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Abstract

For a prime p, a cyclic-by-p group G and a G-extension L|K of complete discrete
valuation fields of characteristic p with algebraically closed residue field, the local
lifting problem asks whether the extension L|K lifts to characteristic zero. In this
thesis, we characterize D4-extensions of fields of characteristic two, determine the
ramification breaks of (suitable) D4-extensions of complete discrete valuation fields
of characteristic two, and solve the local lifting problem in the affirmative for everyD4-
extension of complete discrete valuation fields of characteristic two with algebraically
closed residue field; that is, we show that D4 is a local Oort group for the prime 2.
Furthermore, we characterize Q8-extensions of fields of characteristic two, determine
the ramification breaks of (suitable) Q8-extensions of complete discrete valuation
fields of characteristic two, and, by solving the local lifting problem in the negative
for a family of Q8-extensions of complete discrete valuation fields of characteristic
two with algebraically closed residue field, show that neither Q8 nor SL2(Z/3Z) is an
almost local Oort group for the prime 2.
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Chapter 1

Introduction

For a prime p, a cyclic-by-p group G and a G-extension L|K of complete discrete val-
uation fields of characteristic p with algebraically closed residue field, the local lifting
problem (see Problem 1.2.4) asks whether the extension L|K lifts to characteristic
zero (a notion whose precise definition we shall provide in Section 1.2). In this thesis,
we consider the local lifting problem for cases in which the prime p = 2 and the group
G is a non-abelian group of order eight. For the case G = D4, the dihedral group of
order eight, we answer the local lifting problem in the affirmative in all cases; that is,
we show that D4 is a local Oort group for p = 2. For the case G = Q8, the quaternion
group of order eight, we exhibit a family of extensions that do not lift to characteristic
zero; the existence of this family suffices to show that neither Q8 nor the special linear
group SL2(Z/3Z) is an almost local Oort group for p = 2, a notion we shall define in
Section 1.2.

1.1 The Global Lifting Problem

The local lifting problem, as stated above, is (upon reformulation) a natural local
correlate to the global lifting problem, which may be stated as follows:

Problem 1.1.1 (Global Lifting Problem). Suppose that Y is a smooth proper curve
over an algebraically closed field k of positive characteristic p, and that ι : G →
Autk(Y ) is a faithful action of a finite group G on Y by k-automorphisms. Do
there exist a finite integral extension R of the Witt ring W (k), a flat relative curve

Ỹ → Spec R and a faithful action ι̃ : G→ AutR(Ỹ ) such that

1. Ỹ ×R k ∼= Y , and

2. the action ι̃ on Ỹ reduces to the action ι on Y ?

Remark 1.1.2. The Witt ring, or ring of Witt vectors, W (k) of k is the unique com-
plete discrete valuation ring, necessarily of characteristic zero, with uniformizer p and
residue field k [Ser79].

2010 Mathematics Subject Classification: 14H37, 12F10 Primary; 13B05, 14B12 Secondary.
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Remark 1.1.3. If R is a finite integral extension of W (k), then, since W (k) is a com-
plete discrete valuation ring, the valuation of W (k) extends uniquely to R. Thus R is
itself a complete discrete valuation ring; moreover, since k is algebraically closed, the
residue field of R is k. The projection map R→ k thus provides k with the structure
of an R-module, and gives meaning to the expression Ỹ ×R k in Problem 1.1.1.

If, for a particular Y and ι, the global lifting problem for that curve and action is
answered in the affirmative, then we say both that ι lifts to characteristic zero and
that Y (with G-action ι) lifts to characteristic zero. Moreover, we say that ι̃ and Ỹ
(with G-action ι̃) are, respectively, lifts of ι and of Y (with G-action ι) over R.

Definition 1.1.4. A finite group G is an Oort group for an algebraically closed field
k of characteristic p if every faithful G-action on every smooth proper curve over
k by k-automorphisms lifts to characteristic zero. If G is an Oort group for every
algebraically closed field of characteristic p, then G is an Oort group for the prime p.

The following theorem is a consequence of Grothendieck’s results on tame lift-
ing, to wit, of Exposé XIII, Corollaire 2.12 in [GR71], and implies that there is no
obstruction to lifting in the tame case. For an exposition, see [Wew99].

Theorem 1.1.5 (Grothendieck). Suppose that G is a finite group with order prime
to p. Then G is an Oort group for p.

Furthermore, in [SOS89], Oort, Sekiguchi and Suwa proved the following:

Theorem 1.1.6. For all m such that p - m, the group Z/pmZ is an Oort group for
p.

1.2 The Local Lifting Problem

Let k be an algebraically closed field of positive characteristic p, let Y be a smooth
proper curve over k, and let ι : G → Autk(Y ) be a faithful action of a finite group
G on Y by k-automorphisms. For every point P of Y , the action ι induces a faithful
action ιP by k-automorphisms of the inertia group IP of G at P on the complete local
ring of Y at P . Since this complete local ring is necessarily isomorphic to a power
series ring over k in one variable, the induced action ιP prompts the local lifting
problem.

Problem 1.2.1 (Local Lifting Problem). Suppose that a finite group G has a faithful
action ι : G → Autk(k[[t]]) on the power series ring k[[t]] by k-automorphisms. Do
there exist a finite integral extension R of the Witt ring W (k) and a faithful action
ι̃ : G→ AutR(R[[T ]]) on the power series ring R[[T ]] such that

1. T reduces to t under the canonical map R→ k, and

2. the action ι̃ reduces to the action ι?

Analogously to the global setting, we say that ι lifts to characteristic zero if such
an action ι̃ exists, and that ι̃ is a lift of ι.
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Definition 1.2.2. Let G be a finite group. If every faithful G-action on the power
series ring k[[t]] by k-automorphisms lifts to characteristic zero, then G is a local Oort
group for k. If G is a local Oort group for all algebraically closed fields of characteristic
p, then G is a local Oort group for the prime p.

Remark 1.2.3. Any faithful G-action by k-automorphisms on a power series ring k[[t]]
over k induces a Galois extension k[[t]]G → k[[t]] of complete discrete valuation rings
with Galois group G. As shown, e.g., in Chapter IV of [Ser79], the Galois group
of any finite Galois extension of complete discrete valuation rings with algebraically
closed residue field is a cyclic-by-p group, that is, a group isomorphic to P o Z/mZ,
where P is a p-group and m is prime to p. We shall thus, in discussing local Oort
groups for p, consider only cyclic-by-p groups.

If G = 〈σ〉 is a cyclic group of order m, where p - m, then it is relatively simple
both to describe and to lift faithful actions φ : G → Autk(k[[t]]). By Kummer
theory, for any such action φ, there exists a uniformizer t′ of k[[t]] = k[[t′]] such that
φ(σ)(t′) = ζmt

′, where ζm is a primitive mth root of unity. Moreover, if R = W (k)[ζm],
then the action φ̃ : G→ AutR(R[[T ′]]) given by φ̃(σ)(T ′) = ζmT

′ does define a lift to
φ.

In most cases, especially those in which p | |G|, both describing and lifting faithful
actions is rather more difficult. If G is a cyclic group of order p, then the assignment

t 7→ t

1− t
=
∞∑
n=1

tn

does induce an automorphism of k[[t]] of order p, and hence a faithful action φ of
|G|. While Theorem 1.1.6 implies that this action φ does lift to characteristic zero,
attempting to lift φ via the automorphism of R[[T ′]] induced by the assignment T 7→
T/(1 − T ) fails, for this automorphism is not of order p. If p | |G|, and G is not a
cyclic group of order p, then it is difficult even to give explicit examples of actions φ
in terms of power series.

To obviate this problem, we use the Galois extension of complete discrete valuation
rings induced by a faithful G-action by k-automorphisms on k[[t]] to reformulate the
local lifting problem as follows.

Problem 1.2.4 (Local Lifting Problem, Galois Theory Reformulation). Let A be a
finite Galois extension of k[[t]] with Galois group G. Do there exist a finite integral

extension R of the Witt ring W (k) and a G-Galois extension Ã of R[[T ]] such that

1. Ã⊗R k ∼= A, and

2. the Galois action on Ã over R[[T ]] reduces to the Galois action on A over k[[t]]?

If such an Ã exists, we say that the extension A|k[[t]] lifts to characteristic zero,
and, by analogy, that the corresponding extension Frac(A)|k((t)) of complete discrete
valuation fields lifts to characteristic zero, as well.

The close connection between the global and local lifting problems is manifest in
the presence, in this setting, of a local-to-global principle, proven by Garuti in [Gar96].
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Theorem 1.2.5 (Local-to-Global Principle). Let Y be a smooth proper curve over
k, let ι be a faithful action of a finite group G on Y by k-automorphisms, and let
Pi, 1 ≤ i ≤ N , denote the points of Y ramified under ι. Then ι lifts to characteristic
zero if and only if, for each point Pi of Y , the induced action ιPi

on the complete local
ring of Y at Pi lifts to characteristic zero.

Remark 1.2.6. If P is not a ramification point of ι, that is, if the inertia group of G
at P is trivial, then the induced action ιP lifts to characteristic zero trivially.

In [CGH08], Chinburg, Guralnick and Harbater proved a close relation between
Oort groups and local Oort groups.

Theorem 1.2.7 (Theorem 2.4 in [CGH08]). Let G be a finite group. Then G is an
Oort group for k if and only if every cyclic-by-p subgroup of G is a local Oort group
for k.

Moreover, for cyclic-by-p groups, Oort groups for k and local Oort groups for k
coincide.

Theorem 1.2.8 (Theorem 2.1 in [CGH17]). Let G be a cyclic-by-p group. Then G
is an Oort group for k if and only if G is a local Oort group for k.

1.3 Known Local Lifting Results

We now rehearse several of the more significant and salient known results concerning
the local lifting problem. Let k be an algebraically closed field of characteristic p,
let K = k((t)) be the field of Laurent series over k, and let vK denote the discrete
valuation of K corresponding to k[[t]]. Moreover, let G be a cyclic-by-p group (so
that G ∼= P o Z/mZ, where P is the unique p-Sylow subgroup of G, and m - p).

Definition 1.3.1. As in Definition 1.2.2, we define G to be a local Oort group for k
if every faithful G-action by k-automorphisms on the power series ring k[[t]] lifts to
characteristic zero. Moreover, we define G to be

(1) a weak local Oort group for k if at least one faithful G-action on k[[t]] by k-
automorphisms lifts to characteristic zero, and

(2) an almost local Oort group for k if every sufficiently ramified faithful G-action by
k-automorphisms on k[[t]] lifts to characteristic zero; i.e, if there exists an integer
N such that every faithful G-action φ on k[[t]] for which vK(φ(σ)(t) − t) ≥ N
for all σ ∈ P lifts to characteristic zero.

From Theorems 1.1.5 and 1.1.6, any cyclic group of order not divisible by p2 is a
local Oort group for p. Moreover, Green and Matignon proved in [GM98] that, for m
such that p - m, the group Z/p2mZ is local Oort for p, Bouw and Wewers in [BW06]
proved for odd p that the dihedral group Dp is local Oort for p, and Pagot in [Pag02]
proved that D2

∼= Z/2Z× Z/2Z is local Oort for 2.
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In 2014, Obus and Wewers in [OW14] and Pop in [Pop14] jointly resolved the
Oort conjecture, that is, they proved that every finite cyclic group is local Oort for p.
Finally, Obus has proven, in [Obu15] and [Obu16], respectively, that D9 is local Oort
for 3, and that A4 is local Oort for 2.

On the other hand, in [CGH11], Chinburg, Guralnick and Harbater used two
obstructions to local lifting, the Bertin obstruction, introduced by Bertin in [Ber98],
and the Katz–Gabber–Bertin obstruction, or more succinctly, the KGB obstruction),
introduced in [CGH11], and showed that these obstructions prevent all but a few
classes of cyclic-by-p groups from being either local Oort or almost local Oort. To
state their results, we need the following definitions.

Definition 1.3.2. The group G is a Bertin group (resp. KGB group) for k if the
Bertin (resp. KGB) obstruction vanishes for every faithful G-action on k[[t]] by k-
automorphisms. Moreover, G is an almost Bertin group (resp. KGB group) for k if
the Bertin (resp. KGB) obstruction vanishes for every faithful G-action on k[[t]] by
k-automorphisms that is sufficiently ramified (in the sense of Definition 1.3.1).

Theorem 1.3.3 (Chinburg, Guralnick, Harbater). The group G is a Bertin group for
k if and only if G is a KGB group for k, which holds if and only if G is isomorphic
either to a cyclic group (of any order) or to a dihedral group of order 2pn, or (for
p = 2) isomorphic either to A4 or to the generalized quaternion group Q2m of order
2m for some m ≥ 4.

Theorem 1.3.4 (Chinburg, Guralnick, Harbater). The group G is an almost Bertin
group for k if and only if G is an almost KGB group for k. Moreover, if G is an
almost Bertin group for k, then G is either a Bertin group for k, or p = 2, and G is
isomorphic either to the quaternion group Q8 or the special linear group SL2(Z/3Z).

Since every local Oort group for k is an Bertin group for k, and every almost local
Oort group for k is an almost Bertin group for k, Theorems 1.3.3 and 1.3.4 imply the
following corollary.

Corollary 1.3.5 (Chinburg, Guralnick, Harbater). If G is a local Oort group for k,
then G is isomorphic either to a cyclic group (of any order) or to a dihedral group
of order 2pn, or (for p = 2) isomorphic either to A4 or to the generalized quaternion
group Q2m of order 2m for some m ≥ 4. If G is an almost local Oort group for k, then
G is isomorphic either to a cyclic group (of any order) or to a dihedral group of order
2pn, or (for p = 2) isomorphic either to one of the groups A4, Q8 and SL2(Z/3Z), or
to the generalized quaternion group Q2m of order 2m for some m ≥ 4.

In [BW09], Brewis and Wewers introduced a further obsruction, the Hurwitz tree
obstruction, and showed that this obstruction prevents the generalized quaternion
groups from being local Oort groups for k when p = 2.

Combining all of the foregoing results together, we see that the groups whose status
as local Oort groups is open are, save the known local Oort group D9, precisely the
dihedral groups of order 2pn for n > 1. Moreover, the groups whose status as almost
local Oort groups is open are, save the known local (and hence almost local) Oort
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group D9, precisely the dihedral groups of order 2pn for n > 1, and (for p = 2), the
groups Q8 and SL2(Z/3Z), As noted above, in this thesis we shall prove (for p = 2)
that D4 is a local Oort group for k, and that neither Q8 nor SL2(Z/3Z) is an almost
local Oort group for k.

It should be noted that D4 differs from D9 in having no tame subextension and
from D2 in being non-abelian. To prove that D4 is indeed local Oort, we shall employ
the ‘method of equicharacteristic deformation’ used both by Pop in [Pop14] and by
Obus in [Obu15] and [Obu16]; that is, we shall make equicharacteristic deformations
such that the ramification breaks of the local extensions on the generic fiber of the
deformation are, in a suitable way, smaller than those of the original extension. Us-
ing induction, we shall thus be able to reduce the problem to a particular class of
extensions with small ramification breaks, defined by Brewis in [Bre08] as the super-
simple D4-extensions. Since, in the same paper, Brewis proves that all supersimple
D4-extensions in characteristic two lift to characteristic zero, we shall accordingly
have completed the desired proof.

To show that neither Q8 nor SL2(Z/3Z) is an almost local Oort group for k, we
shall exhibit a family of Q8-extensions whose Bertin obstructions all fail to vanish.
As this family will contain arbitrarily highly ramified extensions, we shall conclude
that Q8 is not an almost Bertin group, and hence not an almost Oort group, for k.
To extend this result to SL2(Z/3Z), we then extend a subfamily of this family of
extensions to exhibit a family of SL2(Z/3Z)-extensions whose Bertin obstructions all
fail to vanish.

Remark 1.3.6. The field k, which in this chapter has consistently denoted an alge-
braically closed field of positive characteristic, will denote a field throughout this
thesis, but we shall not always assume that k is algebraically closed. For the conve-
nience of the reader, we here note that the sections and subsections in which we do
not require k to be algebraically closed are Sections 2.1, 2.2, 4.2 and 5.1, and Subsec-
tion 4.1.1. We do, however, insist that k be algebraically closed in Subsections 4.2.1
and 5.1.1. In Section 2.1, k need not have positive characteristic; in Section 2.3 and
Chapter 3, the notation does not occur at all.
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Chapter 2

Preliminary Definitions and
Background

In this chapter, we shall introduce a few definitions and provide some necessary
background information. All of the results in this section are well known; nevertheless,
we provide proofs of a few results, as their proofs are somewhat difficult to find in
the literature.

2.1 Higher Ramification Groups

Let k be a field, either of characteristic zero, or of positive characteristic p. We do not
insist in this section that k be algebraically closed. Moreover, we let A be a complete
discrete valuation ring with residue field k, let K = Frac(A) be the corresponding
complete discrete valuation field, let L be a finite Galois extension of K such that the
residue field of L is separable over k, let B be the integral closure of A in L, and let G
be the Galois group of L over K. Since A is a complete discrete valuation ring, and
B|A is finite, the ring B is also a complete discrete valuation ring. By Proposition
III.12 in [Ser79], there exists an element x ∈ B such that B = A[x]. Moreover, if L
is a totally ramified extension of K, that is, if the residue field of L is equal to k,
then we may and do assume that x is a uniformizer of B. We now define a function
iG : G → Z≥0 ∪ {∞} such that iG(σ) = vL(σ(x) − x), where vL denotes the discrete
valuation of L corresponding to B.

Definition 2.1.1. For all real numbers j ≥ −1, the jth lower ramification group of
L|K is

Gj = {σ ∈ G | iG(σ) ≥ j + 1}.

The filtration of G given by the lower ramification groups has the following prop-
erties, given in Proposition IV.1 and Corollary 4 to Proposition IV.7 in [Ser79].

Proposition 2.1.2. The ramification group G−1 = G, and G0 is equal to the inertia
group of L|K. If char k = 0, then G0 is a cyclic group, and G1 = {IdL}. Moreover,
if char k = p, the following statements all hold.
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(1) G0 is a cyclic-by-p group; i.e., G0
∼= P oZ/mZ, where P is the unique p-Sylow

subgroup of G0, and m is prime to p.

(2) G1 = P .

(3) Gn = {IdL} for sufficiently large n.

Remark 2.1.3. The fixed field LG0 is the maximal unramified extension of K in L,
and the fixed field LG1 is the maximal tamely ramified extensions of K in L. The
higher ramification groups Gj (for j ≥ 2) provide some indication as to how badly
ramified the wildly ramified extension L|LG1 is.

Remark 2.1.4. Suppose that K has characteristic p, and that L|K is a totally ramified
extension. Then k has characteristic p as well, B = k[[x]], and G1 = P , where P is
the unique p-Sylow subgroup G. If φ : G → B = k[[x]] denotes the Galois action of
G on B, then, for any positive integer n, the statement that vK(φ(σ)(x)− x) ≥ n for
all σ ∈ P , as used in Definitions 1.3.1 and 1.3.2, is equivalent to the statement that
Gn = P .

Now let N ⊆ L be a subextension of K inside L, and let H = Gal(L|N). The
following proposition relates the ramification groups of L|N to those of L|K.

Proposition 2.1.5 (Proposition IV.2 in [Ser79]). For all real numbers j ≥ −1,
Hj = Gj ∩H.

If N is a normal extension of L, we must introduce the upper ramification groups to
give an analogous result for the ramification groups of N |K. We may define the upper
ramification groups by re-indexing the lower ramification groups using the Herbrand
function φ : [−1,∞)→ [−1,∞), which we define such that

φ(x) =

{
y if y < 0∫ y

0
1

[G0:Gz ]
dz if y ≥ 0

.

We observe that f(u) = 1/[G0 : Gu] is a positive decreasing left-continuous piece-
wise linear function on [0,∞), and that thus φ is itself an invertible (increasing)
left-continuous piecewise linear function on [−1,∞). The Herbrand function converts
the ‘lower numbering’ of the lower ramification groups into the ‘upper numbering’ of
the upper ramification groups.

Definition 2.1.6. Let ψ = φ−1. For all real numbers j ≥ −1, the jth upper ramifi-
cation group of L|K is

Gj = Gψ(j).

Proposition 2.1.7 (Proposition IV.14 in [Ser79]). Suppose that N is a normal ex-
tension of K, so that H is a normal subgroup of G. For all real numbers j ≥ −1,
(G/H)j = (GjH)/H.

We suppose henceforth that L|K is totally ramified, that k has positive character-
istic p, and that G is a group of order pn; i.e., suppose that G1 = G. In this context,
we make the following definitions.
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Definition 2.1.8. For all 1 ≤ i ≤ n, the ith lower ramification break `i of G is

max{ν | |Gν | ≥ pn+1−i}

and, similarly, the ith upper ramification break ui of G is

max{ν | |Gν | ≥ pn+1−i}.

Definition 2.1.9. The sequence of ramification groups of L over K is the finite
sequence (Gui)ni=1.

Remark 2.1.10. Since G`i = Gui for all i, the sequence of ramification groups of L
over K can also be written as (G`i)

n
i=1.

Proposition 2.1.11. The first lower and upper ramification breaks of L|K are equal;
i.e., u1 = `1. Moreover, for all 2 ≤ i ≤ n,

(1) ui − ui−1 = p−(i−1)(`i − `i−1),

(2) ui = p−(i−1)`i + (p− 1)
i−1∑
j=1

p−j`j, and

(3) `i = pi−1ui − (p− 1)
i−1∑
j=1

pj−1uj.

Proof. Since G = Gz for all z ≤ `1, the equation u1 = `1 holds. Moroever, for
all 2 ≤ i ≤ n, the index [G : Gz] is equal to pi−1 for all `i−1 < z ≤ `i; hence
ui − ui−1 = φ(`i)− φ(`i−1) = p−(i−1)(`i − `i−1) for all 2 ≤ i ≤ n. Therefore,

ui =
i∑

j=2

(uj − uj−1) + u1 =
i∑

j=2

p−(j−1)(`j − `j−1) + `1

= p−(i−1)`1 +
i−1∑
j=1

(p−(j−1) − p−j)`j = p−(i−1)`1 + (p− 1)
i−1∑
j=1

p−j`j

and

`i =
i∑

j=2

(`j − `j−1) + `1 =
i∑

j=2

pj−1(uj − uj−1) + u1

= pi−1ui +
i−1∑
j=1

(pj−1 − pj)uj = pi−1ui − (p− 1)
i−1∑
j=1

pj−1uj.

Remark 2.1.12. Though Definition 2.1.1 implies that each lower ramification break `i
must be an integer, the upper ramification breaks ui need not all be integers.

For convenience, if L|K is totally ramified, and G has order p, we shall use the
term conductor to denote the unique ramification break of G. This agrees with the
usage of, e.g., Bouw and Wewers in [BW06]; others, such as Garuti in [Gar02] define
the conductor to be the unique ramification break of G plus one.
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2.2 Artin–Schreier Theory

Let K be a field of characteristic two, fix an algebraic closure Kalg of K, and let
℘ : Kalg → Kalg denote the Artin–Schreier additive group homomorphism, which is
given by the assignment

F 7→ F 2 + F

on Kalg. For the moment we do not insist that K be a complete discrete valuation
field. For any element F in K, we denote by [F ] the image of F in K/℘(K), and define
two elements F1 and F2 of K to be Artin–Schreier-equivalent over K if [F1] = [F2].
By Artin–Schreier theory, ℘ induces a map

Φ : K → {L|K separable | degK(L) = 2} ∪ {K}

given by the assignment Φ(F ) = K[℘−1(F )] for all F ∈ K.

Proposition 2.2.1. Let F1, F2 ∈ K. Then [F1] = [F2] if and only Φ(F1) = Φ(F2).

Proof. Suppose [F1] = [F2]. Then there exists α ∈ K such that α2 + α = F1 + F2.
Thus ℘−1(F1 + α) = ℘−1(F2), and hence Φ(F1) = Φ(F2).

Now suppose Φ(F1) = Φ(F2) 6= K. (If Φ(F1) = K, then [F1] = [F2] = 0.) Let
α1, α2 ∈ Φ(F1) such that ℘(α1) = F1 and ℘(α2) = F2, and let σ be the unique
non-trivial element of Gal(Φ(F1)|K). Then ℘(α1 + α2) = F1 + F2, and

σ(α1 + α2) = σ(α1) + σ(α2) = (α1 + 1) + (α2 + 1) = α1 + α2.

Hence α1 + α2 ∈ K, and [F1] = [F2].

For our purposes it will suffice to consider the case in which K is a complete
discrete valuation field, i.e., in which K = k((t)) for some field k of characteristic
two. Accordingly, we suppose for the remainder of this subsection that K is such a
field.

Lemma 2.2.2. Every Artin–Schreier class of K contains an element in the polyno-
mial ring k[t−1]. In particular, for any element F =

∑
n≥−N ant

n of K,

[F ] =

[ ∑
−N≤n≤0

ant
n

]
.

Proof. Note that, for all n ≥ 1, the equation

ant
n =

(∑
j≥0

a2j

n t
2jn

)2

+
∑
j≥0

a2j

n t
2jn

implies that [ant
n] = 0. Thus

[F ] =

[ ∑
N≤n≤0

ant
n

]
.
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Definition 2.2.3. An element
∑

n≥−N ant
n of K is in standard form over K with

respect to t if each coefficient an is zero unless n is both negative and odd.

Proposition 2.2.4. Suppose that F1 and F2 are distinct standard form elements of
K. Then [F1] 6= [F2].

Proof. Since F1 and F2 are distinct, F1 +F2 is a non-zero standard form element of K.
Thus the valuation vK(F1 +F2) = − degt−1(F1 +F2) is odd and negative. Since, for all
α ∈ K, the valuation vK(α2 + α) = 2vK(α) if vK(α) < 0, no element of ℘−1(F1 + F2)
is in K. Thus [F1 + F2] 6= 0; i.e., [F1] 6= [F2].

If the residue field k of K is algebraically closed, then Definition 2.2.3 obviates one
difficulty associated with the equivalence relation defined above — that, in general,
it may not be possible readily to select a canonical element from each Artin–Schreier
equivalence class of K. In particular, the following proposition holds.

Proposition 2.2.5. Suppose k is algebraically closed. Then every Artin–Schreier
equivalence class of K contains precisely one standard form element of K.

Proof. By Proposition 2.2.4, it suffices to show that every element of K is Artin–
Schreier-equivalent over K to a standard form element of K. Let F =

∑
n≥−N ant

n ∈
K. Lemma 2.2.2 implies that

[F ] =

[ ∑
−N≤n≤0

ant
n

]
.

Moreover, [a0] = 0 since k is algebraically closed. Finally, if 1 ≤ 2`m ≤ N , and m is
odd, then [

a−2`mt
−2`m

]
=
[
(a−2`m)2−`

t−m
]
.

Thus F is Artin–Schreier-equivalent over K to a standard form element of K.

Remark 2.2.6. If k is not algebraically closed, not every Artin–Schreier equivalence
class need contain a standard form element. For example, if k = F2, then [1] 6= [0]
over K; hence the class [1] contains no standard form element in K.

The conductor of a non-trivial extension associated to an element whose degree
in t−1 is both positive and odd may be computed from this element as indicated in
the following proposition. In particular, the conductor may be computed from any
associated non-zero standard form element of K.

Proposition 2.2.7. Let F ∈ K, and let f = degt−1 F . Suppose that f is both positive
and odd. Then Φ(F ) = K[℘−1(F )] is a totally ramified degree two extension of K
whose conductor is f .

Proof. Let α ∈ Φ(F ) such that α2 + α = F . Note that then vΦ(F )(F ) < 0 since
vK(F ) = −f < 0. Since

vΦ(F )(F ) = min{2vΦ(F )(α), vΦ(F )(α)},
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it follows that vΦ(F )(F ) = 2vΦ(F )(α). Thus vΦ(F )(F ) is even. Since vK(F ) = −f is
odd, the ramification index of Φ(F ) over K is 2; thus, Φ(F ) is totally ramified over
K.

To determine the conductor of Φ(F ) over F , let π = αt(f+1)/2, and observe that
vΦ(F )(π) = 1; i.e., that π is a uniformizer of Φ(F ). Let g(T ) be the characteristic
polynomial of π over K. Since Φ(F ) is totally ramified over K, the different DΦ(F )|K
of Φ(F ) over K is generated by g′(π) by Lemma III.3 and Corollary 2 of Lemma III.2
in [Ser79]. Since α2 + α = F , the relation π2 + t(f+1)/2π = Ftf+1 holds. Thus

g(T ) = T 2 + t(f+1)/2T + Ftf+1,

and g′(T ) = t(f+1)/2. Hence DΦ(F )|K = (g′(π)) = (t)(f+1)/2. Since vΦ(F )(t) = 2, the
valuation vΦ(F )(DΦ(F )|K) = f+1. By Hilbert’s different formula (see Proposition 2.3.3
in Section 2.3), it follows that the conductor of Φ(F ) over K is f .

To determine the ramification behavior of Artin–Schreier extensions not associated
to any element whose degree in t−1 is both positive and odd, we introduce the following
definition.

Definition 2.2.8. An element F ∈ K is in minimal-degree form over K with respect
to t if the degree in t−1 of F is minimal among the degrees in t−1 of elements in [F ].

Remark 2.2.9. Lemma 2.2.2 implies that every Artin–Schreier class of K contains an
element in minimal-degree form over K with respect to t, and that no element in
minimal-degree form has negative, finite degree in t−1.

Proposition 2.2.10. Let F be an element in minimal-degree form over K with respect
to t, let f = degt−1 F , and let κF denote the residue field of Φ(F ) = K[℘−1(F )] The
following statements all hold.

(1) If f = −∞, then Φ(F ) = K.

(2) If f = 0, then κF is a degree two separable extension of k.

(3) If f is positive and odd, then Φ(F ) is a totally ramified degree two extension of
K whose conductor is f .

(4) If f is positive and even, then κF is a degree two inseparable extension of k.

Proof. Note that Proposition 2.2.7 directly implies statement (3), and that statement
(1) is clear.

To prove statements (2) and (4), we suppose henceforth that f is a non-negative
even number, let F =

∑
n≥−f ant

n, and let α ∈ Φ(F ) such that α2 + α = F .
First suppose f = 0. Then F ∈ k[[t]]. Hence α is an integer in Φ(F ), and

ᾱ2 + ᾱ = a0, where ᾱ ∈ κF is the image of α under the canonical projection map to
κF . Since F is in minimal-degree form with respect to t, it follows that ᾱ /∈ k. Thus
κF = k[ᾱ] is a degree two separable extension of k; i.e., statement (2) holds.
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Now suppose f > 0, and let α′ = tf/2α. Then

(α′)2 + tf/2α′ = tfα2 + tfα = tfF =
∑
n≥0

tn−f t
n ∈ k[[t]];

as such, α′ is an integer in Φ(F ), and (ᾱ′)2 = a−f , where ᾱ′ ∈ κF is the image of α′

under the canonical projection map to κF . Since F is in minimal-degree form over K
with respect to t, it follows that ᾱ′ /∈ k, for, if ᾱ′ were in k, then [a−f t

−f ] = [ᾱ′t−f/2]
over K, and F would not be in minimal-degree form. Thus κF = k[ᾱ′] is a degree
two inseparable extension of k; i.e., statement (4) holds.

Propositions 2.2.7 and 2.2.10 together imply the following corollary.

Corollary 2.2.11. Any element of K whose degree in t−1 is positive and odd is in
minimal-degree form over K with respect to t. In particular, any element of K in
standard form is also in minimal-degree form.

2.3 Degree of the Different

Let K be the field of fractions of a discrete valuation ring A with maximal ideal m,
let L be a finite étale algebra over K, i.e., a finite product of finite separable field
extensions of K, and let B be the integral closure of A in L.

Definition 2.3.1. Let DB|A =
∏m

i=1 P
ni
i denote the different of B over A. Then the

degree of the different δB|A of B over A is the length of B/DB|A as an A/m-module.

Remark 2.3.2. This definition agrees with that used in [GM98], [Bre08] and [Obu17].
Note that the sum

∑m
i=1 ni does not always give δB|A, though this is the case if, for

all 1 ≤ i ≤ n, the residue field B/PiB is equal to A/mA.

Suppose that A is an equal characteristic complete discrete valuation ring of char-
acteristic p, that L is a Galois field extension of K, and that the extension B/PB
over A/mA of residue fields is separable (where P is the maximal ideal of the com-
plete discrete valuation ring B). In this case, the degree of the different δB|A is given
by vL(DB|A), where vL is the discrete valuation on L defined by B. The following
proposition, a restatement of Proposition IV.4 in [Ser79], thus gives a formula for the
degree of the different in terms of the lower ramification groups of G = Gal(L|K).

Proposition 2.3.3 (Hilbert’s Different Formula). The equation

vL
(
DB|A

)
=
∞∑
j=0

(|Gj| − 1)

holds

Proposition 2.3.3 has the following corollary.
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Corollary 2.3.4. Suppose that L|K is totally ramified, and that G is a group of order
pn. For all 1 ≤ i ≤ n, let `i denote the ith lower ramification break of L|K. Then

δB|A = (p− 1)
n∑
i=1

pn−i`i + pn − 1.

Proof. By Proposition 2.3.3, δB|A =
∞∑
j=0

(|Gj| − 1). Thus

δB|A =

`1∑
j=0

(|Gj| − 1) +
n−1∑
i=1

`i+1∑
j=`i+1

(|Gj| − 1)

= (pn − 1)(`1 + 1) +
n−1∑
i=1

(pn−i − 1)(`i+1 − `i)

= pn − 1 +
n−1∑
i=1

(pn−i+1 − pn−i)`i + (p− 1)`n

= (p− 1)
n∑
i=1

pn−i`i + pn − 1
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Chapter 3

Non-Cyclic Galois Extensions of
Degree Eight of Fields of
Characteristic Two

3.1 D4-Extensions as Galois Closures of Non-Gal-

ois Extensions

In this section we shall realize D4-extensions of fields of characteristic two as the
Galois closures of (two-level) towers of Z/2Z-extensions. Throughout the section,
let K be a field of characteristic two, let Kalg be a fixed algebraic closure of K, let
M ⊂ Kalg be a separable extension of K of degree two, and let N ⊂ Kalg be a
separable extension of M of degree not exceeding two. Note that then there exist
F,G,H ∈ K and q, r, s ∈ Kalg such that

q2 + q = F, r2 + r = Gq +H and s2 + s = G,

and such that M = K[q] and N = M [r]. Moreover, there exists σ ∈ Gal(Kalg|K)
such that σ|M is the unique non-trivial element of Gal(M |K).

Lemma 3.1.1. The equation

(qs)2 + qs = Gq + Fs2 = Gq + Fs+ FG

holds.

Proof. Note that

(qs)2 +qs = q2s2 +qs2 +qs2 +qs = q(s2 +s)+(q2 +q)s2 = Gq+Fs2 = Gq+Fs+FG.

Lemma 3.1.2. [G] = 0 over M if and only if either [G] = 0 over K or [G] = [F ]
over K.
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Proof. Suppose [G] = 0 over M . Then there exist α, β ∈ K such that

G = (αq + β)2 + αq + β = α2q2 + β2 + αq + β

= α2(q + F ) + αq + β2 + β = (α2 + α)q + α2F + β2 + β.

Since G ∈ K and M = K[q], it follows that α2 + α = 0. Thus either α = 0, in which
case [G] = 0 over K, or α = 1, in which case [G] = [F ] over K.

Now suppose either that [G] = 0 over K, or that [G] = [F ] over K. If [G] = 0
over K, then [G] = 0 over M . If [G] = [F ] over K, then [G] = [F ] = 0 over M since
q2 + q = F and q ∈M .

Lemma 3.1.3. The following three conditions are equivalent:

(1) [Gq +H] = 0 over M .

(2) [G] = 0 over K and [H] = [Fs2] over M .

(3) [G] = 0 over M and [H] = [Fs2] over M .

Proof. ((1) =⇒ (2)) Suppose [Gq + H] = 0 over M . Then there exist α, β ∈ K such
that

Gq +H = (αq + β)2 + αq + β = (α2 + α)q + α2F + β2 + β,

as above. Hence, since G,H ∈ K, it follows that G = α2 +α and H = α2F + β2 + β.
Therefore, [G] = 0 over K, and either α = s or α = s+ 1.

First suppose α = s. Then H = Fs2 + β2 + β, and hence [H] = [Fs2] over K.
Thus [H] = [Fs2] over M as well.

Now suppose α = s+ 1. Then

H = (s+ 1)2F + β2 + β = Fs2 + F + β2 + β,

and hence [H] = [Fs2 + F ] over K. Thus, over M , [H] = [Fs2 + F ] = [Fs2] + [F ] =
[Fs2].
Therefore, in both cases, [H] = [Fs2] over M . Thus [H] = [Fs2] over M .

((2) =⇒ (3)) Since K ⊆M , this implication holds a fortiori.
((3) =⇒ (1)) Finally, suppose that [G] = 0 over M and that [H] = [Fs2] over M .

By Lemma 3.1.1, (qs)2 + qs = Gq+Fs2. Since [G] = 0 over M , it follows that s ∈M
and that qs ∈M = K[q]. Thus, over M ,

0 = [(qs)2 + qs] = [Gq + Fs2] = [Gq] + [Fs2] = [Gq] + [H] = [Gq +H].

Lemma 3.1.4. Suppose that N is a degree four extension of K. The following four
conditions are equivalent:

(1) N is a Galois extension of K.

(2) σ(N) = N .

(3) [σ(Gq +H)] = [Gq +H] over M .
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σ(N)

σ(Gq+H)

N

Gq+H

M

F

K

Figure 3.1

(4) [G] = 0 over M .

Remark 3.1.5. The situation described in Lemma 3.1.4 may be visualized as in Fig-
ure 3.1.

Proof. Recall that σ|M is the unique non-trivial element of M .
Suppose that σ(N) = N . Since σ|M is non-trivial, σ|N is non-trivial. Let τ be

the unique non-trivial element of Gal(N |M). Then τ(N) = N , and τ |M is trivial.
Thus σ|M 6= τ |M ; as such, σ|N and τ are distinct non-trivial K-automorphisms of N .
Hence N is Galois over K, and conditions (1) and (2) are equivalent.

Moreover, since σ|M is non-trivial, σ(q) = q + 1. Thus σ(Gq + H) = G(q +
1) + H = Gq + G + H. Therefore, [σ(Gq + H)] = [Gq + H] over M if and only if
[Gq + G + H] = [Gq + H] over M , which holds if and only if [G] = 0 over M . Thus
(3) and (4) are equivalent.

Note now that (σ(r))2 + σ(r) = σ(r2 + r) = σ(Gq + H). Thus [σ(Gq + H)] =
[Gq + H] over M if and only if M [σ(r)] = M [r] = N , which holds if and only if
σ(N) = N . Hence (2) and (3) are equivalent.

Therefore, conditions (1) through (4) are equivalent, as claimed.

Proposition 3.1.6. The following statements, exactly one of which applies, all hold:

(1) If [G] = 0 over K and [H] = [Fs2] over M , then N = M .

(2) If [G] = 0 over K and [H] 6= [Fs2] over M , then N is a Galois extension of K,
and Gal(N |K) ∼= Z/2Z× Z/2Z.

(3) If [G] = [F ] over K, then N is a Galois extension of K, and Gal(N |K) ∼= Z/4Z.

(4) If [G] 6= 0 over M , then N is not a Galois extension of K, and Gal(Ñ |K) ∼= D4,

where Ñ denotes the Galois closure of N over K.

Proof. To prove (1), suppose that [G] = 0 over K and that [H] = [Fs2] over M . Then,
by Lemma 3.1.3, [Gq +H] = 0 over M . Thus r ∈M , and hence N = M [r] = M .

To prove (2), suppose that [G] = 0 over K and that [H] 6= [Fs2] over M . By
Lemma 3.1.3, [Gq + H] 6= 0 over M ; as such, N 6= M . Thus N is a degree four
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extension of K. Since [G] = 0 over M , Lemma 3.1.4 implies that N is a Galois
extension of K. Moreover, since [G] = 0 over K, it follows that s ∈ K. Thus

(r + qs)2 + (r + qs) = r2 + r + (qs)2 + qs = Gq +H +Gq + Fs2 = H + Fs2 ∈ K,

where the second equality follows by Lemma 3.1.1. Since [H] 6= [Fs2] over M , [H +
Fs2] 6= 0 over M . By Lemma 3.1.2, it follows that [H + Fs2] 6= 0 over K and that
[H + Fs2] 6= [F ] over K. Hence K[r + qs] is a degree two subfield of N that is not
equal to M = K[q]. Thus Gal(N |K) ∼= Z/2Z× Z/2Z.

To prove (3), suppose that [G] = [F ] over K. Then [G] 6= 0 over K, and so
[Gq + H] 6= 0 over M by Lemma 3.1.3. Thus N is a degree four extension of K.
Since [G] = [F ] = 0 over M , Lemma 3.1.4 implies that N is a Galois extension of
K. Moreover, since [G] = [F ] 6= 0 over K, it follows that s ∈ M\K, and hence that
σ(s) = s+ 1. Furthermore, since

(σ(r))2 + (σ(r)) = σ(Gq +H) = Gq +H +G = (r + s)2 + (r + s),

either σ(r) = r + s, or σ(r) = r + s + 1. In either case, one easily verifies that
σ2(r) = r + 1. Therefore σ2|N is not trivial, and Gal(N |K) ∼= Z/4Z.

To prove (4), suppose that [G] 6= 0 over M . Then [G] 6= 0 over K, and hence N 6=
M by Lemma 3.1.3. Thus N is a degree four extension of K; hence, by Lemma 3.1.4,
N is not a Galois extension of K. Moreover, Gal(Ñ |K) is isomorphic to a subgroup of

S4 and contains an index two (normal) subgroup, viz. Gal(Ñ |M), which itself contains

a subgroup of index four in Gal(Ñ |K) that is not normal in Gal(Ñ |K). The only

group satisfying all these conditions is D4, so Gal(Ñ |K) ∼= D4.

Lemma 3.1.7. Let F ′, G′, H ′ ∈ K, and let q′, r′, s′ ∈ Kalg such that (q′)2 + q′ = F ′,
(r′)2 + r′ = G′q′ + H ′, and (s′)2 + s′ = G′. Also, let M ′ = K[q′]. Suppose that
[F ] = [F ′] over K, i.e., that M ′ = M . Then [Gq + H] = [G′q′ + H ′] over M if and
only if [G] = [G′] over K, and [H] = [H ′ +G′(q + q′) + F (s+ s′)2] over M .

Proof. Note that [Gq +H] = [G′q′ +H ′] over M if and only if

[Gq +H +G′q′ +H ′] = [(G+G′)q +G′(q + q′) +H +H ′] = 0

over M . Since [F ] = [F ′] over K, the element q + q′ is in K. Thus, by Lemma 3.1.3,
N ′ = N if and only if both [G+G′] = 0 over K, and [G′(q+q′)+H+H ′] = [F (s+s′)2]
overM ; i.e., if and only if both [G] = [G′] overK, and [H] = [H ′+G′(q+q′)+F (s+s′)2]
over M .

Proposition 3.1.8. Let F ′, G′, H ′ ∈ K, and let q′, r′, s′ ∈ Kalg such that (q′)2 + q′ =
F ′, (r′)2 + r′ = G′q′ +H ′, and (s′)2 + s′ = G′. Also, let M ′ = K[q′] and N ′ = M ′[r′].
Then

(1) M ′ = M and N ′ = N if and only if [F ] = [F ′] over K, [G] = [G′] over K, and
[H] = [H ′ +G′(q + q′) + F (s+ s′)2] over M .
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(2) M ′ = M and N ′ = σ(N) if and only if [F ] = [F ′] over K, [G] = [G′] over K,
and [H] = [H ′ +G′(q + q′) + F (s+ s′)2 +G] over M .

Proof. As noted in Lemma 3.1.7, M ′ = M if and only if [F ] = [F ′] over K. This
statement will be used without citation henceforth.

To prove (1), suppose that M ′ = M . Then N ′ = N if and only if [Gq + H] =
[G′q′ +H ′] over M . By Lemma 3.1.7, this holds if and only if [G] = [G′] over K and
[H] = [H ′ +G′(q + q′) + F (s+ s′)2] over M . Statement (1) now follows.

To prove (2), suppose that M ′ = M , and note both that σ(N) = M [σ(r)], and
that (σ(r))2 + σ(r) = σ(Gq + H) = Gq + H + G. Then N ′ = σ(N) if and only
if [Gq + H + G] = [G′q′ + H ′] over M . By Lemma 3.1.7, this holds if and only if
[G] = [G′] over K and [H] = [H ′ + G′(q + q′) + F (s + s′)2 + G] over M . Statement
(2) now follows.

3.2 D4-Extensions of Fields of Characteristic Two

Let K be a field of characteristic two, let Kalg be a fixed algebraic closure of K, and
let L ⊆ Kalg be a Galois extension of K such that Gal(L|K) ∼= D4.

Proposition 3.2.1. There exist F,G,H ∈ K, and q, r ∈ Kalg such that q2 + q = F ,
r2 + r = Gq +H, and L is the Galois closure over K of K[q, r].

Proof. Note that D4 contains a subgroup of index two containing a non-normal sub-
group of index four. Thus there exists a non-normal degree four subfield L′ of L over
K containing a degree two subfield K ′ of L. Then there exist F ∈ K and q ∈ Kalg

such that q2 + q = F and K[q] = K ′. Hence there exist G,H ∈ K and r ∈ Kalg such
that r2 + r = Gq + H and L′ = K ′[r] = K[q, r]. Since L′ ⊂ L is not Galois over K,
it follows that L is the Galois closure of L′ = K[q, r] over K, as desired.

Proposition 3.2.2. Suppose that F,G,H ∈ K, and q, r, s ∈ Kalg such that q2 + q =
F , r2 + r = Gq + H and s2 + s = G, and L is the Galois closure over K of K[q, r].
Then

(1) the degree two subfields of L are K[q], K[s] and K[q + s],

(2) the unique degree four normal subfield of L is K[q, s],

(3) the two non-normal degree four subfields of L containing K[q] are K[q, r] and
K[q, r + s],

(4) the two non-normal degree four subfields of L containing K[s] are K[s, r + qs]
and K[s, r + qs+ q], and

(5) L = K[q, r, s].

Remark 3.2.3. The situation described in Proposition 3.2.2 may be visualized as in
Figure 3.2.
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L = K[q, r, s]

K[s, r + qs]

Fs+H+FG

K[s, r + qs+ q] K[q, s] K[q, r + s] K[q, r]

Gq+H

K[s]

G

K[q + s]

F+G

K[q]

F

K

Figure 3.2: Subfields of L over K

Proof. Let σ ∈ Gal(L|K) such that σ|K[q] is non-trivial. Then the non-normal degree
four subfields of L containing K[q] are K[q, r] and σ(K[q, r]). Since (r+s)2 +(r+s) =
Gq+H+G = σ(Gq+H), it follows that σ(K[q, r]) = K[q, r+ s]. Statement (3) now
follows immediately.

To prove (1), (2) and (5), note that, since K[q, r] and K[q, r+s] are both subfields
of L, it follows that s = r + (r + s) ∈ L. Moreover, since K[q, r] is not Galois over
K, [G] 6= 0 over K[q] by Lemma 3.1.4. Hence K[q, s] = K[q][s] is a degree four
extension of K. Since σ(G) = G, it follows by Lemma 3.1.4 that K[q, s] is a Galois
extension of K. Statement (2) now follows, and, since K[q], K[s], and K[q + s] are
the three degree two subfields of K[q, s], so does (1). Finally, since K[q, s] and K[q, r]
are distinct degree four subfields of L, L = K[q, r, s]; i.e., (5) holds.

To prove (4), recall that (qs)2 + qs = Gq + Fs + FG by Lemma 3.1.1. Thus
[Gq +H] = [Fs+H + FG] over K[q, s]. Since [G] 6= 0 over K[q], [F ] 6= 0 over K[s].
As such, since Fs + H + FG = (r + qs)2 + (r + qs), it follows that K[s, r + qs] is
a non-Galois degree four subfield of L by Proposition 3.1.6. Hence the non-normal
degree four subfields of L containing K[s] are K[s, r+ qs] and τ(K[s, r+ qs]), where
τ ∈ Gal(L|K) such that τ |K[s] is non-trivial. Since

(r + qs+ q)2 + (r + qs+ q) = Fs+H + FG+ F = τ(Fs+H + FG),

it follows that τ(K[s, r+qs]) = K[s, r+qs+q]. Statement (4) now follows immediately.

3.3 Non-Cyclic Galois Extensions of Degree Eight

over Z/2Z× Z/2Z-Extensions

Let K be a field of characteristic two, let Kalg be a fixed algebraic closure of K, and
let N ⊆ Kalg be a Galois extension of K such that Gal(N |K) ∼= Z/2Z× Z/2Z. Note
that then there exist F0, F1 ∈ K, and q0, q1 ∈ Kalg such that q2

0 +q0 = F0, q2
1 +q1 = F1,

and N = K[q0, q1]. Finally, let q2 = q0 + q1, and let F2 = F0 + F1.
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L = K[q0, q1, s]

G0q0+G1q1+H

N

K[q0]

F0

K[q1]

F1

K[q2]

F2

K

Figure 3.3: Subfields of L over K

Lemma 3.3.1. The three degree two subfields of N over K are K[q0], K[q1] and
K[q2].

Proof. Since N = K[q0, q1], it follows that K[q0] and K[q1] are distinct degree two
subfields of N . Moreover, q2 = q0 +q1 ∈ N , and q2

2 +q2 = q2
0 +q0 +q2

1 +q1 = F0 +F1 =
F2 ∈ K. Hence K[q2] is a degree two subfield of N . Since K[q0] and K[q1] are distinct
degree two subfields, K[q2] is distinct from both.

Lemma 3.3.2. Let L ⊆ Kalg be a degree two Galois extension of N such that L|K
is a Galois extension. Then there exist G0, G1, H ∈ K such that L = N [s], where
s ∈ Kalg such that s2 + s = G0q0 +G1q1 +H.

Proof. Since N = K[q0, q1], there exist A,B,C,D ∈ K and a ∈ Kalg such that

a2 + a = Aq0q1 +Bq0 + Cq1 +D = (Aq0 + C)q1 +Bq0 +D

and L = N [a]. Moreover, since L|K is Galois, L|K[q0] is Galois; hence [Aq0 +C] = 0
over N = K[q0][q1] by Lemma 3.1.4. Applying Lemma 3.1.3 to the tower of fields
N ⊇ K[q0] ⊇ K, it follows that [A] = 0 over K. Hence there exists α ∈ K such that
α2 + α = A. Therefore, over N ,

[Aq0q1] = [α2q0q1 + αq0q1] = [α2(q2
0 + F0)(q2

1 + F1) + αq0q1]

= [α2q2
0q

2
1 + αq0q1 + α2(q2

0F1 + q2
1F0 + F0F1)]

= [α2 ((q0 + F0)F1 + (q1 + F1)F0 + F0F1)]

= [α2F1q0 + α2F0q1 + α2F0F1].

Let now G0 = B+α2F1, G1 = C+α2F0 and H = D+α2F0F1, and let s ∈ Kalg such
that s2 +s = G0q0 +G1q1 +H. Since α ∈ K, it follows that [Aq0q1 +Bq0 +Cq1 +D] =
[G0q0 +G1q1 +H] over N . Thus L = N [s] by Proposition 2.2.1.

Remark 3.3.3. The situation described in Lemma 3.3.2 may be visualized as in Fig-
ure 3.3.
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Proposition 3.3.4. Let G0, G1, H ∈ K, let s ∈ Kalg such that s2 + s = G0q0 +
G1q1 +H, and let L = N [s]. Then L|K is Galois if and only if [G0] = 0 over N and
[G1] = 0 over N .

Proof. Suppose first that N = L; i.e., that [G0q0 + G1q1 + H] = 0 over N . Then
L|K is Galois. Moreover, [G0] = 0 over N by Lemma 3.1.3 applied to N |K[q0], and
[G1] = 0 over N by Lemma 3.1.3 applied to N |K[q1]. Hence the statement holds in
this case.

Now suppose that N 6= L. Note that then L|K is Galois if and only if L|K[qi]
is Galois for all i ∈ {0, 1}. For each i ∈ {0, 1}, Lemma 3.1.4 implies that L|K[qi] is
Galois if and only if [G1−i] = 0 over N . Thus L|K is Galois if and only if both [G0]
and [G1] are trivial over N .

Proposition 3.3.5. Let L ⊆ Kalg be an extension of N of degree at most two such
that L is Galois over K. Then there exist G0 ∈ {0, F0, F1, F2}, G1 ∈ {0, F1}, H ∈ K,
and s ∈ Kalg such that s2 + s = G0q0 +G1q1 +H, and L = N [s].

Proof. Observe that, by Lemma 3.3.2, there exist G′0, G′1 and H ′ ∈ K, and s′ ∈ Kalg

such that (s′)2 + s′ = G′0q0 + G′1q1 + H ′, and N = L[s′]. By Proposition 3.3.4,
[G′0] = [G′1] = 0 over N .

Let X = {0, F0, F1, F2}, and let i ∈ {0, 1}. Applying Lemma 3.1.2 to N |K[qi]
and then (twice) to K[qi]|K implies that there exists Ci ∈ X such that [G′i] = [Ci]
over K. Thus there exists αi ∈ K such that α2

i + αi = Ci + G′i. By Lemma 3.1.3
applied to K[qi]|K, it follows that [(G′i+Ci)qi+α2

iFi] = 0 over K[qi]. Therefore, over
N = K[q0, q1],

[G′0q0 +G′1q1 +H ′] = [C0q0 + C1q1 + α2
0F0 + α2

1F1 +H ′].

Note that either C1 ∈ {0, F1}, or that C1 ∈ {F0, F2}. First suppose that C1 ∈
{0, F1}, and let G0 = C0, G1 = C1, and H = α2

0F0 + α2
1F1 + H ′. Then L = N [s′] =

N [s], where s ∈ Kalg such that s2 + s = G0q0 +G1q1 +H.
Now suppose that C1 ∈ {F0, F2}, and let G0 = C0 + F1, G1 = C1 + F0, and

H = α2
0F0 +α2

1F1 +H ′+F0F1. By Lemma 3.1.1, (q0q1)2 + q0q1 = F1q0 +F0q1 +F0F1.
Thus, over N ,

[C0q0 + C1q1 + α2
0F0 + α2

1F1 +H ′] = [G0q0 + F1q0 +G1q1 + F0q1 +H + F0F1]

= [G0q0 +G1q1 +H].

Hence L = N [s′] = N [s], where s ∈ Kalg such that s2 + s = G0q0 +G1q1 +H.

Lemma 3.3.6. Let L, G0, G1, H and s be as in Proposition 3.3.5. Then L = N if
and only if G0 = 0, G1 = 0, and [H] = 0 over N .

Proof. Note that, by Proposition 2.2.1, L = N if and only if [G0q0+G1q1+H] = 0 over
N . Moreover, ifG0 = 0, G1 = 0, and [H] = 0 overN , then [G0q0+G1q1+H] = [H] = 0
over N .

Suppose that [G0q0 +G1q1 +H] = 0 over N . Lemma 3.1.3 applied to the extension
N = K[q0][q1] over K[q0] implies that [G1] = 0 over K[q0]. Thus either [G1] = 0 over
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K, or [G1] = [F0] over K by Lemma 3.1.2. Since G1 ∈ {0, F1} by hypothesis, it
follows that G1 = 0, and that [G0q0 +G1q1 +H] = [G0q0 +H].

To show that G0 = 0, we now apply Lemma 3.1.3 to the extensions N |K[q1]
and N |K[q2]. The former application implies that [G0] = 0 over K[q1]; the latter
implies that [G0] = 0 over K[q2]. Thus [G0] = 0 over K[q1] ∩ K[q2] = K. Since
G0 ∈ {0, F0, F1, F2}, it follows that G0 = 0, and hence that 0 = [G0q0 + H] = [H]
over N .

Proposition 3.3.7. Let L, G0, G1, H and s be as in Proposition 3.3.5. Then the
following statements, exactly one of which applies, all hold:

(1) If G0 = 0, G1 = 0, and [H] = 0 over N , then Gal(L|K) ∼= Z/2Z× Z/2Z.

(2) If G0 = 0, G1 = 0, and [H] 6= 0 over N , then Gal(L|K) ∼= (Z/2Z)3.

(3) If G0 = F0, and G1 = 0, then Gal(L|K) ∼= Z/4Z × Z/2Z, and Gal(L|K[q0]) ∼=
Z/2Z× Z/2Z.

(4) If G0 = 0, and G1 = F1, then Gal(L|K) ∼= Z/4Z × Z/2Z, and Gal(L|K[q1]) ∼=
Z/2Z× Z/2Z.

(5) If G0 = F0, and G1 = F1, then Gal(L|K) ∼= Z/4Z×Z/2Z, and Gal(L|K[q2]) ∼=
Z/2Z× Z/2Z.

(6) If G0 = F1, and G1 = 0, then Gal(L|K) ∼= D4, and Gal(L|K[q2]) ∼= Z/4Z.

(7) If G0 = F2, and G1 = 0, then Gal(L|K) ∼= D4, and Gal(L|K[q1]) ∼= Z/4Z.

(8) If G0 = F1, and G1 = F1, then Gal(L|K) ∼= D4, and Gal(L|K[q0]) ∼= Z/4Z.

(9) If G0 = F2, and G1 = F1, then Gal(L|K) ∼= Q8.

Proof. Statement (1) follows directly from Lemma 3.3.6. Moreover, if the conditions
of any one of the statements (2) through (9) applies, then Lemma 3.3.6 implies that L
is a degree eight extension of K. Accordingly, to prove these statements, we suppose
henceforth that L is a degree eight extension of K.

Note that, since L|K has degree eight, for each i ∈ {0, 1, 2}, the extension L|K[qi]
of degree four has Galois group isomorphic either to Z/2Z× Z/2Z or to Z/4Z. Fur-
thermore, to determine the isomorphism class of Gal(L|K), it suffices to determine
the number N of elements i ∈ {0, 1, 2} for which Gal(L|K[qi]) ∼= Z/4Z:

if N = 0, then Gal(L|K) ∼= (Z/2Z)3;

if N = 1, then Gal(L|K) ∼= D4;

if N = 2, then Gal(L|K) ∼= Z/4Z× Z/2Z;

if N = 3, then Gal(L|K) ∼= Q8.
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Proposition 3.1.6 applied to L|K[q0] implies that

Gal(L|K[q0]) ∼=

{
Z/2Z× Z/2Z if [G1] = 0 over K[q0]

Z/4Z if [G1] = [F1] over K[q0]
. (3.1)

Similarly, Proposition 3.1.6 applied to L|K[q1] implies that

Gal(L|K[q1]) ∼=

{
Z/2Z× Z/2Z if [G0] = 0 over K[q1]

Z/4Z if [G0] = [F0] over K[q1]
. (3.2)

Moreover, since G0q0 + G1q1 + H = (G0 + G1)q0 + G1q2 + H, Proposition 3.1.6
applied to L|K[q2] implies that

Gal(L|K[q2]) ∼=

{
Z/2Z× Z/2Z if [G0 +G1] = 0 over K[q2]

Z/4Z if [G0 +G1] = [F0] over K[q2]
. (3.3)

The proposition now follows by applying, for each case, the isomorphisms (3.1),
(3.2) and (3.3) to determine Gal(L|K) in that case. For example, if G0 = F2, and
G1 = F1, then [G1] = [F1] over K[q0], [G0] = [F2] = [F0] over K[q1], and [G0 +G1] =
[F2 + F1] = [F0] over K[q2]. Isomorphisms (3.1), (3.2) and (3.3) then imply that
Gal(L|K[qi]) ∼= Z/4Z for all i ∈ {0, 1, 2}. Thus Gal(L|K) ∼= Q8; i.e., statement (9)
holds. The seven statements remaining follow similarly.

3.4 Q8-Extensions of Fields of Characteristic Two

Let K be a field of characteristic two, let Kalg be a fixed algebraic closure of K, and
let L ⊆ Kalg be a Galois extension of K such that Gal(L|K) ∼= Q8.

Proposition 3.4.1. There exist F0, F1, F2, H ∈ K and q0, q1, q2, s ∈ Kalg such
that q2 = q0 + q1, q2

i + qi = Fi for all i ∈ {0, 1, 2}, s2 + s = F1q0 + F2q1 + F0q2 + H,
and L = K[q0, q1, s].

Proof. Let N ⊆ L be the unique degree four subextension of L|K. Then Gal(N |K) ∼=
Z/2Z×Z/2Z. Hence there exist F0, F1 ∈ K, and q0, q1 ∈ Kalg such that q2

0 +q0 = F0,
q2

1 + q1 = F1, and N = K[q0, q1].
Now let q2 = q0 + q1, and let F2 = F0 +F1. Then q2

2 + q2 = F2, as well. Moreover,
by Propositions 3.3.5 and 3.3.7, there exist H ∈ K and s ∈ Kalg such that s2 + s =
F2q0 + F1q1 +H, and L = N [s] = K[q0, q1, s]. Since

F2q0 + F1q1 +H = F2q1 + F2q2 + F1q2 + F1q0 +H

= F1q0 + F2q1 + F0q2 +H,

the proposition follows immediately.

Proposition 3.4.2. Suppose that F0, F1, F2, H ∈ K and q0, q1, q2, s ∈ Kalg such
that q2 = q0 + q1, q2

i + qi = Fi for all i ∈ {0, 1, 2}, s2 + s = F1q0 + F2q1 + F0q2 + H,
and L = K[q0, q1, s]. Then
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L = K[q0, q1, s]

F1q0+F2q1+F0q2+H

K[q0, q1]

K[q0]

F0

K[q1]

F1

K[q2]

F2

K

Figure 3.4: Subfields of L over K

(1) the degree two subfields of L are K[q0], K[q1] and K[q2],

(2) the unique degree four subfield of L is K[q0, q1].

Remark 3.4.3. The situation described in Proposition 3.4.2 may be visualized as in
Figure 3.4.

Proof. Since L = K[q0, q1, s], and L is a degree eight extension of K, the field L =
K[q0, q1] is a degree four extension of K. It follows that (2) holds, and that K[q0] and
K[q1] are distinct degree two extension of K. Thus K[q2] = K[q0 + q1] is a degree two
extension of K that is both distinct from K[q0] and K[q1], and contained in K[q0, q1].
Statement (1) now follows.
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Chapter 4

D4-Extensions of Complete
Discrete Valuation Fields of
Characteristic Two

4.1 Preliminary Results

4.1.1 Passage to Algebraically Closed Residue Field

Let k be a (not necessarily algebraically closed) field of characteristic two, let K =
k((t)) be the field of Laurent series over k, and let kalg denote a fixed algebraic closure
of k, and let Kalg denote a fixed algebraic closure of k. The following proposition,
adapted from exercises in Serre [Ser79], allows us to reduce computations of ramifica-
tion breaks of totally ramified Galois extensions of complete discretely valued fields
to the case in which the fields have algebraically closed residue field.

Proposition 4.1.1. Let k((s)) ⊆ Kalg be a finite totally ramified Galois extension of
k((t)), let Γ = Gal(k((s))|k((t))), and let L be the compositum of k((s)) and kalg((t)).
Then

(1) L is a Galois extension of kalg((t)),

(2) L = kalg((s)),

(3) the canonical homomorphism

Φ : Gal(L|kalg((t)))→ Gal(k((s))|k((t)))

given by restriction is an isomorphism, and

(4) Φ((Γ′)i) = Γi, and Φ(Γ′i) = Γi for all i ≥ −1,

where Γ′ = Gal(L|kalg((t))).
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Proof. Let n = [k((s)) : k((t))]. We observe that, since k((s)) is a totally ramified
extension of k((t)), the degree of the characteristic polynomial of s over k((t)) is
n. Thus k((s)) = k((t))[s], and hence L = kalg((t))[s]. Since k((t))[s] is a Galois
extension of k((t)), it follows that L is a Galois extension of kalg((t)), and that the
restriction homomorphism Φ : Gal(L|kalg((t)))→ Gal(k((s))|k((t))) is indeed defined.

To prove statement (3), we note that Φ is injective since L is the compositum
of k((s)) and Gal(k((s))|k((t))), and that the fixed field k((s))ImΦ is equal to E =
k((s)) ∩ kalg((t)). Since k((t))|k((s)) is totally ramified, E|k((s)) is totally ramified,
and so vE(t) = [E : k((s))]. Moreover, vE(t) = 1 since t is a uniformizer both in
k((t)) and in kalg((t)). Hence [E : k((s))] = 1. Therefore, k((s))ImΦ = k((t)), and Φ
is surjective. Statement (3) now follows.

To prove statements (2) and (4), we observe that statement (3) implies that
vL(t) = [L : kalg((t))] = n = vk((s))(t). It follows that the restriction of the dis-
crete valuation vL on L to k((s)) is precisely the discrete valuation vk((s)) on k((s)).
Thus vL(s) = 1, and L = k((s)). Moreover, since Φ is given by restriction, it follows
that Φ(σ)(s)− s = σ(s)− s for all σ ∈ Γ′. Hence vL(σ(s)− s) = vk((s))(Φ(σ(s))− s)
for all σ ∈ Γ′. Statement (4) now follows by Definition 2.1.1.

Corollary 4.1.2. The sequences of the lower and of the upper ramification breaks of
the extension kalg((s))|kalg((t)) are equal, respectively, to the sequences of the lower
and of the upper ramification breaks of the extension k((s))|k((t)).

4.1.2 Ramification Breaks and Conductors of Degree Four
Extensions

In this subsection, we maintain the notation of the previous subsection, and insist
moreover that the residue field k of K = k((t)) be algebraically closed. This guaran-
tees that every finite extension of K is totally ramified over K. We begin with two
lemmas, both adapted from Lemme 1.1.4 in [Ray99], for Z/2Z× Z/2Z extensions.

Lemma 4.1.3. Let K1 and K2 be distinct Artin–Schreier extensions of K, and let K3

be the unique degree two subfield of K1K2 distinct from both K1 and K2. Moreover, let
c1, c2 and c3 denote the conductors over K of K1, K2 and K3, respectively. Suppose
that c1 < c2. Then

(1) c3 = c2,

(2) the conductor of K1K2 over K1 is 2c2 − c1.

(3) the conductors both of K1K2 over K2 and of K1K2 over K3 are c1,

(4) the sequence of lower ramification breaks of K1K2 over K is (c1, 2c2 − c1), and

(5) the sequence of upper ramification breaks of K1K2 over K is (c1, c2).

Remark 4.1.4. The situation described in Lemma 4.1.3 may be visualized as in Fig-
ure 4.1.
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K1K2

2c2−c1
c1

c1

K1

c1

K2

c2

K3

c3

K

Figure 4.1: Conductors in Lemma 4.1.3 (c1 < c2)

Proof. Note that, since K1 and K2 are distinct, K1K2 is an Artin–Schreier extension
both of K1 and of K2.

Let Γ denote the Galois group of K1K2 over K, and let H1, H2 and H3 denote the
subgroups of Γ consisting of those elements of Γ fixing K1, K2 and K3, respectively.
To prove statements (5) and (1), we observe that, by Proposition 2.1.7, (Γ/Hj)

i =
ΓiHj/Hj for all i ≥ −1, j ∈ {1, 2, 3}. Thus each of the conductors cj of Γ/Hj is
an upper ramification break of K1K2 over K. Since c1 < c2, the sequence of upper
ramification breaks of K1K2 over K is (c1, c2); i.e., statement (5) holds. Hence
ΓiH1/H1 = (Γ/H1)i = 1 for all i > c1, and Γi = H1 for all c1 < i ≤ c2. Thus
(Γ/H3)i = ΓiH3/H3 = Γ/H3 for all i ≤ c2; as such, c3 = c2.

To prove statements (2) and (3), we consider the sequence of lower ramification
breaks of K1K2 over K. The application of Proposition 2.1.11 to the corresponding se-
quence (c1, c2) of upper ramification breaks of K1K2 over K implies that this sequence
is (c1, 2c2− c1), i.e., that statement (4) holds. Thus Γi = H1 for all c1 < i ≤ 2c2− c1.
Since, by Proposition 2.1.5, (Hj)i = Γi ∩ Hj for all i ≥ −1, j ∈ {1, 2, 3}, it follows
that

(H1)i = Γi ∩H1 =

{
H1 if i ≤ 2c2 − c1

1 if i > 2c2 − c1

, and (Hj)i = Γi ∩Hj =

{
Hj if i ≤ c1

1 if i > c1

for j ∈ {2, 3}; i.e., that the conductor of K1K2 over K1 is 2c2−c1, and the conductors
both of K1K2 over K2 and of K1K2 over K3 are c1.

Lemma 4.1.5. Let K1 and K2 be distinct Artin–Schreier extensions of K, and let
c1 and c2 denote the conductors over K of K1 and K2, respectively. Moreover, let K3

be the unique degree two subfield of K1K2 distinct from both K1 and K2, and let c3

be the conductor of K3 over K. Suppose that c1 = c2. Then

(1) c3 ≤ c1,

(2) the conductors both of K1K2 over K1 and of K1K2 over K2 are c3.

(3) the conductor of K1K2 over K3 is 2c3 − c1,

(4) the sequence of lower ramification breaks of K1K2 over K is (c3, 2c1 − c3), and

(5) the sequence of upper ramification breaks of K1K2 over K is (c3, c1).
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Figure 4.2: Conductors in Lemma 4.1.3 (c1 = c2)

Remark 4.1.6. The situation described in Lemma 4.1.5 may be visualized as in Fig-
ure 4.2.

Proof. Let Γ be the Galois group of K1K2 over K, and let H1, H2 and H3 denote the
subgroups of Γ consisting of those elements of Γ fixing K1, K2 and K3, respectively.

Suppose that c3 > c1 = c2. Then, as in Lemma 4.1.3, Γi = H1 and Γi = H2

for all c1 = c2 < i ≤ c3. Since H1 6= H2, it follows that c3 ≤ c1; i.e., that (1)
holds. Moreover, if c3 < c1, then statements (2) through (5) follow directly by the
application of Lemma 4.1.3 to the extensions K3|K and K1|K.

Now suppose that c3 = c1. Since, for each j ∈ {1, 2, 3}, the upper ramification
group (Γ/Hj)

i = ΓiHj/Hj is non-trivial for all −1 ≤ i ≤ cj = c1, and trivial for all
i > cj = c1. Hence, for all i ≥ −1,

Γi =

{
Γ if i ≤ c1

1 if i > c1

.

Since c3 = 2c3 − c1 = c1, statements (2) through (5) now follow.

Lemmas 4.1.3 and 4.1.5 together imply the following proposition.

Proposition 4.1.7. Let K1 and K2 be distinct Artin–Schreier extensions of K, and
let c1 and c2 denote the conductors over K of K1 and K2, respectively. Moreover, let
K3 be the unique degree two subfield of K1K2 distinct from both K1 and K2, let c3 be
the conductor of K3 over K, and let X = {c1, c2, c3}. Then

(1) for all i ∈ {1, 2, 3}, the conductor of K1K2 over Ki is 2 maxX + minX − 2ci.

(2) the sequence of lower ramification breaks of K1K2 over K is (minX, 2 maxX−
minX), and

(3) the sequence of upper ramification breaks of K1K2 over K is (minX,maxX).

Proof. Note that statement (2) follows directly from the fourth statements of both
Lemma 4.1.3 and Lemma 4.1.5, while statement (3) follows directly from the fifth
statements of both Lemma 4.1.3 and Lemma 4.1.5.

To show statement (1), let i and j be distinct elements of {1, 2, 3}. If ci > cj,
then ci = maxX, and the conductor of K1K2 over Ki is cj = minX = 2 maxX +
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minX − 2ci by Lemma 4.1.3 applied to the extensions Kj|K and Ki|K. Similarly,
if ci = cj, then ci = maxX, and the conductor of K1K2 over Ki is cj = minX =
2 maxX + minX − 2ci by Lemma 4.1.5 applied to the extensions Kj|K and Ki|K.
Finally, if ci < cj, then ci = minX, and the conductor of K1K2 over Ki is 2cj − ci =
2 maxX−minX = 2 maxX+ minX− 2ci by Lemma 4.1.3 applied to the extensions
Ki|K and Kj|K.

Now let F,G,H ∈ K and q, r, u ∈ Kalg such that

q2 + q = F, r2 + r = Gq +H and u2 + u = H;

and let f = degt−1(F ), g = degt−1(G) and h = degt−1(H).

Proposition 4.1.8. Suppose that f and g are both positive and odd, and that h is not
both positive and even. The conductor of K[q] over K is f . Moreover, the conductor
of K[q, r] over K[q] is 2 max{f + g, h} − f .

Proof. Since the degree in t−1 of F is both odd and positive by hypothesis, the
first claim follows immediately by Proposition 2.2.7. For the second claim, note that
vK[q](F ) = −2f , where vK[q] denotes the discrete valuation of the field K[q], since K[q]
is a totally ramified extension of K. Thus vK[q](q) = −f , and vK[q](Gq) = −(2g+ f).

Let cu denote the conductor of K[q, u] over K[q], and let Cu denote the conductor
of K[q, r + u] over K[q]. Since vq(Gq) = −(2g + f), and 2g + f is odd, Cu = 2g + f
by Proposition 2.2.7. Similarly, the conductor of K[u] over K is h.

First, suppose that h ≤ 0. Then vK[q](H) ≥ 0 > −(2g + f) = vK[q](Gq). Hence
vK[q](Gq + H) = −(2g + f); since 2g + f is odd, it follows by Proposition 2.2.7 that
the conductor of K[q, r] over K[q] is 2g + f = 2 max{f + g, h} − f .

Second, suppose that 0 < h ≤ f . If h < f , then cu = h by Lemma 4.1.3 applied to
the extensions K[u]|K and K[q]|K. If h = f , then cu ≤ h by Lemma 4.1.5 applied to
the extensions K[u]|K and K[q]|K. In either case, cu ≤ h ≤ f < 2g+ f = Cu. Hence
the conductor of K[q, r] over K[q] is 2g+ f = 2(f + g)− f = 2 max{f + g, h}− f by
Lemma 4.1.3 applied to the extensions K[q, r + u]|K[q] and K[q, r]|K[q].

Finally, suppose that f < h. Then cu = 2h − f by Lemma 4.1.3 applied to the
extensions K[q]|K and K[u]|K. Since f , g and h are all odd, 2g + f − (2h − f) =
2(f + g − h) 6= 0; hence Cu = 2g + f 6= 2h − f = cu. Thus the conductor of K[q, r]
over K[q] is max{2g + f, 2h− f} = 2 max{f + g, h} − f by Lemma 4.1.3 applied to
the extensions K[q, r + u]|K[q] and K[q, r]|K[q].

Remark 4.1.9. The situation described in the proof of Proposition 4.1.8 may be visu-
alized as in Figure 4.3.

Remark 4.1.10. Proposition 4.1.8 has the following corollary, which also (essentially)
follows from a known result (see, e.g., [Gar02]) on ramification breaks of Witt vectors.

Corollary 4.1.11. Suppose that F = G (so that K[q, r] is a Z/4Z-extension of K
by Proposition 3.1.6). Then the conductor of K[q, r] over K[q] is 2 max{2f, h} − f .
Moreover,
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Figure 4.3

(1) the sequence of lower ramification breaks of K[q, r] over K is (f, 2 max{2f, h}−
f), and

(2) the sequence of upper ramification breaks of K[q, r] over K is (f,max{2f, h}).

4.2 Standard and Odd Form D4-Extensions

Having described the structure of D4-extensions over all fields of characteristic two, in
this section we restrict our attention to complete discrete valuation fields of character-
istic two, and parametrize and classify D4-extensions of complete discrete valuation
fields of characteristic two with algebraically closed residue field. To this end, let k
be a (not necessarily algebraically closed) field of characteristic two, let K = k((t))
be the field of Laurent series over k, and let Kalg denote a fixed algebraic closure of
K.

Definition 4.2.1. A triple (F,G,H) of elements of K is a standard form triple if
each of F , G and H is a standard form element of K with respect to t.

Definition 4.2.2. Let L ⊆ Kalg be a Galois extension ofK such that Gal(L|K) ≤ D4.
The extension L over K is generated by standard form elements if there exists a
standard form triple (F,G,H) such that L is the Galois closure of K[q, r], where
q, r ∈ Kalg such that q2 + q = F and r2 + r = Gq +H.

Remark 4.2.3. By Proposition 3.1.6, Gal(L|K) ∼= D4 unless F = 0, G = 0, or F = G.
If Gal(L|K) ∼= D4, we say that L is a D4-standard form extension of K.

The standard form triple (F,G,H) may be considered a sort of ‘canonical form’
for a D4-standard form extension of K, though any given D4-standard form extension
is associated not to one triple, but to several.

Definition 4.2.4. A triple (F,G,H) of elements of K is a D4-odd form triple if

(1) each of degt−1 F , degt−1 G and degt−1(F +G) is both positive and odd, and

(2) degt−1 H is not both positive and even.

Definition 4.2.5. Suppose that L is a D4-Galois extension of K. The extension L
over K is a D4-odd form extension of K if there exists a D4-odd form triple (F,G,H)
such that L = K[q, r, s], where q, r, s ∈ Kalg such that q2+q = F , that r2+r = Gq+H,
and that s2 + s = G.
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4.2.1 Parametrization of D4-Extensions via Standard Form
Elements

Suppose now that k is algebraically closed, and that L is an extension of K such that
Gal(L|K) ∼= D4.

Proposition 4.2.6. There exist F,G,H ∈ K = k((t)) in standard form with respect
to t, and q, r ∈ Kalg such that q2 + q = F, r2 + r = Gq + H, and L is the Galois
closure over K of K[q, r].

Proof. By Proposition 3.2.1, there exist F ′, G′, H ′ ∈ K, not necessarily in standard
form, and q′, r′, s′ ∈ Kalg such that (q′)2 + q′ = F ′, (r′)2 + r′ = G′q′ + H ′, and
(s′)2 + s′ = G′, and such that L is the Galois closure over K of K[q′, r′]. Since k
is algebraically closed, by Proposition 2.2.5 there exist unique elements F,G ∈ K =
k((t)) in standard form such that [F ] = [F ′] and [G] = [G′], respectively, over K. Let
q, s ∈ Kalg such that q2 + q = F and s2 + s = G. Since

(q + q′)2 + (q + q′) =
(
q2 + q

)
+
(
(q′)2 + q′

)
= F + F ′,

and since [F ] = [F ′] over K, it follows that q + q′ ∈ K. Similarly, s + s′ ∈ K, and
thus H ′ +G′(q + q′) + F (s+ s′)2 +G ∈ K as well. Therefore, there exists H ∈ K in
standard form such that [H] = [H ′ + G′(q + q′) + F (s + s′)2] over K[q] = K[q′]. Let
r ∈ Kalg such that r2 +r = Gq+H. Then K[q, r] = K[q′, r′] by Proposition 3.1.8.

Note that, by Proposition 3.2.2, L = K[q, r, s]. Proposition 3.2.1 thus has the
following corollary:

Corollary 4.2.7. The extension L is a D4-standard form extension of K.

As noted above, the standard form triple (F,G,H) is not unique; indeed, in this
case any given D4-extension of K is associated to eight distinct standard form triples,
which are enumerated in the following proposition.

Proposition 4.2.8. Let L′ ⊆ Kalg be another Galois extension of K such that
Gal(L′|K) ∼= D4, and let F ′, G′, H ′ be standard form elements of K (with respect
to t) such that L′ is the Galois closure of K[q′, r′], where q′, r′ ∈ Kalg such that
(q′)2 + q′ = F ′ and (r′)2 + r′ = Gq′ + H ′. Then the fields L′ and L are equal if and
only if one of the four following conditions holds.

(1) F ′ = F , G′ = G, and [H ′] = [H] over K[q′].

(2) F ′ = F , G′ = G, and [H ′] = [H +G] over K[q′]

(3) F ′ = G, G′ = F , and [H ′] = [H + FG] over K[q′].

(4) F ′ = G, G′ = F , and [H ′] = [H + FG+ F ] over K[q′].
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Proof. Note from Proposition 3.2.2 that L′ and L are equal if and only if K[q′, r′] is
equal to one of the four non-normal degree four subfields K[q, r], K[q, r+ s], K[s, r+
qs], K[s, r + qs+ q] of L.

By Proposition 3.1.8, K[q′, r′] = K[q, r] if and only if condition (1) holds, and
K[q′, r′] = K[q, r + s] if and only if condition (2) holds. Similarly, since (r + qs)2 =
Fs + H + FG by Lemma 3.1.1, K[q′, r′] = K[s, r + qs] if and only if condition (3)
holds, and K[q′, r′] = K[s, r + qs+ q] if and only if condition (4) holds.

Corollary 4.2.9. Let K be the set of standard form elements of K, and let G be
the set of Galois extensions of K contained in Kalg whose Galois group over K is
isomorphic to D4. Furthermore, let D = {(φ, γ, η) ∈ K3 | φ = 0 or γ = 0 or γ = φ},
and define Φ : K3\D → G such that, for all (φ, γ, η) ∈ K3\D, Φ(φ, γ, η) is the Galois
closure of K[κ, ρ], where κ, ρ ∈ Kalg such that κ2 + κ = φ and ρ2 + ρ = γκ+ η. Then
Φ is surjective.

Remark 4.2.10. By Lemma 3.1.2, each condition in Proposition 4.2.8 corresponds to
two pre-images under Φ of any given element of G. Thus the surjection Φ is, in fact,
eight-to-one.

4.3 Computation of Ramification Breaks

Let L be a D4-extension of K. In this section, we shall, under the continued sup-
position that the residue field k of K is algebraically closed (so that L|K is totally
ramified), compute the ramification breaks of L over K. By Corollary 4.2.7, L is a
D4-standard form, and hence a D4-odd form, extension of K.

Accordingly, we let (F,G,H) be a D4-odd form triple corresponding to L|K; let
f = degt−1(F ), g = degt−1(G), h = degt−1(H), and d = degt−1(F + G); and let
q, r, s ∈ Kalg such that q2 + q = F , that r2 + r = Gq + H, that s2 + s = G. By
Definitions 4.2.4 and 4.2.5, the degrees f , g and d are all both positive and odd, the
degree h is not both positive and even, and L = K[q, r, s]. We do not insist that the
triple (F,G,H) be a standard form triple.

The degrees d, f, g and h suffice to determine the lower and upper ramification
breaks of the extension L of K.

Lemma 4.3.1. Let cq and cs denote the conductors over K of K[q] and K[s], respec-
tively, and let cr denote the conductor of K[q, r] over K[q]. Then cr ≥ 2cs + cq.

Proof. Observe that, by Proposition 2.2.7, cq = f , and cq = g. Moreover, cr =
2 max{f + g, h} − f by Lemma 4.1.8. Thus

cr = 2 max{f + g, h} − f ≥ 2(f + g)− f = 2g + f = 2cs + cq.

Proposition 4.3.2. Let cq, cs and cq+s denote the conductors over K of K[q], K[s]
and K[q + s], respectively, and let cr denote the conductor of K[q, r] over K[q].
Then the lower ramification breaks of L over K are `1 = min{cq+s, cq, cs}, `2 =
2 max{cq+s, cq, cs} −min{cq+s, cq, cs} and

`3 = 2cq + 2cr − 2 max{cq+s, cq, cs} −min{cq+s, cq, cs},
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and the upper ramification breaks of L over K are u1 = min{cq+s, cq, cs}, u2 =
max{cq+s, cq, cs} and u3 = (cq + cr)/2.

Proof. Let cL denote the conductor of L over K[q, s], let Cq denote the conductor of
K[q, s] over K[q], and let Γ = Gal(L|K). By Proposition 3.2.2, K[q, s] is the unique
normal degree four subfield of L; thus, Gal(L|K[q, s]) is the only normal subgroup of
Γ of order two. By Proposition IV.1 in [Ser79], Γi is a normal subgroup of Γ for all i.
In light of Proposition 2.1.5, it follows that `3 = cL. Similarly, by Proposition 2.1.7,
u1 and u2 equal the first and second upper ramification breaks of K[q, s] over K,
respectively.

To determine u1 and u2, we observe that, since K[q, s] is a Z/2Z×Z/2Z-extension
of K, the sequence of upper ramification breaks of K[q, s] over K is

(min{cq+s, cq, cs},max{cq+s, cq, cs})

by Proposition 4.1.7. Thus u1 = min{cq+s, cq, cs}, and u2 = max{cq+s, cq, cs}. By
Proposition 2.1.11, it follows that `1 = u1 = min{cq+s, cq, cs}, and that `2 = 2u2−u1 =
2 max{cq+s, cq, cs} −min{cq+s, cq, cs}.

To compute `3 (and u3), we note that either cq or cs is equal to max{cq+s, cq, cs},
and that thus

max{cq+s, cq, cs}+ min{cq+s, cq, cs} ≤ cq + cs

Therefore, by Proposition 4.1.7,

Cq = 2 max{cq+s, cq, cs}+ min{cq+s, cq, cs} − 2cq

< 2(max{cq+s, cq, cs}+ min{cq+s, cq, cs})− 2cq

≤ 2(cq + cs)− 2cq = 2cs.

Moreover, by Lemma 4.3.1, cr ≥ 2cs + cq. Thus cr > Cq; hence

`3 = cL = 2cr − Cq = 2cq + 2cr − 2 max{cq+s, cq, cs} −min{cq+s, cq, cs}

by Lemma 4.1.3. Therefore,

u3 = `1 + (`2 − `1)/2 + (`3 − `2)/4 = `3/4 + `2/4 + `1/2

= (2cq + 2cr − 2 max{cq+s, cq, cs} −min{cq+s, cq, cs}) /4
+ (2 max{cq+s, cq, cs} −min{cq+s, cq, cs}) /4 + min{cq+s, cq, cs}/2
= (cq + cr)/2,

the first equality holding by Proposition 2.1.11.

Applying Proposition 4.1.8 to Proposition 4.3.2 yields the following corollary.

Corollary 4.3.3. The lower ramification breaks of L over K are `1 = min{d, f, g},
`2 = 2 max{d, f, g} −min{d, f, g} and

`3 = 4 max{f + g, h} − 2 max{d, f, g} −min{d, f, g},

and the upper ramification breaks of L over K are u1 = min{d, f, g}, u2 = max{d, f, g}
and u3 = max{f + g, h}.
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4.4 Characterization of Sequences of Ramification

Breaks

In this subsection, we once again suppose that k is algebraically closed. By Corol-
lary 4.2.7 it follows that every D4-extension of K is a D4-standard form extension
of K. Moreover, by Proposition 4.2.8, every D4-extension of K has a standard form
triple (F ′, G′, H ′) satisfying the additional condition degt−1 F ′ ≤ degt−1 G′.

Suppose Gal(L|K) ∼= D4. Recall that we have defined (in Defintion 2.1.9) the nth
element of the sequence of ramification groups of L over K to be Gal(L|K)ui , where
ui denotes the ith upper ramification break of L|K. We now define the sequence of
ramification groups of L over K to be a Type I sequence if the sequence’s second
element is isomorphic to Z/2Z × Z/2Z, to be a Type II sequence if the sequence’s
second element is isomorphic to Z/4Z, and to be a Type III sequence if the sequence’s
second element is isomorphic to Z/2Z. Note that in all cases, the second ramification
break is strictly smaller than the third; thus the sequence’s third element is always
isomorphic to Z/2Z.

The type of the sequence of ramification groups of the extension L over K informs,
to a large extent, which of the equicharacteristic deformations in Section 6.1 may and
will be applied to the extension L. Moreover, the type of an extension’s sequence of
ramification groups affects the possible sequences of lower and of upper ramification
breaks of that extension significantly. In this subsection, we consider (in the case
where k is algebraically closed) the relation between the type of an extension’s se-
quence of ramification groups and the sequences of lower and of upper ramification
breaks of that sequence exhaustively.

Let C denote the set of triples (F ′, G′, H ′) of standard form elements of K such
that F ′, G′ and 0 are pairwise distinct, and let Φ denote the surjection from C to the
set of D4-extensions of K defined in Corollary 4.2.9.

Lemma 4.4.1. Let (α, β, γ) ∈ (Z+)3 such that α is odd, α ≤ β, β is odd, γ ≥ α+ β,
and γ is odd if γ /∈ {α + β, 2β}. Also, let G = t−β, let

F =


ζ3t
−α if α = β

t−β + t−α if α < β and γ = 2β

t−α if α < β and γ 6= 2β

, and let H =

{
t−γ if γ is odd

0 if γ is even
,

where ζ3 ∈ k is a primitive cube root of unity. Then (F,G,H) ∈ C, and the sequence
of upper ramification breaks of the D4-extension Φ((F,G,H)) of K is (α, β, γ).

Proof. Since α and β are both odd, F , G and H are all standard form elements of
K. Since F , G and 0 are pairwise distinct, it follows that (F,G,H) ∈ C.

Let f = degt−1(F ), g = degt−1(G), h = degt−1(H), and d = degt−1(F + G). Then
f ≤ β = g. Hence the sequence of upper ramification breaks of L = Φ((F,G,H)) is
(u1, u2, u3) = (min{d, f}, g,max{f + g, h}) by Corollary 4.3.3. Thus u2 = g = β.

Suppose α = β. Then F + G = (ζ3 + 1)t−α = ζ2
3 t
−α, and d = f = g = α. Hence

u1 = α, and u3 = max{α + β, h}. Moreover, α = β implies that γ is odd if and only
if γ > α + β. Thus u3 = γ.
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Now suppose that α < β, and that γ = 2β. Then F + G = t−α. Hence d = α,
f = g = β, and h = 0. Thus u1 = min{α, β} = α, and u3 = max{2β, 0} = 2β = γ.

Finally, suppose that α < β, and that γ 6= 2β. Then F + G = t−β + t−α. Hence
f = α, and d = g = β. Thus u1 = min{α, β} = α, and u3 = max{α + β, h}.
Moreover, γ 6= 2β implies that γ is odd if and only if γ > α + β. Thus u3 = γ.

Proposition 4.4.2. Let (α, β, γ) ∈ (Z+)3. Then (α, β, γ) is the sequence of upper
ramification breaks for a D4-extension of K if and only if α is odd, α ≤ β, β is odd,
γ ≥ α + β, and γ is odd if γ /∈ {α + β, 2β}. Moreover, if M is a D4-extension of K
with sequence of upper ramification breaks (α, β, γ), then

(1) M has a Type I sequence of ramification groups if γ < 2β;

(2) M has a Type II sequence of ramification groups if α < β and γ = 2β;

(3) M has a Type I or a Type II sequence of ramification groups if α < β and
γ > 2β;

(4) M has a Type III sequence of ramification groups if and only if α = β.

Proof. Since Φ is surjective, the triple (α, β, γ) is the sequence of upper ramification
breaks for a D4-extension of K if and only if there is a triple in C whose image under
Φ has (α, β, γ) as its sequence of upper ramification breaks. Lemma 4.4.1 provides
such a triple in C if (α, β, γ) satisfies the conditions of the unnumbered claim of the
proposition.

To prove the converse, let (F,G,H) ∈ C, and let f = degt−1(F ), g = degt−1(G),
h = degt−1(H), and d = degt−1(F +G). By Proposition 4.2.8, we may and do assume,
without loss of generality, that f ≤ g. Then the sequence of upper ramification breaks
of L = Φ((F,G,H)) is (u1, u2, u3) = (min{d, f}, g,max{f + g, h}) by Corollary 4.3.3.
Moreover, it follows that f , d and g are all both odd and positive, that h is either both
odd and positive or equal to −∞, that d = g if f < g, and that d ≤ f if f = g. These
conditions imply that u1 is odd, that u1 ≤ u2, that u2 is odd, and that u3 ≥ u1 + u2.

Suppose first that f < g = d. Then u1 = f < g = u2. Hence the second element
of the sequence of ramification groups of L over K is Gal(L|K[q]) ∼= Z/2Z × Z/2Z;
i.e., L has a Type I sequence of ramification groups. Moreover, u3 = max{u1 +u2, h}.
Thus u3 is odd if u3 6= u1 + u2.

Suppose second that d < f = g. Then u1 = d < g = u2. Hence the second element
of the sequence of ramification groups of L over K is Gal(L|K[q + s]) ∼= Z/4Z; i.e.,
L has a Type II sequence of ramification groups. Moreover, u3 = max{2u2, h}. Thus
u3 ≥ 2u2, and u3 is odd if u3 6= 2u2.

Suppose third that d = f = g. Then u1 = g = u2. Hence the second element
of the sequence of ramification groups of L over K is Gal(L|K[q, s]) ∼= Z/2Z; i.e., L
has a Type III sequence of ramification groups. Moreover, u3 = max{2u2, h}. Thus
u3 ≥ 2u2, and u3 is odd if u3 6= 2u2.

Note that in all cases, u3 is odd if u3 /∈ {u1 + u2, 2u2}. The unnumbered claim
of the proposition now follows. Moreover, statement (4) holds since u1 < u2 in
the first and second cases and u1 = u2 in the third case. Since u3 ≥ 2u2 in the
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second case and 2u2 > u3 ≥ u1 + u2 implies that u1 < u2, statement (1) holds as
well. Finally, statements (2) and (3) both hold since u3 is odd in the first case if
u3 > u1 + u2, and since there is no restriction in either the first or the second case on
u3 if u3 > 2u2 > u1 + u2, save that in both cases u3 must be odd.

The following proposition is the precise analogue to Proposition 4.4.2 concerning
the lower ramification breaks of D4; accordingly, we omit its proof.

Proposition 4.4.3. Let (a, b, c) ∈ (Z+)3. Then (a, b, c) is the sequence of lower
ramification breaks for a D4-extension of K if and only if a is odd, a ≤ b, a ≡ b
(mod 4), c ≥ 4a+ b, and b ≡ c (mod 8) if c /∈ {4a+ b, 2a+ 3b}. Moreover, if M is a
D4-extension of K with sequence of lower ramification breaks (a, b, c), then

(1) M has a Type I sequence of ramification groups if c < 2a+ 3b.

(2) M has a Type II sequence of ramification groups if a < b and c = 2a+ 3b.

(3) M has a Type I or a Type II sequence of ramification groups if a < b and
c > 2a+ 3b.

(4) M has a Type III sequence of ramification groups if and only if a = b.
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Chapter 5

Q8-Extensions of Complete
Discrete Valuation Fields of
Characteristic Two

5.1 Standard and Odd Form Q8-Extensions

Let k be a (not necessarily algebraically closed) field of characteristic two, let K =
k((t)) be the field of Laurent series over k, let Kalg denote a fixed algebraic closure
of K.

Definition 5.1.1. Let L ⊆ Kalg be a Galois extension of K such that Gal(L|K) ≤
Q8. The extension L over K is generated by standard form elements if there exists
a standard form triple (F0, F1, H) such that L = K[q0, q1, s], where F2 ∈ K and
q0, q1, q2, s ∈ Kalg such that

(1) q2 = q0 + q1,

(2) q2
i + qi = Fi for all i ∈ {0, 1, 2} (so that F2 = F0 + F1), and

(3) s2 + s = F1q0 + F2q1 + F0q2 +H.

Remark 5.1.2. By Proposition 3.3.7, Gal(L|K) ∼= Q8 unless Fi = 0 for some i ∈
{0, 1, 2}. If Gal(L|K) ∼= Q8, we say that L is a Q8-standard form extension of K.

The standard form triple (F0, F1, H) may be considered a sort of ‘canonical form’
for a Q8-standard form extension of K, though, as in the D4 case, any given Q8-
standard form extension is associated not to one triple, but to several.

Definition 5.1.3. A triple (F0, F1, H) of elements of K is an Q8-odd form triple if

(1) each of degt−1 F0, degt−1 F1 and degt−1 F2 is both positive and odd, and

(2) degt−1 H is not both positive and even,

where F2 = F0 + F1.
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Definition 5.1.4. The Galois extension L over K is a Q8-odd form extension of K
if, firstly, Gal(L|K) ∼= Q8 and, secondly, there exists a Q8-odd form triple (F0, F1, H)
such that L = K[q0, q1, s], where F2 ∈ K and q0, q1, q2, s ∈ Kalg such that

(1) q2 = q0 + q1,

(2) q2
i + qi = Fi for all i ∈ {0, 1, 2} (so that F2 = F0 + F1), and

(3) s2 + s = F1q0 + F2q1 + F0q2 +H.

5.1.1 Parametrization of Q8-Extensions via Standard Form
Elements

Suppose now that k is algebraically closed and that L is an extension of K such that
Gal(L|K) ∼= Q8.

Proposition 5.1.5. The extension L is a Q8-standard form extension of K; that
is, there exist F0, F1, F2, H ∈ K = k((t)) in standard form with respect to t, and
q0, q1, q2, s ∈ Kalg such that q2 = q0 + q1, that (qi)

2 + qi = Fi for all i ∈ {0, 1, 2} (so
that F2 = F0 + F1), that s2 + s = F1q0 + F2q1 + F0q2 +H, and that L = K[q0, q1, s].

Proof. By Proposition 3.4.1, there exist F ′0, F ′1, F ′2, H ′ ∈ K, not necessarily in stan-
dard form, and q′0, q′1, q′2, s′ ∈ Kalg such that q′2 = q′0 + q′1, that (q′i)

2 + q′i = F ′i for all
i ∈ {0, 1, 2}, that

(s′)2 + s′ = F ′1q
′
0 + F ′2q

′
1 + F ′0q

′
2 +H ′ = F ′1q

′
0 + F ′2q

′
1 + F ′0(q′0 + q′1) +H ′

= F ′2q
′
0 + F ′1q

′
1H
′,

and that L = K[q′0, q
′
1, s
′]. Since k is algebraically closed, by Proposition 2.2.5 there

exist unique elements F0, F1 ∈ K = k((t)) in standard form such that [F0] = [F ′0]
and [F1] = [F ′1], respectively, over K. Let F2 = F0 + F1, and note that then F2 is
the unique element in standard form such that [F2] = [F ′2] over K. Moreover, let
q0, q1, q2 ∈ Kalg such that q2 = q0 + q1, and q2

i + qi = Fi for all i ∈ {0, 1, 2}.
Let i ∈ {0, 1, 2}. Then, since

(qi + q′i)
2 + (qi + q′i) =

(
q2
i + qi

)
+
(
(q′i)

2 + q′i
)

= Fi + F ′i ,

and [Fi] = [F ′i ] over K, it follows that qi + q′i ∈ K. Therefore,

H ′ + F ′1(q1 + q′1) + F1(q1 + q′1)2 + F ′2(q0 + q′0) + F0(q2 + q′2)2 ∈ K.

Thus there exists H ∈ K in standard form with respect to t such that

[H] = [H ′ + F ′1(q1 + q′1) + F1(q1 + q′1)2 + F ′2(q0 + q′0) + F0(q2 + q′2)2]

over K.
Let s ∈ Kalg such that

s2 + s = F1q0 + F2q1 + F0q2 +H = F2q0 + F1q1 +H.
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Note that K[q′1] = K[q1] since [F1] = [F ′1] over K. Therefore, by Proposition 3.1.8,
L = K[q′1][q′0, s

′] = K[q1][q0, s] = K[q0, q1, s] if and only [F2] = [F ′2] over K[q1], and

[F1q1 +H] = [F ′1q
′
1 +H ′ + F ′2(q0 + q′0) + F0(q2 + q′2)2]

over K[q0, q1].
Since [F2] = [F ′2] over K, it follows a fortiori that [F2] = [F ′2] over K[q1]. Moreover,

by Lemma 3.1.7 applied to the tower K[q0, q1] ⊇ K[q1] ⊇ K of fields,

[F1q1] = [F ′1q
′
1 + F ′1(q1 + q′1) + F1(q1 + q′1)2]

over K[q1]. Hence

[F1q1 +H] = [F1q1 +H ′ + F ′1(q1 + q′1) + F1(q1 + q′1)2 + F ′2(q0 + q′0) + F0(q2 + q′2)2]

= [F ′1q
′
1 +H ′ + F ′2(q0 + q′0) + F0(q2 + q′2)2]

over K[q1]. Therefore, L = K[q0, q1, s] by Proposition 3.1.8.

As noted above, the standard form triple (F0, F1, H) is not unique; indeed, in this
case any given Q8-extension of K is associated to twenty-four distinct standard form
triples, which are enumerated in the following proposition.

Proposition 5.1.6. Let L′ ⊆ Kalg be another Galois extension of K such that
Gal(L′|K) ∼= Q8, and let F ′0, F

′
1, F

′
2, H

′ be standard form elements of K (with re-
spect to t) such that L′ = K[q′0, q

′
1, s
′], where q′0, q

′
1, q
′
2, s
′ ∈ Kalg such that q′2 = q′0 + q′1,

that (q′i)
2 + qi = Fi for all i ∈ {0, 1, 2} (so that F ′2 = F ′0 + F ′1), and that (s′)2 + s′ =

F ′1q
′
0 + F ′2q

′
1 + F ′0q

′
2 +H ′. Then the fields L′ and L are equal if and only if one of the

six following conditions holds.

(1) F ′0 = F0, F ′1 = F1, and [H ′] = [H] over K[q′0, q
′
1].

(2) F ′0 = F1, F ′1 = F2, and [H ′] = [H] over K[q′0, q
′
1].

(3) F ′0 = F2, F ′1 = F0, and [H ′] = [H] over K[q′0, q
′
1].

(4) F ′0 = F0, F ′1 = F2, and [H ′] = [H + F0F1] over K[q′0, q
′
1].

(5) F ′0 = F1, F ′1 = F0, and [H ′] = [H + F0F1] over K[q′0, q
′
1].

(6) F ′0 = F2, F ′1 = F1, and [H ′] = [H + F0F1] over K[q′0, q
′
1].

Proof. Observe that, by Proposition 3.4.2, L′ and L are equal if and only if both
K[q0, q1] = K[q′0, q

′
1], and [F1q0 + F2q1 + F0q2 + H] = [F ′1q

′
0 + F ′2q

′
1 + F ′0q

′
2 + H ′] over

K[q0, q1]. Moreover, since K[q0, q1] and K[q′0, q
′
1] are both Z/2Z × Z/2Z-extensions

of K, the two extensions are equal if and only if both extensions contain the same
set of degree two subextensions of K, i.e., if and only if {K[q0], K[q1], K[q2]} =
{K[q′0], K[q′1], K[q′2]}. Since, for all i ∈ {0, 1, 2}, both Fi and F ′i are standard form
elements of K, it follows by Proposition 2.2.5 that K[q0, q1] = K[q′0, q

′
1] if and only if

{F0, F1, F2} = {F ′0, F ′1, F ′2}.
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Suppose henceforth that K[q0, q1] = K[q′0, q
′
1]. It suffices to show that [F1q0 +

F2q1 + F0q2 + H] = [F ′1q
′
0 + F ′2q

′
1 + F ′0q

′
2 + H ′] over K[q0, q1] if and only if one of the

six conditions listed in the proposition holds. To show this, it is convenient to let
i, j ∈ {0, 1, 2} such that F ′0 = Fi and F ′1 = Fj. Then either j ≡ i + 1 (mod 3) or
j ≡ i− 1 (mod 3).

First suppose that j ≡ i+1 (mod 3). Then F ′1q
′
0+F ′2q

′
1+F ′0q

′
2 = F1q0+F2q1+F0q2.

As such, in this case, [F ′1q
′
0 +F ′2q

′
1 +F ′0q

′
2 +H ′] = [F1q0 +F2q1 +F0q2 +H] over K[q0, q1]

if and only if [H ′] = [H] over K[q0, q1], i.e., if and only if one of conditions (1) through
(3) holds.

Now suppose that j ≡ i− 1 (mod 3). Then

F ′1q
′
0 + F ′2q

′
1 + F ′0q

′
2 = F1q2 + F0q1 + F2q0

= F1q2 + F1q1 + F2q1 + F0q0 + F1q0

= F1q0 + F2q1 + F0q2 + F0q1 + F1q0.

By Lemma 3.1.1, [F0q1 + F1q0] = [F0F1] over K[q0, q1]. Hence

[F ′1q
′
0 + F ′2q

′
1 + F ′0q

′
2 +H ′] = [F1q0 + F2q1 + F0q2 + F0F1 +H ′].

Therefore, in this case, [F ′1q
′
0 + F ′2q

′
1 + F ′0q

′
2 + H ′] = [F1q0 + F2q1 + F0q2 + H] over

K[q0, q1] if and only if [H ′] = [H + F0F1] over K[q0, q1], i.e., if and only if one of
conditions (4) through (6) holds.

Corollary 5.1.7. Let K be the set of standard form elements of K, and let G be the set
of Galois extensions of K contained in Kalg whose Galois group over K is isomorphic
to Q8. Furthermore, let D = {(φ0, φ1, η) ∈ K3 | φ0 = 0 or φ1 = 0 or φ0 = φ1}, and
define Φ : K3\D → G such that, for all (φ0, φ1, η) ∈ K3\D,

Φ(φ, γ, η) = K[κ0, κ1, σ],

where κ0, κ1, σ ∈ Kalg such that κ2
0 + κ0 = φ0, κ2

1 + κ1 = φ1, and

σ2 + σ = φ1κ0 + (φ0 + φ1)κ1 + φ0(κ0 + κ1) + η.

Then Φ is surjective.

Remark 5.1.8. By Lemma 3.1.2 (applied twice), each condition in Proposition 5.1.6
corresponds to four pre-images under Φ of any given element of G. Thus the surjection
Φ is, in fact, twenty-four-to-one.

5.2 Computation of Ramification Breaks

Let L be a Q8-extension of K. In this section, we shall, under the continued suppo-
sition that the residue field k of K is algebraically closed, compute the ramification
breaks of L over K. By Proposition 5.1.5, L is a Q8-standard form, and hence a
Q8-odd form, extension of K.
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Accordingly, we let (F0, F1, H) be a Q8-odd form triple corresponding to L|K;
let f0 = degt−1(F0), f1 = degt−1(F1), f2 = degt−1(F0 + F1), h = degt−1(H), and
d = degt−1(F0F1 + F1F2 + F2F0); and let F2 ∈ K, and q0, q1, q2, s ∈ Kalg such that
q2 = q0 + q1, that q2

i + qi = Fi for all i ∈ {0, 1, 2} (so that F2 = F0 + F1), and that
s2 + s = F1q0 + F2q1 + F0q2 +H. Finally, we let N = K[q0, q1], and, for all ` ∈ Z, we
let `′ denote the unique element of {0, 1, 2} such that ` ∼= `′ (mod 3).

By Definitions 5.1.3 and 5.1.4, the degrees f0, f1 and f2 are all both positive and
odd, the degree h is not both positive and even, the degree d is either equal to zero
or congruent to 2 (mod 4), and L = K[q0, q1, s]. Moreover, we can and do assume,
without loss of generality, that f0 = min{f0, f1, f2}. Then f1 = f2 by Lemma 4.1.3.

The degrees f0, f1 and h suffice to determine the lower and upper ramification
breaks of the extension L of K if f0 < f1, but not do suffice if f0 = f1. In determin-
ing these ramification breaks, it is convenient to let cL denote the conductor of the
extension L over K[q0, q1].

Lemma 5.2.1. The lower ramification breaks of L over K are `1 = f0, `2 = 2f1−f0,
and `3 = cL, and the upper ramification breaks of L over K are u1 = f0, u2 = f1, and
u3 = (cL + f0)/4 + f1/2.

Proof. Let Γ = Gal(L|K). By Proposition 3.4.2, N = K[q0, q1] is the unique degree
four subfield of L; thus, Gal(L|N) is the unique subgroup of Γ of order two. By
Proposition IV.1 in [Ser79], Γi is a (normal) subgroup of Γ for all i. In light of
Proposition 2.1.5, it follows that `3 = cL. Similarly, by Proposition 2.1.7, u1 and u2

equal the first and second upper ramification breaks of K[q0, q1] over K, respectively.
To determine u1 and u2, we note that, sinceN is a Z/2Z×Z/2Z-extension ofK, the

sequence of upper ramification breaks of N over K is (min{f0, f1, f2},max{f0, f1, f2})
by Proposition 4.1.7. Thus u1 = min{f0, f1, f2} = f0, and u2 = min{f0, f1, f2} = f1.
By Proposition 2.1.11, it follows that `1 = u1 = f0, that `2 = 2u2 − u1 = 2f1 − f0,
and that u3 = u2 + (`3 − `2)/4. Hence

u3 = u2 + (`3 − `2)/4 = f1 + (cL − 2f1 + f0)/4 = (cL + f0)/4 + f1/2.

For each i ∈ {0, 1, 2}, let si ∈ Kalg such that s2
i + si = F(i+1)′qi, and let ci denote

the conductor of K[q0, q1, si] = N [si] over N . Moreover let w = s0 + s1 + s2 (so
that w2 +w = F1q0 + F2q1 + F0q2), and let cw denote the conductor of N [w] over N .
Finally, let u ∈ Kalg such that u2 + u = H, and, if [H] 6= 0 over N , let cu denote the
conductor of K[q0, q1, u] = N [u] over N .

Lemma 5.2.2. Suppose [H] 6= 0 over N . If h ≤ f1, then cu ≤ 2h − min{h, f0}.
Moreover, if h > f1, then cu = 4h− 2f1 − f0.

Proof. Let Cu denote the conductor of K[q1, u] over K[q1], and let C1 denote the
conductor of N over K[q1]. Since f0 ≤ f1 = f2, Proposition 4.1.7 implies that
C1 = 2f1 + f0 − 2f1 = f0.

First, suppose h ≤ f1. Let C2 denote the conductor of K[q1 + u] over K, and let
C3 denote the conductor of K[q1, q0 + u] over K[q1]. Then

Cu = 2 max{h, f1, C2}+ min{h, f1, C2} − 2f1 = 2f1 + min{h, f1, C2} − 2f1 ≤ h
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Figure 5.1

by Proposition 4.1.7 applied to the tower of extensions K[q1, u] ⊇ K[q1] ⊇ K. Futher-
more, applying Proposition 4.1.7 to the tower of extensions K[q0, q1, u] ⊇ N ⊇ K[q1]
implies that

cu = 2 max{Cu, C1, C3}+ min{Cu, C1, C3} − 2C1

= 2 max{Cu, C1}+ min{Cu, C1, C3} − 2C1

≤ 2 max{Cu, C1}+ min{Cu, C1} − 2C1

≤ 2 max{h, f0}+ min{h, f0} − 2f0

= 2(max{h, f0}+ min{h, f0})−min{h, f0} − 2f0

= 2(h+ f0)−min{h, f0} − 2f0 = 2h−min{h, f0}.

Second, suppose h > f1. Then Cu = 2h− f1 by Lemma 4.1.3. Hence

Cu > 2f1 − f1 = f1 ≥ f0 = C1.

Therefore, cu = 2Cu − C1 = 4h− 2f1 − f0 by Lemma 4.1.3.

Remark 5.2.3. The situation described in the proof of Lemma 5.2.2 may be visualized
as in Figure 5.1.

Lemma 5.2.4. The conductor c1 = 6f1 − f0, and c0 = c2 = 3f0 + 2f1.

Proof. Let i ∈ {0, 1, 2}. By Proposition 3.1.6, the Galois closure of K[qi, si] over K is
a D4-extension of K. Moreover, by Proposition 3.2.2, K[qi, q(i+1)′ , si] = N [si] is the
Galois closure of K[qi, si] over K. Therefore, since N is the unique normal degree
four subfield of N [si] over K, the conductor ci is, as in Proposition 4.3.2, equal to the
third lower ramification break of N [si] over K. By Corollary 4.3.3, this break is

4 max{fi + f(i+1)′ , 0} − 2 max{f0, f1, f2} −min{f0, f1, f2} = 4(fi + f(i+1)′)− 2f1 − f0.

Hence
c0 = 4(f0 + f1)− 2f1 − f0 = 3f0 + 2f1,

c1 = 4(f1 + f2)− 2f1 − f0 = 6f1 − f0, and

c2 = 4(f2 + f0)− 2f1 − f0 = 3f0 + 2f1.
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Corollary 5.2.5. The conductor cw ≤ 6f1 − f0. If f0 < f1, then cw = 6f1 − f0.

Proof. Let i ∈ {0, 1, 2}. By Propositions 2.2.5 and 2.2.7, there exists a element φi
of N in standard form over N (with respect to some uniformizer π of N) such that
ci = −vN(φi), and [F(i+1)′qi] = [φi] over N . Then φ0 + φ1 + φ2 is also in standard
form, and

[F1q0 + F2q1 + F0q2] = [φ0 + φ1 + φ2]

over N . Hence

cw = −vN(φ0 + φ1 + φ2) ≤ −min{vN(φ0), vN(φ1), vN(φ2)} = max{c0, c1, c2}.

By Lemma 5.2.4, c0 = c2 = 3f0 + 2f1 = 6f1− f0− 4(f1− f0) = c1− 4(f1− f0). Since
f0 ≤ f1, it follows that cw ≤ c1 = 6f1 − f0.

Now suppose that f0 < f1. Then c1 > c0 = c2, and so vN(φ1) < vN(φ0) = vN(φ2).
Thus

cw = −vN(φ0 + φ1 + φ2) = −vN(φ1) = c1 = 6f1 − f0.

Proposition 5.2.6. Suppose that f0 < f1. Then cL = 4 max{2f1, h} − 2f1 − f0.

Proof. Suppose [H] = 0 over N . Then L = N [s] = N [w] by Proposition 2.2.1.
Moreover, it follows via Lemma 3.1.2 that h ≤ f1, Thus cL = cw = 6f1 − f0 =
4 max{2f1, h} − 2f1 − f0.

Now suppose that [H] 6= 0 over N . Note then that h is both odd and positive,
and that, since [F1q0 + F2q1 + F0q2 + H] = [F1q0 + F2q1 + F0q2] + [H], it follows
that cL ≤ max{cw, cu}, and that cL = max{cw, cu} if cw and cu differ. Moreover,
cw = 6f1 − f0 by Lemma 5.2.4 since f0 < f1.

First, suppose that h ≤ f1. Then cu ≤ 2h−min{h, f0} by Lemma 5.2.2. Hence

cu ≤ 2h−min{h, f0} < 2h ≤ 2f1 < 6f1 − f0 = cw.

Thus cL = 6f1 − f0 = 4 max{2f1, h} − 2f1 − f0.
Second, suppose that h > f1. Then cu = 4h−2f1−f0 by Lemma 5.2.2. Therefore,

cw − cu = (6f1 − f0)− (4h− 2f1 − f0) = 8f1 − 4h = 4(2f1 − h) 6= 0

since h is odd. Thus

cL = max{cw, cu} = max{6f1 − f0, 4h− 2f1 − f0} = 4 max{2f1, h} − 2f1 − f0.

Applying Lemma 5.2.1 to Proposition 5.2.6 yields the following corollary.

Corollary 5.2.7. Suppose f0 < f1. The lower ramification breaks of L over K are
`1 = f0, `2 = 2f1− f0, and `3 = 4 max{2f1, h}− 2f1− f0, and the upper ramification
breaks of L over K are u1 = f0, u2 = f1, and u3 = max{2f1, h}.
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5.2.1 Computation of Ramification Breaks in f0 = f1 Case

Having computed the ramification breaks of L over K in the case in which f0 < f1, we
now compute the ramification breaks of L over K in the case in which f0 = f1. These
computations require that the triple (F0, F1, H) be a standard form triple, not merely,
as we have so far assumed, a Q8-odd form triple. Accordingly, we assume henceforth
that (F0, F1, H) is indeed a standard form triple corresponding to the extension L|K.
By Proposition 5.1.5, such a triple must exist.

As we mentioned in the introduction to Section 5.2, the degrees f0, f1 and h do not,
in this case, invariably suffice to determine the ramification breaks of L over K; rather,
we must consider the degrees (in t−1) of F1+ζ3F0 and of F1+ζ2

3F0 as well, where ζ3 ∈ k
is a fixed primitive cube root of 1. Let m = min{degt−1(F1+ζ3F0), degt−1(F1+ζ2

3F0)},
and, for convenience, let n = f0(= f1). We seek a formula for the ramification breaks
of L over K in terms of m, n, and h.

By Lemma 5.2.1, to find such a formula, it suffices to compute cL in terms of
m, n and h. The chief difficulty in the computation of cL is the computation of
the conductor cw of N [w] over N . Since f0 = f1, Corollary 5.2.5 provides only an
upper bound, not a precise value, for cw. Therefore, instead of considering, as above,
the conductors c0 c1, and c2 to determine cw, we shall determine cw more directly. In
particular, we shall exhibit an element ofN that is both Artin–Schreier equivalent over
N to w2 +w = F1q0 +F2q1 +F0q2 and of odd valuation over N . By Proposition 2.2.7,
−cw is equal to the valuation of this element, which valuation is, as desired, a function
of m, n and h. Having determined cw, we shall, as in Proposition 5.2.6, compare cw
and cu to determine cL.

To find this desired element of N , we shall first define a particular element r of
odd valuation over N as a K-linear (not necessarily as a k-linear) combination of q0

and q1. The element r is an Artin–Schreier root of a K-multiple of q0; we shall exploit
this property of r to write F1q0 +F2q1 +F0q2 as a polynomial of degree six in r (with
coefficients in k[[t]]). We shall then split the sixth-degree term of this polynomial into
two separate terms. One of these terms will have a valuation of smaller magnitude
than that of the original term; the other will be a square over N . Finally, we shall
replace the square term with its square root, show that the resulting element of N ,
which is necessarily Artin–Schreier equivalent over N to F1q0 + F2q1 + F0q2, has odd
valuation over N , and give this valuation in terms of m, n and h.

Lemma 5.2.8. The degree m either is an odd positive integer no greater than n, or
is equal to −∞. Moreover,

(1) either degt−1(F1 + ζ3F0) = n, or degt−1(F1 + ζ2
3F0) = n, and

(2) degt−1(F0F1 + F1F2 + F2F0) = n+m.

Proof. Note that, since degt−1 F0 = degt−1 F1 = n, the degrees both of F1 + ζ3F0 and
of F1 +ζ2

3F0 are no greater than n. Hence m ≤ n. Moreover, since F0 and F1 are both
standard form elements of K with respect to t, the elements F1 + ζ3F0 and F1 + ζ2

3F0

are as well. The unnumbered statement of the proposition now follows.
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To show statement (1), we observe that (F1 + ζ3F0) + (F1 + ζ2
3F0) = F1 +F0 = F2.

Thus max{degt−1(F1 + ζ3F0), degt−1(F1 + ζ2
3F0)} ≥ degt−1 F2 = n. Since degt−1(F1 +

ζ i3F0) ≤ n for each i ∈ {1, 2}, statement (1) now follows.
To show statement (2), we note that

(F1 + ζ3F0)(F1 + ζ2
3F0) = F 2

1 + (ζ3 + ζ2
3 )F0F1 + F 2

0

= F1F2 + F0F1 + F0F1 + F0F1 + F2F0

= F0F1 + F1F2 + F2F0.

Hence degt−1(F0F1 + F1F2 + F2F0) = degt−1(F1 + ζ3F0) + degt−1(F1 + ζ2
3F0) = n+m

by statement (1).

Lemma 5.2.9. The inequality 3n ≤ cw ≤ 5n holds.

Proof. To prove the upper bound on cw, we note that cw ≤ 6f1 − f0 = 5n by
Lemma 5.2.5.

To prove the lower bound, we note that N [w] is a Q8-extension of K by Proposi-
tion 3.3.7. Hence N [w] is a Z/4Z-extension of K[q1]. Moreover, the conductor of N
over K[q1] is n by Lemma 4.1.5. It follows by Proposition 2.1.7 and by Corollary 4.1.11
that the sequence of lower ramification breaks of N [w]|K[q1] is (n, 2 max{2n, h}−n).
Moreover, by Proposition 2.1.5, cw is equal to the second lower ramification break of
N [w]|K[q1]. Thus cw = 2 max{2n, h} − n ≥ 4n− n = 3n.

We now introduce further notation. For each i ∈ {0, 1, 2}, let Ai = tnFi. Note
that, for each i ∈ {0, 1, 2}, the element Fi is a standard form element of K with
respect to t of degree −n, and hence Ai is a degree zero element of k[[t2]] ⊆ K.
Therefore, for each i ∈ {0, 1, 2}, the element Bi =

√
Ai is a degree zero element of

k[[t]].

Lemma 5.2.10. Let r = q1 +
B1

B0

q0. Then r2 + r =
B1B2

A0

q0, and vN(r) = −n.

Proof. Note that

q2
1 + q1 = A1t

−n =
A1

A0

(A0t
−n)

=
A1

A0

(q2
0 + q0) =

(
B1

B0

q0

)2

+
A1

A0

q0

=

(
B1

B0

q0

)2

+
B1

B0

q0 +

(
B1

B0

+
A1

A0

)
q0.

Moreover,
B1

B0

+
A1

A0

=
B1B0 + A1

A0

=
B1(B0 +B1)

A0

=
B1B2

A0

.

Thus

r2 + r =

(
B1

B0

+
A1

A0

)
q0 =

B1B2

A0

q0.
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To show that vN(r) = −n, we observe that N |K is a totally ramified Galois
extension of degree four. Hence vN(F0) = 4vK(F0) = −4n. Since n > 0 and q2

0 + q0 =
F0, it follows that 2vN(q0) = vN(F0), and that vN(q0) = −2n. Moreover, B1, B2 and

A0 all have valuation 0 over K, and hence over N . Thus vN

(
B1B2

A0
q0

)
= −2n as well;

since r2 + r = B1B2

A0
q0, it follows that 2vN(r) = −2n, and that vN(r) = −n.

Observing that r is an element of N with odd valuation, we shall now write
F1q0 + F2q1 + F0q2 = t−n(A1q0 + A2q1 + A0q2) as a polynomial in r. We begin with
two lemmas.

Lemma 5.2.11. The equation

t−n =
A0

A1A2

r4 +
B0B1 +B1B2 +B2B0

A1A2

r2 +
1

B1B2

r

holds.

Proof. Note that

q0 =
A0

B1B2

(r2 + r)

by Lemma 5.2.10. Thus

A0t
−n = F0 = q2

0 + q0 =
A2

0

A1A2

(r4 + r2) +
A0

B1B2

(r2 + r)

=
A2

0

A1A2

r4 +

(
A0B

2
0

A1A2

+
A0B1B2

A1A2

)
r2 +

A0

B1B2

r

=
A2

0

A1A2

r4 +
A0

A1A2

(
B2

0 +B1B2

)
r2 +

A0

B1B2

r

=
A2

0

A1A2

r4 +
A0

A1A2

(B0(B1 +B2) +B1B2) r2 +
A0

B1B2

r.

Hence

t−n =
A0

A1A2

r4 +
B0B1 +B1B2 +B2B0

A1A2

r2 +
1

B1B2

r.

Lemma 5.2.12. The equation

A1q0 + A2q1 + A0q2 =
B0(B0A1 +B1A2 +B2A0)

B1B2

r2 +
A0A1 + A1A2 + A2A0

B1B2

r

holds.

Proof. By Lemma 5.2.10, q0 =
A0

B1B2

(r2 + r), and q1 =
B1

B0

q0 + r. Thus

q1 =
B1

B0

(
A0

B1B2

)
(r2 + r) + r =

B0

B2

r2 +

(
B0

B2

+
B2

B2

)
r =

B0

B2

r2 +
B1

B2

r.
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Moreover, q2 = q0 + q1 =

(
B1

B0

+ 1

)
q0 + r =

B2

B0

q0 + r, and so

q2 =
B2

B0

(
A0

B1B2

)
(r2 + r) + r =

B0

B1

r2 +

(
B0

B1

+
B1

B1

)
r =

B0

B1

r2 +
B2

B1

r.

Therefore,

A1q0 = A1

(
A0

B1B2

)
(r2 + r) =

A0B1

B2

r2 +
A0B1

B2

r,

A2q1 = A2

(
B0

B2

r2 +
B1

B2

r

)
= B2B0r

2 +B1B2r, and

A0q2 = A0

(
B0

B1

r2 +
B2

B1

r

)
=
A0B0

B1

r2 +
B2A0

B1

r.

Hence

A1q0 + A2q1 + A0q2 =

(
A0B1

B2

+B2B0 +
A0B0

B1

)
r2 +

(
A0B1

B2

+B1B2 +
B2A0

B1

)
r

=
A0A1 +B0B1A2 +B2A0B0

B1B2

r2 +
A0A1 + A1A2 + A2A0

B1B2

r

=
B0(B0A1 +B1A2 +B2A0)

B1B2

r2 +
A0A1 + A1A2 + A2A0

B1B2

r.

Proposition 5.2.13. The equation

F1q0 +F2q1 +F0q2 = (ar4 +br2 +cr)(dr2 +er) = adr6 +aer5 +bdr4 +(be+cd)r3 +cer2

holds, where

a =
A0

A1A2

, b =
B0B1 +B1B2 +B2B0

A1A2

, c =
1

B1B2

,

d =
B0(B0A1 +B1A2 +B2A0)

B1B2

, e =
A0A1 + A1A2 + A2A0

B1B2

.

Proof. Observe that F1q0 +F2q1 +F0q2 = t−n(A1q0 +A2q1 +A0q2). By Lemma 5.2.11,
t−n = ar4+br2+cr. By Lemma 5.2.12, A1q0+A2q1+A0q2 = dr2+er. The proposition
now follows.

Lemma 5.2.14. The statements

vN(a) = 0, vN(b) = 2n− 2m, vN(c) = 0, vN(d) ≥ 0

vN(e) = 4n− 4m, vN(aer5) = −n− 4m, vN(bdr4) ≥ −2n− 2m

all hold.
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Proof. Recall that Ai and Bi are degree zero elements of K for all i ∈ {0, 1, 2}. Thus
vN(Ai) = vN(Bi) = 0 for all i ∈ {0, 1, 2}; hence vN(a) = vN(A0)−vN(A1) = vN(A2) =
0, vN(c) = −vN(B1)− vN(B2) = 0, and

vN(d) = vN(B0) + vN(B0A1 +B1A2 +B2A0)− vN(B1)− vN(B2)

= vN(B0A1 +B1A2 +B2A0) ≥ 0.

Moreover, note that, since A0A1 + A1A2 + A2A0 = t2n(F0F1 + F1F2 + F2F0),

vK(A0A1 + A1A2 + A2A0) = vK(t2n(F0F1 + F1F2 + F2F0))

= 2n− degt−1(F0F1 + F1F2 + F2F0)

= 2n− (n+m) = n−m
by Lemma 5.2.8. Thus

vN(e) = vN(A0A1 + A1A2 + A2A0)− vN(B1)− vN(B2) = 4n− 4m,

and

vN(b) = vN(B0B1 +B1B2 +B2B0)− vN(A1)− vN(A2)

= vN

(√
A0A1 + A1A2 + A2A0

)
= (4n− 4m)/2 = 2n− 2m.

The last two statements of the lemma now follow by Lemma 5.2.10.

Lemma 5.2.15. Define a, b, c, d and e as in Propostion 5.2.13 and Lemma 5.2.14.
There exist D1, D2 ∈ k[[t]] such that d = D1 + D2, that D1 is a square in k[[t]], and
that vN(D2) ≥ 4n−max{2m,n}+ 4.

Proof. We observe that

t = tn+1t−n = tn+1(ar4 + br2 + cr) = atn+1r4 + btn+1r2 + ctn+1r

by Lemma 5.2.11, and that vN(t) = 4vK(t) = 4 since N |K is a totally ramified Galois
extension of degree four. Therefore, by Lemma 5.2.14,

vN(atn+1r4) = vN(a) + (n+ 1)vN(t) + 4vN(r) = 4(n+ 1)− 4n = 4,

and

vN(t− atn+1r4) ≥ min{vN(b) + vN(tn+1) + vN(r2), vN(c) + vN(tn+1) + vN(r)}
= min{2n− 2m+ 4(n+ 1)− 2n, 4(n+ 1)− n}
= 4n−max{2m,n}+ 4.

Furthermore, since vN(d) ≥ 0, there exist di ∈ k (for i ≥ 0) such that d =
∑∞

i=0 dit
i.

Thus

d =
∞∑
i=0

dit
i =

∞∑
i=0

di
(
atn+1r4 + (t− atn+1r4)

)i
=
∞∑
i=0

i∑
`=0

di

(
i

`

)
(atn+1r4)i−`(t− atn+1r4)`

=
∞∑
i=0

di(at
n+1r4)i + (t− atn+1r4)

∞∑
i=1

i∑
`=1

di

(
i

`

)
(atn+1r4)i−`(t− atn+1r4)`−1.
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Let D1 =
∑∞

i=0 di(at
n+1r4)i, and let D2 = d − D1. We note that vN(atn+1r4) =

4 ≥ 0, and that

vN(t− atn+1r4) ≥ 4n−max{2m,n}+ 4 ≥ 2n+ 4 ≥ 0,

the second inequality holding by Lemma 5.2.8. Therefore, vN((t−atn+1r4)−1D2) ≥ 0,
and

vN(D2) ≥ vN(t− atn+1r4) ≥ 4n−max{2m,n}+ 4.

To show that D1 is a square in k[[t]], we observe that t(n+1)/2 ∈ K since n is odd,
and that vN(t(n+1)/2r2) = 2 ≥ 0. Therefore, since k is algebraically closed, and di ∈ k
for all i ≥ 0, the formal series

∞∑
i=0

√
di

(
B0

B1B2

t(n+1)/2r2

)i

is an element of k[[t]]. Moreover, since a =
A0

A1A2

by definition,

(
∞∑
i=0

√
di

(
B0

B1B2

t(n+1)/2r2

)i)2

=
∞∑
i=0

(√
di

(
B0

B1B2

t(n+1)/2r2

)i)2

=
∞∑
i=0

di

(
A0

A1A2

tn+1r4

)i
=
∞∑
i=0

di(at
n+1r4)i = D1.

Proposition 5.2.16. The conductor cw = n+ 2 max{2m,n}.

Proof. Recall that F1q0 +F2q1 +F0q2 = adr6 +aer5 +bdr4 +(be+cd)r3 +cer2, and let

D1, D2 ∈ k[[t]] as in Lemma 5.2.15. Since a =
(

B0

B1B2

)2

and D1 is a square in k[[t]], it

follows that [adr6] = [a(D1 +D2)r6] = [aD2r
6 +
√
aD1r

3] over N . Therefore,

[F1q0 + F2q1 + F0q2] =
[
aD2r

6 + aer5 + bdr4 +
(
be+ cd+

√
aD1

)
r3 + cer2

]
over N , and cw ≤ −vN

(
aD2r

6 + aer5 + bdr4 +
(
be+ cd+

√
aD1

)
r3 + cer2

)
. By

Lemma 5.2.14, vN(aer5) = −n − 4m, and vN(bdr4) ≥ −2n − 2m. Moreover, since√
D1 ∈ k[[t]] by Lemma 5.2.15,

vN

((
be+ cd+

√
aD1

)
r3 + cer2

)
≥ −3n

by Lemma 5.2.14. Finally, vN(aD2r
6) ≥ −2n − max{2m,n} + 4 since vN(D2) ≥

4n−max{2m,n}+ 4 by Lemma 5.2.15.
First suppose that 2m > n. Then

vN(aer5) = −n− 4m < −3n ≤ vN

((
be+ cd+

√
aD1

)
r3 + cer2

)
,

vN(aD2r
6) ≥ −2n− 2m+ 4 > −n− 4m+ 4 > vN(aer5), and
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vN(bdr4) ≥ −2n− 2m > −n− 4m = vN(aer5).

Hence cw = −vN(aer5) = n+ 4m = n+ 2 max{2m,n}.
Now suppose that 2m < n. (Note that 2m 6= n since n is odd.) Then vN(aer5) =

−n − 4m > −3n, and vN(aD2r
6) ≥ −3n + 4 > −3n, and vN(bdr4) ≥ −2n − 2m >

−3n. Thus cw ≤ 3n. By Lemma 5.2.9, cw ≥ 3n as well. Hence cw = 3n = n +
2 max{2m,n}.

Proposition 5.2.17. The conductor cL = 4 max{3/2n, n+m,h} − 3n.

Proof. Note that, by proposition 5.2.16

cw = n+ 2 max{2m,n} = max{n+ 4m, 3n} = 4 max{3n/2, n+m} − 3n.

First, suppose that [H] = 0 over N . By Lemma 4.1.3 (applied twice), it follows
that h ≤ n. Moreover, N [s] = N [w], and hence

cL = cw = 4 max{3n/2, n+m} − 3n = 4 max{3/2n, n+m,h} − 3n.

Second, suppose that [H] 6= 0, and that h ≤ n. Then cu ≤ 2h −min{h, n} < 2h
by Lemma 5.2.2, and so cw = 4 max{3n/2, n + m} − 3n ≥ 3n ≥ 3h > cu. Thus
cL = cw = 4 max{3n/2, n+m} − 3n = 4 max{3n/2, n+m,h} − 3n.

Third, suppose that h > n. Then cu = 4h− 3n by Lemma 5.2.2. Thus

cL = max{cw, cu} = max{4 max{3n/2, n+m} − 3n, 4h− 3n}
= 4 max{3n/2, n+m,h} − 3n

if cw 6= cu; i.e., if h 6= max{3n/2, n + m}. Since both h and n are odd integers,
h 6= 3n/2. Moreover, since m is odd by Lemma 5.2.8, h 6= n + m. The proposition
now follows.

Applying Lemma 5.2.1 to Proposition 5.2.17 yields the following corollary.

Corollary 5.2.18. The lower ramification breaks of L over K are `1 = n, `2 = n,
and `3 = 4 max{3n/2, n+m,h} − 3n, and the upper ramification breaks of L over K
are u1 = n, u2 = n, and u3 = max{3n/2, n+m,h}.

We now combine the results of Corollaries 5.2.7 and 5.2.18 into a general propo-
sition giving the ramification breaks of L over K in all cases. In this proposition,
we remove the assumption that f0 = f1, but continue to insist the (F0, F1, H) is a
standard form Q8-triple.

Lemma 5.2.19. Suppose f0 < f1. Then m = f1.

Proof. For each i ∈ {1, 2}, degt−1(ζ i3F0) = f0 < f1 = degt−1 F1. Thus degt−1(F1 +
ζ i3F0) = f1 for each i ∈ {1, 2}. Hence m = f1.

Proposition 5.2.20. The lower ramification breaks of L over K are `1 = f0, `2 =
2f1 − f0, and `3 = 4 max{3f1/2, f1 + m,h} − 2f1 − f0, and the upper ramification
breaks of L over K are u1 = f0, u2 = f1, and u3 = max{3f1/2, f1 +m,h}.
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Proof. Suppose f0 < f1. Then Lemma 5.2.19 implies that f1 + m = 2f1 > 3f1/2.
Moreover, by Corollary 5.2.7, the upper ramification breaks of L over K are u1 = f0,
u2 = f1, and u3 = max{2f1, h} = max{3f1/2, f1 +m,h}.

Now suppose f0 = f1. Then the upper ramification breaks of L over K are u1 = f0,
u2 = f1, and u3 = max{3f1/2, f1 + m,h} by Corollary 5.2.18. The proposition now
follows.

5.3 Characterization of Sequences of Ramification

Breaks

In this subsection, we continue to suppose that k is algebraically closed. By Propo-
sition 5.1.5 it follows that every Q8-extension of K is a Q8-standard form extension
of K. Moreover, by Proposition 5.1.6, every Q8-extension of K has a standard form
triple (F ′0, F

′
1, H

′) satisfying the additional condition degt−1 F ′0 ≤ degt−1 F ′1.
Suppose Gal(L|K) ∼= Q8. Recall that we have defined (in Defintion 2.1.9) the nth

element of the sequence of ramification groups of L over K to be Gal(L|K)ui , where
ui denotes the ith upper ramification break of L|K. We now define the sequence of
ramification groups of L over K to be a Type I sequence if the sequence’s second
element is isomorphic to Z/4Z, and to be a Type II sequence if the sequence’s second
element is isomorphic to Z/2Z. Note that in all cases, the second ramification break is
strictly smaller than the third; thus the sequence’s third element is always isomorphic
to Z/2Z.

As in the D4 case, the type of an extension’s sequence of ramification groups affects
the possible sequences of lower and of upper ramification breaks of that extension. In
this subsection, we consider (in the case where k is algebraically closed) the relation
between the type of an extension’s sequence of ramification groups and the sequences
of lower and of upper ramification breaks of that sequence exhaustively.

Let C denote the set of triples (F ′0, F
′
1, H

′) of standard form elements of K such
that F ′0, F ′1 and 0 are pairwise distinct, and let Φ denote the surjection from C to the
set of Q8-extensions of K defined in Corollary 5.1.7.

Lemma 5.3.1. Let (α, β, γ) ∈ (Z+)2 × (1/2)Z+ such that α is odd, α ≤ β, β is odd,
γ ≥ 3β/2, γ ≥ 2β if α < β, γ ∈ Z if γ > 3β/2, and γ is odd if γ > 2β. Also, let
F0 = t−α, let

F1 =


λt−β if γ = 2β

ζ3t
−β + t−γ+β if γ 6= 2β and γ is even

ζ3t
−β if γ is odd or γ /∈ Z

,

where ζ3 ∈ k is a primitive cube root of unity, and λ is an element of k\F4, and let

H =

{
t−γ if γ is odd

0 if γ is even or γ /∈ Z
.

Then (F0, F1, H) ∈ C, and the sequence of upper ramification breaks of the Q8-
extension Φ((F0, F1, H)) of K is (α, β, γ).
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Proof. Since α and β are both odd, F0, F1 and H are all standard form elements of K.
Since λ /∈ F4, the elements F0, F1 and 0 are pairwise distinct; as such, (F0, F1, H) ∈ C.

Now let f0 = degt−1(F0), f1 = degt−1(F1), h = degt−1(H), and let

m = min{degt−1(F1 + ζ3F0), degt−1(F1 + ζ2
3F0)}.

Then f0 = α, and f1 = β unless γ is even and not equal to 2β. Moreover, if γ is
even and not equal to 2β, then γ < 2β; hence −γ + β > −β, and f1 = β. Thus f0 =
α ≤ β = f1 in all cases; therefore, the sequence of upper ramification breaks of L =
Φ((F0, F1, H)) is (u1, u2, u3) = (f0, f1,max{3f1/2, f1 + m,h}) by Proposition 5.2.20.
Hence u1 = f0 = α, and u2 = f1 = β.

First, suppose α < β. Then degt−1(F1+ζ i3F0) = max{α, β} = β for each i ∈ {1, 2}.
Hence m = β, and f1 + m = 2β. Thus u3 = max{2β, h}. Moreover, in this case
γ ≥ 2β, and γ is odd if and only γ > 2β. Hence u3 = γ.

Second, suppose that α = β, and that γ is odd. Then F1 +ζ3F0 = 0, and H = t−γ.
Since γ ≥ 3β/2, it follows that u3 = max{3β/2, γ} = γ.

Third, suppose that α = β, and that γ is not odd. Then H = 0, and u3 =
max{3β/2, β +m}.

If γ = 2β, then F1 +ζ i3F0 = (λ+ζ i3)t−β for each i ∈ {1, 2}. Since λ /∈ F4, it follows
that m = β, and that u3 = max{3β/2, 2β} = 2β = γ.

If γ 6= 2β, and γ is even, then γ < 2β, and F1 + ζ3F0 = t−γ+β. Hence m = γ − β,
and u3 = max{3β/2, γ} = γ.

If γ /∈ Z, i.e., if γ = 3β/2, then F1 + ζ3F0 = 0. Hence m = −∞, and u3 = 3β/2 =
γ.

Proposition 5.3.2. Let (α, β, γ) ∈ (Z+)2 × (1/2)Z+. Then (α, β, γ) is the sequence
of upper ramification breaks for a Q8-extension of K if and only if α is odd, α ≤ β,
β is odd, γ ≥ 3β/2, γ ≥ 2β if α < β, γ ∈ Z if γ > 3β/2, and γ is odd if γ > 2β.
Moreover, if M is a Q8-extension of K with sequence of upper ramification breaks
(α, β, γ), then

(1) M has a Type I sequence of ramification groups if α < β, and

(2) M has a Type II sequence of ramification groups if α = β.

Proof. Since Φ is surjective, the triple (α, β, γ) is the sequence of upper ramification
breaks for a D4-extension of K if and only if there is a triple in C whose image under
Φ has (α, β, γ) as its sequence of upper ramification breaks. Lemma 4.4.1 provides
such a triple in C if (α, β, γ) satisfies the conditions of the unnumbered claim of the
proposition.

To prove the converse, let (F0, F1, H) ∈ C, and let f = degt−1(F0), g = degt−1(F1),
h = degt−1(H), and m = min{degt−1(F1 + ζ3F0), degt−1 F1 + ζ3F0}. By Proposi-
tion 5.1.6, we may and do assume, without loss of generality, that f0 ≤ f1. Then
the sequence of upper ramification breaks of L = Φ((F0, F1, H)) is (u1, u2, u3) =
(f0, f1,max{3f1/2, f1 +m,h}) by Proposition 5.2.20.

Since F0, F1 and H are all in standard form over K, and neither F0 nor F1 is
equal to zero, f0 and f1 and both odd and positive, and h either is either both odd
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and positive, or is equal to −∞. It follows that u1 is odd, that u1 ≤ u2, that u2 is
odd, that u3 ≥ 3u2/2. Moreover, m either is an odd positive integer no greater than
f1, or is equal to −∞ by Lemma 5.2.8. Thus u3 ∈ Z if u3 > 3u2/2, and u3 is odd if
u3 > 2u2.

Suppose that f0 < f1. Then u1 = f0 < f1 = u2. Hence the second element of the
sequence of ramification groups of L over K is Gal(L|K[q0]) ∼= Z/4Z; i.e., L has a
Type I sequence of ramification groups. Moreover, m = f1 by Lemma 5.2.19. Hence
u3 ≥ 2u2. This completes the proof of the unnumbered claim of the proposition.

Now suppose that f0 = f1. Then u1 = f0 = f1 = u2. Hence the second element of
the sequence of ramification groups of L over K is Gal(L|K[q0, q1]) ∼= Z/2Z; i.e., L
has a Type II sequence of ramification groups.

The following proposition is the precise analogue to Proposition 4.4.2 concerning
the lower ramification breaks of D4; accordingly, we omit its proof.

Proposition 5.3.3. Let (a, b, c) ∈ (Z+)2 × (1/2)Z+. Then (a, b, c) is the sequence
of lower ramification breaks for a Q8-extension of K if and only if a is odd, a ≤ b,
a ≡ b (mod 4), c ≥ a + 2b, c ≥ 2a + 3b if a < b, b ≡ c (mod 8) if c > a + 2b, and
b ≡ c (mod 8) if c > 2a + 3b. Moreover, if M is a Q8-extension of K with sequence
of lower ramification breaks (a, b, c), then

(1) M has a Type I sequence of ramification groups if a < b, and

(2) M has a Type II sequence of ramification groups if a = b.
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Chapter 6

Local Lifting of D4-Extensions

6.1 Deformations in Characteristic Two

Having determined the ramification breaks of aD4-extension corresponding to an odd-
form triple of elements, we are now ready to define the equicharacteristic deformations
needed to prove that D4 is indeed a local Oort group. Let k be an algebraically closed
field of characteristic p > 0, let K = k((t)) be the field of Laurent series over k, fix an
algebraic closure Kalg of K, and let L ⊆ Kalg be a Galois extension of K with cyclic-
by-p Galois group Γ. Furthermore, let A = k[[t]], and let B ∼= k[[z]] be the integral
closure of A in L. Finally, let A = k[[$, t]], let K = Frac(A), and let S = A[$−1],
where $ is an element transcendental over A.

Definition 6.1.1. An equicharacteristic deformation of the Γ-extension B over A is
a Γ-extension k[[$, z]] over A such that the Galois action of Γ on k[[$, z]] over A
restricts to the Galois action of Γ on the extension B over A.

Remark 6.1.2. The original extension B over A is the special fiber of the deformation,
while the extension k[[$, z]][$−1] over S is the generic fiber. One can think of S as
the ring of functions on the open unit disc of k(($)) about t.

Since we shall only be concerned with the case in which p = 2 and Γ ∼= D4,
we assume that p = 2 and that Γ ∼= D4 henceforth. We shall define the needed
equicharacteristic deformations by deforming, in a few particular ways, a triple of
standard form elements that generates the D4-extension L of K. Accordingly, let F ,
G and H be elements of K = k((t)) in standard form with respect to t, and let q,
r, and s be elements of Kalg such that, firstly, q2 + q = F , r2 + r = Gq + H and
s2 + s = G, and, secondly, L is the Galois closure over K of K[q, r]. The existence
of these elements in guaranteed by Proposition 4.2.6. Let f , g, h and d denote the
degrees in t−1 of F , G, H and F + G, respectively. Moreover, for 1 ≤ i ≤ 3, let ui
denote the ith upper ramification break of L over K, and let `i denote the ith lower
ramification break of L over K.



56

6.1.1 Preparatory Lemmas

Let F̃ , G̃, and H̃ ∈ K, and let q̃, r̃, s̃ ∈ Kalg such that q̃2 + q̃ = F̃ , r̃2 + r̃ = G̃q̃ + H̃.
Also, let % ∈ k[[$]]. Then Ŝ(t−%)

∼= k(($))[[t − %]], and K̂(t−%) = Frac(Ŝ(t−%)) ∼=
k(($))((t− %)).

Lemma 6.1.3. There exist a finite extension k((α)) ⊆ k(($))alg of k(($)) and el-
ements F ′, G′ ∈ k((α))((t − %)) in standard form with respect to t − % such that

[F̃ ] = [F ′] and [G̃] = [G′] over k((α))((t− %)).

Proof. Let F̃ =
∑

n≥−N φn(t − %)n, and let G̃ =
∑

n≥−N γn(t − %)n, where each

coefficient φn and each coefficient γn is in k(($)). Define α ∈ k(($))alg such that
k((α))((t − %)) is the finite extension of k(($))((t − %)) given by appending Artin–
Schreier roots of φ0 and γ0, and, for all d = 2`m, m being odd, the 2`-th root of φ−d
and of γ−d. Then [φ0] = [γ0] = 0 over k((α))((t− %)), and, for all d = 2`m, m being
odd,

[φ−d(t− %)−d] = [φ2−`

−d (t− %)−m], and [γ−d(t− %)−d] = [γ2−`

−d (t− %)−m]

Hence, as in the proof of Proposition 2.2.5, each of F̃ and G̃ is Artin–Schreier-
equivalent over k((α))((t−%)) to an element in standard form with respect to t−%.

Let q′ ∈ k((α))((t − %))alg such that (q′)2 + (q′) = F ′, let s′ ∈ k((α))((t − %))alg

such that (s′)2 + (s′) = G′, and let J̃ = G′(q′ + q̃) + F̃ (s′ + s̃)2 + H̃.

Lemma 6.1.4. There exist a finite extension k((α′)) ⊆ k(($))alg of k((α)) and

J ∈ k((α′))((t − %)) in standard form with respect to t − % such that [J̃ ] = [J ] over
k((α′))((t− %)).

Proof. The proof of this lemma is entirely analogous to that of Lemma 6.1.3.

Lemma 6.1.5. There exists a finite extension k((β)) ⊆ k(($))alg of k((α′)) such that
each degree two extension K2|K1 of fields satisfying

L̂(t−%) ⊇ K2 ⊇ K1 ⊇ K̂′(t−%)
∼= k((β))((t− %)),

where K′ denotes the fraction field of k[[β, t]], and L denotes the Galois closure of
K′[q̃, r̃], is totally ramified.

Proof. By appending elements to k((α′)) as in Lemma 6.1.3, we generate a finite ex-
tension k((β)) of k((α′)) such that each degree two extension K2|K1 of fields satisfying

L̂(t−%) ⊇ K2 ⊇ K1 ⊇ K̂′(t−%) is generated by an Artin–Schreier root of an element in
K1 with odd valuation. Proposition 2.2.7 then implies that each such extension is a
totally ramified extension of fields.

Now let A′ = k[[β, t]], let K′ = Frac(A′) (as in Lemma 6.1.5), and let S ′ = A′[β−1].
Moreover, let L be the Galois closure of K′[q̃, r̃] (as in Lemma 6.1.5), let B be the
integral closure of A′ in L, and let T = B[$−1].
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Corollary 6.1.6. Each of the factors of the degree eight K̂′(t−%)-algebra L̂(t−%) is

both totally ramified over and generated by standard form elements over K̂′(t−%)
∼=

k((β))((t− %)).

Proof. The first claim of the corollary follows immediately from Lemma 6.1.5. For
the second claim, let r′ ∈ k((β))((t− %)) such that (r′)2 + r′ = G′q′ + J . By Proposi-
tion 3.1.8, K′[q̃, r̃] = K′[q′, r′]. The second claim of the corollary now follows.

Lemma 6.1.7. Suppose that F̃ , G̃ ∈ A′(β)∩K = A($), that F̃ ≡ F (mod $) and that

G̃ ≡ G (mod $). Then Gal(L|K′) ∼= D4.

Proof. Since Gal(L|K′) ∼= D4, it follows that [F ] 6= 0 over K, that [G] 6= 0 over K,

and that [G] 6= [F ] over K by Proposition 3.1.8. Since F̃ ≡ F (mod $) and G̃ ≡ G

(mod $), it follows that F̃ ≡ F (mod β) and G̃ ≡ G (mod β). Hence [F̃ ] 6= 0 over

A′(β), [G̃] 6= 0 over A′(β) and [G̃] 6= [F̃ ] over A′(β). Moreover, Since A′(β) is a discrete

valuation ring (and hence is integrally closed), it follows that [F̃ ] 6= 0 over K′, [G̃] 6= 0

over K′ and [G̃] 6= [F̃ ] over K′. Therefore, Gal(L|K′) ∼= D4 by Proposition 3.1.6 and
by Lemma 3.1.2.

6.1.2 First Deformation

For the first equicharacteristic deformation, suppose that the sequence of ramification
groups of L over K is of Type I, i.e., that f < d = g. Let F̃ = F , G̃ = Gt2(t−$)−2,

and H̃ = Ht2(t − $)−2. By Corollary 6.1.6, there exists a finite extension k((β))

of k(($)) such that each of the factors of the degree eight K̂′(t−$)-algebra L̂(t−$) is

both totally ramified over and generated by standard form elements over K̂′(t−$)
∼=

k((β))((t−$)), where A′, K′, S ′, L, B and T are defined as in Subsection 6.1.1.

Proposition 6.1.8 (First Deformation). The following statements all hold.

(1) Gal(L|K′) ∼= D4.

(2) As a D4-extension of Dedekind domains, B/(β) over A′/(β) is isomorphic to B
over A.

(3) The D4-extension of Dedekind domains T over S ′ is branched at precisely two
maximal ideals, viz. (t) and (t − $). Above (t), the inertia group is D4, the
sequence of lower ramification breaks is (`1, `2 − 4, `3 − 4), and the sequence of
upper ramification breaks is (u1, u2−2, u3−2). Above (t−$), the inertia group
is Gal(L|K′[q̃]) ∼= Z/2Z × Z/2Z, and the sequence of lower ramification breaks
is (1, 1).

Proof. To prove statement (1), note that F̃ , G̃ ∈ A($) = A′(β) ∩ K since (t−$)−2 =

t−2
∑∞

n=0(t−1$)2n. Note also that F̃ ≡ F (mod $), and that G̃ ≡ G (mod $). Thus
(1) holds by Lemma 6.1.7.
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To prove (3) for the ideal (t), consider the completion Ŝ ′(t) ∼= k((β))[[t]] of the
localization S ′(t) of S ′, and note that, over k((β))[[t]], (t − $)−2 is a unit. Thus

−v(t)(F̃ ) = f , −v(t)(G̃) = g − 2 and −v(t)(H̃) = h − 2 (unless H = 0). Since f is

odd, K̂′(t)[q̃] is a totally ramified extension of K̂′(t) ∼= k((β))((t)) with conductor f

by Proposition 2.2.7. Similarly, K̂′(t)[s̃] is a totally ramified extensions of K̂′(t) with

conductor g − 2. Moreover, if f < g − 2, −v(t)(F̃ + G̃) = g − 2. Since (t − $)−2 =

$−2
∑∞

n=0(t$−1)2n, the coefficient of t−g+2 in the Laurent series expansion of G̃ is
not contained in k, whereas the coefficient of t−f in the Laurent series expansion of
F̃ is contained in k. Thus, if f = g − 2, −v(t)(F̃ + G̃) = g − 2 as well. Therefore,

by Proposition 2.2.7, K̂′(t)[q̃ + s̃] is ramified over K̂′(t) with conductor g − 2. Hence,
by Corollaries 4.1.2 and 4.3.3, the first, second and third terms in the sequence of
upper ramification breaks over (t) are min{g − 2, f} = f = u1, g − 2 = u2 − 2 and
min{f + g − 2, h− 2} = max{f + g, h} − 2 = u3 − 2, respectively. Statement (3) for
(t) now follows by Proposition 2.1.11.

To prove (3) for the ideal (t − $), note that, over the completion Ŝ ′(t−$)
∼=

k((β))[[t − $]] of the localization S ′(t−$) of S ′, t is a unit. Thus −v(t−$)(F̃ ) = 0,

−v(t−$)(G̃) = −v(t−$)(F̃+G̃) = 2, and −v(t−$)(H̃) ≤ 2. Since each factor of L̂(t−$) is

generated by standard form elements over K̂′(t−$), it follows that [F̃ ] = 0 over K̂′(t−$)

and that thus K̂′(t−$)[q̃] = K̂′(t−$). Furthermore, the conductor of K̂′(t−$)[q̃, s̃] over

K̂(t−$)[q̃] is 1.

Since [F̃ ] = 0 over K̂′(t−$), the fact that each factor of L̂(t−$) is generated by

standard form elements over K̂′(t−$) implies that G̃q̃+H̃ is Artin–Schreier-equivalent

over K̂′(t−$) to an element J in standard form with respect to t − $. Moreover,

since q̃ /∈ k((β)), −v(t−$)(G̃q̃ + H̃) = 2. Thus −v(t−$)(J) = 1, and the conductor

of K̂′(t−$)[q̃, r̃] over K̂′(t−$)[q̃] is 1. Similarly, −v(t−$)(G̃q̃ + G̃ + H̃) = 2, and the

conductor of K̂′(t−$)[q̃, r̃ + s̃] over K̂′(t−$)[q̃] is 1. Statement (3) for (t − $) now
follows by Lemma 4.1.5 (and Corollary 4.1.2).

Finally, to prove (2), note that the degree δL|K of the different of L over K is
4`1 + 2`2 + `3 + 7 by Corollary 2.3.4 (Hilbert’s different formula). Similarly, by (3),
the contribution of (t) to the degree δT ′|S′ of the different of T ′ over S ′ is 4`1 +
2(`2 − 4) + (`3 − 4) + 7 = δL|K − 12, and the contribution of (t − $) is δT ′|S′ is
2 · (2(1) + 1 + 3) = 12 . Thus δT ′|S′ = δL|K − 12 + 12 = δL|K . Therefore (2) holds by
Theorem 3.4 in [GM98].

6.1.3 Second Deformation

For the second equicharacteristic deformation, suppose that the sequence of rami-
fication groups of L over K is of Type II, i.e., that d < f = g. Let af denote the
coefficient of t−f in the Laurent series expansion of F , and let ag denote the coefficient

of t−g in the Laurent series expansion of G. Let also F̃ = F+af t
−f+af t

−f+2(t−$)−2,

G̃ = G+ agt
−g + agt

−g+2(t−$)−2, and H̃ = Ht4(t−$)−4. By Corollary 6.1.6, there



59

exists a finite extension k((β)) of k(($)) such that each of the factors of the degree

eight K̂′(t−$)-algebra L̂(t−$) is both totally ramified over and generated by standard

form elements over K̂′(t−$)
∼= k((β))((t − $)), where A′, K′, S ′, L, B and T are

defined as in Subsection 6.1.1.

Proposition 6.1.9 (Second Deformation). The following statements all hold.

(1) Gal(L|K′) ∼= D4.

(2) As a D4-extension of Dedekind domains, B/(β) over A′/(β), is isomorphic to
B over A.

(3) The D4-extension of Dedekind domains T over S ′ is branched at precisely two
maximal ideals, viz. (t) and (t − $). Above (t), the inertia group is D4, the
sequence of lower ramification breaks is (`1, `2 − 4, `3 − 12), and the sequence
of upper ramification breaks is (u1, u2 − 2, u3 − 4). Above (t − $), the inertia
group is Gal(L|K′[q̃+ s̃]) ∼= Z/4Z, and the sequence of lower ramification breaks
is (1, 5).

Proof. To prove statement (1), note that F̃ , G̃ ∈ A($) = A′(β) ∩ K since (t−$)−2 =

t−2
∑∞

n=0(t−1$)2n. Note also that F̃ ≡ F (mod $), and that G̃ ≡ G (mod $). Thus
(1) holds by Lemma 6.1.7.

To prove (3) for the ideal (t), note that, over the completion Ŝ ′(t) ∼= k((β))[[t]] of

the localization S ′(t) of S ′, (t−$)−2 is a unit. Thus −v(t)(F̃ ) = f − 2 and −v(t)(G̃) =

g − 2, and −v(t)(H̃) = h − 4 (unless H = 0). Since f − 2 is odd, K̂′(t)[q̃] is a totally

ramified extension of K̂′(t) ∼= k((β))((t)) with conductor f − 2 by Proposition 2.2.7.

Similarly, K̂′(t)[s̃] is totally ramified over K̂′(t) with conductor g − 2. Moreover, since

d < f = g, it follows that af = ag and that F̃ + G̃ = F +G. Thus −v(t)(F̃ + G̃) = d.
Therefore, since f − 2, g − 2 and d are all both positive and odd, it follows by
Corollary 4.3.3 (and Corollary 4.1.2) that L̂(t) is a field extension of K̂′(t), and that
the first, second and third terms of the sequence of upper ramification breaks over
(t) are min{d, f − 2} = d = u1, g − 2 = u2 − 2 and max{f − 2 + g − 2, h − 4} =
max{f + g, h} − 4 = u3 − 4, respectively. Statement (3) for (t) now follows by
Proposition 2.1.11.

To prove (3) for the ideal (t − $), note that, over the completion Ŝ ′(t−$)
∼=

k((β))[[t − $]] of the localization S ′(t−$) of S ′, t is a unit. Thus −v(t−$)(F̃ ) =

−v(t−$)(G̃) = 2, −v(t−$)(F̃ + G̃) = −v(t−$)(F +G) = 0, and −v(t−$)(H̃) ≤ 4. Since

each factor of L̂(t−$) is generated by standard form elements over K̂′(t−$), it follows

that [F̃ + G̃] = 0 over K̂′(t−$) and that thus K̂′(t−$)[q̃ + s̃] = K̂′(t−$). Furthermore,

the conductor of K̂′(t−$)[q̃] = K̂′(t−$)[s̃] over K̂′(t−$) is 1.

Let F ′ and G′ denote the elements of K̂′(t−$) in standard form that are Artin–

Schreier-equivalent to F̃ and G̃, respectively, and let q′, s′ ∈ K̂′
alg

(t−$) such that (q′)2 +

q′ = F ′ and (s′)2 + s′ = G′. Let also J̃ = G′(q′+ q̃) + F̃ (s′+ s̃)2 + H̃ ∈ K̂′(t−$). Then
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[G̃q̃ + H̃] = [G′q′ + J̃ ] by Proposition 3.1.8. Since L̂(t−$) is generated by standard

form elements over K̂′(t−$), it follows that J̃ is Artin–Schreier-equivalent over K̂′(t−$)

to an element J in standard form with respect to t−$.
Let b denote the conductor of K̂′(t−$)[q̃, r̃, s̃] = K̂′(t−$)[q̃, r̃] over K̂′(t−$)[q̃]. It

follows from Proposition 2.1.5 that the sequence of lower ramification breaks of
K̂′(t−$)[q̃, r̃] over K̂′(t−$)[q̃] is (1, b). Since −v(t−$)(F

′ + F̃ ) = 2, −v(t−$)(q
′ + q̃) = 1.

Similarly, −v(t−$)(s
′ + s̃) = 1. Thus

−v(t−$)(J̃) = G′(q′ + q̃) + F̃ (s′ + s̃)2 + H̃ ≤ 4,

and hence −v(t−$)(J) ≤ 3. Since K̂′(t−$)[q̃] = K̂′(t−$)[s̃], Proposition 2.2.1 implies
that F ′ = G′. Therefore, b = 2 max{1 + 1,−v(t−$)(J)} − 1 ≤ 5 by Corollary 4.1.11.
Thus the contribution of (t − $) to the degree δT ′|S′ of the different of T ′ over S ′
is 2 · (2(1) + b + 3) = 2b + 10 ≤ 20 by Corollary 2.3.4 (Hilbert’s different formula).
Moreover, the contribution of (t) to the degree δT ′|S′ is 4`1 +2(`2−4)+(`3−12)+7 =
δL|K − 20 by statement (3) for (t). Hence δT ′|S′ ≤ δL|K . By Theorem 3.4 in [GM98],
δT ′|S′ ≥ δL|K . Thus δT ′|S′ = δL|K , 2b+ 10 = 20, and b = 5. Statement (3) for (t−$)
now follows immediately, and statement (2) follows by Theorem 3.4 in [GM98].

6.1.4 Third Deformation

For the third equicharacteristic deformation, suppose that u1 = min{d, f} > 1. Let

F̃ = Ft2(t − $)−2, G̃ = Gt2(t − $)−2, and H̃ = Ht4(t − $)−4. By Corollary 6.1.6,
there exists a finite extension k((β)) of k(($)) such that each of the factors of the

degree eight K̂′(t−$)-algebra L̂(t−$) is both totally ramified over and generated by

standard form elements over K̂′(t−$)
∼= k((β))((t − $)), where A′, K′, S ′, L, B and

T are defined as in Subsection 6.1.1.

Proposition 6.1.10 (Third Deformation). The following statements all hold.

(1) Gal(L|K′) ∼= D4.

(2) As a D4-extension of Dedekind domains, B/(β) over A′/(β) is isomorphic to B
over A.

(3) The D4-extension of Dedekind domains T over S ′ is branched at precisely two
maximal ideals, viz. (t) and (t − $). Above (t), the inertia group is D4, the
sequence of lower ramification breaks is (`1−2, `2−2, `3−10), and the sequence
of upper ramification breaks is (u1−2, u2−2, u3−4). Above (t−$), the inertia
group is D4, and the sequence of lower ramification breaks is (1, 1, 9).

Proof. To prove statement (1), note that F̃ , G̃ ∈ A($) = A′(β) ∩ K since (t−$)−2 =

t−2
∑∞

n=0(t−1$)2n. Note also that F̃ ≡ F (mod $), and that G̃ ≡ G (mod $). Thus
(1) holds by Lemma 6.1.7.

To prove (3) for the ideal (t), note that, over the completion Ŝ ′(t) ∼= k((β))[[t]] of

the localization S ′(t) of S ′, (t − $)−2 is a unit. Thus −v(t)(F̃ ) = f − 2, −v(t)(G̃) =
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g − 2, and −v(t)(H̃) = h − 4 (unless H = 0). Since f − 2 is both positive and odd,

K̂′(t)[q̃] is a totally ramified extension of K̂′(t) ∼= k((β))((t)) with conductor f − 2

by Proposition 2.2.7. Similarly, K̂′(t)[s̃] is totally ramified over K̂′(t) ∼= k((β))((t))

with conductor g − 2. Moreover, since F̃ + G̃ = (F + G)t2(t −$)−2, it follows that

K̂′(t)[q̃ + s̃] is totally ramified over K̂′(t) with conductor d − 2. Since f − 2, g − 2
and d − 2 are all both positive and odd, and h − 4 is not both positive and even,
Corollaries 4.1.2 and 4.3.3 together imply that L̂(t) is a field extension of K̂′(t), and
that the first, second and third terms of the sequence of upper ramification breaks
over (t) are min{d − 2, f − 2} = min{d, f} − 2 = u1 − 2, g − 2 = u2 − 2 and
max{f − 2 + g− 2, h− 4} = max{f + g, h} − 4 = u3 − 4, respectively. Statement (3)
for (t) now follows by Proposition 2.1.11.

To prove (3) for the ideal (t − $), note that, over the completion Ŝ ′(t−$)
∼=

k((β))[[t − $]] of the localization S ′(t−$) of S ′, t is a unit. Thus −v(t−$)(F̃ ) = 2 =

−v(t−$)(G̃) = −v(t−$)(F̃ + G̃) = 2, and −v(t−$)(H̃) ≤ 4. Since each factor of

L̂(t−$) is generated by standard form elements over K̂′(t−$), it follows that each of

the conductors of K̂′(t−$)[q̃], K̂′(t−$)[s̃], and K̂′(t−$)[q̃ + s̃] over K̂′(t−$) is 1. Thus

(cf. Remark 4.2.3) L̂(t−$) is itself a (totally ramified) field extension of K̂′(t−$).

As in the second deformation, let F ′ and G′ denote the elements of K̂′(t−$) in

standard form that are Artin–Schreier-equivalent to F̃ and G̃, respectively, and let

q′, s′ ∈ K̂′
alg

(t−$) such that (q′)2 + q′ = F ′ and (s′)2 + s′ = G′. Let also J̃ = G′(q′ +

q̃) + F̃ (s′ + s̃)2 + H̃ ∈ K̂′(t−$). Then [G̃q̃ + H̃] = [G′q′ + J̃ ] by Proposition 3.1.8.

Since L̂(t−$) is a D4-standard form extension of K̂′(t−$), it follows that J̃ is Artin–

Schreier-equivalent over K̂′(t−$) to an element J in standard form with respect to
t−$.

Let b denote the conductor of K̂′(t−$)[q̃, r̃] over K̂′(t−$)[q̃]. By Proposition 4.3.2
(and Corollary 4.1.2), it follows that the sequence of lower ramification breaks of

L̂(t−$) over K̂′(t−$) is (1, 1, 2b− 1). Since −v(t−$)(F
′ + F̃ ) = 2, −v(t−$)(q

′ + q̃) = 1.
Similarly, −v(t−$)(s

′ + s̃) = 1. Thus

−v(t−$)(J̃) = G′(q′ + q̃) + F̃ (s′ + s̃)2 + H̃ ≤ 4,

and hence −v(t−$)(J) ≤ 3. Therefore, b = 2 max{1 + 1,−v(t−$)(J)} − 1 ≤ 5 by
Proposition 4.1.8. Thus the contribution of (t−$) to the degree δT ′|S′ of the different
of T ′ over S ′ is 4(1) + 2(1) + (2b− 1) + 7 = 2b+ 12 ≤ 22 by Corollary 2.3.4 (Hilbert’s
different formula). Moreover, the contribution of (t) to the degree δT ′|S′ is 4(`1− 2) +
2(`2 − 2) + (`3 − 10) + 7 = δL|K − 22 by statement (3) for (t). Hence δT ′|S′ ≤ δL|K .
By Theorem 3.4 in [GM98], δT ′|S′ ≥ δL|K . Thus δT ′|S′ = δL|K , 2b + 12 = 22 and
b = 5. Statement (3) for (t−$) now follows immediately, and statement (2) follows
by Theorem 3.4 in [GM98].



62

6.2 Main Theorem

Having now found various equicharacteristic deformations of D4-Galois extensions
of complete discrete valuation fields of characteristic two with algebraically closed
residue field, we use the ‘method of equicharacteristic deformation’, as used in [Pop14],
in [Obu15], and in [Obu16] to prove that all such extensions lift to characteristic
zero, i.e., that D4 is a local Oort group for the prime two. We begin by using the
deformations of Section 6.1 to reduce to the case of extensions with, in some sense,
small ramification breaks.

6.2.1 Deformation Reductions

In order to use the deformations of Section 6.1 effectively to reduce the cases under
consideration, we shall need to use Theorem 6.20 in [Obu17], which is reproduced
below as Theorem 6.2.1 for convenience. The argument for this theorem was commu-
nicated orally by Pop, who presented an earlier version of this theorem, peculiar to
the cyclic case, in [Pop14].

Let k be an algebraically closed residue field of characteristic p > 0, let K = k((t)),
and let G be a cyclic-by-p group.

Theorem 6.2.1. Suppose that k[[z]]/k[[t]] is a local G-extension that admits an
equicharacteristic deformation whose generic fiber lifts to characteristic zero after
base change to the algebraic closure. Then k[[z]]/k[[t]] lifts to characteristic zero.

As we shall only require the case in which p = 2, we shall assume that p = 2
henceforth.

Proposition 6.2.2. Let (u1, u2, u3) be a triple of positive integers such that there
exists a D4-extension of K whose sequence of ramification breaks (u1, u2, u3). Suppose
that u2 > 1, and that every D4-Galois extension of K with second ramification break
over K less than or equal to u2 − 2 lifts to characteristic zero. Then every D4-
Galois extension of K whose sequence of ramification breaks is (u1, u2, u3) lifts to
characteristic zero.

Proof. Let L be a D4-extension of K whose sequence of upper ramification breaks is
(u1, u2, u3). The sequence of ramification groups must be of one of the three types
enumerated in Subection 4.4.

Suppose firstly that the sequence of ramification groups of L is of Type I. By
Proposition 6.1.8, L admits an equicharacteristic deformation whose generic fiber has
second ramification break u2 − 2 over the ideal (t) and inertia group congruent to
Z/2Z× Z/2Z over the ideal (t−$). By the hypothesis above and [Pag02], the base
change of this generic fiber to the algebraic closure lifts to characteristic zero. Thus
L|K lifts to characteristic zero by Theorem 6.2.1.

Suppose secondly that the sequence of ramification groups of L is of Type II. By
Propostition 6.1.9, L admits an equicharacteristic deformation whose generic fiber
has second ramification break u2−2 over the ideal (t) and inertia group congruent to
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Z/4Z over the ideal (t−$). By the hypothesis above and [GM98], the base change
of this generic fiber to the algebraic closure lifts to characteristic zero. Thus L|K lifts
to characteristic zero by Theorem 6.2.1.

Suppose finally that the sequence of ramification groups of L is of Type III. By
Proposition 4.4.2, u1 = u2. Since u2 > 1 by supposition, u1 > 1 as well. Therefore, L
admits an equicharacteristic deformation whose generic fiber has second ramification
break u2− 2 over the ideal (t) and second ramification break 1 over the ideal (t−$)
by Proposition 6.1.10. Thus the base change of this generic fiber to the algebraic
closure lifts to characteristic zero by hypothesis. Hence L|K lifts to characteristic
zero by Theorem 6.2.1.

6.2.2 Supersimple Extensions

The propositions of the previous subsection have effectively reduced the proof that
D4 is a local Oort group to showing that every D4-extension of a complete discrete
valuation field of characteristic two with algebraically closed residue field whose sec-
ond upper ramification break is 1 lifts to characteristic zero. That all such extensions
do, in fact, lift to characteristic zero, is a result of Brewis in [Bre08], phrased there
in somewhat different language.

Let K be a complete discrete valuation field of characteristic two with algebraically
closed residue field, and let L be a Galois extension of K such that Gal(L|K) ∼= D4.
Following Brewis, we fix a, b ∈ D4 such that D4 = 〈a, b | a4 = b2 = e, bab−1 = a3〉.
Definition 6.2.3 (Brewis). The extension L over K is supersimple if both of the
following two conditions hold:

1. The degree of different of L〈a
2〉 over L〈a

2,b〉 is 2.

2. The degree of different of L〈a
2,b〉 over K is 2.

The main result of [Bre08], denoted therein as Theorem 4, is as follows:

Theorem 6.2.4 (Brewis). If L|K is supersimple, then L|K lifts to characteristic
zero.

To rephrase Theorem 6.2.4 in terms of the ramification breaks of L over K, we
shall need the following proposition.

Proposition 6.2.5. The extension L|K is supersimple if and only if the second ram-
ification break of L|K is 1.

Proof. By Hilbert’s different formula (Corollary 2.3.4), L|K is supersimple if and only
if both the conductor of L〈a

2〉 over L〈a
2,b〉 and the conductor of L〈a

2,b〉 over K are equal
to 1. By Lemma 4.1.3 and Lemma 4.1.5, this occurs if and only if all three of the
conductors over K of the degree two subextensions L〈a

2,b〉, L〈a
2,ab〉 and L〈a〉 are equal

to 1. By Proposition 4.3.2, this occurs if and only if the second ramification break of
L|K is 1.

Corollary 6.2.6. Suppose that the second upper ramification break of L over K is 1.
Then L|K lifts to characteristic zero.



64

6.2.3 Proof of Main Theorem

We conclude by proving the main theorem of the thesis concerning D4, and by ob-
serving an immediate corollary.

Theorem 6.2.7. The group D4 is a local Oort group for the prime 2. That is, the
following statement holds:

Let K be a complete discrete valuation field of characteristic two with algebraically
closed residue field, and let L be a Galois extension of K such that Gal(L|K) ∼= D4.
Then L|K lifts to characteristic zero.

Proof. Let u2 denote the second upper ramification break of L over K. We shall
proceed by strong induction on u2. By Corollary 4.3.3, u2 is odd. The base case
(u2 = 1) is given by Corollary 6.2.6. Since u2 is odd, the induction step is given by
Proposition 6.2.2. Thus L|K lifts to characteristic zero, as claimed.

By Theorem 1.2.7 (or by Theorem 1.2.8), Theorem 6.2.7 implies the following
corollary.

Corollary 6.2.8. The group D4 is an Oort group for the prime 2.

Remark 6.2.9. One might hope to use the methods used in this paper to prove that
D8, or more ambitiously, D2n for some n ≥ 4, is also a local Oort group for p = 2.
However, there are at present at least two substantial obstacles to such a proof.

Firstly, the calculation of the ramification breaks (and hence the differents) of D4-
extensions of complete discrete valuation fields presented in Subsection 4.3 depends
essentially on the fact that the Galois closure of any non-Galois two-level tower of
Z/2Z-extensions of a field is a D4-extension of that field. While D8-extensions do
occur as the Galois closures of smaller field extensions, there is no similarly simple
class of extensions whose Galois closures are invariably D8-extensions. The situation
for higher dihedral extensions is similar to that for D8-extensions.

Secondly, the effective use of the ‘method of equicharacteristic deformation’ re-
quires a base case of extensions known to lift to characteristic zero. In the D4 case,
the work of Brewis in [Bre08] provided this base. However, neither in the D8 case
nor in any higher dihedral case is any extension in characteristic two known to lift to
characteristic zero.
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Chapter 7

Local Lifting of Q8-Extensions and
SL2(Z/3Z)-Extensions

Let k be an algebraically closed field of characteristic two. In this chapter, we shall
show that neither Q8 nor SL2(Z/3Z) is an almost local Oort group (or even an almost
local Bertin group) for k, and shall rehearse open problems concerning the local lifting
of Q8-extensions and of SL2(Z/3Z)-extensions.

7.1 The Bertin Obstruction

Let K = k((t)) be the field of Laurent series over k let L = k((s)) be a finite Galois
extension of K. Moreover, let Γ = Gal(L|K), and let φ : Γ → Autk(k[[s]]) denote
the canonical Galois action of Γ on k[[s]]. As in Subsection 2.1, we define a function
iΓ : Γ→ Z≥0 ∪ {∞} such that

iΓ(σ) = vL (σ(s)− s)

for all σ ∈ Γ, where vL is the discrete valuation of L.

Definition 7.1.1. The Artin character aφ : G→ Z of φ is defined such that

aφ(σ) =

{
−iΓ(σ) if σ 6= IdL∑

σ 6=IdL
iΓ(σ) if σ = IdL

.

In [Ber98], Bertin proved a more general, global version of the following local
theorem, which follows the rephrasing in [CGH11].

Theorem 7.1.2 (Théoréme in [Ber98]). Suppose L|K lifts to characteristic zero.
Then there exists a positive integer m and a finite G-set S with non-cyclic trivial
stabilizers such that aφ = m · regΓ − χS, where regΓ is the character of the regular
representation of G, and χS is the character defined by the action of G on S.

In light of Theorem 7.1.2, we say that the Bertin obstruction of φ vanishes if such
an m and an S do exist.
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We now let C be a set of representatives of the conjugacy classes of the cyclic sub-
groups of G, and, for all subgroups H of G, let 1H denote the trivial one-dimensional
character of H.

Proposition 7.1.3 (Proposition 2.1 in [CGH11]). The following statements both hold.

(1) There exist unique rational numbers bT for T ∈ C such that

−aφ =
∑
T∈C

bT IndHT 1T .

(2) The Bertin obstruction of φ vanishes if and only if bT is a non-negative integer
for all T 6= {Idk[[s]]}.

In the case in which Γ is either a dihedral group of order 2pn, or (if p = 2) a
semi-dihedral or quaternion group of order 2pn, Chinburg, Guralnick and Harbater
used the characterization of the Bertin obstruction given in 7.1.3 to prove necessary
and sufficient conditions for the Bertin obstruction of φ to vanish in terms of the
ramification breaks of extensions L′|K ′ such that K ⊆ K ′ ⊆ L′ ⊆ L. We provide the
result for Γ = Gal(L|K) ∼= Q8 below.

Proposition 7.1.4 (Corollary 14.11.c in [CGH11]). Suppose that Γ ∼= Q8, and let
L0 ⊆ L denote a degree two subextension of K. Moreover, let d0 denote the degree of
the different of L0|K (so that d0 − 1 is the conductor of L0|K), and define i0 and i1
such that the sequence of upper ramification breaks of N |L0 is (i0, i0 + i1). Then the
Bertin obstruction of φ vanishes if and only if i1 is even, and i1 ≥ d0.

7.2 Q8-Extensions and SL2(Z/3Z)-Extensions with

Non-Vanishing Bertin Obstruction

Let k be an algebraically closed field of characteristic two, let K = k((t)), let K ′ =
k((t3))and fix an algebraic closure Kalg of K. In this section we exhibit, for each odd
positive integer n, a Q8-extension N |K whose sequence of lower ramification breaks
is (n, n, 3n). Moreover, if 3 - n, the extension N |K ′ is a SL2(Z/3Z)-extension. We
observe that it follows that both the local Q8-action corresponding to N |K and the
local SL2(Z/3Z)-action corresponding to N |K ′ if 3 - n have non-vanishing Bertin
obstruction. Hence neither Q8 nor SL2(Z/3Z) is, in the sense of [CGH11], an almost
Bertin group for k.

7.2.1 Q8-Extensions

Let n be an odd positive integer. Moreover, for all i ∈ {0, 1, 2}, let Fi = ζ i3t
−n, where

ζ3 ∈ k is a fixed non-trivial cube root of unity, and let qi ∈ Kalg such that q2
i +qi = Fi.

Finally, let Li = K[qi] for all i ∈ {0, 1, 2}, let M be the compositum of L0, L1 and
L2, and let N = M [s], where s ∈ Kalg such that

s2 + s = F1q0 + F2q1 + F0q2 = ζ3t
−nq0 + ζ2

3 t
−nq1 + t−nq2.
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Lemma 7.2.1. The field N is a Q8-extension of K. Moreover, the sequence of lower
ramification breaks of N |K is (n, n, 3n).

Proof. Note that

s2 + s = F1q0 + F2q1 + F0q2 = (F1 + F0)q0 + (F2 + F0)q1 = F2q0 + F1q1.

ThusN is aQ8-extension ofK by Proposition 3.3.7. Furthermore, by Corollary 5.2.18,
the sequence of lower ramification breaks of N |K is (n, n, 4 max{3n/2, n+m}− 3n),
where m = min{degt−1(F1 + ζ3F0), degt−1(F1 + ζ2

3F0)}. Since F1 = ζ3t
−n = ζ3F0, it

follows that m = −∞, and that the sequence of lower ramification breaks of N |K is
(n, n, 3n).

Lemma 7.2.2. Let i ∈ {0, 1, 2} The sequence of upper ramification breaks of N |Li is
(n, 2n).

Proof. Let Γ = Gal(N |K). Since Gal(N |Li) is a subgroup of Gal(N |K), it follows
by Proposition 2.1.5 that Γ` ∩ Gal(N |M) = Gal(N |M)` for all ` ≥ −1. Therefore,
by Lemma 7.2.1, the sequence of lower ramification breaks of N |Li is (n, 3n). By
Proposition 2.1.11, the sequence of upper ramification breaks of N |Li is thus (n, 2n).

Proposition 7.2.3. Let u be a uniformizer of N , and let φ : Q8 → Autk(k[[u]]) be
the local Q8-action corresponding to N |K. Then the Bertin obstruction of φ does not
vanish.

Proof. Let H = Gal(N |L0), and define i0 and i1 such that the sequence of upper
ramification breaks of N |L0 is (i0, i0 + i1). By Lemma 7.2.2, i0 = i1 = n. Thus i1 is
odd. Therefore, by Propostion 7.1.4, the Bertin obstruction of φ does not vanish.

Corollary 7.2.4. The group Q8 is not an almost Bertin group for k.

Proof. Let m be an odd positive integer. By Lemma 7.2.1 and Proposition 7.2.3,
there is a Q8-extension K̃ of K such that

1. the first ramification break of K̃ over K is m, and

2. the local Q8-action corresponding to K̃ over K has non-vanishing Bertin ob-
struction.

By Remark 2.1.4, the first enumerated statement is equivalent to the statement that
vK̃(σ(u) − u) ≥ m for all σ ∈ Gal(K̃|K), where u is a uniformizer of K̃. Therefore,
it is not the case that every sufficiently ramified local Q8-action has vanishing Bertin
obstruction. Thus Q8 is not an almost Bertin group.
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7.2.2 SL2(Z/3Z)-Extensions

In this section, we shall use the Q8-extensions from the previous section to construct
local SL2(Z/3Z)-extensions that correspond to local SL2(Z/3Z)-actions with non-
vanishing Bertin obstruction. To this end, let K,n, Li,M,N, qi, s be defined as in the
previous section, let w = t3, and let K ′ = k((w)). Then K|K ′ is a Galois extension,
and Gal(K|K ′) ∼= Z/3Z. Moreover, let σ : N → Kalg be a k-linear embedding such
that σ|K is the generator of Gal(K|K ′) mapping t to ζ3t. Finally, for all ` ∈ Z, let `′

be the unique element of {0, 1, 2} such that ` ≡ `′ (mod 3).

Lemma 7.2.5. Let i ∈ {0, 1, 2}. Then either σ(qi) = q(i−n)′ or σ(qi) = q(i−n)′ + 1. In
particular, the following statements both hold.

(1) σ(Li) = L(i−n)′.

(2) The extension Li|K ′ is Galois if and only if 3 | n.

Proof. Let i ∈ {0, 1, 2}. Since σ(t) = ζ3t, it follows that

(σ(qi))
2 + σ(qi) = σ(ζ i3t

−n) = ζ i−n3 t−n = ζ
(i−n)′

3 t−n = q2
(i−n)′ + q(i−n)′ .

Therefore, either σ(qi) = q(i−n)′ , or σ(qi) = q(i−n)′ + 1. Hence σ(Li) = L(i−n)′ .
To prove (2), note that, since Li|K is Galois, Li|K ′ is Galois if and only if σ(Li) =

Li, which occurs if and only if n′ = 0, i.e., if and only if 3 | n.

Remark 7.2.6. Since M |K has degree four, there are four extensions of σ|K to embed-
dings of M in Kalg. Since any such extension is completely determined by its action
on q0 and q1, we may and do pick σ such that σ(q0) = q(−n)′ , and σ(q1) = q(1−n)′ . In
this case, σ(q2) = q(2−n)′ , as well.

Proposition 7.2.7. The field N is a Galois extension of K ′. Moreover, the following
statements both hold.

(1) If 3 | n, then Gal(N |K ′) ∼= Q8 × Z/3Z.

(2) If 3 - n, then Gal(N |K ′) ∼= SL2(Z/3Z).

Proof. Note that σ|K generates Gal(K|K ′), and that N |K is a Galois extension by
Lemma 7.2.1. Therefore, to show that N |K ′ is Galois, it suffices to show that σ(N) =
N .

Recall that M is the compositum of L0, L1 and L2. By Lemma 7.2.5, σ(Li) =
L(i−n)′ for all i ∈ {0, 1, 2}. Hence

σ(M) = σ(L0)σ(L1)σ(L2) = L(−n)′L(1−n)′L(2−n)′ = M.

Furthermore, since

s2 + s = ζ3t
−nq0 + ζ2

3 t
−nq1 + t−nq2 = ζ3t

−nq0 + ζ2
3 t
−nq1 + ζ3

3 t
−nq2,
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it follows that

σ(s)2 + σ(s) = σ(ζ3t
−nq0 + ζ2

3 t
−nq1 + ζ3

3 t
−nq2)

= ζ1−n
3 t−nq(−n)′ + ζ2−n

3 t−nq(1−n)′ + ζ3−n
3 t−nq(2−n)′

= ζ
1+(−n)′

3 t−nq(−n)′ + ζ
1+(1−n)′

3 t−nq(1−n)′ + ζ
1+(2−n)′

3 t−nq(2−n)′

= s2 + s,

the second equality holding by Remark 7.2.6. Thus σ(N) = N , and N |K ′ is Galois.
To prove statements (1) and (2), note that Gal(N |K) is a 2-Sylow subgroup of

Gal(N |K ′), and recall that K|K ′ is Galois. Thus Gal(N |K) is normal in Gal(N |K ′).
Moreover, by Lemma 7.2.1, Gal(N |K) ∼= Q8. Therefore, Gal(N |K ′) is a group of order
twenty-four that contains a normal (and hence unique) 2-Sylow subgroup isomorphic
to Q8. Up to isomorphism, the only such groups are Q8 × Z/3Z and SL2(Z/3Z).

To distinguish between the groups Q8 × Z/3Z and SL2(Z/3Z), we consider the
three order four subgroups of the 2-Sylow subgroup of Gal(N |K ′), that is, the sub-
groups Gal(N |Li) for i ∈ {0, 1, 2}. If Gal(N |K ′) ∼= Q8 × Z/3Z, then each of these
subgroups will be normal in Gal(N |K ′), while if Gal(N |K ′) ∼= SL2(Z/3Z), then each
of these subgroups will not be normal in Gal(N |K ′).

Let i ∈ {0, 1, 2}. By Lemma 7.2.5, Li|K ′ is a Galois extension if and only if 3 | n.
Hence Gal(N |Li) is normal in Gal(N |K ′) if and only if 3 | n. Statements (1) and (2)
both now follow.

Proposition 7.2.8. Suppose that 3 - n. Let u be a uniformizer of N , and let
φ : Gal(N |K ′) → Autk(k[[u]]) be the local SL2(Z/3Z)-action corresponding to N |K.
Then the Bertin obstruction of φ does not vanish.

Proof. Note that, since 3 - n, φ is indeed a local SL2(Z/3Z)-action by Proposi-
tion 7.2.7. Let φK : Gal(N |K)→ Autk(k[[u]]) be the restriction of φ from Gal(N |K ′)
to Gal(N |K). By 7.2.3, the Bertin obstruction of φK does not vanish. Therefore, by
Theorem 5.1 in [CGH11], the Bertin obstruction of φ does not vanish.

Corollary 7.2.9. The group SL2(Z/3Z) is not an almost Bertin group for k.

Proof. Let m be an odd positive integer. By Lemma 7.2.1 and Proposition 7.2.3,
there is a SL2(Z/3Z)-extension K̃ of K ′ such that

1. the first ramification break of the Q8-extension K̃|K is m, and

2. the local SL2(Z/3Z)-action corresponding to K̃ over K has non-vanishing Bertin
obstruction.

By Remark 2.1.4, the first enumerated statement is equivalent to the statement that
vK̃(σ(u) − u) ≥ m for all σ ∈ Gal(K̃|K), where u is a uniformizer of K̃. Since

Gal(K̃|K) is the unique 2-Sylow subgroup of Gal(K̃|K ′), it follows that not every
sufficiently ramified local SL2(Z/3Z)-action has vanishing Bertin obstruction. There-
fore, SL2(Z/3Z) is not an almost Bertin group.



70

Remark 7.2.10. The removal of SL2(Z/3Z) and Q8 from the list of almost Bertin
groups implies the following proposition.

Proposition 7.2.11. Let G be a cyclic-by-p group, and let k be an algebraically closed
field of characteristic p. Then the following statements are equivalent.

(1) G is a KGB group for k.

(2) G is a Bertin group for k.

(3) G is an almost KGB group for k.

(4) G is an almost Bertin group for k.
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