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Abstract

The only constant in the online social behavior is forever changing user intent and preferences. These

changes could be inspired by myriad of factors but still have an overall trend e.g. todays popular news

will be stale tomorrow etc. Such patterns are especially noticeable in viral trends where an immediate

gain in popularity is followed by gradual lost of holistic interest. In this study we focus on design

of a recommendation system which accounts for this non-stationary behavior of declining popularity.

Contextual multi-armed bandit (contextual MAB) is a popular framework for learning user behavior and

personalized recommendations based on the past behavior. Fundamentally MAB solves the exploitation-

exploration dilemma which aims at minimal guided experimentation required to gain certain level of

confidence in its recommendation. Traditionally contextual MABs (e.g. LinUCB) have been used to

model stationary user behavior that is not appropriate for the target environment where LinUCB can

accumulate linear regret. Here we extend this LinUCB type algorithm to model a decaying environment.

We present three algorithms with variable levels of specificity in the assumptions they make about the

non-stationary environment. We show by simulation the e↵ectiveness of our methods which illustrates

the usefulness of modeling meta-trends in user behavior.

1 Introduction

In this thesis our focus is on line algorithms in non-stationary environments. On line algorithms are widely

applicable in real life and o↵er many applications based on fast growing corpus of information. We make rec-

ommendation systems our prime example for study in this research although the results derived in simulation

and theory are completely independent of the application which is only there to make the framework compre-

hensible. Multi-armed bandit is one such algorithm and is the focus of our study. Lets use recommendation

systems to show case the di↵erent aspects of the Multi-armed bandit problem. On line recommendation

systems are getting bigger and more complex with time, as more information is cached in the browsers,

there is plenty of opportunities for recommendation engines to personalize the suggestions to user’s taste.

Apart from utilizing history and other information about the user, on line systems present the challenge of

on the fly decision making, which implies that algorithms have to be designed around providing quick service

to a heavy tra�c and obviously this should avoid bulky recalculations. Personalized recommendation is a

learning task, any learning algorithm will require a training dataset to build a model. In online learning this

data set can be carefully collected on a portion of the incoming tra�c, however gathering learning data is

a form of exploration where a new kind of user is presented with a suggestion and the response is recorded
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to form a supervised classification task. This exploration phase is expensive since it can cost the system a

potential user, hence an ideal algorithm will also optimize for minimal exploration. On the other hand this

exploration is necessary to form a well rounded dataset which covers many dimensions of user behaviors, and

the larger the dataset better the model learned by the system (exploitation). This hints at the fundamental

exploitation vs. exploration dilemma which is at the root of the multi-armed bandit problems. Multi-armed

bandits are specially attractive since they provide nice theoretical results of lower and upper bounds of regret

for any type of a problem and the algorithm respectively. The theory makes sure that no more exploration is

done than required to achieve good over all reward and further more the exploration should fall o↵ with time.

Another view of this trade o↵ is balancing long and short term rewards, while exploitation secures short

term reward, exploration aims at long terms reward by improving the model. Contextual bandits provide the

framework to combine the learning task while considering the exploration-exploitation trade o↵. This prob-

lem is challenging enough which is only further complicated by the fact that the user preferences or action

rewards can be non-stationary. This takes us into a realm of an entirely new and unexplored territory which

has been avoided either because it is beyond the reach of current mathematical tools of analysis or in most

general case the solutions are trivial with linear regret. There is currently (to the best of our knowledge)

no algorithm that takes on the non-stationary environment while considering the contextual information

(user history etc.). This study is an exploration into this new space of research where we characterize a

specific non-stationary setting while a linear function maps the contextual information to the reward with

a meta-trend of gradual decay. This is indeed a di�cult task and we present three di↵erent methods which

either follow a specific idea (TUCB follow UCB style approach) or extend a non-stationary approach taken

in simple UCB algorithms (decay LinUCB).

We start our discussion with simple multi-armed bandit (MAB) setting where an agent (algorithm)

repeatedly decides between multiple actions (recommendations) with the goal to find the action with highest

reward. On selecting an action, the agent receives a reward according to a fixed but unknown distribution

specific to that action. This is called stochastic MAB since the feedback to the agent is noisy. The MAB

maximizes the reward over some given horizon, T trails. The most popular strategy proposed for this problem

is based on calculating an index called upper confidence bound (UCB) for every action at trial t and choosing

the action with the highest index. The UCB incorporates, in its index and hence the decision, the estimate of

reward and confidence in the estimation simultaneously. At the beginning, decisions are partial to confidence

and decision weight gradually shifts to the estimate as the confidence width shrinks with accumulation of

more data. This ensures that each action gets tested enough so that the algorithm does not converge to
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an inferior action while on the other hand shrinking of the confidence allows for limited exploration with

time. The performance of MAB is measured by the regret of the algorithm’s missed opportunity on reward

by choosing a sub-optimal action. In the work on MABs the regret is theoretically bounded above for any

algorithm and if the upper bound is sub-linear with respect to the time horizon the algorithm is said to be

learning, otherwise the algorithm is not much better than a random strategy. For regret to be sub-linear it

is also necessary that exploration should be trimmed as the time goes by.

For most real world applications solving the exploration-exploitation tradeo↵ alone is not enough. For

example in recommendations domain a learning algorithm should train on the data and the exploration

should be guided based on the specifics of this algorithm; its confidence bounds. Simple MAB does not

provide this flexibility which only focuses on the tradeo↵. For these applications we have side information

e.g. usage history, demographic information specifically for big companies; who can track their customers

with lower granularity since their users will sustain unique connections by logging into the sites e.g. Walmart,

Amazon etc. This side information can be used to build models of user preferences.

Contextual MAB provide the framework e.g. LinUCB [6] for learning the user preferences while making

minimal exploration. LinUCB uses Ridge regression to model the relation between a context vector (a

transformed history mapping) and the user response (binary feedback whether the recommendation was

accepted or not, silence is taken as rejection). This relation is assumed to be linear and fixed temporally and

hence implies the ’Lin’ in LinUCB, further more the UCB part of the algorithm queries the confidence of the

regression model and chooses the action corresponding to the highest confidence bound. LinUCB has been

shown to work well, boosting the click through rate of news articles for Yahoo front page module dataset.

In this work we extend LinUCB for decaying popularity or click through rate of online recommendations.

This is a challenging task since the implicit assumption of static environment is violated. Many algorithms can

be thought for this environment based o↵ the strength of assumptions on the specificity of the environment.

For most general scenarios, we proposed Decay LinUCB algorithm, where no more assumptions about the

environment are made other than the changing property. Under this general assumption, our algorithm

will slowly forgets the past(gives decreasing weight to the past examples). Regret analysis shows that this

algorithm is linear with regret. This is not surprising considering the Decay LinUCB’s limited information of

the environment. Aiming to improve the regret property, we proposed Restart LinUCB, where we will restart

LinUCB algorithm regularly, assuming stationarity within intervals of increasing lengths. This algorithm

may sounds naive, but with the exponential decaying environment assumption, we carefully control the

length of restart intervals using doubling tricks. By making use of the stationarity within intervals, and the

6



doubling trick, a nice regret upper bound can be proved, which is sublinear. Further more, making more

specification about the environment, we proposed Temporal LinUCB(TUCB), where we explicitly modeled

this exponentially decay environment. This specific algorithm will parametrize the environment and hence

can give the best performance. Following the logic of proofs for Decay LinUCB and Restart LinUCB, it

is possible that we can get an even tighter bound of regret for TUCB. The non-stationary setting however

complicates using such an estimator in place of Ridge regression that aims to simultaneously learn two

parameters; linear mapping of user interests and potentially a non-linear of decaying reward or user interest

in aging news. We will describe these three algorithms in details in Section 4. And theoretical guarantee

of regret upper bound of this algorithm is provided is Section 5. All these algorithms with their theoretical

properties, practical advantages and results are detailed in next sections.

2 Literature Review

Here we review the types of bandit problems and show why certain types are not fit for our application.

In literature there are 3 fundamental types of explore and exploit strategies that di↵er in the kind of

environments they are dealing with [15]. The di↵erence manifests in the way the environment generates the

reward. We review these types as they are generic in principal and extend to all kinds of MABP including

contextual MABP.

2.1 Regret

Bandit algorithms can be evaluated based on the total reward they collect. However the more useful quan-

tity from theoretical perspective turns out to be regret. Regret is the lost opportunity for not choosing the

’optimal’ arm. The optimal arm is defined as the action with the highest expected reward or the arm that

the algorithm will choose if it knew the true expected rewards for all the action. Definition of regret is ap-

plication specific. For example in UCB1 for stochastic bandit the regret is defined as the number of times

the algorithm chooses the sub-optimal action.

2.2 Stochastic bandits

In stochastic bandits the environment is supposed to be simple where it generates reward by drawing a

sample from a static distribution. This reward sample is independent from the past samples and also other

machine distributions. These distributions are unknown to the agent and the best long term decision is to
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select the machine or action with highest expected value µ
i

. E.g in case of two biased coins with di↵erent

probability of heads the rewards will follow a Bernoulli distribution. The objective in this example will be

to discover and repeatedly choose the coin with higher probability (expected value) of lets say heads. In

stochastic bandits the desired objective function is called the pseudo-regret given by the equation 1 [13].

It was proved that the lower bound for this regret is O(log T ) where T is the number of turns the agent

gets and the strategy called UCB1 was shown that achieves this regret described in section 2.2.1. This low

regret was possible with the strong assumption of stochastic environment. Low regret makes this strategy

attractive for many applications.

R
n

= nµ⇤ � E

n

X

t=1

µ
It

(1)

µ⇤def= max
1�i�K

µ
i

2.2.1 Upper Confidence Bounds

This strategy relies on the statistical confidence in the estimation of the means from the prior seen examples.

This strategy calculates the upper confidence bound on the standard deviation of the expectation [13]. The

following equation gives the formula for UCB1 strategy given by [13] with best logarithmic regret. Let n be

the number of turns so far and n
i

is the times the action i is tried, then choose the action with,

a
t

= argmax
i ✏1,...,K

µ̂+ ↵�̂
i

= argmax
i ✏1,...,K

x̄
i

+
q

2 lnn

n

i

2.2.2 ✏-Greedy

✏-greedy is a simple and popular heuristic algorithm for stochastic bandit problems. At each repeated stage

or turn the agent choose to pull the arm with maximum empirical mean with probability 1 � ✏ (exploits)

and a randomly chosen arm with probability ✏ (explores). This algorithm is naive in sense that it explores

with the same rate despite the confidence in current estimation of the expectations of rewards. Another

variant of the ✏-greedy family is the strategy with discounting ✏ with a factor �. However, in all these

algorithms the constant ✏ or the discount factor � is chosen experimentally and has nothing to do with the

current estimates. Another similar algorithm is the epoch-greedy algorithm given by [20], which after single

exploration exploits for an epoch of length determined by the quality of upper bound on the regret.
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2.3 Adversarial or non-stochastic bandits

In adversarial bandits also called the non-stochastic bandits the reward structure is assumed to be adversarial,

for example in case of a casino deciding the rewards for a gambler such that the gambler’s wins are lot less

than what s/he could hope for. The adversary decides the rewards before the game even begins [18]. This

kind of model takes a pessimistic view of the world where the stochastic case can be considered an optimistic

one. This view borrows itself from the game theory context where an agent plays repeated games against

an opponent and follows minimax strategies.

In adversarial bandits the agent can not play a deterministic strategy as this can be guessed by the

adversary resulting in the agent choosing worst reward for ever. So the agent takes refuge in randomization

to escape the fate of predictability. The popular strategy given by [12] is called Exp3 as described in

subsection.

2.3.1 Exp3

The Exp3 family of strategies uses weights on the actions and then chooses action probabilistically on these

weights. The weights contain two parts, one is the random exploration part is the minimum probability of

selecting an arm uniformly; 1

K

. The other part assign weights to actions proportional to the payo↵s produced

by those actions in the past. Let x
j

(t) be the reward of choosing action j at time t and w
j

(t) be the weight

of that action.

p
i

(t) = (1� �) w

i

(t)P
K

j=1 w

j

(t)

+ �

K

i = 1, ....,K.

Where the weights are updated by the following rules.

x̂
j

(t) =

8

>

<

>

:

x
j

(t)/p
j

(t) if j = i
t

0 otherwise

w
j

(t+ 1) = w
j

(t) exp (�x̂
j

(t)/K).

� controls the exploration of the random arm while the 1�� the exploitation of the best action. This model

considers the worst possible adversary while optimizing the weak regret which could be undesirable since

the sequence of actions might not be as bad as the worst. However, Exp3 is a safer strategy if the reward

structure is not i.i.d. and we detect the environment is hostile against the agent [15]. In fact, UCB can have

linear regret in certain deterministic reward sequences. This an extreme version of non-stationary bandits.
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2.4 Markovian bandits

In Markovian bandits each slot machine is itself a Markov process with its own state space. On selecting

that machine the Markov process undergoes a transition and produces a reward where only the state of

the selected machine changes. Generally the transition matrices M
i

for the Markov processes are known in

advance and the problem turns out to be an optimization one that can be computed by dynamic programming

[15]. Gittens gave a computationally e�cient greedy policy for calculating the optimal policy in his seminal

paper [26].

A special case of Markovian bandits is Bayesian bandits. Here the rewards are assumed to be generated by

some parametric distribution with known priors. On further observations of rewards the posterior distribution

is updated which corresponds to the transition in the Markovian Bandits [15]. Recently Bayesian bandits

have become popular because of their capability of incorporating prior information into the calculations.

One of the interesting applications of Bayesian bandits is automatic tunning [25]. Another variant is restless

bandits in which on action the state of all the machine changes. This problem is notoriously hard and in

fact intractable.

2.5 Contextual Bandits

Contextual bandits are bandits with side information called the context. Context will mean di↵erent things

in di↵erent applications. For example in an article recommendation system the context is the information

about the user or the article that will be presented to the user while in the treatment selection the context

can be the medical history of the patient. The context makes these models applicable and more useful in

real life examples. Both adversarial and stochastic bandit problems have their counterparts in contextual

settings. In stochastic contextual bandits the matter becomes of finding a mapping from the context to the

actions. This can be posed as a supervised learning problem. Lets look at the following application that we

will use to test our ideas.

2.5.1 Article recommendation

Personalized news article recommendation is a challenging problem where in the real world application

the dynamic nature of emerging news render the traditional recommendation techniques like collaborative

filtering [23] impractical. Such problems can be modeled as contextual multi-armed bandits. One such

practical application is the Yahoo! front page article recommendation, which is the challenge of presenting
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interesting news article to the user.

Each user and the article is represented by a feature vector which defines the context at any time.

The features are extracted from user and article information by conjoint analysis [21]. The feedback of

the user is collected by recording the response; the article is clicked or not. With partial feedback and

dynamic environment this problem naturally lends itself to the formulation of a contextual multi-armed

bandit problem. This problem is further modeled in stochastic settings as the practicality of the problem

renders adversarial and Bayesian approaches ine↵ective. In adversarial context the computational complexity

is exponential in the number of features while the Bayesian approach require extensive o↵ line engineering

to get good priors [6]. Here we use the notation of [6].

Notation. Let trail t = 1, 2, 3, ... the given action a
t

✏ A
t

. The user is represented by feature vector u
t

.

The context is x
t,a

a d dimensional vector that covers both user and the article. As the action a
t

a reward

r
t,a

t

is observed. The expectation of payo↵ depends on both user and the action taken. The choice and

reward is the tuple (x
t,a

t

, a
t

, r
t,a

t

).

The algorithm proposed by [6] is called LinUCB as the assumption is that the payo↵ expectation is linear

function of the context. Let the coe�cient of this linear function be ✓⇤
a

then for all t,

E[r
t,a

|x
t,a

] = x>
t,a

✓⇤
a

(2)

✓⇤
t

can be learned by supervised learning like linear regression or better ridge regression. Let D
a

be the d

dimensional m contexts seen so far for article a while c
a

is the corresponding clicks vector for each example.

The ridge regression formula coe�cient estimation is given as,

✓̂
a

= (D>
a

D
a

+ I
d

)�1D>
a

c
a

(3)

This is called the disjoint model as the ✓
a

only depends on the article. In this scenario the confidence bound

on the estimate of the expected value is given by,

|x>
t,a

✓̂
a

� E[r
t,a

|x
t,a

]|  ↵
q

x>
t,a

(D>
a

D
a

+ I
d

)�1x
t,a

This confidence bound is used in calculating the UCB index. The action with the highest bound is selected
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in each trial or turn t,

a
t

def
= argmax

a✏A

t

(x>
t,a

✓̂
a

+ ↵
q

x>
t,a

(D>
a

D
a

+ I
d

)�1x
t,a

)

The ✓⇤
a

estimated in the above formulation reflects the preferences of users belonging to context c
a

. Here

an implicit assumption is made about the preferences in that these are not dependent on time or trial t or

in other words these preferences are static over time.

2.6 Non-stationary bandits

In this section we turn to the more relevant part of the thesis. We describe the research relevant to the

non-stationary bandits. This review provides the previous results which although do not provide any direct

solutions but give insights into the working of the bandits and also show the gap that can not be filled by

any present methods.

2.6.1 Abrupt changing environments

In [17] non-stationary environment is defined as ”the rewards for arm i are modeled by a sequence of

independent random variables from potentially di↵erent distributions (unknown to user) which may vary

across time”. However they only consider the situation where the environment is abruptly changing at

unknown time instants called breakpoints while it remains stationary during intervals between breakpoints.

For this abrupt changing environment they propose ”Sliding-window UCB” where only the observation inside

the current window are considered. They also use ”Decay-UCB”, the past observations are decayed with

exponential decay �. They show the analysis of regret for both algorithms and find that ”Sliding-Window

UCB” does better. Also they show that UCB like policy can not attain regret smaller than T

log T

in presence

of break points. The analysis is done by development of a novel deviation inequality for self-normalized

averages with random number of summands. They also prove the lower bound of
p
T for the non-stationary

case.

2.6.1.1 Proof of Decay-UCB

For any action a define the empirical discounted mean as follows.

y
t

(�, a) =
1

N
t

(�, a)

t

X

s=1

�t�sy
s

(a) {a
s

=a}, N
t

(�, a) =
t

X

s=1

�t�s

{a
s

=a}
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c
t

(�, a) = 2B

s

⇠ log n
t

(�)

N
t

(�, a)
, n

t

(�, a) =
X

a2A
N

t

(�, a) (4)

Play action with,

a
t

= argmax
a2A

y
t

(�, a) + c
t

(�, a)

The proof is similar to that of Auer [13] except for the two main di↵erences. Due to discounting the

empirical mean is now a biased estimator. Second they designed a deviation inequality instead using Cherno↵-

Hoe↵ding’s inequality. In Auer UCB1 proof follows the following approach,

1. Separate the horizon into two sequences, first when the UCB1 is not confident and second when UCB1

is confident. By confident we mean this

µ⇤ � µ
a

� +2c
t,s

i

i.e. Each action has been played enough such that di↵erence of means of optimal and sub-optimal

arms is greater than the confidence bound for that arm.

2. Regret on first sequence is simply bounded by its length, which is inversely proportional to the di↵erence

of the means squared.

3. In the second sequence algorithm only makes a mistake if either the sub-optimal arm is heavily over-

estimated or the optimal arm is heavily under estimated. Both of these events are due to randomness

and are rare events and Chernof-Hoe↵dings inequality can be applied to determine the bounds.

The proof for Decay UCB follows the same approach.

1. Separate the horizon in to two sequences. The first where the algorithm is not confident. Unlike in

UCB1 these sequences can interleave.

2. Bound the first sequence by its length

3. Divide the second sequence into parts,first D(�) trials after a break point and the rest of trials. The

first D(�) trials will give erroneous estimation and the regret is bounded by the number of breakpoints

multiplied by D(�).

4. The rest of trials, after D(�) of a break point are when the algorithm is confident and only makes

mistake due to under estimation of optimal arm or over estimation of the sub-optimal arm.
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5. This time the errors in estimation are due to randomness and bias of the discounted mean. First

the bias is bounded by 1

2

c
t

(�, a). Then the stochastic process is bounded using the specially proved

inequality which deals with self-normalized means.

If there are O(T �) breakpoints, the regret acheived is O(T
(1+�)

2 log T ).

2.6.1.2 Sliding Window UCB Proof

The proof follows exactly the same steps as of Decay UCB except for the bias disappears in this case, which

makes it relatively easier. The upper bound on regret is O(T
1+�

2

p

log(T )) which is slightly better than decay

UCB.

2.6.2 Brownian restless bandits

Upfal etal in [24] consider the situation where mean for each arm/action is a bounded stochastic process.

The means drift with certain volatility (�
a

, variance of Gaussian distribution) with in reflective boundaries

µ 2 [0, 1].

They proposed a UCB type algorithm given in equ. 5. Let N
a

(t) be the times action a was played until trial

t and µ
a

(t) be the empirical average reward for action a till time t.

a
t

= argmax
a2A

[µ
a

(t) +
p

2 ln(t)/N
a

(t) + �
a

p

8t log t] (5)

This algorithm looks very similar to UCB1 except for the last component including �
a

. This component

bounds the drift of the means for each arm given the volatility. The drift is carefully converted into a

martingale process and Optional Stopping Theorem is used to show that µ
a

(t) = µ
a

i.e. the final state of

means is the starting state of the means.

The type of regret chosen for evaluation of strategy in this case is ”steady state regret”. It is the maximal

average regret over any sub-sequence (consecutive trials) in all the trials. Further more the regret is concerned

with respect to a non-stationary oracle that knows the optimal arm. The steady-state regret is shown to be

O(k�
av

).
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2.6.3 Solving Non-Stationary Bandit Problems by Random sampling from sibling Kalman

Filters

[16] studies an empirical approach for solving non-stationary normal distributions for multi-armed bandit

problem using Bayesian methods. The upside of this approach is that it avoids its inherent computational

complexity by relying on updating hyper parameters of sibling Kalman filters and on random sampling from

theses posteriors. Here the transition variance �
tr

is assumed to be known in advance and is used to track

the mean and variance of the respective Gaussian distributions using formula for Kalman filters. The action

is picked based of the random samples from posterior distributions.

2.6.4 Optimal Exploration-Exploitation in a multi-armed bandit problem with non-stationary

rewards

Reward means can be non-stationary with a bound on the total variation of expected rewards. There is no

restriction in the evolution of means so long they obey the variation bound. This allows a host of sequential

trajectories of expected rewards to occur. They develop an algorithm called REXP3 which is just EXP3 with

restart T

�

T

times where �
T

is the batch size for which one instance of EXP3 is run. The regret considered

is against a dynamic oracle that knows the optimal arm at any trial t which is in contrast to the [12] EXP3

algorithm where the regret is against the single best arm (that one arm if played all the time will give the

highest reward).

They calculate the lower bound to be O(T 2/3) for this case. Knowing the variation budget in advance they

work out the upper bound on regret to match the lower bound for this simple algorithm. The proof of

REXP3 is simple and follows that of EXP3. The regret is divided into two components, the first component

is the loss of using the single best arm against the dynamic oracle and the second component is the regret

of the single best arm. The second component is bounded using the result from [12]. The first component is

bounded using the following argument. Xa

t

is the actual reward from action a at trial t and T
j

is the indexes

of trails in batch j.

max
a2A

X

t2T
j

µa

t

 E
h

max
a2A

X

t2T
j

Xa

t

i

Choosing a single action with reward random variables has a larger sum than the single action with largest

expected reward. Hence we can say:

X

t2T
j

µ⇤
t

� E
h

max
a2A

X

t2T
j

Xa

t

i

 �
T

max
T
j

n

µ⇤
t

� µa

o

o

 2V
j

�
T

(6)
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Where V
j

is the variation budget for batch j and µa

o = max
a2A

P

t2T
j

µa

t

is the single best arm. In

other words since the evolution of means is budgeted, means can not move much and also since the single

best arm was optimal at least once, the most it could move in a batch is �
T

V
j

2.6.5 Multi-armed Bandit, Dynamic Environments

This paper consider the abruptly changing environments. They test multiple algorithms with UCB1 as a

subroutine or adaptation of UCB1. �-restart is a discounted UCB1 algorithm just like in Decay-UCB in [17].

They also try a Meta-algorithm that uses Page-Hinkly statistic to detect change. The Meta-algorithm builds

two UCB1 algorithms. One that believe that the detector was true (new bandit) and the other assumes that

detector was false (old bandit). The Meta-algorithm is also a UCB1 algorithm that chooses among the two

bandits, the new and the old one. After some fixed time step the Meta-UCB drop the UCB1 algorithm with

lower reward. Also a third type is the where they calculate a posterior probability whether a change occured

or not. All these algorithms are verfied empirically and no theoratical justification is provided.

2.6.6 Piecewise-stationary Bandit Problems with Side Observations

In this paper they consider again abrupt changes at arbitrary intervals. Other wise the distributions of

rewards are stationary. The number of change points are allowed to grow linearly in time k(T ). However

in this study the environment also presents with some side information that is selected by the algorithm.

More specifically the aglorithm can query observations on a set of arms. The total queries are limited by

the horizon T . They develop a Meta-algorithm that runs an algorithm as a sub-routine with a given regret

guarantee, passed by UCB1 and Robins and Lai. Further this meta-algorithm employs a change detection

algorithm that asses the shift in the mean rewards over predetermined intervals. When ever a change is

detected the sub-routine algorithm is reset. Further more the detected changes are ignored if they are

smaller than some threshold. With this setting they proved a regret guarantee of O(|A|k(T ) log(T )). The

proof follows by combining regret from various types of sources e.g. regret due to false positives or delay in

detection of the actual change or regret of the sub-routine.

2.6.7 Adapting to the Shifting Intent of Search Queries

This paper deals with Intent shift in search queries for a web browser. They devise a Meta-algorithm that

uses Bandit algorithm as a sub-routine and a classifier that detects the shift in the intent and resets the bandit

sub-routine. The approach is similar to 2.6.6 except that the meta-algorithm can not query a chosen set of
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arms (they assume that from time-to-time a bandit algorithm receives information about how users would

have responded to search results that are never actually displayed). The classifier receives side information

that helps it predict the event of intent shift. A typical search engine receives many signals that can be

used to predict events, such as bursts in query reformulation, average age of retrieved document, etc. The

regret is proved to be O(k + d
F

)( n

�

log T ) where k is the number of events, d
F

is a certain measure of the

complexity of the concept class F used by the classifier, n is the number of possible search results, � is the

“minimum sub optimality” (� = min
t

min
i 6=i

⇤t p
t

(i⇤
t

)�p
t

(i)) of any search result (defined formally in Section

2), and T is the total number of impressions (observations). They assume that for any event the probability

of user clicking the suggestion will change dramatically. Like other studies they also measure regret against

non-stationary oracle.

This algorithm is sophisticated than other algorithms. It proceeds in phases. Imagine the bandit is reset

at the start of the phase and this is an odd number of new phase, the algorithm will run bandit for L trials

for new phase phOdd
i

, after which it will enter a second phase phEven
j

which will continue indefinitely until

the classifier predicts an event. The purpose of the phase phOdd
i

is to judge whether the last prediction

of the classifier was correct or not. The algorithm has stored the bandit results from the phase phOdd
i�1

which it compares to the result phOdd
i�1

to a�rm if the event of intent shift did occurred. For meeting the

proved regret bounds, they assume that used Classifier and Bandit algorithm satisfy certain properties.

2.7 Evaluation of bandits on datasets

Bandit algorithms are hard to evaluate on a real life dataset because of their sequential and interactive

nature. This is a general problem in evaluation of any reinforcement learning algorithm. [6] came up with a

‘rejection algorithm’ for evaluation of bandit algorithms described here as given by [6],

Algorithm 1 Policy Evaluator

1: Inputs: T > 0; policy ⇡; stream of events
2: h

0

 ?
3: R

0

 0
4: for t = 1, 2, 3, ...., T do
5: repeat
6: Get next event (x

1

, ....., x
K

, a, r
a

)
7: until ⇡(h

t�1

, (x
1

, ...., x
K

)) = a
8: h

t

 CONCATENATE(h
t�1

, (x
1

, ....., x
K

, a, r
a

)
9: R

t

 R
t�1

+ r
a

10: end for
11: return R

T

/T
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At Yahoo! a dataset of about 50 million user interactions was collected with chosen articles over random

users. The randomization was uniform to keep the policy evaluator unbiased. The policy evaluator chooses

the events that the policy agrees with from the real data and the policy is evaluated against this matched

data. We will use this same dataset and policy evaluator given in algorithm 1 for evaluating our approach

for the recommendation system.

3 Problem Formulation

We formally describe the problem here and use the notation of [6]. A bandit algorithm B proceeds in trails

t and is faced with arms a 2 A. Without the loss of generality we assume that A is fixed. Context x
t,a

observed by the algorithm summarizes information for both the user and the action a (recommendation) at

time t. Parts of context vector corresponding to user and the recommendation are obviously independent of

each other. Also kx
t,a

k  1. Based on the history B chooses action a
t

and receives payo↵ r
t,a

t

. The optimal

action is the one with highest expected reward, call it a⇤
t

. At time t the total reward gain is
P

t

i=1

r
i,a

i

and

the optimal reward is given by E[
P

t

i=1

r
i,a

i

]. The goal is to find an algorithm that maximizes the expected

reward for T trials or in other terms minimize the regret R.

RB(T) = E[
T

X

t=1

r
t,a

⇤
t

]�E[
T

X

t=1

r
t,a

t

] (7)

This is dynamic definition of regret in which the optimal action can change with time. In such a case

stationary policy (algorithm) will not be optimal. We assume the expected payo↵ is given by the following

non-stationary Gaussian distribution.

r
t,a

t

⇠ �t

a

t

N (x>
t

✓
a

t

,�2)

�
a

2 [0, 1] and k✓
a

k  1
(8)

Equ. 8 characterizes the exponentially decaying reward structure. ✓ as before parametrizes the linear

relation between the context vector x
t,a

and the payo↵ r
t,a

. �
a

is the decay factor that makes the article a

an unpopular recommendation with time. Notice that the decaying factor a↵ects both the expected reward

(x>✓) and the variance � of the signal, hence keeping the rewards from being overwhelmed by the noise.

Each action a has its own decaying rate �
a

which means the optimal action can decay faster and will be

taken over by some other actions. In this problem there is no bound on the change in the expectation of
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rewards and hence the algorithms mentioned in section 2.6 dealing with non-stationary environment and

depending on the variation budget will not be optimal. An optimal algorithm will parametrize both the

functional dependence of reward on the context and the decaying trend. This guides us to a UCB type

algorithm which uses a non-stationary classifier to learn the parameters ✓ and � in approach 1.

4 Method

In this section we state our proposed approaches and explain their motivation. We will proceed in a way that

more and more specific assumptions are made about the environment. As mentioned in the introduction,

from Decay LinUCB, to Restart LinUCB, to Temporal LinUCB, we will see improving performance and

improving regret property, which can be verified with experimental results in Section 6 and theoretical

analysis in Section 5.

4.1 Method 1: Decay LinUCB

The main problem with any stationary algorithm is that it gives equal weight to its history. In a non-

stationary environment, if no specific assumption about how the environment will change, a simple idea is to

use a weighing function to have less e↵ect of the past on to the current decisions. This idea is widely used and

hence fairly general and for its application the algorithm has to support instance weighting in its learning

algorithm. Luckily since we are using LinUCB as our base model and it uses ridge regression, implementation

of weighing instances is straight forward. Decay LinUCB is a simple variation on the LinUCB. The only

di↵erence is observed by assigning exponentially decaying weights to the past examples in the ridge regression.

Similarly same kind of weights are also applied in the calculation of the confidence width in the UCB. It is

not hard to see that it only diverges from LinUCB in its updating the design matrix A
t,a

and the reward

weighted context vector b
t,a

. Following the notation from algorithm 3 we state the following equations that

govern the update of appropriate matrices. In this case � represents the decay parameter. Notice that this

is also exponential decay since an example will be weighed exponentially proportional to how far it is in the

past from the current time.

D
t+1,a

= �D
t,a

+ x
t

x>
t

A
t+1,a

= D
t+1,a

+ I

b
t+1,a

= �b
t,a

+ x
t

r
t,a

(9)
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Figure 1: Decay LinUCB tracks the true rewards better than LinUCB, in fact it tracks very well.

This style of algorithm is very general in nature since it does not assume anything specific about the

type of the evolution. Still for it to perform well the environment has to observe a certain rate of change

beyond which this most general algorithm will be practically useless. Conceptually decay-LinUCB gradually

forgets the past and keeps re-estimating the expected reward based of the recent events. Due to its constant

re-estimation the algorithm’s confidence width does not decrease monotonically, in fact it retires to a never

ending and certain level of minimal exploration, which it assumes is necessary since it is always anticipating

change in the environment. Practically decay-LinUCB makes a lot of sense in the general case however due to

a constant minimal exploration it su↵ers from linear regret. In case of a generic non-stationary environment

where little can be inferred about its surroundings, decay-LinUCB is probably our best bet (in practical

sense) since it does not make any assumptions.

In fig. 1 we simulate the environment with just 2 articles and a single user or context. Essentially this is

a context free setting however it illustrates the aspects of the exponentially decaying environment and also

just one user allows for easier analysis with out compromising any completeness of the full picture. We plot

in the figure the true rewards for two articles and the algorithms tracking these rewards. Note that the true
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Figure 2: For two articles Decay-LinUCB switches very close to the optimal switch and avoids linear re-
gret.

rewards switch in the middle of and hence show case an adverse e↵ect of this non-stationary setting. This

subplot highlights the weakness of the LinUCB which over estimates the rewards and negatively a↵ects its

performance. In the later subplot it is apparent that decay-LinUCB is able to track these rewards much

better. This was the initial motivation for the general algorithm however we did not imagine the situation if

more articles were present in the pool. Even in that case the estimation is close to the real reward however

since Decay-LinUCB does not realize it keeps exploring all the arms constantly and hence incurs linear

regret. Fig. 2 in addition shows the interaction of the algorithms decision criterion by plotting the sum of

the estimated reward and the confidence width. The first subplot shows the regret, second and third are the

same as before except for the added bars that show the magnitude of the confidence width. The comparison

of the bars show which action or article was actually picked. The last subplot again shows the bars tops

as curves for the two articles and the algorithms. Here notice a ”ladder” behavior where the suboptimal

action’s curve looks like a ladder. This makes sure that the estimated superior action is chosen much more

often than the other arms. This behavior is due the fact that for LinUCB the confidence bound decays only
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when the article is chosen. When a superior option is chosen its width decays much less than the inferior

options/actions. This is due to the fact that statistically the actions that have relatively smaller expected

rewards will be selected less and the range that the confidence lies will o↵er larger decay on choice than

later when the action has been chosen many times. This is due to the quadratic confidence width curves for

which the first derivative gets smaller the more they are chosen.

4.2 Method 2: Restart LinUCB

Decay LinUCB as described does not obey any assumption but also on the other side it a↵ords linear regret.

From here we move on to a di↵erent idea where we specify a relatively strict assumption. We concoct an

assumption that the variation in the environment is decreasing with time. If this is indeed the case then we

can use this information to develop a better algorithm. Since our setting of exponential decay falls under

the allowed set of non-stationary environments, this new algorithm will work on our setting as well.

We describe the simple idea of resetting LinUCB after predetermined time intervals. This modest ap-

proach has been proposed before in context of non-stationary adversarial algorithms [14] and similarly in

other scenarios with diverse range of settings. The ease of implementation makes this idea very attractive.

We further introduce the doubling trick where the reset time interval length doubles every time. This is

motivated from a useful side e↵ect of the decaying environment. This doubling of interval length has been

tried with a profound notion of limiting exploration to achieve sub-linear regret without specifically estimat-

ing any decay parameters. This approach derives its motivation from the fact in an exponentially decaying

environment, the change in the expected reward later will be much lower than at the start of the run. This

intuition is further supported by the theoretical guarantee in section 5. Restarting the algorithm makes

a very particular statement that the history is worthless and it will be beneficial to discard it. This is a

very strong statement and also not entirely correct; indeed the non-stationary setting renders the past less

useful however the past still carries some useful information and discarding it completely can be detrimental.

However based on the proof and simulation results, we argue resetting with doubling interval length is more

good than bad. Considering the downside of the algorithm of discarding the complete history another idea is

to use warm restart instead of complete reset. In this warm restart the history is given a large decay instead

a reset. This algorithm is a fusion of the decay and restart which could be the focus of future research, here

however we focus on the fundamental results since warm restarts are more of a practical idea that will give a

better constant but may not help with the over all regret bound. On the upside restart LinUCB is relatively

a generic algorithm and can cater to multiple scenarios of evolutionary settings e.g any setting where the
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variation diminishes with time and the actions converge on static values, the restart-LinUCB type algorithm

can perform well.

Algorithm 2 Restart LinUCB

1: Initialize LinUCB; A
a

= I
d

,b
a

= 0
d⇥1

for a 2 A
2: for j = 1, 2, 3, ...., log T do
3: t

j

= 2j , Reset LinUCB
4: for t = 2tj�1, 2tj�1 + 1, ....., 2tj � 1 do
5: Play LinUCB
6: end for
7: end for

Figure 3: Restart LinUCB due to restart does better.

In fig. 3 the same experiment is repeated as the previous one. Here we observe that the LinUCB resets

after doubling intervals and kills the over estimation by an e↵ective amount that can help to make it perform

better. Similarly in the fig. 4 the restarting exploration lets the algorithm converge on a better alternative.

The nature of the confidence width curves is also more apparent in the 4h subplot where at start there is

more room for decay than later on.
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Figure 4: Sudden exploration when LinUCB resets.

4.3 Method 3: Temporal LinUCB (TUCB)

While using a strict assumption in restart LinUCB limited the number of feasible settings, it did give us a

better performing algorithm than the general decay LinUCB. We keep heading in this direction to further

strict the assumptions and in fact consider the strongest possible that one can make. Here we assume that

the algorithm knows the environment exactly. TUCB is a UCB style algorithm that is in principal an index

based policy introduced by [13]. In every trial, the algorithm calculates an index for each arm. This index is

the sum of the predicted expected reward and a confidence bound on the error of the prediction. These type

of algorithms are close to optimal and are well suited for situations where the model of the environment is

known. Since we characterize the environment in Equ. 8 as a normally distributed decaying linear expected

reward, a parametric estimation, we utilize the UCB framework to design the algorithm. To estimate the

expected reward we develop MLE for our parameters. For estimation of ✓ we adhere to the approach in [6]

and use ridge regression which does not require the design matrix to be invertible. Very similar to LinUCB

another algorithm uses SVD to map the context to the rewards, known as LinREL in [9] which also needs
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the design matrix to be su�ciently regular. For practical purposes LinUCB [6] is shown to be su�cient and

hence is the motivation for TUCB.

Following the notation of LinUCB, let T
t,a

be a vector of time index when ever action a was played till

trail t and let G
t,a

= diag(T
t,a

). Further more let D
t,a

= [x
⌧,a

⌧

]
⌧2T

t,a

and y
t,a

= [r
⌧,a

⌧

]
⌧2T

t,a

. We define an

estimator E which is a maximum likelihood estimator for the parameter ✓ and �. Let A
t,a

= (D>
t,a

D
t,a

+ I
d

)

where I
d⇥d

is the identity matrix. E uses the following equations to estimate the parameters.

b�
t,a

= argmin
�

k(I
t

�D
t,a

A�1

t,a

D>
t,a

)det(G
t,a

)
2
t G�1

t,a

y
t,a

kt

b✓
t,a

= A�1

t,a

D>
t,a

G�1

t,a

y
t,a

(10)

This objective function while solving for the parameter �, solves for the for ✓ as a starting point. In other

terms, it guesses a �, removes the decay and finds the best ✓ using ridge regression to calculate the error

that guides the search for the optimal �. After estimating the �, linear parameter ✓ can be determined by

straight forward linear regression. Notice the matrix G that takes the non-stationarity out of the equation

and let the linear parameter maps on the residuals. Here we give the complete description of the TUCB

algorithm. Due to non-linear decay, the objective function for estimating � does not have a close form

and so the optimization problem can be solved using Newtons method. Also the objective function of � is

non-convex but enjoys a global minimum.

Algorithm 3 TUCB

1: ↵ 2 R
+

2: for t = 1, 2, 3, ...., T do Observe features for all arms a 2 A; x
t,a

2 Rd

3: p
t,a

= b�t

t,a

x>
t,a

b✓
t,a

+ ↵⇢
t,a

p
x>A�1x

4: a
t

 argmax
a✏A p

t,a

(break ties arbitrarily)
5: Play arm a

t

and incur reward r
t,a

t

6: Observe reward r
t

7: Update classifier C with new observation (x
t,a

t

, r
t

, t) and estimate b�
t,a

, b✓
t,a

8: end for

As can be recognized the algorithm 3 looks similar to the LinUCB style algorithms. These algorithms

are simple in bare structure however the appropriate function and parameters are inferred from the proof.

As mentioned before the index p
t,a

has two parts, an estimated reward and confidence width. By design

we choose equation 10 for estimation and hence the first part of the index is set. For the second part we

borrow the confidence width from LinUCB. The confidence width depends on the bound of the estimation

accuracy. Curiously enough it has nothing to do with actual rewards, in fact it is solely dependent on

the contexts observed. This comes from the UCB style approach where general statistical techniques like
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Hoe↵ding inequality ensure that the estimates due to random noise do not go further than the bound with

probability � which is directly proportional to the number of observations and the times that action was

played. The confidence width can also be interpreted as the variance around the expected payo↵. In LinUCB

this width is given by the factor
p
x>A�1x. In our case following the logic of the proof we infer that the

variance will have one more factor ⇢ which is function of time and is owing to the estimation error bound

on the decay factor �. In our experimental results we use the function ⇢
t,a

= 1 which we further illustrate

in the proof.

As previously mentioned TUCB is implementation heavy and relies on the entire history to calculate its

results. So from a practical concern we only update � in batches specifically in later part of the experiment

where each new data point gives us less improvement.

Below we show the derivation of the MLE. Starting of the environment definition.

r
t

= �⇤t
i(x>

t,a

✓⇤ + ✏N (0,�

2
)

) (11)

We find � and ✓ using least squares and numerical optimization. Let G = diag(�t1 ,�t2 , ....,�t

t). Let

y
t

= [r
i

]
i21,..,t

be the vector of rewards seen till time t. Then the MLE for the parameter ✓ can be worked

out as such.

✓
�,t

= A�1

i,a

D>
i,a

G�1

i,a

y
i,a

Given � we can find a ✓ as above using least squares method. With the above ✓ we will like to find a �

for the eq.11.

y
t

� �⇤t
ix>

t,a

✓⇤ ⇠ N (0,�⇤2t
i�2) (12)

We write the likelihood function for the entire data.

L(�|y
t

,D
t

,G
t

) =
1

2⇡�2

t/2

��
P

t

i=1 t

i exp
t

X

i=0

�(y
i

� �t

i✓>
�,t

x
t

)2

2�2�2t

i

logL = � t

2
log 2⇡�2 � log �

t

X

i=0

t
i

�
t

X

i=0

(y
i

� �t

i✓>
�,t

x
t

)2

2�2�2t

i

(13)

To find the � we should maximize the likelihood however due to � we can not drive an objective function
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in terms of �. We find the � that maximizes likelihood and replace it in eq.13.

@logL
@�2

= � t

2�2

+
t

X

i=0

(y
i

� �t

i✓>
�,t

x
t

)2

2�4�2t

i

= 0

c�2 =
1

t

t

X

i=0

(y
i

� �t

i✓>
�,t

x
t

)2

�2t

i

(14)

Placing � back in log likelihood gives.

logL = � t

2
log

2⇡

t

t

X

i=0

(y
i

� �t

i✓>
�,t

x
t

)2

�2t

i

�
t

X

i=0

t
i

log � � t

2

logL / � t

2
log

t

X

i=0

(
y
i

�t

i

� ✓>
�,t

x
t

)2 �
t

X

i=0

t
i

log �

(15)

The objective function looks like below.

b� = argmin
�

t

2
log

t

X

i=0

(
y
i

�t

i

� ✓>
�,t

x
t

)2 + log(�)
t

X

i=0

t
i

(16)

This objective function can be written in matrix notation.

b� = argmin
�

t

2
log k(I

t

�DA�1D>)G�1y
t

k2 + log det(G)

Simplifying further we can achieve the following form.

b� = argmin
�

kC>det(G)
2
t G�1y

t

kt (17)

In fig. 5 the objective function is drawn for di↵erent true � and di↵erent variance of noise for data size

100. Since our goal is to minimize the function, we use the Newton-CG method to find the minimum of this

function. In fig. 5 we see that this objective function has global minimum and it lies close to the ground

truth for di↵erent levels of noise. There is a drop close to the ground truth. The drop is less sharp for larger

variance noise. In fig. 6 the data size is 1000 instances. In larger data the drop is narrower and deeper.

In fig. 7 we plot the convergence of estimated � as we add more data for estimation. The final data set

size is 500 examples which are labeled on x-axis with increments of 10 examples. Y-axis is the estimated

� or � i.e. the decay factor. The horizontal line shows the true � also given by the sub-plot title. Each

sub-plot shows convergence of estimates for di↵erent noise levels.
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Figure 5: Plot of objective function of equ. 16. Here sample size was 100. For di↵erent noise levels it is
robust. Note: Noise=1, beta=.99 is increasing at 1.

Figure 6: Plot of objective function of equ. 16. Here sample size was 1000.

For di↵erent values of true � and noise variance we observe that the estimate converges after seeing 100

or less examples. The convergence rates are larger for smaller noise. The e↵ect of true � is not clear, perhaps
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Figure 7: This figure compares convergence of numerical method to approximate � for di↵erent values
of true � and noise levels. X-axis shows the data used for the approximation. Conclusion: We see that
larger noise slows convergence to true �. Also noise has more e↵ect if true � is closer to 1.

it is slightly slower when it is closer to 1.

Fig. 8 shows the convergence of ✓ and plot the l1 norm between the estimate and true ✓ i.e |✓� ✓̂|. Here
Y-axis is incorrectly labeled as ”theta MSE”. We see that this estimation is unstable for large noise variance

5,2 and 1. For lower noise levels it is closer to 0. Also not clear in this figure is the convergence of lower

noise levels as they are invisible at this scale so we plotted those separately in fig. 9 where we see that for

lower variance of 0.01 and 0.001 the estimator is better behaved than for variance .1 which is more erratic.

Again same simulation on the toy example is repeated for the TUCB which shows good estimation

obviously. One behavior that is not UCB style is that the decision curve for the inferior arm departs

permanently from the superior arm permanently which is not UCB style since it shunts the exploration for

ever. This is due to the incorrect confidence bound formulation used in our algorithm. Due to limitation of

finding new statistical properties about such estimation we could not complete the proof and hence derive

the true version of the bound.

5 Theoretical guarantees

In the following proofs, in order to apply the Azuma/Hoe↵ding inequality for deriving upper bound of

regret, we will first assume the statical independence among the samples and use a master algorithm, which
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Figure 8: This figure shows convergence of numerical method to approximate ✓ for di↵erent values of true
� and noise levels. X-axis shows the data used for the estimation. From top sub-plot the true � is .8, .9,
.999 and 1.

Figure 9: Convergence of ✓ for smaller noise levels. From top sub-plot the true � is .8, .9, .999 and 1.

comes from LinRel/SupLinUCB decomposition in [9] and the BaseLinUCB/SupLinUCB [10], to ensure this

independence.
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Figure 10: Temporal LinUCB tracks the true reward consciously and converges.

Figure 11: Correctly gets the switch and move on to the better action.
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5.1 LinUCB regret

We start o↵ by saying that the regret for LinUCB is linear. We prove that the switch point of the article true

rewards and the LinUCB switch (when it realizes that its superior action has become inferior) are far apart

and in fact the distance between them is proportional to the actual switch point. Since the switch point could

be at T/2 it will take LinUCB linear time to recognize the switch. According to our assumption about the

environment, E(r
a,t

|x
t

) = �t

a

x>
t

✓
a

. So for article 1, E(r
1,t

|x
t

) = �t

1

x>
t

✓
1

; for article 2, E(r
a,t

|x
t

) = �t

2

x>
t

✓
2

.

Suppose x>
t

✓
1

> x>
t

✓
2

and �
1

< �
2

, and denote the first switch point as t⇤,

�t

1

x>
t

✓
1

 �t

2

x>
t

✓
2

(18)

So we have, t � log �1
�2

x

>
t

⇤✓2

x

>
t⇤✓1

, which means when t � t⇤ = log �1
�2

x

>
t

⇤✓2

x

>
t⇤✓1

the optimal article which should be

chosen is article 2.

For LinUCB, we have E(r̂
1,t

|x
t

) = x>
t

✓̂
1

and E(r̂
a,t

|x
t

) = x>
t

✓̂
2

, in which ✓̂
1

= A�1

t1
b
t1 , ✓̂2 = A�1

t2
b
t2 .

We denote the switch point for LinUCB as t
0

, so t
1

+ t
2

= t
0

. If we want LinUCB to identify article 2 as

the best article, we should have,

x>
t0
A�1

t1
b
t1  x>

t0
A�1

t2
b
t2 (19)

Putting A and b into the equation, we have,

If we assume that for i from 1 to t, x
i

= c, the equation above can be simplified as,
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cc>)�1c>✓
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c
X
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�i1
1

 c>(I+ t
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(20)

According to Lemma 5.1, Eq 20 can be written as,

c>(I� t
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1
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c
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(21)

It can be further simplified as,
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kck2
X

i1

�i1
1
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Then we have,
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X

i1

�i1
1

1

1 + t
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X
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1 + t
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1 + t
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2

P
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(24)

Analysis: When t
1

and t
2

satisfy the inequality in Eq 24, LinUCB will identify article 2 as the better

article

Suppose kck2 = 1 and suppose �
2

= 1 and c>✓
1

= mc>✓
2

in which m > 1.

Then t⇤ = log 1
�1

m

For LinUCB, Eq 24 can be simplified as,
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Lemma 5.1. Let G and G+E be nonsingular matrices where E is a matrix of rank one. Let g = tr(EG�1).

Then g 6= 1, and

(G+E)�1 = G�1 � 1

1 + g
G�1EG�1

Proof. This Lemma essentially comes from Sherman–Morrison formula, and details of this Lemma can

be found in [30].

5.2 Regret Analysis for Decay LinUCB

The proof of LinUCB relies on the fact that the confidence in the estimate of parameters shrinks mono-

tonically. This condition translates to the fact that the eigen values of A increase monotonically which

in turn controls the extent of the exploration. This is no longer true in case of decay LinUCB where the

successive decayed weights on the past observations can sometime decrease the eigen values. This e↵ect is
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set by the nature of the decay algorithm which wants to constantly explore since it expects forever changing

environment with same velocity. This behavior costs the algorithm very dearly resulting in linear regret due

to a constant minimal exploration. None the less we put the proof here for a comprehensive report and how

to specifically reach the conclusion of linear regret.

Let decay parameter for algorithm be � and � be the true decay factor that is dependent on the arm.

Also let G = diag(�t, ..., �)

r
t
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Since k✓
t

k  1.
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Proving for the second component.
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For the first component we take the following approach.
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Since E(r
i

� x>
i

✓�i) = 0 we can apply Azuma’s inequality on the first component which is stochastic.

The second component is the bias, and is to be bounded by algebra tricks.
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The most strict bound we can give over the di↵erence �i � �t = �i(1� �t�i)  �i. Further more we will

use the fact that x>✓  1 and kxk  1.
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Lemma 5.2. Suppose  
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[ {t} in BaseLinUCB, so the eigenvalues of A
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Proof. For convenience, define  = | 
T+1

|, Lemma 3.2 implies,
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When  � 2, according to the fact that,
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we have,
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and hence, when 0 < �  1,
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Notice due to  2 is O(T ) the variance could not be bounded by anything smaller than T . Hence the

upper bound is linear.

5.3 Regret Analysis for Restart LinUCB

In this section we provide detailed regret analysis of Restart LinUCB algorithm. Restart LinUCB is restarting

LinUCB with doubling intervals or phase lengths. Phase is indexed by j and length of phase j is t
j

= 2j .

Let decay parameters for algorithm � be the true decay factor that is dependent on the arm. According

to Problem formulation in Section 3, and following the proof of Lemma 9 in [9] for LinRel algorithm and

Lemma 1 in [10] for LinUCB algorithm, Lemma 1 for Restart LinUCB can be proved.
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And since k✓
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For the first component of Equ. 40,
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For the second component of Equ. 40 we take the following approach.
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Since E(r
i

� x>
i

✓�i) = 0 we can apply Azuma’s inequality on the first component of Equ. 42, which is

stochastic. The second component is the bias, and is to be bounded by algebra tricks.
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in which the last inequality is based on the following fact,
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Combining Equ.41, 42, 43 and 45 finishes the proof.
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Define, | 
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| =  . According to Lemma 40, summing regret from all the intervals, we have,

 

T+1
X

t=1

(r̂
t,a

t

� r⇤
t,a

t

) 
log2 
X

j=0

(1 + ↵+ d
3
2

t

j+1
X

t0=t

j

�t0)

t

j+1
X

t=t

j

s
t,a

t


log2 
X

j=0

(1 + ↵+ d
3
2

t

j+1
X

t0=t

j

�t0)
p

dt
j

ln t
j

(46)

According to the decomposition of BaseLinUCB/SupLinUCB in [10], if SupLinUCB is run with ↵ =
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5.4 Regret Analysis for Temporal LinUCB

In this section we provide detailed regret analysis of our proposed Temporal LinUCB algorithm using similar

tricks as in the regret analysis for Restart LinUCB.
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Since k✓⇤k  1
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Similar to Equ. 41 we can bound the first term in Equ.51:
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For the second term in Equ.51, we can rewrite it as,
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The inequality is because of 0 < �⇤ < 1 and for 8a, i, |y
i,a

|  1.

The first part of Equ.53 can be bounded with s
t,a

t

with high probability according to Azuma’s Inequality.

Therefore, from theoretical point of view, to bound the regret on TUCB, it requires us to find the rate of

convergence for such an estimator, which can guarantee the second component of Equ.53 to be bounded with

s
t,a

t

. Unfortunately we could not find any statistical properties that establish the rate of convergence for

such an estimator except for the asymptotic results due to MLE. We think this is the branch of theory which

has yet to be explored. Since the proof is not attainable, the optimal index design could not be inferred and

hence the TUCB is not the optimal version of the idea of parametric non-stationary bandits. For this reason

the implementation of TUCB approximates the factor ⇢
t,a

= 1 in step 4, the true value of which depends on

the rate of convergence of � estimation, of algorithm 3. This factor is pertinent to achieve the right amount

of exploration to get a tight upper bound on the regret, with this factor assumed to be 1, exploration

is enhanced giving rise to more regret. Apart from theoretical di�culties, TUCB is also implementation
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heavy and naturally not online. Due to the non-linear factor requiring numerical optimization methods, the

algorithm has to store the entire history which is also indicated by the fact that the su�cient statistic is

all the contexts observed, arms played and the time stamps when the action was played. Despite all these

drawbacks, TUCB is significant since it is the best possible MAB strategy; a consequence of its explicit

assumption.

5.4.1 Asymptotic results

Although these results did not prove useful, another idea is to use the MLE asymptotic results. We state

these results here just in case they could be useful in other domains.

Starting o↵, first lets evaluate the fisher score.
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Using the MLE property,
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In general MLE property gives more.
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This is the asymptotic result in variance of MLE estimate. However in our proof we need non-asymptotic

result although a confidence bound could be inspired from this equation but we did not make any progress

in this direction.

5.4.2 Variance of Non-stationary Oracle

Another method to figure out the form of the confidence bound is to calculate the variance of the process

directly. This can provide us with the form of the confidence bound for which just the right constant has to

be figured out.

Variance in Ridge Regression

Let us drive the variance for the Ridge regression and then follow the same procedure to drive variance

for our non-stationary oracle. Let r
t

be the vector of rewards till time t. Let b✓
t

be the estimate of ✓ at time

t.

b✓ = A�1

t

D>
t

r
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p(✓) = N (✓|0,�2I)

p(r
t

|✓) = N (r
t

|D
t

✓,�2I)

42



Using Bayes theorem for Gaussian variables, we can figure out p(✓).
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Bayesian point estimate

Using Bayes theorem we get a di↵erent answer. Let the prior on the ✓ be ⇡(✓).
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Here we calculate the posterior probability.
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We will look at the expression inside the exponential, since it determines the nature of the probability

distribution. Since the Conjugate prior of Gaussian likelihood is also Gaussian, we can analyze the expression

inside exponential to drive the variance formula.
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The second order term in the above expression determines the variance of the Gaussian posterior. It is

the inverse of the term in the product. It is clear that the variance is 2�2A�1.

Variance of Non-stationary Oracle �✓

As a warm up let us start with a simple case where we know the decaying factor �. This case essentially

does not account for the variance in � which may not play any significant role since we observe an exponential

decay. Again we define G
t

= diag(�,�2, ....,�t).
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Following the same procedure as for the

p(✓|r
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Like LinUCB we use predictive variance for x
t

which will be given by.

w = �t

p
x>A�1x

This bound gives us promise that the similar looking confidence bounds are good. Notice the lingering �

leading the bound formula however it requires the true value of the parameter which makes it useless. For

the lack of better bound we use this formula without the � expression.

6 Results

In [6] authors experiment with Yahoo! dataset of Yahoo! front page module where the recommendations

are made from an article pool, articles stay in the pool for a day or so and then are taken o↵ the pool.

This is also non-stationary in a sense to which LinUCB is very accommodating, since at the entrance of a

new article due to its large confidence width it gets thoroughly explored. Our setting can be considered a

more relaxed and realistic version of the scenario faced where it is not clear when to take the article o↵ the

website, or in general action from the pool, since its CTR is non-stationary. In the experiment below we

simulate the user and articles such that the CTR of articles decay with time and the optimal action can also

change with it.

We carry out testing in simulation controlled environment. We design actions such that optimal arms

switch during the experiment hence strengthening the e↵ect of the non-stationary behavior. In this experi-

ment we use two dimensional feature vectors x and linear parameters ✓ to represent users, articles and the

linear mapping. Further more the reward is linear in the context feature vector and decays exponentially

with time, following the dynamics stated in equ. 8. The feature vectors are uniformly chosen from the

space kxk  1 and � is chosen based on the ✓ such that higher starting rewards are more likely to get lower

decay parameters. This is done in order to promote the environment where there are more switches between

the optimal arms. This is done to evaluate the algorithms when non-stationary in the environment a↵ects
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Figure 12: Regret curves for the three methods as compared to the LinUCB algorithm.
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Figure 13: Optimal arm switch.

46



the order of the recommendations. This experiment highlights a situation where there are articles in the

pool that are undergoing gradual loss in popularity after going viral mixed with articles that draw moderate

attention but are relatively long lived and their popularity decays much slower until they are taken o↵ the

site. In this dynamic environment we test our given approaches and vet them against LinUCB. We use 50

articles, 1000 users and run the experiment for 5 thousand iterations. We repeat the experiment 20 times

and average the curves, we also plot vertical bars representing the standard deviation. Also since TUCB

is implementation heavy we run decay estimation only in batches after the action has accumulated a good

number of observations. We found that with the right setting of parameter it does not make much of a

di↵erence in the final results. We used threshold of 300 and ran optimization every 10th iteration after that.

Figure 12 shows the result of running the proposed algorithms. In this environment the order of perfor-

mance is clear. Temporal LinUCB beats all which is validation of our idea. Unlike other algorithms, TUCB

knows the setting and goes after estimating the decay directly. This assumption is very specific but will pay

o↵ if the environment really holds exponentially decaying rewards. The downside is when the assumption

does not hold or the decay is not strictly exponential, it will hurt TUCB the most. In our empirical results we

found TUCB to perform well specifically in the estimation of the decay parameter �. This is illustrated in the

bottom plot of figure 13 which shows how well TUCB track the true reward of an action. The figure draws

the true reward for an action with a single user, a context free setting, and highlights the non-stationary

aspect of the environment. The purpose of the figure is to explore how di↵erent algorithms track the true

reward. In this case the curves of true reward cross each other and we can observe that TUCB is doing a

good job at converging its estimates to the true rewards. Since it models the reward function exactly, it can

predict when two actions will be switching and hence will incur very minimal opportunity loss or regret.

We see LinUCB and DecayLinUCB perform very similar, this is due to the reason that we set the decay

to a very small value of 1 � 10�4. We also tried the algorithm with smaller decay however the results are

worse in that case. The prime reason for poor results of decay LinUCB is its continuous exploration which

accumulates regret linearly. LinUCB follows the same regret bound but owes to di↵erent reasons. The main

di�culty for LinUCB is its inappropriate estimator that gives equal weight to the examples in the history.

This leads the algorithm to over estimate the true reward which has in fact decayed. Due to this over

estimation if the optimal arm has switched, LinUCB will not realize it immediately and will keep playing

the action that it still thinks is optimal. LinUCB does great on stationary environments because it plays the

action it thinks is optimal. This over estimation compels LinUCB to choose the previously optimal action,

and now sub-optimal, even more, hence it harbors highly weighted history which delays its realization of
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the optimal action switch by a great deal, as shown in figure 13. This delay intuitively makes the LinUCB

linear; the delay in LinUCB switch to the actual true switching point will be proportional to the length of the

history before the true switching point. Since the switch can happen at time T

2

LinUCB in that case will not

recognize it until after the end of the experiment and will incur linear regret O(T ). The LinUCB’s tendency

to over estimate has an awkward upside; if despite decaying, one action remains optimal through out the

experiment, then LinUCB due to its overestimation property will choose that arm even more frequently than

any other algorithm. This gives LinUCB an unparalleled advantage, but since this case is not an interesting

one we discard it in our experiments by controlling the environment to prefer situations where actions true

rewards cross each other.

Restart LinUCB does slightly better than LinUCB as depicted in the figure 12. In practice we observe

that restarting LinUCB has both pros and cons. While restarting gives a fresh start, it also makes the

algorithm to completely discard the history. In the figure we observe initial restart has helped this algorithm

to produce lower regret until at iteration 4096 the restart makes it forget everything followed by an immediate

rise in regret which can be explained by newly started exploration required by the algorithm to re-learn the

parameters. Again this shows that just by relieving the algorithm of its weight of its history can lead to

performance boost as shown in the figure.

From the figures and discussion we conclude that TUCB is the superior algorithm however to tune it

even further requires us to finish the proof and is an open problem. If it is known that rewards are decaying

exponentially TUCB is the clear choice. For decay LinUCB we find that it is not appropriate for our setting

and does as worse as LinUCB due to its constant exploration of all actions. We also find that restarting the

algorithm has some value and shows o↵ in the boosted performance of the restart LinUCB.

6.1 Experiment on Yahoo! data

Granularity was set to 500 observations i.e. statistics were aggregated for every 500 observations. DecayLin-

UCB was run with decay parameter which was multiplied with the articles design matrix D and the weighted

reward vector b at every time stamp. (For D and b refer to [6]). There are only 289 distinct timestamps

for 1st day of Yahoo! dataset. This means that Yahoo buckets large number of observations together and

give it the same time stamp. This means that we can not have granularity as small as in the simulations.

Also in Yahoo! dataset only 20 or so new articles are added every day where we have hundred thousands of

observations on each article. Black vertical lines represent new articles incoming. Results for the first day of

Yahoo! dataset are given. CTR is aggregated over 289 distinct time stamps. Decay to the article D and b
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Figure 14: DecayLinUCB with decay=1� .18

Figure 15: DecayLinUCB does worse with decay .999

is only applied when the time stamp for the articles changes. Hence in the case of first day, decay is applied

only 289 times.

In the final CTR we see that decay-LinUCB does very slightly better than LinUCB as for settings in fig.

14.
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7 Conclusion and Discussion

In this study we took on the problem of non-stationary meta-trends in user preferences and we proposed three

approaches following the promising ideas and popular frameworks. We conclude with an approach which is

not provable but shows promise empirically. This approach, called TUCB, follows the UCB style algorithm

and constructs the most strict assumption to learn the parameters of the environment. We conclude that if

the environment can be parametrized then UCB type framework with explicit estimation of those parameters

can give the best results although it may not be provable in all cases. We illustrated this by framing an

exponentially decaying rewards setting where TUCB approximated a linear and a non-linear decay parameter

simultaneously. With this advancement we also came across an open problem of convergence analysis on

estimation of such non-linear parameters.

We also showed that in cases where TUCB type specification is not achievable one can take advantage

of the side e↵ects of setting which leads to an algorithm with relatively mild assumptions. This has indeed

shown relatively better results in theory and practice. Lastly we see that the most general idea of decaying

the past is not always better, since it did not output any better results than the base line of LinUCB. We

both confirm this in proof and simulation. Although in the world of non-stationary behaviors there are many

cases where decay type idea is the best one can do however, it does not fit our example.
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