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With 30% of commercial energy usage being attributed to heating, ventilation, and 

cooling (HVAC) operation and a rise in public perception of air quality and cleanliness due to 

the SARS-CoV-2 pandemic, there exists a dual sided need to produce cleaner air and reduce 

the cost at which clean air is produced. This portfolio seeks to address this problem by 

answering firstly whether it is possible to reduce energy demands from HVAC systems 

through an intelligent, occupancy-based control algorithm, and secondly what barriers to 

adoption does such a control algorithm or other produced technological solutions face once 

developed. 

An occupancy-based control algorithm was chosen as the technical portion of this 

portfolio as it offered an opportunity to leverage in-pace hardware for significant energy usage 

reductions while maintaining indoor air quality (IAQ) during the times in which occupants 

were present. Other considered solutions required significant hardware upgrades or leveraged 

complex software interactions between models and HVAC equipment frequently not 

supported natively; a model which determines simply whether or not HVAC equipment should 

operate at a given time is simple to implement and easily testable, making it a good first step 

in addressing the dual-sided IAQ and energy problem of HVAC systems. Such an algorithm 

was developed using a literature review on best practices for IAQ and tested using data from 

UVA’s LinkLab. Results showed a monthly energy savings of $424/month when tested on a 

single conference room in UVA’s LinkLab, though calculated loss in productivity due to 

degraded IAQ was $522/month. Future work is needed to further refine notions of lost 

productivity to IAQ and develop an accurate enough occupancy model to maintain energy 

reductions while maintaining IAQ. 



To understand how such a developed control algorithm might see use in the real world, 

the STS thesis in this portfolio seeks to understand the factors which influence suboptimal 

adoption of energy efficient technologies generally, with specific effort made to discover 

factors specific to HVAC technologies and contextualize their adoption with an exploration 

into electric vehicles and the adoption of LED lighting. The paper determines that both 

market-based (public good, principal agent) and non-market based (decision making under 

uncertainty, information dissemination, qualitative factors, optimality definitions) failures 

contribute to suboptimal adoption rates of energy efficient technologies generally and HVAC 

technologies. The literature review also discovered geographic dissemination factors 

specifically applicable to HVAC and residential energy efficiency technologies. The paper 

determines that further research is needed to quantify the relative effects of each of these 

barriers and determine which should be addressed with highest priority, though it is 

immediately apparent that the removal or mitigation of any of the addressed barriers would 

significantly increase adoption rates of an efficient HVAC technology. 

The work of this portfolio shows the path forward for an efficient HVAC future. Short-

term technical implementation is achievable, reasonable, and effective given the proposed 

control algorithm in its current state, and with further research into occupancy prediction 

models and IAQ-productivity models significant additional gains and mitigations of negative 

side-effects is imminently achievable. By identifying barriers to adoption, developers of such a 

technology have a well mapped battlefield on which they will be attempting to win the attention 

and dollars of residential, commercial, and other users. Leveraging the effectiveness of the 

solution with an understanding of non-technical factors inhibiting adoption allows for near-term 

action on this pressing problem. 
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Abstract—A robust heating, ventilation, and air conditioning
(HVAC) system is needed to maintain a healthy and comfortable
indoor environment. However, HVAC systems are responsible for
significant energy usage in the United States, and enhancing
current systems and implementing additional HVAC sensing
are primary strategies for reducing energy consumption. This
research developed an HVAC control algorithm (CA) that op-
timized ventilation operations within a conference room in the
University of Virginia Link Lab. Using indoor air quality (IAQ),
occupancy, weather, and HVAC operation data streams, the
CA recommended a decision to ventilate or not ventilate the
conference room every 15 minutes by comparing the cost of
lost occupant productivity due to poor IAQ to the energy cost
of ventilating the space. The ventilation decision with lower
total cost was recommended. This project addressed scheduling
inefficiencies of the current HVAC control system, which operates
at full power throughout the day regardless of occupancy status.
The CA reduced ventilation during unoccupied periods. The CA
was tested over two months of historical data from October
to December 2021 and recommended ventilating the conference
room 15.13 percent of the time. During the same period, the
standard system ventilated the conference room 49 percent
of the time. Energy savings due to decreased operation were
considerable and averaged 424 dollars per month, although these
energy savings came at the cost of lost occupant productivity
totaling 522 dollars per month. Future work on lost occupant
performance will more accurately model the effects of reduced
ventilation. However, annual energy savings of 5,000 dollars from
a single conference room is encouraging, and scaling a similar
CA to consider a set of rooms or an entire floor of a building
could result in substantial energy conservation.

Index Terms—Indoor Air Quality, HVAC Ventilation, Control
Algorithm, Energy Efficiency, Optimization, Simulation

I. INTRODUCTION

The SARS-CoV-2 pandemic has demonstrated the need for
robust ventilation systems, yet implementing these systems
often incurs a significant energy cost: 30% of commercial

energy usage is due to HVAC operation. However, a 2017
report from the U.S. Department of Energy cites “Technology
Enhancements for Current Systems” as one of four high
priority interventions for reducing energy usage, with the top-
ranked technology, “Advanced HVAC Sensors”, projected to
cut current annual commercial energy use by 3.5 percent
[1]. Given that Americans spend 90 percent of their time
indoors, increasing HVAC efficiency while providing high
indoor air quality (IAQ) is paramount [2]. Intensive HVAC
operation maintains high IAQ, but at a significant energy cost.
This research investigates reducing HVAC operation through
automation while maintaining high IAQ.

A. Guidelines for Indoor Air Quality

Carbon dioxide (CO2), volatile organic compounds (VOCs),
and fine particulate matter (PM2.5) are the primary effluents
that adversely affect productivity and health. Carbon dioxide
is a byproduct of metabolic activity and is released into the
air through exhalation. In enclosed spaces, CO2 concentra-
tions can approach levels that cause decreases in productivity
[3]–[5]. The American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE) recommends indoor
CO2 concentrations not exceed 1,300 parts per million (ppm),
yet some offices fail to meet this guidance [6]. VOCs are
emitted from solvents in paint, cosmetics, dry-erase markers,
and cleaning products and are often present indoors at levels
as high as ten times that of outdoor air. High levels of VOCs
can cause short-term irritation to the eyes, nose, and throat, or
more serious long-term effects like liver damage or cancer [7].
The World Health Organization notes that VOC levels become
marginal around 200 parts per billion (ppb) and should not
exceed 600ppb [8]. Particulate matter less than 2.5 microns in
width is classified as PM2.5, which is generated from vehicle



exhaust, burning fossil fuels, cooking, and chemical reactions
in the atmosphere [9]. PM2.5 can be filtered from building
air streams using HEPA (high-efficiency particulate air) or
high MERV (Minimum Efficiency Reporting Value) filters, yet
buildings that lack these technologies can have elevated indoor
PM2.5 levels, leading to negative health effects [2]. The EPA
maintains a 24-hour maximum PM2.5 exposure standard of 12
µg/m3 [10]. Table 1 summarizes acceptable IAQ levels and
their impact on productivity:

TABLE I
IAQ GUIDELINES AND PRODUCTIVITY IMPACT

Species Baseline Moderate High Productivity Effect
CO2
(ppm)

600 [3] 1000
[3], [4]

2500 [4] -21% for every 400
past 600 [3], -44-94%
at 2500 [4]

VOCs
(ppb)

50 [3],
[8]

200 [11] 500 [3] -13% at 100 [3]

PM2.5
(µg/m3)

2 [2] 6 12 [10] Health effects at 24hr
exposure of 12 [10]

B. Energy Considerations

Although increased levels of CO2, VOCs, and PM2.5 nega-
tively impact health and performance, the operational cost of
continuous ventilation is high. HVAC systems account for 30%
of commercial energy consumption, and commercial buildings
consume 35% of the electricity use in the United States [1],
[12]. Eliminating unnecessary ventilation saves energy, aiding
the environment and cutting energy costs. Maintaining high
IAQ while reducing energy costs is challenging but feasible.
The EPA claims “protecting indoor environmental quality in
energy efficiency projects need not hamper the achievement of
energy reduction goals” and the CA developed in this research
is a strong step forward [13].

II. METHODS

A. Testbed

The study was conducted within a conference room in the
Link Lab at the University of Virginia. The Link Lab is
equipped with over 300 sensors for IAQ, room occupancy, and
Bluetooth connectivity to be used in various research projects.
The room is 490 ft2 with an approximate volume of 4575 ft3

and can accommodate up to 20 occupants at a central table.
The Trane HVAC system that serves the conference room is
robust, with efficient components and a MERV-13 filtering
system. The primary users of the conference room are graduate
students and faculty who conduct research in the Link Lab,
and during the period of study (October to December 2021),
University of Virginia COVID-19 guidelines required that
occupants wore masks. IAQ metrics were pulled from the room
using an Awair© brand air quality monitor which provided
CO2, TVOC, PM2.5, and temperature readings. Historical data
from the Link Lab’s Building Automation System was pulled
to determine energy usage of the HVAC during the study.

B. System Overview

The CA recommends behavior of the Variable Air Volume
(VAV) box that ventilates the conference room using a series

of three connected models: a statistical model that forecasts
binary occupancy status (occupied/not-occupied) within the
room, a mathematical model that computes future IAQ values
over the next hour for each ventilation state (on/off), and
calculations to compute the energy use of each ventilation
state. Using findings from [3]-[5], [8], and [10]-[11], the CA
then assigns a cost of lost occupant productivity given the
modeled IAQ values (see section II-D). The total cost of lost
occupant productivity is added to the energy cost of ventilation
over the next hour to determine the total cost of a decision to
ventilate or not ventilate the room. The output of the CA is
a binary decision to ventilate or not ventilate the room for
the next hour based on which state has a predicted lower cost
and is computed at 15-minute intervals. Fig. 1 provides an
overview of the algorithm:

Fig. 1. System Diagram

C. Indoor Air Quality Modeling

Determining future values of IAQ given a decision to
ventilate or not ventilate is a key step towards understanding
the future impact of a current decision on HVAC operation.
Future modeling of each IAQ metric over 15-minute timesteps
was handled separately under the decision of ventilation or
non-ventilation, and in the cases of the conference room being
occupied and unoccupied. Ambient values of CO2 and total
VOCs (TVOCs) were set at 420 ppm and 50 ppb, respectively.
The equations in Table 2 return the future value of each
IAQ metric in 15 minutes (one timestep) given the current
value. Equations for modeling CO2 and TVOCs were based on
information from [14], for PM2.5, [15] was used. In modeling
CO2 and TVOCs, the room air change rate of 2.62 ACH
(air changes per hour) was used. Temperature was modeled
without strict equations.

Modeling accuracy, as displayed in Table 3, was usually
within 5% of the actual IAQ readings.

D. Indoor Air Quality Cost Calculation

To determine the cost of poor IAQ, a method for convert-
ing IAQ levels to a dollar cost of human productivity was
developed. Optimal productivity was valued at $40 per hour
per person, with each IAQ metric of CO2, TVOCs, PM2.5,
and temperature contributing $10 worth of value. Research
from [3]-[5] defined the loss of productivity due to CO2



TABLE II
IAQ MODELING EQUATIONS

State CO2 TVOCs PM2.5 Temp
Ventilation,
Occupied

1.648x -
272.463

1.648x -
32.436

1.05x 1.02x

Ventilation,
Unoccupied

0.519x +
201.834

0.519x +
24.028

0.519x 0.95x

No Ventilation,
Occupied

1.40x 1.40x 1.15x 1.10x

No Ventilation,
Unoccupied

0.95x 0.95x 0.95x x

TABLE III
IAQ MODELING COMPARISON TO ACTUAL IAQ

IAQ Modeling Comparison to Actual IAQ
Timestep CO2 TVOC PM2.5

a Temp
15 min 1.41% -4.46% -0.34 -0.91%
30 min -1.41% -9.03% -0.54 -2.41%
45 min -3.44% -9.72% -0.66 -3.84%
Net -1.15% -7.74% -0.51 -2.39%
aNote: % not calculated for PM2.5 as the median value is 1ppm

concentrations, which was built on a baseline of 600 ppm,
with 20% loss at 1000 ppm, 50% loss at 1500 ppm, and 100%
loss at 3000 ppm. These data were trend-fitted in Microsoft
Excel to develop the following loss function for CO2:

y = −1.02×10−8x3 +4.27×10−5x2 +1.67×10−3x−14.17
(1)

The effect of TVOCs on productivity was defined using [3],
[8], and [11], and a curve was built on a baseline of 200 ppb,
50% loss at 600 ppb, 75% loss at 1000 ppb, and 100% loss at
2000 ppb. These data were similarly trend-fitted and produced
the following loss function for TVOCs:

y = 2.85× 10−8x3 − 1.29× 10−4x2 + 0.213x− 37.798 (2)

PM2.5 influences health more than it influences productivity.
However, due to significant health effects influenced by high
PM2.5 concentrations, PM2.5 was included in the objective
function. Using data from [10] and [16], the loss curve was
built with 0% loss at 2 µg/m3, 25% loss at 6 µg/m3, 50% loss
at 12 µg/m3, and 100% loss at 35 µg/m3. This curve had the
equation:

y = −8.68× 10−2x2 + 6.21x+ 0.213x− 11.06 (3)

Temperature was included in the model due to its effect
on occupant comfort. The loss function for temperature was
based on a “goal zone” between 20 and 22.5 degrees C, with
significant losses mounting below 15.5 degrees C and above
26.8 degrees C. The curve had the following equation:

y = −9.21×10−3x4+7.79×10−1x3−22.69x2+264.32x−960
(4)

In each loss function, the current value of the IAQ metric
of consideration is passed in as the independent variable. The
function returns a “loss factor” at that value of the metric.
Multiplying the value of productivity allotted to that metric
over the next 15-minute timestep by the loss factor returns

the cost of productivity due to the specific metric over the
next 15 minutes. Given that optimal productivity is valued at
$40 per hour, or $10 per 15 minutes, each IAQ metric can
affect a maximum of $2.50 of loss per 15 minutes, given that
value is distributed equally across each metric. Modeled future
IAQ values from section II-C are passed to the productivity
cost generator to predict future costs of lost productivity.
Productivity cost over each timestep is summed to determine
the total cost of productivity across the next hour.

E. HVAC Energy Cost Calculation

To determine the cost of energy for operating the HVAC
system without direct energy metering, the energy cost of
ventilating was divided into four components, with equations
for each component defining the relationship between system
dynamics and energy cost in dollars. The components calcu-
lated are fan energy, heating/cooling energy, dehumidifying
energy, and zone reheat energy.

The general process of conditioning air takes two main
states: cooling and heating. The system enters a cooling
state when outside air is warmer than the desired internal
temperature. When in a cooling state, a mix of outdoor and
indoor resupply air is passed to the chilled water cooler in the
main AHU at the building level. The energy used in cooling
is as follows [17]:

hs = 1.08qdt (5)

where hs is the sensible heat energy used by cooling in
BTU/hr (then converted to kW/hr), q is the volume (cfm) of
air being treated, and dt is the temperature differential (◦F)
before and after cooling. The air is cooled to 55◦F in order
to dehumidify the air using latent heat reduction; however,
because the cooling process also removes moisture from the
air, an additional equation is needed to account for energy
used in dehumidification [18]-[21]:

hl = ρhweqdwkg (6)

where hl is the latent heat energy (kW) used for dehumid-
ification, ρ an assumed constant density of air (kg/m3), q is
the volume (cms) of air being treated, hwe is the latent heat
of vaporization water (kJ/kg), and dwkg is the humidity ratio
difference (kg/kg) before and after dehumidification. Once the
air has been cooled and dehumidified, it is ducted to zones
within the building which can reheat air if necessary. Zone
reheating energy is calculated with (5).

When outside air is cooler than the desired internal temper-
ature setpoint, the system enters a heating state. In this state,
a mix of outdoor and resupply air is heated to approximately
55 ◦F at the AHU heating coil. Dehumidification is not a
concern in the heating state as cold air holds less moisture than
warm air. Air then moves to VAV boxes within the building
for reheating if necessary. AHU heating energy is calculated
with (5).

During operation, return and supply air fans are used to
move air through the HVAC system. The return fan pulls
”used” air from the building to be exhausted or reconditioned,



while the supply air fan pushes newly conditioned air from
the AHU into the building. For each fan, energy consumption
is calculated as follows [22]:

Efan = 0.746P hpV FD3 (7)

where Efan is the current fan energy consumption (kW), Php
is the horsepower rating of the fan in question, and VFD
is the percentage activation of the variable frequency drive
controlling the fan.

For the specific case study of the conference room, con-
sideration was only given to AHU-level energy consumption
and VAV-level reheating of the conference room. In a fully
developed CA, multiple occupancy forecasts and multiple zone
level energy calculations must be made to fully understand
IAQ and energy costs across the entire building, yet this was
out of the scope of this paper.

In order to estimate the energy impact of a decision to
ventilate or not ventilate the conference room, two costs are
calculated, depending on if the CA makes a decision that
matches historical data.

Cost of ventilating: If the historical data used for simulation
was ventilating at a timestep that the CA also determined it
was optimal to ventilate, the cost of ventilation was the actual
operating cost based on equations (5)-(7) using the historical
data of operating parameters.

In the case the CA decided to ventilate at a time without
historical operating parameters, an energy cost must be deter-
mined using estimated operating parameters. The parameters
across all timesteps in which the actual system was ventilating
were averaged and used as parameters in the energy calculation
equations for an estimated cost of operation. In both of the
above cases, actual historical weather data was used.

Cost of not ventilating: Ventilating a room incurs costs at
the VAV and AHU level. In the case the CA determines it
is optimal not to ventilate, the VAV supply air flow is set to
zero. However, the AHU also has a reduced burden in this
case, and as such, the AHU supply air flow is adjusted by
subtracting the historical VAV supply air flow from the AHU
supply. This accounts for costs at both the VAV and AHU
level, allowing the approximation of the effects and energy
savings of ventilation of just the room under consideration.

Total energy cost under ventilation and nonventilation deci-
sions is calculated by summing equations (5)-(7) to calculate
total kilowatt usage, and multiplied by an energy cost of
$0.094 per kilowatt-hour to determine the dollar cost of the
decision.

F. Occupancy Inferential Model and Forecasting

The final component of the CA is occupancy. Provided IAQ
is only a concern in occupied spaces, understanding occupancy
patterns in the room could minimize wasted ventilation. An
existing low-cost motion sensor was used to collect motion
data within the conference room. That data was sampled
at 15-minute intervals to collect binary motion data over
the study period. Day-of-week, hour-of-week, and 15-minute
period features were created and used to train a statistical

model in order to approximate the weekly occupancy patterns
of the space. A random forest classifier was trained and tested
to be a suitable model, achieving 85% accuracy. It should be
noted that the False Negative Rate—the model classifying an
unoccupied period when the space is actually occupied—is
12.4%, which should be minimized to achieve optimal IAQ.
The performance of this model as shown in Fig. 2 appears
reasonable: the model learned the conference room was always
vacant during weekends and early/late hours of the day.

Fig. 2. Occupancy Pattern Learned for Any Given Week in Olsson 211

G. Objective Function Optimization

The CA was backtested on two months of historical data.
The data consists of IAQ and motion readings pulled from
sensors in the conference room, HVAC operation readings
pulled from a UVA Facilities Management database, and
weather data pulled from a weather station within 0.15 miles
of the building. These fields were cleaned, merged, and filtered
for 15 minute intervals using mean resampling and filling any
NA values using forward filling. Historical data for each 15
minute timestep was used to calculate the productivity and
energy costs of each ventilation state. The lower total cost
(productivity + energy) of ventilating or not ventilating serves
as the recommendation for each timestep.

There is one case the algorithm handles differently that
occurs when the actual system is ventilating, but the algorithm
decides to not ventilate: The IAQ values read from the sensors
can no longer be used to model the future IAQ as those
readings are influenced by the actual system ventilating. To
account for this “build up” of the IAQ metrics caused by
the algorithm not ventilating, the modeled IAQ values from
the last timestep are pushed through and used for the future
IAQ modeling. A cascading effect occurs until the productivity
cost exceeds the cost of turning the system on, at which the
algorithm will recommend to ventilate. The actual form of the
optimization equation is as follows:

Objective Function:

Min{P ∗ CEn +
∑
tϵT

[C IAQ(CO2t, V OC t, PM2.5t, T t) ∗Ot]}

(8)
Where P is the HVAC ventilation state {0, 1}, CEn is the

calculated cost of HVAC energy usage over the next hour,
C IAQ(CO2t, V OC t, PM2.5t, T t) is the cost of lost productiv-
ity due to IAQ values at timestep, and Ot is the occupancy at
timestep T = {0, 15, 30, 45}



III. RESULTS

The energy and productivity costs of HVAC operation under
the CA decisions versus actual operation were calculated and
compared. Over the two-month period, the total energy saving
using the CA was $848.14, an average of $424.07/month. This
value reflects the dollars saved from decreasing the ventilation
of the conference room. The algorithm recommended venti-
lation 15.13% of the time, compared to the 49% scheduled
operation of the actual system. As seen in Fig. 3, which
details one week of the CA decision-making, this decrease
in operation is mostly on the weekends when occupancy is
low.

Fig. 3. CA Recommendation vs Actual System Ventilation

While the energy saving is impressive, it came at an
estimated cost of $1,043.98 productivity dollars over the two-
month period, for an average loss of $522/month. Therefore,
the CA incurred a net cost of $97.93/month. However, the CA
achieves energy savings of $5,089/year, and productivity losses
are limited: the average productivity loss under the CA is only
$0.29/hour with a maximum of $8.69/hr, compared to actual
average loss of $0.11/hour with a maximum of $3.20/hour.

IV. DISCUSSION

A. Results Discussion

A primary concern of these results is the high productivity
cost. Maintaining high IAQ is important for health and per-
formance, but the CA was not able to simultaneously improve
IAQ and reduce energy consumption. However, “productivity
cost” is a calculated parameter with less concrete significance
than energy savings. Additionally, HVAC operation is already
adept at maintaining healthy indoor air: IAQ metrics rarely
reach unhealthy levels, and the average hourly productiv-
ity cost is below $1. Under the CA’s ventilation decisions,
occupants lose less than 2.5% of their performance due to
decreased IAQ compared to standard ventilation. Due to the
marginal decrease in IAQ, energy savings are a prime object of
optimization, and the energy savings of the control algorithm
are justified. A comparison of IAQ values under standard
HVAC operation and projected IAQ values under operation of
the CA is shown below in Table 4: the standard HVAC system,
as well as the CA, both maintain healthy IAQ according to

benchmarks defined in Table 1. An important limitation of the
CA that explains the high maximum IAQ values is the limited
IAQ “build up” methodology. As explained in section II-G,
the IAQ modeling equations lead to artificially high readings
because there is no ceiling to the adjustment equation. In
reality, IAQ would approach a steady state during unoccupied
periods. However, the CA offers a valuable foundation that
could be made more accurate with additional occupancy detail.

TABLE IV
AVERAGE AND MAXIMUM IAQ PARAMETERS DURING STUDY PERIOD

UNDER ACTUAL AND CA OPERATION

Actual Operation CA Operationa

Species Average Maximum Average Maximum
CO2 (ppm) 464.1 1053.0 577.8 21,594.0
TVOC (ppb) 180.0 4388.9b 211.0 6926.6
PM2.5 (µg/m3) 1.5 9.0 1.3 12.9
Temperature (◦C) 22.4 24.5 23.47 72.49
a. Note limitations of IAQ buildup. b. Likely result of sensor malfunction.

With additional time and funding, the assumptions and
limitations of this research could be more fully developed.
Core assumptions and significant limitations should be duly
noted, and present exciting opportunities for future research.

B. Assumptions

The energy calculations conflate the cost of ventilating the
VAV box that serves the conference room with the cost of
operation of the AHU, which serves half of the entire building
floor. This simplification causes calculated energy costs to be
much larger than the actual cost to ventilate just the conference
room of study. Assumptions were also made in computing
energy savings. As stated in section II-E, the energy savings
are calculated as the energy saved by only altering VAV
operation. This is accomplished by subtracting the VAV supply
airflow from total supply airflow at the AHU. However, the
HVAC system parameters are complexly linked, and additional
parameters such as VFD setpoints would be affected. These
changes were not accounted for in the energy calculations.
Attaining a direct energy meter reading would simplify this
matter. Assumptions of occupancy must also be addressed.
The “actual room occupancy” was determined using a single
infrared motion sensor: a dedicated occupancy count sensor
would provide a stronger occupancy determination. Finally,
optimal productivity was valued at $40/hour to reflect the
general salaries of the most probable room occupants (un-
dergraduates, graduates, faculty). Changing this value directly
affects the calculated IAQ costs, and more research could
provide a more accurate estimate.

C. Limitations

The main identified limitations of this project are as follows:
the short time period of testing (2 months) cannot account
for seasonal changes present in the system; IAQ is modeled
using generalized mathematical equations rather than a model
specifically trained for this use case and under the given
system dynamics; due to the occupancy prediction method,
this algorithm will only work during the academic school year



as it was not trained on data for winter, spring, and summer
breaks, and is not currently set up to learn new patterns online;
productivity cost is only for a single occupant due to a binary
occupancy forecasting, where a room could have n occupants
and therefore should charge $40*n per hour instead of the
assumed $40 per hour; and, the algorithm can currently only
be run on historical data.

V. CONCLUSION

Optimizing HVAC control is a thorny problem, but given the
limited timeframe of this research, the results are promising.
Producing energy savings of almost $5,000/year for the opti-
mization of a single conference room is remarkable, although
that saving comes at the expense of decreased productivity
due to marginally worse IAQ. Primary takeaways include
the confirmed difficulty of optimizing HVAC, calculating the
energy cost of ventilating a single room solely using energy
equations, and predicting room occupancy. Nevertheless, this
project is a strong proof of concept. Along with addressing
the assumptions and limitations above, other areas of improve-
ment include: implementing a more robust set of energy cost
calculations (i.e. specific cost for each room), extending the
occupancy classification and prediction from a binary value to
an occupancy level (low, medium, high, or specific values),
backtesting on a wider timeframe, developing a real-time
system and addressing security concerns, and generalizing the
algorithm to any room or building.

ACKNOWLEDGMENT

The authors thank Alan Wang and Nabeel Nasir for tech-
nical assistance, the members of the UVA Link Lab for
maintaining the indoor sensor networks and Doug Livingston
from the University of Virginia Facility Management office for
providing data and mentorship.

REFERENCES

[1] W. Goetzler, R. Shandross, J. Young, O. Petrichenko, D.
Ringo, and S. McClive, “Energy savings potential and
RDD opportunities for commercial building HVAC systems,”
U.S. Department of Energy, Washington D.C., USA, 2017.
https://www.energy.gov/sites/prod/files/2017/12/f46/bto-DOE-Comm-
HVAC-Report-12-21-17.pdf. [Accessed: Mar. 12, 2022].

[2] J. G. Allen and J. D. Macomber, Healthy Buildings: How Indoor Spaces
Drive Performance and Productivity. Boston, MA: Harvard University
Press, 2020. [E-book]. http://www.jstor.org/stable/j.ctvz0h97h.6

[3] J. G. Allen, P. MacNaughton, U. Satish, S. Santanam, J. Vallarino, J., and
J. D. Spengler, “Associations of cognitive function scores with carbon
dioxide, ventilation, and volatile organic compound exposures in office
workers: A controlled exposure study of green and conventional office
environments,” Environmental Health Perspectives, vol. 124, no. 6, pp.
805-812, 2016. 10.1289/ehp.1510037. [Accessed: Oct. 16, 2021].

[4] U. Satish, M. J. Mendell, K. Shekhar, T. Hotchi, D. Sullivan, S. Streufert,
and W. J. Fisk, “Is CO2 an indoor pollutant? Direct effects of low-to-
moderate CO2 concentrations on human decision-making performance,”
Environmental Health Perspectives, vol. 120, no. 12, pp. 1671-1677,
2012. https://doi.org/10.1289/ehp.1104789. [Accessed: Oct. 9, 2021].

[5] J. G. Cedeño Laurent, P. MacNaughton, E. Jones, A. S. Young, M. Bliss,
S. Flanigan, J. Vallarino, L. J. Chen, X. Cao, and J. G. Allen, “Asso-
ciations between acute exposures to PM2.5 and carbon dioxide indoors
and cognitive function in office workers: A multicountry longitudinal
prospective observational study,” Environmental Research Letters, vol.
16, no. 9, article 094047, 2021. 10.1088/1748-9326/ac1bd8. [Accessed:
Nov. 1, 2021].

[6] American Society of Heating, Refrigerating and Air-Conditioning
Engineers, “Ventilation for acceptable indoor air quality,”
ANSI/ASHRAE Addendum d to NSI/ASHRAE Standard 62.1-2016,
21 Feb. 2018. https://www.ashrae.org/File\%20Library/Technical\
%20Resources/Standards\%20and\%20Guidelines/Standards\
%20Addenda/62.1-2016/62\ 1\ 2016\ d\ 20180302.pdf. [Accessed:
Mar. 29, 2022].

[7] Environmental Protection Agency, “Volatile organic compounds’
impact on indoor air quality,” United States Environmental Protection
Agency, 2021. https://www.epa.gov/indoor-air-quality-iaq/volatile-
organic-compounds-impact-indoor-air-quality. [Accessed: Nov. 23,
2021].

[8] World Health Organization Occupational and Environmental Health
Team, “Guidelines for air quality,” World Health Organization, 2000.
https://apps.who.int/iris/handle/10665/66537. [Accessed: Nov. 7, 2021].

[9] New York State Department of Health, “Fine particles
(PM2.5) questions and answers,” New York State, 2018.
https://www.health.ny.gov/environmental/indoors/air/pmq a.htm.
[Accessed: Nov. 23, 2021].

[10] United States Environmental Protection Agency, “National ambient
air quality standards (NAAQS) for PM,” United States Environmen-
tal Protection Agency, 2020. https://www.epa.gov/pm-pollution/national-
ambient-air-quality-standards-naaqs-pm. [Accessed: Mar. 29, 2022].

[11] D. P. Wyon, “The effects of indoor air quality on performance and pro-
ductivity,” Indoor Air, vol 14, no. 7, pp. 92-101, 2004. 10.1111/j.1600-
0668.2004.00278.x. [Accessed: Oct. 8, 2021].

[12] Office of Energy Efficiency and Renewable Energy, “About the
commercial buildings integration program,” U.S. Department of Energy,
2020. https://www.energy.gov/eere/buildings/about-commercial-
buildings-integration-program#:∼:text=Commercial\%20Building\
%20Basics&text=Commercial\%20buildings\%20consume\%2013.
6\%20quads,all\%20U.S.\%20carbon\%20dioxide\%20emissions.
[Accessed: Apr. 6, 2022].

[13] United States Environmental Protection Agency, “Energy cost
and IAQ performance of ventilation systems and controls –
Executive summary,” EPA Office of Air and Radiation, EPA-
4-2-S-01-001, 2000. https://www.epa.gov/sites/default/files/2015-
01/documents/energy executive summary.pdf. [Accessed: Apr. 3,
2022].

[14] J. Allen, J. Spengler, E. Jones, and J. Cedeño-Laurent, “5-step guide
to checking ventilation rates in classrooms,” Harvard T.H. Chan School
of Public Health, 2020. https://schools.forhealth.org/ventilation-guide/.
[Accessed: Mar. 3, 2022].

[15] N. S. Panji, and M. P. Varnosfaderani, “Indoor airborne transmission of
COVID-19: Studying the impact of building ventilation and portable air
purifying systems using low-cost PM2.5 sensors,” 2021, unpublished.
[Accessed: Apr. 3, 2022].

[16] United States Environmental Protection Agency, “EPA to reexamine
health standards for harmful soot that previous administration left
unchanged,” United States Environmental Protection Agency, 2021.
https://www.epa.gov/newsreleases/epa-reexamine-health-standards-
harmful-soot-previous-administration-left-unchanged. [Accessed: Mar.
29, 2022].

[17] Engineering ToolBox, “Cooling and heating equations,” Engineering
ToolBox, 2004. https://www.engineeringtoolbox.com/cooling-heating-
equations-d 747.html. [Accessed: Mar. 20, 2022].

[18] Engineering ToolBox, “Moist air – Enthalpy,” Engineering ToolBox,
2004. https://www.engineeringtoolbox.com/enthalpy-moist-air-
d 683.html. [Accessed: Mar. 20, 2022].

[19] Engineering ToolBox, “Air-humidity ratio,” Engineering ToolBox, 2004.
https://www.engineeringtoolbox.com/humidity-ratio-air-d 686.html.
[Accessed: Mar. 20, 2022].

[20] Engineering ToolBox, “Mixing of humid air,” Engineering ToolBox,
2004. https://www.engineeringtoolbox.com/mixing-humid-air-
d 694.html. [Accessed: Mar. 20, 2022].

[21] Engineering ToolBox, “Moist air – Cooling and dehumidifying,” En-
gineering ToolBox, 2004. https://www.engineeringtoolbox.com/cooling-
dehumidifying-air-d 695.html. [Accessed: Mar. 20, 2022].

[22] Engineering ToolBox, “Fan affinity laws,” Engineering ToolBox, 2003.
https://www.engineeringtoolbox.com/fan-affinity-laws-d 196.html. [Ac-
cessed: Mar. 20, 2022].



A Review of Barriers to Implementation and Investigation into Suboptimal Adoption of 

Energy Efficient HVAC Technologies 

 

 

 

 

A Research Paper submitted to the Department of Engineering and Society 

 

Presented to the Faculty of the School of Engineering and Applied Science 

University of Virginia • Charlottesville, Virginia 

 

In Partial Fulfillment of the Requirements for the Degree 

Bachelor of Science, School of Engineering 

 

 

Caleb A. Neale 

Spring 2022 

 

 

 

On my honor as a University Student, I have neither given nor received unauthorized aid on this 

assignment as defined by the Honor Guidelines for Thesis-Related Assignments 

 

 

Advisor 

Kent Wayland, Assistant Professor, Department of Engineering and Society 

 



 

1 

Problem Frame 

With the advent of the COVID-19 pandemic causing the world to both think about the 

cleanliness of the air we breathe more, and spend more time inside (even before the pandemic, 

Americans spent, on average, less than two hours outside a day) (Diffey, 2011), technologies like 

HEPA filters, and “Hospital Grade Filtration” have rapidly entered the public consciousness as a 

method by which society can make indoor air safer in a post-pandemic world. When prioritizing 

public health in the short-term, long-term considerations of environmental -- and subsequent 

health -- effects can fall by the wayside. These indoor air quality (IAQ) public health measures 

which aim to make our air cleaner can have the long-term effect of significantly increased air 

pollution due to the increased energy cost associated with constantly filtering, conditioning, 

heating, cooling, and dehumidifying our shared spaces; this healthier air isn’t free. In fact, pre-

pandemic, commercial HVAC operation accounted for a full 30% of US commercial energy 

usage (Goetzler et al., 2017), a percentage only likely to increase as we face an increasingly 

hostile outdoor climate and increasingly stringent filtration demands.  

This dual-sided set of threats amounts to something of a paradox; how can we ensure 

comfortable, livable, and safe indoor spaces when the conditioning of these spaces leads to a less 

livable environment? The key to solving this problem lies in the adoption of HVAC technologies 

which can meet our comfort and public health needs more intelligently and more efficiently. 

Though proposals for, prototypes of, and fully developed systems of smart HVAC systems exist, 

adoption has been anything less than rapid, as shown by an estimated yet-to-be-achieved 

Technical Energy Savings Potential (Quadrillion BTU/yr.) of 0.63 (in commercial applications 

alone), a full 3% of commercial energy consumption (Goetzler et al., 2017). The question then 

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2133.2010.10165.x
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becomes not about the technologies which will enable the achievement of this energy savings 

potential but the incentives, design principles, societal pressures, and circumstances which will 

actually bring about the implementation of said technologies.  

In order to answer this question, this paper will investigate a broad understanding of 

suboptimal adoption of energy efficient technologies, with specific background research given 

the adoption of LED lights and electric vehicles, in an effort to understand the socio-technical 

forces which govern adoption of technologies in the energy efficiency space.  

Introduction 

Despite the potential effectiveness of proposed technologies or those under development, 

without the combination of positive and normative arguments and incentives for the 

implementation of the technologies the practical effects on energy consumption will be limited. 

Different potential use cases require different understanding and presentations of the benefits of 

smart HVAC technologies; for instance, decreased energy costs could appeal to private and 

corporate clients, while a definitive understanding of carbon emission reduction from 

implementation could contribute to governmental management of incentives and policy. 

Contextualization of this problem will explore historical examples of efficient energy 

technologies through an economic lens and seek to enumerate the ways in which government and 

economic incentives align, or don’t, to incentivize adoption of said technologies. 

The past century contains multiple examples of extant technologies with the potential to 

significantly improve on performance of existing solutions being delayed by forces, often 

economic or social, delaying their adoption. LED lights pose a particularly interesting example, 

showing quite clearly the effects of market regulated price incentives on the adoption rate of the 
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technology. The first LED to emit light in the visible spectrum was produced by Nick Holonyak 

in 1962, yet LEDs weren’t widely available until approximately 2002, and even then, at prices 

easily an order of magnitude higher than traditional halogen or fluorescent bulbs. It was not until 

2019, almost a full 60 years after the invention of the technology, that we saw LEDs begin to 

take over other sources of lighting (Di Maria et al., 2009).  

LED lighting simply didn’t see widespread adoption until it became economically 

advantageous for the individual consumer, despite societal and long-term benefits to consuming 

less energy. This can be described as a failure of the market to price in the externality of 

pollution related to energy consumption and the related decision to purchase a lightbulb which 

may reduce the cost of that externality. Considering the relative complexity of HVAC systems 

and a lightbulb, it becomes apparent that a similar market failure is not only likely but is 

currently occurring. Though users of HVAC systems pay for their energy consumption, the 

pricing system for paying for the externality of pollution may not be effectively nor 

progressively priced in. Consider the US income tax system; our system does not tax all earners 

at an equal rate, but instead uses marginal brackets to tax higher earners at a higher rate than 

lower earners. In short, we believe that people who have outsized income and outsized effects on 

the economy should have associated outsized costs, and thus have adopted a progressive taxation 

system. In the case of energy consumption, we’ve adopted the opposite model. Economies of 

scale have dictated that the largest consumers (polluters) of energy pay a lower rate for their 

consumption than even household uses necessary for survival.  

Historically, the US government has taken action against these inconsistencies between 

market dynamics and values not by taxation or price floors, but by funding and incentivizing the 

adoption of technologies which are advantageous to the country as a whole. In recent years and 
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in the energy sector, a prevalent example of this has been electric vehicle (EV) incentives and tax 

breaks. Since 2010, the US federal government has added an incentive of $7,500 to the purchase 

of EVs and plug-in hybrids to combat the relative expense of this emerging technology 

(www.fueleconomy.gov, 2022), showing a recognition of the need to speed up an otherwise 

market driven adoption in order to continue working for the greater good.  

The relevance of this policy and history to HVAC systems lies in the cost associated with 

implementing even software changes to HVAC systems, much like the high upfront costs of 

purchasing an EV. Frequently not connected to the internet and governed by complicated, 

specialized, and/or out of date proprietary software, HVAC management is often a practice 

which requires specialized technicians, engineers, and developers to implement, much less 

design. HVAC hardware upgrades are similarly expensive, with an HVAC system for a 20,000 

square foot office building easily running over $450,000. That is to say, to break even on a 5-

year time horizon, a new system would need to save $90,000 a year in energy costs, an unlikely 

sum given current energy costs.   

The above factors of adoption all contribute to a phenomenon known as the efficiency 

gap, which generally defines the slower than optimal adoption of energy efficient technologies, 

even in cases where net present value (at a market acceptable discount rate) calculation shows 

said adoption to be cost effective (Jaffe and Stavins, 1994). Despite these financial incentives, it 

is understood that adoption of more economical technologies is most commonly a gradual 

process (Jaffe and Stavins, 1994). So, at what rate should we expect these technologies to be 

adopted? What reasons might cause LED lights to be adopted faster or slower than HVAC 

technologies, and how do the rates of adoption for both technologies compare to the optimal or 

expected rate of diffusion? These questions will guide the literature review of this paper.  

http://www.fueleconomy.gov/
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Literature Review 

Before continuing further into the literature, it may first be useful to establish a definition 

of energy efficiency as it relates to HVAC systems, and how that definition may translate to 

other technologies which will be subsequently compared. Generally, energy efficiency can be 

defined as “using less energy to provide an energy service.” (Cleary and Palmer, 2020) 

Specifically for HVAC systems, the energy service in question is not as simple as that of other 

more familiar use cases such as lighting. Consumers are generally familiar with LED light bulbs 

which are able to produce the same amount of light as incandescent light bulbs by using 75 to 80 

percent less electricity (Di Maria et al., 2009); the service provided here is simply light. 

However, in the case of HVAC systems, consider the metric(s) by which the successful 

execution of the service can be defined. Do we consider consistent achievement of a temperature 

setpoint to be success? How about achievement of a setpoint in 100% of occupied instances, as 

opposed to without regard to occupancy? When we expand setpoints to include CO2, CO, 

Particulate Matter (PM), and other pollutants, what standards do we set, how do we set them, and 

what should we be willing to pay to achieve them? Energy efficiency in the HVAC context can 

pursue any one of these objectives with lower energy cost in order to increase the general energy 

efficiency of the system, or even, as is the case of modified control models, create more specific 

objectives for the system based around better understandings of the occupancy of a space or 

redefined understandings of the effects of environmental conditions on occupants.  

When comparing energy efficiency goals and frameworks, this comparative simplicity 

and complexity must be accounted for. To say that problem definition or solving strategies which 

worked for a simple, light producing service could be adapted without modification to the more 

complex case is a likely path to oversimplification and failure to account for important factors. In 
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the same manner, the details of other complex energy efficiency cases can lead to difficulties in 

generalization due to specific assumptions or goals set in one case that are simply not relevant to 

another.  

This literature review will thus seek to generally understand the state of knowledge 

around the adoption rates of efficient energy technologies, then understand which factors in the 

HVAC case may be understood through contextualization with other technologies, leveraging 

HVAC specific research where available and appropriate. 

Generally understanding the factors which influence the sub-optimal adoption of energy 

efficient technologies requires an investigation into market failure and non-market-failure based 

explanations. As a foundation to further analysis, both will be explored briefly here.  

Market failure explanations of suboptimal adoption 

Adoption of energy efficient technologies faces both public good and principal/agent 

market failures.  

In the case of principal/agent market failures, a classic example is that of new 

construction. A home builder will likely be able to cut costs in construction by using less energy 

efficient or cheaper building materials, and since the future cost of energy savings will not be 

seen by the builder, little inherent incentive exists to build with more energy efficient designs. 

Only in the case that some of the future energy saving value can be priced into building and sale 

costs are the incentives of principal and agent aligned, contrary to the current pricing structure of 

new construction. In any case, currently, the builder (principal) faces a different set of incentives 

than the agent, leading to slower than optimal adoption.  
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In the case of public good market failures, information is of key concern. Information 

acts like a public good in that once created it can be used by others at little additional cost, it is 

difficult to prevent its use by others once created, and, in this case, adoption of a technology is 

itself a source of information for others on the effectiveness of this technology. Public goods 

with these characteristics are frequently underprovided for in market-based systems due to a lack 

of compensation of the positive externalities generated. This under provision of information on 

efficient technologies is one explanation for suboptimal adoption rates.  

Non-market failure explanations of suboptimal adoption 

To understand suboptimal adoption outside of the scope of market failures, the literature 

suggests that an investigation into why the observed “suboptimal” adoption may appear optimal 

from the perspective of the decision maker. One explanation is that consumers of energy 

efficient technologies may simply act on the uncertain future return of an irreversible efficiency 

investment with much higher discount rates than the one used to determine optimal adoption 

rates (Hassett and Metcalf, 1993). That is to say, there is no one right answer as to how to deal 

with the uncertainty around future energy savings; it is entirely reasonable to assume that a 

rational, risk averse attitude could devalue uncertain future returns and thus favor other, more 

certain investments. Additional non-market failure factors include the difficulty of pricing in 

adoption costs, such as research, understanding of one’s specific circumstances, and 

determination of reliable suppliers also increase costs of adoption in difficult to quantify ways, 

further contributing to behavior which appears suboptimal to an economic analyst but in reality 

accounts for additional information (Stern, 1987). Qualitative aspects of a technology, outside its 

energy efficiency may also play a role (e.g., not wanting to purchase an electric vehicle so as to 

avoid characterizations about people who drive them). Finally, optimality calculations often use 
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the mean user to understand adoption rates; however, technologies with positive NPV for the 

mean consumer will likely be suboptimal for at least a portion of the population under 

consideration (Jaffe and Stavins, 1991). 

Influences Specific to of HVAC Adoption 

With an established understanding on the state of knowledge around general suboptimal 

adoption of energy efficient technologies, we can now turn to establishing a specific 

understanding of the state of the literature around HVAC adoption.  

Spatial contagion is of particular interest in the residential adoption of efficient HVAC 

technologies; a study published in 2013 showed that if over 85% of one neighborhood adopted a 

new efficient HVAC technology, adoption rates in adjacent neighborhoods doubled from 

baseline adoption rates (Noonan et al., 2013). Related to the aforementioned information-cost 

explanation, it is hypothesized that communication and education via actor networks reduces 

cost of adoption by making information more readily available in the community (Noonan et al., 

2013); however, the aforementioned 2013 study makes a distinction between spatial contagion 

and cost to adoption. This is likely from a perspective which considers cost of adoption to only 

contain explicit costs, or from a less economically minded scholarly approach.  

Outside of cost reduction, spatial contagion may also play a role in adoption of HVAC 

technologies through social means. Shared information, spatial competition, and mimicking play 

a role in incentivizing potential consumers to take the time to investigate options for reducing 

energy consumption, and these forces also show strong spatial diffusion (Abrahamse et al., 

2005). The level of social pressure or information available to you is heavily influenced by the 

actions of surrounding actors.  



 

9 

It is likely that the above effects can be seen for other efficient technologies, but the 

current state of the literature appears to only have evaluated these effects for HVAC specifically 

(Noonan et al., 2013).  

 

Findings and Discussion 

HVAC and General Suboptimal Adoption   

 Having established some understanding of the general theory of suboptimal adoption, a 

discussion of how these factors may affect HVAC adoption is worthwhile. 

 Firstly, principal/agent problems apply strongly in HVAC investments. Consider the case 

of a landlord, commercial or otherwise, deciding to invest in a new HVAC system which has the 

potential to, without loss of generalization, reduce energy consumption by 35% compared to the 

current system. Given the tenant pays the energy bill, what incentive does the landlord have to 

make this investment upgrade? Unless part of the reduced energy costs can be recouped through 

increased rent, there is little to no incentive for a landlord to make such an upgrade. Pricing in 

energy savings to rent may be a difficult task as when a renter makes a decision to occupy a 

space, comparative information on prospective energy costs may be unreliable and difficult to 

obtain for properties under consideration.  

 Information as a public good also affects HVAC adoption. In both commercial and 

residential settings, HVAC maintenance, operation, and installment is generally considered well 

outside the understanding of most users of the technology. As such, acquiring the necessary 

information to even make a financial investment in a new HVAC system is fraught with 
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uncompensated externalities and opportunity costs. Even understanding enough about the state of 

technologies to know that such a journey into information gathering is necessary can be difficult 

to achieve, possibly shedding light into another reason spatial contagion may be particularly 

effective and disseminating HVAC technology.  

 When considering how uncertainty of returns may affect HVAC adoption, commercial 

and residential decision making, while in economic theory may be quite similar, in actuality, 

likely face very different incentives. If it was assumed that the modal homeowner would, in fact, 

select an appropriate discount rate and calculate the NPV of an investment in an HVAC system 

after researching precisely the expected cash flows of such an investment in order to make an 

investment decision then the decision would likely be the same. However, it could be reasonably 

supposed that this would not be the decision-making process of the modal homeowner, leading 

to a decision made under much more uncertainty: uncertainty of cash flow, of true investment 

cost, of discount rate, and of the optimal manner in which such an investment should be made. In 

a commercial setting, where there is often more knowledge and more of an existing framework 

with which these types of decisions are made, the described NPV approach may be more 

reasonable, though given the prevalence of small business run by proprietors without formalized 

business nor analytic knowledge, even this assumption may not hold. As such, using an 

understanding of NPV of various HVAC investments may simply be a method of approaching 

the problem that, while logical and founded in a history of optimal economic decision making, is 

simply disconnected from the reality of the way actual actors make their decision, leading to 

“suboptimal” behavior.  



 

11 

Qualitative Factors 

It is also worth discussing a gap in the current literature on the subject of adoption of 

HVAC technologies; economic incentive may be easy to logically optimize, but what is it that 

actors actually care about in the HVAC investment decisions? Here we return to the idea of what 

the goal of the system is. Much like EVs, it may be easy to show via NPV calculation that 

purchasing an EV is ideal; however, this entirely misses what the product actually does. If NPV 

states buying an EV is optimal, but said EV only has 90 miles of range and does not perform to 

the specification of an internal combustion vehicle, such a comparison is moot. Do similar 

“apples and oranges” comparisons exist in the HVAC space? Are more efficient systems larger, 

louder, less effective, or carry unaccounted for societal implications? It can be assumed that the 

largest factor in making an HVAC investment decision is simply the ability of the system to 

provide comfort for occupants; it is easy to see how, especially in the United States, many would 

find it absolutely unacceptable if the system did not provide the exact required comfort near to 

100% of the time, and any system which offers energy savings at even a small cost of comfort 

would simply never be adopted.  

Furthermore, in a residential context specifically, housing and decisions about it are often 

much more about sentiment than economics. People view their homes and indicative of their 

lives, from both an internal and external signaling perspective. A decision to make a change to an 

integral part of the functioning of one’s home is often as much a factor of the disruption that 

change will cause to the lives of the residents and other modifications which may be needed to 

support the installation of an HVAC system into a home. As an anecdote from my own 

experience, the roof of my childhood home needed to be removed in order to replace an HVAC 

unit when it failed. It will be left to the reader’s imagination to consider the effects of this on a 
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family with three children under the age of 5 and further consider the lack of an economist’s 

ability to account for this in determining optimal adoption rates.  

Conclusion 

 HVAC adoption, like much of the process for understanding and incentivizing energy 

efficient technologies, is complex, suffering from market failures, non-market failure-based 

barriers, difficult to quantify qualitative factors, and complex technological underpinnings. In 

order to properly incentivize adoption of HVAC technologies, an understanding of which of 

these factors might be most cost-effectively addressed should be pursued as a manner of triaging 

obstacles and moving towards faster adoption on the nearest time horizon. This paper has shown 

that many of the obstacles faced by HVAC adoption are not unique and are faced by emergent 

technologies seeking improved energy efficiency generally; specific HVAC challenges revolve 

around qualitative factors in the home and around baseline necessary comfort. Adoption of 

energy efficient HVAC systems will be a necessary part of reducing our impact on the climate 

over the coming year and future research may address the removal or addressing of the defined 

barriers as a starting methodology for taking that necessary step. 
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Introduction

In UVA's LinkLab, as a part of the Living Link Lab Program, there is a significant

amount of environmental, occupancy, and HVAC system operational data available for analysis.

This presents an opportunity for a detailed case study of the performance of an HVAC system

among multiple metrics outside of just temperature and humidity with the intention of improving

HVAC control systems' ability to maintain occupant comfort and health with reduced energy

consumption. Investigation of multiple metrics of occupant comfort, whether a given room even

has occupants which require comfort, various metrics of system operation, and energy

consumption consumption (actual and calculated) has the potential to produce an environmental

model which may aid in the development of an improved policy for the HVAC system control

problem.

Considering HVAC usage accounts for 30% of total commercial building energy

consumption, there is significant environmental and economic incentive to reduce the energy

load of HVAC systems both for regulators and commercial operators. A commissioned report by

the US Dept. of Energy (Goetzler et al. - 2017) cites "Technology Enhancements for Current

Systems" as one of four groups of high priority technology options, with  "Advanced HVAC

Sensors" as the top ranked technology within this category at an estimated Technical Energy

Savings Potential (Quadrillion BTU/yr.) of 0.63, lending particular credence to the idea that



advanced sensing combined with more efficient control could be a significant contributor to

reduced HVAC system burden on energy resources.

In order to pursue results in this identified field, the current technical project seeks to

compile answers to four primary research questions and leverage their answers to produce a

sample control algorithm to be tested in UVA’s Link Lab. We seek to answer: what makes high

quality indoor air? What control systems are available within the Link Lab (and commercial

HVAC systems generally)? How do available control systems affect the quality of indoor air?

How can a new control system be implemented?

To extend this technical project, this thesis seeks to investigate further the barriers to

widespread implementation of improved HVAC control systems. Taking a sociotechnical lens to

this problem and evaluating both technical and economic barriers will provide a comprehensive

view of the path to widespread reductions in energy usage and improvements in indoor air

quality.

Technical Topic

The optimization of Indoor Air Quality (IAQ) and energy efficiency the Link Lab will

combine a literature review on existing optimization methods and an in-depth investigation of

the current HVAC system in place. The literature review will be leveraged to answer questions

around which metrics of IAQ should be focused on and how HVAC operation affects these

2



metrics. Though an overview of the current HVAC system is provided here, additional

investigation is needed to enumerate all the possible control mechanisms which may be

manipulated as a part of HVAC control. Finally, using a fully developed state space, an

optimization control model can be implemented and tested on the LinkLab HVAC system,

comparing actual and forecasted results.

To manipulate the existing system, an understanding of the current state is needed. The

current control mechanisms of the Link Lab system do not take into account any information

other than a preset “occupied” status indicator which is defined as times in which the building is

generally considered to be occupied -- not a measure of actual occupancy -- and temperature.

This is despite available data from motion sensors in each HVAC control zone, as well as CO2

data which is a well known proxy for occupancy (Pedersen et al. - 2017).

The current system is known as a Variable Air Volume (VAV) system, which consists of

two primary Air Handling Units (AHUs), and VAV boxes per assigned air control zone. AHUs

perform the primary heating, cooling, and dehumidification of air to be provided to users, while

VAV boxes may perform additional heating but primarily serve to regulate air flow to specific

zones within the area served by an AHU in order to meet differing temperature needs within

those zones (PNNL, Accessed 2021).
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Two major problems have been identified with this system which will be considered

when generating and evaluating solutions. Primarily, the blunt method of assignment of

occupancy not by zone and actual occupancy, but by building and by daily blocks of time; there

is significant potential for over usage of HVAC resources in unoccupied zones and under usage

in occupied zones. Secondarily, the consideration of only temperature when deciding air flow

can lead to rooms which may have low IAQ and require ventilation to not receive needed

ventilation due to the temperature being in an acceptable range. Given ventilation can be

provided without temperature treatment by making use of return air from unoccupied zones,

there is no system requirement that ventilation only be provided due to temperature needs.

5



Though occupancy data is not currently available to address the current blunt method,

this project will evaluatie multiple approaches to solving this problem. Air quality data could be

readily leveraged to produce an occupancy flag, as CO2 levels spiking in a room is an effective

indicator of occupancy. With enough funding and time, occupancy sensors could be installed

throughout the building, though this level of additional equipment needed implementation may

increase the costs of generalizing the system to other use cases, but provide significantly more

precise data for modeling and prediction purposes (Mutis et al. - 2020).

Providing rooms with ventilation when IAQ requires it but temperature does not poses a

different problem. A formulation of trade offs and potential solutions to this problem will be

needed for the final optimization problem.

HVAC operation is a classic example of the operation of a complex system which

impacts users and operators through energy, implementation, upkeep, and health costs. To create

a system which truly serves all stakeholders, all of these costs must be considered when creating

a control system. This requires advanced data collection and processing not currently

implemented in traditional HVAC systems which this project is seeking to develop and

implement.
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STS Topic

This thesis will examine the larger societal implications of improved efficiency in

commercial HVAC systems, considering implications on the larger energy usage patterns in the

US as well as health outcomes, both infectious and long term where possible. Specifically,

examining the costs and benefits of retrofitting this portion of the US energy grid over short and

long time horizons to provide a holistic view of the necessary actions to implement the advanced

sensor and efficiency technology found in the LinkLab. The thesis will serve as a complement to

the technical research of my capstone by providing a well-rounded understanding of the space in

which the tested and designed technology would be implemented.

Despite the potential effectiveness of the proposed technology under development,

without positive and normative arguments for the implementation of the technology, it’s

effectiveness will be limited. Different use cases require different understanding of the

technology; decreased energy costs could appeal to private and corporate clients, while a

definitive understanding of carbon emission reduction from implementation could contribute to

governmental management of incentives and policy. This thesis will focus on understanding

financial and environmental effects across a range of scenarios to understand and incentivize

additional development in technology which benefits user comfort, profit bottom lines, and

environmental outcomes.
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Additionally, this thesis will investigate previous methods by which this problem may

have been addressed in order to improve the developed solution and provide adequate

background for the development of both a solution and implementation plan. The primary

research questions will address the nature and implementation success of previous solutions for

managing IAQ.

In order to answer these questions in a socio-technical context, various STS frameworks

can be applied to contextualize the problem. The adoption curve will be leveraged to distinguish

the characteristics of early adopters and late adopters. The production possibilities frontier can be

used to enumerate and understand tradeoffs between energy usage and IAQ/temperature, useful

for presenting a solution which directly acknowledges the costs of improvement to a potential

client. Anticipatory Governance could also be leveraged to consider policy and incentives which

would help overcome initial costs to adoption and allow for the long term benefits of improved

health and reduced energy consumption to be realized.

The economics of technology adoption will be a significant point of consideration.

Potential points of research could include EV incentive plans and adoption, clean energy

adoption rates, and effects of cap and trade policies on consumer/corporate behavior. All of these

policies and technologies are related to HVAC consumption in that a combination of government

and market incentives have been and continue to lead to adoption of the technology. By using

these (and others) as case studies, and comparing technology implementation costs, an

8



understanding of adoption rates and potential need for government backed incentives can be

gained.

Research Question and Methods

This thesis will seek to understand previous technologies which have been developed to

address IAQ and/or HVAC efficiency and the barriers to implementation they have faced.

Specifically, a literature review would seek to obtain a general understanding and quantification

of proposed benefits of previous advanced HVAC technologies, and their related costs. To

understand the effects of cost-benefit relationships in this space (which costs and benefits may

have an outsized effect on adoption), data on adoption rates and real world success/failure of

technologies will be investigated. If sufficient data is obtained, modeling attempts can be made

to predict project success based on proposed characteristics; exploratory data analysis and

visualization could also be leveraged in the production of a new technology, as well as in the

effective argument for the adoption and production of newly developed control system. To

understand the backdrop of new technology adoption in the energy efficiency space,

consideration will be given to adoption of other green technologies and related government

incentives, outside of just HVAC systems. The primary method of research for answering the

above questions and background investigation will be literature review.
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Conclusion

The result of the technical project associated with this thesis will be an improved control

mechanism for the HVAC system in UVA’s Link Lab which considers IAQ in addition to

temperature, and attempts to do so using less energy than the original system. This improved

model will leverage IAQ data and consider the generalizability of the solution in it’s design, with

the hope that the system can be leveraged to generally improve IAQ and energy usage in

commercial HVAC systems.

The STS thesis will seek to understand the factors which influence adoption of

technologies similar to the developed one by performing a literature review and data analysis on

previously developed technologies, both specifically HVAC and other green/energy efficiency

technologies. If data is sufficient, a model of adoption based on proposed costs and benefits

would be developed in order to forecast the adoption of the developed technical solution.

Consideration will be given to economic and social factors including adoption curves, production

possibilities frontiers, NPV, and the sociotechnical triangle in order to understand barriers and

effects of the technical solution in a broader context.

Locally at UVA Link Lab, an implemented solution to the IAQ and energy efficiency

problems would reduce energy usage and improve occupant comfort, health, and potentially even

academic performance. A nationwide implementation and generalization could significantly
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contribute to the estimated Technical Energy Savings Potential (Quadrillion BTU/yr.) of 0.63

stated by the Department of Energy.
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