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Introduction 

In recent decades, the demand for computer software has risen massively. Humans now 

turn to computers for things that would have been inconceivable a mere generation ago – from 

hosting millions of concurrent real-time video conversations during a global pandemic (Karl et 

al., 2021), to large language models being used to write articles (Hosseini et al., 2023). The 

percentage of United States residents who own a computer has expanded from approximately 

20% three decades ago to 92% as of 2018 (Martin, 2021), with software becoming a ubiquitous 

part of many millions of lives along the way. However, our increasing reliance on software 

brings about a new of set problems. Software tools are prone to failure, and the resulting 

vulnerabilities in programs we trust with our personal, medical, financial, or otherwise sensitive 

information can have disastrous consequences for individuals and communities at large. With 

increasing responsibility, the production of high-quality software, absent of major vulnerabilities, 

is more important than ever. 

The increasing demand for complex software has also led to organizational changes in 

corporations developing software. Companies like Meta and Alphabet, which collectively 

employ tens of thousands of developers, could not have existed in prior decades, much less stood 

among the most valuable companies in the world. Now, the top executives of companies like 

these are some of the wealthiest people on Earth. Speculation on further growth in software & 

technology companies is of major interest to investors and venture capital, with over $100 billion 

from private equity entering the systems software industry over the last three years (Sabater & 

Asif, 2023). Some have expressed worry that the increasing corporatization of software 

development groups is detrimental to the development of high-quality software, as the monetary 

interests of non-technical stakeholders, who typically rank above engineers in the corporate 
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hierarchies, may be prioritized over safety and performance concerns. Recent case studies 

include the executive suite of Unity, who infamously received a collective ~$100 million in 

compensation in 2022, making them among the highest paid tech executives in America, in a 

year where their company suffered costly software quality issues in its advertisement 

monetization tools and lost 75% of its value (Starks, 2023). 

This paper aims to determine the correlation between the types of social organizational 

structures in which software products are developed, and the frequency of vulnerabilities within 

these products. 

 

STS Theory 

The significance of software quality assurance experts is often poorly understood, even 

within the software industry itself (Florea et al., 2023). But neglecting the quality assurance 

process can have significant consequences. In the U.S. alone, it was estimated that nationally, 

issues with poor-quality software have grown to cost at least $2.41 trillion as of 2022 (Krasner, 

2022). In the worst cases, improperly tested software costs not money, but lives. Four years ago, 

two Boeing-737 Max crashes resulted in 346 deaths after a software component on the planes 

failed (Ethiopian Civil Aviation Authority, 2022). While software itself was most directly 

responsible for the accident, there were many social factors at play that led to its failure. The 

company shareholders and higher-ups, in this case the Boeing executives, desire for growth at 

minimal cost led to inexperienced, underpaid coders developing crucial parts of their system 

(Robison, 2019). The users, in this case the pilots, desired a smoother flying experience, which 

Boeing’s new software was intended to provide. And indirect users affected by the system 

without directly using it, i.e., passengers, want flights to be quick, cheap, safe, and perhaps above 
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all, frequent. Boeing’s own analysis of the growing demand for commercial airplanes (Bergman, 

2018) likely contributed to their decision to rush out more products. I find this case study to 

exemplify some of the common stakeholder archetypes that others have identified in the realm of 

corporate software organizations (owners, higher-ups, engineers, and the external users), the oft-

conflicting desires between them (Kroeger et al., 2014), and the disastrous results of failing to 

properly mediate their relationships with and influence over software artifacts. 

In industrial software development, different stakeholder groups like software engineers 

and executives exist in a corporate hierarchy that is largely reflected through salary – it is often 

the highly-compensated managerial groups that have the most power over the direction of the 

project, even if they themselves are not responsible for creating or maintaining that project on a 

technical level. A very different organizational structure exists within open-source software 

communities. In an open-source project, all code is freely available online to anyone who wants 

to access it, with maintenance and development performed by software engineers who are 

typically community volunteers, rather than formal members of some distinct project-associated 

organization. As a result, few open-source projects involve social structures that resemble 

corporate hierarchies. 

Three open-source governance models are particularly common. First is the benevolent 

dictatorship, in which the founding developers of a project make the final decisions on its 

direction and whether to accept any particular code contribution. Delegated governance involves 

an elected council of community members democratically making these same decisions, perhaps 

with subcommittees to handle different sets of issues. And finally, meritocracy is organized 

around the community making decisions as a whole, but with more voting power or influence 

given to developers who have made more substantive contributions (Topelson et al., 2017). In all 
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of these cases, it is developers that both create and direct the projects. The role of purely 

managerial or executive stakeholders, monetary compensation, and other mainstays of corporate 

software development are greatly diminished, if not entirely absent.  

 Social construction of technology, or SCOT, (Pinch & Bijker, 1984) provides a social 

constructivist framework for analyzing how human actions shape the creation and development 

of technology. SCOT can be employed to consider how the security of software is influenced by 

the organizational structure that governs interactions between its involved stakeholders. When 

polled, quality assurance-focused developers unsurprisingly tend to prioritize quality over speed 

and cost (Katalon et al., 2023), while executives may find the latter factors more important. In a 

corporate hierarchy, the executives’ influence may win out, while this would not be the case in 

any form of open-source organizational structure. 

Differences in perspective such as these between involved parties is the result of 

interpretive flexibility, through which the artifact of software takes on a different meaning to 

different stakeholders. From the perspective of owners and executives, the end-goal of software 

is often to make the company money, or (to shift one level of abstraction away), to please 

shareholders. This aligns with the views expressed in the influential Friedman doctrine, a 

business ethics framework which proclaims that a corporate organization’s primary objective 

should be to act in its own self-interest as an entity, maximizing revenue & shareholder returns, 

as shareholders are the only group which corporations are socially responsible to (Friedman, 

1970). 

To developers, on the other hand, creating software is a profession that delivering high-

quality code helps them maintain. Developers in corporations are thus directly responsible to 

higher-ranking employees, including executives. And in many software engineering ethical 
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frameworks, they are also responsible to their users, the public, and other social groups that are 

not directly tied to their product’s financial success (Gotternbarn et al., 1997). Interpretive 

flexibility suggests that these values are reflected in the products that executives and software 

developers produce, and by extension, that different types of organizations will produce software 

with different qualities, based on how the organization mediates stakeholder relationships. 

 

Case Context 

 Analyzing corporate software quality is challenging for a multitude of reasons. Perhaps 

the greatest immediate obstacle to research on this topic is that most corporate software is 

proprietary. Proprietary, or closed-source software does not have its source code made publicly 

available, as opposed to open-source code which anyone can access and inspect. 

Without access to source code, analysis of software quality can only be done indirectly, 

through analyzing reports of problems that were found to occur in the proprietary software’s use. 

There are many sources from which one could gather reports. Many news articles have been 

written about the largest software failures, which can be useful as case studies, but the reporting 

often lacks technical detail and ignores smaller, yet still significant quality issues. Users 

frequently take to online public forums to discuss these smaller problems, but it is often difficult 

to distinguish between issues related to software quality and those caused by other factors (e.g. 

user error or out-of-date hardware) without inspecting every post individually. 

Perhaps the largest and most credible public collection of technically oriented software 

issue reports is the Common Vulnerabilities and Exposures (CVE) database, operated in part by 

the U.S. National Cybersecurity FFRDC. The CVE database lists over 215,000 computer 

security flaws identified in various software applications. This database only records the subset 
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of software quality issues classified as vulnerabilities, or weaknesses that can be exploited in 

software programs to cause some form of damage. This does not typically include graphical 

errors, non-functional issues (e.g. an application taking up too many resources due to poor 

optimization), or other common software quality issues that cannot be exploited. The database is 

a strong resource, but it is important to note that with its limited scope, its data can only be used 

to draw conclusions about software vulnerabilities, rather than the broader topic of software 

quality issues. 

Each entry in the CVE database is accompanied by a score on the Common Vulnerability 

Scoring System (CVSS), a ten-point standardized indicator of vulnerability severity. The CVSS 

score for each entry is calculated based on metrics like the exploit’s attack vector (e.g. requires 

physical access to the target system, or able to be performed over a network), what privileges it 

requires, and how strongly it impacts the confidentiality, integrity, and availability of the targeted 

system (CVSS V4.0 Specification Document, n.d.). It is worth noting that the CVSS has been 

criticized for being subject to bias, with scorers bringing their own notions of a vulnerability’s 

impact that may lead them to assign different severity levels from one another, but it is still 

regarded as a useful tool for vulnerability prioritization among professionals (Wunder et al., 

2023). 

A final note on CVE entries is that while all types of software are scored with the same 

system, CVE/CVSS comparisons between different types of software are rarely meaningful. 

Applications that tend to be less complex or have fewer possible attack vectors will naturally 

tend to receive fewer, lower-scoring CVEs. More meaningful comparisons can be made between 

programs that serve the same purpose. Of the types of software in the CVE database, the 

following stand out as having both several competing products, and a substantial number of 
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entries per product: databases (e.g. MongoDB, Oracle Database), web browsers (e.g. Google 

Chrome, Mozilla Firefox), virtual machines (e.g. VirtualBox, Vmware), operating systems (e.g. 

Windows, iOS), and office tools (e.g. PowerPoint, Adobe Acrobat Reader). 

 

Research Question and Methods 

With computers influencing more human lives than ever before, it becomes pertinent to 

ask: How is the organizational structure of software development groups related to software 

vulnerability severity? To answer this question, I compiled a list of proprietary software products 

with entries in the CVE database from the following categories: databases, web browsers, virtual 

machines, operating systems, and office tools. 

 

Table 1. List of software products selected for analysis (Source: Diamond 2024). 

Organization Name Product Name Product Type Open Source? 
IBM IBM Db2 Database No 
Microsoft Microsoft SQL Server Database No 
MongoDB MongoDB Database No 
Oracle Oracle Database Server Database No 
PostgreSQL Global Development Group PostgreSQL Database Yes 
Oracle MySQL Database Yes 
Adobe Adobe Acrobat Office Tools No 
Microsoft Microsoft Office Office Tools No 
Apache Software Foundation Apache Openoffice Office Tools Yes 
The Document Foundation LibreOffice Office Tools Yes 
Apple MacOS Operating System No 
Microsoft Windows 10 Operating System No 
The Linux Foundation Linux Kernel Operating System Yes 
Google Android Operating System Yes 
Canonical Ubuntu Linux Operating System Yes 
Parallels Parallels Virtual Machine No 
Vmware VMware Fusion Virtual Machine No 
Citrix Citrix Hypervisor Virtual Machine Yes 
Oracle Oracle VM Virtualbox Virtual Machine Yes 
Red Hat Red Hat Virtualization Virtual Machine Yes 
Microsoft Edge Web Browser No 
Google Google Chrome Web Browser No 
Apple Safari Web Browser No 
Mozilla Foundation Mozilla Firefox Web Browser Yes 
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Specific products in each category were selected on the basis of having >40 CVE 

database entries and being actively maintained as of 2023. This list is hardly comprehensive of 

all software meeting these conditions. To diversify the social circumstances behind each product, 

preference was given to products made by companies that were not already included in the same 

category (e.g. iOS was not listed under Operating Systems because MacOS, also developed by 

Apple, was chosen instead). Likewise, in an effort to avoid counting the same vulnerabilities 

multiple times, products that were not derived from or dependent on the same source code were 

preferentially included when possible (e.g. only two web browsers based on the highly popular 

Chromium framework, Chrome and Edge, were included, despite others potentially meeting the 

basic inclusion requirements). 

For each product, I took the average CVSS score of all associated entries in the CVE 

database as an approximate measure of vulnerability severity. I then gathered the average ratings 

from and salaries of software engineers at the companies that develop these products on the 

employer review website Glassdoor to quantify how much value each assigns to engineers, under 

the assumption that receiving higher pay and expressing higher job satisfaction is indicative of 

being more valued. Next, I examined relevant financial documents (those being primarily SEC 

filings) from these companies to determine the pay, or perceived value, of executive staff. And 

finally, I gathered CVE data from a sample of open-source projects within the same categories. 

Drawing on SCOT’s concept of technological constructivism, which suggests that 

organizational dynamics between stakeholders alter the course of a given technology’s 

development, the primary focus of my analysis will be on determining the nature and degree of 

correlation between the stakeholder power metrics and the vulnerability metrics. SCOT also 
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motivates my analysis of the differences in vulnerability severity between open-source and 

proprietary software projects, which tend to involve very different social structures. 

 

Results 

 I gathered a total of 30,891 CVE (17,800 open-source, 13,091 proprietary) reports across 

24 products (11 open-source, 13 proprietary) produced by 17 distinct organizations. In the data I 

collected, there did not appear to be any strong correlation between the average CVSS score of 

software products and the compensation or satisfaction of executives or software engineers 

(SWEs), nor the ratio of the two compensation statistics, at the responsible company. This result 

is interesting, as it suggests that pay and satisfaction may not be accurate measures of how 

stakeholders are valued within a corporate hierarchy, or at least of their ability to influence the 

direction of a project. Regarding organization type, open-source software projects tended to have 

notably lower CVSS scores than proprietary software on average, with CVSS scores on open-

source projects averaging 7.29 as opposed to 7.84 across proprietary projects. A mean CVSS 

difference of ≥0.50 was observed within all comparisons between software of the same type, 

apart from web browsers, for which open-source and proprietary products were nearly equal. 

 Before discussing each relationship in further detail, a summary of the data is as follows: 

 

Table 2. Summary of research data gathered (Source: Diamond, 2024). 

Variable Name Mean Value Standard 
Deviation Minimum Value Maximum Value 

Mean CVSS Score 7.52 0.71 5.40 8.80 

Med. SWE Salary $200,230.77 $42,093.46 $122,000.00 $266,000.00 

Mean SWE Review 4.27 0.17 3.90 4.50 

Mean Exec. Comp. $22,045,803.55 $17,207,584.72 $4,938,815.07 $69,810,462.60 
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The first four relationships I analyzed dealt only with proprietary software, as open-

source projects lack comparable statistics due to their organizational differences. 

 

 

Figure 1. Plotting and Linear Regression of SWE Salary (upper left), Executive Compensation 

(upper right), Ratio of Executive to SWE pay (lower left), and SWE Glassdoor Reviews (lower 

right) on CVSS Scores (Source: Diamond 2024) 

 

 In the case of SWE salary, executive compensation, and their ratio, the lack meaningful 

linear correlation with vulnerability severity is clearly seen in Figure 1. While the sample sizes 

are small and cover a variety of product types, the vast range of compensations in my dataset, as 

seen in the data summary above, makes it more likely for any relationships to emerge, but none 

are visually apparent in the plotted data. 
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The Glassdoor review data suggests a slightly stronger relationship between vulnerability 

severity and job satisfaction, where more satisfied SWEs are likely to work on more vulnerable 

code. However, there was far less variation than expected in the satisfaction metric, with the 

difference between the minimum and maximum average review scores being 0.6 on a five-point 

scale, so this finding may be less likely to hold for larger samples with greater ranges. 

The concept of interpretive flexibility from SCOT suggests that, due to differing values 

between the two groups, projects influenced more by executives than engineers would develop 

with different qualities than projects for which the opposite is true. While salary (and to some 

extent, job satisfaction) is often thought to be a measure of how much a company values a group 

of employees, the lack of any apparent relationship between this statistic and vulnerability 

severity suggests that either pay was a poor measure of value in these cases, or that on average, 

highly-valued stakeholders may not have as much influence over a software project’s security as 

strongly as one would expect. Another alternative explanation for this result would be that, in the 

sampled products, engineers and executives valued security to approximately the same degree. 

A far stronger correlation was observed between vulnerability severity and organizational 

structure, where open-source products appeared to have a lower average CVSS score than 

proprietary projects of the same type across a large sample of CVE reports. The sole exception to 

this clear trend is web browsers, though there is no readily apparent social explanation as to why. 

Web browsers are arguably the most complex and rapidly-evolving type of software, so technical 

factors may be responsible. 
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Figure 2. Weighted Mean CVSS Scores of Software Products by Type, with 95% Confidence 

Interval Standard Error Bars (Source: Diamond 2024)  

 

 SCOT suggests that this variance is impacted by the greatly different social structures 

between companies and open-source communities,. The lack of interaction between managerial 

and engineer shareholders is among the starkest social contrasts between open-source and 

proprietary projects, and as such, could be a contributor towards these notable differences in 

security. It may also be that the dynamics between engineers themselves is a factor. In 

companies, engineers tend to interact directly in teams on a daily basis, while open-source 

communities are less centralized and more individual-oriented, with developers entering and 

leaving the communities freely. There is also the lack of direct financial interests in open-source 

software, which draws in different developers than proprietary software – many individuals 

working on proprietary software at companies likely would not continue to do so for free, even if 
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their workplace were to undergo organizational change, while the same obviously cannot be said 

for open-source developers, who are already volunteers. The answer is likely some combination 

of these factors. 

 

Discussion 

 My analysis of how organizational structure relates to software vulnerability severity is 

one example of an attempt at studying the social and otherwise nontechnical contributors to 

software quality. Though nowhere near as much research has been done on nontechnical factors 

as technical factors in software quality, other works have focused more on individual-level social 

factors, such as how software engineers sense of control and pleasure with their work positively 

impacts the quality of their code (Lundestad & Hommels, 2006), or how communication skills 

have a weaker impact on quality (Maria Jose Salamea & Carles Farre, 2019). 

 There are some limitations inherent to studying proprietary software. The lack of 

published vulnerability data leads to reliance on the imperfect CVE scoring system, as was 

acknowledged upon its introduction in this paper. Likewise, employers do not tend to publish 

salary or job satisfaction data, leaving crowdsourcing websites like Glassdoor as a publicly 

accessible approximation for developer salaries across the company as a whole, rather than by 

specific team or project. And while Glassdoor’s estimates of job satisfaction tend to be close to 

other measurements (Landers et al., 2019), there is less empirical evidence that Glassdoor 

salaries always represent the real, modern salaries of workers in the relevant positions. On the 

subject of “modern salaries,” the fact that Glassdoor does not allow queries for historical salary 

or rating data also limited the scope of research done with their platform, including this paper. A 

final, very significant limitation is survivorship bias. All the products I selected for this research 
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were successful enough to have vulnerability analysts care to document problems with them. 

There have been plenty of database systems, web browsers, office tools, and other products that 

have not reached this level of influence, but low-adoption or failed projects are inherently 

difficult to gather data on, limiting their ability to be used as samples. 

 In my future engineering practice, I will give more consideration to the social structure of 

projects I work on, and try to determine how any groups I collaborate with could best 

organizationally benefit all internal and external stakeholders. More broadly, I will pay attention 

to social contributors to software quality, and encourage others to do the same. While the 

immediate technical questions of “what line of code is the fault on?” and “should integration 

testing account for this case?” are understandably compelling and important for us to answer as 

engineers, my research suggests that we would benefit from supplementing these questions with 

more software quality-promoting social factors in the workplace. It is also clear that we need a 

better understanding of what these quality-promoting social factors are to begin with, both 

organizationally and among individual stakeholders. I would like to see social frameworks for 

software quality develop and become routinely implemented alongside existing technical 

frameworks like software testing, which already see wide use and study (Rafique & Misic, 

2013).  

 

Conclusion 

There is still significant research to be performed in the area of this thesis. Future work 

could involve more specific analysis of how stakeholders interact within open-source and 

corporate environments, or broadening out to involve other types of organizations. In the former 

case, dealing with more direct interactions between stakeholders than pay ratios could show 



15 

 

interesting results. Some research has been conducted on software quality amid conflicts 

between different stakeholder groups in corporate environments (Wong, 2005), but there seems 

to be less material on inter-developer conflicts, which are particularly relevant to open-source 

projects. Studies also could be done on cooperation between stakeholders, or frequency/degree of 

stakeholder interaction on a project, and how these factors influence software quality. In the case 

of expanding to more organizational structures, there are a few groups to choose from. Non-

profit organizations tend to have somewhat similar structures to for-profit corporations, but 

without as much of a monetary incentive for the involved parties, making them a potentially 

interesting middle ground comparison. Software can also be developed by groups of friends, 

academic or research organizations, governmental agencies, and in many other vastly different 

social structures. And that is not even to begin exploring variations on these structures, like 

remote-work-only software companies, which are becoming increasingly prevalent. There is 

significant room for exploring the differences between these groups in terms of software quality. 

Regardless of the future direction of social research on software quality, I hope that this 

paper has shown that there are important relationships to be found between the technical and 

social aspects of software development. With how much we currently rely on the flawless 

operation of various software products in our everyday lives, any factor that influences the 

quality of code matters. And by only focusing on the technical aspects of quality, we may be 

rendering ourselves vulnerable to future socially-driven software disasters. Ultimately, as 

engineers, we must do our best to refine every aspect of our practice, and remember that we can 

never divorce the quality of software from the inherently social process of its development. 
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