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Abstract

The replication crisis in social and behavioral sciences has raised concerns about the

reliability and validity of empirical studies. While research in the literature has explored

contributing factors to this crisis, the issues related to analytical tools have received less

attention. This study focuses on a widely used analytical tool - confirmatory factor

analysis (CFA) - and investigates one issue that is typically overlooked in practice:

accurately estimating factor-loading signs. Incorrect loading signs can distort the

relationship between observed variables and latent factors, leading to unreliable or invalid

results in subsequent analyses. Our study aims to investigate and address the estimation

problem of factor-loading signs in CFA models. Based on an empirical demonstration and

Monte Carlo simulation studies, we found current methods have drawbacks in estimating

loading signs. To address this problem, three solutions are proposed and proven to work

effectively. The applications of these solutions are discussed and elaborated.

Keywords: replication crisis, factor loading signs, confirmatory factor analysis,

identification methods
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Are the Signs of Factor Loadings Arbitrary in Confirmatory Factor Analysis? Problems

and Solutions

Introduction

The replication crisis in psychology has aroused great attention to the lack of

reproducibility in empirical studies across social and behavioral sciences, as well as in other

scientific disciplines. This raises concerns about the reliability and validity of empirical

research within these fields (Cockburn et al., 2020; Oberauer & Lewandowsky, 2019).

Traditionally, replication, the practice of repeating a study to confirm its finding, is the

bedrock of scientific validation. Recently, however, more and more previously accepted

findings have proven difficult or impossible to replicate (Camerer et al., 2018; Open Science

Collaboration, 2015; Youyou et al., 2023). Open Science Collaboration (2015) found a

replication rate of 36% among 97 experiments from papers published in 2008 in three

high-ranking psychology journals. Nosek et al. (2022) found only 64% of 307 experiments

replicated. Even some famous studies, like the social psychological study "elderly-walking"

conducted by social psychologist John Bargh and colleagues, and its relevant studies failed

to replicate, casting doubts on the theory of the goal priming effect (Bargh, Chen, &

Burrows, 1996; Harris et al., 2013; Muthukrishna & Henrich, 2019; Pashler et al., 2012).

Many studies have investigated the problem of replication, identifying factors that

may contribute to it, including p-hacking or Cherry-Picking results, publication bias, low

statistical power, questionable research practices, inadequate research training, failure to

share data and methods, pressure to publish, complexity of scientific research, etc. For

instance, p-hacking, manipulating data of statistical analyses to achieve a significant result

(p < .05; Crane, 2018), may lead to non-replicable research outcomes. A researcher may

analyze data in various ways but only report a significant result or stop collecting data as

soon as a significant result is found. Klein et al. (2018) discovered that among 28 classic

and contemporary published findings, 54% of the replications had statistically significant

results with a significance level of p < .05. Publication bias means that journals tend to
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publish papers with significant/positive results rather than non-significant/negative results

(Wagner III, 2022). This leads researchers to pursue significant outcomes, sometimes

regardless of rigorous methodology. Franco, Malhotra, and Simonovits (2014) found that

only 20% of the studies published in social sciences journals reported non-significant

results, and 60% of the studies discovered non-significant results but never reported them.

In practice, although a study may yield significant findings, the associated statistical power

could be low (Anderson & Maxwell, 2017), meaning there is a high probability of failing to

reject a false null hypothesis in the future. A meta-analysis of 44 reviews of statistical

power observed a mean statistical power of 0.24 to detect a small effect size (d = .20) with

a type I error rate of α = .05 (Smaldino & McElreath 2016).

Although many factors leading to the replication crisis have been investigated, few

studies have considered the issues with analytical tools (Van Lissa et al., 2021). Analytical

tools, comprising statistical methods and software, are the backbone of empirical research,

allowing scientists to discover patterns, make inferences, and establish relationships among

variables based on the collected data (Ali & Bhaskar, 2016; Wen et al., 2018). Reliable and

consistent use of analytical tools ensures robust research outcomes. If a study uses flawed

or inappropriate statistical methods, its findings could be artifacts of the analysis rather

than true reflections of underlying phenomena (Tang & Wen, 2020; Wen et al., 2019).

Marcoulides and Yuan (2023) highlighted this issue by demonstrating that many structural

equation models, previously considered having ’good fit’ based on model fit criteria in

published psychological studies, failed to reproduce when re-evaluated through equivalence

testing.

In this study, we focus on one of the most popular analytical tools in social and

behavioral sciences, confirmatory factor analysis (CFA), which has been implemented in

every structural equation modeling program, such as Mplus, lavaan, and OpenMx

(Asparouhov & Muthen, 2007; Boker et al., 2021; Rosseel, 2012). This technique is

particularly important in the development and validation of measurement instruments,
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such as psychological tests and surveys, because it can test theoretical expectations about

the relationships between variables and validate the structure of a test or survey (Lin et al.,

2020). Based on CFA models, we can test measurement invariance to check whether the

measurement of the psychological construct is invariant across groups or times

(Vandenberg & Lance, 2000). CFA is broadly applied in practice, as reflected in the

growing number of studies in databases. A search for "confirmatory factor analysis" in the

PsychINFO database yields 456 articles from 1961-1990, 8820 articles from 1991-2010, and

23,652 articles from 2011 to now.

Despite the CFA’s popularity and well-established methodological foundations, there

are still potential problems with this analytical tool. When testing the measurement

invariance (MI) using CFA, one important step is to check factor loading invariance, which

requires that factor loadings are the same across groups or time. For instance, it is

discussed in the literature that the Children’s Depression Inventory (CDI) is valid to have

a one-factor structure with CFA (Stumper et al., 2019) among adolescents, and the factor

loadings of the one-factor structure are invariant between 13-year-old and 16-year-old

adolescents. However, when we replicated the study to test whether the structure of CDI is

invariant in the same data but without missingness, the factor loadings in the 13-year-old

group were all negative, but in the 16-year-old group, they were all positive. The absolute

values of the corresponding loadings between the two groups were very close. However,

according to the definition, we were not able to conclude that these loadings are invariant

between the two groups. The natural question is, do factor loading signs matter or not?

This question serves as the motivation for our study.

In CFA, factor loadings represent the strength and direction of the relationship

between observed variables and latent factors. A positive loading indicates that the

observed score increases as the latent factor score increases. A negative loading indicates

that the observed variable score decreases as the latent factor score increases. Thus, an

incorrect sign can misinterpret the relationship between an observed variable and the latent
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factor. If the loading sign in a CFA model is inconsistent or "incorrect" (e.g., not in line

with theoretical expectations or prior findings), subsequent analyses based on this model

can produce unreliable or invalid results. Furthermore, if other researchers attempt to

replicate the study and find different signs of factor loadings or can’t reproduce the results,

they may not trust the original findings.

Several previous studies have noticed the change of factor loading signs from the

perspective of mathematical reasoning. Jöreskog (1969, 1979) proposed some constraints to

achieve “local” identification except sign changes in the CFA model. Peeters (2012a)

proposed an additional sign constraint that fixes factor loadings, either strict positivity or

strict negativity, to achieve global identification. This constraint has since been adopted in

innovative latent factor models, including Bayesian inequality-constrained CFA (Peeters,

2012b), factor analysis neural drift diffusion models (Turner et al., 2017), and meta-analytic

structural equation models (Uanhoro, 2024). However, CFA has two primary fixed

methods of model identification: fixed factor variance and fixed factor loading (Steiger,

2002). The sign constraint primarily addresses the method involving fixed factor variance,

neglecting the alternative approach (Graves & Merkle, 2022). Moreover, most software

packages capable of conducting CFA analyses do not account for the potential issue of sign

reversal, potentially resulting in inconsistent or unexpected signs of factor loadings.

This article aims to investigate the reasons behind the factor loading sign issue in

CFA, considering both model identification methods, and propose solutions to improve the

reliability and validity of empirical research findings by ensuring consistency of factor

loading signs. Furthermore, using both empirical demonstration and Monte Carlo

simulation studies, this article will not only highlight the limitations of current analytical

tools in handling sign reversals but also advance the understanding of the underlying

causes of sign inconsistencies. The proposed solutions will be tested and validated in

simulation and empirical studies and implemented in most CFA software packages, offering

researchers practical strategies to minimize the impact of sign reversal on the
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interpretation of CFA results.

The outline of this article is as follows. We begin with a real-data example to

demonstrate the factor loading sign problem in CFA models. Next, we will briefly

introduce the estimation method for CFA models, investigate the reasons for the sign

reversal problem, and propose solutions. Thereafter, two simulations will be conducted to

evaluate the impact of the problem and the effectiveness of these solutions. Then, the

empirical example will be re-analyzed to illustrate these solutions in most CFA software

packages. Last, the article discusses the prevalence of the factor loading sign problem and

provides practical recommendations for researchers.

An Empirical Example

In this section, we provide a detailed illustration of the estimation problem in a CFA

model using a real data example from the study conducted by Stumper et al. (2019). The

factor structure of the CDI was investigated using a sample of 227 adolescents aged

approximately 13 at baseline (T1) and 16 at follow-up (T2). The CDI has 27 items, scaling

0-2. Stumper et al. (2019) used a weighted least square mean and variance (WLSMV)

estimation method in Mplus (Muthén & Muthén, 2017) to analyze the data because the

observed variables were binary. To replicate the analysis, we first analyzed the full data,

including missing values, using diagonally weighted least squares (DWLS; Rosseel, 2012) in

the lavaan package in R (see the codes in our GitHub), which in Mplus is given by the

WLSMV estimators (Asparouhov & Muthen, 2007). As shown in Table 1, the loadings from

the one-factor model at both T1 and T2 were positive. However, after removing 12 subjects

who did not finish the CDI at age 16, the loadings at T1 became negative, but at T2, they

were still positive. Note that although this example refers to missing data, it aims to

provide two datasets, illustrating the opposite signs of the factor loadings between groups.

When testing measurement invariance, researchers could not conclude that these

loadings are invariant between T1 and T2 because, for the data containing missing values,

https://github.com/DandanTang0/sign-of-factor-loading/tree/main/example
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the loadings are in the same direction, whereas for the data without missingness, they have

different signs. Such an observation could lead researchers to presume inaccuracies in the

estimation of loadings at T1, particularly when the absolute values of these loadings

appear similar across time points, potentially refusing further metric invariance testing.

Moreover, while this example presents similar absolute values of these loadings despite the

sign inconsistency, it is important to acknowledge the possibility of encountering practical

scenarios where both the absolute values differ significantly and the signs are inconsistent.

In such instances, researchers might be even more inclined to give up metric invariance

testing.

One of the most popular methods to evaluate measurement invariance is

multiple-group CFA. With this method, metric invariance is often assessed by a chi-square

difference test or by comparing fit indices (such as the Comparative Fit Index and Root

Mean Square Error of Approximation). However, the chi-square difference test may not be

a valid and reliable approach for assessing MI. Yuan and Chan (2016) found that the

chi-square difference test performs poorly and fails to control either type I or type II errors

in MI testing. Furthermore, for fit indices, some researchers proposed different criteria, and

some researchers questioned fit indices entirely because of their lack of precision (Putnick

& Bornstein, 2016). There is no consensus about the best fit indices or cutoff values for

alternative fit indices under all conditions. Thus, this method may not work well in testing

MI.

Additionally, the data with missingness and without missingness at T1 are from the

same population, but the signs of the loadings are opposite. This indicates that results

from a later analysis may not confirm the previous analysis. Researchers may even suspect

that removing the 12 subjects with missing values changed the sample distribution.
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Estimation Method

We will first introduce the estimation method for CFA models to understand the

problem of the factor loading signs. If the observed variables x are continuous, a CFA

model can be expressed as:

x = τ + Λη + ϵ,

where Λ is a vector of factor loadings, η is a vector of latent factors, τ is a vector of latent

intercepts, and ϵ is a vector of measurement errors. It is assumed that the measurement

error is normally distributed with mean 0 and variance Θ, namely, ϵ ∼ N (0, Θ).

If the observed variables x are categorical and have C categories, the CFA model can

be expressed as:

x∗ = τ + Λη + ϵ,

where x∗ is an underlying continuous variable that is related to x though a set of C + 1

thresholds, v = (v0, v1, ..., vC+1), and v0 = −∞ and vC+1 = ∞. The probability of x = c is

given as

p(x = c) = p(vc ≤ x∗ ≤ vc+1),

where c = 0, 1, ..., C. The covariance structure of the CFA model is

Σ = ΛΦΛ′ + Θ, (1)

where Σ is the covariance matrix implied by the CFA model, and Φ is the covariance of the

latent factors (Liu et al., 2022a).

Maximum Likelihood Estimation (MLE) is often applied to estimate model

parameters when the observed variables are continuous and normally distributed. MLE

aims to find the parameter values that maximize the likelihood function, meaning the

parameter values maximize the probability of observing the current sample data (Li, 2016;

Tang & Tong, 2023). In the CFA model, the likelihood function is given as

F = ln|Σ| − ln|S| + tr(SΣ−1) − p,
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where p is the number of the observed variables, and S is the covariance matrix of the

observed variables if the observed variables x are continuous (Liu et al., 2022b), or is the

covariance matrix of x∗ if the observed variables x are categorical.

When the observed variables are categorical, weighted least square (WLS) estimation

is often applied to estimate model parameters. WLS aims to find the parameter values that

minimize the fit function, meaning the parameter values minimize the difference between

the observed data and the theoretical model based on a weight matrix (Asparouhov &

Muthen, 2007; Li, 2016). In the CFA model, the fit function can be expressed by

Fwls = (s − σ(θ)′)W−1(s − σ(θ)),

where θ is the vector of model parameters, W is the weight matrix, σ(θ) is the

model-implied vector containing the nonredundant, vectorized elements of Σ, and s is the

vector containing the unique elements of sample statistics (i.e., threshold and polychoric

correlation estimates; Li, 2016). If W is a diagonal matrix, where off-diagonal entries are 0,

and diagonal entries remain the same, WLS will become WLSMV (Asparouhov & Muthen,

2007).

Problems and Solutions

Because the latent factor itself does not have a natural scale, Equation (1) is not

identified. To identify it, two approaches are often used in popular software for CFA, such

as lavaan, Mplus, and OpenMx (Asparouhov & Muthen, 2007; Boker et al., 2021; Rosseel,

2012). One approach is to fix the factor variance σ2
η, a diagonal element of the covariance

matrix Φ, to 1, and the factor means µη to 0, that is, fixed factor variance. Another

approach is to fix one of the factor loadings on each factor to 1, that is, fixed factor loading.

From Equation (1), we obtain

cov(xi, xj) or cov(x∗
i , x∗

j) = λiλjσ
2
η + σ2

ij, (2)

where i = 1, ..., p and j = 1, ..., p. Without loss of generality, we assume that when i = j,



SIGNS OF FACTOR LOADINGS 11

σ2
ij = σ2

i ; otherwise, σ2
ij = 0. When using the first fixing method to identify the model,

Equation (2) can be written as

cov(xi, xj) or cov(x∗
i , x∗

j) = λiλj + σ2
ij. (3)

If the covariance cov(xi, xj) or cov(x∗
i , x∗

j) is positive, Equation (3) indicates that λi and λj

should be both positive or negative. Whether positive or negative, the loadings are

correctly estimated, but the direction of the estimated loadings could be opposite. This

explains why the loadings at T1 from the data without missing values are all negative in

the empirical example. However, when factor loading signs are opposite, the interpretation

of the factor also has opposite meanings.

When using the second fixing method to identify the model, Equation (2) can be

written as

cov(x1, xj) or cov(x∗
1, x∗

j) = λjσ
2
η + σ2

1j. (4)

Equation (4) indicates that λj should keep the same sign as the covariance

cov(x1, xj) or cov(x∗
1, x∗

j). However, if the true value of the first loading is negative but

fixed to 1, this will also lead to a direction problem in the estimation. To solve this

estimation problem, we propose to fix a positive loading to 1, which can help other

loadings to be of the expected sign.

To fit a CFA model using MLE or WLS, an optimization algorithm iteratively adjusts

the parameter estimates to find the values that maximize the likelihood or minimize the fit

function (Kochenderfer & Wheeler, 2019). As shown by the symmetric curve in Figure 1,

the optimal solution can fall in the negative or positive range of the x-axis. To solve this

estimation problem, we propose to set the lower or upper bounds of the loadings to be

larger (smaller) than 0 when the true values of the loadings are expected to be larger

(smaller) than 0.

Furthermore, the optimization algorithm needs a starting value for each parameter.

The starting value is an initial guess for the parameter, and then the estimation procedure
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iteratively refines this starting guess to converge toward the parameter’s most optimal

value (Kochenderfer & Wheeler, 2019). Sometimes, algorithms can get stuck in "local"

solutions, which are specific to the region around the starting values, rather than finding

the "global" solution, which is the best solution overall (Arora et al., 1995). Figure 2 shows

parameter estimates can be negative when algorithms get stuck in "local" solutions at the

negative x-axis. To solve this estimation problem, we propose adjusting starting values to

obtain factor loading estimates with expected signs. In addition, a large positive or small

negative starting value may help obtain positive or negative estimates. We conducted

two Monte Carlo simulations to understand the estimation problem and proposed solutions

comprehensively. The first simulation study will assess how the estimation problem affects

the signs and consistency of factor loadings across the above CFA software under various

situations. The second simulation study will further assess our solutions to the problem of

factor loading signs in CFA.

Simulation 1: Investigating the Estimation Problem

Simulation Design

We conducted a Monte Carlo simulation study to systematically investigate the

estimation problems with different fixed methods in CFA. Regardless of continuous or

categorical observed variables, the CFA model has the same estimation problem. Thus, the

simulation focuses on continuous observed variables using MLE.

To illustrate the impact of the estimation problem on the direction of factor loadings

in the simplest form, this simulation used the simplest and perfectly identified model, a

one-factor CFA model with three continuous indicators, as the population model (see

Figure 3) from which the data were generated. This is because if such a fundamental

model has the problem of loadings’ signs related to starting values, it logically follows that

more complex and potentially unidentified models would encounter similar challenges. In

the population model, the absolute values of all the loadings |λk|(k = 1, 2, 3) were 0.7, the
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variance of the indicators σ2
k was 1, the variance of the latent factor σ2

η was 1, and the

intercepts were set at 0.

In the simulation, we varied the loadings in terms of their signs, creating four distinct

conditions:

Condition 1: All loadings are positive.

Condition 2: All loadings are negative.

Condition 3: One of the three loadings is negative.

Condition 4: Two of the three loadings are negative.

The sample size was set at 200 for the simulation study. For each condition, 500

datasets were generated. We fitted the population model to each dataset in three popular

CFA software packages, lavaan 0.6-16, Mplus 8.10, and OpenMx 2.21.8. These analyses

used various fixing techniques. In the fixing factor variance approach, we used both the

default starting values for factor loadings provided by the software packages and also

manually set these starting values. Therefore, to thoroughly assess the impact of starting

values on the direction of factor loadings, we used the default starting value, a positive

starting value of 1, and a negative starting value of -1. For the fixed factor loading

approach, the common default in most software is to fix the first-factor loading at 1. As a

result, the four methods used in this simulation are:

Method 1: Fixing factor variance with default starting values of the factor loadings.

Method 2: Fixing factor variance with starting values of the factor loadings set to 1.

Method 3: Fixing factor variance with starting values of the factor loadings set to -1.

Method 4: Fixing the first loading at 1.

Results

To evaluate the estimation problem with the fixed methods, we calculated the

directional consistency rate (DCR) to measure the possibility that the direction of the

loading estimates is the same as the direction of the true values among 500 replicates.
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DCR can be expressed by DCR = M
N

× 100%, where M is the number of factor loading

estimates with the same directional sign as the true values, and N is the total number of

factor loading estimates across all replicates. Table 2 presents the directional consistency

rates for four fixing methods under various conditions in lavaan. When using Method 4,

where the first-factor loading is fixed at 1, DCR was not computed for this loading as it

was fixed and cannot be freely estimated. Under various conditions, the DCR for each

loading was either 100% or 0%. A DCR of 100% implies that across the replicates, the

estimated factor loadings have the same directional sign (either all positive or all negative)

as the true factor loadings, which is complete consistency. Conversely, a DCR of 0%

indicates that each estimated loading is directionally opposite to its true value, which is a

complete lack of consistency.

Method 1 could lead to loading estimates with inconsistent signs. For Methods 2 and

3, if the sign of the starting values was not consistent with true factor loadings, these

loading estimates could have incorrect signs. For Method 4, the same directional

inconsistency could arise when the first loading was fixed to 1, but its population value was

negative. This implies that fixing a negative loading to 1 could mistakenly estimate

positive loadings as negative or vice versa. Thus, the simulation findings underscore the

potential drawbacks of these four fixing methods, particularly the risk of obtaining

estimated loadings with unexpected signs.

We further validated our findings by running the simulation using Mplus 8.10 and

OpenMx 2.21.8. Tables 3 and 4 display results largely consistent with those obtained using

lavaan. Although some difference is observed between Method 1 and 2, the overall results

from Mplus and OpenMx further validate our findings that these four fixing methods may

lead to loading estimates with inconsistent signs. Additionally, despite the unknown

default starting values in these three software packages, Method 1 still can not guarantee

the loading estimates in the expected directions.
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Simulation 2: Solutions to the Estimation Problem

Simulation Design

To address the issue of directional inconsistency in CFA factor loading estimates, we

will propose two practical solutions and one potential solution that can yield estimates in a

more interpretable and consistent direction. Furthermore, a Monte Carlo simulation was

conducted to assess the effectiveness of these three solutions to the estimation problems for

CFA. This simulation used the same population model as Simulation 1, with a sample size

of 200 and 500 datasets generated for each condition.

Solution 1: fixing a positive factor loading at 1. Our previous simulation

findings, particularly with Method 4, indicated that fixing a negative loading at 1 led to

inconsistencies in the directions of other loadings. Conversely, fixing a positive loading at 1

aligned other loadings in the expected directions. Therefore, we used this solution in

lavaan 0.6-16, Mplus 8.10, and OpenMx 2.21.8 for the population model under Conditions

1, 3, and 4, where not all loadings are negative.

Solution 2: setting bounds for factor loadings. This solution is to fix the

factor variance and set a lower bound for the inherently positive loadings and an upper

bound for the inherently negative loadings. For instance, specifying 0 as the lower and

upper bounds for positive and negative loadings, respectively. This solution is uniquely

implementable in the OpenMx R package, which allows setting the same bound for all

loading and a separate bound for each loading. Consequently, we used this solution in

OpenMx 2.21.8, using 0 as the bound under Conditions 1 and 2, where each condition has

the factor loadings with uniform signs. Specifically, we set the lower bound of 0 for all

loadings under Condition 1 and an upper bound of 0 under Condition 2.

Solution 3: adjusting starting values of factor loadings. The potential

solution is to fix the factor variance and set the starting values of the factor loadings in the

same direction as the true loadings. As suggested by our simulation results for Methods 2

and 3, setting a start value consistent with the direction of true loadings could steer the
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estimates toward the desired direction. Therefore, we used this solution in lavaan 0.6-16,

Mplus 8.10, and OpenMx 2.21.8 for each dataset under Conditions 1 to 4. Specifically, we

set a large positive start value of 1 for a true positive loading or a small negative start

value of -1 for a true negative loading.

Results

The DCR was again computed to evaluate the effectiveness of three Solutions. Tables

5 to 7 present the DCR results for three solutions under various conditions. Solution 1,

which fixes a positive factor loading at 1, successfully aligned other loading estimates in

their correct direction. In Solution 2, fixing factor variance with a lower bound of 0 or an

upper bound of 0 for all loadings effectively ensured that all loadings were consistently

positive or negative. Solution 3, fixing the factor variance and setting the starting values to

1 or -1, proved effective in shifting the loadings toward the desired direction. From these

findings, we concluded that Solutions 1 and 2 can solve the issue of directional inconsistency

in factor loading, and Solution 3 can obtain the preferred direction of factor loadings.

Reanalysis of the Empirical Example with the Solutions

In practice, we can use the three solutions to handle the issue of directional

inconsistency in factor loading estimates. However, not all proposed solutions can be

applied to popular CFA software packages. Specifically, lavaan and OpenMx support the

first solution for both continuous and categorical variables, while Mplus only supports

continuous variables. The second solution can only be applied in OpenMx. The third

solution can be used in these three software. However, OpenMx can not handle more than

20 categorical observed variables. Detailed implementation guidelines and codes are

available in the Appendix 1.

Since there are more than 20 categorical observed variables in the empirical example,

the second solution can not be applied in this example. Only Solutions 1 and 3 are used

through lavaan and Mplus (see the codes in our GitHub). For Solution 1, the first-factor

https://github.com/DandanTang0/sign-of-factor-loading/tree/main/example
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loading is fixed at 1 because the first item, Mood (Questions related to feelings of sadness

or happiness) and the latent factor of Children’s Depression have a positive relationship

given substantive psychological theory. For Solution 3, a positive start value of 1 is applied

because all the items have a positive relationship with the latent factor of Children’s

Depression. The re-analysis results are presented in Table 8. All loadings at T1 in the data

without missingness are positive. This implies that Solutions 1 and 3 work for this example

and the previous non-replicated results were due to how CFA was implemented.

Prevalence of the Issue and Practical Suggestions

From a mathematical standpoint, estimated factor loading directions in CFA models

appear to be no issue because the sign of the corresponding factor is also reversed.

However, when we consider the practical implications of factor loadings, the two fixed

methods may result in inconsistent signs. This inconsistency can pose challenges for

applied researchers who rely on these loadings for theoretical explanations or aim to

replicate previous findings in a meaningful way. However, The issue of estimating factor

loading direction in CFA models has often been overlooked in practice. Yet, its significance

cannot be overstated, especially in comparative and longitudinal studies. Comparative

research requires close attention to factor loading signs, particularly in measurement

invariance tests. As the practical example shows, ignoring the sign of factor loadings makes

it difficult to determine whether the loadings are invariant across groups or over time.

Furthermore, in longitudinal research, which tracks individual changes over time

(Fitzmaurice et al., 2012), inconsistent loading signs may distort true within-individual

changes. Additionally, the issue extends to cross-sectional studies where mismatched

loading signs can make it difficult to validate the structure of a scale (Lin et al., 2019).

Although the simulation studies used the simplest model to illustrate the impact of

the estimation problem on the direction of factor loadings and the effectiveness of three

solutions, we expanded our investigation to include two additional models: a two-factor
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CFA model and a three-factor CFA model, each with three indicators per factor. Our

simulation results across these varied model complexities consistently demonstrate that the

starting values’ impact on the direction of factor loadings remains unchanged, and three

solutions still work well. To make these supplementary results accessible, we have uploaded

the additional simulations to our GitHub repository for reference. Therefore, any study

using CFA should consider the problem of factor loading signs in case the results of this

study can not be replicated due to loading signs. Furthermore, this estimation problem is

not confined to CFA models but is also prevalent in other structural equation models, as

they employ similar estimation techniques. It is imperative to address the issue in all SEM

models to avoid a potential replication dilemma.

To address the problem of loading signs, we proposed three solutions to reflect the

true relationship between observed variables and latent factors. Even if this article only

discussed it in CFA models, the solutions can be applied in all structural equation models.

The first solution, fixing a positive loading at 1, can ensure that other loadings in the

model are in the expected direction. Using substantive theory, researchers can identify an

observed variable with a positive correlation with a latent factor and fix the loading on this

variable to 1. However, researchers must identify and fix one positive loading for each

latent factor. The second solution, fixing the factor variance and setting a bound for

loadings, can ensure that all loadings are in the correct direction. However, to set the right

bound for each loading, researchers must determine all the relationships between observed

variables and latent factors. The third solution, fixing the factor variance and setting the

starting values of loadings at larger values with the same direction as the loadings, leads

the loadings to the desired direction but does not guarantee it. Like the second solution, it

requires a comprehensive understanding of the relationships between observed variables

and latent factors.

https://github.com/DandanTang0/sign-of-factor-loading
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Appendix 1

Continuous variables. Suppose a one-factor model with three continuous

variables. This is the R code for Solution 1, a positive loading at 1 using lavaan package.

If the true value of the first loading is positive, the first loading can be fixed at 1 by

"auto.fix.first = TRUE"

# load package

l ibrary ( lavaan )

# read data

data <−

read . csv ( ’ data . csv ’ , header = T)

# CFA model f o r T1

CFA <− ’F=~x1+x2+x3 ’
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# The t rue va lue o f the f i r s t l oad ing i s

# p o s i t i v e , so the f i r s t l oad ing i s

# f i x e d at 1 by " auto . f i x . f i r s t = TRUE"

r e s u l t <− c f a (CFA, data = data ,

auto . f ix . f i r s t = TRUE, ordered = FALSE)

# p r i n t r e s u l t

summary( r e s u l t )

If the first loading is not positive, we can move a positive loading to the first place. for

example, if the loading on item x2 is positive, we can set the CFA model as follows:

CFA_r e l o a c t i o n <− ’F=~x2+x1+x3 ’

This is the R code for Solution 3 using lavaan package. The factor variance can be fixed

by "std.lv = TRUE", and the starting values of the loadings can be set at 1 or -1 by

"start(1)*" or "start(-1)*".

# s e t s t a r t va l u e s o f the

# load ing s at 1 by " s t a r t (1)∗"

CFA_start <− ’F=~ s t a r t (1 )∗x1+s t a r t (1 )∗x2

+s t a r t (1 )∗x3 ’

# f i x the f a c t o r var iance by " s t d . l v = TRUE"

r e s u l t <− c f a (CFA_start , data = data ,

s td . l v = TRUE, ordered = FALSE)

# p r i n t r e s u l t s

summary( r e s u l t )

This is Mplus code for Solution 1, fixing a positive loading at 1. If the true value of the

first loading is positive, the first loading is fixed at 1 by "@1".

! read data

DATA: FILE = data . dat ;
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! name observed v a r i a b l e s

VARIABLE: NAMES = x1−x3 ;

Model :

! f ix the f i r s t l oad ing at 1 by "@1"

F by x1@1 x2 x3 ;

If the first loading is not positive, we can move a positive loading to the first place. for

example, if the loading on item x2 is positive, we can set its loadings at 1 by "@1".

DATA: FILE = data . dat ;

VARIABLE: NAMES = x1−x3 ;

Model :

! f ix the second load ing at 1 by "@1"

F by x1 x2@1 x3 ;

This is Mplus code for Solution 3, fixing the factor variance by "@1" and setting the

starting values of the loadings to 1 or -1 by "*1" or "*-1".

DATA: FILE = data . dat ;

VARIABLE: NAMES = x1−x3 ;

Model :

! set the s t a r t i n g va lue s o f

! the l oad ing s to 1 by "∗1 "

F by x1−x3∗ 1 ;

! f ix the factor var iance by "@1"

F@1;

This is the R code for Solution 1, a positive loading at 1 using OpenMx package. If the

true value of the first loading is positive, the first loading is fixed at 1 by

"mxPath(from=c("F"), to=c("x1"), arrows=1, free=FALSE, values=1)".

# load package
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l ibrary (OpenMx)

# read data

data <− read . csv ( " data . csv " )

# name v a r i a b l e s and parameters

i n d i c a t o r s <− names(data )

l a t e n t s <− c ( "F" )

l oad ingLabe l s <−

paste ( "b_" , i nd i c a t o r s , sep=" " )

uniqueLabels <−

paste ( "U_" , i nd i c a t o r s , sep=" " )

meanLabels <−

paste ( "M_" , i nd i c a t o r s , sep=" " )

fac to rVarLabe l s <−

paste ( "Var_" , l a t en t s , sep=" " )

# b u i l d model

oneFactorRaw1 <− mxModel (

" S i ng l e ␣ f a c t o r ␣Model␣with␣Fixed␣Loading " ,

type= "RAM" ,

mani festVars=ind i c a t o r s ,

l a t entVars=la t en t s ,

mxPath( from=la t en t s , to=ind i c a t o r s ,

arrows=1, connect= " unique . b i v a r i a t e " ,

f r e e=TRUE, va lue s =.2 ,

labels=load ingLabe l s ) ,

mxPath( from=c ( "F" ) , to=c ( " x1 " ) ,

arrows=1, f r e e=FALSE, va lue s =1) ,

mxPath( from=ind i c a t o r s ,
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arrows=2,

f r e e=TRUE, va lue s =.8 ,

labels=uniqueLabels ) ,

mxPath( from=la t en t s ,

arrows=2,

f r e e=TRUE, va lue s =.8 ,

labels=factorVarLabe l s ) ,

mxPath( from=" one " , to=ind i c a t o r s ,

arrows=1, f r e e=TRUE, va lue s =.1 ,

labels=meanLabels ) ,

mxData( observed=data , type=" raw " )

)

oneFactorRaw1Out <− mxRun( oneFactorRaw1 )

# p r i n t r e s u l t s

summary( oneFactorRaw1Out )

If the first loading is not positive, we can move a positive loading to the first place. for

example, if the loading on item x2 is positive, we can set its loadings at 1 by

"mxPath(from=c("F"), to=c("x2"), arrows=1, free=FALSE, values=1)".

# b u i l d model

oneFactorRaw1 <− mxModel (

" S i ng l e ␣ f a c t o r ␣Model␣with␣Fixed␣Loading " ,

type= "RAM" ,

mani festVars=ind i c a t o r s ,

l a t entVars=la t en t s ,

mxPath( from=la t en t s , to=ind i c a t o r s ,

arrows=1, connect= " unique . b i v a r i a t e " ,

f r e e=TRUE, va lue s =.2 ,
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labels=load ingLabe l s ) ,

mxPath( from=c ( "F" ) , to=c ( " x2 " ) ,

arrows=1, f r e e=FALSE, va lue s =1) ,

mxPath( from=ind i c a t o r s ,

arrows=2,

f r e e=TRUE, va lue s =.8 ,

labels=uniqueLabels ) ,

mxPath( from=la t en t s ,

arrows=2,

f r e e=TRUE, va lue s =.8 ,

labels=factorVarLabe l s ) ,

mxPath( from=" one " , to=ind i c a t o r s ,

arrows=1, f r e e=TRUE, va lue s =.1 ,

labels=meanLabels ) ,

mxData( observed=data , type=" raw " )

)

This is the R code for Solution 3 using OpenMx package. The factor variance is

fixed to 1 by setting "free=FALSE and values=1" and the starting values of the loadings

are set at 1 by "free=TRUE and values=1".

# b u i l d model

oneFactorRaw1 <− mxModel (

" S i ng l e ␣Factor ␣model␣with␣Fixed␣Variance " ,

type= "RAM" ,

mani festVars=ind i c a t o r s ,

l a t entVars=la t en t s ,

mxPath( from=la t en t s , to=ind i c a t o r s ,

arrows=1, connect= " unique . b i v a r i a t e " ,
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# s e t the s t a r t i n g va l u e s o f

# the l oad ing s at 1 .

f r e e=TRUE, va lue s=1,

labels=load ingLabe l s ) ,

mxPath( from=ind i c a t o r s ,

arrows=2,

f r e e=TRUE, va lue s =.8 ,

labels=uniqueLabels ) ,

mxPath( from=la t en t s ,

arrows=2,

# f i x i n g f a c t o r var iance to 1 .

f r e e=FALSE, va lue s=1,

labels=factorVarLabe l s ) ,

mxPath( from=" one " , to=ind i c a t o r s ,

arrows=1, f r e e=TRUE, va lue s =.1 ,

labels=meanLabels ) ,

mxData( observed=data , type=" raw " )

)

the R code for Solution 2, a positive loading at 1 using OpenMx package. We can set the

lower bound of 0 by "lbound=0", or the upper bound of 0 by "ubound=0"

oneFactorRaw1 <− mxModel (

" S i ng l e ␣Factor ␣model␣with␣Fixed␣Variance " ,

type= "RAM" ,

mani festVars=ind i c a t o r s ,

l a t entVars=la t en t s ,

mxPath( from=la t en t s , to=ind i c a t o r s ,

arrows=1, connect= " unique . b i v a r i a t e " ,
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# s e t t i n g the lower

# bound o f the l o ad in g s >0.

f r e e=TRUE, lbound=0,

labels=load ingLabe l s ) ,

mxPath( from=ind i c a t o r s ,

arrows=2,

f r e e=TRUE, va lue s =.8 ,

labels=uniqueLabels ) ,

mxPath( from=la t en t s ,

arrows=2,

# f i x i n g f a c t o r var iance to 1 .

f r e e=FALSE, va lue s=1,

labels=factorVarLabe l s ) ,

mxPath( from=" one " , to=ind i c a t o r s ,

arrows=1, f r e e=TRUE, va lue s =.1 ,

labels=meanLabels ) ,

mxData( observed=data , type=" raw " )

)

Categorical variables. Suppose a one-factor model with three categorical

variables. If using lavaan, "ordered = FALSE" should be changed into "ordered = TRUE"

and the rest part should be kept the same.

This is Mplus code for Solution 1, fixing a positive loading at 1. If the true value of

the first loading is positive, the first loading is fixed at 1 by "@1".

DATA: FILE = data . dat ;

VARIABLE: NAMES = x1−x3 ;

CATEGORICAL ARE x1−x3 ;

! The es t imat ion method i s WLSMV
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ANALYSIS : ESTIMATOR = WLSMV;

Model :

! ! f ix the f i r s t l oad ing at 1 by "@1"

F by x1@1 x2−x3∗ 1 ;

OUTPUT: TECH1 TECH8;

This is Mplus code for Solution 3, fixing the factor variance by "@1" and setting the

starting values of the loadings to 1 or -1 by "*1" or "*-1".

DATA: FILE = data . dat ;

VARIABLE: NAMES = x1−x3 ;

CATEGORICAL ARE x1−x3 ;

! The es t imat ion method i s WLSMV

ANALYSIS : ESTIMATOR = WLSMV;

Model :

! set the s t a r t i n g va lue s o f

! the l oad ing s to 1 by "∗1 "

F by x1−x3∗ 1 ;

! f ix the factor var iance at 1 by "@1"

F @1 ;

OUTPUT: TECH1 TECH8;
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Table 1

Factor loadings for a one-factor model of the CDI at Time 1 and Time 2

Item
With missingness Without missingness

T1 T2 T1 T2

CDI1 0.772 0.746 -0.773 0.742

CDI2 0.649 0.649 -0.639 0.660

CDI3 0.618 0.659 -0.614 0.655

CDI4 0.534 0.716 -0.525 0.741

CDI5 0.552 0.692 -0.567 0.688

CDI6 0.477 0.544 -0.464 0.538

CDI7 0.747 0.829 -0.747 0.826

CDI8 0.604 0.740 -0.637 0.761

CDI9 0.675 0.741 -0.690 0.738

CDI10 0.822 0.770 -0.823 0.766

CDI11 0.769 0.708 -0.765 0.703

CDI12 0.571 0.551 -0.577 0.546

CDI13 0.503 0.626 -0.532 0.618

CDI14 0.536 0.700 -0.541 0.696

CDI15 0.451 0.576 -0.457 0.580

CDI16 0.650 0.638 -0.644 0.631

CDI17 0.692 0.578 -0.694 0.569

CDI18 0.416 0.554 -0.404 0.559

CDI19 0.400 0.462 -0.399 0.455

CDI20 0.819 0.827 -0.814 0.824
... ... ... ... ...

CDI27 0.673 0.714 -0.691 0.711
Note: The table only lists part of the results because of

limited space. For complete results, please see our GitHub.

https://github.com/DandanTang0/sign-of-factor-loading/tree/main/table
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Table 2

Directional consistency rates (%) for simulation 1 with four fixing methods (lavaan)

Fixed method Condition 1 Condition 2 Condition 3 Condition 4

loading 0.7 0.7 0.7 -0.7 -0.7 -0.7 -0.7 0.7 0.7 -0.7 -0.7 0.7

Method 1 100 100 100 0 0 0 0 0 0 0 0 0

Method 2 100 100 100 0 0 0 100 100 0 0 0 0

Method 3 0 0 0 100 100 100 0 0 0 100 100 100

Method 4 100 100 0 0 0 0 0 0

Table 3

Directional consistency rates (%) for simulation 1 with four fixing methods (Mplus)

Fixed methods Condition 1 Condition 2 Condition 3 Condition 4

loading 0.7 0.7 0.7 -0.7 -0.7 -0.7 -0.7 0.7 0.7 -0.7 -0.7 0.7

Method 1 100 100 100 0 0 0 0 0 0 0 0 0

Method 2 100 100 100 0 0 0 0 0 0 0 0 0

Method 3 0 0 0 100 100 100 0 0 0 100 100 100

Method 4 100 100 0 0 0 0 0 100

Table 4

Directional consistency rates (%) for simulation 1 with four fixing methods (OpenMx)

Fixed methods Condition 1 Condition 2 Condition 3 Condition 4

loading 0.7 0.7 0.7 -0.7 -0.7 -0.7 -0.7 0.7 0.7 -0.7 -0.7 0.7

Method 1 100 100 100 0 0 0 100 100 100 0 0 0

Method 2 100 100 100 0 0 0 100 100 0 0 0 0

Method 3 0 0 0 100 100 100 0 0 0 100 100 100

Method 4 100 100 0 0 0 0 0 0
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Table 5

Directional consistency rates (%) for Solution 1

Fixed method Condition 1 Condition 3 Condition 4

loading 0.7 0.7 0.7 -0.7 0.7 0.7 -0.7 -0.7 0.7

Solution 1 (lavaan) 100 100 100 100 100 100

Solution 1 (Mplus) 100 100 100 100 100 100

Solution 1 (OpenMx) 100 100 100 100 100 100
Note: Under each condition, the last factor loading was fixed at 1.

Table 6

Directional consistency rates (%) for Solution 2

Fixed method Condition 1 Condition 2

loading 0.7 0.7 0.7 -0.7 -0.7 -0.7

Solution 2 (OpenMX) 100 100 100 100 100 100

Table 7

Directional consistency rates (%) for Solution 3

Fixed method Condition 1 Condition 2 Condition 3 Condition 4

loading 0.7 0.7 0.7 -0.7 -0.7 -0.7 -0.7 0.7 0.7 -0.7 -0.7 0.7

Solution 3 (lavaan) 100 100 100 100 100 100 100 100 100 100 100 100

Solution 3 (Mplus) 100 100 100 100 100 100 100 100 100 100 100 100

Solution 3 (OpenMX) 100 100 100 100 100 100 100 100 100 100 100 100
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Table 8

Factor loadings for a one-factor model of the CDI at Time 1 in the data without

missingness

Item lavaan Mplus

Solution 1 Solution 3 Solution 1 Solution 3

CDI1 1.000 0.773 1.000 0.775

CDI2 0.827 0.639 0.820 0.635

CDI3 0.795 0.614 0.793 0.615

CDI4 0.679 0.525 0.675 0.523

CDI5 0.733 0.567 0.732 0.567

CDI6 0.600 0.464 0.614 0.476

CDI7 0.967 0.747 0.898 0.696

CDI8 0.824 0.637 0.822 0.637

CDI9 0.892 0.690 0.890 0.689

CDI10 1.064 0.823 1.062 0.823

CDI11 0.990 0.765 1.002 0.777

CDI12 0.747 0.577 0.717 0.555

CDI13 0.689 0.532 0.685 0.531

CDI14 0.701 0.541 0.694 0.538

CDI15 0.592 0.457 0.592 0.459

CDI16 0.833 0.644 0.832 0.645

CDI17 0.898 0.694 0.894 0.693

CDI18 0.522 0.404 0.531 0.412

CDI19 0.516 0.399 0.500 0.388

CDI20 1.053 0.814 1.050 0.813
... ... ... ... ...

CDI27 0.895 0.691 0.894 0.693
Note: The table only lists part of the results because of limited

space. For complete results, please see our GitHub.

https://github.com/DandanTang0/sign-of-factor-loading/tree/main/table
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Figure 1 . The sample graph of the likelihood and fit function 1
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Figure 2 . The sample graph of the likelihood and fit function 2

Figure 3 . Path diagram of a confirmatory factor analysis model.
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