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Abstract

The ability to perform critical frequency and forced response analyses is
a vital tool for designing and troubleshooting rotordynamic systems. These
analyses can be a challenge due to the wide variety of components found in
rotordynamic systems. There are a variety of methods that can be used to
perform these analyses. The finite element method is one method that can
be used to perform these analyses.

A finite element approach to rotordynamic analyses is presented in this
thesis. First, the finite element model is developed. The equations of mo-
tion that are used to analyze the finite element model are developed. Next
the development of a MATLAB based rotordynamic tool incorporating this
method is presented. The features of this tool, including degree-of-freedom
coupling, multiple rotor systems, and the inclusion of tilting pad bearings
with full coefficients, aerodynamic cross couplings, thrust bearings, flexible
bearing supports, flexible couplings, and the stiffness properties of disks in
the model, are presented as well as improvements that have been made to
the efficiency of the program. Finally program is verified by comparison to a
case study for both stability and forced response analyses and validated with
a different case study. The verification case is a classic eight stage compressor
rotor model that has been widely used as a test case for other industry soft-
ware. The validation case study is a ROMAC test rig used to study stability.
In both cases, differences of less than 5% were found. These cases illustrate
the accuracy of the methods developed in this thesis.
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1 Introduction

1.1 Rotordynamics

Rotordynamics is a specialized branch of applied mechanics dealing with
the behavior of rotating objects, known as rotors. Rotors can be found in
machinery applications such as:

• Jet Engines

• Power Generation

• Medical Applications

• Machining Tools

• Turbomachinery

• Motors

An understanding of rotordynamics has increasing importance as rotating
machines are required to operate at ever increasing speeds and in more and
more challenging environments.

“On The Centrifugal Force of Rotating Shafts”[1] written by Rankine in
1869 is commonly accepted as the first paper written solely on the subject
of rotordynamics. In it the author determines that rotors will experience
large amplitude vibrations at certain running speeds, called critical speeds.
However, he incorrectly stated that it was impossible to run the machine
faster than the critical speed without experiencing machine failure.

In 1895, the works of Dunkerley[2] and Föppel[3] improved the under-
standing of operating speeds greater than the first critical speed. It was dis-
covered that rotors have multiple critical speeds and that some of them corre-
spond to the natural frequencies of a non-rotating shaft. In 1919, Jeffcott[4]
helped improve this understanding using a lumped parameter approach. The
Jeffcott rotor is a useful but very simple rotor model. Today’s highly com-
plex rotors running at increasingly fast speeds in varied environments require
more sophisticated methods in order to understand their motion. With the
development of computers there have been new computational techniques
that allow for more complex and accurate analyses. Transfer matrix method
and finite element method are two such techniques. This thesis focuses on
the finite element approach.
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1.2 Finite Element Method

Many phenomena in engineering can be described using partial differ-
ential equations. Solving these equations using analytical methods can be
close to impossible for arbitrary shapes. The finite element method is a nu-
merical method for getting approximate solutions to these partial differential
equations.

In order to execute the finite element method, the model must be dis-
cretized into a series of subdomains called elements. These elements are
defined and connected by several points known as nodes. The process by
which the model is discretized into elements and nodes is called meshing.
The partial differential equation that describes the physical phenomena can
then be approximated with a series of ordinary differential equations.

The finite element method has been developed and validated for use with
rotordynamic systems. In 1970, Ruhl[6] was one of the first to study the
finite element method as it is applied to rotordynamics. His finite element
approach included translational inertia and bending stiffness, but neglected
rotary inertia, gyroscopic moments, and shear deformation. Around the same
time, Thorkildsen[7] developed a finite element model that was similar to
Rhul’s model but included rotary inertia and gyroscopic moments. In 1974,
Polk[8] developed a finite element rotor model using Timoshenko beam the-
ory. However, he did not present any actual numbers with this model. In
1980, Nelson[9] presented numerical studies for the elements developed by
Polk.

1.3 ROMAC Rotordynamic Codes

The Rotating Machinery and Controls (ROMAC) lab at the University
of Virginia strives to advance the field of rotordynamics for the benefit of
its industrial partners. ROMAC performs both theoretical and experimental
research in the general areas of rotordynamics, magnetic bearings, tilting
pad bearings, seals, squeeze film dampers, turbomachinery, and structural
dynamics.[10]

ROMAC has been working in the field of rotordynamics since 1972. This
includes a rich history of numerical analysis software development for use in
the field of rotordynamics, which are available to their members. This history
includes the development of analytical and computational methods, software
implementations, and perhaps most importantly experience in correlating
experimental and field test data with model analyses for the ongoing process
of continuously improving the analysis techniques.[11]

Some of the current ROMAC codes are:
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• ROTSTB

ROTSTB uses the transfer matrix method in order to analyze the lat-
eral stability of the rotor. It allows separate mass and stiffness diame-
ters for the shaft.

• CRTSP2

CRTSP2 is used to produce a critical speed map for the lateral degrees
of freedom. This is a powerful tool in the early stages of rotordynamic
design. It uses the transfer matrix method and is capable of finding
the free-free modes.

• FORSTAB

FORSTAB uses the finite element method to perform lateral forced
response analysis and stability analysis. It uses a modal representation
of the rotor models and is limited to lateral degrees of freedom.

• TWIST2

TWIST2 is a torsional vibration analysis code that can perform stabil-
ity analysis and steady state forced response analysis using the finite
element method.

1.4 RotorSol

RotorSol (previously known as MatlabRotor) was developed as a finite
element steady-state solver that couples lateral, torsional, and axial degrees
of freedom together. It was developed initially by Chaudry[11] using twelve-
degree-of-freedom beam elements that incorporate the lateral, torsional, and
axial degrees of freedom. The rotor models were analyzed using either a
stability analysis or a forced response analysis in the lateral or fully coupled
directions. The rotor models could include the following possible compo-
nents: shaft with constant diameter sections, lumped masses, solid geometry
bearings (or the synchronously reduced coefficients of tilting pad bearings),
probes, and mass unbalances. Matlab was used as the programming platform
in order to take advantage of the mathematical and graphical tools developed
and maintained by MathWorks[12].

This thesis extends the capabilities of RotorSol in several ways. First,
RotorSol is now capable of performing any coupling combination of the lat-
eral, torsional, and axial directions. This allows for the inclusion of such
components as gears, flexible couplings, thrust bearings with the ability to
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find any possible mixed mode that results. These mixed modes are com-
monly found in systems with gearboxes. Kaplan illustrated one example of
this in his Masters thesis[13].

RotorSol is also now capable of analyzing systems which contain any
number of rotors. This is important due to the dynamic interaction between
the rotors found in high speed multi-rotor systems such as jet engines. This
thesis will develop the inclusion of components such as tilting pad bearings
with full coefficients, aerodynamic cross couplings, thrust bearings, flexible
couplings and flexible support for the bearings into the rotor model. These
new features allow many more real rotordynamic systems to be modeled and
analyzed. RotorSol is now capable of outputting the system matrices to
allow the user to make changes or export to other programs for analyses not
directly performed in RotorSol itself.

1.5 Thesis Outline

In Chapter 2, the governing equations for a rotor are developed. They
are developed separately for the lateral, torsional, and axial degrees of free-
dom. Next, the finite element method is examined as a means of solving
the governing rotordynamic equations. The developed rotor and component
matrices are presented. Lastly, the full set of equations of motions that are
used in RotorSol are presented. Chapter 3 presents RotorSol as a solution for
solving rotordynamic problems using the finite element method. The various
features of RotorSol are presented. There is also a discussion of several im-
provements in efficiency that have been implemented in RotorSol as part of
the current work. Chapter 4 presents verification and validation results for
RotorSo with comparisons to other ROMAC codes as well as experimental
results.
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2 Theory

This chapter develops the finite element equations for rotordynamic sys-
tems using Lagrange’s equation and twelve degree-of-freedom beam elements.
First the coninuous model and the lumped parameter model for each direction
(lateral, axial and torsional) will be presented. Then the lumped parame-
ter models will be used to create the finite element equations for the rotor.
Then the contribution for each component is presented. Lastly the solution
method for the equations of motion are presented.

The equations of motion for rotordynamic systems are developed by ap-
plying dynamic principles to appropriate models. The models can be repre-
sented as continuous models which result in partial differential equations or
lumped parameter models which result in matrix equations.

2.1 Lateral Degrees of Freedom

2.1.1 Continuous Model

A continuous rotor model is illustrated in Figure 1. Consider an axial dif-

Figure 1: Continuous Rotor Model[14]

ferential element of length dz. Let ρA be the mass per unit length, ρId be the
diametrical moment of inertia per unit length, and ρIp be the axial moment
of inertia per unit length. Let the lateral motions of the differential element
be defined by displacements u(z, t) and v(z, t) and angular displacements of
θx(z, t) and θy(z, t). Then the internal bending moments transmitted by the
differential element at z are
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Mx = EId
∂θy
∂z

(2.1)

My = EId
∂θx
∂z

(2.2)

and the shear forces are

Qx = κGA(
∂u

∂z
− θx) (2.3)

Qy = κGA(
∂v

∂z
+ θy). (2.4)

The bending modulus , EId, effective shear modulus, κGA, and inertia prop-
erties are dependent upon the axial position z along the rotor.

Let forces fx(z, t) and fy(z, t) and torques τx(z, t) and τy(z, t) are applied
to the rotor per unit length. Assuming the rotor is spinning at a constant
rate of Ω, then the following four partial differential equations[14] can be
obtained.

ρA
∂2u

∂t2
− ∂

∂z
[κGA(

∂u

∂z
− θx)] = fx (2.5)

ρA
∂2v

∂t2
− ∂

∂z
[κGA(

∂v

∂z
− θy)] = fy (2.6)

ρId
∂2θy
∂t2

+ ΩρIp
∂θx
∂t
− ∂

∂z
(EId

∂θy
∂z

) + κGA(
∂v

∂z
+ θy) = τx (2.7)

ρId
∂2θx
∂t2
− ΩρIp

∂θy
∂t
− ∂

∂z
(EId

∂θx
∂z

)− κGA(
∂u

∂z
− θx) = τy (2.8)

In order to finish the formulation of the partial differential equations, the
values of the discplacements at the ends of the rotor are used along with
Equations 2.1 - 2.4.

2.1.2 Lumped Parameter Model

Solving for the continuous rotor model can be a time intensive process.
It is often less costly to use a lumped parameter model without much loss
of accuracy. For lumped-parameter models, Lagrange’s equation (Equation
2.9) can be used to solve for the equations of motion:
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d

dt
(
∂T

∂ζ̇i
)− ∂T

∂ζi
+
∂V

∂ζi
= Ξ (2.9)

where T is the global kinetic energy, V is the global potential energy, ζi are
the generalized coordinates and Ξ are the generalized forces not included in
V .

The kinetic energy[14] contains both translational and rotational compo-
nents.

T =
1

2

n∑
i=1

[mi(ẋ
2 + ẏ2) + Idi(θ̇x

2
+ θ̇y

2
) + ΩIpi(θ̇xθy − θxθ̇y) + Ω2Ipi ] (2.10)

The potential energy[14] term consists of elastic bending energy due to
the bending moments and shear energy due to the shear forces [11]. The
total potential energy function is:

V =
1

2

n∑
i=1

[EId(
∂θx
∂z

2

+
∂θy
∂z

2

) + κGA((
∂x

∂z
− θy)2 + (

∂y

∂z
+ θx)

2)]. (2.11)

The only generalized force that is considered but is not included in the po-
tential energy term is the force due to the mass unbalance of the rotor.

Using Langrange’s equations (Equation 2.9) and Equations 2.10 - 2.11,
the lateral equations of motion[14] for the rotor can be found:

[
M
] {
ẅ
}
lateral

+ φ̇
[
G
] {
ẇ
}
lateral

+
[
K
] {
w
}
lateral

=
{
F
}
eiΩt (2.12)

where w is the displacement vector given by Equation 2.13, M is the mass
matrix including both translational and rotational mass, G is the gyroscopic
matrix, K is the stiffness matrix and F is the force vector due to the unbalance
force.

{
w
}
lateral

=


x(t)
y(t)
θx(t)
θy(t)

 (2.13)

Assuming the angular velocity is constant, Equation 2.12 can be rewritten.

[
M
] {
ẅ
}
lateral

+ Ω
[
G
] {
ẇ
}
lateral

+
[
K
] {
w
}
lateral

=
{
F
}
eiΩt (2.14)
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2.2 Torsional Degrees of Freedom

2.2.1 Continuous Model

Again consider the continuous Rotor Model in Figure 1. The torque
transmitted across the differential element is

Υz = GIp
∂θz
∂z

. (2.15)

where GIp varies along z. If an axial torque, τz(z, t), per unit length is applied
to the rotor then the partial differential equation[14]

− ∂

∂z
(GIp

∂θz
∂z

) + ρIp
∂2θz
∂t2

= τz (2.16)

can be developed. Assuming external axial torques, τz0 and τzL are applied
at either end of the rotor, this partial differential equation along with the
boundary conditions

−(GIp
∂θz
∂z

)0 = τz0 at z = 0 (2.17)

and

−(GIp
∂θz
∂z

)L = τzL at z = L (2.18)

can be used to determine the torsional vibration of the rotor.

2.2.2 Lumped Parameter Model

Again this paper will develop the lumped parameter model for torsional
vibration. Using Lagrange’s equations (2.9),

Ttorsional =
1

2

n∑
i=1

Ipi
˙θzi

2
, (2.19)

Vtorsional =
1

2

n−1∑
i=1

ki(θzi+1
− θzi)2, (2.20)

and a generalized force, Ξi, of τzi the torsional equations of motion[14] can
be developed. [

M
] {
ẅ
}
torsional

+
[
K
] {
w
}
torsional

=
{
τ
}

(2.21)
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2.3 Axial Degrees of Freedom

2.3.1 Continuous Model

Using the discretized element found in Figure 1, the axial tensile force
across the element is

α = EA
∂$

∂z
(2.22)

where $ is the axial displacement. If an axial force g(z,t) is applied per unit
length to the continuous rotor then one can derive Equation 2.23[14].

− ∂

∂z
(EA

∂$

∂z
) + ρA

∂2$

∂t2
= g (2.23)

The boundary conditions are dependent upon the configuration of the rotor.
For example, boundary conditions for a rotor constrained by a spring at one
end and forces, g0(t) and gL(t) are

k0$(0, t)− (EA
∂$

∂z
)0 = g0(t) (2.24)

(EA
∂$

∂z
)L = gL(t) (2.25)

where k0 is a spring stiffness of an axial spring connected to the z = 0 end
of the rotor.

2.3.2 Lumped Parameter Model

Using Lagrange’s equations (2.9),

Taxial =
1

2

n∑
i=1

mi$̇i
2 (2.26)

Vaxial =
1

2
k0$

2
1 +

1

2

n−1∑
i=1

ki($i+1 −$i)
2, (2.27)

and a generalized force, Ξi, of gi the axial equations of motion[14] can be
developed. [

M
] {
ẅ
}
axial

+
[
K
] {
w
}
axial

=
{
g
}

(2.28)

9



2.4 Beam Elements

In order to analyze the lateral, torsional and axial degrees of freedom,
twelve degrees of freedom beam elements are used. Both nodes of these el-
ements can translate in the lateral (x,y) and axial (z) directions and rotate
in the lateral (θx, θy) and torsional (θz) directions. This type of element
is illustrated below. These elements are used by taking each of the direc-

Figure 2: Twelve Degree of Freedom Beam Element [11]

tional lumped parameter models and developing the rotor elements. Then
the elemental matrices are combined in order to form the full rotor matrices.

2.4.1 Lateral Elements

In order to form elements, shape functions are used to assume a shape
for the displacements across the elements. For the lateral element, the trans-
lation and rotation of a point along the element can be approximated as:


x(s, t)
y(s, t)
θx(s, t)
θy(s, t)

 =


Ψ1 0 0 Ψ2 Ψ3 0 0 Ψ4

0 Ψ1 Ψ2 0 0 Ψ3 Ψ4 0
0 ξ1 ξ2 0 0 ξ3 ξ4 0
ξ1 0 0 ξ2 ξ3 0 0 ξ4

{q(t)} (2.29)
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where the individual shape functions, Ψi(s) = 1
1+Φ

[ηi(s)+Φλi(s)] and ξi(s) =
1

1+Φ
[εi(s) + Φδi(s)], i = 1, 2, 3, 4, represent static displacement and rotation

shape functions associated with unit displacements of one of the endpoint
coordinates with all other coordinates constrained to zero [9].

2.4.2 Torsional Elements

A torsional element consists of one degree of freedom at each node, θz.
The angular displacement can be defined as:

θ(e)
z (z) = N

(e)
i θzi +N

(e)
j θzj , 0 ≤ z′ ≤ L (2.30)

where the N
(e)
i and N

(e)
j are linear shape functions for an element with node

i and j. [
N
](e)
t

=
[
Ni Nj

](e)
=
[
1− z′

L
z′

L

]
(2.31)

and

z′ = z − zi. (2.32)

These shape functions are shown in Figure 3 and Figure 4. The elemental
angular displacement is shown in Figure 5.

Figure 3: Linear Shape Function
for Node i [15]

Figure 4: Linear Shape Function
for Node j [15]

2.4.3 Axial Elements

The axial element has two degrees of freedom. The axial displacement
across the element can be approximated by using the same linear shape
functions as those used for the torsional elements.

$(e)(z) = N
e)
i $i +N

(e)
j $j , 0 ≤ z′ ≤ L(e) (2.33)
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Figure 5: Angular Displacement Across Element e [15]

2.5 Rotor Matrices

These elements have mass, stiffness, damping and gyroscopic matrices
that are derived separately in Sections 2.1.2, 2.2.2, and 2.3.2 in the lateral,
axial and torsional directions. The separate matrices are combined to form
the full twelve degree of freedom rotor matrices. This done by assembling
the matrices as follows.

[
R
](e)

=



rz1z1 0 0 0 0 0 rz1z2 0 0 0 0 0
0 rx1x1 rx1y1 0 rx1θx1 rx1θy1 0 rx1x2 rx1y2 0 rx1θx2 rx1θy2
0 ry1x1 ry1y1 0 ry1θx1 ry1θy1 0 ry1x2 ry1y2 0 ry1θx2 ry1θy2
0 0 0 rθz1θz1 0 0 0 0 0 rθz1θz2 0 0
0 rθx1x1 rθx1y1 0 rθx1θx1 rθx1θy1 0 rθx1x2 rθx1y2 0 rθx1θx2 rθx1θy2
0 rθy1x1 rθy1y1 0 rθy1θx1 rθy1θy1 0 rθy1x2 rθy1y2 0 rθy1θx2 rθy1θy2

rz2z1 0 0 0 0 0 rz2z2 0 0 0 0 0
0 rx2x1 rx2y1 0 rx2θx1 rx2θy1 0 rx2x2 rx2y2 0 rx2θx2 rx2θy2
0 ry2x1 ry2y1 0 ry2θx1 ry2θy1 0 ry2x2 ry2y2 0 ry2θx2 ry2θy2
0 0 0 rθz2θz1 0 0 0 0 0 rθz2θz2 0 0
0 rθx2x1 rθx2y1 0 rθx2θx1 rθx2θy1 0 rθx2x2 rθx2y2 0 rθx2θx2 rθx2θy2
0 rθy2x1 rθy2y1 0 rθy2θx1 rθy2θy1 0 rθy2x2 rθy2y2 0 rθy2θx2 rθy2θy2


where R is just a general system matrix.

The system matrices for the rotor are:
Element Mass Matrix:

[M ](e) = ρAL



1
3

0 0 0 0 0 1
6

0 0 0 0 0
0 frA 0 0 0 frC 0 frB 0 0 0 −frD
0 0 frA 0 −frC 0 0 0 frB 0 frD 0
0 0 0 2Id

3A
0 0 0 0 0 2Id

6A
0 0

0 0 −frC 0 frE 0 0 0 −frD 0 frF 0
0 frC 0 0 0 frE 0 frD 0 0 0 frF
1
6

0 0 0 0 0 1
3

0 0 0 0 0
0 frB 0 0 0 frD 0 frA 0 0 0 −frC
0 0 frB 0 −frD 0 0 0 frA 0 frC 0
0 0 0 2Id

6A
0 0 0 0 0 2Id

3A
0 0

0 0 frD 0 frF 0 0 0 frC 0 frE 0
0 −frD 0 0 0 frF 0 −frC 0 0 0 frE
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where

frA =
13
35

+ 7
10

Φ + 1
3
Φ2 + 6Id

5AL2

(1 + Φ)2

frB =
9
70

+ 3
10

Φ + 1
6
Φ2 − 6Id

5AL2

(1 + Φ)2

frC =
( 11

210
+ 11

120
Φ + 1

24
Φ2 + ( 1

10
− Φ

2
) Id
AL2 )L

(1 + Φ)2

frD =
( 13

420
+ 3

40
Φ + 1

24
Φ2 − ( 1

10
− Φ

2
) Id
AL2 )L

(1 + Φ)2

frE =
( 1

105
+ 1

60
Φ + 1

120
Φ2 + ( 2

15
+ Φ

6
+ Φ2

3
) Id
AL2 )L2

(1 + Φ)2

frF =
(− 1

140
− 1

60
Φ− 1

120
Φ2 + (− 1

30
− Φ

6
+ Φ2

6
) Id
AL2 )L2

(1 + Φ)2
.

Element Stiffness Matrix:

[K](e) = EId
(1+Φ)L3



AE
L∗Const 0 0 0 0 0 − AE

L∗Const 0 0 0 0 0
0 12 0 0 0 6L 0 −12 0 0 0 6L
0 0 12 0 −6L 0 0 0 −12 0 −6L 0
0 0 0 2GId

L∗Const 0 0 0 0 0 − 2GId
L∗Const 0 0

0 0 −6L 0 (4 + Φ)L2 0 0 0 6L 0 (2− Φ)L2 0
0 6L 0 0 0 (4 + Φ)L2 0 −6L 0 0 0 (2− Φ)L2

− AE
L∗Const 0 0 0 0 0 AE

L∗Const 0 0 0 0 0
0 −12 0 0 0 −6L 0 12 0 0 0 −6L
0 0 −12 0 6L 0 0 0 12 0 6L 0
0 0 0 − 2GId

L∗Const 0 0 0 0 0 2GId
L∗Const 0 0

0 0 −6L 0 (2− Φ)L2 0 0 0 6L 0 (4 + Φ)L2 0
0 6L 0 0 0 (2− Φ)L2 0 −6L 0 0 0 (4 + Φ)L2


where

Const =
EId

(1 + Φ)L3
.

Element Gyroscopic Matrix:

[G](e) = 2ρAL



0 0 0 0 0 0 0 0 0 0 0 0
0 0 ¯frA 0 ¯frB 0 0 0 − ¯frA 0 ¯frB 0
0 − ¯frA 0 0 0 ¯frB 0 ¯frA 0 0 0 ¯frB
0 0 0 0 0 0 0 0 0 0 0 0
0 − ¯frB 0 0 0 ¯frC 0 ¯frB 0 0 0 ¯frD
0 0 − ¯frB 0 − ¯frC 0 0 0 ¯frB 0 ¯frD 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 − ¯frA 0 − ¯frB 0 0 0 ¯frA 0 − ¯frB 0
0 ¯frA 0 0 0 − ¯frB 0 − ¯frA 0 0 0 − ¯frB
0 0 0 0 0 0 0 0 0 0 0 0
0 − ¯frB 0 0 0 − ¯frD 0 ¯frB 0 0 0 ¯frC
0 0 − ¯frB 0 − ¯frD 0 0 0 ¯frB 0 − ¯frC 0
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Figure 6: Assembling Global Rotor Matrices

where

¯frA =
6Id

5A(1 + Φ)2L2

¯frB = (
1

10
− 1

2
Φ)

Id
A(1 + Φ)2L

¯frC = (
2

15
+

1

6
Φ +

1

3
Φ2)

Id
A(1 + Φ)2

¯frD = −(
1

30
+

1

6
Φ− 1

6
Φ2)

Id
A(1 + Φ)2L

.

Internal damping of the rotor is ignored so the element damping matrix is
a twelve by twelve matrix of zeros. Then the rotor elemental matrices are
combined to form global rotor matrices. This process is illustrated in Figure
6.

This process is repeated for each rotor included in the model and the
global rotor matrices are assembled into the global system matrices, as illus-
trated in Figure 7
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Figure 7: Assembling Global System Matrices

2.6 Rotor Components

Once the rotor model is developed, the contributions of the various ro-
tor components can be added to the model. The following is a list of the
components whose contributions to rotor systems has been examined.

• Disks

• Solid Geometry Bearings

• Tilting Pad Bearings

• Flexible Bearing Supports

• Thrust Bearings

• Aerodynamic Cross Coupling

• Linear Coupling

The inclusion of these components to the rotor model, allows the model to
accurately represent many rotor systems that exist.

2.6.1 Disks

Disks can represent impellers, sleeves, fan blades, etc. Depending on the
physical setup of the system, the disk will contribute significant mass and
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sometimes significant stiffness to the rotor system. Disks contribute a mass
of:

[M ](disk) =


m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ip 0 0
0 0 0 0 Id 0
0 0 0 0 0 Id


and gyroscopics of:

[G](disk) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 Ip
0 0 0 0 −Ip 0


to the system.

These matrices can then be added to the appropriate location in the
global mass and gyroscopic matrices, respectively. If a disk is defined solely
by its geometric and stiffness properties, the mass and the moments of inertia
are calculated from the geometric properties of the disk using the following
equations:

m = ρLπ(
φ2
o − φ2

i

4
) (2.34)

Ip =
1

2
m(

φ2
o + φ2

i

4
) (2.35)

Id =
1

12
m[3(

φ2
o + φ2

i

4
) + L2] (2.36)

If the disk also contributes stiffness properties to the system, then the disk
will have a stiffness matrix of the form:

[K](disk) =



0 0 0 0 0 0 0 0 0 0 0 0
0 12 ∗ Constant 0 0 0 −fC −12 ∗ Constant 0 0 0 −fC
0 0 12 ∗ Constant 0 fC 0 0 0 −12 ∗ Constant 0 fC 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 fC 0 fD 0 0 0 −fC 0 fE 0
0 −fC 0 0 0 fD 0 fC 0 0 0 fE
0 0 0 0 0 0 0 0 0 0 0 0
0 −12 ∗ Constant 0 0 0 fC 12 ∗ Constant 0 0 0 fC
0 0 −12 ∗ Constant 0 −fC 0 0 0 12 ∗ Constant 0 −fC 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 fC 0 fE 0 0 0 −fC 0 fD 0
0 −fC 0 0 0 fE 0 fC 0 0 0 fD
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where

Constant =
EIdiffd

(1 + Φ)L3

fC = −6L ∗ Constant

fD = (4 + Φ)L2 ∗ Constant

fE = (2− Φ)L2 ∗ Constant.

This stiffness equation is added to all of the appropriate elements that the
disk encompasses in the stiffness matrix.

2.6.2 Fixed Geometry Bearings

The support structure is important to the dynamics of a rotor system.
The bearings are usually the dominant source of damping for the system. It
is also usually much cheaper and easier to alter the support structure of a
rotor rather than the rotor itself. Therefore it is important to include it in
the rotor model. The support structure can include such components such
as fixed geometry bearings, tilting pad bearings, thrust bearings and flexible
bearing supports.

Fixed geometry bearings contribute stiffness and damping to the system.
In order to determine the stiffness and damping properties of a bearing,
the bearing must be analyzed separately. This is usually done by solving
Reynolds, energy and elasticity equations. There has been much work in
using various reduced forms of these equations. Dynamic analysis of bearings
requires the determination of the position and velocity derivatives of the
integrated bearing pressure profile. For fixed pad bearings, this produces a
set of eight stiffness and damping coefficients[16].

The stiffness and damping matrices of a fixed geometry bearing attached
to ground are:

[K]fixed bearing =



0 0 0 0 0 0
0 Kxx Kxy 0 0 0
0 Kyx Kyy 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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[C]fixed bearing =



0 0 0 0 0 0
0 Cxx Cxy 0 0 0
0 Cyx Cyy 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


The stiffness and damping matrices of a fixed geometry bearing connecting
multiple rotors are:

[K]fixed bearing =



0 0 0 0 0 0 0 0 0 0 0 0
0 Kxx Kxy 0 0 0 0 0 0 0 0 0
0 Kyx Kyy 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Kxx Kxy 0 0 0
0 0 0 0 0 0 0 Kyx Kyy 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



[C]fixed bearing =



0 0 0 0 0 0 0 0 0 0 0 0
0 Cxx Cxy 0 0 0 0 0 0 0 0 0
0 Cyx Cyy 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Cxx Cxy 0 0 0
0 0 0 0 0 0 0 Cyx Cyy 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0


These matrices are added to the appropriate node(s) in the global stiffness
matrix and global damping matrix.
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2.6.3 Tilting Pad Bearings

For tilting pad bearings, the additional pad degrees of freedom generate
a large number of stiffness and damping coefficients for consideration[16].
These coefficients can be reduced to a frequency dependent set of coefficients.
These reduced coefficients can be treated just like a solid geometry bearing.

Otherwise you must account for the extra pad degrees of freedom. If the
extra pad tilt degree of freedom is included in the model, then the damping
and stiffness coefficients of the tilting pad bearing are:

[K]tilting pad bearing =



0 0 0 0 0 0 0 0 ... 0
0 Kxx Kxy 0 0 0 Kxθ1 Kxθ1 ... KxθNP

0 Kyx Kyy 0 0 0 Kyθ1 Kyθ2 ... KyθNP

0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 ... 0
0 Kθ1x Kθ1y 0 0 0 Kθ1θ1 0 ... 0
0 Kθ2x Kθ2y 0 0 0 0 Kθ2θ2 ... 0
... ... ... ... ... ... ... ... ... ...
0 KθNP x KθNP y 0 0 0 0 0 ... KθNP θNP



[C]tilting pad bearing =



0 0 0 0 0 0 0 0 ... 0
0 Cxx Cxy 0 0 0 Cxθ1 Cxθ1 ... CxθNP

0 Cyx Cyy 0 0 0 Cyθ1 Cyθ2 ... CyθNP

0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 ... 0
0 Cθ1x Cθ1y 0 0 0 Cθ1θ1 0 ... 0
0 Cθ2x Cθ2y 0 0 0 0 Cθ2θ2 ... 0
... ... ... ... ... ... ... ... ... ...
0 CθNP x CθNP y 0 0 0 0 0 ... CθNP θNP


.

These matrices are added to the appropriate rotor and pad nodes in stiffness
and damping matrices

2.6.4 Flexible Support

If the bearing is held by a flexible support then it also will contribute
mass, stiffness and damping to the system. For each flexible support in the
system, the number of degrees of freedom in the system is increased by two.
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Figure 8: Fixed Geometry Bearing on a Flexible Support [17]

These two degrees of freedom are x and y displacement of the support mass.
This is illustrated in Figure 8.

The stiffness and damping matrices for fixed geometry bearings held by
a flexible supports are

[K]fixed bearing =



0 0 0 0 0 0 0 0
0 Kxx Kxy 0 0 0 −Kxx −Kxy

0 Kyx Kyy 0 0 0 −Kyx −Kyy

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −Kxx −Kxy 0 0 0 Kxx Kxy

0 −Kxy −Kyy 0 0 0 Kyx Kyy
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[C]fixed bearing =



0 0 0 0 0 0 0 0
0 Cxx Cxy 0 0 0 −Cxx −Cxy
0 Cyx Cyy 0 0 0 −Cyx −Cyy
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −Cxx −Cxy 0 0 0 Cxx Cxy
0 −Cxy −Cyy 0 0 0 Cyx Cyy


The mass, stiffness and damping matrices for the flexible support’s connec-
tion to ground are

[M ]flexible support =

[
ms 0
0 ms

]

[K]flexible support =

[
Kxx Kxy

Kyx Kyy

]

[C]flexible support =

[
Cxx Cxy
Cyx Cyy

]
.

These matrices are added to the new degrees of freedom of the system.

2.6.5 Thrust Bearings

Axial loads in rotating machinery are controlled through thrust bearings[18].
Thrust bearings add axial stiffness and damping to the system similarly to
the lateral bearings. Fluid film thrust bearings are analyzed in a similar
manner to the lateral bearings in order to determine the eighteen stiffness
and damping coefficients. Their stiffness and damping matrices are:

[K]thrust bearing =


Kzz 0 0 0 Kzθx Kzθy

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Kθxz 0 0 0 Kθxθx Kθxθy

Kθyz 0 0 0 Kθyθx Kθyθy
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[C]thrust bearing =


Czz 0 0 0 Czθx Czθy
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Cθxz 0 0 0 Cθxθx Cθxθy
Cθyz 0 0 0 Cθyθx Cθyθy


These matrices are added to the appropriate nodes in the appropriate global
matrices for the rotor system.

2.6.6 Aerodynamic Cross Couplings

There are a variety of other rotor components that also have an effect on
the dynamics of the rotor system. Aerodynamic cross coupling adds cross
coupling stiffness to the system. This cross coupling is often a result of fluid
interactions. The stiffness matrix of an aerodynamic cross coupling is

[K]cross coupling =



0 0 0 0 0 0
0 0 ς 0 0 0
0 −ς 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


where ς is the magnitude of the cross coupling.

2.6.7 Rotor-to-Rotor Couplings

Many rotor systems include multiple rotors. These rotors can be con-
nected in a variety of ways. One common way is to simply couple one end
of a rotor to the end of another rotor. For many of these rotor-to-rotor
couplings, they function like a linear spring between the two ends. A linear
coupling has the following stiffness and damping matrices.
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[K]linear coupling =



Kzz 0 0 0 0 0 −Kzz 0 0 0 0 0
0 Kxx 0 0 0 0 0 −Kxx 0 0 0 0
0 0 Kyy 0 0 0 0 0 −Kyy 0 0 0
0 0 0 Kθzθz 0 0 0 0 0 −Kθzθz 0 0
0 0 0 0 Kθxθx 0 0 0 0 0 −Kθxθx 0
0 0 0 0 0 Kθyθy 0 0 0 0 0 −Kθyθy

−Kzz 0 0 0 0 0 Kzz 0 0 0 0 0
0 −Kxx 0 0 0 0 0 Kxx 0 0 0 0
0 0 −Kyy 0 0 0 0 0 Kyy 0 0 0
0 0 0 −Kθzθz 0 0 0 0 0 Kθzθz 0 0
0 0 0 0 −Kθxθx 0 0 0 0 0 Kθxθx 0
0 0 0 0 0 −Kθyθy 0 0 0 0 0 Kθyθy



[C]linear coupling =



Czz 0 0 0 0 0 −Czz 0 0 0 0 0
0 Cxx 0 0 0 0 0 −Cxx 0 0 0 0
0 0 Cyy 0 0 0 0 0 −Cyy 0 0 0
0 0 0 Cθzθz 0 0 0 0 0 −Cθzθz 0 0
0 0 0 0 Cθxθx 0 0 0 0 0 −Cθxθx 0
0 0 0 0 0 Cθyθy 0 0 0 0 0 −Cθyθy
−Czz 0 0 0 0 0 Czz 0 0 0 0 0

0 −Cxx 0 0 0 0 0 Cxx 0 0 0 0
0 0 −Cyy 0 0 0 0 0 Cyy 0 0 0
0 0 0 −Cθzθz 0 0 0 0 0 Cθzθz 0 0
0 0 0 0 −Cθxθx 0 0 0 0 0 Cθxθx 0
0 0 0 0 0 −Cθyθy 0 0 0 0 0 Cθyθy


These matrices are added to the appropriate nodes on each rotor.

2.7 Equations of Motion

Equations of motion (Equations 2.14, 2.21, and 2.28) were developed for
lateral, torsional, and axial directions seperately in Sections 2.1.2, 2.2.2, and
2.3.2. These equations of motion can be combined using the system matrices
developed in Sections 2.5 and 2.6 to form:[

M
] {
q̈
}

+ Ω
[
G
] {
q̇
}

+
[
K
] {
q
}

=
{
F
}

(2.37)

In order to get direct solutions, the state space method can be used. An
identity equation is added in order to form state space equation.

[M ]{q̇} = [M ]{q̇} (2.38)

Equation 2.38 and Equation 2.37 can be rewritten as[
0 M
M 0

]{
q̈
q̇

}
+

[
−M 0

(C + ΩG) K

]{
q̇
q

}
=

{
0
f

}
. (2.39)

Using the change of variables
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{
v
}

=

{
q̇
q

}
, (2.40)

Equation 2.39 can be rewritten as[
0 M
M 0

]
{v̇}+

[
−M 0

(C + ΩG) K

]
{v} =

{
0
f

}
. (2.41)

In order to solve for the natural frequencies of the system, the force
{
f
}

is assumed to be zero.[
0 M
M 0

]
{v̇}+

[
−M 0

(C + ΩG) K

]
{v} = {0} (2.42)

The displacement can be assumed to take the form{
u(t)

}
=
{
U
}
est (2.43)

or {
v(t)

}
=
{
V
}
est. (2.44)

Plugging this into Equation 2.42, yields:[
0 M
M 0

]
s
{
V
}
est +

[
−M 0

(C + ΩG) K

] {
V
}
est = {0} (2.45)

or [
−M 0

(C + ΩG) K

] {
V
}

= −
[

0 M
M 0

]
s
{
V
}
. (2.46)

We can solve for the critical speeds s and the damped mode shapes V by
finding the generalized eigenvalue of these two matrices.

In order to solve for the system response to an excitation force, the force
vector can not be assumed to be zero. For synchronous forces, the force
vector can be assumed to be:

{f} =
{
F
}
eiΩt. (2.47)

or {
0
f

}
=

{
0
F

}
eiΩt (2.48)

Plugging this into the state space equations of motion in Equation 2.41 gives
us
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[
0 M
M 0

]
{v̇}+

[
−M 0

(C + ΩG) K

]
{v} =

{
0
F

}
eiΩt. (2.49)

It is assumed that the system response will be synchronous with the running
speed.

{v} =
{
V
}
eiΩt (2.50)

This gives us

[
0 M
M 0

]
iΩ
{
V
}
eiΩt +

[
−M 0

(C + ΩG) K

]{
V
}
eiΩt =

{
0
F

}
eiΩt (2.51)

or

(iΩ

[
0 M
M 0

]
+

[
−M 0

(C + ΩG) K

]
)
{
V
}

=

{
0
F

}
. (2.52)

So the solution can be found to be

{
V
}

= (iΩ

[
0 M
M 0

]
+

[
−M 0

(C + ΩG) K

]
)−1

{
0
F

}
. (2.53)

The reaction forces at the bearing can also be calculated from the dis-
placement and velocity response at the bearing location and the bearing
stiffness and damping factors.

Fx@bearing = u̇@bearingCxx(eff) + v̇@bearingCxy(eff) + u@bearingKxx(eff) + v@bearingKxy(eff)

(2.54)
Fy@bearing = v̇@bearingCyy(eff) + u̇@bearingCyx(eff) + v@bearingKyy(eff) + u@bearingKyx(eff)

(2.55)
where C(eff) is the effective damping, and K(eff) is the effective stiffness.
For a bearing connected to ground this is just the damping and stiffness
coefficients of the bearing. For a bearing attached to a flexible support this
is:

C(eff) =
1

1
Cfixed bearing

+ 1
Cflexible support

(2.56)

and

K(eff) =
1

1
Kfixed bearing

+ 1
Kflexible support

. (2.57)
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3 RotorSol

3.1 Overview

RotorSol is a finite element based code written in MATLAB that performs
steady state rotordynamic analysis. This chapter will discuss the current
capabilities of RotorSol. Only capabilities that have been verified will be
included in this chapter. This chapter will also discuss the development
process of RotorSol.

RotorSol was written as research platform to develop and incorporate new
tools for rotordynamics within the ROMAC lab. It combines the capabilities
of programs such as ROTSTB, RESP2V3, TWIST2 and FORSTAB. MAT-
LAB was used as the platform for RotorSol for several reasons. MATLAB
has powerful built-in numerical algorithms. MATLAB has the capability to
handle and manipulate large complex matrices. It also has powerful visual-
ization tools. MATLAB is also being taught at most engineering schools and
has a lower learning curve than most programming languages. This will allow
future students to more easily add contributions and upgrades to RotorSol.
MATLAB also allows integration with its built-in Controls, Optimization
and other specialized applications.

The downsides to using MATLAB as a development platform are mainly
the need for a runtime environment in order to run the program and the
dependence on a third party developer. Currently MATLAB’s developer,
MathWorks, has done an excellent job maintaining MATLAB. Also Math-
Works provides a free runtime environment to run the program as a stan-
dalone executable. This allows RotorSol to be used without needing licenses
from MathWorks.

3.2 Features

3.2.1 Degree of Freedom Coupling

The use of the twelve degree of freedom element as illustrated in
Figure 2 allows for the coupling of the lateral, torsional and axial degrees of
freedom. This means that there are seven possible degree of freedom coupling
combinations. These combinations are:

• Axial

• Lateral

• Torsional
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• Axial-Lateral

• Lateral-Torsional

• Axial-Torsional

• Axial-Lateral-Torsional

These different coupling combinations allow the inclusion in the model of
various components such as gears and thrust bearings. The coupling caused
by these components can cause mixed modes that would not be discovered
in the separate analyses. These components can also cause significant force
interactions across the various direction. An example of this can be found
in Jason Kaplan’s thesis[13]. The ability to ignore directions allows for more
efficient runs and avoids flooding the user with data that may be negligi-
ble. Therefore, the ability to choose which directions to couple together is a
powerful tool.

3.2.2 Multiple Rotors

Many times in industry, actual rotor systems are composed of multiple
rotors connected by bearings, couplings or gears. Examples can include jet
engines and drive trains. The use of the finite element method allows the
analysis of systems with any number of rotors connected by a variety of
components. In RotorSol these rotors can currently be coupled together by
journal bearings and flexible couplings.

3.2.3 Rotor Components

RotorSol allows the modeling of many different rotor components as dis-
cussed in Section 2.6. The components that are currently included in Rotor-
Sol are:

• Disks

The disks can be defined by their stiffness properties, their mass prop-
erties or both. If the stiffness properties of the disk are given, then the
disk will contribute stiffness to the model.

• Solid Geometry Bearings

A solid geometry bearing is defined by the eight translational stiffness
and damping coefficients

27



• Tilting Pad Bearings

A tilting pad bearing can be defined by either the eight translational
stiffness and damping coefficients or the full bearing coefficients which
will include the pad tilt degree of freedoms into the system model.

• Flexible Bearing Supports

Flexible bearing supports are defined by the eight translational stiffness
and damping coefficients, as well as a mass. They also introduce a new
degree of freedom into the system.

• Thrust Bearings

Thrust bearings are defined by nine stiffness coefficients (Kzz, Kzθx ,
Kzθy , Kθxz, Kθyz, Kθxθx , Kθyθy , Kθxθy , Kθyθx) and the corresponding
damping coefficients.

• Aerodynamic Cross Coupling

Aerodynamic cross couplings are defined by a magnitude.

• Linear Coupling

Linear couplings are defined by the six principle stiffness and damping
coefficients.

These components can accurately represent a large portion of the rotor dy-
namic systems that exist today, such as drive trains, compressors, pumps
and jet engines. More components can be added to increase the variety of
rotor systems that can be modeled by RotorSol.

3.2.4 Analyses

RotorSol can perform several different types of analyses on rotor system
models. It can currently perform a stability analysis or a forced response
analysis.

In addition to performing an analysis, RotorSol can output the system
matrices. RotorSol will display these matrices in the System Matrices GUI
shown in Figure 9. This allows the user to easily view and copy the system
matrices in an excel format for external use.

RotorSol can perform a stability analysis on the rotor model. This is done
by solving Equation 2.46 for the system eigenvalues and eigenvectors. The
eigenvalues are the natural frequencies of the system while the corresponding
eigenvectors are the corresponding mode shapes. These frequencies and mode
shapes will be written in a output text file. RotorSol will also output a 3D
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Figure 9: System Matrices GUI

Figure 10: 3D Damped Mode Shapes

graph of the mode shapes for each natural frequency at each speed case. It
will also graph a separate graph for each of the chosen direction (translational,
axial and torsional) included in the analysis.

RotorSol can also perform a forced response analysis. This solves for the
magnitude and phase of the rotor response assuming a steady state condition
over a range of speeds. It will also solve for the reaction forces at the bearings.
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Figure 11: Probe Response Plots and Bearing Force Plots

Both probe response and bearing reaction force is graphed. The response of
every node point in model is written to the output text file.

3.3 Program Efficiency

The efficiency of RotorSol has been improved greatly. These improve-
ments vary from increases in efficiency of the code itself, changes to improve
the ease of updating and adding new features, and changes to improve the
interaction between RotorSol and RotorLab+, the new GUI program being
developed in ROMAC that will be able to call all of the other ROMAC codes.

The development of RotorSol can be seen by examining the flow of the
program through the subscripts as illustrated in Figure 12 and 13. By divid-
ing up the content of the code into subscripts, it becomes easier to add new
content and to update the existing content of RotorSol. For example, new
analysis solver and post processor subscripts can be written and added eas-
ily to the appropriate places in the RotorSol and RotorSol GUI subscripts.
New speed dependent components can be added easily to the Assemble Full
Global System Matrices subscript, while speed independent components can
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be added to the Assemble KGM Rotor Matrices subscript. Previously, the
appropriate locations had to be located within the thousand lines of code in
MATLABROTOR script. This is because the script contained all the code
for the GUI, creating the model, running the analysis and performing the
post processing.

Figure 12: Initial Flowchart of MatlabRotor (RotorSol)

RotorSol’s development process also allows easier communication between
RotorSol and RotorLab+. RotorLab+ will be responsible for actually build-
ing the model in an excel format and for the post processing of the results.
Therefore, RotorSol was broken up so that the matrix assembly and solver
were in a separate batch of subscripts that could easily be compiled separately
into a dll for use with RotorLab+. This branch is the RotorSol subscript and
all children subscripts.

In order to improve the efficiency of the code itself, several things were
done. In several places, equations were rewritten to be less computationally
intensive. There were lines of code that was rewritten in order to not repeat
steps needlessly and therefore improve the efficiency and run time of the code.
One example of this can be seen in Figure 12 and Figure 13. The efficiency
of the code was improved by breaking up the Assemble KGM Rotor Matrices
and the Assemble Full Global System Matrices. Previously the entire model
was created from scratch for each speed case. By breaking up these two
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Figure 13: Current Flowchart of RotorSol

subscripts, the speed independent portion of the model is created and applied
to all speeds. Then the speed dependent portion is added to the model for
each speed case.
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4 Verification and Validation

4.1 Overview

Verification and validation are important steps in the development of any
engineering software. The engineers using the software must be confident in
the results of the software in order to make intelligent decisions based on
the results. It is important the the results of the software actually match
up with what occurs in the real world. Verification means comparing the
results of the software with other theoretical results. These can come from
other validated software packages or from simple theory. Validation means
comparing the results of the software with experimental data. Validation is
very important as it shows direct correlation with what occurs in the field.

4.2 Eight Stage Compressor Verification

The first verification test is a model of an eight stage compressor first
developed in Barrett’s dissertation[19]. This compressor can be seen in Fig-
ure 14. This model is composed of thirty shaft segments(gray), two tilt-
ing pad bearings using synchronously reduced coefficients(red) and thirty
disks(green). The synchronously reduced coefficients were used for the tilting
pad bearings because Rotstb uses these. The model also has two probes lo-

Figure 14: Eight Stage Compressor Model

cated at each of the bearings(blue) and a unbalance on the center disk(orange).
First a stability analysis was performed on this model. The rotor speed

used for this analysis was five thousand rpm, and shear deformation was
included in the model. The modes can be seen in Table 1. It can be seen
the first ten modes have less than a 6% difference between the results from
Rotstb and RotorSol. One can notice that the difference tends to increase
as the mode number increases. This is caused by a difference between the
transfer matrix method used by Rotstb and the finite element method used
by RotorSol. The transfer matrix method tends to become more inaccurate
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Mode # Rotstb(RPM) RotorSol(RPM) % Difference
1 2967 2968 0.066734
2 2997 3006.288 0.30991
3 10530 10604.39 0.706439
4 10630 10705.17 0.70715
5 13800 13982.81 1.324696
6 13850 14043.58 1.397704
7 27380 27882.62 1.835734
8 27400 27896.98 1.810146
9 42180 44400.01 5.263186
10 42510 44753.46 5.277488

Table 1: First Ten Modes of the Eight Stage Compressor

Figure 15: Mode Shapes for Mode 2

as the mode number increases. The corresponding mode shapes also match
as illustrated in Figure 15 and 16.
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Figure 16: Mode Shapes for Mode 8

Figure 17: Probe Response Calculated by RotorSol

A forced response analysis was also performed in RotorSol and RESP2V3.
In order to run this analysis probes(blue) were placed at the bearing locations
and an unbalance vector(orange) was placed at the center of the shaft. Both
of these components can be seen in Figure 14.

Figure 17 and Figure 18 are the graphical outputs from RotorSol and
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Figure 18: Probe Response Calculated by RESP2V3

Figure 19: Comparison of Adjusted RESP2V3 and Adjusted RotorSol Values
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RESP2V3. All of these plots match each other. The plots from RotorSol
plot the x and y response from each probe together, while the plots from
RESP2V3 plot the x responses from both probes together and the y responses
from both probes together. Also there are some different assumptions used
to calculate the phase between these two programs. RotorSol assumes a
phase lead and calculates the phase between −π and π. RESP2V3 assumes
a phase lag and calculates the phase between 0 and 2π. Figure 19 shows the
output from RotorSol adjusted to assume a phase lag and unwrapped to be
a continuous curve and the output of RESP2V3 converted to metric units.
Now the curves matches up with the the curves calculated by RESP2V3.

4.3 ROMAC Fluid Film Bearing Test Rig

The first validation model for RotorSol is ROMAC’s Fluid Film Bearing
Test Rig. RotorSol will be compared with the data found in Hunter Cloud’s
PhD thesis[20].The test rig is composed of a rotor with three disks on it that
is supported by two tilting pad bearings. The model of this test rig consists
of a single rotor composed of 63 elements. The three disks on the rotor were
modeled as differences between the stiffness and mass diameters. The model
using mass properties can be seen in Figure 20 while the equivalent model
with stiffness properties can be seen in Figure 21.

Figure 20: Mass Properties

Figure 21: Stiffness Properties

The tilting pad bearings used in the rig can be seen in Figure 22. The
dynamic properties of the bearings for use in the rotor model were determined
using the thermoelastohydrodynamic algorithm, THPAD[18].

A stability analysis was performed on the test rig and was compared
with Forstab, Rotstb and RotorSol. The first forward and backward bend-
ing modes were determined at eight speeds ranging from 2000 rpm to 12000
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Figure 22: Tilting pad Journal Bearing Assembly (Dimensions are in
inches)[20]

rpm. The analysis in RotorSol was run using both full coefficients and syn-
chronously reduced coefficients for the tilting pad bearings. Figure 23a shows
the results from the test rig compared results of the first forward bending
mode with analytical results using the transfer matrix method. Figure 23b
shows the results from RotorSol and ROTSTB. For the first forward mode,
the biggest percent difference between the test data and RotorSol was ap-
proximately 3%. This held true for the models with both synchronously
reduced coefficients and full coefficients.

Similarly, Figure 24a shows the results from the test rig compared to
results of the first forward bending mode with analytical results using the
transfer matrix method, while Figure 24b shows the results from RotorSol
and ROTSTB. The biggest percent difference between the test data and the
RotorSol model using full coefficients is approximately 1%. For the model
with synchronously reduced coefficients the maximum percent difference is
4%. This shows an excellent agreement between RotorSol and the test data.
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(a) Test Data and Forstab

(b) RotorSol, ROTSTB and Test Data

Figure 23: First Bending Mode with Forward Whirl

(a) Test Data and Forstab

(b) RotorSol, ROTSTB and Test Data

Figure 24: First Bending Mode with Backward Whirl
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5 Conclusion

The development of a variety of new features for use in a finite element
approach to stability and forced response analyses is presented in this thesis.
These features include the ability to chose which degrees of freedom are of
importance, capability to analyze multi-rotor systems, and the ability to
model tilting pad bearings, aerodynamic cross couplings, thrust bearings,
flexible couplings, flexible bearing supports and the stiffness properties of
disks.

In order to make use of these new features, the finite element approach to
rotordynamics was developed incorporating twelve degree of freedom beam
elements. Once the rotor model is developed, then additional components can
be included in the model. This included disks using both stiffness and mass
properties, fixed geometry bearings, tilting pad bearings, flexible supports,
thrust bearings, aerodynamic cross couplings and rotor-to-rotor couplings.
Then the model is solved using the state space method and the equations of
motion developed in this thesis.

The methods and components developed in this thesis were verified and
validated using two different rotordynamic systems. The verification model
was a classic ROMAC model[19] of an eight stage compressor. This model
was used to validate both the stability and forced response analyses with a
model that incorporates the rotor , disks, fixed geometry bearings, probes
and unbalance vectors. The stability analysis showed excellent agreement
although it did have an increasing percent difference as the mode number
increased. This illustrated the advantage of the finite element method over
the transfer matrix method used by the verification code. The forced response
analysis also showed excellent agreement.

The validation case was a model of the ROMAC Fluid Film Bearing
Test Rig[20]. This model contains the rotor model with differences in the
stiffness and mass diameters and tilting pad bearings using full coefficients.
The stability analysis from Dr. Cloud’s dissertation was compared with the
results from a stability analysis of the model. This data showed excellent
agreement.

The new features that have been added to the finite element approach
to rotordynamics in thesis provide powerful tools for the design and trou-
bleshooting of rotordynamic systems. The new components allow for the
accurate modeling of a much wider range of rotordynamic systems. The
inclusion of the degree of freedom coupling allow for inclusion of new com-
ponents that introduce coupling effects on the rotor. Lastly, the efficiency of
the program was improved in order to aid the engineer using it.
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