
Fortifying the Cloud with Big Data Computing

A Technical Report submitted to the Department of Computer Scienc

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree
Bachelor of Science, School of Engineering

Dagim Tekle
Spring 2024

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Advisor
Briana Morrison, Department of Computer Science



Fortifying the Cloud using Big Data Computing

CS4991 Capstone Report, 2024

Dagim Tekle
Computer Science

The University of Virginia
School of the Engineering and Applied Science

Charlottesville, Virginia USA
ddt8ee@virginia.edu

ABSTRACT
As companies, services, and governments
migrate computing resources to the cloud,
cloud providers must ensure the security of
the zettabytes of data entrusted to them. One
of the basic security measures major cloud
providers implement is logging user and
process activities, enabling security software
and teams to swiftly identify malicious
activity and mitigate the impacts. In my
internship, I assisted with investigating a
scalable indexing and querying strategy for
security logs. By utilizing distributed
computing on the cloud and designing
indexing and querying workflows with
minimal bottlenecks, the Proof of Concept
(POC) was able to index logs at
pre-production scale and return a query
result promptly. This performance, though
significantly impressive, was not up to par
with the production scale security logs to be
indexed, and it came with the cost of storing
ever-growing indexes for the already
ever-growing security logs. There is still
work to be done on two fronts: 1) improving
indexing performance to meet and exceed
the production scale and 2) reducing the size
of security logs and indexes that persist
forever.

1. INTRODUCTION
Cloud computing was first conceived in

1961 when MIT Professor, computer and
cognitive scientist John McCarthy imagined
a future where computing resources (e.g.,

networks, servers, storage, applications, and
services) would be operated as public
utilities (Surbiryala & Rong, 2019). Starting
with Salesforce in 1999, Amazon,
Microsoft, Google, IBM, Adobe, SAP,
Oracle, CISCO, and Alibaba have ventured
into providing cloud, a rapidly growing
market (Surbiryala & Rong, 2019; Jones,
2024; DeLisi & Howley, 2023).Though less
than a century old, cloud computing has
become very prevalent. In a study done by
Wakefield Research (2012), 95% of
Americans reported using social media (e.g.,
Facebook, Instagram, Tiktok), online
banking (e.g., Capital One, Chase, Bank of
America), online shopping (e.g., Amazon
Prime, eBay, Etsy), online gaming (e.g.,
Poker, Chess, Fortnite), online photo storage
(e.g., iCloud photos, Google photos,
Snapchat), online music streaming (e.g.,
Spotify, Apple Music, YouTube Music),
online video streaming (e.g., Netflix, Hulu,
Max), or online file sharing (e.g., Google
Drive, Dropbox, OneDrive). All rely on
some form of cloud computing. Despite the
widespread use of cloud computing services,
63% of surveyed participants voiced their
concerns regarding privacy and security
(Wakefield Research, 2012). With a
statistical majority of the respondents
holding privacy and security paramount,
cloud providers—in order to earn and retain
customers and their trust—must commit
themselves to satisfy and surpass the
security and privacy needs.

1



2. RELATEDWORKS
One of the pillars of cloud security is

robust access monitoring of information like
who accessed what resources and when
(Smith, 2022). Providers like Amazon Web
Services (AWS) utilize sophisticated logging
mechanisms, such as AWS CloudTrail,
which constantly monitors and captures API
calls and related events (AWS CloudTrail,
n.d.). Similarly, Microsoft Azure employs
Azure Monitor to track access and activity
across every layer and components of its
platform (Azure Monitor, n.d.). These
logging systems not only assist in
troubleshooting and auditing but also
enhance security by enabling the analysis
and detection of suspicious activities or
unauthorized access attempts (AWS
CloudTrail, n.d.; Azure Monitor Overview,
n.d.). By implementing comprehensive
logging solutions, cloud providers offer their
customers vigilant and responsive security
protocols, augmenting the overall security
posture of their platforms.

With the vast amount of data generated
by millions of users in modern computing
environments, navigating through logs can
become quite cumbersome, time-consuming,
and expensive, particularly when dealing
with time-sensitive queries. Inverted
indexing emerges as a vital solution to this
challenge. Similar to indexes at the end of
books, inverted indexing is a data structure
that maps terms to documents
(GeeksForGeeks, n.d.). Instead of scanning
every page of a book to query a term,
indexing allows querying through a smaller
set of pages with pre-mapped results,
facilitating expedited querying though large
datasets. This technique significantly
enhances the efficiency of querying security
logs, allowing for rapid retrieval of pertinent
information without the need for exhaustive
scans (Yang & Duo, 2013). By leveraging
inverted indexing, security teams can swiftly
identify relevant log entries based on

attributes such as user IDs, IP addresses,
timestamps, or event types, enabling
optimized resource utilization for querying.

3. PROPOSAL DESIGN
During my internship, I was tasked

with a comprehensive exploration aimed at
developing a scalable and cost-effective
indexing and querying strategy utilizing
Lucene in conjunction with the robust tools
available on Amazon Web Services (AWS).
Apache Lucene stands out as an open-source
Java library renowned for its promise of
scalable, high-performance indexing
capabilities and its deployment of accurate,
efficient search algorithms, with noteworthy
Lucene-based enterprise search servers
include Apache Solr, Elasticsearch,
MongoDB, Atlas Search, OpenSearch, and
Swiftype. Lucene boasts impressive
indexing performance, reportedly exceeding
800GB/hour on modern hardware, with
index sizes typically ranging from 20-30%
of the text indexed. This suggests the
potential for approximately 1000 modern
hardware setups to effectively index the
projected petabytes per hour within my
project's scope.

3.1 Computing Environments
In order to leverage Lucene's library

effectively, it is essential to utilize a
Java-based computing environment. AWS
offers Java-based computing environments
like Amazon Elastic Compute Cloud
(Amazon EC2), AWS Lambda, Amazon
Elastic Container Service (Amazon ECS),
Amazon Elastic MapReduce (EMR)
AWS Elastic Beanstalk, and AWS Batch.
AWS Lambda present themselves as
particularly compelling choices for
implementing Lucene due to their simplicity
and ease of use. By abstracting away
infrastructure management complexities,
Lambda offers a streamlined, event-driven
approach to deploying a Lucene-based

2



solution, enabling more focus on application
development and less on infrastructure
configuration.

Additionally, AWS offers several
storage options for storing and quickly
retrieving Lucene indexes efficiently. These
include Amazon Simple Storage Service
(Amazon S3), Amazon Elastic Block Store
(Amazon EBS), and Amazon Elastic File
System (Amazon EFS). Among these,
Amazon S3 stands out as a highly scalable
and durable object storage service, capable
of storing massive amounts of data reliably
at low costs.S3 provides high availability
and durability, making it an excellent choice
for long-term storage of Lucene indexes.
Additionally, its pay-as-you-go pricing
model ensures cost-effectiveness, allowing
organizations to scale their storage
infrastructure according to their needs
without incurring unnecessary expenses.

3.2 Integrated Workflow
With these design decisions, we are

left with creating the indexing and querying
workflows, two almost independent
processes with the exception of the way the
indexes are stored and accessed. Therefore,
the nature of the querying use cases will
establish the data organization required in
the indexing strategy. One pertinent use case
is filtering queries with a time range, where
efficient storage and retrieval of time-series
data become paramount, such as partitioning
by time intervals. This approach can
significantly enhance query performance
and reduce latency by narrowing down the
relevant indexes to search. Now, we can
proceed on designing each workflow.

3.3 Indexing Workflow
The indexing workflow begins with

an event with details of access logs to index.
Using Lambda’s event-trigger, these events
will start Lucene indexing jobs. Once done
with creating indexes, the lambda will

upload them into time partitioned S3
buckets.

3.4 Querying Workflow
As for the querying workflow, it

begins by users submitting a job. This
creates a unique query ID, prompting the
spawning of Lambdas to conduct searches
across specific time ranges within the
indexed files. These Lambdas diligently
append results into an Amazon DynamoDB
(DDB) table asynchronously, with the query
ID serving as the primary key. This setup
allows users to access results by querying
the DDB with their unique query ID,
offering a smooth and responsive
experience.

4. RESULTS
One of the first complications

discovered with the proposed design is the
timeout and memory limits of the Lambda.
Lambda is designed to be nimble, and thus
intended to work a maximum of 15 minutes
and some memory limit per invocation. This
was probably caused by a very high
variability of data size in the documents
being indexed. To deal with the time and
memory limits, I created a hard limit on the
number of documents indexed by a Lambda
invocation based on the statistical average
size of the documents indexed.

Another challenge came with the
indexing workflow. Since each Lambda
invocation would create one directory in the
time partition directory, the high
pre-production scale often led to thousands
of directories per hour partitioning. As a
result, for each hour, there needed to be
thousands of lambda invocations, adding
overhead costs. We found that searching
multiple indexes per one Lambda query
invocation reduced overall querying time.
Nonetheless, because of the Lambda
concurrency limits, the subsequent queries
would get backlogged often.

3



5. CONCLUSION
The continued success of the cloud

depends on the level of security provided by
cloud providers. The first step towards this
goal is creating robust monitoring systems
that are stored as logs. With large-scale
ever-growing internet-scale security logs,
however, the naive approach of searching
through all logs for a query is ineffective.
Querying through Inverted indexing, bridges
the gap between storing large data sets while
minimizing querying overhead.

This paper walked through one
approach: using Apache Lucene on AWS,
specifically AWS Lambda. The simplicity of
Lambda offered quicker onboarding of this
project. This choice, however, added
limitations on running time and memory
space, resulting in more index directories
being generated. As a result, the querying
workflow would often backlog after running
queries in a short period of time.

6. FUTUREWORK
The very next step on investigating a

scalable indexing and querying strategy with
Lucene on AWS is implementing other
AWS running environments. By using a
service like AWS EMR Serverless, the
indexing workflow can be augmented into
having larger ephemeral memory and almost
unlimited time limit. As a result, this new
approach could bolster the querying
workflow, reducing the number of
directories per time portion hour and
querying bottlenecks.

REFERENCES
Amazon. (2021, March 17). The deceptively

simple origins of AWS. About
Amazon.https://www.aboutamazon.com/
news/aws/the-deceptively-simple-origins
-of-aws

Amazon OpenSearch Service . AWS.
(n.d.-a).

https://aws.amazon.com/opensearch-serv
ice/

Amazon S3. AWS. (n.d.-b).
https://aws.amazon.com/s3/ AWS

CloudTrail. AWS. (n.d.-c).
https://aws.amazon.com/cloudtrail/

Azure Blob. Microsoft Learn. (n.d.-a).
https://learn.microsoft.com/en-us/azure/s
torage/blobs/storage-blobs-introduction

Azure Monitor Overview. Microsoft Learn.
(n.d.-b).
https://learn.microsoft.com/en-us/azure/a
zure-monitor/overview

GeeksforGeeks. (n.d.). Inverted index.
GeeksforGeeks.
https://www.geeksforgeeks.org/inverted-
index/

J. Surbiryala and C. Rong, "Cloud
Computing: History and Overview,"
2019 IEEE Cloud Summit, Washington,
DC, USA, 2019, pp. 1-7, doi:
10.1109/CloudSummit47114.2019.0000
7.

John McCarthy. Encyclopædia Britannica.
(n.d.).
https://www.britannica.com/biography/J
ohn-McCarthy

Jones, E. (2024, February 13). Cloud market
share: A look at the Cloud Ecosystem.
Kinsta.
https://kinsta.com/blog/cloud-market-sha
re/

Smith, A. (2022, June 21). Best practices for
effective cloud data security. CSA.
https://cloudsecurityalliance.org/blog/20
22/06/21/best-practices-for-effective-clo
ud-data-security

W. Yang & Y. Dou, "High-Performance
Distributed Indexing and Retrieval for
Large Volume Traffic Log Datasets on
the Cloud," 2013 5th International
Conference on Intelligent
Human-Machine Systems and
Cybernetics, Hangzhou, China, 2013,
pp. 185-189, doi:
10.1109/IHMSC.2013.51

4


