf

fibration. The explicit construction is as follows:

𝑆3 = {(𝑧1, 𝑧2) ∈ C2 : |𝑧1|2 + |𝑧2|2 = 1}.

The 𝑆1-action on 𝑆3 is given by the following: for 𝑔 = 𝑒𝑖𝜃 ∈ 𝑆1,

(𝑧1, 𝑧2)𝑔 = (𝑧1𝑒
−𝑖𝜃, 𝑧2𝑒

−𝑖𝜃).

If we think of the base 𝑆2 as sitting inside R3, we can write down the projection

map explicitly which will be useful later on: let 𝜋 : 𝑆3 → 𝑆2 be the projection map

where 𝜋(𝑧1, 𝑧2) = (2𝑧1𝑧
*
2 , |𝑧1|2 − |𝑧2|2). In terms of real coordinates, 𝜋(𝑎, 𝑏, 𝑐, 𝑑) =
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(2(𝑎𝑐+ 𝑏𝑑), 𝑏𝑐− 𝑎𝑑, 𝑎2 + 𝑏2 − 𝑐2 − 𝑑2). Equivalently, we can think of 𝜋 as a map from

𝑆3 to C𝑃 1 given by 𝜋 : 𝑆3 → C𝑃 1 with 𝜋(𝑧1, 𝑧2) = [𝑧1 : 𝑧2].

Now, we turn to the associated bundles of 𝑆3. A complex vector space 𝑉 with

an 𝑆1-action on 𝑉 determines a vector bundle associated to 𝑆3 with fiber 𝑉 . Below,

we consider the specific 𝑆1-action on a complex vector space 𝑉 given by the scalar

multiplication.

Definition 8.1.1. Let 𝑉 be a complex vector space with 𝑆1-action given by scalar

multiplication. Then 𝐸(𝑉 ) is defined as 𝐸(𝑉 ) = 𝑆3 × 𝑉/ ∼, where [𝑝, 𝑣] ∼ [𝑝𝑔, 𝑔−1𝑣],

for all 𝑔 ∈ 𝑆1, and 𝐸(𝑉 ) is defined as 𝐸(𝑉 ) = 𝑆3 × 𝑉/ ∼, where [𝑝, 𝑣] ∼ [𝑝𝑔, 𝑔𝑣], for

all 𝑔 ∈ 𝑆1.

There are three important examples that we will be working with closely, i.e.,

the hyperplane bundle, the tautological bundle over 𝑆2 and the associate bundle

with fiber 𝑉 = 𝐸𝑛𝑑(𝑅), where 𝑅 is the regular representation of a finite subgroup

Γ of 𝑆𝑈(2).

Example 8.1.2 (The hyperplane bundle). Let 𝑉 = C. Then by the previous definition,

𝐸(C) is isomorphic to the hyperplane bundle 𝐻 over C𝑃 1.

Example 8.1.3. Let Γ be a finite subgroup of 𝑆𝑈(2), and let 𝑅 be the regular repre-

sentation of Γ with hermitian metric chosen so that the canonical basis {𝑒𝛾|𝛾 ∈ Γ} is

unitary. We see that 𝐸(𝑉 ) splits orthogonally into a direct sum of hyperplane bundles,

that is, 𝐸(𝑉 ) = ⊕𝑖𝐻𝑖, where each 𝐻𝑖 = 𝐸(C · 𝑒𝑖) is isomorphic to the hyperplane

bundle 𝐻.

8.1.1 The Γ-action and orbifold vector bundles

Let Γ be a finite subgroup of 𝑆𝑈(2) as before, and let 𝑉 be a representation of Γ

given by 𝑟 : Γ → 𝐺𝐿C(𝑉 ). We want to build an orbifold vector bundle incorporating

the Γ-representation. To this end, we introduce the following definition.

Definition 8.1.4. 1. Suppose either Γ doesn’t contain −1 ∈ 𝑆𝑈(2) or Γ contains

−1 and 𝑟(−1) = −1 ∈ 𝐺𝐿C(𝑉 ). Let 𝐸(𝑉 )Γ𝑟 be defined as follows: 𝐸(𝑉 )Γ𝑟 =
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𝑆3 × 𝑉/ ∼, where [𝑝, 𝑣] ∼ [𝑝𝑔, 𝑔−1𝑣] ∼ [𝑝𝛾, 𝛾−1𝑣], for all 𝑔 ∈ 𝑆1 and 𝛾 ∈ Γ,

where 𝛾−1𝑣 = 𝑟(𝛾−1)𝑣.

2. Suppose Γ contains −1 ∈ 𝑆𝑈(2) and 𝑟(−1) ̸= −1 ∈ 𝐺𝐿C(𝑉 ), we decompose

𝑉 into the eigenspaces of 𝑟(−1), and write 𝑉 = 𝑉0 ⊕ 𝑉1, where 𝑟(−1) acts as 1

on 𝑉0 and acts as −1 on 𝑉1. Define 𝐸(𝑉 )Γ𝑟 to be 𝐸(𝑉 )Γ𝑟 = 𝑆3 × 𝑉1/ ∼, where

[𝑝, 𝑣] ∼ [𝑝𝑔, 𝑔−1𝑣] ∼ [𝑝𝛾, 𝛾−1𝑣], for all 𝑔 ∈ 𝑆1 and 𝛾 ∈ Γ, where 𝛾−1𝑣 = 𝑟(𝛾−1)𝑣.

We will oftentimes abbreviate 𝐸(𝑉 )Γ𝑟 as 𝐸(Γ).

Remark 8.1.5. 1. We can think of 𝐸(Γ) as an orbifold vector bundle over 𝑆2/Γ.

2. Let 𝐶∞(𝑆2, 𝐸(𝑉 )) denote the space of sections of 𝐸(𝑉 ) and let 𝐶∞(𝑆2, 𝐸(𝑉 ))Γ

denote the space of Γ-invariant sections of 𝐸(𝑉 ). With the above definition,

we always have that 𝐶∞(𝑆2, 𝐸(𝑉 ))Γ ∼= 𝐶∞
𝑜𝑟𝑏(𝑆

2/Γ, 𝐸(𝑉 )Γ𝑟 ) = 𝐶∞
𝑜𝑟𝑏(𝑆

2/Γ, 𝐸(Γ)).

Note that we will begin to drop the subscript and simply use 𝐶∞(𝑆2/Γ, 𝐸(Γ))

or 𝐶∞(𝐸(Γ)) to denote the space of orbifold sections of 𝐸(Γ) or equivalently the

Γ-invariant sections of 𝐸(𝑉 ) in the coming sections.

3. If we let 𝑉 be equal to the endomorphism space 𝐸𝑛𝑑(𝑅) of the regular represen-

tation 𝑅 of Γ. Then we have 𝛾−1𝑣 = 𝑅(𝛾−1)𝑣𝑅(𝛾). Recall that in Kronheimer’s

construction, when forming 𝑀 = 𝑃 Γ = (𝑄 ⊗ 𝑉 )Γ, the element −1 ∈ Γ acts on

𝑄 by scalar multiplication and on 𝑉 by the Γ-representation 𝑟(−1). Hence, if an

element
∑︀
𝑞 ⊗ 𝑣 is Γ-invariant, we must have

∑︀
𝑞 ⊗ 𝑣 =

∑︀
(−𝑞) ⊗ 𝑟(−1)𝑣, so

𝑟(−1) must act as −1 ∈ 𝐺𝐿C(𝑉 ) on 𝑉 , so
∑︀
𝑞⊗𝑣 lies in 𝑄⊗𝑉1. In other words,

𝑃 Γ = (𝑄⊗ 𝑉1)
Γ.

Now, we want to equip the bundles with a pointwise metric. Let 𝐸(𝑉 ) and 𝐸(Γ)

be defined as above.

Definition 8.1.6. 1. Let ℎ𝑉 be a hermitian metric on 𝑉 . Then the pointwise hermi-

tian metric ℎ𝐸(𝑉 ) on 𝐸(𝑉 ) with respect to ℎ𝑉 is given by ℎ𝐸(𝑉 )([𝑝, 𝑣1], [𝑝, 𝑣2])𝑥 =

ℎ𝑉 (𝑣1, 𝑣2), where 𝑝 ∈ 𝑆3 lies in the fiber over 𝑥 ∈ 𝑆2.
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2. Suppose ℎ𝑉 is also Γ-invariant, then ℎ𝑉 gives rise to a pointwise hermitian metric

on 𝐸(Γ) again given by ℎ𝐸(𝑉 )([𝑝, 𝑣1], [𝑝, 𝑣2])𝑥 = ℎ𝑉 (𝑣1, 𝑣2), where 𝑝 ∈ 𝑆3 lies in

the fiber over 𝑥 ∈ 𝑆2.

Remark 8.1.7. With the above definition, we can identify 𝐸(𝑉 ) with the dual bundle

𝐸(𝑉 )*, where [𝑝, 𝑣]*([𝑝, 𝑣′]) = ℎ𝑉 ([𝑝, 𝑣
′], [𝑝, 𝑣]) = [𝑝, 𝑣*]([𝑝, 𝑣′]), for [𝑝, 𝑣*] ∈ 𝐸(𝑉 ), and

the metric on 𝐸(𝑉 ) is given by taking ℎ𝐸(𝑉 )([𝑝, 𝑣
*
1], [𝑝, 𝑣

*
2])𝑥 = ℎ𝑉 (𝑣

*
1, 𝑣

*
2) = ℎ𝑉 (𝑣2, 𝑣1).

On the other hand, we can also express ℎ𝐸(𝑉 ) in terms of the trace, that is, let

ℎ𝐸(𝑉 )([𝑝, 𝑣1], [𝑝, 𝑣2])𝑥 = Tr([𝑝, 𝑣1], [𝑝, 𝑣2]
*)𝑥 = Tr(𝑣1𝑣

*
2).

As a result, we also get 𝐸(Γ)*.

8.2 The gauge-theoretic framework

We are ready to introduce the gauge-theoretic framework in this paper. We

will mainly be working with the orbifold vector bundle 𝐸(Γ) that we have defined

previously for the main construction. We fix a holomorphic structure on 𝐸(C) = 𝐻,

and denote it by 𝜕. For the remaining of the section, we assume 𝑉 = 𝐸𝑛𝑑(𝑆)

to be the endomorphism space of some Γ-representation 𝑆. We fix a Γ-invariant

hermitian structure ℎ𝑉 on 𝑉 and hence get pointwise metrics on 𝐸(𝑉 ) and 𝐸(Γ).

We take 𝜔𝑣𝑜𝑙 to be the Fubini-Study form on C𝑃 1.

Let 𝐴0 be the unique Chern connection on 𝐻 compatible with the holomorphic

structure 𝜕 and the hermitian structure descending from 𝐸(𝑉 ). Note that 𝐴0 will

be Γ-invariant as it is invariant under 𝑆𝑈(2).

Let 𝑃 be the bundle of automorphisms of 𝐸(𝑉 ). Then 𝑃 is in fact the trivial

bundle 𝑆2×𝐺𝐿C(𝑉 ). Now, let 𝐹 ⊂ 𝑈(𝑆) be the subgroup of unitary transformations

of 𝑆 that commute with the Γ-action, and let 𝑇 be the scalar subgroup sitting inside

𝐹 . Then we can think of 𝑃 defined such that 𝑃 = 𝑆2 ×𝐹/𝑇 as a subbundle of 𝑃 , as

we can think of 𝐹/𝑇 as lying inside 𝐺𝐿C(𝑉 ) by acting on 𝑉 by conjugation. As 𝐹

is the subgroup of 𝑈(𝑆) with elements that commute with the Γ-action, we also get
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that 𝑃 Γ defined as 𝑃 Γ = 𝑆2/Γ × 𝐹/𝑇 is a subbundle of the bundle automorphisms

of 𝐸(Γ). This motivates the following definition.

Definition 8.2.1. Let 𝑉 = 𝐸𝑛𝑑(𝑆) be the endomorphism space of some Γ-representation

𝑆. Let 𝐹 ⊂ 𝑈(𝑆) be the unitary transformations of 𝑆 that commute with the Γ-action,

and let 𝑇 be the scalar subgroup sitting inside 𝐹 .

1. Let the gauge group 𝒢𝐹,Γ of 𝐸(Γ) be defined as 𝒢𝐹,Γ =𝑀𝑎𝑝(𝑆2/Γ, 𝐹/𝑇 ). Let g𝐹,Γ

denote the Lie algebra of 𝒢𝐹,Γ. We use 𝜌 to denote an element in 𝒢𝐹,Γ, and we use

𝑌 to denote an element in g𝐹,Γ.

2. Let 𝒢𝐹,ΓC denote the complexification of 𝒢𝐹,Γ, that is, 𝒢𝐹,ΓC = 𝑀𝑎𝑝(𝑆2/Γ, 𝐹 𝑐/C*),

where 𝐹 𝑐 = 𝐺𝐿C(𝑉 )Γ denotes the complex linear transformations of 𝑆 that

commute with the Γ-action. We use 𝜅 to denote an element in 𝒢𝐹,ΓC .

Definition 8.2.2. We define the configuration space to be 𝒜𝐹×𝐶∞(𝑆2/Γ, 𝐸(Γ)) where

𝒜𝐹 and 𝐶∞(𝑆2/Γ, 𝐸(Γ)) are defined as follows.

1. Let 𝒜𝐹 be the space of connections on 𝐸(Γ) given by

𝒜𝐹 = {𝐴0 + 𝜅*𝜕𝜅*−1 + 𝜅−1𝜕𝜅 | 𝜅 ∈ 𝒢𝐹,ΓC },

where𝐴0 is the aforementioned Chern connection on𝐻 or equivalently 𝑆3 thought

of as the induced connection on 𝐸(Γ). We will always denote 𝜅*𝜕𝜅*−1 + 𝜅−1𝜕𝜅

by 𝐵, and sometimes we omit the base connection 𝐴0.

2. Let 𝐶∞(𝑆2/Γ, 𝐸(Γ)) denote the abbreviation for the space of orbifold vector bun-

dle sections 𝐶∞
𝑜𝑟𝑏(𝑆

2/Γ, 𝐸(Γ)).

Remark 8.2.3. 1. Notice that 𝒢𝐹,Γ is the subgroup of the group of unitary gauge

automorphisms of 𝐸(Γ) = 𝐸(𝑉 )Γ = 𝐸(𝐸𝑛𝑑(𝑆))Γ induced by the automorphisms

of 𝐸(𝑆)Γ. And the action of 𝜌 ∈ 𝒢𝐹,Γ on 𝒜𝐹 × 𝐶∞(𝑆2/Γ, 𝐸(Γ)) is given by the

following: for a pair (𝐵,Θ) ∈ 𝒜𝐹 × 𝐶∞(𝑆2/Γ, 𝐸(Γ)),

𝜌 · (𝐵,Θ) = (𝐵 + 𝜌𝑑𝐵𝜌
−1, 𝜌Θ𝜌−1).

55



Note that here we omit the base connection 𝐴0 as 𝜌 fixes 𝐴0.

2. The action of the connection form𝐵 on a section Θ comes from the representation

of the Lie algebra of 𝐹 𝑐 on 𝑉 induced from the representation 𝑆.

3. The key point of the definition of 𝒜𝐹 is that it can be thought of as the complex

gauge orbit containing 𝐴0, which will become important in the later sections.

Definition 8.2.4 (Symplectic structure on 𝒜𝐹×𝐶∞(𝑆2/Γ, 𝐸(Γ))). Let (𝐵1,Θ1), (𝐵2,Θ) ∈

𝒜𝐹 ×𝐶∞(𝑆2/Γ, 𝐸(Γ)), let a symplectic 2-form Ω on 𝒜𝐹 ×𝐶∞(𝑆2/Γ, 𝐸(Γ)) be defined

as follows:

Ω((𝐵1,Θ1), (𝐵2,Θ)) =

∫︁
𝑆2/Γ

𝐵1 ∧𝐵2 +

∫︁
𝑆2/Γ

−𝐼𝑚⟨Θ1,Θ2⟩𝜔𝑣𝑜𝑙.

Definition 8.2.5. 1. Let 𝒢𝐹,Γ0 denote the based subgroup of 𝒢𝐹,Γ, that is

𝒢𝐹,Γ0 = {𝜌 ∈ 𝒢𝐹,Γ|𝜌(𝑥) = 1, for some fixed base point 𝑥 ∈ 𝑆2/Γ}.

We also get the complexified version 𝒢𝐹,Γ0,C for the above definition.

2. Let 𝒢𝐹,Γ𝜏 denote the antipodal-invariant subgroup of 𝒢𝐹,Γ and let Ω2
𝜏 (𝑆

2/Γ; f/t)

denote the antipodal-invariant subgroup of Ω2(𝑆2/Γ; f/t), where 𝜏 : 𝑆2 → 𝑆2 is

the antipodal map given by 𝑥 = (𝑎, 𝑏, 𝑐) ↦→ 𝜏(𝑥) = (−𝑎,−𝑏,−𝑐). We can also

think of 𝜏 as a map from C𝑃 1 to C𝑃 1 with 𝜏 : C𝑃 1 → C𝑃 1, [𝑧1 : 𝑧2] ↦→ [−𝑧2 : 𝑧1].

We remark here that 𝜏 commutes with the Γ-action and hence descends to a map

𝜏 : 𝑆2/Γ → 𝑆2/Γ.

Below, we define the 𝐿2 inner product on various spaces.

Definition 8.2.6. 1. Let Θ1, Θ2 be two sections of 𝐸(Γ). We define the 𝐿2 inner

product of Θ1 and Θ2 to be

⟨Θ1,Θ2⟩𝐿2 =

∫︁
𝑆2/Γ

⟨Θ1,Θ2⟩𝜔𝑣𝑜𝑙 =
∫︁
𝑆2/Γ

Tr(Θ1Θ
*
2)𝜔𝑣𝑜𝑙,

where ⟨Θ1,Θ2⟩𝑥 = ℎ𝐸(𝑉 )(Θ1(𝑥),Θ2(𝑥))𝑥 = Tr(Θ1(𝑥)Θ
*
2(𝑥))𝑥.
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2. We identify Ω0(𝑆2/Γ; f/t) and Ω2(𝑆2/Γ; f/t) as dual spaces through the follow-

ing integration: let 𝜑1 ∈ Ω0(𝑆2/Γ; f/t) and 𝜑2 ∈ Ω2(𝑆2/Γ; f/t), then 𝜑2(𝜑1) =∫︀
𝑆2/Γ

⟨𝜑1, 𝜑2⟩, where we think of 𝜑2 as an element in Ω0(𝑆2/Γ; f/t) multiplied by

the volume form 𝜔𝑣𝑜𝑙, and the inner product is pointwisely given by the inner

product on f/t.

8.3 An Overview of the Gauge-Theoretic Construction

In this section, we describe the main gauge-theoretic construction of the ALE

spaces while leaving some details of the construction and most proofs to the future

sections. We make an important remark that from this point on and throughout the

rest of the paper, we take the Γ-representation 𝑆 to be the regular representation 𝑅

of Γ unless otherwise specified, and carry on with the same notations introduced in

the previous sections. In particular, we have 𝑉 = 𝐸𝑛𝑑(𝑅).

8.3.1 Symplectic reduction

Recall that in the previous section, we define the gauge group to be 𝒢𝐹,Γ =

𝑀𝑎𝑝(𝑆2/Γ, 𝐹/𝑇 ) acting on the configuration space 𝒜𝐹 ×𝐶∞(𝑆2/Γ, 𝐸(Γ)) under the

following action: for 𝜌 ∈ 𝒢𝐹,Γ, and (𝐵,Θ) ∈ 𝒜𝐹 × 𝐶∞(𝑆2/Γ, 𝐸(Γ)),

𝜌 · (𝐵,Θ) = (𝐵 + 𝜌𝑑𝐵𝜌
−1, 𝜌Θ𝜌−1).

Proposition 8.3.1. The above gauge group action on 𝒜𝐹 ×𝐶∞(𝑆2/Γ, 𝐸(Γ)) is Hamil-

tonian and gives rise to the following moment map:

𝜇̃1 : 𝒜𝐹 × 𝐶∞(𝑆2/Γ, 𝐸(Γ)) → Ω2(𝑆2/Γ; f/t),

(𝐵,Θ) ↦→ 𝐹𝐵 − 𝑖

2
[Θ,Θ*]𝜔𝑣𝑜𝑙.

Remark 8.3.2. 1. Notice that 𝐵 alone isn’t a connection whereas 𝐴0 + 𝐵 is a con-

nection on 𝐸(Γ). Hence, we can write 𝐹𝐴0+𝐵 = 𝐹𝐴0+𝐹𝐵, and 𝜕𝐴0+𝐵 = 𝜕𝐴0+𝜕𝐵.
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2. With the preceding proposition in place, we can write down the following equa-

tions: for 𝜁1 ∈ 𝑍, where 𝑍 is the center of (f/t)* thought of as traceless matrices

in f/t, we consider

𝜕𝐴0+𝐵Θ = 0 (8.3.1)

𝐹𝐵 − 𝑖

2
[Θ,Θ*]𝜔𝑣𝑜𝑙 = 𝜁1 · 𝜔𝑣𝑜𝑙 (8.3.2)

The above equations motivate the following definition.

Definition 8.3.3. For an element 𝜁1 ∈ 𝑍, let ℳ(Γ, 𝜁1) be the moduli space of solutions

to 8.3.1 and 8.3.2 that lie in the configuration space 𝒜𝐹 × 𝐶∞(𝑆2/Γ, 𝐸(Γ)) modulo

the gauge group action, that is,

ℳ(Γ, 𝜁1) = {(𝐴0 +𝐵,Θ) ∈ 𝒜𝐹 × 𝐶∞(𝑆2/Γ, 𝐸(Γ)) | (8.3.1)− (8.3.2)}/𝒢𝐹,Γ.

Proposition 8.3.4. For choices of 𝜁1 such that 𝒢𝐹,Γ acts freely on the space of solu-

tions to 8.3.1 and 8.3.2 in 𝒜𝐹 × 𝐶∞(𝑆2/Γ, 𝐸(Γ)), ℳ(Γ, 𝜁1) can be identified with

𝜇1(𝜁1)
−1/𝐹 in [21].

Remark 8.3.5. We will discuss the conditions assumed in the above proposition in the

future sections in detail and we will prove the proposition in Section 7.

8.3.2 Further reduction

Everything regarding to the hyperkähler structure on 𝐶∞(𝑆2/Γ, 𝐸(Γ)) appearing

in this subsection will be discussed in detail in Section 4. Here we give a brief

overview. It turns out that 𝐶∞(𝑆2/Γ, 𝐸(Γ)) can be given a hyperkähler structure.

Before we write down the kähler forms, we first introduce some notations. For

a section Θ on 𝐶∞(𝑆2/Γ, 𝐸(Γ)), we identify Θ with an 𝑆1- and Γ-equivariant map

𝜆 : 𝑆3 → 𝐸𝑛𝑑(𝑅), and hence we can express Θ as Θ : 𝑥 ↦→ [𝑝, 𝜆(𝑝)], for 𝑥 ∈ 𝑆2 and

𝑝 ∈ 𝜋−1(𝑥) ⊂ 𝑆3.
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There is a complex structure 𝐽 , in addition to the standard complex structure

𝐼, on the space of sections 𝐶∞(𝑆2/Γ, 𝐸(Γ)), which we can express as follows. Let

Θ : 𝑥 ↦→ [𝑝, 𝜆(𝑝)] be given, the action of 𝐽 on Θ is given by 𝐽Θ : 𝑥 ↦→ [𝑝,−𝜆(𝐽(𝑝))*],

where 𝑝 ∈ 𝑆3 and 𝐽 on 𝑆3 is just the usual quaternion action.

Proposition 8.3.6. There are three symplectic forms on 𝐶∞(𝑆2/Γ, 𝐸(Γ)) compatible

with complex structures 𝐼, 𝐽 , 𝐾, respectively:

𝜔1(Θ1,Θ2) =

∫︁
𝑆2/Γ

−𝐼𝑚⟨Θ1,Θ2⟩𝜔𝑣𝑜𝑙,

𝜔2(Θ1,Θ2) =

∫︁
𝑆2/Γ

𝑅𝑒⟨𝐽Θ1,Θ2⟩𝜔𝑣𝑜𝑙,

𝜔3(Θ1,Θ2) =

∫︁
𝑆2/Γ

−𝐼𝑚⟨𝐽Θ1,Θ2⟩𝜔𝑣𝑜𝑙,

and a hyperkähler metric 𝑔ℎ such that

𝑔ℎ(Θ1,Θ2) =

∫︁
𝑆2/Γ

𝑅𝑒⟨Θ1,Θ2⟩𝜔𝑣𝑜𝑙,

together giving rise to a hyperkähler structure on 𝐶∞(𝑆2/Γ, 𝐸(Γ)).

We will prove the above proposition in Section 4. It turns out that the action of

the 𝜏 -invariant gauge group 𝒢𝐹,Γ𝜏 on the space of sections of 𝐸(Γ) with respect to

each one of the three symplectic forms is again Hamiltonian. Hence, we can write

down the following additional moment maps and operate a further reduction on

the configuration space:

∙ 𝜇̃2 : 𝐶
∞(𝑆2/Γ, 𝐸(Γ)) → Ω2(𝑆2/Γ; f/t),Θ ↦→ −1

4
([𝐽Θ,Θ*]− [Θ, 𝐽Θ*])𝜔𝑣𝑜𝑙,

∙ 𝜇̃3 : 𝐶
∞(𝑆2/Γ, 𝐸(Γ)) → Ω2(𝑆2/Γ; f/t),Θ ↦→ − 𝑖

4
([𝐽Θ,Θ*] + [Θ, 𝐽Θ*])𝜔𝑣𝑜𝑙.

We get two additional moment map equations: let 𝜁2, 𝜁3 ∈ 𝑍, consider

−1

4
([𝐽Θ,Θ*]− [Θ, 𝐽Θ*])𝜔𝑣𝑜𝑙 = 𝜁2 · 𝜔𝑣𝑜𝑙, (8.3.3)
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− 𝑖

4
([𝐽Θ,Θ*] + [Θ, 𝐽Θ*])𝜔𝑣𝑜𝑙 = 𝜁3 · 𝜔𝑣𝑜𝑙. (8.3.4)

Definition 8.3.7. Let 𝒜𝐹
𝜏 ⊂ 𝒜𝐹 be the subspace of connections in 𝒜𝐹 on 𝐸(Γ) given

by

𝒜𝐹
𝜏 = {𝐴0 + 𝜅*𝜕𝜅*−1 + 𝜅−1𝜕𝜅 | 𝜅 ∈ 𝒢𝐹,Γ𝜏,C },

where 𝐴0 is again the base Chern connection on 𝐸(Γ), and 𝒢𝐹,Γ𝜏,C is the complexification

of the 𝜏 -invariant subgroup 𝒢𝐹,Γ𝜏 .

Theorem 8.3.8. Let 𝜁 = (𝜁1, 𝜁2, 𝜁3), where for all 𝑖, 𝜁𝑖 ∈ 𝑍. Let

𝒳𝜁 = {(𝐵,Θ) ∈ 𝒜𝐹
𝜏 × 𝐶∞(𝑆2/Γ, 𝐸(Γ))|(3.1)− (3.4)}/𝒢𝐹,Γ𝜏 .

Then for a suitable choice of 𝜁, 𝒳𝜁 is diffeomorphic to the resolution of singularity

C̃2/Γ. Furthermore, for 𝜁 = 𝜁* = −𝜁, there exists a map Φ taking 𝑋𝜁 in [21] to 𝒳𝜁

and a natural choice of metric on 𝒳𝜁 such that Φ is an isometry.

Remark 8.3.9. We will make the statement of “a suitable choice of 𝜁" precise in Section

7 where we also prove the theorem.

8.3.3 Proof of Proposition 8.3.1

Here in this subsection, we give the proof of Proposition 8.3.1, which involves

simply standard calculations.

Proof of Proposition 8.3.1. We will show that 𝐹𝐵 − 𝑖
2
[Θ,Θ*]𝜔𝑣𝑜𝑙 is a moment map on

Ω1(𝑆2/Γ; f/t) × 𝐶∞(𝑆2/Γ, 𝐸(Γ)) induced by the action of 𝒢𝐹,Γ. We need to check

the two properties of a moment map.

Let 𝑌 : 𝑆2/Γ → f/t be in g𝐹,Γ, and let 𝑌 ♯ be the vector field on Ω1(𝑆2/Γ; f/t)×

𝐶∞(𝑆2/Γ, 𝐸(Γ)) generated by 𝑌 . Then 𝑌 ♯(𝐵,Θ) is given by

𝑑

𝑑𝑡
|𝑡=0(𝐵 + exp(𝑡𝑌 )𝑑𝐵 exp(−𝑡𝑌 ), exp(𝑡𝑌 )Θ exp(−𝑡𝑌 )) = (−𝑑𝐵𝑌, [𝑌,Θ]).
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Hence, we have

𝜄𝑌 ♯𝜔(𝐵,Θ)(𝐵
′,Θ′) =∫︁

𝑆2/Γ

Tr(−𝑑𝐵𝑌 ∧𝐵′)−
∫︁
𝑆2/Γ

𝐼𝑚⟨[𝑌,Θ],Θ′⟩𝜔𝑣𝑜𝑙 =∫︁
𝑆2/Γ

Tr([𝑌,𝐵] ∧𝐵′ − 𝑑𝑌 ∧𝐵′)−
∫︁
𝑆2/Γ

𝐼𝑚⟨[𝑌,Θ],Θ′⟩𝜔𝑣𝑜𝑙.

Meanwhile, let (𝐵𝑡,Θ𝑡)𝑡∈[0,1] be a path in Ω1(𝑆2/Γ; f/t)×𝐶∞(𝑆2/Γ, 𝐸(Γ)) such that

(𝐵0,Θ0) = (𝐵,Θ) and 𝑑
𝑑𝑡
|𝑡=0(𝐵𝑡,Θ𝑡) = (𝐵′,Θ′). Then we also have

𝑑𝜇̃𝑌1(𝐵,Θ)(𝐵
′,Θ′) =

𝑑

𝑑𝑡
|𝑡=0

∫︁
𝑆2/Γ

Tr(𝑌 ∧ 𝐹𝐵𝑡)−
𝑑

𝑑𝑡
|𝑡=0

∫︁
𝑆2/Γ

⟨𝑌, 𝑖
2
[Θ𝑡,Θ

*
𝑡 ]⟩𝜔𝑣𝑜𝑙 =

𝑑

𝑑𝑡
|𝑡=0

∫︁
𝑆2/Γ

Tr(𝑌 ∧ 𝐹𝐵𝑡)−
𝑑

𝑑𝑡
|𝑡=0

∫︁
𝑆2/Γ

− 𝑖

2
⟨𝑌, [Θ𝑡,Θ

*
𝑡 ]⟩𝜔𝑣𝑜𝑙 =∫︁

𝑆2/Γ

Tr(𝑌 ∧ (𝑑𝐵′ +𝐵′ ∧𝐵 +𝐵 ∧𝐵′))−
∫︁
𝑆2/Γ

− 𝑖

2
⟨𝑌, [Θ′,Θ*] + [Θ,Θ′*]⟩𝜔𝑣𝑜𝑙.

Hence, we have 𝜄𝑌 ♯𝜔(𝐵,Θ)(𝐵
′,Θ′) = 𝑑𝜇̃𝑌1(𝐵,Θ)(𝐵

′,Θ′).

We also need to check the equivariance condition, that is, 𝜇̃1 ∘𝜓𝜌 = 𝐴𝑑*𝜌 ∘ 𝜇̃1. Let

𝜌 be an element in the unitary gauge group 𝒢𝐹,Γ, and let

𝜓𝜌 : Ω
1(𝑆2/Γ; f/t)× 𝐶∞(𝑆2/Γ, 𝐸(Γ)) → Ω1(𝑆2/Γ; f/t)× 𝐶∞(𝑆2/Γ, 𝐸(Γ))

be the diffeomorphism on the configuration space induced by 𝜌. We have

𝜇̃1 ∘ 𝜓𝜌(𝐵,Θ) = 𝐹 (𝐵 + 𝜌𝑑𝐵𝜌
−1)− 𝑖

2
[𝜌Θ𝜌−1, (𝜌Θ𝜌−1)*]𝜔𝑣𝑜𝑙.

Meanwhile,

𝐴𝑑*𝜌 ∘ 𝜇̃1(𝐵,Θ) = 𝜌𝐹𝐵𝜌
−1 − 𝑖

2
𝜌[Θ,Θ*]𝜌−1𝜔𝑣𝑜𝑙.

Since the gauge action on curvature is conjugation and 𝜌−1 = 𝜌*, we have the
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desired equality

𝜇̃1 ∘ 𝜓𝜌(𝐵,Θ) = 𝐴𝑑*𝜌 ∘ 𝜇̃1(𝐵,Θ).

8.4 Hyperkähler structure on 𝐶∞(𝑆2/Γ, 𝐸(Γ))

8.4.1 The quaternions

Let 𝑆𝑈(2) denote the 2-dimensional special unitary group. Explicitly, 𝑆𝑈(2) =

{𝛾 ∈ 𝐺𝑙2(C)|𝛾 =

⎛⎝ 𝑢 𝑣

−𝑣* 𝑢*

⎞⎠ , |𝑢|2 + |𝑣|2 = 1}. Note that 𝑢* refers to complex

conjugation.

Below, we will set up another piece of conventions, that is, to endow C2 with a

right H-module structure. Write (𝑧1, 𝑧2) for a point in C2, where 𝐼, 𝐽,𝐾 act on C2 as

follows: 𝐼(𝑧1, 𝑧2) = (𝑖𝑧1, 𝑖𝑧2), 𝐽(𝑧1, 𝑧2) = (−𝑧*2 , 𝑧*1), 𝐾(𝑧1, 𝑧2) = (−𝑖𝑧*2 , 𝑖𝑧*1).

Note we also have 𝑆𝑈(2) acting on the right on C2: Let 𝛾 ∈ 𝑆𝑈(2), 𝛾 =⎛⎝ 𝑢 𝑣

−𝑣* 𝑢*

⎞⎠, then

𝐽((𝑧1, 𝑧2)𝛾) = 𝐽(𝑢𝑧1 − 𝑣*𝑧2, 𝑣𝑧1 + 𝑢*𝑧2) = (−𝑣*𝑧*1 − 𝑢𝑧*2 , 𝑢
*𝑧*1 − 𝑣𝑧*2),

and

(𝐽(𝑧1, 𝑧2))𝛾 = (−𝑧*2 , 𝑧*1)𝛾 = (−𝑣*𝑧*1 − 𝑢𝑧*2 , 𝑢
*𝑧*1 − 𝑣𝑧*2),

so the 𝑆𝑈(2)-action commutes with the 𝐽-action. Hence, the 𝑆𝑈(2)-action on C2

commutes with all the 𝐼-, 𝐽-, 𝐾-actions.

If we restrict the actions to 𝑆3 thought of as the unit quaternions, then we make

the following observations:

Lemma 8.4.1. The 𝑆1-action on 𝑆3 coming from the dual Hopf fibration commutes

with 𝐼, and for 𝑝 ∈ 𝑆3, 𝑔 ∈ 𝑆1, 𝐽(𝑝𝑔) = 𝐽(𝑝)𝑔*, 𝐾(𝑝𝑔) = 𝐾(𝑝)𝑔*.

Lemma 8.4.2. Consider 𝑆3 as the principal 𝑆1-bundle via the dual Hopf fibration.
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Let 𝜋 : 𝑆3 → C𝑃 1 be the projection map where 𝜋(𝑧1, 𝑧2) = [𝑧1 : 𝑧2]. Then 𝐼 acts

as the identity and 𝐽 , 𝐾 act as the natural involution on the base C𝑃 1 given by

𝜏 : C𝑃 1 → C𝑃 1, [𝑧1 : 𝑧2] ↦→ [−𝑧*2 : 𝑧*1 ].

8.4.2 Quaternionic structures on associated bundles and spaces

of sections

We have previously introduced the bundle 𝐸(𝑉 ) and 𝐸(Γ). In this subsection,

we introduce quaternionic structures on these bundles and their spaces of sections.

We begin with 𝐸(𝑉 ). Notice that we can define the quaternion actions on 𝐸(𝑉 )

in the following way:

𝐼[𝑝, 𝑣] = [−𝐼(𝑝), 𝑣] = [𝑝, 𝑖𝑣],

𝐽 [𝑝, 𝑣] = [𝐽(𝑝), 𝑣*],

𝐾[𝑝, 𝑣] = [−𝐾(𝑝), 𝑣*],

with [𝑝, 𝑣] ∈ 𝐸(𝑉 ).

It’s straightforward to check that the 𝐼-, 𝐽-, 𝐾-actions defined above satisfy

the properties for quaternionic actions. Hence, we have equipped 𝐸(𝑉 ) with a

quaternionic structure.

Now, we move on to 𝐸(Γ). In the previous subsection, we have shown that the

Γ-action and the 𝐽-action commute on C2. Observe that we have that the Γ-action

commutes with the quaternion actions on the level of 𝐸(𝑉 ) as well; more precisely,

we have that

𝐽(𝛾[𝑝, 𝑣]) = 𝐽 [𝑝𝛾, 𝛾−1𝑣] = 𝐽 [𝑝𝛾,𝑅(𝛾−1)𝑣𝑅(𝛾)]

= [𝐽(𝑝𝛾), (𝑅(𝛾−1)𝑣𝑅(𝛾))*] = [𝐽(𝑝)𝛾,𝑅(𝛾)*𝑣*𝑅(𝛾*)*]

= [𝐽(𝑝)𝛾,𝑅(𝛾*)𝑣*𝑅(𝛾)] = [𝐽(𝑝)𝛾,𝑅(𝛾−1)𝑣*𝑅(𝛾)] = 𝛾(𝐽 [𝑝, 𝑣]),

given that 𝛾 ∈ 𝑆𝑈(2) and 𝑅 : Γ → 𝑈(𝑅) ⊂ 𝐸𝑛𝑑(𝑅) is the regular representation.

Hence, the quaternion actions descend to 𝐸(Γ). We remark that the 𝐽- and 𝐾-
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actions on𝐸(𝑉 ) and𝐸(Γ) act on the base by 𝜏 which we have introduced previously.

Proposition 8.4.3. The map 𝐼 : 𝐸(𝑉 ) → 𝐸(𝑉 ) is an isometry with respect to the

hermitian metric on 𝐸(𝑉 ), and 𝐽,𝐾 : 𝐸(𝑉 ) → 𝐸(𝑉 ) are skew-isometries in the sense

that ⟨𝐽 [𝑝, 𝑣1], 𝐽 [𝑝, 𝑣2]⟩ = ⟨𝑣1, 𝑣2⟩, ⟨𝐾[𝑝, 𝑣1], 𝐾[𝑝, 𝑣2]⟩ = ⟨𝑣1, 𝑣2⟩, for [𝑝, 𝑣1], [𝑝, 𝑣2] ∈

𝐸(𝑉 )𝑥, for all 𝑥 ∈ 𝑆2.

From here, by pullbacks, we can make the spaces of sections 𝐶∞(𝐸(𝑉 )) and

𝐶∞(𝐸(Γ)) into right H-modules. We will focus on 𝐶∞(𝐸(Γ)) here but the state-

ments for 𝐶∞(𝐸(𝑉 )) are exactly the same.

Proposition 8.4.4. The space of sections 𝐶∞(𝐸(Γ)) of 𝐸(Γ) is an infinite-dimensional

right H-module with the following quaternionic actions: for Θ a section of 𝐸(Γ), we

identify Θ with a map 𝜆 : 𝑆3 → 𝐸𝑛𝑑(𝑅) equivariant with respect to the 𝑆1- and

Γ-action, and we define that for Θ : 𝑥 ↦→ [𝑝, 𝜆(𝑝)],

𝐼Θ : 𝑥 ↦→ [𝑝, 𝑖𝜆(𝑝)],

𝐽Θ : 𝑥 ↦→ [𝑝,−𝜆(𝐽(𝑝))*],

𝐾Θ : 𝑥 ↦→ [𝑝, 𝜆(𝐾(𝑝))*],

where 𝐽(𝑝) and 𝐾(𝑝) are the usual 𝐽-, 𝐾- actions on 𝑆3.

We leave out the proofs for the above propositions as they involve simply us-

ing and checking the properties of quaternionic actions. Also, Proposition 8.4.4

holds for the space of sections 𝐶∞(𝐸(𝑉 )) of 𝐸(𝑉 ) with appropriate modifications

of adjectives.

8.4.3 Hyperkähler structure on the space of sections 𝐶∞(𝐸(Γ))

With the previous observations involving the quaternion actions, we are now

ready to introduce the hyperkähler structure on the space of sections 𝐶∞(𝐸(Γ))

that will be relevant to the construction. We remark that the same analysis be-

low will give rise to hyperkähler structures to 𝐶∞(𝐸(𝑉 )) as well; in fact, we can
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even replace the regular representation 𝑅 with any Γ-representation 𝑆 and obtain

a hyperkähler structure on 𝐶∞(𝐸(𝐸𝑛𝑑(𝑆))), as we use no specific properties of the

regular representation 𝑅 for defining the hyperkähler structure.

Recall that in the previous subsection, we have that for Θ : 𝑥 ↦→ [𝑝, 𝜆(𝑝)], the

action of 𝐽 on Θ is such that

𝐽Θ : 𝑥 ↦→ [𝑝,−𝜆(𝐽(𝑝))*],

where 𝐽(𝑝) is the usual 𝐽-action on 𝑆3.

We now give the proof of Proposition 8.3.6.

Proof of Proposition 8.3.6. We focus on 𝜔3. First we make the observation that

𝜔3(Θ1,Θ2) =

∫︁
𝑆2/Γ

−𝐼𝑚⟨𝐽Θ1,Θ2⟩𝜔𝑣𝑜𝑙 =
∫︁
𝑆2/Γ

−𝐼𝑚⟨−𝐽Θ2,Θ1⟩𝜔𝑣𝑜𝑙

=

∫︁
𝑆2/Γ

−𝐼𝑚⟨𝐽Θ2,Θ1⟩𝜏 *𝜔𝑣𝑜𝑙 = −𝜔3(Θ2,Θ1).

Indeed, for Θ1 : 𝑥 ↦→ [𝑝, 𝜆1(𝑝)] and Θ2 : 𝑥 ↦→ [𝑝, 𝜆2(𝑝)], we have

⟨𝐽Θ1,Θ2⟩𝑥 = Tr(−𝜆1(𝐽(𝑝))*𝜆2(𝑝)*)

and

⟨−𝐽Θ2,Θ1⟩𝑥 = Tr(𝜆2(𝐽(𝑝))
*𝜆1(𝑝)

*) = Tr(𝜆1(𝑝)
*𝜆2(𝐽(𝑝))

*).

Since 𝐽 acts on 𝑆2/Γ by 𝜏 which has the property that 𝜏 *𝜔𝑣𝑜𝑙 = −𝜔𝑣𝑜𝑙, we have

the desired equality after integration. This gives 𝜔3 the skew-symmetric property

of a symplectic form. The same can be shown for 𝜔2. The properties of 𝜔2 and 𝜔3

being closed and non-degenerate are obvious. We hence can also write down the

compatible hyperkähler metric 𝑔ℎ on 𝐶∞(𝐸(Γ)):

𝑔ℎ(Θ1,Θ2) =

∫︁
𝑆2/Γ

𝑅𝑒⟨Θ1,Θ2⟩𝜔𝑣𝑜𝑙,

and it’s evident to see that 𝑔ℎ is compatible with the complex structures and the
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symplectic forms.

Next, we want to justify the two additional moment map equations, 8.3.3 and

8.3.4. To start with, we make the observation that for Θ : 𝑥 ↦→ [𝑝, 𝜆(𝑝)] and 𝑌 :

𝑆2/Γ → f/t an element in g𝐹,Γ, we have

𝑌Θ−Θ𝑌 : 𝑥 ↦→ [𝑝, 𝑌 (𝑥)𝜆(𝑝)− 𝜆(𝑝)𝑌 (𝑥)]

and

𝐽(𝑌Θ−Θ𝑌 ) : 𝑥 ↦→ [𝑝,−𝜆(𝐽(𝑝))*𝑌 (𝜏(𝑥))* + 𝑌 (𝜏(𝑥))*𝜆(𝐽(𝑝))*].

Thus, we can think of 𝐽(𝑌Θ−Θ𝑌 ) = [𝐽Θ, (𝜏 *𝑌 )*], where 𝜏 denotes the involution

we have introduced previously. Meanwhile, for 𝑌 𝐽Θ− 𝐽Θ𝑌 , we have

𝑌 𝐽Θ− 𝐽Θ𝑌 : 𝑥 ↦→ [𝑝,−𝑌 (𝑥)𝜆(𝐽(𝑝))* + 𝜆(𝐽(𝑝))*𝑌 (𝑥)].

Hence, for 𝑌 : 𝑆2/Γ → f/t invariant under 𝜏 , that is, 𝑌 (𝑥) = 𝑌 (𝜏(𝑥)),∀𝑥 ∈ 𝑆2/Γ,

we have

𝐽(𝑌Θ−Θ𝑌 ) = [𝐽Θ, (𝜏 *𝑌 )*] = [𝐽Θ,−𝑌 ] = [𝑌, 𝐽Θ] = 𝑌 𝐽Θ− 𝐽Θ𝑌. (8.4.1)

Proposition 8.4.5. The action of the 𝜏 -invariant subgroup 𝒢𝐹,Γ𝜏 of 𝒢𝐹,Γ on 𝐶∞(𝐸(Γ))

is Hamiltonian with respect to the symplectic forms 𝜔2 and 𝜔3 and give rise to the

following moment maps:

𝜇̃2 : 𝐶
∞(𝑆2/Γ, 𝐸(Γ)) → Ω2(𝑆2/Γ; f/t),

Θ ↦→ −1

4
([𝐽Θ,Θ*]− [Θ, 𝐽Θ*])𝜔𝑣𝑜𝑙,

and

𝜇̃3 : 𝐶
∞(𝑆2/Γ, 𝐸(Γ)) → Ω2(𝑆2/Γ; f/t),
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Θ ↦→ − 𝑖

4
([𝐽Θ,Θ*] + [Θ, 𝐽Θ*])𝜔𝑣𝑜𝑙.

Proof. Again, we first focus on 𝜔3. Similar to the proof of Proposition 3.1, we let

𝑌 : 𝑆2/Γ → f/t be a 𝜏 -invariant element in g𝐹,Γ and let 𝑌 ♯ denote the vector field

on 𝐶∞(𝐸(Γ)) induced by 𝑌 .

Now, let’s compute 𝜄𝑌 ♯𝜔3Θ(Θ
′). We have

𝜄𝑌 ♯𝜔3Θ(Θ
′) =

∫︁
𝑆2/Γ

−𝐼𝑚⟨𝐽 [𝑌,Θ],Θ′⟩𝜔𝑣𝑜𝑙 =
∫︁
𝑆2/Γ

−𝐼𝑚⟨𝐽(𝑌Θ−Θ𝑌 ),Θ′⟩𝜔𝑣𝑜𝑙.

Hence, by 8.4.1, we have

∫︁
𝑆2/Γ

−𝐼𝑚⟨𝐽(𝑌Θ−Θ𝑌 ),Θ′⟩𝜔𝑣𝑜𝑙 =

∫︁
𝑆2/Γ

−𝐼𝑚⟨[𝐽Θ, 𝑌 *],Θ′⟩𝜔𝑣𝑜𝑙 =
∫︁
𝑆2/Γ

𝐼𝑚Tr([𝑌 *, 𝐽Θ]Θ′*)𝜔𝑣𝑜𝑙

=

∫︁
𝑆2/Γ

𝑖

2
Tr([Θ′, 𝐽Θ*]𝑌 * + [𝐽Θ,Θ′*]𝑌 *)𝜔𝑣𝑜𝑙

=

∫︁
𝑆2/Γ

𝑖

2
(⟨[Θ′, 𝐽Θ*], 𝑌 ⟩+ ⟨[𝐽Θ,Θ′*], 𝑌 ⟩)𝜔𝑣𝑜𝑙.

Meanwhile, by the skew-symmetric property of 𝜔3, we also have

∫︁
𝑆2/Γ

−𝐼𝑚⟨𝐽 [𝑌,Θ],Θ′⟩𝜔𝑣𝑜𝑙 =
∫︁
𝑆2/Γ

−𝐼𝑚⟨−𝐽Θ′, [𝑌,Θ]⟩𝜔𝑣𝑜𝑙

=

∫︁
𝑆2/Γ

𝐼𝑚Tr([𝑌,Θ*]𝐽Θ′)𝜔𝑣𝑜𝑙 =

∫︁
𝑆2/Γ

𝑖

2
Tr([𝐽Θ′*,Θ]𝑌 + [Θ*, 𝐽Θ′]𝑌 )𝜔𝑣𝑜𝑙

=

∫︁
𝑆2/Γ

𝑖

2
(⟨[Θ, 𝐽Θ′*], 𝑌 ⟩+ ⟨[𝐽Θ′,Θ*], 𝑌 ⟩)𝜔𝑣𝑜𝑙.

Now, we obtain the following:

2𝜄𝑌 ♯𝜔3Θ(Θ
′) =

∫︁
𝑆2/Γ

𝑖

2
⟨[Θ′, 𝐽Θ*] + [Θ, 𝐽Θ′*], 𝑌 ⟩𝜔𝑣𝑜𝑙 +

∫︁
𝑆2/Γ

𝑖

2
⟨[𝐽Θ,Θ′*] + [𝐽Θ′,Θ*], 𝑌 ⟩𝜔𝑣𝑜𝑙.
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On the other hand, let Θ𝑡 with 𝑡 ∈ [0, 1] be a path in 𝐶∞(𝑆2/Γ, 𝐸(Γ)) such that

Θ0 = Θ and 𝑑
𝑑𝑡
|𝑡=0Θ𝑡 = Θ′. Then we have

𝑑𝜇̃𝑌3Θ(Θ
′) =

𝑑

𝑑𝑡
|𝑡=0

∫︁
𝑆2/Γ

−⟨𝑌, 𝑖
4
([𝐽Θ𝑡,Θ

*
𝑡 ] + [Θ𝑡, 𝐽Θ

*
𝑡 ])⟩𝜔𝑣𝑜𝑙

=

∫︁
𝑆2/Γ

−⟨𝑌, 𝑖
4
([𝐽Θ′,Θ*] + [𝐽Θ,Θ′*])⟩𝜔𝑣𝑜𝑙 +

∫︁
𝑆2/Γ

−⟨𝑌, 𝑖
4
([Θ′, 𝐽Θ*] + [Θ, 𝐽Θ′*])⟩𝜔𝑣𝑜𝑙.

The above computations verify that

𝜇̃3(Θ) = − 𝑖

4
([𝐽Θ,Θ*] + [Θ, 𝐽Θ*])𝜔𝑣𝑜𝑙.

By very similar computations, we also get that for

𝜔2(Θ1,Θ2) =

∫︁
𝑆2/Γ

𝑅𝑒⟨𝐽Θ1,Θ2⟩𝜔𝑣𝑜𝑙,

we have

𝜇̃2(Θ) = −1

4
([𝐽Θ,Θ*]− [Θ, 𝐽Θ*])𝜔𝑣𝑜𝑙.

We leave out the proof for the equivariance condition as it is essentially the same

as that of Proposition 8.3.1.

Remark 8.4.6. 1. Note, here we need to restrict the gauge group action to the 𝜏 -

invariant subgroup 𝒢𝐹,Γ𝜏 which is different from the previous setup.

2. Observe that 𝑖
4
([𝐽Θ,Θ*] + [Θ, 𝐽Θ*]) and 1

4
([𝐽Θ,Θ*] − [Θ, 𝐽Θ*]) are both 𝜏 -

invariant and hence the new moment maps map into the correct space.

Lemma 8.4.7. If Θ is holomorphic with respect to a fixed holomorphic structure on

𝐸(Γ) and is identified with a pair of matrices (𝛼, 𝛽), then 𝐽Θ = 𝐽(𝛼, 𝛽) = (−𝛽*, 𝛼*).

Proof. As before, we express Θ as Θ : 𝑥 ↦→ [𝑝, 𝜆(𝑝)], where 𝜆 : 𝑆3 → 𝐸𝑛𝑑(𝑅) is 𝑆1-

and Γ-equivariant. Since Θ is holomorphic, 𝜆 can be extended to a complex linear

map 𝜆 : C2 → 𝐸𝑛𝑑(𝑅). Hence, 𝜆 can be thought of as a pair of matrices (𝛼, 𝛽) such

that 𝜆(𝑧1, 𝑧2) = 𝑧1𝛼 + 𝑧2𝛽, for (𝑧1, 𝑧2) ∈ C2.
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On the other hand, we have 𝐽Θ : 𝑥 ↦→ [𝑝,−𝜆(𝐽(𝑝))*]. This give us

−𝜆(𝐽(𝑧1, 𝑧2))* = −𝜆(−𝑧*2 , 𝑧*1)* = −(−𝑧*2𝛼 + 𝑧*1𝛽)
* = −𝑧1𝛽* + 𝑧2𝛼

*.

This precisely says that 𝐽Θ reduces to (−𝛽*, 𝛼*).

Remark 8.4.8. 1. Provided with the previous lemma, we observe that for 𝜇̃3, we

have
𝑖

4
([𝐽Θ,Θ*] + [Θ, 𝐽Θ*])

=
𝑖

4
([−𝛽*, 𝛼*] + [𝛼*, 𝛽*] + [𝛼,−𝛽] + [𝛽, 𝛼])

=
𝑖

4
(2[𝛼*, 𝛽*]− 2[𝛼, 𝛽]) =

𝑖

2
([𝛼*, 𝛽*]− [𝛼, 𝛽]),

but this is precisely the third moment map 𝜇3 in Kronheimer’s setup [21]; similar

calculations show that 𝜇̃2 also reduces to 𝜇2 in Kronheimer’s setup [21]. This

observation will become a key element in the proof of Theorem 3.6.

2. We remark that the same analysis presented in this section will give rise to hy-

perkähler structures to 𝐶∞(𝐸(𝐸𝑛𝑑(𝑆))) and 𝐶∞(𝐸(𝐸𝑛𝑑(𝑆))Γ𝑟 ) if we replace

the regular representation 𝑅 with any Γ-representation 𝑟 on 𝑆 with an ap-

propriately chosen hermitian structure to obtain a hyperkähler structure on

𝐶∞(𝐸(𝐸𝑛𝑑(𝑆))) and 𝐶∞(𝐸(𝐸𝑛𝑑(𝑆))Γ𝑟 ) , as we use no specific properties of the

regular representation 𝑅 for defining the hyperkähler structure.

8.5 Uniqueness theorems

In this section, we analyze both the unitary gauge group action and the complex

gauge group action on the configuration space 𝒜𝐹 × 𝐶∞(𝐸(Γ)). In particular, we

prove two uniqueness theorems: the first one states that any solution to 8.3.1 and

8.3.2 lying in 𝒜𝐹 × 𝐶∞(𝐸(Γ)) that are 𝒢𝐹,ΓC -equivalent are also 𝒢𝐹,Γ-equivalent,

which is a standard occurrence in gauge theory. The second uniqueness theorem

can be thought of as a corollary of the first one, which states that any solution to
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8.3.1 – 8.3.4 lying in 𝒜𝐹
𝜏 × 𝐶∞(𝐸(Γ)) that are 𝒢𝐹,Γ𝜏,C -equivalent must also be 𝒢𝐹,Γ𝜏 -

equivalent.

Lemma 8.5.1. Up to automorphisms of 𝐸(Γ), the space 𝒜𝐹 defines a single holomor-

phic structure on 𝐸(Γ), identifying 𝐸(Γ) with the direct sum of hyperplane bundles

holomorphically.

Proof. By construction, 𝐴0 is taken to be the Chern connection giving rise to the

holomorphic structure on 𝐸(Γ) such that 𝐸(Γ) splits holomorphically as a direct

sum of hyperplane bundles. As 𝒜𝐹 is simply defined to be the complex orbit con-

taining 𝐴0, we must have that 𝒜𝐹 defines a single holomorphic structure identifying

𝐸(Γ) with the direct sum of hyperplane bundles holomorphically, as stated in the

lemma.

Lemma 8.5.2. The based complex gauge group acts freely on 𝒜𝐹 , and the stabilizer of

𝐵 in the complex gauge group is isomorphic to the constant subgroup.

Remark 8.5.3. The two preceding lemmas can both be formulated where we replace

𝒜𝐹 with 𝒜𝐹
𝜏 and use the corresponding 𝜏 -invariant gauge groups.

Definition 8.5.4. Let 𝑄 be the canonical 2-dimensional representation of 𝑆𝑈(2). Let

𝐻𝑜𝑚(𝑄, 𝑉 )Γ denote the Γ-invariant subset of 𝐻𝑜𝑚(𝑄, 𝑉 ), consisting of all maps that

commute with the Γ-actions on 𝑄 and 𝑉 , that is, for 𝑓 ∈ 𝐻𝑜𝑚(𝑄, 𝑉 ),𝑓(𝛾(𝑧)) =

𝛾(𝑓(𝑧)), where 𝛾 ∈ Γ and 𝑧 ∈ 𝑄.

Lemma 8.5.5. The space 𝐻𝑜𝑚(𝑄, 𝑉 ) is isomorphic to the space of holomorphic sec-

tions of 𝐸(𝑉 ) with respect to 𝐴0. The space 𝐻𝑜𝑚(𝑄, 𝑉 )Γ is isomorphic to the space of

holomorphic sections of 𝐸(Γ) with respect to 𝐴0.

Remark 8.5.6. 1. It is easy to see that 𝑀 ∼= 𝐻𝑜𝑚(𝑄, 𝑉 )Γ, and hence by the previ-

ous lemma, we can think of 𝑀 as the space of holomorphic sections of 𝐸(Γ) with

respect to the fixed connection 𝐴0.
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2. The above lemma gives rise to a map

Ψ :𝑀 → 𝒜𝐹 × 𝐶∞(𝐸(Γ))

𝜆 ↦→ (𝐴0,Θ : 𝑥 ↦→ [𝑝, 𝜆(𝑝)]),

with the property that Ψ is an isomorphism onto its image. In addition, Ψ can

be naturally regarded as an isometry onto its image. To see this, we observe

that the hyperkähler metric 𝑔ℎ given in Proposition 3.6 restricted to the set {Θ ∈

𝐶∞(𝐸(Γ))|𝜕𝐴0Θ = 0} agrees with the natural flat hyperkähler metric on 𝑀 .

Hence, Ψ is an isometry onto its image.

3. A holomorphic section of 𝐸(Γ) with respect to the fixed connection 𝐴0 can be

expressed as a pair of matrices (𝛼, 𝛽) where (𝛼, 𝛽) is Γ-invariant as in [21].

We omit the proofs for the two preceding lemmas as the proofs can be found in

or follow from standard references such as [20], [19], and [13].

Lemma 8.5.7. There is a map

Ψ̃ :𝑀 → {(𝐴0 +𝐵,Θ) ∈ 𝒜𝐹 × 𝐶∞(𝐸(Γ))|𝜕𝐴0+𝐵Θ = 0}/𝒢𝐹,Γ0,C

such that is Ψ̃ an isomorphism, where 𝑀 comes from Kronheimer’s construction in

[21], and there exists a residual 𝐹 𝑐 action on both sides which also coincides.

Proof. By Lemma 8.5.2, we know that 𝒢𝐹,Γ0,C acts freely and transitively on the space

of connections. Hence, we can take Ψ̃ to be the following composition of maps: let

𝒞 denote {(𝐴0 +𝐵,Θ) ∈ 𝒜𝐹 × 𝐶∞(𝐸(Γ))|𝜕𝐴0+𝐵Θ = 0}, and consider

Ψ̃ :𝑀 → 𝒞 → 𝒞/𝒢𝐹,Γ0,C ,

(𝛼, 𝛽) = 𝜆 ↦→ (𝐴0,Θ : 𝑥 ↦→ [𝑝, 𝜆(𝑝)]) ↦→ [(𝐴0,Θ : 𝑥 ↦→ [𝑝, 𝜆(𝑝)])],

where [(𝐴0,Θ : 𝑥 ↦→ [𝑝, 𝜆(𝑝)])] denotes the gauge orbit containing the chosen rep-

resentative. Previous arguments suggest that Ψ̃ is an isomorphism. It follows natu-
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rally that the residual 𝐹 𝑐 action on both 𝑀 and 𝒞/𝒢𝐹,Γ0,C coincides.

Remark 8.5.8. We let Ψ̃𝜏 denote the map

Ψ̃𝜏 :𝑀 → {(𝐴0 +𝐵,Θ) ∈ 𝒜𝐹
𝜏 × 𝐶∞(𝐸(Γ))|𝜕𝐴0+𝐵Θ = 0}/𝒢𝐹,Γ𝜏,0,C.

We have that Ψ̃𝜏 is again an isomorphism following the same arguments as in the

previous lemma.

Before proceeding, we set up some linear algebra that will be of use later.

Recall that 𝐸(𝑉 ) is the vector bundle associated to 𝑆3 on the Γ-representation

𝑉 = 𝐸𝑛𝑑(𝑅). We have the following two maps induced by left and right multi-

plication on 𝑉 :

𝑐𝑙 : 𝑉 → 𝐸𝑛𝑑(𝑉 ), 𝑐𝑙(𝜑)(𝜓) = 𝜑 ∘ 𝜓

and

𝑐𝑟 : 𝑉 → 𝐸𝑛𝑑(𝑉 ), 𝑐𝑙(𝜑)(𝜓) = 𝜓 ∘ 𝜑.

Since both 𝑐𝑙 and 𝑐𝑟 commute with the 𝑆1-action, they give rise to bundle maps:

𝑐𝑙, 𝑐𝑟 : 𝐸(𝑉 ) → 𝐸(𝐸𝑛𝑑(𝑉 )).

Hence, given 𝜑, 𝜓 ∈ 𝐸(𝑉 )𝑥, we have the following composition:

𝐸(𝑉 )𝑥 ⊗ 𝐸(𝑉 )*𝑥 → 𝐸(𝐸𝑛𝑑(𝑉 ))𝑥 ⊗ 𝐸(𝐸𝑛𝑑(𝑉 ))*𝑥 → 𝐸𝑛𝑑(𝑉 )
𝑥
,

𝜑⊗ 𝜓* ↦→ 𝑐𝑙(𝜑)⊗ 𝑐𝑙(𝜓
*) ↦→ [𝑐𝑙(𝜑), 𝑐𝑙(𝜓

*)].

On the other hand, we also have

𝐸(𝑉 )𝑥 ⊗ 𝐸(𝑉 )*𝑥 → 𝐸𝑛𝑑(𝑅)
𝑥
→ 𝐸𝑛𝑑(𝐸𝑛𝑑(𝑅))

𝑥
= 𝐸𝑛𝑑(𝑉 )

𝑥
,

𝜑⊗ 𝜓* ↦→ [𝜑, 𝜓*] ↦→ 𝑐𝑙([𝜑, 𝜓
*]),
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where we also have

[𝑐𝑙(𝜑), 𝑐𝑙(𝜓
*)] = 𝑐𝑙([𝜑, 𝜓

*]).

Similarly, there are maps such as

𝐸(𝐸𝑛𝑑(𝑅))⊗ 𝐸𝑛𝑑(𝑅) → 𝐸(𝐸𝑛𝑑(𝑅)),

𝐸𝑛𝑑(𝑅)⊗ 𝐸(𝐸𝑛𝑑(𝑅)) → 𝐸(𝐸𝑛𝑑(𝑅)),

𝐸𝑛𝑑(𝑅)⊗ 𝐸(𝐸𝑛𝑑(𝑅))⊗ 𝐸𝑛𝑑(𝑅) → 𝐸(𝐸𝑛𝑑(𝑅)),

modeled locally on maps such as

𝐸𝑛𝑑(𝑅)⊗ 𝐸𝑛𝑑(𝑅) → 𝐸𝑛𝑑(𝑅), 𝜑⊗ 𝜓 ↦→ 𝜑 ∘ 𝜓.

Lemma 8.5.9 (Uniqueness theorem 1). Let (𝐵1,Θ1) and (𝐵2,Θ2) be two solutions to

8.3.1 and 8.3.2 in 𝒜𝐹 × 𝐶∞(𝐸(Γ)) that lie on the same complex orbit, that is, there

exists a complex automorphism of 𝐸(Γ) taking (𝐵1,Θ1) to (𝐵2,Θ2). Then (𝐵1,Θ1)

and (𝐵2,Θ2) are unitarily equivalent.

Proof. This proof is modeled on Hitchin’s proof of Theorem (2.7) in [14]. Let 𝜅 :

𝐸(Γ) → 𝐸(Γ) be the complex automorphism satisfying Θ1𝜅 = 𝜅Θ2 and 𝜕𝐵1𝜅 = 𝜅𝜕𝐵2.

We also have

𝜕𝐴0+𝐵1Θ1 = 𝜕𝐴0+𝐵2Θ2 = 0

and

𝐹𝐵1 −
𝑖

2
[Θ1,Θ

*
1]𝜔𝑣𝑜𝑙 = 𝐹𝐵2 −

𝑖

2
[Θ2,Θ

*
2]𝜔𝑣𝑜𝑙 = 𝜎.

Now we define two bundles: let

𝑊 = 𝐸𝑛𝑑(𝐸(Γ)) ∼= 𝐸(Γ)⊗ 𝐸(Γ)*,

and let

𝑊 ∘ = 𝐸(𝐸𝑛𝑑(𝑉 ))Γ.
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We remark that both 𝑊 and 𝑊 ∘ have the same fibers isomorphic to 𝐸𝑛𝑑(𝑉 ), but 𝑊

is a trivial bundle whereas 𝑊 ∘ is again an associated bundle of 𝑆3. We can think of

𝜅 as a section of 𝑊 . We also have that Θ1 and Θ2 together define a section

Θ = 𝑐𝑙(Θ1)− 𝑐𝑟(Θ2)

of 𝑊 ∘, and 𝐵1 and 𝐵2 together define a connection

𝐵 = 𝐵1 ⊗ 𝑖𝑑− 𝑖𝑑⊗𝐵*
2

on both𝑊 and𝑊 ∘, as𝐸𝑛𝑑(𝑊 ) and𝐸𝑛𝑑(𝑊 ∘) are both isomorphic to𝐸𝑛𝑑(𝐸𝑛𝑑(𝑉 ))Γ.

As we have

𝜅Θ1 = Θ2𝜅,

we must have that

Θ𝜅 = (𝑐𝑙(Θ1)− 𝑐𝑟(Θ2))𝜅 = 0.

We observe that the pair (𝐵,Θ) satisfies the equations

𝜕𝐵Θ = 0

and

𝐹𝐵 − 𝑖

2
[Θ,Θ*]𝜔𝑣𝑜𝑙 = ad(𝜎)

on 𝑊 ∘, where [Θ,Θ*] = 𝑐𝑙([Θ1,Θ
*
1])− 𝑐𝑟([Θ2,Θ

*
2]).

To proceed, we now think of 𝜅 as a holomorphic section of 𝑊 with respect to 𝐵,

that is, 𝜕𝐵𝜅 = 0, as 𝜕𝐵1𝜅 = 𝜅𝜕𝐵2. Before we continue further, we first want to prove

a useful identity. Consider

𝜕⟨𝜕𝐵𝜅, 𝜅⟩ = ⟨𝜕𝐵𝜕𝐵𝜅, 𝜅⟩ − ⟨𝜕𝐵𝜅, 𝜕𝐵𝜅⟩.
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Since 𝐹𝐵 = 𝜕𝐵𝜕𝐵 + 𝜕𝐵𝜕𝐵 and 𝜕𝐵𝜅 = 0, we have

𝜕⟨𝜕𝐵𝜅, 𝜅⟩ = ⟨𝐹𝐵𝜅, 𝜅⟩ − ⟨𝜕𝐵𝜅, 𝜕𝐵𝜅⟩.

Now we integrate on both sides and get

∫︁
𝑆2/Γ

𝜕⟨𝜕𝐵𝜅, 𝜅⟩+
∫︁
𝑆2/Γ

⟨𝜕𝐵𝜅, 𝜕𝐵𝜅⟩ =
∫︁
𝑆2/Γ

⟨𝐹𝐵𝜅, 𝜅⟩,

and by Stokes’ theorem, we get

0 ≤
∫︁
𝑆2/Γ

⟨𝜕𝐵𝜅, 𝜕𝐵𝜅⟩ =
∫︁
𝑆2/Γ

⟨𝐹𝐵𝜅, 𝜅⟩.

Hence, we have ∫︁
𝑆2/Γ

⟨𝜕𝐵𝜅, 𝜕𝐵𝜅⟩ =
∫︁
𝑆2/Γ

⟨𝐹𝐵𝜅, 𝜅⟩ =∫︁
𝑆2/Γ

𝑖

2
⟨[Θ,Θ*]𝜅, 𝜅⟩𝜔𝑣𝑜𝑙 −

∫︁
𝑆2/Γ

⟨ad(𝜎)𝜅, 𝜅⟩.

Since 𝜎 takes values in the center 𝑍, we have that 𝜅 commutes with 𝜎, i.e., ad(𝜎)𝜅 =

0, and hence the following equation

−
∫︁
𝑆2/Γ

⟨ad(𝜎)𝜅, 𝜅⟩ = 0

holds as 𝜎 ⊗ 1(𝜅) = 1 ⊗ 𝜎𝑇 (𝜅), which can be shown using essentially the same

arguments as in showing Θ𝜅 = 0.

As we have shown that Θ𝜅 = 0, we also obtain

⟨[Θ,Θ*]𝜅, 𝜅⟩ = ⟨ΘΘ*𝜅, 𝜅⟩ = ⟨Θ*𝜅,Θ*𝜅⟩ ≥ 0

and hence must be purely real. Consequently, 𝑖
2
⟨[Θ,Θ*]𝜅, 𝜅⟩ must be purely imagi-

nary, so it must be 0. This gives us that 𝜕𝐵𝜅 = 0.

Putting everything together, we have 𝜕𝐵𝜅 = 𝜕𝐵𝜅 = 0, Θ𝜅 = Θ*𝜅 = 0. Let 𝜌 =

𝜅(𝜅*𝜅)−
1
2 then we must have 𝑑𝐵𝜌 = 0. Since Θ𝜅 = Θ*𝜅 = 0, we have 𝜅*Θ2 = Θ1𝜅

*
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and 𝜅Θ2 = Θ1𝜅, which implies 𝜌Θ2 = Θ1𝜌. Hence, we obtain the desire statement

that (𝐵1,Θ1) and (𝐵2,Θ2) lie on the same unitary gauge orbit.

Corollary 8.5.10 (Uniqueness theorem 2). Let (𝐵1,Θ1) and (𝐵2,Θ2) be two solutions

to 8.3.1 – 8.3.4 in 𝒜𝐹
𝜏 ×𝐶∞(𝐸(Γ)) that lie on the same 𝒢𝐹,Γ𝜏,C -orbit, that is, there exists a

complex automorphism of 𝐸(Γ) in 𝒢𝐹,Γ𝜏,C that takes (𝐵1,Θ1) to (𝐵2,Θ2). Then (𝐵1,Θ1)

and (𝐵2,Θ2) lie on the same 𝒢𝐹,Γ𝜏 -orbit.

Proof. Let 𝜅 be such a complex automorphism. By the same arguments as in the

previous lemma, we can modify 𝜅 and obtain a unitary gauge element 𝜌 = 𝜅(𝜅*𝜅)
1
2

that also sends (𝐵1,Θ1) to (𝐵2,Θ2). We must also have that 𝜌 is 𝜏 -invariant as 𝜅 is

𝜏 -invariant. Hence, 𝜌 lies in 𝒢𝐹,Γ𝜏 .

Before we proceed to the next section, we prove the following proposition which

analyzes the stabilizer group of a holomorphic section Θ.

Proposition 8.5.11. If Θ has trivial stabilizer in 𝑆𝑡𝑎𝑏(𝐵) with 𝜕𝐴0+𝐵Θ = 0, then Θ

has trivial stabilizer in 𝒢𝐹,Γ.

Proof. Let 𝜅 : 𝐸(Γ) → 𝐸(Γ) be a complex automorphism on 𝐸(Γ) taking 𝐴0 to

𝐴0 + 𝐵. In other words, we have 𝐵 = 𝜅−1𝜕𝜅 + 𝜅*𝜕𝜅*−1. Consider 𝜅−1Θ𝜅, it is a

holomorphic section of 𝐸(Γ) with respect to 𝐴0. Hence, we can rewrite 𝜅−1Θ𝜅 as

a pair of matrices (𝛼, 𝛽). The identification is as follows: for 𝑥 ∈ 𝑆2, 𝜅−1Θ𝜅 : 𝑥 ↦→

[𝑝, 𝜆(𝑝)], where 𝜆 : 𝑆3 → 𝐸𝑛𝑑(𝑅) is given by 𝜆(𝑧1, 𝑧2) = 𝑧1𝛼 + 𝑧2𝛽.

Since (𝛼, 𝛽) is Γ-invariant, we have that for 𝛾 =

⎛⎝ 𝑢 𝑣

−𝑣* 𝑢*

⎞⎠, the pair (𝛼, 𝛽)

must satisfy

𝑅(𝛾−1)𝛼𝑅(𝛾) = 𝑢𝛼 + 𝑣𝛽 (8.5.1)

and

𝑅(𝛾−1)𝛽𝑅(𝛾) = −𝑣*𝛼 + 𝑢*𝛽 (8.5.2)

as in [21]. Notice that if 𝑣 ̸= 0, then 𝛽 is uniquely given by 𝛽 = 𝑣−1𝑅(𝛾−1)𝛼𝑅(𝛾)−

𝑣−1𝑢𝛼. On the other hand, if 𝑣 = 0 for all 𝛾 ∈ Γ, then it implies that Γ is a cyclic
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subgroup. Hence, we break the proof into two cases.

Case 1: Γ is not cyclic.

In this case, we have that 𝑣 ̸= 0 and 𝛽 = 𝑣−1𝑅(𝛾−1)𝛼𝑅(𝛾) − 𝑣−1𝑢𝛼. First, we

want to show that (𝛼, 𝛽) has trivial stabilizer in 𝐹/𝑇 if and only if 𝛼 has trivial

stabilizer in 𝐹/𝑇 . We can assume that 𝛼 and 𝛽 are both nonzero as by 8.5.1 and

8.5.2, it’s easy to see that if either 𝛼 or 𝛽 is 0, then both have to be 0.

We observe that (𝛼, 𝛽) has trivial stabilizer in 𝐹/𝑇 if and only if 𝛼 has trivial

stabilizer in 𝐹/𝑇 : if 𝛼 has trivial stabilizer in 𝐹/𝑇 , then clearly (𝛼, 𝛽) has trivial

stabilizer in 𝐹/𝑇 ; on the other hand, if some element 𝑓 stabilizes 𝛼, then it stabilizes

𝛽 as well by the equality 𝛽 = 𝑣−1𝑅(𝛾−1)𝛼𝑅(𝛾)− 𝑣−1𝑢𝛼, so 𝑓 stabilizes (𝛼, 𝛽). With

the preceding arguments, we can rephrase the assumption that (𝛼, 𝛽) has trivial

stabilizer in 𝐹/𝑇 as simply that 𝛼 has trivial stabilizer in 𝐹/𝑇 .

Now, at a point 𝑝 thought of as a pair (𝑧1, 𝑧2), we can use some 𝛾 ∈ Γ to get the

following equality

𝑓(𝑧1𝛼 + 𝑧2𝛽)𝑓
−1 = 𝑓(𝑧1𝛼− 𝑧2𝑣

−1𝑢𝛼 + 𝑧2𝑣
−1𝑅(𝛾−1)𝛼𝑅(𝛾))𝑓−1

= 𝑧1𝑓𝛼𝑓
−1 − 𝑧2𝑣

−1𝑢𝑓𝛼𝑓−1 + 𝑧2𝑣
−1𝑅(𝛾−1)(𝑓𝛼𝑓−1)𝑅(𝛾).

Assume that we are given 𝑓𝛼𝑓−1 ̸= 𝛼, for all 𝑓 ∈ 𝐹/𝑇 , we want to show that for

any pair of points (𝑧1, 𝑧2) and for all 𝑓 ∈ 𝐹/𝑇 , we always have the following:

𝑧1𝛼−𝑧2𝑣−1𝑢𝛼+𝑧2𝑣
−1𝑅(𝛾−1)𝛼𝑅(𝛾) ̸= 𝑧1𝑓𝛼𝑓

−1−𝑧2𝑣−1𝑢𝑓𝛼𝑓−1+𝑧2𝑣
−1𝑅(𝛾−1)(𝑓𝛼𝑓−1)𝑅(𝛾).

To achieve this end, let 𝐿𝛾 be the linear map defined as follows: for a pair (𝑐, 𝑑) ∈𝑀 ,

consider

𝐿𝛾 : 𝑐 ↦→ 𝑧1𝑐− 𝑧2𝑣
−1𝑢𝑐+ 𝑧2𝑣

−1𝑅(𝛾−1)𝑐𝑅(𝛾).

Then we need to show 𝐿𝛾(𝛼) ̸= 𝐿𝛾(𝑓𝛼𝑓
−1). As we know that 𝛼 ̸= 𝑓𝛼𝑓−1, it suffices

to show that ⋂︁
𝛾∈Γ

ker(𝐿𝛾) = 0.
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We can assume that 𝑧2 ̸= 0 as the inequality is clearly satisfied when 𝑧2 = 0. Hence,

𝑐 lies in the kernel of 𝐿𝛾 if

𝑧2𝑣
−1𝑢− 𝑧1
𝑧2𝑣−1

𝑐 = 𝑅(𝛾−1)𝑐𝑅(𝛾).

This implies that 𝑐 must be a scalar multiple of 𝑑, that is, 𝑑 = 𝑞𝑐; in particular, by

applying 8.5.1 and 8.5.2 to the pair (𝑐, 𝑑), we must have (𝑞𝑢+ 𝑞2𝑣 + 𝑣* − 𝑢*𝑞)𝑐 = 0.

Notice that this equality must be satisfied for any choice of 𝛾 ∈ Γ with 𝑣 ̸= 0, and

since 𝑞 and 𝑐 are fixed, we see that this equality can only hold when 𝑐 = 0. As a

result, 𝑧1𝛼 + 𝑧2𝛽 has trivial stabilizer for all (𝑧1, 𝑧2), which gives us that (𝛼, 𝛽) has

trivial stabilizer in 𝒢𝐹,Γ.

Case 2: Γ is cyclic.

When Γ is a cyclic subgroup, we can write down 𝛼 and 𝛽 explicitly and describe

the action of Γ and 𝐹/𝑇 explicitly as well. We use the decomposition of 𝑀 in terms

of simply-laced Dynkin diagram given in [21] and reviewed in Section 2.1:

𝑀 =
⨁︁
𝑖,𝑗

𝑎𝑖𝑗𝐻𝑜𝑚(C𝑛𝑖 ,C𝑛𝑗).

We also have that

𝐹 = ×𝑖𝑈(𝑛𝑖).

For the case where Γ is cyclic, 𝑛𝑖 = 1 for all 𝑖, and

𝑀 = (
⨁︁
𝑖

𝐻𝑜𝑚(C𝑛𝑖 ,C𝑛𝑖+1))⊕ (
⨁︁
𝑗

𝐻𝑜𝑚(C𝑛𝑗+1 ,C𝑛𝑗)).

We can regard 𝛼 ∈
⨁︀

𝑖𝐻𝑜𝑚(C𝑛𝑖 ,C𝑛𝑖+1) and 𝛽 ∈
⨁︀

𝑗 𝐻𝑜𝑚(C𝑛𝑗+1 ,C𝑛𝑗). Hence,

we can write 𝛼 = (𝑎1, ..., 𝑎𝑛) and 𝛽 = (𝑏1, ..., 𝑏𝑛), and 𝐹 acts on C𝑛𝑖 and C𝑛𝑗 by scalar

multiplification.

For (𝛼, 𝛽) to have trivial stabilizer in 𝐹/𝑇 , we must have that for all 𝑖 ∈ {1, ..., 𝑛},

at least one of 𝑎𝑖 and 𝑏𝑖 is not 0. For 𝑧1𝛼 + 𝑧2𝛽 to have trivial stabilizer in 𝐹/𝑇 at

(𝑧1, 𝑧2), we must have that for all 𝑖 ∈ {1, ..., 𝑛}, at least one of 𝑧1𝑎𝑖 and 𝑧2𝑏𝑖 is not 0.
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But this can only happen when either 𝑧1 or 𝑧2 is 0. This means that the stabilizer of

(𝛼, 𝛽) in 𝒢𝐹,Γ must be the identity away from (0, 𝑧2) and (𝑧1, 0), and hence it must

be the identity by continuity.

Hence, we have shown that if 𝜆(𝑝) has trivial stabilizer at a single 𝑝, then for any

other 𝑝′, 𝜆(𝑝′) also has trivial stabilizer. This is equivalent to saying that if 𝜅−1Θ𝜅

has trivial stabilizer in 𝐹/𝑇 , then it has trivial stabilizer in 𝒢𝐹,Γ. By pushing forward

using 𝜅, we get the desired statement of the lemma.

Corollary 8.5.12. If Θ has trivial stabilizer in 𝑆𝑡𝑎𝑏(𝐵) with 𝜕𝐴0+𝐵Θ = 0, then Θ has

trivial stabilizer in 𝒢𝐹,Γ𝜏 .

8.6 Smoothness and dimension calculations

In this section, we show that the moduli space is a smooth finite-dimensional

manifold and calculate its dimension which will be useful for proving Theorem

8.3.8. To achieve this end, we first introduce the following lemma.

Lemma 8.6.1. If (𝐵,Θ) and (𝐵′,Θ′) are two solutions to 8.3.1 and 8.3.2 in 𝒜𝐹 ×

𝐶∞(𝐸(Γ)) with 𝐵 and 𝐵′ not 𝒢𝐹,Γ-equivalent, then (𝐵′,Θ′) is separated from the

subset of solutions such that the connection part is 𝒢𝐹,Γ-equivalent to 𝐵.

Proof. Suppose we have two solutions (𝐵,Θ) and (𝐵′,Θ′) such that 𝐵 is not 𝒢𝐹,Γ-

equivalent to 𝐵′. We proceed by contradiction. Suppose that there exists a sequence

of solutions {(𝐵𝑛,Θ𝑛)}𝑛 such that (𝐵1,Θ1) = (𝐵,Θ) and {(𝐵𝑛,Θ𝑛)}𝑛 converges

weakly in 𝐿2
1 to (𝐵′,Θ′) with 𝐵𝑛 lying on the same 𝒢𝐹,Γ-orbit as 𝐵, for all 𝑛. Then

we get a sequence of gauge elements lying in 𝒢𝐹,Γ, denoted by {𝜌𝑛}, such that

𝜌𝑛 · 𝐵 = 𝐵𝑛, for all 𝑛. (Note that we don’t assume 𝜌𝑛 · Θ = Θ𝑛.) We want to show

that {𝜌𝑛} converges weakly to some 𝜌. To this end, we follow Hitchin’s proof of

Theorem (2.7) in [14]. Consider the following:

𝜕𝐵1𝐵𝑛 : Ω0(𝑆2/Γ;𝐸(Γ)* ⊗ 𝐸(Γ)) → Ω0,1(𝑆2/Γ;𝐸(Γ)* ⊗ 𝐸(Γ)),
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where 𝐵𝑛 acts on the 𝐸(Γ)* factor, and 𝐵1 acts on the 𝐸(Γ) factor. Hence, 𝜕𝐵1𝐵′ =

𝜕𝐵1𝐵𝑛+𝑡𝑛 where 𝑡𝑛 → 0 weakly in 𝐿2
1. As before, 𝜌𝑛 is the sequence of unitary gauge

elements taking 𝐵 to 𝐵𝑛, and ‖𝜌𝑛‖𝐿2 = 1.

We also have

𝜌𝑛 ·𝐵1 = 𝜌*𝑛 ∘ 𝜕𝐵1 ∘ 𝜌*−1
𝑛 + 𝜌−1

𝑛 ∘ 𝜕𝐵1 ∘ 𝜌𝑛 = 𝜕𝐵𝑛 + 𝜕𝐵𝑛 .

Hence, 𝜌*𝑛∘𝜕𝐵1∘𝜌*−1
𝑛 = 𝜕𝐵𝑛 and 𝜌−1

𝑛 ∘𝜕𝐵1∘𝜌𝑛 = 𝜕𝐵𝑛, so we have 𝜕𝐵1∘𝜌𝑛−𝜌𝑛∘𝜕𝐵𝑛 = 0,

but this is equivalent to 𝜕𝐵1𝐵𝑛𝜌𝑛 = 0.

Now, the elliptic estimate for 𝜕𝐵1𝐵𝑛 gives us

‖𝜌𝑛‖𝐿2
1
≤ 𝐶(‖[𝑡𝑛, 𝜌𝑛]‖𝐿2 + ‖𝜌𝑛‖𝐿2) = 𝐶(‖[𝑡𝑛, 𝜌𝑛]‖𝐿2 + 1) ≤ 𝐾1‖𝑡𝑛‖𝐿4‖𝜌𝑛‖𝐿4 +𝐾2.

Since 𝐿2
1 ⊂ 𝐿4 compactly, we have that ‖𝜌𝑛‖𝐿2

1
is bounded and hence has a weakly

convergent subsequence. Since 𝐿2
1 ⊂ 𝐿2 is compact and ‖𝜌𝑛‖𝐿2 = 1, the weak limit

𝜌 is non-zero.

Hence, we have 𝜌 · 𝐵 = 𝐵′. Since by construction, 𝐵 and 𝐵′ lie on the same

complex orbit, 𝜌 must be a complex automorphism. Now since weak convergence

implies pointwise convergence, that is, 𝜌𝑛(𝑥) → 𝜌(𝑥), for all 𝑥 ∈ 𝑆2/Γ, and 𝐹/𝑇 is

compact, we must have 𝜌(𝑥) ∈ 𝐹/𝑇 , for all 𝑥. Hence, 𝜌 lies in 𝒢𝐹,Γ, but this is a

contradiction.

Corollary 8.6.2. If (𝐵,Θ) and (𝐵′,Θ′) are two solutions to 8.3.1 – 8.3.4 in 𝒜𝐹
𝜏 ×

𝐶∞(𝐸(Γ)) with 𝐵 and 𝐵′ not 𝒢𝐹,Γ𝜏 -equivalent, then (𝐵′,Θ′) is separated from the

subset of solutions such that the connection part is 𝒢𝐹,Γ𝜏 -equivalent to 𝐵.

Proof. We assume otherwise and again follow the same arguments as in the pre-

vious lemma with the further assumption that all the gauge transformations are

𝜏 -invariant, that is, they lie in 𝒢𝐹,Γ𝜏 . Hence, we obtain a limit 𝜌 that lies in 𝒢𝐹,Γ𝜏 and

hence obtains a contradiction.
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Corollary 8.6.3. 1. Solutions to 8.3.1 and 8.3.2 in 𝒜𝐹 ×𝐶∞(𝐸(Γ)) with the con-

nection part 𝐵 not 𝒢𝐹,Γ-equivalent lie in different connected components of the

moduli space ℳ(Γ, 𝜁1).

2. Solutions to 8.3.1 – 8.3.4 in 𝒜𝐹
𝜏 × 𝐶∞(𝐸(Γ)) with the connection part 𝐵 not

𝒢𝐹,Γ𝜏 -equivalent lie in different connected components of the moduli space 𝒳𝜁 .

Proposition 8.6.4. 1. Suppose (𝐵,Θ) is a solution to 8.3.1 and 8.3.2 in 𝒜𝐹 ×

𝐶∞(𝐸(Γ)) with trivial stabilizer in 𝒢𝐹,Γ, the moduli space ℳ(Γ, 𝜁1) at the orbit

of (𝐵,Θ) is smooth of dimension 2|Γ|+ 2.

2. If (𝐵,Θ) is a solution to 8.3.1 – 8.3.4 in 𝒜𝐹
𝜏 × 𝐶∞(𝐸(Γ)) with trivial stabilizer

in 𝒢𝐹,Γ𝜏 , the moduli space 𝒳𝜁 at the orbit of (𝐵,Θ) is smooth of dimension 4.

Proof. 1. Consider the set of sections 𝒮 = {Θ ∈ 𝐶∞𝐸(Γ)|𝜕𝐴0+𝐵Θ = 0}. The

stabilizer group 𝑆𝑡𝑎𝑏(𝐵) of 𝐵 in 𝒢𝐹,Γ acts on 𝒮. By Lemma 8.5.2 and Lemma

8.5.7 (with small adaptations of the proof), we have that 𝒮 is isomorphic to

𝑀 = 𝑃 Γ and 𝑆𝑡𝑎𝑏(𝐵) is isomorphic to 𝐹 . Hence, we can restrict the symplectic

structure compatible with 𝐼 on 𝐶∞𝐸(Γ) to 𝒮 and obtain a Hamiltonian action

of 𝑆𝑡𝑎𝑏(𝐵) on 𝒮 with respect to the restrictions of 𝐼 on 𝒮. We also know that

𝑆𝑡𝑎𝑏(𝐵) acts freely at Θ ∈ 𝒮 as 𝒢𝐹,Γ acts freely at (𝐵,Θ). On the other hand,

by Lemma 8.6.1 and Corollary 8.6.3, every point in the connected component

of ℳ(Γ, 𝜁1) containing the orbit of (𝐵,Θ) has a unique representative lying in

𝒮. Hence, the smoothness and the dimension of ℳ(Γ, 𝜁1) at [(𝐵,Θ)] follow

from Proposition 2.1 in [21].

2. First, we observe that the action of 𝐽 commutes with the action of 𝜌 when

𝜌 lies in 𝒢𝐹,Γ𝜏 . Hence, we can restrict the hyperkähler structure on 𝐶∞𝐸(Γ)

to 𝒮 and obtain a Hamiltonian action of 𝑆𝑡𝑎𝑏(𝐵) on 𝒮 with respect to the

restrictions of 𝐼, 𝐽 , and 𝐾 on 𝒮. We also know that 𝑆𝑡𝑎𝑏(𝐵) acts freely at

Θ ∈ 𝒮 as 𝒢𝐹,Γ𝜏 acts freely at (𝐵,Θ). On the other hand, by Corollary 8.6.2 and

Corollary 8.6.3, every point in the connected component of 𝒳𝜁 containing the
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orbit of (𝐵,Θ) has a unique representative lying in 𝒮. Hence, the smoothness

and the dimension of 𝒳𝜁 at [(𝐵,Θ)] again follow from Proposition 2.1 in [21].

8.7 Proof of Theorem 8.3.8

8.7.1 A criterion for obtaining free 𝒢𝐹,Γ
𝜏 -action

Now we want to give a criterion for when the 𝒢𝐹,Γ𝜏 -action is free on 𝜇̃−1(𝜁).

We adapt the notations introduced in [21] and in Section 2.1 to our setting.

Consider projection maps

𝜋𝑖 : 𝑅 → C𝑛𝑖 ⊗𝑅𝑖.

Now, let 𝑍 denote the center of f . Then Ω0(𝑆2/Γ;𝑍) is spanned by elements
√
−1𝜋𝑖,

that is, smooth sections such that at each point the endomorphism is a scalar mul-

tiple of the projection map. Let ℎ denote the real Cartan algebra associated to the

Dynkin diagram, we then get a linear map 𝑙 from Ω0(𝑆2/Γ;𝑍) to Ω0(𝑆2/Γ;ℎ*) given

by

𝑙 :
√
−1𝜋𝑖 ↦→ 𝑛𝑖𝜉𝑖,

and hence 𝑙 induces a map 𝑙̃ from Ω0(𝑆2/Γ;𝑍) to Ω0(𝑆2/Γ;ℎ) which is an isom-

porhism.

Let 𝜉 be a root, not necessarily simple. We define 𝐷̃𝜉 to be ker(𝜉 ∘ 𝑙̃), where we

regard 𝜉 as a constant element in Ω0(𝑆2/Γ;ℎ*).

Lemma 8.7.1. Let (𝐵,Θ) be a solution to 8.3.1 – 8.3.4 in 𝒜𝐹
𝜏 × 𝐶∞(𝐸(Γ)). If 𝒢𝐹,Γ𝜏

does not act freely on (𝐵,Θ), then 𝜁 lies in R3 ⊗ 𝐷̃𝜉.

Proof. This proof is a reformulation of Kronheimer’s original proof of Proposition

2.8 in [21] in our setting. Suppose (𝐵,Θ) ∈ 𝜇−1(𝜁) is fixed by some 𝜌 ∈ 𝒢𝐹,Γ𝜏 . In

particular, 𝜌 lies in 𝑆𝑡𝑎𝑏(𝐵) and fixes Θ. Then we can rewrite 𝜌 as

𝜌 = 𝜅𝜌0𝜅
−1,
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where 𝜌0 is a constant in the complexification of 𝐹/𝑇 and

𝜅 : 𝐸(Γ) → 𝐸(Γ)

is a complex automorphism with

𝜅−1𝜕𝜅+ 𝜅*𝜕𝜅*−1 = 𝐵.

We can find a lift 𝜌0 of 𝜌0 in the complexification of 𝐹 and decompose 𝑅 into the

eigenspaces of 𝜌0 and obtain at least two Γ-invariant parts

𝑅 = 𝑅′ ⊕𝑅′′.

We have that𝐸(𝐸𝑛𝑑(𝑅′)) is naturally a holomorphic subbundle of𝐸(Γ) with respect

to 𝐴0. This gives rise to a holomorphic subbundle 𝐸̃ of 𝐸(Γ) with respect to𝐵 where

the fiber of 𝐸̃ over each point 𝑥 is isomorphic to 𝐸𝑛𝑑(𝑅′). Explicitly, 𝐸̃ is the image

of 𝐸(𝐸𝑛𝑑(𝑅′)) under 𝜅.

Without loss of generality we assume that Θ is a holomorphic section of 𝐸̃ with

a free action by 𝑀𝑎𝑝(𝑆2/Γ, 𝐹 ′/𝑇 ′), where 𝑀𝑎𝑝(𝑆2/Γ, 𝐹 ′/𝑇 ′) is the natural gauge

group acting on 𝐸̃. In other words, 𝐸̃ is the smallest holomorphic subbundle of

𝐸(Γ) such that Θ is a holomorphic section of 𝐸̃ and there is no proper subbundle

of 𝐸̃ of which Θ is a section. We observe that 𝐸̃ is Γ-invariant. In particular, 𝐸̃ is

isomorphic to 𝐸(𝐸𝑛𝑑(𝑅′))Γ.

By Proposition 8.6.4, we know that the condition that 𝑀𝑎𝑝(𝑆2/Γ, 𝐹 ′/𝑇 ′) acts

freely on Θ means that the moduli space of the reduction by 𝑀𝑎𝑝(𝑆2/Γ, 𝐹 ′/𝑇 ′) on

pairs on 𝐸̃ is a smooth manifold at at least one point, with dimension

dimR(𝐻𝑜𝑚(C2, 𝐸𝑛𝑑(𝑅′))Γ)− 4 dimR(𝐹
′/𝑇 ′) ≥ 0.
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This translates to

dimC(𝐻𝑜𝑚(C2, 𝐸𝑛𝑑(𝑅′))Γ)− 2 dimC(𝐸𝑛𝑑(𝑅
′)Γ) + 2 ≥ 0,

and hence we have

2 dimC(𝐸𝑛𝑑(𝑅
′)Γ)− dimC(𝐻𝑜𝑚(C2, 𝐸𝑛𝑑(𝑅′))Γ) ≤ 2.

Now further decompose 𝑅′ into irreducibles 𝑅′ = ⊕𝑛′
𝑖𝑅𝑖, then the above in-

equality is the same as the following:

2
∑︁
𝑖

(𝑛′
𝑖)
2 −

∑︁
𝑖,𝑗

𝑎𝑖,𝑗𝑛
′
𝑖𝑛

′
𝑗 ≤ 2.

Equivalently, ∑︁
𝑖,𝑗

𝑐𝑖,𝑗𝑛
′
𝑖𝑛

′
𝑗 ≤ 2,

where 𝐶 = (𝑐𝑖,𝑗) is the extended Cartan matrix. Now let 𝜉 be defined by

𝜉 =
𝑟∑︁
0

𝑛′
𝑖𝜉𝑖.

The inequalities suggest that

‖𝜉‖2 ≤ 2,

which implies that 𝜉 is a root.

Let 𝜋𝐵 : 𝐸(Γ) → 𝐸̃ be the projection from 𝐸(Γ) to 𝐸̃. We then have that 𝜋𝐵

induces an element 𝜋̃ ∈ Ω0(𝑆2/Γ; f) such that 𝜋̃(𝑥) ∈ 𝐸𝑛𝑑(𝑅) is given by

𝜋̃(𝑥) : 𝑅𝑥 → 𝑅′
𝑥,

where 𝑅𝑥 is isomorphic to 𝑅, and 𝑅′
𝑥 is a subrepresentation of 𝑅𝑥 which is also

isomorphic to 𝑅′, for all 𝑥. Notice that, 𝜋̃ is identified with 𝜅 · 𝜉 = 𝜅𝜉𝜅−1 = 𝜉 under

𝑙, as 𝜉 is in the center.
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We have that 𝜋̃ acts trivially on Θ, that is, [𝜋̃,Θ] = 0, as it is the identity on 𝐸̃.

Now consider 𝜁(𝜋̃). We compute 𝜁1(𝜋̃) here:

𝜁1(𝜋̃) =

∫︁
𝑆2/Γ

Tr(𝜋̃𝐹𝐵)−
𝑖

2

∫︁
𝑆2/Γ

Tr(𝜋̃[Θ,Θ*])𝜔𝑣𝑜𝑙.

We know that
∫︀
𝑆2/Γ

Tr(𝐹𝐴0+𝐵) =
∫︀
𝑆2/Γ

Tr(𝐹𝐴0) + Tr(𝐹𝐵) = 𝑖
2𝜋

· 𝑐1(𝐸(Γ)). By con-

struction, the integral of 𝑐1(𝐸(Γ)) concentrates on 𝐴0, that is,
∫︀
𝑆2/Γ

Tr(𝐹𝐴0) =

𝑖
2𝜋

· 𝑐1(𝐸(Γ)). Hence, we have that
∫︀
𝑆2/Γ

Tr(𝐹𝐵) = 0. Since 𝐸̃ is a holomorphic

subbundle of 𝐸(Γ) and 𝜋̃𝐹𝐵 is the projection of 𝐹𝐵 onto 𝐸̃, we must have that on

the subbundle 𝐸̃,

∫︁
𝑆2/Γ

Tr(𝜋̃𝐹𝐴0+𝐵) =

∫︁
𝑆2/Γ

Tr(𝜋̃𝐹𝐴0) + Tr(𝜋̃𝐹𝐵) =
𝑖

2𝜋
· 𝑐1(𝐸̃)

=

∫︁
𝑆2/Γ

Tr(𝜋̃𝐹𝐴0).

Hence,
∫︀
𝑆2/Γ

Tr(𝜋̃𝐹𝐵) = 0.

We have shown that the first integrand is 0. On the other hand, since [𝜋̃,Θ] = 0,

we have

Tr(𝜋̃[Θ,Θ*]) = Tr(𝜋̃ΘΘ* − 𝜋̃Θ*Θ)

= Tr(𝜋̃ΘΘ* −Θ𝜋̃Θ*) = 0.

Hence, 𝜁1(𝜋̃) = 0, that is to say, 𝜁1 ∈ 𝐷̃𝜉. Similarly, 𝜁2(𝜋̃) = 𝜁3(𝜋̃) = 0. As a result,

we have 𝜁 ∈ R3 ⊗ 𝐷̃𝜉.

Corollary 8.7.2. For 𝜁 not lying in 𝐷𝜉 as in [21] and 𝜁 = −𝜁 thought of as a constant

element in Ω2(𝑆2/Γ;𝑍), 𝒢𝐹,Γ𝜏 acts freely on 𝜇̃−1(𝜁).

Proof. If 𝜁 doesn’t lie in 𝐷𝜉 as in [21], then 𝜁 = −𝜁 thought of as a constant element

in Ω2(𝑆2/Γ;𝑍) doesn’t lie in 𝐷̃𝜉. Hence, by the previous lemma, 𝒢𝐹,Γ𝜏 acts freely on

𝜇̃−1(𝜁).
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8.7.2 Proof of Theorem 8.3.8 Part I

In this subsection, we prove one direction of Theorem 8.3.8 where we show the

moduli space obtained by the gauge-theoretic construction contains the 4-dimensional

hyperkähler ALE space given by Kronheimer’s construction. To do this, we first ex-

plicitly identify certain solutions to the equations given previously with solutions

to the equations given in Kronheimer’s work and hence showing that the moduli

space contains the corresponding 4-dimensional hyperkähler ALE space. Then by

the uniqueness results, smoothness results and dimension calculations, we conclude

that there cannot be any additional solutions other than the ones corresponding to

the points of the 4-dimensional hyperkähler ALE space. Hence, we identify the

moduli space with a 4-dimensional hyperkähler ALE space.

Proof of Theorem 8.3.8 Part I.

Lemma 8.7.3. For 𝜁 = 𝜁* = −𝜁, there is a map Φ : 𝑋𝜁 → 𝒳𝜁 which is an embedding

and there is a natural choice of metric on 𝒳𝜁 such that Φ is an isometry onto its image.

Proof. We set 𝐵 = 0, then the equations reduce to the following:

𝜕𝐴0Θ = 0,

− 𝑖

2
[Θ,Θ*]𝜔𝑣𝑜𝑙 = 𝜁1 · 𝜔𝑣𝑜𝑙 = −𝜁1 · 𝜔𝑣𝑜𝑙,

−1

4
([𝐽Θ,Θ*]− [Θ, 𝐽Θ*])𝜔𝑣𝑜𝑙 = 𝜁2 · 𝜔𝑣𝑜𝑙 = −𝜁2 · 𝜔𝑣𝑜𝑙,

− 𝑖

4
([𝐽Θ,Θ*] + [Θ, 𝐽Θ*])𝜔𝑣𝑜𝑙 = 𝜁3 · 𝜔𝑣𝑜𝑙 = −𝜁3 · 𝜔𝑣𝑜𝑙.

Now since in this case, we can think of Θ as a pair of matrices (𝛼, 𝛽), the equations

can be further rewritten as the following (here we are implictly dropping the volume

2-form on both sides):
𝑖

2
([𝛼, 𝛼*] + [𝛽, 𝛽*]) = 𝜁1

1

2
([𝛼, 𝛽] + [𝛼*, 𝛽*]) = 𝜁2
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𝑖

2
([𝛼, 𝛽]− [𝛼*, 𝛽*]) = 𝜁3.

These are precisely Kronheimer’s moment map equations and hence by the re-

sults of Kronheimer, and we get a solution to the equations. By Lemma 8.5.10, we

know that if a 𝒢𝐹,Γ𝜏,C -orbit contains a solution coming from 𝑋𝜁 , it is also the unique

solution on that orbit. On the other hand, we also want to argue that two distinct

solutions coming from 𝑋𝜁 will remain distinct in the new moduli space. Suppose

there are two solutions coming from 𝑋𝜁 that become identified by 𝒢𝐹,Γ𝜏 , then they

must lie on the same 𝒢𝐹,Γ𝜏,C -orbit as well. Recall that we have

{(𝐴0 +𝐵,Θ) ∈ 𝒜𝐹
𝜏 × 𝐶∞(𝐸(Γ))|𝜕𝐴0+𝐵Θ = 0}/𝒢𝐹,Γ𝜏,0,C

∼= 𝑀.

Hence, two solutions lie on the same 𝒢𝐹,Γ𝜏,C -orbit if and only if they also lie on the

same 𝐹 𝑐-orbit, which would imply that they are also on the same 𝐹 -orbit. Hence,

we define Φ to be the bottom horizontal map that makes the following diagram

commute:

𝑀 𝒜𝐹
𝜏 × 𝐶∞(𝐸(Γ))

𝜇−1(𝜁) 𝜇̃−1(𝜁)

𝑋𝜁 = 𝜇−1(𝜁)/𝐹 𝒳𝜁 = 𝜇̃−1(𝜁)/𝒢𝐹,Γ

Ψ

Ψ|𝜇−1(𝜁)

𝜄

𝑝𝑟𝑜𝑗

𝜄

𝑝𝑟𝑜𝑗

Φ

That Φ can be regarded as an isometry onto its image comes from the fact that

Ψ|𝜇−1(𝜁) is naturally an isometry onto its image, and we can define a metric on 𝒳𝜁

as follows: for [(𝐵1,Θ1)], [(𝐵2,Θ2)] ∈ im(Φ), define

𝑑([(𝐵1,Θ1)], [(𝐵2,Θ2)]) = ( inf
𝑓∈𝐹

∫︁
𝑆2/Γ

𝑅𝑒⟨𝑓Θ′
1𝑓

−1 −Θ′
2, 𝑓Θ

′
1𝑓

−1 −Θ′
2⟩𝜔𝑣𝑜𝑙)

1
2 ,

where Θ′
1,Θ

′
2 are such that for some 𝜌1, 𝜌2 ∈ 𝒢𝐹,Γ𝜏 , we have 𝜌1 · (𝐵1,Θ1) = (0,Θ′

1) as

well as 𝜌2 · (𝐵2,Θ2) = (0,Θ′
2). We see that 𝑑 is well-defined on the image of Φ, and

that Φ is an isometry onto its image.
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8.7.3 Proof of Theorem 8.3.8 Part II

In this subsection, we prove the other direction of Theorem 8.3.8, that is, we

show that the moduli space 𝒳𝜁 obtained by the gauge-theoretic construction is in-

deed equal to the 4-dimensional hyperkähler ALE space 𝑋𝜁 given by Kronheimer’s

construction in [21]. To this end, we first prove the following lemma.

Lemma 8.7.4. The complement of 𝑋𝜁 contained in the gauge-theoretic moduli space

𝒳𝜁 is of higher codimension.

Proof. First, in the setup of [21], by result of Kirwan [18] as cited also in [21], a

stable orbit (closed and of maximal dimension) of𝑀 under the action of 𝐹 𝑐 contains

a solution to the equation 𝑖
2
([𝛼, 𝛼*] + [𝛽, 𝛽*]) = 0. Now, for any choice of 𝜁1, since

|𝜇1 − 𝜁1|2 is proper on the 𝐹 𝑐-orbit containing a solution to 𝑖
2
([𝛼, 𝛼*] + [𝛽, 𝛽*]) = 0,

and 𝐹/𝑇 acts freely on a stable orbit, we have that the complex orbit also contains a

solution to 𝑖
2
([𝛼, 𝛼*] + [𝛽, 𝛽*]) = 𝜁1. As the stable orbits are open and dense, the 𝐹 𝑐-

orbits not containing a solution to 𝑖
2
([𝛼, 𝛼*] + [𝛽, 𝛽*]) = 𝜁1 is of higher codimension.

On the other hand, a solution in 𝒳𝜁 that does not a priori come from a solution

in 𝑋𝜁 must have the form (𝐵,Θ) with 𝐵 not 𝒢𝐹,Γ𝜏 -equivalent to 0. Hence, it lies in a

different connected component from the one containing the solutions coming from

𝑋𝜁 and is contained in a non-stable orbit of 𝑀 when we identify the 𝐹 𝑐-obits of 𝑀

in [21] with the 𝒢𝐹,Γ𝜏,C -orbits of 𝒞 by Lemma 8.5.7 and Remark 8.5.8. This tells us

that the 𝒢𝐹,Γ𝜏,C -orbits that do not a priori contain a solution coming from Kronheimer’s

construction must be of higher codimension in the moduli space.

Proof of main theorem Part II. We want to argue that there are no additional solu-

tions in the gauge-theoretic moduli space 𝒳𝜁 than the solutions coming from 𝑋𝜁 in

[21]. We know if the gauge group acts freely at a solution, then it must come from

Kronheimer’s construction, by the previous lemma and dimension calculations. But
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by Lemma 8.7.1, we know that the gauge group 𝒢𝐹,Γ𝜏 acts freely on the space of so-

lutions when 𝜁 not lying in 𝐷𝜉, which is precisely the assumption we have. Hence,

all the solutions in 𝒳𝜁 must come from 𝑋𝜁 . Hence, they are equal, and Φ : 𝑋𝜁 → 𝒳𝜁

is an isometry.

We have concluded the proof of the main theorem, and we will end this section

by providing the proof of Proposition 8.3.4.

Proof of Proposition 8.3.4. This proof follows essentially the same arguments as those

of the proof of Theorem 8.3.8. First, observe that 8.3.1 and 8.3.2 reduce to 𝑖
2
([𝛼, 𝛼*]+

[𝛽, 𝛽*]) = 𝜁1 when we set 𝐵 = 0. Hence, by Lemma 8.5.7 and 8.5.9, we again have

that the space of solutions satisfying 𝑖
2
([𝛼, 𝛼*] + [𝛽, 𝛽*]) = 𝜁1 lies inside ℳ(Γ, 𝜁1) as

a subset. Since we assume that we are choosing 𝜁1 such that the action of the gauge

group 𝒢𝐹,Γ on the space of solutions to 8.3.1 and 8.3.2 is free, we then know that

ℳ(Γ, 𝜁1) is smooth. Hence again, by Proposition 6.4, we know that there cannot be

any additional solutions in ℳ(Γ, 𝜁1), and we get the desired conclusion.
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