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ABSTRACT
Humans excel at rapidly modeling team members’ latent factors,
such as preferences and performance, even with limited interac-
tion. For human-agent interactions, developing such models poses
challenges due to the need for extensive prior knowledge or interac-
tion data. To address this, we present a human-robot collaborative
storytelling task where robot decision-making is formulated as a
Markov Decision Process (MDP). We estimate human preferences
and knowledge using a Large Language Model (LLM), then learn
the transition probabilities of the MDP at every decision point from
these estimates. Targeting to improve team performance and coop-
eration experiences, the robot then solves the MDP to maximize
predicted rewards. We develop human preference and state esti-
mation as a question-answering problem where the LLM offers
probability distributions over feasible choices. Our method is eval-
uated in accordance with a baseline devoid of human knowledge
and preferences. Results show that participant satisfaction, team
cohesiveness, and narrative quality much better when the LLM-
enhanced MDP used. By demonstrating the efficiency of including
LLMs into adaptive robot decision-making processes, stressing their
possibilities in improving real-time multi-agent team dynamics and
opening new paths for more simple and effective human-robot inter-
actions in different collaborative environments, this work advances
the field of human-robot cooperation.
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1 INTRODUCTION
We have witnessed the proliferation of human-agent interaction
in recent decades, particularly in the areas where they need to col-
laborate to achieve shared goals [20, 21, 65, 67]. To make informed
decisions and adapt behavior in such collaboration scenarios, the
agent is required to understand andmodel human preferences given
the complex nature and frequency of the interaction [15, 66, 68].
This modification is essential for enhancing the overall task out-
comes, user satisfaction, and team performance. With this in mind,
research endeavors have been undertaken to model human prefer-
ences and utilize these models for the adaptive decision-making of
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Figure 1: We consider a scenario where user preferences are
modeled through an LLM in sequential human-agent collab-
orative tasks. We aim to leverage these preference distribu-
tions to guide the robot’s adaptive decision-making, enhanc-
ing collaboration, task performance, and user experience.

agents in the development of sophisticated and effective human-
agent collaboration systems [48, 67, 82]. Nevertheless, the modeling
of human preferences in a human-robot team environment is a dif-
ficult task due to the dynamic nature of human preferences, which
are influenced by real-time interaction.

This position is particularly well-suited for humans, as they have
the capacity to interpret nonverbal signals, comprehend past ex-
periences in analogous social contexts, and assess the behavioral
history of others [27, 57]. This ability enables individuals to adjust
their behavior in accordance with the knowledge, abilities, and
preferences of others. However, server-related constraints make
it challenging to replicate a comparable capability in autonomous
agents [30, 54]. In contrast to humans, artificial agents are capable of
intuitively understanding social dynamics and lack extensive prior
knowledge. In real-world scenarios, certain methods that rely on
hand-crafted techniques to model humans are not feasible and can-
not be scaled [5, 13, 50, 84]. Conversely, data-driven methodologies
employ deep learning methodologies to construct human models
from interaction data [12, 51]. Nevertheless, these are constrained
by the scarcity of interaction data, rendering them incapable of
achieving excellence in novel or short-term collaboration scenarios.
Additionally, the computational modeling of human preferences is
challenging due to their complexity, dependence on context, and
occasional inconsistency.

Recent research has demonstrated the potential of Large Lan-
guage Models (LLMs) to comprehend and produce human-like text



in a variety of application domains [49, 71, 81]. LLMs can be lever-
aged to estimate the values of latent factors that influence human
decision-making and behavior. Research has been done to explore
this capability of the LLMS to build human models with limited
demonstration [2, 31, 53, 75]. Zhang et al. took this a step forward
to utilize the LLM as a zero-shot human model in robot planning
in interactive human-robot scenarios [80]. Such approaches usu-
ally formulate human preference estimation as a multiple-choice
question-answering problem where a textual prompt is used to
probe the LLM to generate a response within the option sets. Fur-
thermore, LLMs can be implemented to modify an agent’s percep-
tions of human collaborators, which leads to the acquisition of
latent factor state distributions as the interaction progresses. These
dynamic revisions of belief states may be incorporated into the
agent’s decision-making process to encourage more context-aware
and adaptable behavior. Despite some attempts to model human
preferences using LLM and apply this model to robot decision-
making, the efficacy of this approach in a real-time human-robot
team collaboration scenario has not yet been extensively investi-
gated. Preference-aware decision-making in team settings added
additional challenges as there can be conflict among the team mem-
bers’ preferences. How to balance among the preferences while
making the adaptive decision is a challenging task. Furthermore,
how these approaches impact participants’ perception in interactive
scenarios needs to be examined.

To address the aforementioned challenges, we extend the pre-
vious works to an interactive human-robot team setting where
the preferences of the agents evolve based on the interaction dy-
namics. We consider a multi-agent sequential collaboration task
that includes robotic and human agents, with each agent having
its own preferences. The robotic agent is tasked with modeling
the preferences and making adaptive decisions so that the collab-
orative effort of the other agents becomes intuitive, and, in turn,
they end up with a coherent collaborative experience. The robotic
agent’s decision-making is referred to as a Markov Decision Pro-
cess (MDP) in order to facilitate this. To facilitate this, the robotic
agent’s decision-making is referred to as a Markov Decision Process
(MDP). The transition probabilities are dynamically determined by
assessing the contributions of human gene preferences and their in-
fluence on the partnership. By resolving this MDP at each decision
juncture, the robotic agent optimizes anticipated future benefits,
which leads to enhanced team performance and more pleasurable
collaborative interactions. To validate our approach, we developed
a physical human-robot collaboration test bed where a team of
one robot and human participants in a collaborative storytelling
game. Here, each agent tries to maximize their utility by picking
words from a storyboard and continuing the story narrative in their
preferred theme. The robot agent leverages an LLM to extract a
distribution of agents’ preferences over the remaining words based
on their predicted story theme and contribution level and utilizes
this distribution in calculating the transition probability of MDP.
Solving this MDP, the robotic agent learns a policy that maximizes
the expected reward for the future word selection. The agent also
probes the LLM to generate its response considering the estimated
preferences of other agents.

To evaluate the effectiveness of our preference-aware adaptive
strategy, we compare it against a myopic baseline that does not

account for the preferences of other agents in a human-robot inter-
action study with 20 teams (n=40) in our collaborative storytelling
test bed. The baseline strategy is predicated on the assumption that
all agents will dependably contribute and optimize their immedi-
ate actions, without taking into account future impacts or team
dynamics. In contrast, our preference-aware approach employs a
large language model (LLM) to estimate human preferences and
adjusts robot decisions to optimize long-term collaboration out-
comes. According to our research, the preference-aware strategy
significantly improved the satisfaction, narrative coherence, and
team performance of participants in both subjective and objective
metrics. The findings of this study suggest that the incorporation
of human preferences into decision-making processes enhances
the overall task experience, team cohesion, and collaboration flu-
ency, thereby enabling more intuitive and effective human-robot
interaction.

2 RELATEDWORK
2.1 Human Modeling in HRI
Modeling humans has always remained an exciting field for the HRI
research community as it allows robotic agents to make personal-
ized and informed decisions [23, 47, 63]. Researchers have utilized
methods, broadly categorizing them into two categories: theory of
Mind (ToM) and data-driven approaches [9, 11, 77, 78]. The first
category of works (e.g., Bayesian Theory of Mind ) incorporates a
set of assumptions about human mental processing and behavior
and updates their beliefs based on these assumptions [5, 6, 32]. The
second category of work requires a large amount of real human data
to train a model to predict human behavior. However, these models
suffer from scarcity of data, especially in short-length interactions
[59]. Moreover, these models are computationally expensive and
thus costly to train with a huge amount of data. In a multi-agent
scenario, the problem becomes more challenging given the number
of state spaces. Researchers also employ a hybrid mode in which the
agent uses a pretrained model trained with RL and then fine-tunes it
with a small amount of data to adapt to a particular individual[12].

However, the performance of the mentioned models in modeling
human latent states such as preferences and emotions is still unclear.
Thus, further exploration of the model’s performance for estimating
human latent states, such as preferences in real-time interaction
scenarios, is required.

2.2 LLM in Human Modeling
Large Language Models (LLMs) have become a groundbreaking
technology in recent years, significantly impacting various fields,
including Human-Robot Interaction (HRI). Their influence extends
to improving communication [7, 10, 29], enhancing task planning
capabilities [3, 19, 56, 83], and advancing decision-making processes
[14, 35, 72, 76], as evidenced by numerous studies in these areas.
Trained on massive datasets with billions of parameters, these mod-
els excel at producing human-like text and tackling diverse tasks
[22, 28, 72, 75, 79, 80, 80]. Researchers have leveraged this ability
to replicate human behavior and stimulate the emergence of the
theory of mind [2, 31, 53, 80]. Recent research demonstrates LLMs’
ability to serve as prior knowledge bases for inferring human in-
tentions. By converting structured task information into natural



language queries, these models can generate probability distribu-
tions reflecting user preferences. This functionality allows agents
to dynamically interpret human behavior, even in novel situations
lacking task-specific data, known as zero-shot scenarios [24, 80].

Although these recent works have demonstrated the potential of
LLMs as a human model for HRI, the literature still needs more evi-
dence, and there remains a gap in understanding how LLM-based
human models excel in interaction human-robot scenarios. More-
over, how LLM-based human preference-aware robot strategies
impact the performance and perception of human team members
in human-robot collaborative tasks needs to be explored.

2.3 Adaptive Decision Making in HRI
In real-time, adaptive decision-making in HRI enables the robots
to adjust their behavior based on human preferences, actions, and
environmental context [26, 38, 39, 64]. Researchers explored various
methods, including partially ObservableMarkov Decision Processes
(POMDPs) and utility-based frameworks to empower robots to
infer human intentions from the observations and update their
strategies accordingly [13, 43–45]. In human-robot collaborative
tasks, this capability allows robots to generate adaptive responses
aligning with human team members’ goals and preferences [18, 46].
However, most of these approaches rely on predefined models that
need help to generalize to new scenarios.

Recent studies have utilized data-driven techniques, such as deep
learning, which enables robots to anticipate human preferences
from interaction data [16, 52, 55]. However, data-driven methods
are computationally intensive, limiting their real-time application.

3 TECHNICAL APPROACH
3.1 Collaborative Task Model
We model the collaborative task involving 𝑁 agents, 𝑖 = 1, 2, . . . , 𝑁 ,
as a Markov Decision Process (MDP), which is defined by a set
of states 𝑆 , a set of actions 𝐴, a probabilistic transition function 𝑃 ,
and a real-valued reward function 𝑟 . The task unfolds sequentially
in turns 𝑡 = 1, 2, . . . ,𝑇 , where 𝑇 is the maximum number of turns.
The system’s state evolves according to the transition function
𝑃 (𝑠′ | 𝑠, 𝑎𝑖 ), representing the probability of transitioning from state
𝑠 to state 𝑠′ when agent 𝑖 (either human or robot) performs action
𝑎𝑖 . Upon each transition, the agent receives a reward 𝑟 (𝑠, 𝑎𝑖 , 𝑠′),
which is designed to encourage behaviors that align with the task
objectives. Additionally, at any given step 𝑡 , we assume the agents’

interaction history is accessible as ℎ𝑡 =
{
(𝑠𝑘 , {𝑎𝑖𝑘 }𝑖 )

}𝑡−1
𝑘=1

, where 𝑠𝑘
is the state at step 𝑘 and 𝑎𝑖

𝑘
denotes the action taken by agent 𝑖 at

step 𝑘 .

3.2 User Preference Model
Since human preferences are not directly observable by an agent, we
model them as latent factors inferred from the interaction history
between the two humans and the robot. Let 𝑧𝐻𝑖

𝑡 ∈ Z𝐻𝑖 represent
the preference of human agent 𝑖 at time 𝑡 , where Z𝐻𝑖 denotes
the space of possible preferences for human 𝑖 . Our objective is
to estimate the joint distribution 𝑝 (𝑧𝐻𝑖

𝑡 | 𝑠𝑡 , ℎ𝑡 ), where 𝑠𝑡 is the
current state, and ℎ𝑡 refers to the interaction history up to time 𝑡 .

To leverage large language models (LLMs) for human preference
modeling, we define a textualization function 𝑓 that transforms
the state, history, and agent information into a natural language
prompt: 𝑥𝑡 = 𝑓 (𝑠𝑡 , ℎ𝑡 , 𝑞𝑡 ), where 𝑞𝑡 represents the query posed
to the LLM. We then use the LLM to estimate the human agents’
preference distribution, formalized as 𝑝𝑙 (𝑧𝐻𝑖

𝑡 | 𝑥𝑡 ) ≈ 𝑝 (𝑧𝐻𝑖

𝑡 | 𝑠𝑡 , ℎ𝑡 ),
with 𝑝𝑙 representing the LLM-based joint probability distribution
over possible human preferences.

The prompt 𝑥𝑡 is structured to include a description of the task
and environment, the interaction historyℎ𝑡 , the current state 𝑠𝑡 , and
a query 𝑞𝑡 that probes each human’s preference or likely action.
This query formulation allows the LLM to infer human prefer-
ences in a zero-shot manner for multiple agents without requir-
ing additional training data or fine-tuning. The LLM’s pre-trained
knowledge acts as a prior for human behavior, dynamically updated
based on the observed interaction history. By framing human pref-
erence modeling as a question-answering task for the LLM, we can
capture complex, context-dependent preferences and inter-human
dynamics that may be challenging to model through traditional
approaches.

3.3 Robot Agent’s Decision Making
In the sequential task, each agent selects an action 𝑎 ∈ 𝐴 with
the aim of maximizing its reward. However, in creative tasks like
collaborative storytelling, solely focusing on reward maximization
can compromise task quality. Agents may need to prioritize utility
over immediate rewards, balancing between optimal word selec-
tion and their ability to contribute meaningfully to the narrative.
For instance, choosing a high-reward word might challenge the
agent to maintain narrative coherence, thereby reducing its over-
all contribution to the story. To address this, we model human
agents as Boltzmann rational actors, who seek to maximize their
utilities—defined as functions of their expertise and preferences.
Specifically, we represent the expertise and preference of an agent
as𝑖 at turn 𝑡 as a latent factor, 𝑧𝐻𝑖

𝑡 where 𝑧 ∈ {𝑝, 𝑒}, i.e., 𝑝𝐻𝑖

𝑡 captures
the agent’s preference and 𝑒𝐻𝑖

𝑡 denotes the agent’s expertise at time
step 𝑡 . To infer human preferences and expertise, we use an LLM
that provides a distribution over human action preferences and
expertise given the current task state:

𝑝𝑙 (𝑧𝐻𝑖

𝑡 |𝑥𝑡 ) ≈ 𝑝 (𝑧𝐻𝑖

𝑡 |𝑠𝑡 , ℎ𝑡 ) (1)
We assume that all actions 𝑎 ∈ 𝐴 are unique. Specifically, if an

agent 𝜅 selects action 𝑎𝜅𝑡 during turn 𝑡 , that action becomes un-
available for subsequent agents, and the action space is updated
as 𝐴 = 𝐴 \ {𝑎𝜅𝑡 }. Consequently, the robot agent’s action at turn
𝑡 influences the available actions for the other agents in future
turns. When selecting an action 𝑎 ∈ 𝐴, the robot anticipates the
future action choices of all other agents. It learns a policy by simu-
lating or rolling out these decisions across the remaining turns
𝑡 + 1, 𝑡 + 2, . . . ,𝑇 , considering the estimated preferences of the
agents at each step. While agent preferences may shift in future
turns, the robot relies on the interaction history up to the current
point to form a reasonable estimate of future preferences. Thus,
the robot’s decision-making process can be framed as an action
distribution problem, aiming to allocate actions among all agents
over the remaining turns, including the current one, to maximize



Figure 2: Collaborative storytelling testbed with two human participants and a robot agent taking turns to build a narrative from
a shared storyboard. The robot uses a Markov Decision Process (MDP) with human preferences, estimated via a Large Language
Model (LLM), to select actions that maximize rewards. The interface displays available words, turn order, and accumulated
points, fostering teamwork and evaluating the robot’s adaptive collaboration strategy.

the expected reward. This formulation treats the robot’s decision-
making at the current turn 𝑡 as a Markov Decision Process (MDP)
𝑀 = (𝑆,𝐴, 𝑃, 𝑅,𝛾). Since it is the robot agent’s turn, the action dis-
tribution always begins with the robot. The transition function 𝑃

represents the current estimate of the system’s dynamics and is
defined as follows.

𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝜅𝑡 ) ≈ 𝑝𝑙 (𝑧𝜅𝑡 |𝑥𝑡 ) (2)

The robot’s goal is to find an optimal policy 𝜋∗ : 𝑆 → 𝐴𝜅 that
maximizes the expected cumulative discounted reward:

𝜋∗ = argmax
𝜋

E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝜋 (𝑠𝑡 ))
]

(3)

We summarize the agent’s decision-making process in Algorithm
1. In its turn, the robotic agent uses the task state and history to
generate a prompt for the LLM, which provides predictions guiding
the decision. The robot then solves an MDP to select the optimal
action, maximizing the expected reward based on the task context.

Algorithm 1: Robotic agent’s Decision Making

1: Input:Current turn 𝑡 , task state 𝑠′𝑡 , Action space𝐴𝑡 , History
ℎ𝑡 , Maximum turns 𝑇 , Reward function 𝑅

2: Output: Robot agent’s action 𝑎𝑅

3: 𝑥𝑡 ← 𝑓 (𝑠′𝑡 , ℎ𝑡 ) // textualize state and history to LLM prompt
4: 𝑃𝑧 ← LLM(𝑥𝑡 ), 𝑧 ∈ {𝑝, 𝑒}
5: 𝑅𝑡 ← calculateReward(𝑅, 𝑝𝑒 )
6: 𝑆𝑡 ← generateStates(Γ,𝑇 )
7: 𝜋𝑅 ← solveMDP(𝑆𝑡 , 𝐴𝑡 , 𝑃𝑧 , 𝑅𝑡 , 𝛾)
8: 𝑎𝑅 ← 𝜋𝑅 (𝑠𝑡 )

4 EXPERIMENT DOMAIN
4.1 Collaborative Storytelling Game Domain
Researchers have explored collaborative storytelling to study how
humans and agents are involved in a co-creative process and how

Figure 3: We consider a scenario where user preferences are
modeled through an LLM in sequential human-agent collab-
orative tasks. We aim to leverage these preference distribu-
tions to guide the robot’s adaptive decision-making, enhanc-
ing collaboration, task performance, and user experience.

the agent’s strategy affects the participant’s performance [40, 41,
60]. Collaborative storytelling creates an environment for express-
ing creativity and shared narrative building and also provides a
means to study complex social interactions, teamwork, and commu-
nication dynamics [34, 73]. Researchers highlight that storytelling
tasks push people to work together, helping them understand each
other and share common goals [33, 74].

Recent research has extended storytelling into collaborative
game environments where story narrative is embedded in inter-
active game mechanics [42]. Extending storytelling to a collabo-
rative game provides the task with structured goals with a set of
constraints that help adaptive and collaborative decision-making
throughout the task [61]. In such an engaging environment, partici-
pants must balance between narrative creativity and task objectives.
Moreover, the inclusion of game elements in storytelling encour-
ages active engagement as the balance between story coherence
and game objective demands continuous collaboration and shared
problem-solving.



We select collaborative storytelling games as our experimental
domain to study the effects of agents’ adaptive and preference-
aware collaboration strategies on teammates’ perceptions and per-
formances. In this game, a set, Γ = {𝑅,𝐻1, 𝐻2} of three players,
including a robot agent (R) and two human (H) participants, se-
quentially build a narrative by picking a word from a set of the
storyboard words,𝑊 while each agent attempts to align the story
with their preferred theme. We designed this collaborative game to
serve as a structured yet creative environment to study the impact
of preference-aware robot policies in human-agent collaboration.
This domain allows us to explore how robots can model human
preferences and adapt their actions in real time, balancing indi-
vidual inputs to create a coherent narrative while enhancing team
performance and satisfaction.

4.2 Robotic Agent’s Decision Making Process
4.2.1 Deriving Optimal Policy. In the collaborative storytelling
game, the robotic agent, at its turn, chooses a word 𝑤 ∈𝑊 from
the storyboard, makes the story narrative, and passes the turn
to the next human agent. In the preference-aware strategy, the
robotic agent considers human agents’ word choice preferences
and thus takes action that considers all estimated future word
choices of all the agents. This problem can be considered as the
word distribution problem among the agents sequentially according
to their preferences, starting from the robotic agent. We formulate
this as a Markov Decision Process (MDP) defined by the tuple
𝑀 = (𝑆,𝐴, 𝑃, 𝑅,𝛾), where:

• 𝑆 : ⟨𝑎𝑖 ,𝑊𝑟 ⟩, where 𝑎𝑖 is the current agent and𝑊𝑟 is the set
of remaining words.
• 𝐴: Action space, 𝐴(𝑠) = {𝑤1,𝑤2, · · · ,𝑤𝑛} consisting of se-
lecting any word from the remaining words.
• 𝑃 : 𝑃 (𝑎𝑖 ,𝑤 𝑗 ), probability that agent𝑎𝑖 choosesword𝑤 𝑗 , which
is the known preference probability of each agent-word pair.
• 𝑅: 𝑅(𝑠, 𝑎), the reward for assigning word 𝑤 𝑗 to agent 𝑎𝑖
determined by the word’s weight multiplied by the agent’s
predicted contribution score.
• 𝛾 ∈ [0, 1]: Discount factor, reflecting the importance of fu-
ture rewards.

Given a state 𝑠 = ⟨𝑎𝑖 ,𝑊r⟩ and an action𝑤 𝑗 , the system transitions
to a new state, 𝑠′ = ⟨𝑎𝑖+1,𝑊r \ {𝑤 𝑗 }⟩ with probability 𝑃 (𝑎𝑖 ,𝑤 𝑗 ).
The agent receives a real-valued reward 𝑅(𝑠𝑡 , 𝑎𝑡 ) = 𝐶 (𝑤 𝑗 ) × 𝑆 (𝑎𝑖 ),
where 𝐶 (𝑤 𝑗 ) is the predefined weight of the selected word, and
𝑆 (𝑎𝑖 ) is the contribution score of the agent. The weight of a word is
calculated as𝐶 (𝑤 𝑗 ) = 𝛼×𝑓𝑙𝑒𝑛+(1−𝛼)×𝑓𝑓 𝑒𝑞,where 𝑓len and 𝑓freq are
the Min-Max normalized length and frequency factor of the word,
respectively. The frequency factor is determined from the number of
occurrences of the word in the Gutenberg corpus, which is a widely
used story corpus. We use the Gutenberg corpus because it provides
a large collection of narrative texts, enabling an accurate estimation
of word frequency and complexity in storytelling contexts. TheMin-
Max normalization ensures that the length and frequency factors
are scaled between 0 and 1, maintaining consistency across the
word selection process. Here, 𝛼 is the relative weight between the
length and frequency factors. Here, 𝑆 (𝑎𝑖 ) is the agents contribution
score that can be derives the interaction history.

The robot policy defines the strategy for word allocation. In each
state 𝑠 = ⟨𝑎𝑖 ,𝑊𝑟 ⟩, the policy 𝜋 (𝑠) determines which word to assign
to the agent. The goal is to find a policy 𝜋∗ that maximizes the
cumulative reward over the word distribution process. The robot
aims to find an optimal policy 𝜋∗ that maximizes the expected
cumulative discounted reward:

𝜋∗𝑅 = argmax
𝜋

E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝜋 (𝑠𝑡 ))
]
. (4)

By solving the MDP, the robot derives a policy 𝜋𝑅 that maps
states to robot actions, i.e., 𝑎𝑅 = 𝜋𝑅 (𝑠𝑡 ), This policy guides the ro-
bot’s actions by accounting for the predicted preferences of human
agents, making the robot an adaptive collaborator.

4.2.2 Preference Probability Estimation. In the collaborative story-
telling game, each human participant chooses a theme from a set
of themes, T = {adventure, fairy tale, teamwork,mystery}. The ro-
bot agent also randomly selects a theme from the theme set. The
human agent’s theme choice is unknown to the robot, and the robot
tries to estimate the theme based on the interaction history.

At the start of the game, the robot assumes a uniform distribution
over the human participants’ theme choice, i.e.,𝑇𝐻𝑖 ∼ Uniform[T ].
As the game progresses, we update the distribution over 𝑇𝜅 by
leveraging a large language model, using the text prompt 𝑥𝑡 , and
calculating the theme distribution as 𝑝 (𝑇𝜅

𝑡 | 𝑥𝑡 ) For each agent
𝜅 ∈ Γ, we sample a theme, augment it with the prompt, and feed
the prompt to a large language model (LLM) to obtain a distribution
over the agent’s word choice preferences:

𝑝 (𝑃𝜅𝑡 | 𝑥𝑡 ) = LLM(𝑥𝑡 ).
Additionally, we also estimate the agent’s contribution level,

which is modeled as a distribution over the set of levels, 𝐿 =

{very poor, poor,moderate, good, very good}. A mapping function
𝐹 : 𝐿 → [0, 1] maps each contribution level to a real value.

4.2.3 Generating Robot Narrative. The policy 𝜋∗
𝑅
provides the al-

location of agent-word pairs based on the agents’ preference dis-
tribution. We prompt the LLM with the robotic agent’s currently
selected word and the predicted word for the next agent, along with
the current state of the story. The query in the prompt asks the LLM
to generate the robotic agent’s narrative using the robot’s chosen
word and theme while also considering the predicted words for the
next agent. This ensures that the robot’s narrative is intuitive for
the next agent to build upon.

By generating the robot’s narrative in alignment with human
agents’ predicted preferences, and as the allocation is derived from
a policy learned by solving the MDP (which encodes all agents’
preferences), the method ensures that the resulting story remains
coherent with respect to all agents’ themes. As the robotic agent
continually updates its estimates of other agents’ themes and word
preferences, this approach guarantees adaptability in the robot’s
actions.

4.3 Prompt Design
To design effective prompts while minimizing invalid completions,
we adhered to guidelines provided in prior works [80]. Our prompt
design encompassed several key components: a detailed descrip-
tion of the collaborative storytelling game, including its rules and



the features of the robot agent; the interaction history ℎ𝑡 and the
current state 𝑠𝑡 of the collaborative task; and a query 𝑞𝑡 to guide
the LLM’s response. In line with [80], we structured the prompt to
limit valid completions to elements of 𝑧𝜅 , assigning a single token
label to each element of 𝑧𝜅 . For theme prediction, we employed
a multiple-choice format, while for extracting agents’ contribu-
tion levels, we used a 5-point Likert scale. Additionally, to extract
the preference distribution over remaining words, the LLM was
prompted to provide the probability of each word being associ-
ated with the predicted theme. To avoid invalid completions, we
instructed the LLM to adhere to a strict format: “word: probability,”
and any deviations from this format were automatically detected
as errors.

5 HUMAN-AGENT INTERACTION STUDY
5.1 Experimental Procedure
We evaluated our approach (preference-aware decision-making
approach) against a myopic baseline in a real human-robot collabo-
ration task conducted in our lab. The preference-aware approach
leverages human preferences to optimize long-term team perfor-
mance, following the policy outlined in Sect. ??. In this approach,
the agent infers human preferences using an LLM and formulates a
policy by solving an MDP that accounts for the long-term expected
rewards of all agents. In contrast, under the myopic condition, the
agent disregards human preferences and follows a short-sighted
policy, optimizing Equation 9 by assuming equal contributions from
all agents. The experiment features a single factor (Robot Policy)
with two levels. We designed a within-subject repeated measure
study involving teams of two humans and a Nao humanoid robot.
Each team participated in two tasks, each with a different robot
policy. The tasks were counterbalanced, and each group was ini-
tially assigned the preference-aware or myopic condition as their
starting scenario. We made the following hypotheses:

H1. Objective Measure of Task Performance: The task perfor-
mance of the human-robot teamwill be better than the baseline con-
dition, i.e., the preference-aware strategy will enable participants
to produce high-quality stories with greater robot contribution
compared to the baseline strategy.

H2. Subjective Performance Rating: Participants will rate the
preference-aware strategy higher in terms of collaboration fluency,
task experience, perceived robot competence, and interactivity com-
pared to the baseline strategy.

Pre-Task Survey: Before starting the study, participants re-
viewed consent documents and task instructions. They then com-
pleted a pre-task survey to collect demographic information and
details about their prior experience with robots. Participants were
also asked to select a theme from a list of story themes and create
a narrative using a given word based on the chosen theme. This
narrative was later used to assess individual performance before
the main task.

Human-Agent Collaborative Task Session: In this session,
two human participants and the robot collaborated in a sequential
storytelling game. A client-server system facilitated the coordina-
tion between the participants and the robot, while an interactive
GUI displayed a storyboard containing the available words. Par-
ticipants used the GUI to select words and continue the story in

alignment with the chosen theme. The GUI also allowed partici-
pants to record their narratives, which were sent to the server, and
view the current story with the narrator’s name, previously selected
words, and the team’s accumulated points. The robot implemented
either the preference-aware or myopic strategy during the game.
Turns were taken clockwise, starting with the robot, with each
participant given 30 seconds to think before continuing the narra-
tive. The participant who selected the last word was responsible for
concluding the story. At the start, the robot greeted the participants
and explained the game rules. Upon task completion, the robot
thanked participants for their participation and contributions.

In-Task Survey: After each task, participants completed a in-
task survey to evaluate their experience. The survey included ques-
tions on various aspects, such as task engagement, collaboration
fluency, and robot-specific assessments, using a 5-point Likert scale.
Additionally, participants participated in a recall session, where
they were asked to recall the story’s main characters and key ideas.

Post-Session Survey: After completing both tasks, participants
filled out a post-session survey. They were asked to choose the
story they preferred from the two tasks and provide an explanation
for their choice.

5.2 Participants
We conducted a human-agent collaborative storytelling study to
evaluate our proposed approach. A total of 40 adults (2 people per
team, resulting in a total of 20 teams) participated in the study,
comprising 26 males (65%), 13 females (32.5%), and 1 individual
(2.5%) who preferred not to disclose their gender. The mean age
of the participants was 25 years (SD = 3.99). All participants were
required to be fluent in English, available for in-person participa-
tion, and at least 18 years old. The sample consisted primarily of
university students. Participants self-reported their experience with
robots on a 5-point Likert scale (1: no experience, 5: expert-level
experience), yielding an average score of 2.45. Each session lasted
approximately one hour, and participants received a $15 gift card
for their time. The study protocol was approved by the Institutional
Review Board.

5.3 Measures
5.3.1 Objective Measures. To examine the impact of agent poli-
cies on participants’ task performance and task quality within the
framework of a storytelling task, we utilized six key metrics: story
completion time, story length, robot narrative length, human par-
ticipant narrative length, Narrative Structure Score (NSS), and story
quality score. Metrics such as story completion time, story length,
and narrative lengths were employed to assess participant produc-
tivity and engagement, while the NSS and story quality score were
used to evaluate the coherence, creativity, and overall effective-
ness of the produced stories. For NSS, we applied a coding scheme
adapted from previous research on narrative structures [33, 36, 37].
For a given session 𝑠 and participant 𝑖 , the NSS was calculated as fol-
lows: 𝑁𝑆𝑆𝑠,𝑖 =

Mentioned(CoreCharacters + CoreIdeas)
All(CoreCharacters + CoreIdeas) , which captures

participants’ ability to logically recount key plot elements. A perfect
NSS score of 1.0 indicates that all core characters and ideas were
mentioned. To assess story quality, we employed the average scores
provided by three large language models (LLMs): Claude 3.5 Sonnet



[4] and Gemini 1.5 (Flash and Pro) [62]. Each model was given a
standardized prompt to evaluate the stories generated under the
two different robot policies and assign a score on a scale of 1 to 10.
Notably, GPT-4 [1] was excluded from this evaluation to avoid bias,
as parts of the robot’s narrative incorporated into the stories were
generated using this model.

5.3.2 Subjective Measures. To evaluate participants’ perceptions of
the agents, we employed a subset of items from a subjective fluency
metric scale. This subset included a series of semantic differential
scales designed to assess key dimensions such as human-agent flu-
ency, agent relative contribution, trust in agent, human-agent bond,
and goal alignment, all rated on a five-point Likert scale [25]. Ad-
ditionally, we assessed participants’ perceived task engagement,
interactivity, and the agent’s competence using a similar five-point
Likert scale (1 = strongly disagree, 5 = strongly agree). These mea-
sures were adapted from established frameworks in the literature
[69, 70]. Together, these subjective evaluations captured partici-
pants’ attitudes towards the agents and their collaborative strategies
during task performance.

6 RESULTS AND ANALYSIS
6.1 Task Performance
The paired-samples t-tests comparing the effects of the preference-
aware strategy and the myopic baseline on collaborative task per-
formance revealed mixed results. For story completion time, the
preference-aware strategy (M = 542.01, SD = 185.75) took longer
than the baseline (M = 494.30, SD = 115.26), with a mean difference
of 47.72 (SD = 162.98), though this difference was not statistically
significant, t(19) = 1.309, p = .103, as shown in Fig. 4(a). In contrast,
the preference-aware strategy produced significantly longer sto-
ries (M = 353.90, SD = 97.60) compared to baseline (M = 264.55,
SD = 99.95), with a mean difference of 89.35 (SD = 108.71), t(19) =
3.676, p < .001, as illustrated in Fig. 4(b). Human contribution was
slightly higher in the preference-aware strategy (M = 238.00, SD =
92.86) than the baseline (M = 222.85, SD = 96.58), but this difference
was not statistically significant, t(19) = 0.716, p = .241, as shown in
Fig. 4(c). However, robot contribution was significantly greater in
the preference-aware strategy (M = 115.90, SD = 37.68) compared
to baseline (M = 41.70, SD = 7.09), t(19) = 8.851, p < .001, as shown
in Fig. 4(d). Story quality also improved significantly under the
preference-aware strategy (M = 7.10, SD = 0.29) compared to base-
line (M = 6.52, SD = 0.71), t(19) = 3.28, p = .002, as illustrated in
Fig. 4(e). Finally, there was no significant difference in story recall
scores (NSS) between the preference-aware (M = 0.62, SD = 0.22)
and baseline strategies (M = 0.65, SD = 0.22), t(39) = -0.731, p = .234,
as seen in Fig. 4(f).

Summary: The preference-aware strategy produced notably
longer stories and significantly enhanced the robot’s contribution.
These findings suggest that the preference-aware approach fosters
more engaging and elaborate narratives, with the robotic agent
playing a more active role. However, this strategy didn’t signifi-
cantly affect task completion time, human contribution, or recall
scores. Interestingly, while the robot’s involvement increased sub-
stantially, human participation remained consistent, indicating a

Figure 4: Box plot on participants task performance for the
Myopic baseline (B) and Preference-Aware (P) strategies. Hori-
zontal lines represent significant pairwise comparisons. In-
dependent variables: (a) Story Time, (b) Story Length, (c) Hu-
man Contribution, (d) Robot Contribution, (e) Story Qual-
ity, (f) Recall Score. The significant values are shown in *
(∗ = 𝑝 < .05, ∗∗ = 𝑝 < .01, ∗ ∗ ∗ = 𝑝 < .001).

more balanced collaboration. This balance and improved story qual-
ity suggest that the preference-aware strategy effectively enhances
the storytelling experience without overshadowing human input,
potentially creating a more satisfying and productive creative part-
nership between humans and AI.

6.2 Perceived Collaboration Fluency
A paired-samples t-test was conducted to examine perceived collab-
oration fluency between the preference-aware and baseline strate-
gies using several subjective fluencymetrics: Human-Robot Fluency,
Robot Relative Contribution, Trust in Robot, and the Bond and Goal
subscales of the Working Alliance for H-R teams. The results in-
dicate that the preference-aware strategy significantly improved
fluency (M = 4.27, SD = 0.80) compared to the baseline (M = 3.55, SD
= 1.09), t(38) = 4.89, p < .001, as shown in Fig. 5(b). However, robot
relative contribution was significantly lower for the preference-
aware strategy (M = 3.71, SD = 1.02) than for the baseline (M = 4.05,
SD = 0.97), t(38) = -1.736, p = .045, as depicted in Fig. 5(e). Trust in
the robot was significantly higher for the preference-aware strategy
(M = 4.12, SD = 0.76) compared to baseline (M = 3.53, SD = 1.09),
t(38) = 4.50, p < .001, as seen in Fig. 5(g). For the Bond subscale, the
preference-aware strategy (M = 2.756, SD = 0.67) indicate a signifi-
cantly higher rating than the baseline (M = 2.55, SD = 0.59), t(38) =
1.84, p = .037, as illustrated in Fig. 5(h). Lastly, performance ratings
were also significantly higher for the preference-aware strategy (M
= 3.35, SD = 0.53) than for baseline (M = 3.05, SD = 0.56), t(38) =
2.62, p = .006 for task-goal, as seen in Fig. 5(c).

Summary: The preference-aware strategy significantly outper-
formed the baseline in several perceived collaboration fluency met-
rics. It demonstrated superior performance in overall fluency, trust,
bonding, and performance measures, suggesting a more natural,
reliable, and effective collaborative experience. Notably, the robot
contribution scale, which measured agreement with "the human
was the most important team member," indicate lower scores for



the preference-aware strategy. This indicates that participants per-
ceived the robot agent as having a more significant role in the
collaboration when using this approach. This finding suggests that
the preference-aware strategy successfully balanced the robotic
agent’s contributions with human input, creating a more equitable
partnership where the human and the robotic agent were seen as
essential to the team’s success rather than the human dominating
the interaction.

6.3 Perceived Task Experience
A paired-samples t-test was conducted to compare task experience
ratings between the preference-aware strategy and the baseline. The
results indicate that the mean task experience for the preference-
aware strategy (𝑀 = 4.08, 𝑆𝐷 = 0.70) was significantly higher
than for baseline (𝑀 = 3.82, 𝑆𝐷 = 0.78), with a mean difference
of 0.26 (𝑆𝐷 = 0.59) as illustrated in Fig. 5 (f). This difference was
statistically significant, 𝑡 (38) = 2.73, 𝑝 = .005, indicating that
the preference-aware strategy led to a significantly better task
experience compared to the baseline strategy.

Summary: The analysis of perceived task experience demon-
strates that the preference-aware strategy significantly enhanced
participants’ overall enjoyment and engagement during collabo-
rative storytelling. With statistically considerably higher ratings
and a moderate effect size, this strategy outperformed the base-
line approach across various aspects of the experience, includ-
ing enjoyment, desire for task continuation, willingness to rec-
ommend, relaxation, surprise, and overall engagement. These re-
sults suggest that by tailoring LLM responses to user preferences,
the preference-aware strategy improved the quality of the stories
produced and made the creative process more rewarding and im-
mersive. This enhanced experience aligns with earlier findings of
improved collaboration fluency and story quality. This indicates that
the preference-aware approach creates a more satisfying, engag-
ing, and user-centered environment for human-agent collaborative
storytelling.

6.4 Perceived Robot Competence and
Interactivity

A paired-samples t-test was conducted to compare perceived com-
petence and interactivity scores between the preference-aware and
baseline strategies. The results indicated that the mean competence
score for the preference-aware strategy (M = 4.15, SD = 1.02) was
significantly higher than for the baseline (M = 3.51, SD = 1.29),
with a mean difference of 0.63 (SD = 1.20), t(36) = 3.20, p = .001,
as shown in Fig. 5(a). Similarly, the robot’s interactivity score was
significantly higher for the preference-aware strategy (M = 4.32, SD
= 0.67) compared to the baseline (M = 3.73, SD = 1.15), with a mean
difference of 0.59 (SD = 1.04), t(36) = 3.45, p < .001, as illustrated in
Fig. 5(d).

Summary: The analysis of perceived robot competence and
interactivity demonstrates that the preference-aware strategy sig-
nificantly enhanced participants’ perceptions of the robot in both as-
pects. With statistically considerably higher ratings and large effect
sizes, participants viewed the robot as more knowledgeable, compe-
tent, responsive, and interactive when it employed the preference-
aware approach. This suggests that by tailoring its responses to

Figure 5: Box plot on participants perception for the Myopic
baseline (B) and Preference-Aware (P) strategies. Horizontal
lines represent significant pairwise comparisons. Indepen-
dent variables: (a) Competence, (b) Fluency, (c) Task Goal,
(d) Interactivity, (e) Robot Relative Contribution, (f) Task
Experience, (g) Trust, (h) Bonding. The significant values are
shown in * (∗ = 𝑝 < .05, ∗∗ = 𝑝 < .01, ∗ ∗ ∗ = 𝑝 < .001).

user preferences, the robot appeared more capable of understand-
ing and contributing meaningfully to the storytelling task while
engaging more dynamically with its human partner. These findings
align with earlier collaboration fluency and task experience results,
reinforcing that the preference-aware strategy creates a more com-
petent and engaging robotic collaborator. This improved perception
of the robot’s abilities and interactivity likely contributes to the
higher trust, enjoyment, and overall satisfaction reported in the
human-robot collaborative storytelling experience.

6.5 Qualitative Analysis
We collected qualitative data through open-ended questions in
the post-task survey, capturing participants’ evaluations of two
stories created using different robot collaboration strategies. We
performed open coding and thematic analysis on the responses [8,
17, 58]. Two team members independently reviewed the responses,
allowing codes to naturally emerge. After multiple iterations, we
clustered related codes into broader themes and organized the
findings accordingly.
Coherence and Engagement in Storytelling: Participants high-
lighted the importance of coherence and meaningful story flow
in their evaluations. For instance, several participants appreciated
when the robot aligned with the overall narrative, such as P14,
who mentioned, “The flow of the story for the second one was bet-
ter and ended up creating a meaningful story.” Others noted how
the robot’s coherence made the task easier. P27 said, “The robot
followed my chain of thought and developed the plot.” In contrast,
some participants criticized instances where the robot failed to
maintain coherence, with P11 noting, “The second story seemed to
ignore the context we gave it.” This feedback suggests that partic-
ipants value a collaborative storytelling approach, with coherent
storylines enhancing engagement and ease of task completion.
Adaptability and Context Awareness: The robot’s ability to
adapt to the context and direction set by human collaborators was



highly valued. Participants appreciated when the robot could un-
derstand and work within the established narrative framework. P34
expressed this by saying, "It followed my intuition and story goal of
mine." P26 highlighted the importance of context awareness, noting,
"As it used the same context I was intending to continue the narrative."
These examples demonstrate the significance of the robot’s abil-
ity to align with and support the human collaborators’ narrative
intentions.
Detailed and Supportive Contributions: Participants often pre-
ferred more substantial and detailed contributions from the robot,
especially when these inputs helped set up the next part of the story.
P22 noted, "The robot’s contributions were more detailed and overall
had more interesting content. This allowed me to be more creative."
P18 appreciated the robot’s supportive role, saying, "The robot gave
longer sentences and actively tried to help us complete the story by
giving sentences that related to the unused words." These comments
highlight the value of robot contributions that not only add depth
to the story but also facilitate human creativity.
7 DISCUSSION
In this work, we proposed amethod to incorporate human team pref-
erences in robotic agents’ decision-making in collaboration tasks.
We also examined the method’s effectiveness in a real human-robot
collaborative storytelling task. Analyzing both task performance
and subjective user experiences, we uncovered several key insights
regarding the interaction between adaptive decision-making, task
engagement, and collaboration fluency in human-robot teams.

Preference-aware strategies improve task performance and
story quality: Our findings show that using a preference-aware
strategy significantly improved the quality of the collaboratively
created stories and enhanced overall task performance. Participants
produced longer and more coherent narratives when the robot
adapted its decisions based on the estimated preferences of human
collaborators. This supports our hypothesis H1, as the preference-
aware strategy enhanced the robot’s contribution and led to better
overall team performance and higher narrative quality compared
to the baseline strategy. The improvement in story quality under-
scores the importance of adaptive decision-making, especially in
tasks where creative contributions need to align with human ex-
pectations.

Balancing human and robot contributions enhances collabo-
ration fluency: Our results indicate that balancing contributions
between humans and robots is crucial for successful collaboration.
In the preference-aware condition, the robot contributed signifi-
cantly to the story without overshadowing the human participants,
leading to higher ratings of collaboration fluency. This finding
supports hypothesis H2, which posits that the preference-aware
strategy would foster a more natural and balanced interaction be-
tween humans and robots, improving team dynamics. By making
contributions aligned with human preferences, the robot helped cre-
ate an environment of shared responsibility, enhancing engagement
and fluency in the collaborative process.

Task engagement and perceived relevance of robot contribu-
tions: Interestingly, while the preference-aware strategy improved
task performance, it also significantly enhanced participants’ sub-
jective experience. Participants rated the robot’s contributions as

more relevant and reported greater engagement when the robot
considered their preferences. This finding supports both H1 and
H2, as it demonstrates that the preference-aware strategy improves
objective outcomes (H1) and enhances the subjective experience
of collaboration (H2). The robot’s ability to align its actions with
the participants’ narrative goals made the interaction feel more
intuitive and satisfying, highlighting the importance of considering
both performance and user experience in human-robot interaction
design.

Importance of Adaptability and Context Awareness in Collab-
orative Tasks: The robot’s ability to adapt to the evolving narrative
context and align its actions with human collaborators’ intentions
was critical to the success of the storytelling task. Participants re-
sponded positively when the robot demonstrated an understanding
of the direction they intended for the story and contributed in a
way that supported the narrative flow. This adaptability allowed
the robot to maintain coherence in the story, enhancing the overall
quality and making the collaboration feel more natural. The robot’s
context awareness was highly valued, as it helped the team stay
aligned on a common storyline, fostering a sense of partnership
between humans and robots. This aligns with our hypothesis H2,
emphasizing the importance of fluency and interaction quality in
human-robot collaboration. The ability of the robot to interpret and
extend the context set by human collaborators also contributed to
higher engagement and task satisfaction. These findings highlight
the importance of designing robotic agents that can dynamically
respond to the task environment and human input, particularly
in creative and interactive tasks where maintaining coherence is
essential for team success.

8 CONCLUSION
Integrating human preferences into robot decision-making can sig-
nificantly enhance collaboration quality and task performance in
human-robot teams. In this work, we demonstrated that a preference-
aware strategy, which adapts the robot’s actions based on par-
ticipants’ preferences, improves story coherence, participant en-
gagement, and overall collaboration fluency in a storytelling task.
The robot’s ability to align with human intentions created a more
balanced and satisfying collaborative experience. In contrast to
baseline approaches, this method promotes a deeper partnership
between humans and robots by dynamically adjusting contributions
to support human creativity and task goals. Our findings suggest
that adaptive strategies considering human input can improve both
the objective outcomes and the subjective collaboration experience.
Moving forward, the qualitative insights from this study will inform
the design of more refined prompts for future robot interactions, en-
suring a deeper understanding of human preferences. Additionally,
the stories generated during the study provide valuable data for
training models to further personalize robot behaviors in real-time.
Future work will focus on extending these preference-aware strate-
gies to other collaborative tasks and exploring more sophisticated
methods for learning and predicting human preferences from inter-
action data to enhance human-robot collaboration across various
contexts.
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