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Abstract 

The emerging trend of Body Sensor Networks (BSNs) has excited research for enabling 

continuous and quantitative monitoring of human physiology, kinesiology, psychology, 

neuropsychology etc. In particular, one important type of BSN -- inertial BSNs -- has 

shown promising opportunities of monitoring human gait for various medical 

applications. These applications include: studying and monitoring gait pathology or 

degradation, assessing the efficacy of orthoses or prosthetics, and evaluating medical 

intervention for a gait-manifested neuropathy by comparing gait difference before/after 

the intervention. For such medical applications, inertial BSNs could not only function as 

a convenient and economical tool for quantitative medical observation, but also enable 

out-of-lab and long-term monitoring assessment, providing additional rich information 

for medical research and challenging clinical decisions beyond traditional, in-lab and/or 

qualitative clinical observation and further prompting medical research. 

However, to demonstrate the feasibility of this technology, retrieving accurate and useful 

information (i.e., gait features) from inertial BSNs is essential and requires a combination 

of biomechanical knowledge and data processing innovation. Extracting spatial 

information (the basis of many gait features from traditional camera-based motion 

capture) from inertial BSN is particularly challenging due to sensor noise and integration 
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drift, and existing gait feature extraction methods tend to target small subset of features 

for specific applications and deployment scenarios.  

This work develops a systematic approach for gait feature extraction from inertial BSNs 

for medical applications. Techniques to tackle the challenge of tracking accurate spatial 

information in order to provide accurate kinematic information are introduced. Given the 

accurate kinematic information, linear analysis of extracting time domain gait features is 

applied. This work then explores the opportunity of leveraging biomechanics and 

applying nonlinear analysis in order to refine signal processing and enhance data 

separability and interpretability from extracted features. Also, machine learning 

approaches are explored for automating the process of feature selection and systematic 

error correction. Lastly, case studies for applying these techniques to various medical 

applications are discussed to exemplify the systematic approach. Overall, this systematic 

approach is aimed to conquer dominant challenges residing in inertial BSNs by extracting 

accurate gait features, transforming the extracted features into valuable medical 

knowledge, and enabling medical research requiring longitudinal gait analysis.  
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Chapter 1  
 
Introduction 

Inertial Body Sensor Networks (BSNs) have a promising prospect for bridging the gap 

between the requirement of high precision, portable gait analysis in medical research and 

clinical practice and the lack of such measurement tools in industry nowadays. By 

sensing the angular velocity and linear acceleration of human body segments where they 

are mounted on, inertial BSNs observe and record human motion in the fashion of 

derivatives of spatial information within an inertial frame. In order for these raw signals 

collected from inertial BSNs to be interpretable, meaningful information must be 

extracted and analyzed with insight to benefit medical research. Centered around the key 

question: how to transform the raw signals to useful information for gait analysis, this 

chapter introduces the background of BSN technology and gait analysis, the vision of 

applying inertial BSNs to gait analysis and the research questions induced from such 

vision.   
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1.1 Background of Inertial Body Sensor Networks  

Body Sensor Networks (BSNs) have excited research with a great potential for 

continuously and quantitatively monitoring human physiology, kinesiology, psychology 

and neuropsychology etc., [1] as illustrated in Figure 1.  

 

Figure 1 Panorama of Body Sensor Network (BSN) [2] 

Inertial BSNs are one type of BSNs that measures the angular velocity and linear 

acceleration of the body segment where they are mounted on. Research interest using 
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inertial BSNs mainly focuses on motion capture and gait analysis. While the more 

general term ‘motion capture’ is adopted more by augmented virtual reality in video 

gaming system and (e.g. Wii®, Kinect® and various smartphone apps utilizing 

accelerometers and gyroscopes) and entertainment industry, it is also being used in 

biometric security (e.g. handwriting recognition [3] and gait identification), posture 

monitoring [4], daily activity monitoring [5][6], athletic kinesiology and exercise 

physiology. Under this background, the opportunity of adopting inertial BSNs for various 

gait analysis involved medical applications is especially exciting and promising. 

1.2 Background of Gait Analysis  

Gait analysis has been an established research area for various medical and healthcare 

applications. Through studying locomotion of human beings, these applications range 

from direct ones such as identifying and monitoring gait pathology and degradation, 

assessing the efficacy of the orthoses or prosthetics [7] (Figure 2 (a) and (b)), assessing 

fall risks and fall prevention [8] (Figure 2 (d)), evaluating the rehabilitation treatment 

(e.g. for knee surgery or stroke recovery), to non-obvious ones such as aiding diagnosis 

of gait degradation (Figure 2 (c)) manifested neuropathy and assessing the medical 

intervention for those pathologies [9][10][11] [12].  
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                                                        (a)                                                         (b) 

 

                         (c)                           (d) source: Cristina Pedrazzini/Science Photo Library 

Figure 2 Several Medical Applications Requiring Gait Analysis 
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The quality and validity of these gait analysis applications can highly depend on the 

measurement instrument used in the analysis. On one hand, as important to other medical 

instrument, gait analysis instrument also requires high precision and high accuracy for a 

number of gait parameters (e.g., gait speed, joint angle, stride length, gait cycle, etc.). On 

the other hand, most of these gait analysis applications would benefit from continuous, 

longitudinal observation.  

However, in current clinics, gait analysis is usually done with subjective and qualitative 

approaches such as clinical observation and patient self-report. Some clinics have 

adopted the industrial standard gait analysis tool- optical motion capture system such as 

Vicon® (Figure 3) [13]. With infrared cameras capturing the reflexive markers defined 

human skeleton outline, this kind of systems tracks position information and human 

motion, and provide high-precision data at a sampling rate of 120Hz. However, although 

such systems can deliver highly accurate human movement analysis, these expensive 

systems require expert operation and are limited to in-lab monitoring; thus the knowledge 

obtained by such in-lab instruments may not reflect reality. However, such tools is 

usually expensive, require dedicated lab and expert operation. It also involves invasive 

and cumbersome marking setup procedure, rendering it less practical for clinical use and 

unnatural for the human subject. 

Modern pedometers and activity monitors (Figure 4) present another scenario. These 

portable commercial products which could provide longer-term monitoring, but could 

only provide coarse information such as steps one took per day or distance travelled 
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based on the steps information, which do not suffice the high precision requirement for 

medical research. 

 

Figure 3 Subject Wearing Reflexive Markers Walking in an Industrial Standard 
Gait Analysis Instrument –Vicon – Instrumented Gait Lab  

                                   

(a)  Fitbit® (source:nytimes.com)                (b) Nike+® (source: solution.allthingsd.com) 

Figure 4 Commercial Inertial BSN Products 



7 
 
   

 

Figure 5 Qualitative Assessment of Current Gait Analysis Situation 

These situations in gait analysis can be best summarized in Figure 5. While clinical 

observation and patient self-report lack in accurate, quantitative measure, the modern 

tools such as optical capture system and commerical products either lacks precision or 

portability. For gait analysis to be realized in the real world, measurement tools suffice 

both high precision, high-fidelity motion tracking requirement and continuous, out-of-lab 

requirement are necessary.  
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1.3 Vision of Inertial Body Sensor Networks for Mobile 

Gait Analysis 

The emerging wireless inertial BSNs naturally provide a non-invasive wearable solution, 

enabling gait analysis to be realized in the real world. For such medical applications, 

inertial BSNs not only could function as an easy-to-use and economical tool for 

quantitative medical observation, but also could enable out-of-lab and long-term 

monitoring assessment to clarify the previous unclear medical conclusion based on in-lab 

and/or qualitative clinical observation and further prompt medical research.  

 

Figure 6 TEMPO 3.1 Inertial Body Sensor Network (BSN) System 

The TEMPO system [14] (Figure 6) developed by the INERTIA Team at the University 

of Virginia, along with a number of medical collaborators, is such an inertial BSN system 

including 3-axis accelerometer and 3-axis gyroscope sensors and providing six-degree-
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of-freedom motion sensing in a form factor of a form factor of wrist watch. This platform 

will be used as the research platform in the projects described in this dissertation. 

1.4 Scope  

Many challenges obstruct the futuristic vision of inertial BSN enabled portable gait 

analysis, such as form factor, power consumption, information extraction, wireless 

communication, and real-time feedback control. This dissertation in particular, focuses on 

only the information extraction aspect. Since first and foremost, the inertial BSN 

technology must be accepted by the medical world before it can further empower and 

propel medical research, and information extraction and knowledge discovery is a critical 

bridge connecting the engineering world and medical world. And to vitalize real-world 

deployment of this technology, this step will further produce the intelligence to be 

delivered and stored. 

First, to have the medical field accept the technology, data must be presented in a 

communicable way for the medical staff and healthcare givers. Due to the computation 

complexity of the feature extraction, data obtained from inertial sensors, however, are 

usually raw signals (e.g. acceleration, angular velocity etc., shown in Figure 7). Yet it is 

essential to extract information and transform them into knowledge in order for the data 

to tell certain human behavior or gait pattern. To unveil such information behind the 

signals, great signal processing efforts with the background of inter-disciplined 

knowledge are required.  
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Figure 7 Raw Signals from Inertial BSN 

Second, storing the right and meaningful representation of data is essential to data 

storage. While time series is naturally to be stored due to the monitoring function of 

inertial BSNs, the sample-by-sample kinematic information occupies much storage with 

providing little knowledge about gait. For example, an application for collecting ankle 

joint angle requires four inertial BSN nodes. Each node takes 3-axis accelerometer data 

and 3-axis gyroscope data. To capture subtle motion, all the axes are sampled at 128 Hz. 

To convert the analog signal to digital data, a 12 bits analog-to-digital convertor (ADC) is 

used, while each sample contains 2 bytes of data in storage. If all the data were to store in 

the format of raw ADC values, then after one week’s continuous data collection, four 

nodes data would occupy: 4 (number of inertial BSN nodes) x 6 (number of axes/ node) x 

2 (bytes/sample) x 128 (samples/second) x 60 (seconds/minute) x 60 (minutes/hour) x 24 
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(hours/day) x 7 (days/week) = 3.46 Gigabytes (GBs)! Thus one subject’s yearly data (180 

GBs) in this format could quickly saturate a computer hard drive (usually around 300 

GBs). It would be extremely troublesome to dive into this ADC data ocean and find the 

useful information. Therefore, to be able to reuse and research on the continuously and 

longitudinally collected data efficiently, one must develop techniques for data 

compression and organization. Extracting useful gait features targeting application 

requirement is potentially an important approach to solve this problem. However, this 

dissertation will focus on the knowledge discover scope and leave the data reduction 

question for further research. 

1.5 Challenges and Impact 

The background mentioned above infers that gait feature extraction has become critical to 

the vitality of technology using inertial BSNs for medical applications. Therefore, to 

demonstrate the feasibility and importance of inertial BSNs to medical applications, this 

dissertation will undoubtedly center on the key question “How to best and most 

efficiently transform the raw inertial sensor data to useful information and medical 

knowledge in gait analysis?”  

Many paths exist between the input (e.g. raw inertial signals) and the output (e.g. useful 

information and medical knowledge) – inadvertently complicating the answers. Usually, 

there are two approaches to tackle this problem: first-principles model based and machine 

learning based. This dissertation mainly focuses on the former approach and explores 
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ways to combine the latter approach as well. However, there are many challenges 

associated with both approaches. 

For example, while these sensors provide rich information on the kinematics of human 

motion, the accurate spatial information required for many gait parameters is challenging 

to obtain. Intrinsic sensor noise causes integration drift, the uncertainty of mounting 

nodes on human bodies causes a systematic bias, and movement in multiple planes causes 

computational errors, all of which hinder the acquisition of accurate spatial features such 

as joint angle, stride length and gait speed. Moreover, current state-of-art feature 

extraction has focused on extracting accurate kinematic information by conquering 

spatial-information extraction challenge, and the extraction of gait features in the context 

of real applications behind the kinematic time series are rather less explored – lacking the 

evidences of adopting the information extracted from inertial BSNs for medical research.  

Meanwhile, the to-be-enabled long-term, natural environment monitoring also creates 

‘big data’ sets by data collection in a less controlled fashion, demanding the efficient gait 

feature extraction and selection for data storage and decision making given specific 

medical applications. Moreover, despite the reported success in extracting the desired gait 

features, the prevailing techniques in literature lack a systematic approach of extracting 

gait features. Therefore, it is desirable to have a systematic way in order to extract the 

gait features efficiently. 

To address these issues, several research questions are posed as follows: 
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• How to use a general, systematic approach to identify meaningful gait features 

targeting a specific medical application? 

• How to extract those gait features from inertial BSNs? 

• How to leverage knowledge from other domains for this interdisciplinary 

research? 

• How to adopt machine learning to systematically correcting extraction accuracy 

and automating the feature extraction process? 

To answer these research questions, this dissertation presents a roadmap of extracting gait 

features for gait analysis related medical applications. First, techniques to tackle the 

challenge of tracking accurate spatial information in order to provide accurate kinematic 

information will be introduced. Given the accurate kinematic information, linear analysis 

of extracting time domain gait features will be applied. This work also explores the 

opportunity of leveraging biomechanics and applying nonlinear analysis, in order to 

refine signal processing and enhance data separability and interpretability from features 

extracted from nonlinear analysis. Also, machine learning approaches will be explored 

for automatic solution to segmenting long period of sensor data and feature selection and 

reduction. Lastly, various case studies for applying these techniques to different medical 

applications will be discussed to exemplify the systematical approach.  

By summarizing existing techniques and leveraging biomechanical knowledge and 

related medical domain knowledge, overall, this research is aimed to provide an 

organized guideline for extracting gait features from inertial BSN data and further 

transform these features into useful medical knowledge, demonstrating the vision of 
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using inertial BSNs for longitudinal study to many related medical applications. The 

outcomes of this research are expected as following: 

• Establish the feasibility of BSN gait analysis for medical applications 

• Provide a roadmap for gait feature extraction, selection, and data reduction from 

inertial BSN data 

• Validate the accuracy of extracted gait features against gold standard technologies 

or ground truth 

• Demonstrate efficacy of extracted gait features in several medical case studies 

1.6 Dissertation Overview 

Given the outlook and impact of this research, the thesis of this dissertation can be stated 

as follows: 

This research establishes a systematic approach to extracting gait features from 

inertial body sensor networks. Informed by biomechanics and combining machine 

learning techniques and modeling from first principles, this approach provides an 

effective framework whose utility is validated via a series of medical case studies.  

The rest of this dissertation is organized as follows. After the introduction of Chapter 1, 

the technique details of extracting accurate kinematics are presented in Chapter 2. Then 

common features that can be extracted from linear analysis are detailed in Chapter 3 – 

including time domain features and gait cycle based features. Chapter 4 studies several 

commonly used nonlinear analysis tools for inertial BSN data, including qualitative and 
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quantitative phase portraits analysis, applying Lyapunov exponent for stability analysis, 

and applying Poincaré map for regularity analysis. Chapter 5 explores how to utilize 

machine learning techniques for gait feature extraction and exemplify the concept by 

extracting gait speed. Chapter 6 will apply the features extracted from Chapter 3-5 to 

several medical applications as case studies. Chapter 7 will conclude the dissertation and 

layout the future work.  
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Chapter 2  
 
Kinematic Information Extraction! 

Kinematics can be considered as the most basic time series one could obtain by using 

inertial BSNs, due to the two sensing modalities the currently available inertial sensors 

provide: acceleration by accelerometer and angular velocity by gyroscope, respectively. 

As most current inertial sensors are analog sensors, the data obtained from the sensor is 

usually Analog-to-digital Converter (ADC) values, which need proper conversion to be 

transformed to the physical values. How to convert the ADC values, and what other time 

series can be produced from the physical values become the focus of this chapter. By 

devising a set of procedures, including calibration, synchronization, mounting calibration, 

geometric transformation, and drift canceling, this chapter aims to transform the raw 

ADC sensor values to kinematic information accurately, producing the primary 

information in the gait feature extraction system.  

 

 

                                                
! This chapter is partially adapted from publication [P11] and [P12] 
† The work in this section is attributed to my teammate Jeff Brantley. 
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2.1 Inertial Sensor Calibration 

Accelerometers and rate gyroscopes used in inertial BSN platforms are typically assumed 

to follow a linear model.  The sensitivity is the ratio of voltage change to change in the 

physical quantity, and the offset is the output voltage when no motion (or gravitational 

field, in the case of accelerometers) is applied to the sensor. The relationship between the 

sensed quantity (M), and the output voltage (V), is described by Equation (1), which 

contains two key parameters: the sensitivity (S) and the offset (O). 

!! = !!– !!!
!  (1)  

The sensitivity is the ratio of voltage change to change in the physical quantity, and the 

offset is the output voltage when no motion (or gravitational field, in the case of 

accelerometers) is applied to the sensor. These parameter values can be found in the 

sensor datasheets, but in practice they will deviate from the expected value due to various 

sources of errors.  

These sources of errors include manufacturing variations and environmental conditions, 

such as temperature, meaning that sensitivity and offset will vary both across different 

sensors at a given time, or within a single sensor at various times. Datasheets and white 

papers from manufacturers additionally list other possible error sources, such as non- 

linearity, non-orthogonality between axes, and cross-axis sensitivity. Finally, variations 

in chip mounting on a printed circuit board (PCB) or mounting of the PCB in the node 

packaging can place the sensing axes slightly out of the assumed frame of reference. The 

sensitivity is the ratio of voltage change to change in the physical quantity, and the offset 
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is the output voltage when no motion (or gravitational field, in the case of accelerometers) 

is applied to the sensor.  

Therefore, it is impractical to individually compensate for these sources of errors, and so 

some form of calibration is employed to holistically minimize their effect. The sensor 

response is checked against a known reference point (such as the gravitational field or a 

turntable) in order to calculate the actual sensitivity and offset by linear mapping or 

Newton’s method [15][16][17][18]. In the following sections, methods for calibrating 

accelerometer and gyroscope sensors are detailed. 

2.1.1 Reference Based Accelerometer Calibration 

Reference based accelerometer calibration requires level surface or inclinometer to 

provide physical ground truth as mapping reference. The simplest calibration technique is 

the linear mapping of two points measured with respect to gravity into the linear function. 

For accelerometers, each axis of sensor is exposed to 1g and -1g by placing it parallel 

with gravity. The sensitivity and offset are calculated from these reference points 

according to Equation (2). 

! = !!!" − !!"#
2

! = !!"# + !!"#
2

!!!! (2)  

With S and O obtained, Equation (2) can be applied to convert the ADC value directly 

into g.  
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2.1.2 Non-Reference System Based Accelerometer Calibration 

Non-reference system based accelerometer calibration does not require a particular 

reference instrument such as inclinometer. However, it does not mean the calibration can 

be carried without reference. In fact, it implicitly uses the reference of an important 

principle of accelerometer: whenever the accelerometer is stationary on earth, the sum of 

vector magnitude of 3 axes is 1g. This principle is described by Equation (3), 

A!! + A!! + A!! != !1 (3)  

Equivalently, 

A!! + A!! + A!! = !1 (4)  

With this constant, we can set up a series of equations to mathematically estimate the 

variables in the equations. As for each axis, the sensitivity and offset are constant but 

unknown. And the goal of calibration is to obtain the constant and offset. With this in 

mind, we rewrite Equation (4) as: 

 

!! − !!
!!

!
+ ! !! − !!!!

!
+ !! − !!

!!
!
= !1 (5)  

 

where !! ,!! ,!!, are the known ADC readings from the X, Y, and Z axis, and !! and !! 

are the unknown sensitivity and offset, respectively, of axis x, y, z.  Since there are 6 

variables in Equation (5), 6 equations are needed to solve the variables. This means 6 sets 

of ADC readings, !! ,!! ,!!, are needed from placing the accelerometer in 6 arbitrary 
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orientations. (subjected to the gravitational field in six distinct, but arbitrary orientations. 

To solve the system of quadratic equations expressed as Equation (6), numerical methods 

such as Newton-Raphson method can be used to obtain the sensitivities and offsets.  

! !! , !! , !! ,!! ,!! ,!! =  !! − !!
!!

!
+ ! !! − !!!!

!
+ !! − !!

!!
!
− 1 = 0 (6)  

The non-reference based calibration can be very useful when perfect level surface is not 

able to obtain. For example, when TEMPO nodes are molded into orthopedic devices, it 

is no longer easy to align the nodes in parallel or orthogonal to gravity direction. At this 

point, non-reference based method only requires six distinct positions without requiring 

the perfect alignment. However, the disadvantage is that the iterative estimation limits the 

computation to offline post processing from a resource constrained BSN platform.  

2.1.3 Turntable Based Gyroscope Calibration 

Similarly as accelerometer calibration using references of gravitational direction, rate 

gyroscope sensors can be placed on a turntable and subjected to the available rotational 

rates, typically 33 RPM and 45 RPM, as shown in Figure 8.! 
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Figure 8 A Turntable for Gyroscope Calibration 

! = !!"# − !!"#
2×200

! = !!"# + !!"#
2×200

!!        ! (7)  

With S and O obtained, Equation (7) can be applied to convert the ADC value directly 

into degree/s.  

2.1.4 Angle Based Gyroscope Calibration 

Unfortunately, the mathematical estimation based calibration technique only applies for 

accelerometers. For gyroscope, there is no implicit ever-present reference as the gravity 

factor in accelerometer. However, we could use more accessible reference system other 

than turntable or systems providing constant rotation rate to free the calibration from 

turntable setup – which is mapping the gyroscope sensor’s sensitivity and offset 

parameters to angles, as presented in Equation (8). 
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!!! − !!
!" !" = !"#$%!

!!

!

!!! − !!
!" !" = !"#$%!

!!

!
⋮

!!" − !!
!" !" = !"#$%!

!"

!

 (8)  

Equation (8) presents the idea of mapping x-axis gyroscope’s parameters –sensitivity 

(!") and offset (!!) – to angles (!"#$%). Since within time, the angular velocity (!!) – 

which is the ADC recording from inertial BSN data – can be integrated into a certain 

angle as the gyroscope swings. Knowing the precise time of angular motion (integration 

span) and the angle, we can solve this linear equation, and obtain the two unknowns – 

sensitivity (!") and offset (!!). In practice, this process can be achieved by turning the 

gyroscope on a goniometer in order to find the angle the gyroscope has been turned to. 

To obtain better accuracy, this process can be repeated in order to eliminate the 

experiment error. 

2.2 Synchronization for Multi-node Application† 

BSN applications employing data fusion across multiple sensor nodes can suffer 

significant error if not properly time-synchronized. Computations combining non-

stationary data sample-by-sample from various nodes will, for a given time lag among 

nodes, incur error related to the rate of change in the signals. For example, a joint angle 

                                                
† The work in this section is attributed to my teammate Jeff Brantley. 
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computed from two limb segment angles will combine segment angles taken at different 

times and different postures; the severity of this difference is a function of the time lag 

between signals and the speed of the limb motion. Figure 9 captures how the accuracy of 

desired information – knee joint angle – is distorted with simulated synchronization lag. 

The maximum RMSE can exceed 20 degrees, which is greatly below the medical 

application precision requirement (less than 5 degrees RMSE).  

 

Figure 9 Knee Angle RMSE Due to Desynchronization 

2.2.1 Event-based Synchronization 

One practical synchronizing solution can be synchronizing the aggregated data based on 

intentionally generated sensor events. The BSN user performs some synchronization 

action that applies stimuli simultaneously to multiple sensors. An operator can manually 
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note the times of the sensor events during post-processing. [19] describes the use of 

“spotting” algorithms for automatic detection of these events in multimodal sensor 

environments, and advocates repeating the synchronization action multiple times to avoid 

errors from false detections. 

Event-based synchronization can be useful not only for synchronization within a BSN, 

but between BSNs that are not necessarily programmed to interoperate. Furthermore, it 

can be used to synchronize against a non-BSN system, such as an optical motion capture 

system for ground-truth validation of an inertial BSN experiment, but manual spotting of 

the events may be necessary. For example, in this study, synchronization between the 

TEMPO and Vicon® systems was achieved by striking a TEMPO node against a Vicon® 

system force plate. Similarly, video recordings of experiments can be synchronized to 

BSN data by selecting the video frame during which a synchronization action occurred. 

2.2.2 Time Transmission Based Synchronization 

An alternative synchronization approach utilizes the time transmission protocol (TTP) 

commonly used in distributed systems [20] and which has also been applied to wireless 

sensor networks [21]. This method allows a microcontroller to control synchronization 

while bypassing the inaccessible radio MAC layer in some commercial radios. In 

TEMPO 3.1, a star topology with a data aggregator in the center is used, i.e., 

communication only occurs between the aggregator and nodes, thus the TTP scheme 

aims to discover a relationship between the aggregator clock and each sensor node clock. 

When synchronizing, first clock information is exchanged between the data aggregator 

and the sensor nodes. Then the sensor nodes send a series of timestamps, each at time T 
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of the nodes clock. The aggregator receives such timestamp at time R of the aggregators’ 

clock, with an unknown delay d, due to the transmission delay over the radio [20]. The 

aggregator estimates the nodes clock based on Equation (9) [20]: 

!!"#$ = !!! − !! ! + !!"#$ ! + !!!! (9)  

where RA is the average of all the aggregator timestamps of received messages, RAn is 

the last aggregator timestamp, Tnode is the average of the node timestamp for 

transmitting a message, and d is the average delay. 

This equation assumes that the clocks of both peers operate at the same basic frequency. 

However, in our case, this is not true – specifically, the node and aggregator maintain 

software timers operating at 120 Hz and 1 kHz, respectively – and thus we must 

normalize the aggregator’s timestamps to those of the node by multiplying by a ratio of 

their basic frequencies, leading to equation (10). 

!!"#$ =
!!"#$
!!

!!! −
!!"#$
!!

!! ! + !!"#$ ! + !!!"#$!!
!! (10)  

Since the clock rate of each sensor node is assumed to be accurate in this paper, only the 

time lag (i.e., asynchronization) between multiple nodes is considered. Once these clock 

relationships are established, the nodes begin taking data and transmit the timestamps 

corresponding to when they started collecting data. The aggregator can therefore 

synchronize the multiple data streams based on the clock information and timestamps. 

Ideally, TTP synchronization would provide the maxi- mum cross-correlation at zero. 

However, in reality, a deviation between the two synchronization methods can be as high 
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as a few samples or tens of milliseconds. Compared to event-based synchronization, TTP 

synchronization eliminates a pre-defined synchronization procedure and post processing. 

With the cost of a small amount of delay in the beginning of data collection, TTP 

synchronization enables the on-body data collection to be sped up, slowed down, and 

even stopped and restarted without requiring the user to perform any re-synchronization.  

2.3 Orientation Tracking 

2.3.1 Related Work 

Accurate orientation tracking using inertial BSNs have been the research focus in the 

field. Seemingly an intuitive product to obtain from inertial sensors, orientation 

information (i.e. spatial information) is not easy to extract accurately. Several reasons are 

associated with this: 1) signals sensed by inertial sensors are acceleration and angular 

velocity defined in inertial frame. In other words, inertial sensors are oblivious to the 

global frame. Therefore, information defined in global frame is not same as the signals 

inertial sensors sensed. In practice, when mounting inertial sensors on human body, it is 

common to have the inertial frame and the global frame misaligned, causing mounting 

error when global information is required. 2) Integration drift (e.g., acceleration to 

velocity and position, rotational rate to angular displacement). Signal processing 

techniques such as high-pass filtering [72], complementary filtering [28], and Kalman 

filtering [23][24][25] have been practiced for removing the drift.  
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Kalman filtering has been the mostly used techniques for drift cancellation and 

compensation in order to provide the accurate spatial information. This approach 

characterizes the noise metric in accelerometer and gyroscope, and updates the 

integration process accordingly given the state of parameters estimated and measured. 

The variations of Kalman filters are extended Kalman filter (EKF) [23][25] and 

unscented Kalman fitler (UKF) [26][27], which all have accurately estimated spatial 

information over a period of time. However, Kalman filter based approaches usually 

requires careful parameterization (i.e. noise characterization) before the filtering process 

and sample by sample matrix updating procedure, rendering the method more difficult to 

implement and more computationally intensive when updating on the resources 

constrained embedded platforms. 

[28] has developed a systematic approach for extracting kinematic information by 

characterizing the error propagation for the Orient-2 system. In [28], complimentary filter 

is implemented in real-time and showing accurate results compared to extended Kalman 

filter, which is usually computationally intensive for embedded systems. Compared to 

Orient-2, the lack of magnetometer in TEMO 3.1 system may decrease its accuracy under 

same filter design. However, complimentary filter method will be borrowed because it is 

possible to implement this filter in TEMPO 3.1 system. Nevertheless, the kinematic 

information extracted should be further investigated for other gait feature extraction for 

medical applications. 
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2.3.2 Joint Angle Tracking 

In the static period, the accelerometers are employed to provide the inclination of each 

segment. In this section, the knee joint angle is used as an example to explain the 

methodology while it can be easily scaled to other orientation tracking examples. The 

knee joint angle is obtained by comparing the tilt of the shank and the tilt of the thigh. 

Following the convention of the Vicon® system, we chose the ground as the reference 

and subtract the thigh tilt from the shank tilt. The placement of TEMPO nodes is shown 

in Figure 8. 

!!"#$"%& = arctan!( !!
!!!!!!!!

)  
(11)  

In Equation (11), !! ,!! , !! are the linear accelerations obtained from the accelerometer 

signals with respect to each axis, and !!"#$"%& (i.e. !!!!"# or !!!!"!) is defined as the 

angle of the X-axis relative to ground. The knee joint angle can be found as, 

!!"## = !!!!"# − !!!!!"!!   (12)  

The absolute joint angle is the supplement of the angle obtained by Equation (12). We 

obtain dynamic gait period angles by integrating the discrete angular velocity value 

measured from the rate gyroscope sensors. 

! ! = ! ! − 1 + ∆2×(! ! − 1 + ![!] (13)  
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In Equation (13), ! is the angular velocity obtained from the rate gyroscope signal, ∆ is 

the sampling period (1/128 s in this case) and!! is the dynamic angle of each segment 

with respect to ground. The initial value of the dynamic angle will be obtained from the 

static posture in every experiment session providing the initial orientation for the 

gyroscope. The knee joint angle is calculated by subtracting the integrated thigh angle 

from the integrated shank angle, as shown in Equation (12). 

2.3.3 Mounting Calibration 

[22] has characterized mounting error as a dominant source of error in inertial BSNs when 

applied to measuring knee joint angles. In most of the applications involving spatial 

information computation, it can cause the data to be interpreted with a reduced angular 

velocity, thereby affecting the accuracy of spatial information extraction. Mounting error 

exists when the sensor is not affixed to the body in the assumed orientation. Ideally the 

sensor coordinate frame should align with the body frame as shown in Figure 10. 

 

(a) Ideal mounting                   (b) Non-ideal Mounting 

Figure 10 An Inertial BSN Node and Corresponding Axis Orientation 
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In order to correct the error due to imperfect mounting, the orientation of the inertial frame 

(sensor coordinate frame) with respect to the body frame needs to be determined. To 

achieve this, two vectors are computed and then used to relate the two frames. These 

vectors, !! and !!, are the y and z axes of the body frame represented by the coordinates 

of the inertial frame and can be determined by the pre-defined mounting calibration 

procedure detailed in the rest of this section.  !!, the x-axis of the body frame, is 

determined as the cross product of !!!and !!. 

To deterimine !!, the mounting calibration procedure requires the subject to stand straight 

with her/his leg vertical to ground. Thus the y-axis of body frame, which is also the 

direction of gravity in this posture can be represented in the inertial frame as:  

!! = !! !! !! ! (14)  

!! , !! , and !!  represent the readings from the x, y, and z axes of accelerometer 

respectively. This representation is based on the assumption that during standing straight 

posture, the gravity vector in the inertial frame is parallel to !!. 

To determine the z-axis of the body frame in the inertial frame, it is necessary to rotate 

about the body frame's z-axis and find the axis of rotation in the inertial frame. In this 

mounting calibration procedure, the subject should lift his/her leg forward in the sagittal 

plane and hold the leg steady by resting it on a surface in order to isolating the gravitation 

force vector by minimizing the linear motion The reading from the accelerometers at this 

new position is recorded as:    

!! = !′! !′! !′! ! (15)  

!! is then determined as: 
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!! = !!×!!! (16)  

The principle behind this procedure is that !!, the axis around which the gravity vector is 

rotated, is perpendicular to both !! and !′ and thus can be represented by their cross 

product. The greater the rotation of the gravity vector (i.e. the higher the leg is lifted), the 

more accurate this calibration will be. In addition, because !! and !′ are only orthogonal 

when the leg is lifted 90 degrees, it is necessary to normalize the vector!!!. To determine 

!!: 

!! = !!×!! (17)  

With these three column vectors, !!, !!, and !!, it is possible to construct a rotation 

matrix to transform vectors in the inertial frame to their corresponding vectors in the body 

frame. This matrix is defined as: 

!!" = !! !! !!  (18)  

The two measurements used for determining gait speed are the measurements from the tri-

axial accelerometer and the measurements from the tri-axial gyroscope. Both of these are 

taken in the reference frame of the sensor but need to be viewed from the reference frame 

of the body.  In the inertial frame, the acceleration vector and the angular velocity vector 

are respectively represented: 

! = !! !! !! ! (19)  

 
!!! = ω! ω! ω! ! (20)  

The acceleration and angular velocity vectors in the body frame, !!  and !! , are 

transformed by !!": 
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!! = !!"! (21)  
 

!! = !!"! (22)  

Therefore, by transforming all of the measurements taken in the inertial frame to 

measurements in the body frame, the mounting error is minimized.  

 

Figure 11 Validation of Mounting Calibration Method 

To verify the mounting calibration algorithm, a pendulum model shown in Figure 11 was 

employed. A sensor node was affixed to the pendulum only rotating around the z-axis. 

The node was mounted with different controlled degrees of error around the y-axis. The 

angle rotated around the y-axis was then extracted from the rotation matrix produced by 

the algorithm. The results of the error minimized are shown in Table 1. 
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Table 1 shows the effectiveness of the mounting calibration algorithm in measuring the 

mounting error. The average error between the angle measured using an inclinometer and 

the angle measured by the algorithm was 1.023°. Given the margin error of the 

inclinometer measurement, the results show that this method can accurately determine the 

spatial orientation of the sensor node with respect to the body frame. 

 

Table 1. Angles measured at various mounting errors. 

Mounting Position 

Rotated Around Y-axis 

Measured by 

Current Method 

Measurement 

Error of Angle 

0° -0.072° 0.072° 

15° 16.286° 1.286° 

30° 27.896° 2.104° 

45° 43.954° 1.046° 

60° 58.078° 1.922° 

75° 74.737° 0.263° 

90° 90.461° 0.461° 

2.3.4 Filtering Techniques 

Integration drift is inherent in any inertial sensor system and occurs when converting 

from acceleration to velocity (or again to position displacement) or from rotational rate to 

angular displacement. Here we focus on the latter, as discrete integration is applied to the 

gyroscope data in Equation (13). It is well-known that drift occurs as a function of time 
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and acts as a DC offset in the gyroscope due to intrinsic sensor errors such as random 

noise and bias that are accumulated with time during integration, this DC offset can be 

effectively removed with a high-pass filter, as was done for the results in the other 

sections.  

To do so, a sensor node was placed on the turntable from 1 full rotation to 10 rotations 

with an increment of 1 rotation, and for 15, 20, and 30 rotations, with a time span of ~1.8 

s at 200 °/s and ~1.33s at 270°/s for each rotation. The experiment for each rotation 

number was repeated three times to reduce the uncertainty and observation error, with a 

standard deviation no larger than 5°. The experiments were performed in both the 

positive and negative directions. The integration error is computed as the deviation of the 

integrated angles using the raw angular velocity (calibrated using the above piecewise 

method) from the reference angles (i.e., number of rotations × 360°). The results are 

shown in Figure 12.  
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Figure 12 Gyroscope Integration Drift 

 

To replicate the method used in [28], in this dissertation, a 3rd order Butterworth high-

pass filter with a cut-off frequency of 0.3 Hz is applied. To avoid phase-distortion caused 

by filtering, the filter is applied twice, forward and backward, to achieve zero-phase 

distortion. A high-pass filter inevitably removes the DC signal. To compensate for this, 

complimentary filter can be applied to further utilize accelerometer reference. 

For the gyroscope signal, a high pass filter with a cut-off frequency of 0.3Hz is designed, 

and for the accelerometer signal, a complementary low-pass filter is designed at the same 

cut-off frequency. To minimize the overshooting effect, a 1st order Butterworth filter is 
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selected. The principle is to filter out the offset of the gyroscope signal while maintaining 

the local motion. For the accelerometer whose orientation is reliable in the long-term, the 

higher frequency motion is filtered out. To avoid phase-distortion caused by filtering, 

both the high-pass and low-pass filters are applied twice, forward and backward, to 

achieve zero-phase distortion.  

After low-pass filtering, the resultant acceleration is almost entirely due to gravity, which 

varies with the sensor orientation and can be determined by Equation (11). Overall, 

complementary filter design is equivalent to Equation (23) in the time domain:  

! = !0.98!×!"#$%! + !0.02×!"#$%! (23) !

where!!"!"#! represents the gyroscope signal informed angle via Equation (13) and 

!"#$%! represents the accelerometer signal informed angle information via Equation 

(11). In summary, the target signal !  contains orientation information and can be 

considered a weighting function of the angles obtained from both the gyroscope and 

accelerometer signals. 

2.4 Summary 

In this chapter, time synchronization, sensor calibration, integration drift, and mounting 

calibration were detailed to minimize sources of errors in order to accurately extract 

kinematic information from inertial BSNs. Since such errors are inherent in any multi-

nodal inertial BSN system and can greatly impact the fidelity of kinematic information, it 

is necessary to characterize such errors within the target application. Whilst 
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synchronization errors and calibration errors can be minimized significantly, mounting 

error is proved to be the biggest challenge when the nodes are placed on human body in 

practice – dominating the error impact on information fidelity. Compensation methods 

for mounting error were explored that provided accuracy up to an RMSE of ~1.5 degrees 

during walking, which is within the range of error in the optical motion capture system. 

Meanwhile, the integration drift presents challenge in accurately extracting spatial 

information. With a designed complimentary filter, this error can also be minimized to 

suffice the application requirement. This method will be validated in Chapter 6 via a case 

study. 
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Chapter 3  
 
Linear Analysis for Temporal Feature 
Extraction! 

Chapter 2 details methods of transforming raw inertial BSN data into the primary product 

– kinematic information, which preserves the time series nature of the signal at a high 

sampling rate. To relate such information to medical outcome, more in-depth information 

needs to be extracted from the kinematic information. As human gait is a repetitive 

motion, time series of gait signals possess pseudo-periodic nature. This means that 

repetitive events in a cycle can be detected and extracted to examine the temporal 

features of the gait. In this chapter, methods of detecting critical gait events are presented 

based on the observation of human gait. These features often tend to employ linear 

analysis for 1-D time series, hence called linear features.  

                                                
! This chapter adapts from publication [P9] 
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3.1 Gait Specific Temporal Features 

Gait specific temporal features are the characteristic features that only exist in human gait 

[29]~[34]. Extracting and analyzing such features help to segment gait motion in time. In 

this section, the following features will be explored and extracted: Gait Cycle 

Segmentation, Cadence, Stance Phase, Swing Time, Single Support Time, Double Stance 

Time, Stride Length, and Gait Speed.  

3.1.1 Gait Cycle Segmentation and Cadence 

Gait cycle extraction [37] is critical to extract parameters such as gait phase, stride time 

(i.e. inverse of cadence), and stride length. Examining gyroscope signal of the shank 

mounted inertial sensor, we find that the periodical nature of the signal can be utilized 

perfectly for gait cycle segmentation with peak detection algorithm. To avoid the 

detection algorithm stuck in the local maximum within a small range, the ripples in the 

gyroscope signal are suppressed using a zero-phase, 3rd order, Butterworth low-pass 

filter with a cutoff frequency of 3Hz. The cutoff frequency is determined empirically by 

inspecting the spectrum of the gyroscope signal, in which the main frequency 

components lie below 3Hz. With the pronounced peaks, a local maximum peak detection 

algorithm can be used to identify the maximum of the sinusoidal-like signal as the green 

dots shown in Figure 13. 
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Figure 13 Gait Cycle Segmentation 

After accurately separating gait cycles, stride time extraction becomes a trivial problem. 

With high sampling rate, this temporal information can be accurately obtained by 

counting the samples inside one gait cycle. The stride time will be the number of samples 

divided by sampling frequency. Cadence is a product by taking the inverse of the stride 

time.  

3.1.2 Gait Events 

To better study the human walking mechanism, photos are taken on the street of many 

pedestrians walking. At a rate of 8 frames/second, a continuous motion as walking that 

can not be decomposed by human eyes are captured clearly and segmented by a series of 
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static pictures, as shown in Figure 14. Confirming that all common pedestrians are 

walking in the same fashion by checking different pedestrians’ walking photos, we 

abstract the photos into Figure 15. 
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Figure 14 8 Frame/Second Shots of Gait Events in One Gait Cycle 
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Figure 15 Gait Events During One Gait Cycle 

Figure 14 and Figure 15 illustrate the decomposed gait events in a gait cycle, universally. 

Taking the right leg on both figures for example, during walking, there is always a 

moment that a human subject with right leg standing on the ground (Mid-Stance event). 

Starting from this moment, in order to move forward, the subject lifts her/his heel off, 

pushes backwards on the ground (Heel Off event) in order to give the body a 

counterforce to lean forward until she/he can completely lift her/his toe in the air (Toe 

Off event). The right leg continues to swing backward in order for the shank to reach the 

highest potential (Initial Swing event) as a pendulum. Then after reaching the highest 

potential, the right leg in the air swings forward while transforming the potential energy 

to kinetic energy, without extra effort (Mid-Swing phase). When the right leg reaches the 

lowest point, the right foot hits the ground (Heel-Strike event), lands and supports the 

body weight (Foot-Flat Event), and waits for the other leg to swing (Mid-Stance event as 

the beginning of the next cycle). This cyclic motion can be found for the left leg, as the 

two legs alternate.  
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Figure 13 provides a good intuition of detecting the gait events in the time domain. With 

the gait cycle segmented, we can identify the different events by the occurring sequence. 

 

Figure 16 Critical Gait Events Detection on Gyroscope Signal 

3.1.3 Gait Temporal Features 

With the gait events detected successfully, we can extract temporal features such as 

double stance time, swing time etc., based on the timestamps of the events. However, the 

critical gait phases must be learned first in the context of the gait events.  Figure 17 
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defines these temporal features by incorporating the gait events and phases, providing a 

graph to search for the temporal features depicted in the following sections. 

 

 Figure 17 Gait Phase Explained 

3.1.3.1 Swing Time (SWT) 

 Figure 17 shows that swing time is the duration between Toe-Off gait event and Heel-

Strike gait event of one leg inside one gait cycle. During this phase, the leg first pushes 

backward and then swings forward, transforming the potential energy into kinetic energy, 

and resulting the highest value in acceleration signal and angular velocity signal. To find 

the duration, a sorting algorithm can be used to label the two sequential, adjacent Toe-Off 
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and Heel-Strike events, and count the number of samples between these two timestamps 

and get single support time. Note this feature only relies on one leg’s inertial sensor data.  

3.1.3.2 Single Support Time (SST) 

 Figure 17 shows that single support time is the duration between Toe-Off gait event and 

Heel-Strike gait event and of one leg inside one gait cycle. During this phase, the foot 

lands on the ground and the leg gradually rotates centered around the foot until the center 

of mass of the whole body moves forward. Interestingly, one leg’s single support time is 

exactly the same as the swing time of the other leg. Note this feature only relies on one 

leg’s inertial sensor data.  

3.1.3.3 Stance Phase (SP)  

 Figure 17 shows that stance phase time is the duration between Heel-Strike gait event 

and Toe-Off gait event of one leg inside one gait cycle. During this phase, the foot lands 

on the ground and the leg gradually rotates centered around the foot until the center of 

mass of the whole body moves forward. To find the duration, a sorting algorithm can be 

used to label the two sequential, adjacent Heel-Strike and Toe-Off events, and count the 

number of samples between these two timestamps and get single support time. The 

difference between single support time and stance phase is that the latter includes the 

double support time where both feet are on ground. Note this feature only relies on one 

leg’s inertial sensor data.  
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3.1.3.4 Double Stance Time (DST) 

Double stance time is the phase of both feet in contact with the ground during walking.  

Figure 17 shows that double stance time is the duration between Heel-Strike event of one 

leg and the Toe-Off event of the other leg. As an information involving coordination 

from both legs, it is tricky to accurately obtain since its accuracy depends on timestamps 

from both legs instead of one. Here, the synchronization between the nodes becomes 

critical to this problem. However, with a careful examination of Figure 17, this feature 

can be extrapolated as:  

!"# = !" − !"# (24)  

3.2 Stride Length and Gait Speed 

Gait speed is an important parameter in gait analysis. In geriatrics specially, gait speed 

has become the number one predictor of mortality in adults over 65 years old, with 

differences of just a couple tenths of a meter per second predicting statistically significant 

outcome differences [35]. Thus accurate gait speed estimation from inertial BSNs has 

interested researchers in the field [36] ~[45] [58][59][60].  

3.2.1 Related Work 

Early, previous work using inertial sensors to estimate gait speed usually modeled human 

gait as an inverse pendulum [36] [42] [58] [59]. [36] was the first to devise the method of 

using a single axis gyroscope to estimate stride length and gait speed, with a single 

pendulum model. The method intuitively explained how to use geometric model to 



48 
 
   

extract gait speed from inertial sensors and achieved an accuracy with relative errors of 

15%~ 25% over a speed range of 0.5m/s ~ 1.7m/s. [58] proposed a more precise model 

by using both shank and thigh mounted inertial sensors with better defined geometric 

model, achieving an RMSE of 0.06m/s at a constant treadmill speed (1.11m/s). While the 

initial efforts in [36] seemed to provide an over-simplified model, the more refined model 

in [58] requires thigh nodes, which introduces more invasiveness to the wearer (an issue 

of both node location and number). In this dissertation, the invasiveness and mounting 

uncertainty of thigh-mounted nodes is avoided by the use of a refined gait model that 

only requires shank data. [42] also employed the double pendulum model, with Kalman 

filter to cancel drift in the gyroscope integrated signal, achieving a stride length RMSE of 

0.05m per stride.  

[38] explored the possibility of using foot-mounted inertial sensors to obtain linear 

velocity from accelerometer by leveraging the gyroscope integrated angle information, 

achieving an RMSE across 5 subjects ranging from 0.03m/s ~ 0.06m/s. [59] took similar 

approach, but instead of using mount the sensors on the foot, it used shank-mounted 

inertial sensors and achieved an RMSE of 0.05m/s from 0.8m/s to 1.8m/s with 0.2m/s 

increment. Although integrating acceleration to obtain distance and velocity seems an 

intuitive approach, the accuracy can be worse because gravitational force is difficult to 

separate from inertial force and accelerometers are susceptible to linear mechanical noise. 

To achieve accurate results using method described in [38] and [59], careful noise 

reduction and integration drift cancelation method are required, rendering the method less 

robust in implementation.  
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[41] [43]~[45] and [60] resorted to machine learning approaches for estimating gait 

speed. [41] adopted Gaussian process regression (a nonlinear regression approach) to 

estimate gait speed from frequency domain features, achieving an average RMSE of 0. 

027 m/s observed at one subject. [43] and [44] used the decomposed wavelets from 

accelerometer features as features, and used linear regression approach to estimated gait 

speed, achieving an average error below 5%.  [45] estimated gait speed as a middle 

product for energy expenditure estimation. With a hip-mounted acceleration tracking 

cadence, it achieved an average error of 0.18m/s. These pioneer works using statistical 

learning methods laid groundwork for the field moving from first principle modeling to 

machine learning for gait speed estimation. However, the features mentioned in these 

work and the accuracy of the results need further validation via a unified machine 

learning framework. The machine learning based approach will be further discussed in 

Chapter 5.  

[39] reviewed the current research (16 papers in total) on gait speed estimation using 

inertial sensors, categorizing the current gait speed estimation model in three categories: 

abstraction model (i.e. machine learning approach), human gait model and direction 

integration. With the existing effort in the field, it is worthwhile to combine the 

advantages of all these approaches in a framework, as will be discussed in Chapter 5.  
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3.2.2 Stride Length Computation 

Stride length computation is the critical step of getting gait speed. With stride length 

being accurately extracted, gait speed can also be obtained with the combination of 

accurate stride time. The overall steps for computing gait speed are: 

1) Calculating Stride Length/Gait Cycle 

      2) Distance = Stride!Length!of!Gait!Cycle!i!!!!".!"!!"#$%&
!!!  

      3) Average Gait Speed = Distance / Travelling time 

Discrete integration as shown in Equation (13) introduces inevitable drift as a function of 

time due to gyroscope sensors’ bias and random noise. The gait cycle information is 

leveraged to null the drift based on the evidence that at the foot-on-ground events the 

shank angle should be near zero. Since integration can be conducted in a small duration 

(one gait cycle in this case, no longer than 3 seconds), it is reasonable to assume the drift 

is accumulated due to constant bias over random noise that is linear over time. Therefore, 

at the initial and end instance of a gait cycle (foot-on-ground events), the angle integrated 

of these two instances can be reset to zero, hence eliminating the integration drift in a gait 

cycle: 

!"#$% = !!!"# − !!"#$"!!"# − !!"#$"
!! = !!! − !"#$%!×!

 (25)  

where !"#$% is the slope of the drift assumed linearly in one gait cycle,  !!"#$" and !!"# 

denote the shank angle at the start and end point respectively of the gait cycle, !!"#$" and 

!!"# denote the timestamp at the start and end point respectively of this gait cycle,  !! is 
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the shank angle at time index ! of this gait cycle, and!! is the shank angle after drift 

cancellation at time index ! of this gait cycle, as used to find the swing range. 

To quantitatively examine the different gait events occurring in one gait cycle, Figure 18 

presents both angular velocity and angular position in time domain plot and labels out the 

gait events on the signals. After examining this figure, we found that the angular velocity 

of the shank reaches its maximum when the leg is fully extended, and the angle of the 

shank reaches its maximum after this when the leg is flexed. These two events do not 

overlap in time. This is further confirmed as the human gait photos captured by the 8-

frames/second series shown in Figure 14. 

 

Figure 18 Gait Events in One Cycle’s Time Domain Signal 
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Figure 19 Double Pendulum Model of Gait 

Based on the observation from Figure 14 and Figure 18, a double pendulum model is 

devised to extract stride length as shown in Figure 19. Since healthy human gait is 

relatively symmetric, the computation model can be applied to both shanks (assymetric 

models may have to be used for pathological gait). Here, the right shank is used as an 

example for computation: 

!!!" = sin(!!"#) ×!!!!!"# (26)  

 
!!!" = sin(!!"#) ×!!!"# (27)  

The stride length of one gait cycle can be considered as: 

!"#$%&_!"#$%ℎ!! = !!!!" + !!!"+!!!!" + !!!"!!     (28)  

The shank angle range is obtained by integrating the discrete angular velocity value 

measured from the rate gyroscope sensors described in Equation (13). The swing range 
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can then be found by differencing the maximum and minimum of the shank angle in one 

gait cycle.  

3.2.3 Evaluation of Gait Speed Estimation Method 

The accuracy of the estimation was verified using a treadmill. Two walking trials at 

1.2m/s on both ground and treadmill are studied to establish the assumption that the gait 

pattern of the sagittal plane gyroscope signal on treadmill do not differ from it on ground. 

Two healthy subjects, one female and one male, walked on the treadmill mounted with 

inertial BSN nodes on both shanks. An elastic Veclro® strap and racquet handle grip 

were used to maintain mounting position. The subjects then were asked to walk on the 

treadmill at speeds ranging from 1 to 3 MPH with a 0.2 MPH increment for 45 seconds 

each. The data from the shank mounted sensors were recorded on a laptop and post 

processed in Matlab® for information retrieval and data analysis.   

The method described in Section 3.2.2 is compared with the single pendulum model 

described in [36]. The RMSE is computed for both methods comparing treadmill speed, 

with a resolution of 0.2 MPH (0.09 m/s) from 1MPH to 3MPH, to the calculated gait 

speed. The accuracy of the proposed model was significantly higher than that of the 

reference [36], which commonly overestimates gait speed, shown in Figure 20 and Figure 

21. The improvement of using double pendulum model stated in Section 3.2.2 shows that 

with in-depth biomechanic knowledge, the accuracy of gait feature extraction can be 

improved without raising the complexity of signal processing or without wearing 

additional inertial BSN nodes. 
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Figure 20 Subject 1 Gait Speed Estimation Validation  

 

Figure 21 Subject 2 Gait Speed Estimation Validation 
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3.2.4 Discussion of Gait Speed Estimation Method using Human Gait Model 

The algorithm described above tends to overestimate at lower speeds and underestimate 

at higher speeds, which has also been found in [59]. Two sources of errors may lead to 

this: drift cancellation error and gait model error. On one hand, at low speeds, the longer 

gait cycle contains more integration drift, which cannot be eliminated completely by the 

linear drift cancelation function and leads to overestimation of the shank angle. Whereas 

at high speeds, the drift is overcorrected, decreasing the maximum shank angle in a gait 

cycle. On the other hand, the model also assumes the thigh angle is negligible during 

walking, i.e. it is vertical when the shank is at θmax. However, at very low and high 

speeds, the thigh angle can be critical for controlling the step length. At very low speeds, 

the thigh tends to swing forward ahead of plumb line so as to maintain a very short step 

length on the treadmill, resulting in a step length that is shorter than predicted, and vice 

versa at high speeds. Thus, correction factors are needed to further reduce errors at very 

slow or fast walking speeds.  

These observations also shed light on the errors seen on different subjects. It is observed 

the algorithm tends to overestimate the gait speed of the male subject. Since the male 

subject is taller, at a given speed he has a lower cadence and longer stride resulting in 

more drift and more forward thigh when the shank is at θmax. It is, however, still 

possible to compensate for these inaccurate corrections with a scaling factor, since the 

slope of the estimated speed is fairly constant. 
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Evidently, this first-principles model requires in-depth biomechanical knowledge and 

signal processing knowledge to extract the gait speed feature, in order to account for the 

noise, systematical errors etc. In Chapter 5, this gait speed extraction using first-

principles models will be revisited and compared with a different approach – machine 

learning – in order to provide the insight of feature extraction.  

3.3 Summary 

This chapter details commonly used linear temporal gait features from inertial BSNs for 

medical research. With in-depth knowledge of human gait and signal processing, first, 

methods of detecting critical gait events are presented based on the observation of human 

gait. Second, the critical timing information was extrapolated from the timestamps of the 

critical gait events. Third, a first-principles modeling based gait speed estimation 

algorithm is developed. By leveraging biomechanical knowledge, this algorithm has 

improved the gait speed estimation accuracy without raising the complexity of signal 

processing. These linear features are important and prevailing in current gait analysis for 

medical research. The success of extracting such information from inertial BSNs in this 

chapter has demonstrated the potential of adopting inertial BSNs for such kind of gait 

analysis in the longitudinal studies. 
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Chapter 4  
 
Nonlinear Analysis for Nonobvious 
Gait Feature Extraction! 

Chapter 3 introduces extracting linear gait features from inertial BSN data. The 

motivation of extracting such features is intuitive and straightforward:  since the data 

coming out of inertial BSNs are time series (i.e., angular velocity and acceleration over 

time) with strong physical implications, it is natural to adopt the common time domain 

analysis and detect critical turn points of the signals (i.e. gait event detection). However, 

such techniques have shown limitations in human biomechanical analysis, as 

neuromuscular control in human beings is nonlinear in nature. The resultant features 

usually do not reflect the characteristics of the gait patterns where biomechanical insights 

behind the kinematics are often desired to characterize the pathology.  

To broaden the scope and extend extractable gait features from these time series, 

nonlinear analysis – which has established parameters to analyze a pseudo-periodical 

system (just like human gait) – can be borrowed. This chapter introduces nonlinear 

                                                
! This chapter is partially adapted from publication [P2] 
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analysis tools such as Poincaré map and Lyapunov exponent for gait analysis, and 

extracts nonobvious gait features with insight and novelty. Since the features are by using 

nonlinear analysis, in this dissertation, they are categorized as nonlinear features. 

4.1 Phase Portrait 

A phase portrait is a geometric representation of trajectories of a dynamical system in the 

phase plane [46]. In this representation, the position information is often plotted against 

its first time derivative. It has been used as a visualization tool in mechanics because of 

the unique geometric pattern it represents for a certain dynamic system. Therefore, it can 

characterize the dynamic system in absence of the motion equations while the 

experimental data of position and its derivative are known – such as in the current inertial 

BSN applications. 

More specifically, by directly displaying both position information and its first time 

derivative simultaneously, it becomes possible to correlate the two variables. For 

example, gait motion range is usually of interest for studies of motion constraints and 

amplitude [49]. Current gait analysis usually observes the amplitude of angular position 

and angular velocity sequentially, providing information of the extremes of amplitude per 

gait cycle. However, it does not reveal the mechanics behind the motion range, and rather 

assesses the two interdependent variables -- angular velocity and angular position -- 

isolatedly. In gait analysis where kinematic variables must be analyzed simultaneously 

than sequentially, phase portrait is an intuitive way to do so. 
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4.1.1 Related Work 

Introducing phase portrait to gait analysis can be dated back to [47][48][49], where the 

gait patterns were studied as limit cycles from an oscillating system. Since then, the 

visualization of gait pattern by applying the dynamic theory attracted researchers 

attention. In robotics specially, limit cycles of human gait have been studied and applied 

to the robots for better mimicry of more natural and stable gait.  [47] compared the  

normal gait patterns and abnormal gait patterns, “providing initial evidence about 

neuromuscular control features of gait” [50]. [48] qualitatively assessed the stability of 

the neuromuscular system by visually observing the amount of variability of the phase 

portrait trajectories. For example, normal gait patterns possess flexibility in the 

presentation of small variability in its phase portrait due to the adjustment to global and 

local perturbations. While for some abnormal gait patterns, excessive amount of 

variability was shown to be associated with instabilities and less efficient walking [50]. 

These pioneer work brought insight to gait analysis by applying dynamic system theory. 

However, for the analysis to be suitable for high precision gait analysis, methods for 

quantifying the phase portrait plots must be developed.  

4.1.2 Qualitative Analysis 

A shank segment phase portrait of one healthy gait cycle is plotted in Figure 14 for 

qualitative analysis. The gait events are clockwisely sequential on the plot as the arrows 

indicate.  The closed curve form reveals the periodic nature of a healthy gait. The ‘sharp’ 

turning point indicates the sudden change in motion [50]. From the biomechanical point 

of view, a complex ‘jerky’ movement means inefficienty in  the gait, therefore, the 
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complexity of phase portrait could provide a measure of the gait efficiency. Research has 

also applied Ellipitc Fourier Analysis [51][52] for quantifying phase portrait complexity. 

 

Figure 22 Shank Phase Portrait of A Health Subject’s One Gait Cycle 

Phase portrait does not reflect temporal informaiton. For example, the swing phase (from 

Toe-Off to Heel-Strike) occupies 40% of a gait cycle duration, though it may appear to be 

occupying most of the phase portrait circle. As shown in the scatter plot in Figure 22, the 

number of data points during the swing phase is less than the number of data points 

during the stance phase, which qualitatively indicates the duration of each gait phase, as 

the time interval between two data points is 1/128s (TEMPO’s sampling rate was set at 
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128Hz). Indeed, for temporal information critical applications, this is a major drawback 

of phase portrait and time domain analysis is preferred. Nevertheless, the phase portrait 

provide a very intuitive visualization of the gait data from inerital sensors. With 

quantitative method to mine information from it, we can obtain features that provides 

much richer information than the common time domain analysis presented in Chapter 2. 

4.1.3 Quantitative Analysis 

Although phase portrait provides visual, qualitive interpretability, to make it useful for 

clinical decisions, quantified information extracted from phase portrait for inertial BSN 

data is necessary.  

4.1.3.1 Complexity Analysis 

The idea of complexity analysis lies in analyzing the ‘jerkiness’ of a motion. This 

‘jerkiness’ can be best shown on a phase portrait (Figure 23 and Figure 24). To quantify 

this complexity, we can adopt method described in [51] by computing the number of 

harmonics needed to fit the shape of the phase portrait. In [51], the Elliptical Fourier 

Analysis (EFA) was used to find the number of harmonics on 2D curves (i.e. phase 

portrait) needed to fit a particular phase portrait. To determine how many harmonics are 

required to best describe a phase portrait, [51] adopted an point-wise sum of squared 

errors (SSE) metric – comparing the difference between a less number of harmonics fit 

phase portrait to a full fit phase portrait with a number of harmonics of 500 (Note that a 

phase portrait with zero number of harmonics fit is a standard ellipse). Once the SSE is 

below a threshold, the algorithm stops searching and register the current number of 
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harmonics as the quantitative complexity measure of the phase portrait. The details of this 

quantification method described in [51] will not be further elaborated here. 

 

Figure 23 Phase Portrait of Less Complex Gait 
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Figure 24 Phase Portrait of More Complex Gait 

4.1.3.2 Phase Portrait Area Analysis 

The area of phase portrait characterizes the mechanical energy spent in one gait cycle. To 

analytically explain this, an equation is derived relating the shank angular velocity and 

shank angle by modeling the shank motion during swing phase as a pendulum, as shown 

in Figure 25.  
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 Figure 25 Pendulum Model of Shank Motion 

During the swing phase, the shank can be considered as a simplified pendulum model, 

roughly conserving the mechanical energy generated at the push-off phase. Thus, its 

mechanical energy can be written as:  

! = ! + ! (29)  
 

! = !12!!
! + !12 !!

! (30)  

 

! = !" ! − !!!"#$ = !"#!(1− !"#$) (31)  
 

where 

! = !"#$% (32)  
 

 

!"#$ ≈ ! (33)  
 

 

!"#$ ≈ 1− !!
!

2!  
(34)  

when !!is small after applying Taylor expansion. !,! and ! represent mechanical energy, 

kinetic energy and potential energy, respectively.!! is the mass of the shank, ! is the 
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instantaneous linear velocity of the shank (note this measure is different from gait speed),  

! is the length of the shank, ! is the shank angle with respect to plumb line, and ! is the 

shank angular velocity. By simplifying Equations (29) to (34), we can obtain: 

! = !!
! + !!

!

!  (35)  

 

where A and B are coefficients given certain body parameters (i.e., m, l). Equation (35) is 

an ellipse function, in which the mechanical energy E is related to the radius of the ellipse 

and, resultantly, its area. Hereto we have shown that the area of the phase portrait during 

swing phase represents the mechanical energy level. This corroborates the proportional 

relations between the mechanic energy and phase portrait area. Since walking at certain 

speed requires the maintenance of certain amount of mechanic energy, it is interesting to 

see if the phase portrait area also correlates with gait speed.  
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Figure 26 Phase Portraits of A Healthy Subject at Different Gait Speeds 

 

Figure 27 Regressed Linear Speed Model by Phase Portrait Area 
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Figure 26 illustrates the relations between phase portrait of the shank segment and the 

gait speed. The darker colored phase portrait with a larger area indicates a faster walking 

speed on the treadmill and, consequently, with higher mechanic energy to maintain 

during each cycle. The metric of phase portrait area is profoundly rooted in physical 

models as described above. Meanwhile, it possesses very good linear relationship with 

gait speed, as shown in Figure 27 (average phase portrait area per treadmill session vs. 

treadmill speed). This property will be explored in Chapter 5 and used for gait speed 

extraction. 

4.2 Poincaré Map for Orbital Stability Assessment 

Poincaré map (also known as first return map) has been used to analyze orbital stability) 

[53], and can be applied to assess variability between gait cycles as well. A Poincaré map 

samples a particular event in every cycle in a cyclic signal. This concept can be illustrated 

as shown in Figure 28. 
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Figure 28 Concept of Poincaré Map 

In gait analysis in particular, gait events occur repetitively in gait cycles. Since the data 

obtained from inertial BSNs is discrete time series, in order to obtain the map, the 

magnitude of a gait signal at that particular event of interest can be sampled as a means of 

assessing the orbital stability of this signal. Therefore, the task become identifying the 

critical gait events in time domain as described in Chapter 3, Section 3.1. As shown in 

Figure 29, take shank angle for example as a gait signal, the mapping plots the shank 

angle at toe-off moment in the previous gait cycle against the shank angle at the current 

toe-off event in the next gait cycle. The more clustered these return points are (red dots in 

Figure 29), the more orbital stability the signal possesses.  

 



69 
 
   

Figure 29 Example of Poincaré Map of A Gait Signal 

4.3 Lyapunov Exponent for Stability Assessment 

Gait stability is something difficult to quantify yet important to clarify. For pseudo-

periodic systems as human movement function, local stability can used to describe how 

the dynamic system responds to “very small perturbations continuously in real time” [54]. 

Lyapunov exponent (LyE) is such a parameter to quantify the local stability.  

To compute LyE for given time series data, the first two steps consist of finding the 

embedding dimension and time delay lag for phase space reconstruction. To find the 

embedding dimension of the time series, a False Nearest Neighbor (FNN) algorithm [55] 

is applied. With this algorithm, the time series of the shank’s angular position is 

identified to have an embedding dimension of 2. The time delay is determined by using 

average mutual information, and a time delay of 10 samples is usually chosen for 

extracting LyE from shank angular velocity signal.  

After the phase space is reconstructed, LyE can be computed using either the W-

algorithm [56] or the R-algorithm [55]. In gait analysis, the R-algorithm is more 

commonly used due to claimed accuracy on short-term data. However, [57] has argued 

that the W-algorithm is more appropriate for assessing local dynamic stability because of 

its sensitivity in estimating LyE. Since the purpose of this paper is separating the before 

and after HVLP gait parameters, higher sensitivity means better separability, thus the W-

algorithm will be used. The equation for computing the largest LyE using the W-

algorithm is shown in Equation (36), 



70 
 
   

!! =
1

!×∆!× !"#!
!! !
! !

!

!!!
 (36)  

wherein !! is the largest LyE in bits/seconds. Δ! is the sampling period, in our case, 

1/128 second.!! is the total number of steps on the fiduciary trajectory. ! is total number 

of replacement steps. !′(!)  and !(!)  are the distances between the vectors at the 

beginning and end of a replacement step, respectively. In general, the W-algorithm tracks 

and quantifies the divergence of the nearest neighbors in the trajectories in the 

reconstructed phase space. First, it selects a fiduciary trajectory with a single nearest 

neighbor being followed and replaced when its separation !′(!)  from the fiduciary 

trajectory becomes large [57]. A new neighbor on the fiduciary trajectory is then selected 

to minimize the length !(!) and the angular separation estimated by directional cosine 

value. This procedure is repeated until the fiduciary trajectory has gone over the entire 

data set. Then the largest LyE is obtained as shown in Equation (36). 

4.4 Summary 

This chapter explored the possibility of applying nonlinear analysis tools for the 

kinematic data obtained from inertial BSNs. Nonlinear features are features capturing 

characteristics of a dynamic system.  Unlike linear features, these features do not possess 

superposition properties, i.e. linearity. As human gait is such a dynamic system that is not 

determined well by linear rules, it is intuitive to characterize such system with chaos 

theory. To gain insight behind the kinematic information, shank phase portraits were 

studied and quantified with gait features that are potentially useful for gait analysis using 
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inertial BSN data. Compared to conventional feature extraction for activity classification 

using inertial BSNs, this approach provides biomechanical insight from a nonlinear 

dynamics perspective. With broadening the scope of feature extraction from inertial 

BSNs, a new set of features can be extracted using nonlinear analysis and may further 

enhance classification accuracy. 
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Chapter 5  
 
Introducing Machine Learning 
Techniques for Feature Extraction! 

Chapter 2 ~ Chapter 4 summarizes the techniques for gait feature extraction within a 

system from inertial BSN data. These techniques are all based on first-principles models, 

which derive models from fundamental physics without statistical learning. Although 

these first-principles models provide the insight, it is also useful to employ machine 

learning techniques to boost up the accuracy, simplify the experiment design and 

generalize the post-processing approach. In this chapter, we explore the possibility of 

adopting machine learning for one gait feature extraction – gait speed – to exemplify that 

information extraction can benefit from combining machine learning techniques and first-

principles modeling. By studying the features that can be used for gait speed estimation, 

machine learning provides a general framework to select feature, and correct systematical 

errors that inevitably remain by solely relying on first-principles modeling.  

                                                
! This chapter is partially adapted from publication [P2] 
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5.1 Advantages of Combining Machine Learning with 

First-Principles Modeling 

In Chapter 3, Section 3.2, a first-principles based model for gait speed extraction is 

described. We have also found that systematical error still exists in the final results with a 

series of correction mechanism such as calibration, mounting calibration and an improved 

double pendulum model. Apparently, other gait speed extraction methods based on first-

principles modeling can still be explored [37][58][59], but none of these methods can 

achieve accurate results without in-depth analysis and modeling, and different correction 

procedures at certain steps of the whole process for minimizing the final errors for the 

following reasons:  

1) Sensing modality of inertial BSN – since its sensing nature is derivative of spatial 

information and the intrinsic senor noise [37], transforming the derivatives to get spatial 

information is challenging and subject to errors. 

2) Generalization of model, because of the individual difference and complexity of 

human gait, individual parameters are usually required (e.g. leg length as in [37] and 

[59]) for first-principles models. Such parameters, not only cause burden for the users in 

the real-world deployment, but also can bring in impactful measurement errors for the 

estimation system.  

In a framework based on first-principles models, different calibration procedures are 

usually applied to minimize these measurement errors along with the systematical errors 

at each step of the workflow. Therefore, it is more appealing to adopt a framework that 
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accounts all such errors through a generalized calibration procedure than adopting the 

first-principles models system for future real-world deployment. Machine learning 

approaches, on the other hand, can account for parameter difference by learning the 

training data without relying on complex gait model, and hence are implemented more in 

studies of gait speed estimation using inertial sensors [60].  

5.2 Feature Identification 

This section explores and identifies features that can be extracted from inertial sensors for 

gait speed estimation. Features that are intuitively related to gait speed are firstly 

presented. Then we use a novel nonlinear feature that is rooted in analytical mechanics. 

All the features extracted and operated on per gait cycle basis. In other words, each data 

point contains features extracted from one gait cycle’s data. 

5.2.1 Linear Features 

Some of the linear features can be identified based on intuition of variables related to gait 

speed. For example, cadence is selected for gait speed estimation for either its 

accessibility (i.e. accelerometer-only sensor platform) or its apparent link to gait speed 

(i.e. it is self-evident that faster pace results in higher gait speed). This information will 

be included in our linear feature set.  

Linear features can also be extracted by generalizing the variables from first-principles 

models. Recall Chapter 2, Section 3.2, we learned the variables involved in the gait speed 

algorithm include the leg length (!!"#), shank length (!!!!"#), and maximum shank angle 
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during the forward swing (!!"#) and backward swing phase (!!"#), as shown in Figure 

19. For a particular individual, the variable will be !!"# and !!"! since body parameter 

does not vary. We also include two of the common statistical measures in our study: 

range of angular velocity and range of angular position per gait cycle for testing the 

algorithm of gait speed estimation. Thus in total, there are five linear features evaluated 

in machine learning algorithm: sine of !!"#, sine of !!"#, time span of a gait cycle, 

range of angular velocity and range of angular position per gait cycle.  

5.2.2 A Nonlinear Feature 

In Chapter 4, Section 4.1.3.2, we identified a quantified phase portrait measure – area of 

phase portrait, which possesses good linear relationship with gait speed (see Figure 26 

and Figure 27). Despite the discovered high correlation shown between this feature and 

gait speed regardless of the individual parameters (e.g. shank length and leg length), 

without obtaining a training set of data (i.e. with gait speed ground truth as reference) and 

applying regression or statistic learning method, this feature can not predict gait speed 

alone. Therefore, machine learning method can be very handy for adopting such features 

– which cannot predict based on first-principles model alone – into feature extraction 

framework. 

5.3 Feature Selection 

Feature selection is an important step in machine learning since the accuracy of the model 

generated by machine learning usually depends on the dimension of the feature space, 

where the rule of thumb is ratio of the number of instances N in the training data set over 
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the number of features D – N/D – must be at least ten. In this section, both linear features 

and the nonlinear feature will be used and selected by using machine learning algorithm. 

5.3.1 Feature Importance 

We compare both linear and nonlinear features extracted for gait speed estimation in this 

section. First, the correlation between features and gait speed are examined. Feature 

selection algorithm is also used to vote the most important feature. Second, to evaluate 

the performance of the features in regression, intra-subject cross-validation is used to 

compare accuracy and training size. The results are shown as follows. 

 

Figure 30 Correlation Coefficients between Different Features and Gait Speed. 
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Figure 30 shows that the phase portrait area has become the most correlated feature with 

gait speed in comparison to other linear features. Across all the experiments, phase 

portrait area provides an average correlation coefficient of 0.9799, which is 0.04 point 

higher than the linear feature with second highest correlation among all features.  

5.3.2 Automatic Feature Selection  

To further explore the automation possibility of adopting machine learning framework, 

automatic feature selection algorithm such as ReliefF [61] and LASSO [62] are applied to 

select the most predictable features. Both algorithms have ranked the nonlinear feature as 

the most important feature for predicting gait speed, which conforms to the highest 

correlation finding, and demonstrates the importance of extracting the predictable 

features via first-principles modeling.  

5.4 Evaluation 

Knowing that the nonlinear feature provides the highest correlation with gait speed, we 

feed the features into several machine learning algorithm to test their performance in 

regression. Learning algorithms including Naïve Bayesian (Bayes) [63], Random Forest 

(Bagged Tree) [64], Boosted Tree [65], Multivariate Adaptive Spline Fitting (MARS) 

[66], Multi-linear Regression (MLR) [67], and K-Nearest Neighbors (KNN) [68] are used 

to compare feature performance. All the learning algorithms are using default parameters 

from the Statistics Toolbox in Matlab®. 
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5.4.1 Comparison Based on Machine Learning 

Intra-subject validation is applied to simulate the scenario where an individual user is 

required to conduct a pre-use data collection after system deployment. In the process of 

the ‘holdout’ validation [69], a certain amount of data is left out for the training set (pre-

use data collection stage after deployment), and the rest is used as testing set (system in 

use after deployment). To find out how much training data is required in order to produce 

accurate results, training set percentage is set ranging from 10%~90% of the entire data at 

10% interval (equivalently around 0.5 minute). The results are shown from Figure 31 to 

Figure 33. 

 

Figure 31 Intra-subject Validation with Linear Features 

Comparing Figure 31 and Figure 32, both linear features and the nonlinear feature have 

provided good accuracy for intra-subject learning. We also find that using the nonlinear 
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feature can achieve similar accuracy as using the combination of linear features. Plus, 

with less training data (~10%), the nonlinear feature alone can estimate the gait speed as 

accurately as the linear feature combinations.  

Figure 33 further evaluates the feature performance with linear regression (commonly 

used for its simplicity) as the learning method. The results show that the nonlinear feature 

alone achieves an RMSE of 0.189 m/s, surpassing using all linear features together (with 

an RMSE of 0.024 m/s). This feature alone also provides more interpretable results 

(rooted in fundamental mechanics) in comparison to combined linear features. Moreover, 

adding the nonlinear feature to the linear feature set will increase the accuracy by 25% 

than using linear features together. 

 

Figure 32 Intra-subject Validation with One Nonlinear Feature 



80 
 
   

 

Figure 33 Inter-subject Validation with Linear Regression  

5.4.2 Diagnostics of the Linear Regression Model 

Multiple linear regression model is generate under 4 assumptions: 1) The residual values 

are independent 2) The predicted values can be expressed as a linear function of the 

variables 3) variation of observations around the regression line (the residuals) is constant, 

which is also know as the homoscedasticity assumption 4) The residual values are 

normally distributed. To check these assumptions, the diagnostics of the residual errors 

can be plotted for examination. To check assumption 1) and assumption 2), the residual 

errors can be plotted against the predicted values to observe whether pattern exists on this 

plot. To check assumption 3), the equal variance can be observed also on the plot of the 

residual errors against the predicted values. To check assumption 4), the histogram of the 

residual errors and the quantile-to-quantile (Q-Q) plot of the residuals against a 

theoretical normal distribution can be plotted to observe whether the quantile of the 
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residual errors follow a linear diagonal line on the plot. The results of the examination on 

the linear regression model generated from 30% of the training data and evaluated on the 

left 70% data are shown from Figure 34 ~ Figure 36. 

 

Figure 34 Diagnostic Plot of Linear Regression with Linear Features 

Figure 34 shows the diagnostics of the linear regression model using the linear features. 

The histogram plot and the Q-Q plot of the residuals show that the distribution of the 

residuals are almost normal, but contains outliers at the tail of the distribution. Because 

that ground truth speed at one treadmill session is a constant number while the estimated 
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speed is continuous, the points on the Residual vs. Estimated plot are slightly tilted, and 

this tilt disappears if a white noise is added to the ground truth speed. Nevertheless, the 

relative flat of on the Residual vs. Estimated plot shows the variance of the residual errors 

are equal. 

 

Figure 35 Diagnostic Plot of Linear Regression with One Nonlinear Feature 

Figure 35 shows the diagnostics of the linear regression model using the linear features. 

The histogram plot and the Q-Q plot of the residuals show that the distribution of the 
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residuals follows normal distribution with few outliers than the linear regression model 

using linear features. The Residuals vs. Estimated plot also shows that the variance of the 

linear model satisfies the assumption 3). 

 

Figure 36 Diagnostic Plot of Linear Regression with All Features 

Figure 36 shows the diagnostics of the linear regression model using the linear features. 

Again, the histogram plot and the Q-Q plot of the residuals show that the distribution of 
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the residuals is almost normal, but contains outliers at the tail of the distribution as the 

model of using all features.  

From the Q-Q plots of all three models, the linear regression model using nonlinear 

feature has shown the least number of outliers on the diagonal line, indicating the residual 

errors from this model can be better approximated as normal distribution. Also, the range 

of the residual errors shown on the Residual vs. Estimated plots, indicates the nonlinear 

feature generated model produces few residual errors and outliers in prediction. 

5.4.3 Discussion 

The insight provided in Chapter 4, Section 4.2 shows that the phase portrait area 

intuitively correlates with both angular position information and angular velocity 

information in a nonlinear mapping. In comparison, existing linear feature extraction 

(e.g., range of angular velocity, range of angular position, sinusoidal function of 

maximum angular position during each gait cycle) observes the amplitude of angular 

position and angular velocity sequentially, providing only information of the extremes of 

amplitude per gait cycle instead of the whole picture of a gait cycle. Such method does 

not reveal the mechanics behind the motion range, and rather assesses the two 

interdependent variables -- angular velocity and angular position -- isolatedly. In contrast, 

the phase portrait area takes into account of the sample-by-sample signal amplitude level 

that is bounded by mechanic fundamentals, and is proven to be better correlated with gait 

speed. This correlation advantage of the nonlinear feature, ultimately, boosts the 

estimation accuracy for the regression algorithm.  
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5.5 Summary 

This chapter explores the possibility of combining first-principles modeling and machine 

learning for gait feature extraction from inertial BSN data. With an exemplar gait feature 

– gait speed – a spatial information related parameter whose accuracy can subject to 

systematical error after first-principles modeling, this chapter shows the advantage of the 

combining – insight provided by first-principles modeling to discover high correlated 

factor for prediction, and the general framework provided by machine learning – by 

exploiting the correlation, selecting the most correlated features and correcting 

systematical errors remaining after first-principles modeling. This hybrid approach 

inspires future exploration in feature extraction from inertial BSN data. 
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Chapter 6  
 
Case Studies in Medical Research! 

Previous chapters have detailed the theories and techniques for gait feature extraction 

from inertial BSN data, laying the groundwork for searching for such techniques within a 

system and applying them in the real world medical applications. To test these techniques 

against the real world challenges, this key chapter demonstrates the feasibility of BSN 

enabled technology through a series of case studies: assessing efficacy of ankle-foot 

orthoses for children with cerebral palsy, aiding diagnosis of normal pressure 

hydrocephalus, and enhancing gait assessment for early multiple sclerosis. These three 

examples covers the areas in medicine that could benefit where high precision gait 

analysis is much needed in the longitudinal scale and natural environment. With real 

patient data collected from medical pilot studies and clinic setting, gait features are 

identified and extracted, demonstrating inertial BSNs’ potential for propelling gait 

analysis involved medical research.  

                                                
! This chapter is partially adapted from publication [P8][P7] and [P1] 
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6.1 Orthoses for Children with Cerebral Palsy 

6.1.1 Medical Background 

Cerebral Palsy (CP) (Figure 37) is a neuromuscular disorder characterized by an injury to 

the immature central nervous system (CNS). There is a wide spectrum of clinical 

manifestations in CP, including spasticity, abnormal reflex patterns, weakness, retention 

of primitive reflexes, and an abnormal increase in muscle tone. Based on the severity and 

location of the CNS lesion, children range from being wheelchair-bound to community 

ambulators. In addition, many patients develop muscle contractures during growth, 

resulting in joint stiffness as well as angular and rotational bony deformities. As a result, 

these children develop atypical gait patterns.  

 

Figure 37 Children with CP in (A) Equinus and (B) Crouch Gait Deformity. 

While there is a great deal of heterogeneity in children with CP, two gait patterns are 

most commonly seen: equinus and crouch gaits. An equinus gait is characterized by the 
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individual’s ankle being plantar flexed (on one’s toes) at floor contact (Figure 37 A). In a 

crouch gait, the knee is excessively flexed in both swing and stance (Figure 37 B).  

 

Figure 38 Ankle Foot Orthosis (AFO) 

AFOs (Figure 38) are often prescribed for both gaits to aid in their walking. The large 

number of individuals with CP that use AFOs highlights the magnitude of the problem. 

United Cerebral Palsy reports that an estimated 764,000 people in the United States have 

one or more symptoms of CP, and more than 50% of these individuals are prescribed 

orthoses [70][71]. When a child has an equinus gait, the AFO promotes heel contact by 

maintaining the ankle in a more neutral position. Having the plantar flexors of the ankle 

held stretch by the AFO may help also prevent muscle contractures by putting muscles in 

a lengthened position, and preventing deformity by controlling the position of the 

foot/ankle. If a child has a crouch gait, an AFO can reduce knee flexion in stance. In this 

case, the AFO provides a moment at the ankle that resists ankle dorsiflexion in stance. 
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These findings are illustrated in Figure 39 and Figure 40, which show data collected from 

the Vicon® system on one of the pilot study’s CP children. In Figure 39, the ankle joint 

angle range is greatly limited by the AFO. In Figure 40, the AFO helps to promote a heel 

strike, as the gait without the AFO just has a ‘dip’ in the shank angular velocity after 

terminal swing, suggesting a flat-foot stomping on the ground or a forefoot landing. 

 

Figure 39 Ankle Joint Angle of CP Gait without and with AFO – the AFO Limits 
the Range of Ankle Motion 
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Figure 40 Shank Angular Velocity of CP gait without and with AFO – the AFO 
Helps to Promote a Heel Strike 

In general, the prescription of AFOs usually has several treatment goals, including: (1) 

facilitating walking by controlling the position of the ankle and providing a base of 

support, (2) preventing contractures by putting muscles in a lengthened position and 

providing variable ranges of motion, and (3) preventing deformity by controlling the 

position of the foot/ankle. Although laboratory tests – usually gait analysis of patients 

with CP wearing AFOs walking in clinics or camera-instrumented motion capture 

laboratories – provide some insight into the first goal, results in naturalistic settings are 

lacking and may be significantly different. Moreover, without more continuous, 

longitudinal measurement to help understand the long-term effects of AFO use (i.e. how 
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much it improves gait and how much it is worn in daily life in a longitudinal scale), the 

efficacy of AFOs in achieving the second and third goals cannot be determined. To better 

understand how AFOs perform in aiding individuals with walking disabilities and to 

further enhance their efficacy, longitudinal, continuous, non-invasive measurement is 

necessary.  

6.1.2 Hypothesis 

Inertial body sensor networks (BSNs) represent a promising platform for addressing the 

need mention in 6.1.1. [72], [73] and [74] are just a few of the papers that have 

demonstrated the potential of using BSNs for assessing gait parameters including knee 

and ankle joint angles. With MEMS sensor technology, ultra-low power processing and 

wireless communication, and high flash memory densities to reduce transmissions, the 

form factor and battery life of these sensor nodes minimizes invasiveness and enhances 

ease of use.  

It is generally believed that a crucial factor in the development of contractures is the 

angular position of a joint as a function of time. The measurement of joint angle also 

allows determination of dorsi-/plantar-flexion mode (Figure 41), range of ankle motion, 

and ankle joint angular velocity. Therefore, continuous monitoring of the ankle joint 

angle for children with CP wearing AFOs is the ideal method to evaluate the 

effectiveness of the AFOs to prevent contractures. This information obtained would 

affect both the prescription of AFOs to address contractures as well as the construction of 

the AFOs themselves (e.g., the joint angles it maintains in the ankle).  
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Figure 41 Dorsiflexion and Plantarflexion 

However, while these sensors provide rich information on the kinematics of human 

motion, the accurate spatial information required for many gait parameters is challenging 

to obtain, especially for pathological gait. Intrinsic sensor noise causes integration drift, 

the uncertainty of mounting nodes on human bodies causes a systematic bias, and 

movement in multiple planes causes computational errors, all of which hinder the 

acquisition of accurate joint angles and other spatial features. These challenges must be 

addressed first in order to achieve accuracy that suffices the application requirement. 

6.1.3 Experiment Setup 

6.1.3.1 Test on a Healthy Subject 

Since walking for children with CP is a challenging task, we could not afford fumbling 

through a data collection with children with CP. To make sure that the experiment is well 

designed and the hypothesis is valid, we recruited a healthy subject to simulate the 

experiment for a pilot study. This healthy subject had TEMPO devices mounted on his 
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shanks on the AFOs with mounting tape, and tightened on the shoes (forefoot) with 

elastic Velcro® straps, as shown in Figure 42.  

 

Figure 42 Healthy Subject Wearing AFO for Experiment 

First, the subject was asked to stand still on the treadmill for 10 seconds and then to 

swing his legs as a signature motion in the beginning for the synchronization between 

two systems. Next, the subject was asked to walk normally and to simulate crouch gait 

and equinus gait on the treadmill at a speed of 1.6 km/h. Each of the walking patterns was 

conducted for one minute. In the second set, the same subject was fitted with non-

articulated AFOs. The subject repeated the same procedure as the first set of experiments, 

conducting each of the walking trials on the treadmill for one minute. All of the 

kinematic data was collected and saved in a computer located in the gait lab and post-

processed in Matlab®. 

The ankle joint angles obtained from these experiments are plotted in Figure 43 ~ Figure 

45, together with the validation from Vicon®. The ankle angle calculated by TEMPO 
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system has an average RMSE of 2.05 degrees as compared to Vicon®. Since the error is 

within the range of the error margin of the reference system (about 3 degrees), it is more 

important to focus on whether or not the computed ankle joint angle can be interpreted 

with similar information about CP gait as the reference system. For example, the range of 

the ankle angle and the time percentage of ankle spent in dorsi-/plantar-flexion are 

interesting parameters to be derived from ankle joint angle. 

 

Figure 43 Ankle Joint Angle of Normal Gait  
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Figure 44 Ankle Joint Angle of Simulated Crouch Gait 

 

Figure 45 Ankle Joint Angle of Simulated Equinus Gait 
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One of the major errors comes from the difference in foot models between the inertial 

sensor system and the optical capture system. The foot angle computed by the inertial 

sensor system has the most discrepancy during the stance phase after the heel-strike. The 

reference system records a continuous increase of foot angle as the foot is pushing down 

on the ground; however, the inertial system records a foot signal decreasing as if the foot 

is lifting up. Because the motion during the stance phase does not affect the range of 

ankle motion nearly as much as the motion during the swing phase, this error does not 

greatly affect the ankle motion analysis for this application. 

Observations from the three sets of data from the comparison study on the healthy subject 

illustrate the impact of AFO on ankle joint angle during a short period. As stated in the 

previous medical research, AFOs tend to limit ankle motion range, especially during 

plantar-flexion. For the simulated crouch gait, the AFO eliminates some of the excessive 

dorsiflexion but does not at all help to generate plantar-flexion. For the simulated equinus 

gait, the AFO decreases the excessive plantar-flexion and increases the dorsiflexion to a 

normal level.  

6.1.3.2 Experiment in Children with CP 

Having established the methodology through initial experiments on healthy subject, we 

apply the approach to children with CP as part of a pilot project to collect data and extract 

ankle joint angle in the Vicon® instrumented lab. Data has been collected on four CP 

subjects wearing AFOs. These subjects walked on the ground within the range of the 

Vicon® cameras for several trials (about 5 meters each trial). Subject consent and assent 
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was approved by the Institutional Review Board (IRB) at the University of Virginia and 

obtained for all subjects. 

 

Figure 46 Children with CP Instrumented with Inertial BSN Nodes for Experiment 

Some walking aid devices (walkers) block the line-of-sight of optical motion capture 

system, challenging the validation system to provide continuous monitoring. Mounting 

calibration can also be challenging since the required knowledge (initial sement angle) is 
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difficult to obtain from CP subjects with crouch gait as they cannot stand straight as a 

healthy subject can.  

Therefore,with the assistance from the research staff, the subjects’ shanks were held 

straight for 5 seconds in order to proceed with the mounting calibration. The initial swing 

motion for synchronization between the Vicon® system and TEMPO system was also 

avoided since it was almost impossible for the CP subject. Instead, the finer offline 

synchronization is done by using the first shank motion of the walking trial and aligning 

shank and foot angle signals and foot angle signals from TEMPO with the validation 

system. 

6.1.4 Ankle Joint Angle Extraction 

Ankle joint angles versus time for the four CP subjects are plotted in Figure 47. With an 

average RMSE of 2.41 degrees, it is evident that the TEMPO inertial BSN system can 

track the ankle joint angle in time for CP subjects, showing the potential for longitudinal 

study. 
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Figure 47 Ankle Joint Angle of Children with CP Wearing AFO 

6.1.5 Other Gait Parameters for Assessing Ankle Foot Orthosis 

Other established parameters for CP gait assessment are also extracted on a per gait cycle 

basis. While a detailed time series of ankle joint angle could indicate the pathologies in 

certain gait patterns, features from the time series can provide the first impression in AFO 

efficacy in daily use and effectively reduce data to be stored. For example, cadence 

(steps/min) is a parameter of interest and can be considered as temporal information, 
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which can be obtained accurately and precisely at the sampling rate no less than 120Hz 

by recognizing gait cycle patterns as detailed in Chapter 3.  

6.1.5.1 Ankle Angle Range 

Ankle motion range and percentage of dorsi-/plantar-flexion is another parameter of 

potential interest. The ankle motion range is the difference between the maximum ankle 

joint angle and the minimum ankle joint angle in one gait cycle. It can be obtained after 

extracting ankle joint angle and segmenting gait cycles. This parameter can also indicate 

the percentage of ankle motion that is in dorsiflexion mode (ankle joint angle > 0) or 

plantarflexion mode (ankle joint angle < 0) per gait cycle. In future work, features such as 

ankle joint angle range and percentage in dorsi-/plantar-flexion are necessary for data 

reduction in the longitudinal data analysis.  

 

Figure 48 Average Ankle Angle Range per gait cycle of 4 CP subjects with AFO 
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6.1.5.2 Cadence 

Cadence (steps/min) is another parameter of interest and can be considered as temporal 

information. It can be obtained accurately and precisely at the sampling rate of 120Hz by 

recognizing gait cycle patterns. With an AFO, CP subject 1 shows an increment in 

cadence of 82.8/min comparing to 74.4/min without AFO. Similar results (i.e., increased 

cadence when wearing AFOs) were also found in the simulated CP gait. 

6.1.5.3 Gait Complexity  

Figure 49 and Figure 50 show the shank phase portrait difference between a healthy 

subject and a CP subject. Comparing to the phase portrait of the healthy subject, the 

phase portrait of the CP subject does not converge to an attractor because the irregular 

shank motion cannot form the cyclic pattern as the normal healthy subject. This discovery 

motivates quantification of gait complexity for assessing the efficacy of AFOs.  
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Figure 49 Health Subject Shank Phase Portrait without AFO 

 

Figure 50 Shank Phase Portrait of CP Subject without AFO 
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Gait complexity parameter can be extracted based on the approach detailed in [51]. It is 

gauged by number of elliptical Fourier curves needed to approximate a phase portrait. 

The more elliptical Fourier curves are needed to approximate a phase portrait of a gait 

signal, the more complex the gait signal is. By applying the gait complexity parameter, 

we obtain the quantification of gait complexity as shown in Figure 51. 

 

Figure 51 Gait Complexity Assessment of CP Gait 
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6.1.6 Discussion 

In summary, in addition to providing validation of the methodology presented in Section 

6.1.4, the gait parameters analysis above provides insight into how AFOs affect ankle 

motion. For example, Figure 44 and Figure 45 reinforce the general conclusion drawn 

from ankle joint angle signal that the AFO is helpful in limiting plantarflexion. However, 

for the CP subjects in crouch gait, AFOs are not designed to limit the excessive 

dorsiflexion during stance.  

The different gait pathologies from the pilot study have shown the necessity of specific 

AFO designs and tailoring for each individual’s pathological CP gait. The results 

achieved in this case study suggest that our methodology can be successfully applied for 

this purpose and be effective across a variety of gaits pathologies. The ability to collect 

longitudinal data will enhance our understanding of the effects of AFOs and their ability 

to improve the gait of children with CP in real life situations. In addition, it will allow us 

to evaluate the ability of these devices to identify if and how AFOs can prevent 

contractures at the ankle. 

6.2 Aiding Diagnosis of Normal Pressure 

Hydrocephalus  

6.2.1 Medical Background  

Normal Pressure Hydrocephalus (NPH) is a neurological condition caused by abnormal 

accumulation of cerebrospinal fluid (CSF) around the brain [75]. Although NPH can 
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occur in any age, it is normally observed in the aging group. According to recent 

population-based studies, the prevalence of NPH to be about 0.5% in those over 65 years 

old, with an incidence of about 5.5 patients per 100,000 of people per year [76]. The 

symptoms of NPH are usually described as a classic triad of gait disturbance, dementia or 

mental decline, and urinary incontinence [75], with debilitating effects on patients’ and 

families’ quality of life. However, due to the similarities of these symptoms to many 

aging disorders, such as Alzheimer’s disease and other forms of dementia, and individual 

variability of the symptom expression, the differential diagnosis is challenging. In 

comparison to other forms of dementia, NPH is reversible after proper medical 

intervention and may significantly improve patients’ and caregiver’s quality of life. If 

diagnosed successfully as NPH, patients will be treated with an invasive, long-term 

intervention – the ventriculo-peritoneal (VP) cerebral shunt to drain excess CSF to the 

abdomen where it is absorbed. This shunt surgery does however present great risks, in 

that it may cause hematoma, cerebral edema, crushed brain tissue and herniation. 

Therefore, the accuracy of NPH diagnosis is critical.  

6.2.2 Hypothesis  

To diagnose NPH, a high volume lumbar puncture (HVLP) is performed to remove 

excess fluid from a suspected NPH patient followed by a clinical evaluation of the 

cognitive and functional response (Figure 52) [75]. Medical literature has suggested that 

improvement in gait pre- to post-HVLP is often a good functional marker for diagnosis in 

the decision to proceed with shunt surgery [75]. However, in current clinics, visual 

observation is still the dominant form of assessment for gait performance; thus, only 
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simple gait features such as walking speed (based on time to walk 10m) and average 

stride length/time (based on the number of steps to walk 10m) are used. The low 

resolution and precision of such features may hinder observing separability in gait 

performance pre- and post HVLP. 

 

Figure 52 Differential Diagnosis of NPH in Clinics 

Some clinics have adopted advanced optical motion capture systems for higher precision 

gait analysis. However, that not only requires a dedicated laboratory with expert 

operation but also involves a cumbersome setup procedure that makes it impractical for 

use on impaired, fatigued patients who are already undergoing significantly invasive 

procedures throughout the day [77][78]. This is especially problematic given that patients 

have variable HVLP response times, thus longer continuous gait monitoring is necessary 
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to provide high confidence NPH diagnosis. Therefore, measurement tools that can 

provide rich, high precision gait parameters with the longitudinal monitoring potential are 

impactful to the diagnosis. 

Inertial BSNs may be the promising platform for addressing this need. The rich 

information provided by 6+ degrees of freedom motion capture systems has enabled 

many medical studies and clinical applications [60][79][80][81]. However, in order to 

explore gait features that maximize separability for NPH, as well as other differential 

diagnoses, several challenges must be overcome. First, gait events need to be accurately 

detected in order to extract the temporal features from the noisy inertial sensor data. 

Second, while inter-subject gait features may show great separability, the intra-subject 

gait difference before and after HVLP may be significantly subtler. Third, the variance in 

the collected data could also be reflecting the noise in neuromuscular control due to the 

different times of the day, environments, energy levels, or even moods of the patient. In 

other words, one could naturally (voluntarily or otherwise) change certain gait parameters 

instead of responding to HVLP. Fourth, new quantitative metrics must be established to 

assess certain gait characteristics that were assessed by visual observation previously. 

To address these challenges and to explore the feasibility of extracting and leveraging 

advanced BSN-enabled gait features for enhanced separability in NPH diagnosis, a pilot 

study was performed on six suspected NPH patients with BSN data collection added to 

the gait assessment protocols before and after HVLP. To capture intra-personal NPH gait 

symptoms, methods for personalized signal processing – looking for changes in an 

individual’s gait pre- to post-HVLP rather than extracting absolute measures – are 
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designed. Then gait features were extracted from inertial BSNs and compared before and 

after HVLP in order to evaluate the gait improvement and to identify gait features 

providing separability for NPH diagnosis.  

6.2.3 Experiment Setup 

Data was collected on six suspected NPH patients pre- and post-HVLP. Subject consent 

and assent was approved by the University of Virginia’s IRB and obtained for all 

patients. Existing methods for cognitive and functional assessment were used, but 

TEMPO data collection was added to the 10-meter walk. TEMPO nodes were placed on 

both wrists, both shanks and the waist, as shown in Figure 53. The inertial sensor data 

was streamed via Bluetooth® to a portable laptop carried by a technician following the 

patients. All data collected was post-processed and analyzed in Matlab®. 

 

Figure 53 Suspected NPH Subjects Mounted with TEMPO Inertial BSN Nodes 
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A neurosurgeon inspected the suspected patients after their cognitive and functional 

assessments were completed pre- and post-HVLP, and decisions were made about 

prescribing the VP shunt or ruling out NPH. Due to the risk of missing possible NPH 

patients whose quality of life could be dramatically improved through a VP shunt, 

neurosurgeons tend to err on the side of shunting borderline cases, which presumably 

results in a low number of false negative diagnoses. (Note: the number of false negatives 

cannot be determined.) However, patient follow-up is necessary to identify any false 

positive diagnoses, which would be apparent from lack of a positive response to the VP 

shunt placement. According to the follow-up information for this study, the four patients 

diagnosed as NPH have regained non-negligible cognitive and functional ability after the 

shunt surgery, confirming the correctness of the diagnosis (i.e., true positives).  

6.2.4 Features Extracted from Clinical Measurement 

Prevailing clinical practice for evaluating ambulation function is still based on subjective 

clinical observation. More objective assessments usually adopt a stopwatch-timed 10-

meter walk with a step count. The setup is easy to deploy in clinics and provides gait 

features such as gait speed and average step length and time. The results from the pilot 

study are shown in Figure 54. 
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Figure 54 Clinical Obtainable Gait Features (a) Gait Speed (b) Step Length and (c) 
Stride Time Fail to Separate the Suspected NPH Group 
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Figure 54 shows that the gait speed, average step length, and average stride time, 

respectively, of six patients (four of whom were later determined to have NPH) pre- and 

post-HVLP based on the timed 10 meter walk. These bar charts reveal that gait speed and 

step length do not always increase and stride time does not always decrease post-HVLP, 

indicating that these parameters do not provide good separability for gait-based NPH 

diagnosis. This finding motivates the exploration of extracting other gait features for 

separating the NPH patients from the non-NPH patients, including features that cannot be 

extracted from visual observation alone. We move on to finding the features from inertial 

BSN data that would have provided that separability by identifying new gait features. 

6.2.5 Features Extracted from Inertial BSNs 

6.2.5.1 Stride Time Standard Deviation 

Stride time variability is sometimes associated with gait stability [82]. Although average 

stride time can be obtained with a stopwatch and step counting, it does not provide 

information about cycle-to-cycle stride time. Greater accuracy, precision, and runtime of 

stride time assessment may be obtained by segmenting gait cycles. In this study, a peak 

detection algorithm is used to find the highest peak in the z-plane (sagittal) gyroscope 

signal (maximum shank angular velocity shown in Figure 6), which identifies the mid-

swing event. To suppress the ripples in the gyroscope signal, a zero-phase, 3rd order, 

Butterworth low-pass filter with an empirically determined cutoff frequency of 3Hz is 

used, preventing the peak detection algorithm from selecting the random peaks due to 

ripples. After the gait cycles are extracted, the standard deviation of stride time is 

computed based upon the stride data obtained. 
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6.2.5.2 Double Stance Time 

[83] has reported significantly reduced average double support time in the NPH group 

after shunt surgery. Detailed in Chapter 3, Section 3.1.3.4, double stance time is the 

duration when both feet are in contact with the ground. It can be counted as time from the 

heel-strike instance of one shank to the toe-off instance of the other shank. With the gait 

event detection methods detailed as in Section xx, the double stance time can be counted. 

6.2.5.3 Lyapunov Exponent 

It is reported in [83] that the gait apraxia in NPH gait usually includes “poor balance, off 

balance, unsteady, wobbly, staggering, difficulty on stairs and curbs” with frequent falls. 

Since all these observations point to the instability of gait, we suspect that reversible 

abnormalities of NPH gait can be characterized by a measure of gait stability – an 

important feature for assessing walking balance and resulting fall risks [53][84]. 

To assess the stability of a dynamical system, nonlinear analysis tools have been adopted 

in biomechanics, such as the Poincaré map [49] and Floquet number [53]. However, it is 

argued in [54] that due to the variance that exists in human motion, orbital stability 

assessment based on the assumption that human motion is strictly periodic is not a good 

measure. Instead, for pseudo-periodic systems as human movement, local stability can be 

used to describe how the dynamic system responds to “very small perturbations 

continuously in real time” [54]. Lyapunov exponent (LyE) is such a parameter to quantify 

the local stability.  



113 
 
   

To do so, first the phase portrait of the gait signal is reconstructed. [85] has demonstrated 

that inertial sensors are valid for such analysis by finding a high correlation (0.98) 

between inertial sensors and optical motion capture systems on the largest LyE. [57], [85] 

and [86] concluded that the inferior body segment is more sensitive to a small 

perturbation than the superior segment, and they found a larger change in the LyE of 

shank angular velocity than the thigh angular velocity. Therefore, for this study, shank 

signal is used to expect higher separability in gait stability assessment than the thigh 

placement. Shown on the top of Figure 55 is a healthy subject’s phase portrait 

reconstructed from shank angular velocity, and on the bottom of Figure 55 are two 

figures of counterparts of NPH subject.  
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Figure 55 Reconstructed Phase Portraits of Healthy and NPH Subjects 

The main difference between the top figure and the bottom two figures is that trajectories 

in the NPH subject’s phase portrait diverge more quickly than that in the healthy 

subject’s phase portrait. This is because the healthy subject’s gait is more stable and it 

can form a more regular closed curve. Now we compare the NPH subject’s gait after 

HVLP on the bottom two figures, and it seems less diverging compared to before HVLP. 

Of course, this is not as visually apparent as comparing to the healthy subject. LyE is 

exactly such a quantitative measure assessing the diverging rate between trajectories. The 

larger the LyE, the more quickly the trajectories diverges, and less stable the gait is. Thus 

higher positive LyE indicates lower gait stability. 

After the phase space is reconstructed, LyE can be computed using either the W-

algorithm [56]. To compute LyE for given time series data, the first two steps consist of 

finding the embedding dimension and time delay lag for phase space reconstruction. To 

find the embedding dimension of the time series, a False Nearest Neighbor (FNN) 
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algorithm [55] is applied. With this algorithm, the time series of the shank’s angular 

position is identified to have an embedding dimension of 2. The time delay is determined 

by using average mutual information, and a time delay of 10 samples is used for 

computing LyE in this study. To eliminate the temporal variations in the signal, the shank 

angle of one gait cycle is normalized temporally with a period of 128 samples. The 

details for computing LyE is described in Chapter 4, Section 4.3. 

6.2.6 Results 

The results of the methods described from section 6.2.5.1, 6.2.5.2 and 6.2.5.3 are shown 

from Figure 56 to Figure 58. 

 

Figure 56 Average Stride Time Standard Deviation Change of Suspected NPH 
Patients Pre- to Post-HVLP Does Not Provide NPH Separability 
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Higher stride time standard deviation indicates a higher temporal variability between 

strides, as suggested in [82]. However, the results shown in Figure 56 reveal that stride 

time standard deviation does not provide separability between the NPH and non-NPH 

patients (comparing intra-subject pre- to post-HVLP improvements). 

 

Figure 57 Average Double Stance Time Change of Suspected NPH Patients Pre- to 
Post-HVLP Does Not Provide NPH Separability 

Higher average double stance time typically indicates issues with stability and balance, 

but the results in Figure 57 show that this feature does not always decrease after HVLP 

for the NPH patients and thus does not provide the desired separability for NPH 

diagnosis. 
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Figure 58 LyE Change of Suspected NPH Patients Pre- to Post-HVLP Does Provide 
NPH Separability (NPH patients improved post-HVLP (i.e., lower LyE), while non-

NPH patients deteriorated), Indicating Its Potential to Aid in NPH Diagnosis 

Figure 58 reveals that all diagnosed NPH patients see a significant post-HVLP 

improvement in stability (i.e., a decrease of LyE), and the non-NPH patients see no such 

improvement and even degradation (attributed clinically to fatigue). LyE therefore 

provides the desired NPH separability. To find statistical meaning in this preliminary 

finding, a two way ANOVA analysis was done on each gait feature extracted from above, 

and LyE was the only parameter that found before and after difference in the shunted 

group (p<0.025). This pilot data had an effect size greater than 1, suggesting that a 
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meaningful conclusion can be obtained with about 10 subjects in each group in future 

studies.  

6.2.7 Discussion 

As noted in Section 6.2.4, conventional observation-based gait parameters did not 

provide such separability. Though many researchers have found that gait speed and stride 

length are important parameters for diagnosis of NPH, the change in gait speed did not 

correlate well with the neurosurgeon’s diagnoses. This could be due to two reasons. First, 

the 10-meter stopwatch method for assessing gait speed is not entirely accurate because 

of the reasons introduced in 6.1.2. Second, the patients may need to adjust gait speed to 

increase stability, and usually this adjustment is achieved by slowing down in the elderly, 

as argued in [54] and [87]. Variability assessment of stride time and stride length also do 

not correlate with diagnosis, as is corroborated in [54] and [87]. 

The results in from Figure 58 suggest that stability quantified by LyE is a good gait 

parameter for evaluating the HVLP response. Of all the parameters extracted, LyE 

provides the best separability for classifying those who are highly likely to have NPH and 

those who are not. It is again worth noting that this is clearly a small, underpowered pilot 

study, and this research merely provides promising pilot results within this context. 

However, the analysis is suggestive of the potential of using inertial BSNs for NPH 

diagnosis. Ultimately, a large-scale study is needed to further evaluate these and other 

BSN-enabled gait features for NPH diagnosis and other neuropsychological diseases. 



119 
 
   

6.3 Early Diagnosis of Multiple Sclerosis 

6.3.1 Medical Background 

Multiple Sclerosis (MS) is estimated to affect 1/1000 individuals with an average age of 

onset between 20-40 years translating to 400,000 people affected in the United States. It 

is a chronic autoimmune disorder of the central nervous system (CNS) characterized by 

recurrent episodes of CNS inflammation and progressive neurodegeneration. As many 

other neuromuscular pathologies, collectively, the acute and chronic elements of MS 

disease activity result in accumulation of neurologic impairment and functional disability 

overtime. Walking performance is, therefore, an important outcome to assess severity of 

disease, disease progression, and therapeutic efficacy. More specifically, it is important to 

identify the gait parameters that are uniquely presented in MS subjects with objective and 

precise measurement and analysis. 

6.3.2 Hypothesis 

Current methods for assessing walking performance usually include a 6-minute walk, 

with a stopwatch and tape measure recording gait speed as a primary parameter. 

However, such method lacks of 1) high precision to capture various and subtle gait 

features, failing to record various gait impairment symptoms; 2) portability for 

longitudinal, continuous monitoring, failing to record gait degradation in natural 

environment and real life.  

To better assess gait performance in MS for their diagnosis, we adopt more precise 

measurement tool with longitudinal monitoring capability – inertial BSN – to collect gait 
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data of the MS group and healthy group. To determine whether the MS population and 

healthy population present significant difference in gait performance, various gait 

features will be extracted from the time series data collected by inertial sensors and 

evaluated by statistical methods. 

6.3.3 Experiment Setup  

28 study subjects (classified as mild MS, moderate MS and healthy control) wearing 

inertial sensors on the lower limbs were asked to undergo a fixed six minute walk (6MW) 

in a clinic. Followed by a medical assistant with a distance wheel recording the distance 

they walked during each minute, subjects were asked to walk as fast as possible (without 

running) up and down a hallway in the clinic, pivoting when they reached the end. The 

inertial sensor data was wireless transmitted to and recorded in a laptop placed in the 

hallway for post signal processing and analysis. 

6.3.4 Feature Extraction 

With the inertial data sampled at 128Hz, high precision gait features were extracted 

including: double stance time (DST), single support time (SST), swing time (SWT), gait 

cycle span (CYC) and ratio combinations of these four features (i.e. DST/CYC, 

SST/CYC, SWT/CYC, DST/SST, DST/SWT, and SWT/SST, techniques detailed in 

Chapter 3, Section 3.1.3), and gait complexity measured by elliptical Fourier analysis 

(techniques detailed in Chapter 4, Section 4.1.3.1).  
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6.3.5 Results 

These features were then evaluated by Cohen-D metric for their effect size (ES) between 

the MS group and healthy control group. Among the features extracted, the DST/CYC, 

SST/CYC, DST/SST, and SWT/SST have all presented an ES larger than 0.9, suggesting 

a large statistical and clinical difference between MS group and healthy control groups in 

these extracted gait features.  

 

Figure 59 Effect Size Measured by Cohen’s D of Some Gait Features 

6.3.6 Discussion 

We conducted experiments on MS subjects using wearable inertial sensors and extracted 

gait features from the inertial sensor data. These early results shed light on including gait 
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analysis in MS assessment using wearable inertial sensors. These gait features, which is 

not available in current clinics, can bring tremendous amount of new information in the 

early diagnosis and drug intervention for the MS patients. Ongoing work will further 

examine how feature gait features will inform differential diagnosis in early MS. 

6.4 Summary 

This chapter integrated the techniques presented from Chapter 2~4 and applied them to 

the real-world medical applications. Through a series of case studies: assessing efficacy 

of ankle-foot orthoses for children with cerebral palsy, aiding diagnosis of normal 

pressure hydrocephalus, and enhancing gait assessment for early multiple sclerosis, this 

key chapter has demonstrated the feasibility of adopting inertial BSN for high precision, 

portable gait analysis. Gait features were identified and extracted from real patient data 

collected from medical pilot studies and clinic setting, with statistic analysis to showcase 

the competence of inertial BSNs for propel medical research that requires high precision 

gait analysis, and its promising prospect for longitudinal gait analysis in the natural 

environment.  
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Chapter 7  
 
Conclusion and Future Work 

The emergence of Body Sensor Networks (BSNs) has sprouted the medical applications 

which most benefit from quantitative and objective measurement of human body. Inertial 

BSNs, which naturally captures the motion of human body, has demonstrated great 

potential for this purpose. With advanced techniques in first-principles modeling and 

machine learning, gait analysis using inertial BSNs has shown its own significance with 

multiple applications in medicine. The efforts in minimizing the form factor and power 

consumption of these sensors will further propel the prevalence of applying inertial BSNs 

for gait analysis in medical research and clinical practice.  

7.1 Final Summary 

This dissertation details methods of gait feature extraction from inertial BSNs targeting 

medical applications. With a broad horizon, this work depicts a systematical approach of 

retrieving information from inertial BSN data, as illustrated in Figure 60. Taking two 

possible paths – first-principles modeling and machine learning, the approach has 
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extracted features ranging from the primary product such as kinematic information to 

more insightful ones educed from nonlinear analysis. With the knowledge of extracting 

various gait feature products, hypothesis of gait performance related medical applications 

were designed and tested via either machine learning approach or statistical analysis.  

 

Figure 60 Final Summary of Dissertation 

The road map shown in Figure 60 highlights the guideline of the methodologies running 

through Chapter 2 to Chapter 6. From the primary product – kinematic information from 

Chapter 2, to linear features and nonlinear features from Chapter 3 and Chapter 4, inertial 

BSN data have been cleaned and processed from preliminary physical quantities – noisy 

acceleration and angular velocity – to interpretable time series and quantitative measures, 

including motion range, joint angle, gait temporal features, and nonlinear features such as 

gait complexity and gait stability. With such interpretable information about human gait, 
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statistical analysis can then be conducted for a particular medical application where gait 

assessment plays a key role. Furthermore, the choice of methodology is carefully studied 

by examining the advantage of first-principles modeling and machine learning.  With a 

case example – extracting gait speed – this work has demonstrated how to combine the 

first-principles modeling and machine learning. Furthermore, this hybrid approach has 

also been tentatively applied to medical diagnosis that involves a wide range of gait 

characteristics such as multiple sclerosis. 

7.2 Future Work 

Future work includes extending the current in-lab method to the longitudinal, natural 

environment setting (Figure 61). Whilst the technologies hardware design advances – 

with more flexible, easy to use, power efficient BSN platform coming up – novel signal 

processing techniques will be required to enable new applications. In future, techniques 

that further combine machine learning and first-principles modeling need to be explored. 

This is particularly important for further extending this research to longitudinal studies – 

where the amount of data requires both first-principles knowledge to provide insight and 

machine learning techniques to provide standard automation procedure.  
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Figure 61 Inertial BSN Enabled Mobile Gait Analysis in Natural Environment 

First, in the real-world longitudinal studies, gait features must be identified from the 

walking period automatically without dependence on user logging or annotation. 

Therefore, the real-world deployment usually requires intelligent activity identification. 

The time series of inertial sensor data are segmented into dynamic parts and static parts 

by their time sample indexes, by slicing the data stream, one could find the data set of 
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interest. With machine learning techniques, better activity classification accuracy can be 

achieved for better pinpoint the activities and extracting relevant gait features from. 

Second, adopting gait analysis as a standard procedure in clinics can have a significant 

impact for the diagnosis of symptoms where gait performance is a critical factor. For 

example, in the ongoing project of enhancing gait assessment of multiple sclerosis, 

including high precision gait analysis results obtained by deploying inertial BSNs can 

provide much more rich information than the current gait speed measurement – without 

the cumbersomeness of installing industrial standard optical motion capture system.  

Third, this work can be extended to fall risk assessment via longitudinal monitoring. Falls 

can be detrimental to the elderly who are prone to them. Due to aging, the degradation in 

both sensory and ambulatory function cause instable gait and falls. Previous studies on 

falls are mostly limited to in-lab setting where falls are triggered by experimenters, 

subjecting the data to unnatural and unrealistic. With the capability of wearable sensors, 

it is possible to reexamine falls and monitor fall-related degradation of the elderly in 

natural environment, and alarm those whose gait become less stable and more prone to 

falls to take cautions, and finally prevent dysfunctions or mortality rate caused by falls. 

The next step is to deploy these wearable sensors to in-home and longitudinal monitoring 

for more meaningful experiments. 
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