
6\QWKHVL]LQJ�1DWXUDO�/DQJXDJH�([SODQDWLRQV
IRU�5HFRPPHQGDWLRQV

$�7KHVLV

3UHVHQWHG�WR

WKH�IDFXOW\�RI�WKH�6FKRRO�RI�(QJLQHHULQJ�DQG�$SSOLHG�6FLHQFH

8QLYHUVLW\�RI�9LUJLQLD

LQ�SDUWLDO�IXOÀOOPHQW
RI�WKH�UHTXLUHPHQWV�IRU�WKH�GHJUHH

0DVWHU�RI�6FLHQFH

E\

$RER�<DQJ

0D\�����

33529/�6+((7

7KLV�7KHVLV
LV�VXEPLWWHG�LQ�SDUWLDO�IXOÀOOPHQW�RI�WKH�UHTXLUHPHQWV

IRU�WKH�GHJUHH�RI
0DVWHU�RI�6FLHQFH

$XWKRU�6LJQDWXUH��

7KLV�7KHVLV�KDV�EHHQ�UHDG�DQG�DSSURYHG�E\�WKH�H[DPLQLQJ�FRPPLWWHH�

$GYLVRU��+RQJQLQJ�:DQJ

&RPPLWWHH�0HPEHU��<DQJIHQJ�-L

&RPPLWWHH�0HPEHU��-XQGRQJ�/L

&RPPLWWHH�0HPEHU��

&RPPLWWHH�0HPEHU��

&RPPLWWHH�0HPEHU��

$FFHSWHG�IRU�WKH�6FKRRO�RI�(QJLQHHULQJ�DQG�$SSOLHG�6FLHQFH�

&UDLJ�+��%HQVRQ��6FKRRO�RI�(QJLQHHULQJ�DQG�$SSOLHG�6FLHQFH

0D\�����

c�Copyright by

All Rights Reserved

Abstract

Previous research has shown convincing results that explaining the machine-generated

recommendations can help customers make more accurate decisions and improve their

satisfaction. Many E-commerce applications allow users to leave reviews expressing

their experience and sentiments in addition to numerical ratings. These sentimental

correlated reviews serve as a perfect resource of explanations for their corresponding

ratings. Some works have jointly modeled the recommendation and review genera-

tion, but their objective is mostly memorizing the reviews verbatim. In our definition,

explanations shall describe features of a given item in an aligned sentiment to defend

the recommendation result. Under this insight, we propose a novel neural architecture

which not only predicts personalized ratings for recommendation, but also generates

supportive explanations describing customized features in a consistent sentiment to-

wards the predicted ratings. On top of a multi-task model, we introduce a rating gate

and feature gate to fuse the sentimental representation among the two tasks while

specifically emphasizing the sentiment and feature in the generated explanations.

Moreover, a content rating supervisor is added in combination with a Gumbel sam-

pler to align the sentiment between end explanations and predicted ratings. To further

regularize the generation quality, we adopt adversarial training which can smoothly

integrate with the existing Gumbel sampler. Extensive experiments show our model

exceeds the baselines in both rating prediction and text generation. Furthermore, the

sentimental alignment of generated explanations is significantly improved through our

method.

Contents

1 Introduction 1

2 Related Works 7

3 Methods 9

3.1 Foundation . 10

3.1.1 Rater . 11

3.1.2 Explanation Generator . 13

3.1.3 Multitask Learning . 15

3.2 Sentiment Modeling . 16

3.2.1 Disentangled Embedding . 18

3.2.2 Sentiment Encoder . 18

3.2.3 Sentiment Gate . 19

3.2.4 Feature Gate . 20

3.3 Sentiment Supervision . 22

3.3.1 Content Rater . 24

3.3.2 Policy Gradient . 24

3.3.3 Gumbel Softmax Sample . 26

3.3.4 Adversarial Training . 27

3.3.5 Overall Objective . 27

3.4 Training . 28

4 Experiments 29

v

4.1 Data Preprocessing . 29

4.2 Baselines . 31

4.3 Personalized Recommendation . 32

4.4 Explanation Quality . 33

4.5 Qualitative Analysis . 37

5 Conclusion and Future Work 41

vi

List of Figures

3-1 Initial multitask learning model with shared user and item embedding 10

3-2 Multitask learning model with enhancement on sentiment modeling . 16

3-3 Final model architecture with sentiment supervisor 23

4-1 Heaviest dependents of the sentiment gate 38

4-2 Heaviest dependents of the feature gate 38

vii

viii

List of Tables

1.1 Example of recommendations with sentiment aligned and unaligned ex-

planations. The recommendation is modeled as common rating regres-

sion problem in scale of one to five. Different sentiments are reflected

in the bold words. 3

4.1 Example of unprocessed reviews. The bold ones can serve as recom-

mendation explanations. Other text can not help readers to understand

the item. 30

4.2 Statistics summary of processed data. 31

4.3 Personalized recommendation evaluation in RMSE and NDCG 33

4.4 BLEU scores of decoded explanations 34

4.5 Feature precision, recall and F1 of decoded explanations 35

4.6 Sentiment alignment evaluation of decoded explanations. RMSE-GT

is the RMSE between explanation rating and ground truth rating.

RMSE-PRED is the RMSE between explanation rating and predicted

rating. 36

4.7 Samples of words and their values of sentiment and feature gates. SG

is short for sentiment gate; FG is short for feature gate. 37

ix

x

Chapter 1

Introduction

Personalized recommendation system can improve the efficiency and quality of

people’s life by providing tailored information according to individuals’ preferences.

Although a massive amount of research [Herlocker et al., 2004, Koren et al., 2009, Ma

et al., 2008] has endeavored to advance the effectiveness of recommendation algo-

rithms, how to explain the machine-made decisions is a fundamental challenge with-

out enough studies. Due to the lack of explainability, many algorithms are black boxes

not only to their users but also even to the owners [Zhang and Chen, 2018]. Previous

research, however, shows that explanations can help users make more accurate deci-

sions [Bilgic and Mooney, 2005], ease their acceptance of recommendations [Herlocker

et al., 2000], and build up confidence towards the system [Sinha and Swearingen,

2002]. Therefore, it is exceptionally necessary to have explainable recommendations

which additionally advise users why they should pay attention to the results.

Many E-commerce systems, like Amazon and Yelp, encourage customers to write

reviews to share their experiences and feelings to others in addition to just leaving

overall sentimental ratings. Users usually read these reviews to figure out the detailed

reasons behind given ratings, so reviews is an intrinsic resource for recommendation

justification. The correlation between ratings and reviews have largely been utilized

to enhance the recommendation quality. Existing explainable recommendation algo-

rithms [Wang et al., 2018, Tao et al., 2019, He et al., 2015] learn to predict the critical

elements retrieved from reviews, such as items’ features and users’ opinionated words.

1

However, while delivering the end textual explanations, all the methods rely on pre-

defined templates. They require human efforts to prepare one or more templates with

blanks to be filled in with predicted aspects or phrases. These semi-customized text

snippets lack the expressiveness and diversity of human’s natural language. Their

strong robotic smell hurts users’ trust in the explanations and eventually the entire

recommendation system.

As neural network models have achieved extraordinary success in many text gener-

ation task recently, such as machine translation [Bahdanau et al., 2014, Luong et al.,

2015] and conversational systems [Vinyals and Le, 2015, Li et al., 2016], a few ex-

plainable recommendation models [Li et al., 2017b, Lu et al., 2018] also adopt neural

network to synthesis natural language explanations. However, they often roughly

simplify producing explanations as other text generation tasks, whose main objec-

tive is to memorize and reproduce reviews in a verbatim manner. Moreover, they

are evaluated mostly by the textual readability in general offline metrics like BLEU

[Papineni et al., 2002] and ROUGE [Lin, 2004]. Unfortunately, fairly fluent language

does not equal to qualified explanation. Existing works rarely address the unique

characteristics required for explanations and specific judgements about how well rec-

ommendations are explained. Although some existing works [Ni et al., 2019, Chen

et al., 2019] add extra emphasis on the items’ features mentioned in explanations,

the predicted recommendation ratings or rankings, which are the most essential out-

puts of the system, are commonly ignored in explanations. The recommendations

and explanations are modeled as two loosely linked sub-components with their own

separate objectives. We argue this kind of modeling does not capture explanations’

actual role which is to elaborate the predicted recommendation results and defend

such decisions.

In our vision, explanations shall support items’ personalized recommendations in

correspondingly aligned sentiments through describing their features. In other words,

the sentiments carried within explanation text need to reflect how multiple items are

rated or ranked differently by the system and help readers see it. Use Table 1.1 as

an example to show the importance of sentiment alignment. Item A’s nearly perfect

2

Item Rating Sentiment Aligned
Explanation

Sentiment Unaligned
Explanation

A 4.8 the chicken was so juicy and the
sauce was perfect.

the service is a little bit slow.

B 2.7 the burgers were good, but the
fries weren’t that great.

great food, great service,
great atmosphere!

Table 1.1: Example of recommendations with sentiment aligned and unaligned ex-
planations. The recommendation is modeled as common rating regression problem in
scale of one to five. Different sentiments are reflected in the bold words.

rating and item B’s below-average one shows the system recommends item A over

B. Their sentiment aligned explanations fairly present A is highly recommended (e.g.

positive words like "perfect") and B might be less preferred (e.g. transition words

"but" and following negation "weren’t great"). On the contrary, the unaligned ex-

planations seem to oppose the results since they praise B (e.g. three "great" aspects)

while pointing out the flaw of A (e.g. negative word "slow"). The sentiment unaligned

explanations will not only fail to assist users but also make them feel confused and

further doubt recommendations, which is even worse than no explanation.

Under the above insight, in this work, we propose a novel neural network ar-

chitecture for sentiment aligned explainable recommendations. Our model is able

to give improved recommendations while generating personalized natural language

explanations with enhanced feature customization and most importantly, sentiment

alignment. Its success is primarily ascribed to two original designs. First, we specif-

ically model the sentiment as a latent vector to bind the tasks of recommendation

and explanation together. The sentiment information gets distilled into the vector

through back propagation. The idea behind is that since sentiments are shared across

both tasks, cooperative learning shall improve sentiments’ representations and they

will consequently go back to improve both tasks’ performance. Since sentiments are

directly reflected in end ratings, we model the sentiment vector as a non-linear fu-

sion of user and item representations and feed it as the input to our Multiple Layer

3

Perceptron (MLP) rater for rating regression. On the other hand, we use a Gated

Recurrent Unit (GRU) [Chung et al., 2014] for explanation generation. Intuitively,

not every word carries sentiments. For example, in Table 1.1, the stop words like

"the" and "of" do not express any attitudes like the bold ones. Therefore, we in-

troduce a sentiment gate and feature gate in the generator to model the sentiment’

impact in each position individually. The sentiment gate concept comes from the

gates in Long Short Term Memory (LSTM) [Gers et al., 1999] and GRU (e.g. like

input gate and forget gate). It calculates a weighted fusion of the generator’s hidden

state and the sentiment vector to model how much the predicted word should refer to

the sentiment. The feature gate is a pointer network [Vinyals et al., 2015, See et al.,

2017] of items’ features whose attention is calculated with respect to the sentiment

vector. The idea has been proven by many previous works [Wang et al., 2018, Wang

et al., 2010] that the overall assessment is built upon the feature-level assessments.

The second design is to utilize an independent text sentiment rater to supervise

the text generation. This is because the conventional training objective of neural text

generation, Maximum Likelihood Estimation (MLE), cannot ensure the aligned sen-

timent. MLE is a positional loss and treats each word equally so it cannot maintain

the sentiment of a whole sentence. Moreover, the generation process in evaluation is

different from training. Ground-truth word is fed sequentially in MLE training but

previous decoded word is used as the input for the next step [Ranzato et al., 2015].

Most importantly, the generation objective does not involve predicted recommenda-

tions at all. The separate recommender and generator may diverge from training in

different manners and fail to agree with each other. Therefore, we train a sentiment

classifier to predict ratings for the given text. Then use it to guide sentences sam-

pled from the generator to meet the predicted rating. Since the generator output is

non-differentiable categorical distribution, we apply Gumbel-Softmax Sampler [Jang

et al., 2016] which can estimate the gradient for end-to-end training. To avoid the

generation collapses into unreadable and meaningless content merely to please the

sentiment supervisor, we build Generative Adversarial Networks (GANs) [Goodfel-

low et al., 2014] to regularize the text quality. It is smoothly integrated with the

4

existing Gumbel-Softmax Sampler.

We evaluate our proposed solution on both recommendation performance and

explanation quality, which is presented in readability, feature personalization, and

sentiment alignment. The experiments are conducted on Yelp dataset with many tra-

ditional recommendation baselines and recent neural explainable baselines. Empirical

results prove that our model achieves better performance on both tasks. Specifically,

our solution can effectively realize sentiment alignment in explanations.

5

6

Chapter 2

Related Works

Collaborative filtering [Su and Khoshgoftaar, 2009, Schafer et al., 2007] is a widely

applied technique to provide recommendations. It leverages historical interactions be-

tween users and recommendation items to predict preferences. Latent factor model is

its most effective genre. Many such algorithms, like matrix factorization (MF) [Koren

et al., 2009], tensor decomposition [Kolda and Bader, 2009], singular value decompo-

sition (SVD) [Koren, 2008], and probabilistic matrix factorization (PMF) [Mnih and

Salakhutdinov, 2008], have achieved significant success in recommendation systems.

Their essential idea is to compress the interactions into a latent space of lower di-

mensions. Since neural network shows a promising capacity in latent representation

learning due to the nonlinear activation, many deep neural latent models [He et al.,

2018, Wang et al., 2015, Zhang et al., 2019] have been proposed for recommendations,

such as neural collaborative filtering [He et al., 2017] which combines latent represen-

tations of MF and neural network together for preference prediction. Unfortunately,

the latent representation and nonlinearity can hardly be interpreted for reasoning.

Therefore, the computed recommendation outcomes cannot be questioned.

Lack of reasoning is not a problem only for recommendations. Many general ex-

plainable machine learning [Gunning, 2017, Murdoch et al., 2019] research has been

conducted to tackle this issue. These solutions [Ribeiro et al., 2016, Lundberg and

Lee, 2017] usually focus on system-oriented explanations, explaining the results via

tracing connections between the input and output. However, this kind of mathemat-

7

ically reasonable explanation is more for researchers to deepen their understanding

of models rather than for an interactive system like recommendation whose primary

goal is to assist end users. Early studies from [Herlocker et al., 2004, Sharma and

Cosley, 2013] suggest the necessity of personalized explanation, which focuses on jus-

tifying why users should care for the results. Several recent explainable works share

the same insight as us. For example, [Wang et al., 2018, Tao et al., 2019] model

users’ opinions expressed in reviews to generate personalized explanations. However,

these methods can only personalize some critical terms, such as features and opinions.

Their explanations have to rely on predefined templates that lack the expressiveness

and diversity of the nature language. The naive structure and robotic style of such

explanations can hurt users’ trust in the system.

Neural network models have achieved great success in many text generation tasks,

such as machine translation [Bahdanau et al., 2014, Cho et al., 2014], conversational

systems [Li et al., 2019, Vinyals and Le, 2015], and text summarization [Rush et al.,

2015, See et al., 2017]. Most of the involved techniques, such as recurrent neural

network (RNN) language model [Mikolov et al., 2010], attention [Luong et al., 2015],

and pointer network [Vinyals et al., 2015], are transparent to the context of generation.

Several existing works have exploited the neural network language model within the

recommendation system for natural text generation. [Li et al., 2019, Li et al., 2017b]

model rating prediction and tip generation together. [Chen et al., 2019] can generate

explanations with more accurate features while making recommendations. [Ni et al.,

2019] generates recommendation justifications covering different fine-grained aspects.

However, these solutions mostly ignore the difference between explanations and other

kinds of text that explanations need to elucidate recommendations to assist users

in an interactive system. None of them pay attention to the consistent sentiment

between recommendation and explanations while leaving the two like independent

tasks.

8

Chapter 3

Methods

In this chapter, we will go through the evolvement of our solution. It contains

not only the final version of our architecture but also other alternative methods we

explored.

The problem of explainable recommendation can be formulated as follows: for a

given pair of user u and item i, we need to have a model M to output a personalized

rating r for recommendation and a sequence of words wn as explanation. It can be

expressed as:

r, w1, w2, ..., wn = M(u, i) (3.1)

To learn such model, our solution assumes to have a dataset including users,

items, ratings, features and explanation sentences. Most recommendation corpora

provide raw review documents instead of features and explanations, so preprocessing

with other data mining or NLP toolkits [Qi et al., 2020] is necessary. We denote the

dataset as {U, I, R, F,X} where U is the set of users, I is the set of items, R is the

set of ratings, F is the set of features, and X is the set of explanations. We use ru,i

and xu,i to denote a pair of rating and explanations in the review of user u and item

i. We also define a vocabulary set containing all the words V = {w1, w2, ..., w|V|}.

Since features are items’ popular attributes mentioned in the text, it is a subset of

vocabulary F ⇢ V .

9

3.1 Foundation

Because there are two distinct tasks, it is obvious we need a multitask learning

model. Inspired by many recommendation algorithms [McAuley and Leskovec, 2013,

Almahairi et al., 2015] which have successfully taken advantage of review to improve

rating prediction, we believe the necessity to build a shared latent space to capture

common sentimental information from both tasks. The initial design thus is given

as Figure 3-1: shared user and item embedding bridge the separate rater and text

generator. The latent embedding matrices are defined as P 2 Rd⇥|U | and Q 2 Rd⇥|I|

for user and item respectively, where d is the dimension of the latent vector. For

simplicity, they have the same dimensions, but since we always concatenate them in

the following work, different dimensions would also work. Given a user u and item i,

the embedding are written as pu and qi. The two latent embeddings are concatenated

as the input and feed to a multi-layer perceptron network to regress into a numerical

rating as the recommendation score. Similarly, the concatenated vector is converted

to the initial state of a GRU network to generate a sequence of words as explanations.

The losses of the two networks are linearly interpolated as a sum. The whole model

is then effectively trained end-to-end with stochastic gradient optimizer of Adam

[Kingma and Ba, 2014].

Figure 3-1: Initial multitask learning model with shared user and item embedding

10

3.1.1 Rater

The objective of the rater is to predict a rating based on a pair of user and item,

which can be denoted as:

r̂ = Rater(u, i) (3.2)

Inspired by the success of existing neural recommendation models [He et al., 2017],

our design uses the popular MLP as the rater which is capable to learn a representation

of the complex interaction between a user and item. We are aware that some more

complicated add-on or techniques may further boost the performance, but our focus is

the whole explainable architecture and the basic MLP is enough for us to demonstrate

the improvement.

The rater maps the user u and item i to the corresponding latent embedding at

first. Then they are concatenated and passed to the first perceptron layer:

hr
1 = relu(W r

1 [pu, qi] + br1) (3.3)

where W r
1 2 Rdr1⇥2d is the weight and br1 2 Rdr1 is the bias of the layer. The superscript

r on the right top of symbols means the belonging to the rater and the subscript 1

means the index (e.g. first in the equation) of the layer. The dr1 is the output hidden

vector hr
1’s dimension. We use the symbol [v1, v2] to represent the concatenation of

vectors of v1 and v2. relu(·) stands for the nonlinear activation function rectified

linear unit (ReLU):

relu(z) = max(0, z) (3.4)

Generally, deeper layers may improve the performance of the prediction. The

interactions from the second layer can be abstracted with the layer index l:

hr
l = relu(W r

l h
r
l�1 + brl) (3.5)

where hr
l�1 2 Rdrl�1 is the output of the previous hidden layer, W r

l 2 Rdrl ⇥drl�1 and

11

brl 2 Rdrl are the weight and bias of layer l.

Assuming the MLP has L layers, the last hidden representation is written as hr
L.

To convert it into one rating r̂, the rater uses a simple linear layer:

r̂ = W r
r h

r
L + brr (3.6)

where W r
r 2 R1⇥drL and brr 2 R1.

The objective is to predict the ground truth rating r, so we apply Minimal Squared

Error (MSE) as the loss:

Lr =
1

|R|
X

ru,i2R

(r̂u,i � ru,i)
2 (3.7)

where R is the set of ratings and ru,i is the rating of user u gives to item i. Rec-

ommendation, however, is a ranking problem in the end. Minimizing element-wise

prediction error does not necessarily help differentiate the relative relevance quality

of a set of items. Therefore, we introduce the Bayesian Personalized Ranking (BPR)

[Rendle et al., 2012] to enhance the ranking performance. Specifically, we prepare a

set of personalized item pairs:

B = {(u, i, j)|ru,i > ru,j} (3.8)

which i and j are two items rated by user u. ru,i > ru,j requires item i being rated

higher than j. The original BPR is evaluated on data of implicit feedback, such as

clicked vs unclicked, so it only requires one recorded item in a pair and relies on

negative sampling for the counterpart. Our scenario assumes having explicit user

feedback to differentiate sentiments. Thus, we revise BPR on pairs of both rated

items. With set B, BPR ranking loss can be realized by:

Lb = � 1

|B|
X

(u,i,j)2B

log �(r̂u,i � r̂u,j) (3.9)

12

The �(·) is the sigmoid function:

�(z) =
1

1 + e�z
(3.10)

The physical meaning of �(r̂u,i � r̂u,j) is the estimated probability of item i is more

preferred than j for user u. Hence, the BPR loss can also be viewed as the negative

log likelihood (NLL) loss.

3.1.2 Explanation Generator

The responsibility of the explanation generator is to translate the given user and

item embedding into a sentence, a sequence of words:

x̂ = ŵ1, ŵ2, ..., ŵn = Generator(u, i) (3.11)

To solve this problem, we need to model the conditional probability of the target text.

Currently, the most popular method is Recurrent Neural Network (RNN). The text

likelihood is viewed as the product of a sequence of word probabilities conditioned on

the given context, which includes all the previous words, and user and item in our

case, so the problem can be formulated as:

P (x|u, i) =
Y

wt2x
P (wt|u, i, w1, ..., wt�1) (3.12)

Since each word is a discrete category of the vocabulary, the goal of each timestamp

t becomes a classification problem which produces a probability distribution of the

vocabulary:

P (wt|u, i, w1, ..., wt�1) = yt(wt) (3.13)

where yt is the word distribution at position t.

As shown on the right side of the Figure 3-1, we apply GRU to model the word

distribution yt. The initial context only includes the user and item, so we concatenate

the mapped latent embedding of the two and linearly convert it to the initial hidden

13

state:

hx
0 = W x

h [pu, qi] + bxh (3.14)

where W x
h 2 Rdxh⇥2d and bxh 2 Rdxh . The superscript x means the variables relate to

explanation generation. The dxh is the dimension of GRU’s hidden state.

For each timestamp, the hidden state shall be updated by a input word, so we

define another latent matrix for the word embedding V 2 Rdxv⇥|V|, where dxv is GRU’s

input dimension. vt is used for the embedding vector of word wt at timestamp t. We

initialize V with the pretrained GloVe [Pennington et al., 2014]. The job of GRU is

to generate hidden state hx
t at timestamp t with previous state hx

t�1 and input vt:

hx
t = GRU(hx

t�1, vt) (3.15)

Its detailed calculations can be briefly expanded as:

rxt = �(W x
vrvt + bxvr +W x

hrh
x
t�1 + bxhr)

zxt = �(W x
vzvt + bxvz +W x

hzh
x
t�1 + bxhz)

nx
t = tanh(W x

vnvt + bxvn + rxt ⇤ (W x
hnh

x
t�1 + bxhn))

hx
t = (1� zxt) ⇤ nx

t + zxt ⇤ hx
t

(3.16)

where ⇤ is the Hadamard product, rxt is the reset gate, and zxt is the update gate.

To get the final word probability distribution yt, we pass the hidden state hx
t

through the output layer:

yt = softmax(W x
y h

x
t + bxy) (3.17)

where W x
y 2 R|V|⇥dxh and bxy 2 R|V| linearly transform the hidden state into a vector

of size of the vocabulary. Each dimension of the vector is a word’s logit and the

softmax function converts the logit into the probability:

softmax(z)k =
ezk

P|z|
j=1 e

zj
(3.18)

14

where z = [z1, z2, ..., z|z|] and the subscript k is the dimension index.

Since the objective is to maximize the likelihood of the ground truth explanations,

we adopt NLL loss:

Lx = �
X

x2X

X

wt2x
log yx,t(wt) (3.19)

In the testing stage, there is no more ground truth explanation x serving as the

input, so a decoding/searching strategy is needed to select a word ŵt at the current

timestamp for the next timestamp. Greedy decoding and sampling are the two most

common methods. The greedy decoding chooses the word with the highest probability

in yt:

ŵt = argmax
wj2W

yt(wj) (3.20)

The sampling strategy randomly picks a word in respect to the multinomial distri-

bution yt. We use sampling for our model due to two reasons: first, greedy decoding

tends to produce less diversified safe contents, which is against our idea of personal-

ized explanation; second, a review may contain more than one explanation sentence

and the randomness in sampling allows us to generate multiple sentences covering

different features through iteration.

3.1.3 Multitask Learning

With the three losses from the two tasks, we can conclude one final loss function

to train the whole model end-to-end:

L = �rL
r + �bL

b + �xL
x + �n||⇥||2 (3.21)

where Lr, Lb, and Lx are the rating MSE loss, ranking BPR loss, and generation NLL

loss respectively. Additionally, we also append the L2 regularization for the model

parameters ⇥ which includes user embedding P , item embedding Q, word embedding

V , and all other variables (all weights W and bias b). The � are the corresponding

weights for these terms.

15

3.2 Sentiment Modeling

Intuitively, the same sentiment is shared in a user’s actions of rating an item and

writing its review. While the rating is basically a numerical representation of the sen-

timent, the review is its comprehensive textual expression. In the previous section,

we propose a model that utilize a shared latent user and item space to learn from

the back propagation of both tasks. Ideally, the embedding should thus be more rep-

resentative and expressive for sentiments. Unfortunately, our preliminary test shows

no obvious improvement in either task. The separate sub-models with their own em-

bedding achieve the same performance as our combined multitask model. Therefore,

we believe the previous basic multitask model is not enough to capture the shared

sentiment information. Specifically, the generator is the bottleneck. Because text

generation depends on many factors other than sentiments, such as vocabulary pref-

erence and syntactic structure, pushing these factors to the shared latent embedding

may dilute the concentration on sentiments. For example, in Table 1.1, the same em-

bedding needs also to memorize how to correctly produce stop words, like "the" and

"was", which distract the learning of sentimental words, like "great". This theory can

also explain why previous works [Wang et al., 2018] using extracted feature-opinion

phrases are able to claim improved performance.

Figure 3-2: Multitask learning model with enhancement on sentiment modeling

16

According to the above insight, we propose an enhanced multitask model that

specifically focuses on sentiment modeling. The architecture is shown in Figure 3-2.

It contains four refinements on top of the previous design. First, instead of a shared

set of embedding, the Rater and Generator have their own sets of user and item

embedding respectively. As we already mentioned, the text generation contains many

factors unrelated to sentiments, so with shared embedding, the Rater actually needs

to extricate sentiments from the noisy embedding. Separate embedding makes the

responsibilities more straightforward. Second, an MLP sentiment encoder is added

in the Rater to learn a latent sentiment representation. We define the output latent

vector as sentiment vector and use the previous MLP rater to translate it into the

numeric rating. Since both the sentiment encoder and rater are MLP, this refinement

can also be viewed as cutting the original MLP into two parts and taking the latent

vector in the boundary to represent sentiments. Since we know the sentiment impacts

the explanations while the disentangled embedding breaks the linkage between the

Rater and Generator, the sentiment vector serves as the new shared latent space for

both tasks. Third, we introduce a soft gate named sentiment gate in the generator to

fuse the sentiment vector into the generation process. The theory behind is that not

all words reflect sentiments, so our design allows position-wise decision. Moreover,

sentiments work very subtly in neural language: intuitively, it may impact transition

words, negation words, adjectives and more. Therefore, no one can craft any hard

rules to categorize sentiment words to give direct supervision. Thus, we apply a soft

gate learned from GRU and LSTM (e.g. reset gate, input gate) to learn the relevance

of each position. At last, we add the feature gate to enhance the mutual learning of

sentiments and feature personalization. The idea bases on the correlation between

overall ratings and feature/aspect ratings [Wang et al., 2018, Wang et al., 2010].

The feature gate is a pointer network (or copy mechanism) [See et al., 2017, Zeng

et al., 2016] using sentiment vector to weight feature words of the specified item. It

is named "gate" because the pointer network also includes a soft gate to predict the

copy probability.

In summary, our model uses sentiment vectors as the media to distill common

17

knowledge from related sub-tasks, which includes rating prediction, sentimental words

generation, and customized feature prediction, to learn improved representations.

3.2.1 Disentangled Embedding

Inspired by many disentanglement works in NLP area [Bao et al., 2019, Wang

et al., 2019], we feel the necessity of having disentangled sentiment and textual embed-

ding for different objectives. We now split the original set of user and item embedding

P and Q into two separate sets for the rater and generator respectively. Following the

naming convention, we use superscript r and x to differentiate them. P r 2 Rdr⇥|U |

and Qr 2 Rdr⇥|I| are the user and item rating latent matrices. P x 2 Rdx⇥|U | and

Qx 2 Rdx⇥|V | are the user and item text latent matrices. This also applies to embed-

ding vector. For example, pru stands for the rating user embedding of user u.

3.2.2 Sentiment Encoder

The sentiment encoder is a MLP network which outputs the sentiment vector by

simulating the nonlinear interaction between user and item. It is responsible to learn

a decent representation about sentiment. It takes the concatenated user and item

rating as input to calculate the first latent vector:

hs
1 = relu(W s

1 [p
r
u, q

r
i] + bs1) (3.22)

where the superscript s marks the variables of the sentiment encoder. To increase the

model capacity, the encoder has more than one layer. Similar to Equation 3.5, the

latent output after layer one can be abstracted as:

hs
l = relu(W s

l h
s
l�1 + bsl) (3.23)

where hs
l 2 Rdsl . Assume the encoder has L layers, the last latent vector is written

as hs
L. The hs

L is the sentiment vector shown in Figure 3-2. The sentiment vector

18

becomes a critical input to the downstream models, so we simplify it as:

s = hs
L (3.24)

The changes to the MLP rater are straightforward. Instead of directly consuming

user and item embedding, it passes the learned sentiment vector through its first

layer. Therefore, we replace the Equation 3.4 with:

hr
1 = relu(W r

1 s+ br1) (3.25)

As long as we fix its first layer, everything else shall stay the same.

3.2.3 Sentiment Gate

Sentiment gate is a mechanism we bring in to imitate how sentiments play in nat-

ural writing: people tend to stop at certain positions to choose the most appropriate

words to express their feelings while unconsciously following their wording habits to

continue the expression in the other positions. This idea supports our intuition that

not all words reflect sentiments. Our design forces the model to learn the sentimental

positions. The sentiment gate calculates a percentage gxt with respect to GRU’s hid-

den state hx
t . The sentiment vector is weighted by the percentage and then merged

with the hidden state to predict word distributions. Its physical meaning is that given

the current textual context, how much the next word should refer to the sentiment.

One existing popular method of sentiments modeling in text generation is to dump

sentimental representations in the initial state of the generator [Li et al., 2019, Li

et al., 2017b]. However, this way makes the prediction of each word depending on

sentiments. Also similar to our previous design, the sentiment vector may receive too

many noisy back propagation from unrelated words. On the contrary, our sentiment

gate is able to mitigate the noise in both directions.

To elaborate how sentiment gate works, we need to re-address how the hidden

state hx
t is calculated from GRU with the new disentangled embedding. The basic

19

flow is actually the same except the initial state is calculated with the text specific

embedding:

hx
0 = W x

h [p
x
u, q

x
i] + bxh (3.26)

Then as before:

hx
t = GRU(hx

t�1, vt) (3.27)

Since hx
t is supposed to capture previous textual context, we use it to determine

how much the next word shall refer sentiment. The steps is quite similar to the

detailed steps of GRU shown in Equation 3.16. We first calculate the sentiment gate

gxt . Then use gxt to weight sentiment vector s and merge it back with the hidden

state.

gxt = �(W x
g h

x
t + bxg)

mx
t = tanh(hx

t + gxt ⇤ (W x
ms+ bxm))

(3.28)

where W x
g 2 R1⇥dxh and bxg 2 R produce a scalar gxt not vector. mx

t , the new hidden

state fused with sentiment, replaces the original hx
t in the output layer to predict the

word distribution:

ymt = softmax(W x
y m

x
t + bxy) (3.29)

The ymt is given an additional superscript m because it is no longer the final word

distribution due to the feature gate. We will introduce feature gate in the next section.

3.2.4 Feature Gate

The objective of feature gate is to improve the delivery of accurate feature words

in explanations meanwhile encode feature preference in the sentiment vector to sharp

the rating prediction. The feature gate is essentially a pointer network which copies

the item’s features into the end word distribution. We divide its function into two

steps. First, it calculates the sentiment vector s’s attention towards the features,

whose physical meaning is the customized feature preference. Second, it uses textual

hidden state hx
t to calculate a ratio cxt to linearly interpolate the word distribution ymt

20

and feature attention to have the final word distribution yt, whose physical meaning

is that given the current textual state, how likely to mention an item’s feature next.

Since the targets are item specific feature words, for each item i, we build a

feature set Fi = {fk|fk 2 {xu,i|u 2 U}} which means it contains every feature word

that appears in any item i’s training data. Features are also words, so we simply

reuse the word embedding V to represent features. We apply the method "general"

in [Luong et al., 2015] to calculate the attention:

zt,k = [hx
t , s]

TW x
z vfk

at = softmax(zt)
(3.30)

where zt,k is computed for every fk in Fi and is the dimension k’s value of vector

zt. at is attention distribution and we use at(fk) to indicate the ratio of fk. The

attention’s input contains the hidden state hx
t in addition to the sentiment vector s

because the textual context may help exclude some semantic incorrect or duplicate

features. For better performance, an extra linear transformation can be applied to

hx
t to compress it into lower dimension, which help avoid overfitting attentions to the

text and ignoring the sentiment.

To decide if the model shall copy features based on the attention, we obtain the

copy probability by:

cxt = �(W x
c h

x
t + bxc) (3.31)

where W x
c 2 R1⇥dxh and bxc 2 R. The cxt allows us to mix the generation and feature

attention to get our final word distribution:

yt = (1� cxt)y
m
t + cxt at (3.32)

where at(wk) is 0 if wt /2 Fi.

21

3.3 Sentiment Supervision

So far, we have modeled how the generator should use sentiments in explanation

generation, but it is still not enough to guarantee the sentiment alignment. There

are several reasons. First, word-based NLL training cannot maintain the whole sen-

tence’s sentiment. Second, the generation process in testing works differently with

the training that there are no ground truth words, so it is safe to claim the actual

workflow has never been trained. Third, the end rater and generator may parse the

same sentiment vector differently. In other words, since the predicted rating can di-

verge from the factual rating, even the generator can perfectly produce the ground

truth sentence, it is no longer a supportive explanation to the predicted recommenda-

tion. In summary, the objectives of rater and generator are disconnected. They never

realize the existence of each other. Therefore, we introduce a sentiment alignment

loss to bind them. It directly trains the testing-like sampled sentence as a whole to

agree with the predicted rating.

The final version of our architecture is shown in Figure 3-3. On top of the multitask

model, we create a new supervisor module. The content rater is the critical component

that brings the ultimate output of the rater and generator together. Its role is like a

judge which evaluates the sentimental rating of the generated explanation. We pre-

train an independent regression model CR which predicts the ground truth rating

r according to the ground truth explanation x. Then we freeze it and use it to

predict the rating of the generated explanation r̂x. In order to provide guidance

to the generator, we apply MSE loss to push the content rating r̂x to meet the

predicted rating r̂. As we have already emphasized, explanations are the defense of the

recommendation system’s decisions. So note the target label is the predicted rating r̂

instead of the ground truth rating r. However, it is not easy to pass updates back to

the generator since the words sampling process cannot be differentiated. We tried two

existing solutions. One is to cast the problem to a reinforcement learning scenario

and apply policy gradient [Williams, 1992, Glynn, 1990]. We explore two particular

implementations: the Minimum Risk Training used in [Shen et al., 2015, Ayana et al.,

22

2016]; the Monte Carlo (MC) search used in [Yu et al., 2017]. Unfortunately, we find

them significantly time-consuming [Li et al., 2017a] and suffering high variance. The

other solution, which is also the one in our final model, is to employ Gumbel Softmax

[Jang et al., 2016] to estimate the gradient of sampling from categorical distribution.

Its training is both efficient and stable.

Figure 3-3: Final model architecture with sentiment supervisor

Besides the content rater, the supervisor module also applies adversarial learning

to regularize the truthfulness of generated explanations. It effectively helps avoid the

generation being trapped in producing meaningless content. The reason behind the

problem is that the generator may be rewarded for producing unreadable sequences

of words which however please the content rater. As a regression model, the content

rater rates every input including out-of-distribution ones. For example, it may give a

very positive rating to an unnatural sentence "good good good good ...". Such rating

is meaningless so we need to punish the generator for doing so. GAN is potent for

realistic generation. We add a content discriminator CD to classify the authentic and

generated explanations so that we can simultaneously train the generator to produce

23

convincing content to fool it.

3.3.1 Content Rater

Our architecture gives no assumption to the algorithms of the content rater. As

long as it can convert text into a numerical score, it should work. However, it needs to

have a decent performance to make the supervision reliable. We expect it to perform

better in rating metrics like RMSE on ground truth explanations than the user and

item rater. The intuition is that reading the actual explanations should understand

the sentiment better than guessing with the user and item’s rating history. In our

implementation, the content rater consists of a bidirectional RNN text encoder with

inner attention and a MLP on top for rating regression. The process is formulated

as:

r̂x = CR(x̂) (3.33)

where x̂ is the decoded explanation. The objective is to align the content rating r̂x

with the predicted rating r̂, so we employ MSE loss across all possible x̂:

Lcr =
X

u,i

EP (x̂|u,i)[(r̂
x � r̂)2]

=
X

u,i

EP (x̂|u,i)[(CR(x̂)� r̂)2]
(3.34)

where E[·] stands for expectation and P (x̂|u, i) is the probability of sampling x̂ with

given u and i. However, due to the categorical sampling process, the loss’ gradient

cannot pass to the generator through x̂. We will discuss two solutions in the next

sections.

3.3.2 Policy Gradient

The policy gradient views the sampling probability P (x̂|u, i) of our multitask

model as the policy and the rating alignment loss in supervisor as the action value.

The objective is to tune the parameters in the multitask model to improve the policy

24

to maximize the reward value or minimize the risk value. In our case, since we try to

minimize the content rating loss Lcr, so we define the risk value as:

�(x̂, r̂) = (CR(x̂)� r̂)2 (3.35)

We use ⇥ to represent all the other variables in our multitask model. The user and

item rater is frozen in the supervision training, which means we do not update the

predicted rating r̂, so �(x̂, r̂) does not impact ⇥. Then with the logarithmic trick,

we can compute ⇥’s gradient as:

r⇥L
cr = r⇥

X

u,i

EP (x̂|u,i)[�(x̂, r̂)]

=
X

u,i

X

x̂

r⇥P (x̂|u, i) ·�(x̂, r̂)

=
X

u,i

X

x̂

P (x̂|u, i)r⇥logP (x̂|u, i) ·�(x̂, r̂)

=
X

u,i

EP (x̂|u,i)[r⇥logP (x̂|u, i) ·�(x̂, r̂)]

(3.36)

As we can see, the gradient is an expectation with respect to the policy P (x̂|u, i).

MRT is a method which directly follow the sentence probability and approximates

the expectation by sampling x̂. It regards each x̂ as an action. However, the whole

space of x̂ is way too large. The sampling can hardly approximate, so results show

very high variance.

Word-level MC search is another policy gradient method. It sees the each word

prediction is an action and the feedback value is deferred till the end. So the gen-

eration becomes a sequence of actions with delayed value feedback. To estimate the

intermediate action value, it applies MC search for each sampled word ŵt:

X̂t = {x̂1, x̂2, ..., x̂n} = MCu,i(x̂1:t�1, ŵt)

�(x̂1:t�1, ŵt, r̂) =
1

|X̂t|

X

x̂k2X̂t

�(x̂k, r̂)
(3.37)

25

where x̂1:t�1 is the prefix sequence and X̂t is the MC sampled set. MCu,i samples n

sentences, each of which continues with context x̂1:t�1 and input ŵt. The action value

�(x̂1:t�1, ŵt, r̂) for ŵt is the average of the MC sampled set. Then we change the

objective in Equation 3.38 to minimizing the action value at each word. Similarly,

we can have:

r⇥L
cr = r⇥

X

u,i

EP (ŵt|u,i,x1:t�1)[�(x̂1:t�1, ŵt, r̂)]

=
X

u,i

EP (ŵt|u,i,x1:t�1)[r⇥logP (ŵt|u, i, x1:t�1) ·�(x̂1:t�1, ŵt, r̂)]
(3.38)

However, since it requires to conduct MC search at each position in a sequence to es-

timate the action value, the training process becomes extraordinary time-consuming,

so we replaced the policy gradient with gumbel softmax in our final model.

3.3.3 Gumbel Softmax Sample

Gumbel Softmax Sample can estimate gradient for categorical sampling. Briefly

speaking, it contains two parts: reparameterize the randomness in sampling to a

gumbel distribution; simulate a relaxed one-hot vector with softmax. In our case, we

need a strict one-hot vector to represent one word, so we employ the Straight-Through

(ST) Gumbel Softmax estimator [Jang et al., 2016] which outputs a one-hot vector

but uses the relaxation in back propagation to approximate the gradient. Then we

can finally bridge the gap between predicted word distribution yt and the sentiment

alignment loss Lcr:

ot = ST_GumbelSoftmaxSample(yt) (3.39)

where ot 2 R|V | is the one-hot word vector whose only non-zero dimension indicates

the index of the sampled word. It can also be easily mapped to its word embedding

if necessary:

vt = V ot (3.40)

26

The sampled sentence is re-defined as the sequence of the sampled one-hot vector

x̂ = {o1, o2, ..., o|x̂|} in Equation 3.34 so that Lcr can be trained end-to-end.

3.3.4 Adversarial Training

Our architecture needs the adversarial training to regularize the readability in

text generation to avoid feeding non-sense words into the content rater. The content

discriminator CD is added to play as the opponent of our multitask model, specifically

the generator. It learns to differentiate if the explanation is authentic x or generated x̂.

Our design does not limit the algorithms of the discriminator. In our implementation,

it is made of a bidirectional RNN and an MLP binary classifier. The output of CD

is a probability representing how likely the input is positive. CD is trained in cross-

entropy loss with the ground truth explanations x as positive and ones sampled from

the generator as negative:

LD = � 1

|X|
X

x2X

logCD(x)�
X

u,i

EP (x̂|u,i)[log(1� CD(x̂))] (3.41)

On the other hand, the objective of the generator is to trick the discriminator to treat

the sampled explanation x̂ as positive. So the adversarial loss of the generator is:

Lcd = �
X

u,i

EP (x̂|u,i)[logCD(x̂)] (3.42)

As we can see, the loss also requires sampled x̂ as the input like Equation 3.34.

Therefore, it takes use of the Gumbel Softmax sampling process as well for end-to-

end back propagation.

3.3.5 Overall Objective

The overall objective of our model is formulated as:

J = min
⇥

(�rL
r + �bL

b + �xL
x + �crL

cr + �cdL
cd + �n||⇥||2) (3.43)

27

where ⇥ is all the model parameters and � are the loss weights.

3.4 Training

Due to our model’s complex structure, the training is challenging to fully leverage

its potential. The whole process can be split into five steps. First, train the indepen-

dent content rater. It does not depend on anything in our model. Second, pre-train

the rater till its optimal. This is essential to learn a good sentiment vector which

will be used in the generator. Third, freeze the rater and train the generator alone

with likelihood loss. The untrained generator will back propagate noise to hurt the

rater through messing the sentiment representations at the beginning, so the rater is

frozen from updates. Moreover, the text generation is a much more complicated case

than rating prediction. Train it separately can help align their pace in the combined

training. Fourth, turn on both the rater and generator to conduct combined training.

This step allows the model to further sharp the sentiment representation from both

tasks. At last, freeze the rater again, and train the generator with the supervisor.

The discriminator and generator should be trained in turn. During the training of

the generator, it is updated by both likelihood loss, sentiment alignment loss and

adversarial loss.

28

Chapter 4

Experiments

In this chapter, we quantitatively evaluate both the personalized recommendations

and explanation generation of our model. For recommendation, rating and ranking

are both assessed. For explanation quality, three aspects are addressed: readabil-

ity, feature personalization, and sentiment alignment. We conduct the experiments

on processed Yelp open dataset. Our model is compared against many state-of-

the-art recommendation baselines and neural explainable recommendation baselines.

Improved performance in both tasks can be witnessed in the results. We also run a

qualitative analysis to approve our gates design contribute to the improvement. In the

following, we use Sentiment Aligned Explainable Recommendation System (SAER)

to refer our proposal for clarity.

4.1 Data Preprocessing

To test our model’s capability, we choose the popular Yelp open dataset which

has been largely exploited in many recommendation works [Li et al., 2016, Wang

et al., 2010, Tao et al., 2019]. Focusing on catering business, the data contains user

profiles, items profiles (e.g. restaurants, hotels, casinos), and reviews, each of which

includes a numerical rating in [1, 2, 3, 4, 5] and a multi-sentence paragraph. It does

not provide the features and explanations our solution needs. So at first, we use the

Sentires toolkit [Zhang et al., 2014] to extract a raw list of popular aspects mentioned

29

Reviews

Off the grid Mexican in Vegas. Very tasty, quality food and fantastic mar-

garitas. Staff were very friendly as well. This place will be a regular stop for
me when In Vegas going forward.

Leave out the mussels. If they have the sea bass special, I highly recommend it.
The chicken parm and crab tortellini were also very good and very big.

I have been coming here for years and this place is great. No, they did not try and
rip me off on numerous occasions.

I loved the KC sauce because it had nice spicy kick to it. I didn’t care much for
the other 5 sauces but that is my own preference.

Table 4.1: Example of unprocessed reviews. The bold ones can serve as recommen-
dation explanations. Other text can not help readers to understand the item.

in reviews. Then we manually filter out some inappropriate terms based on domain

knowledge. For example, the words "wife" and "mom" commonly appear in food

reviews, but they are not features of restaurants. The left words form the feature list.

While we may directly regard the original reviews as explanations, a large ratio of

review text actually does not justify users’ ratings [Ni et al., 2019]. Instead, shown in

Table 4.1, many of them merely state experiences and subjective emotions. Generally,

explanations should at least be descriptions of the item’ features to help readers better

understand it. To increase the truthfulness of our experiments, we decide to only use

these feature descriptions as explanations. With the help of software like Stanza [Qi

et al., 2020], we craft a basic rule to extract them: the sentence should contain at

least one feature word which serves as the dependent in a "nsubj" relation of the

grammatical dependency representation. Based on the crafted explanations, we pick

the top 20, 000 words to build the vocabulary and map others to unknown. With all

the sets ready, we run recursive filtering to get a subset of users and items with their

corresponding ratings and explanations to alleviate the data sparsity issue. We keep

each user to have 40 reviews minimum so that everyone can safely reserve 15 of them

for ranking evaluation. The statistics of the processed data is summarized in Table

30

Users # Items # Reviews % w/ Exp # Features

3,789 4,165 31,7854 79% 509

Table 4.2: Statistics summary of processed data.

4.2. Note not all reviews have explanations due to the extraction rules previously

introduced. We still decide to keep them because this better imitates the reality that

fewer users are willing to write paragraphs of text than leaving a rating.

4.2 Baselines

To evaluate the personalized recommendation performance, we include the follow-

ing baselines:

• MF: Matrix Factorization [Koren et al., 2009]. It is the classical collaborative

filtering algorithms used in recommendation systems. It decomposes the rating

matrix into the product of two lower dimensional matrices.

• NMF: Non-negative Matrix Factorization [Lee and Seung, 2001]. It is simi-

lar to MF, but the parameters are non-negative. It is also widely applied for

recommendation.

• PMF: Probabilistic Matrix Factorization [Mnih and Salakhutdinov, 2008]. La-

tent factor model with Gaussian distribution.

• SVD: Singular Value Decomposition [Koren, 2008]. It utilizes implicit feedback

information for latent factor modeling.

• GMF: General Matrix Factorization [He et al., 2017]. It is a neural network

version of MF with additional learned dimension weights. It is introduced as a

sub-module in NCF.

31

• MLP: Multi-Layer Perceptron [He et al., 2017]. A generic neural network

structure serves as the foundation for others including ours. It is also introduced

as a sub-module in NCF.

• NCF: Neural Collaborative Filtering [He et al., 2017]. It is a generic matrix

factorization framework which integrates the GMF and MLP.

We also set up two neural explainable recommendation baselines to compare the

explanation quality as well as the personalized recommendation:

• HSS: Hierarchical Sequence-to-Sequence Model [Chen et al., 2019]. It is a

multi-task model of rating prediction and explanation generation. It employs

hierarchical RNN to model multi-sentence generation. It designs a topical fea-

ture attention and auto-denoising mechanism to focus on personalized feature

generation.

• NRT: Neural rating and tips generation [Li et al., 2017b]. It is also a multi-task

model of rating regression and content generation. Similar to us, it takes the

sentiment correlation between the two tasks into modeling via a one-hot rating

vector. It originally targets tip (a short sentence summary) generation, but it

can be smoothly migrated to our scenario via treating explanations as tips.

4.3 Personalized Recommendation

For personalized recommendation, we evaluate both the rating and ranking pre-

diction. The rating is measured in Root Mean Square Error (RMSE). The rank-

ing is measured in Normalized Discounted Accumulative Gain (NDCG), specifically

NDCG@{3,5,10,15}. Both of them are widely used in recommendation evaluation.

The detailed results in Table 4.3 show that our model SAER performs better

in all categories. The improvement is RMSE is more obvious than NDCG. This is

expected because, besides the BPR regularization, we do not directly target on pair-

wise ranking. The whole cooperative learning with explanations is aiming to get a

32

RMSE NDCG@3 NDCG@5 NDCG@10 NDCG@15

MF 0.9773 0.3834 0.5143 0.7453 0.8947

NMF 1.0645 0.3721 0.5027 0.7317 0.8873

PMF 0.9954 0.3780 0.5083 0.7400 0.8916

SVD 0.9711 0.3867 0.5186 0.7480 0.8973

GMF 0.9749 0.3838 0.5144 0.7453 0.8952

MLP 0.9788 0.3858 0.5169 0.7463 0.8964

NCF 0.9870 0.3801 0.5113 0.7409 0.8927

HSS 1.0423 0.3532 0.4777 0.7064 0.8721

NRT 0.9764 0.3861 0.5170 0.7459 0.8963

SAER 0.9649 0.3882 0.5198 0.7494 0.8980

Table 4.3: Personalized recommendation evaluation in RMSE and NDCG

more expressive point-wise latent representation. It worth noting the difference among

MLP, NRT, and SAER. Both NRT and our model’s rating module are essentially an

MLP. NRT uses a shared latent space and a word-frequency prediction task to leverage

the textual information from reviews. The results indicate that textual information

can slightly contribute to the recommendation. The further progress showed in SAER

approves our sentiment vector and corresponding soft gates are able to better distill

and exploit the textual data.

4.4 Explanation Quality

Since explainable recommendation is a rapidly changing research field, there is

not a commonly agreed criterion to verify the explanation quality yet. We highlight

three aspects in our experiments: readability, feature personalization, and sentiment

alignment. Readability is inevitable in all natural language generation tasks. As

natural language explanations, delivering fluent and meaningful text that people can

understand is mandatory. Personalized features impact explanations’ persuasiveness.

33

BLEU-1 BLEU-2 BLEU-4

HSS 11.41 3.76 1.12

NRT 17.34 6.04 1.21

SAER (w/o Sup) 18.07 6.89 1.23

SAER (w/ Sup) 18.11 7.09 1.28

Table 4.4: BLEU scores of decoded explanations

Describing what users truly care about can better assist their decisions. The impor-

tance of this aspect has also been mentioned in some explainable works [Ni et al.,

2019, Chen et al., 2019]. Sentiment alignment is the focus of this project. Ex-

planations must address the sentiments expressed in recommendation with details.

Conflicted sentiments confuse and alienate users.

In this section, we use two versions of our model, SAER (w/o Sup) and SAER

(w/ Sup), which indicate with and without the sentiment supervisor module. They

can help understand our model in the following experiments. Both SAER and NRT

are trained to generate a single sentence. Since most reviews in our dataset contain

three sentences, we sample three sentences for each user and item pair as the decode

explanation. HSS is designed to cater multi-sentence scenario. It takes use of beam

search to decode.

We measure the readability in BLEU [Papineni et al., 2002] score which is a pop-

ular precision-based metric. The results are shown in Table 4.4. SAER (w/ Sup)

achieves the best scores in all BLEU categories. SAER (w/o Sup) also exceeds the

baselines, which reveals that the sentiment is able to benefit explanation generation.

Note NRT uses the final predicted rating in the initial hidden state of the generator.

Its gap towards us suggests our sentiment vector is more representative than the end

rating and our model’s soft gates can better exploit the sentimental information than

RNN’s initial state. The additional boost brought by the supervisor module demon-

strates the effectiveness of adversarial training. It not only protects the readability

from collapse but further improves it.

34

Precision Recall F1

HSS 0.2947 0.1195 0.1700

NRT 0.1206 0.1246 0.1225

SAER (w/o Sup) 0.2010 0.1543 0.1746

SAER (w/ Sup) 0.1918 0.1634 0.1765

Table 4.5: Feature precision, recall and F1 of decoded explanations

The personalized feature prediction is evaluated by precision, recall, and F1. For

each pair of ground truth and generated explanation, we first extract the feature

words and count the overlap. Then divide the overlap with generated and ground

truth feature counts respectively to get the precision and recall. Table 4.5 shows the

experiment results. Since NRT is originally for tip generation and does not have the

concept of feature during modeling, its relatively low performance is reasonable. HSS

achieves a significantly higher precision, but our model maintains a better balance

between the precision and recall so it wins in the comprehensive F1 score. There

are two factors leading to this result. First, HSS decodes in a greedy manner (beam

search) while SAER conducts multinomial sampling. Greedy decoding tends to stick

with the safest options. Plus the Yelp data is very biased towards generic features,

such as "food" and "service" which apply to a large portion of reviews. Therefore,

HSS is trapped to repeat common features while maintaining high precision. The

randomness within sampling helps our model escape from the safe options and explore

other features. We also argue that these accurate but generic features are not helpful

for explanations, because intuitively people may write general terms themselves but

prefer to read specific features. For example, "the food is good" is popular in Yelp

data but showing them back to users is less supportive to their decision making than

rare but specific descriptions, like "the salmon sushi is good". The second factor is

the different feature pool. HSS uses the whole feature list while in our feature gate,

we filter a subset for each item. This technique makes the feature prediction less

challenging for our model, although the results prove it to be a valuable trick for

35

RMSE-GT RMSE-PRED

HSS 1.3727 0.9653

NRT 1.2281 0.7704

SAER (w/o Sup) 1.1573 0.6573

SAER (w/ Sup) 1.0931 0.5351

Table 4.6: Sentiment alignment evaluation of decoded explanations. RMSE-GT is
the RMSE between explanation rating and ground truth rating. RMSE-PRED is the
RMSE between explanation rating and predicted rating.

explanation quality.

Offline evaluation of sentiment alignment is tricky since it should be users to

judge the text’s sentiment. We use a separately trained text sentiment regression

model to simulate a human judge. The model judge predicts a sentimental rating for

the decoded explanations. We compute the RMSE between the explanation rating

and the predicted rating. The value denotes the sentiment difference between the

recommendation and explanations. The metric is marked as RMSE-PRED. We also

compare the explanation rating with the ground truth rating in the same manner. The

value is denoted as RMSE-GT. Table 4.6 presents the experiment results. Our model

is significantly better than other baselines. The effect of the sentiment supervisor is

very obvious. Even without it, SAER also outperforms others, which demonstrates

the success of our sentiment modeling. It is surprising to notice that RMSE-GT is

also improved as the RMSE-PRED improves. Especially considering SAER (w/ Sup)

is only trained to match the predicted labels, the gap towards ground truth labels

is reduced. One explanation is that the predicted ratings have a similar distribution

as ground truth ratings through learning. So learning from predicted ratings may

organize the explanation ratings into a closer distribution.

36

Sample 1 Sample 2 Sample 3
word SG FG word SG FG word SG FG
great 0.35 0.08 the 0.13 0.06 the 0.16 0.02
atmosphere 0.18 0.65 food 0.15 0.58 patio 0.14 0.60

& 0.13 0.01 here 0.07 0.00 is 0.16 0.05
food 0.25 0.35 is 0.12 0.00 a 0.33 0.00
is 0.09 0.04 consistently 0.53 0.00 great 0.31 0.01
delicious 0.55 0.00 tasty 0.40 0.00 choice 0.11 0.10
. 0.11 0.00 . 0.10 0.00 for 0.03 0.00

a 0.06 0.18
pizza 0.15 0.32

. 0.04 0.12

Table 4.7: Samples of words and their values of sentiment and feature gates. SG is
short for sentiment gate; FG is short for feature gate.

4.5 Qualitative Analysis

Since our model’s sentiment modeling is based on the intuition of how human

write, it is necessary to analyze if the sentiment gate and feature gate work as ex-

pected. Although previous experiments imply their effectiveness, we need to study

what they really learned to understand why the improvement happens.

In every decoding step, the soft gate predicts a value between 0 and 1 to weight

the incoming vector. The larger the value means the output will depend more on

the incoming vector. Therefore, by checking the output word and the gate value,

we can understand the relevance. Ideally, sentimental words should be decided by

the recommendation sentiment and feature words should be decided by the user-item

preference, so we expect to see large gate value for the corresponding words. Table

4.7 gives three examples. The values basically supports our intuition. For example,

in sample 1, words "great" and "delicious" depend more on sentiments than others

while the word "is" relates to neither sentiment nor features. Worth note in sample

3, the first "a" has the highest sentiment gate but the second one is quite low. Since

the gate value is predicted by the RNN hidden state, this shows the model believes

37

sentiments should be expressed after word "is", which is actually reasonable.

Figure 4-1: Heaviest dependents of the sentiment gate

Figure 4-2: Heaviest dependents of the feature gate

To understand the gates’ overall contribution, two word clouds are given in Figure

4-1 and 4-2 to show their heaviest dependents in the whole generation corpus. At

38

first, we remove the low frequent words. Then for each word, its gate value is averaged

across all its appearance. At last, we sort words in descending order according to their

gate values and render the top ones in the word clouds where the font size reflects

the average gate value. As a result, these two figures exactly agree with our design

intuition. Our generator consults the sentiment to decide the strong opinionated

words in Figure 4-1 and considers personal preference to mentions the aspects in

Figure 4-2. It is safe to conclude our modeling is reasonable.

39

40

Chapter 5

Conclusion and Future Work

In this project, we present a new explainable recommendation model which can

synthesize neural language explanation for recommendations. We claim it is critical

for explanations to express consistent sentiments with recommendations. Motivated

by this insight, our proposed solution generates sentiment aligned explanations to

defend its recommendation decisions. Specifically, we design a neural architecture

which binds rating prediction and text generation via latent sentiment modeling and

connects their end objectives together through sentiment supervision. Experiments

show our model not only improves in both recommendation and generation tasks over

baselines, but also achieves significant progress in sentiment alignment.

This work initiates the exploration of sentiments’ critical role in explainable rec-

ommendation. It leaves several valuable paths for our future works to pursue. The

sentiment supervision in our current design, which trains the generated text to meet

the predicted rating, does not involve any ground truth labels. This may lead to a

semi-supervised learning where the models learn from each other. Considering the

extreme sparsity of recommendation data, it may be able to exploit the dominant

amount of unrated data to improve the performance. So far, sentiments are only con-

sidered in training but never in decoding stage, which still employs the basic greedy or

multinomial sampling strategy. We may explore a new decoding strategy that selects

words with the most promising sentiments. Monte Carlo search can be used to esti-

mate the sentiment expectation at each decoding step. Moreover, recommendation is

41

eventually a group-wise ranking problem instead of point-wise rating problem. There-

fore, it is vital to offer ranking supervision which guides the sentiments of multiple

generated explanations to accurately reflect the relative order. At last, a large part of

reviews cannot serve as explanations due to the writing style or format, but they also

contain helpful information like sentiments and features. Introducing an intermedi-

ate knowledge graph into our pipeline can decouple the writing style and knowledge.

While still exploiting qualified explanations to learn the generator, we can use the

knowledge graph extracted from all reviews to refine the latent representations.

42

Bibliography

[Almahairi et al., 2015] Almahairi, A., Kastner, K., Cho, K., and Courville, A.
(2015). Learning distributed representations from reviews for collaborative filter-
ing. In Proceedings of the 9th ACM Conference on Recommender Systems, pages
147–154.

[Ayana et al., 2016] Ayana, S. S., Liu, Z., and Sun, M. (2016). Neural headline gen-
eration with minimum risk training. arXiv preprint arXiv:1604.01904.

[Bahdanau et al., 2014] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural
machine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

[Bao et al., 2019] Bao, Y., Zhou, H., Huang, S., Li, L., Mou, L., Vechtomova, O.,
Dai, X., and Chen, J. (2019). Generating sentences from disentangled syntactic
and semantic spaces. arXiv preprint arXiv:1907.05789.

[Bilgic and Mooney, 2005] Bilgic, M. and Mooney, R. J. (2005). Explaining recom-
mendations: Satisfaction vs. promotion. In Beyond Personalization Workshop, IUI,
volume 5.

[Chen et al., 2019] Chen, H., Chen, X., Shi, S., and Zhang, Y. (2019). Generate
natural language explanations for recommendation.

[Cho et al., 2014] Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y.
(2014). On the properties of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259.

[Chung et al., 2014] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Em-
pirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555.

[Gers et al., 1999] Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning
to forget: Continual prediction with lstm.

[Glynn, 1990] Glynn, P. W. (1990). Likelihood ratio gradient estimation for stochastic
systems. Communications of the ACM, 33(10):75–84.

43

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adver-
sarial nets. In Advances in neural information processing systems, pages 2672–2680.

[Gunning, 2017] Gunning, D. (2017). Explainable artificial intelligence (xai). Defense
Advanced Research Projects Agency (DARPA), nd Web, 2.

[He et al., 2015] He, X., Chen, T., Kan, M.-Y., and Chen, X. (2015). Trirank:
Review-aware explainable recommendation by modeling aspects. In Proceedings of
the 24th ACM International on Conference on Information and Knowledge Man-
agement, pages 1661–1670.

[He et al., 2018] He, X., Du, X., Wang, X., Tian, F., Tang, J., and Chua, T.-
S. (2018). Outer product-based neural collaborative filtering. arXiv preprint
arXiv:1808.03912.

[He et al., 2017] He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017).
Neural collaborative filtering. In Proceedings of the 26th international conference
on world wide web, pages 173–182.

[Herlocker et al., 2000] Herlocker, J. L., Konstan, J. A., and Riedl, J. (2000). Ex-
plaining collaborative filtering recommendations. In Proceedings of the 2000 ACM
conference on Computer supported cooperative work, pages 241–250. ACM.

[Herlocker et al., 2004] Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl,
J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Trans-
actions on Information Systems (TOIS), 22(1):5–53.

[Jang et al., 2016] Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameteri-
zation with gumbel-softmax. arXiv preprint arXiv:1611.01144.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

[Kolda and Bader, 2009] Kolda, T. G. and Bader, B. W. (2009). Tensor decomposi-
tions and applications. SIAM review, 51(3):455–500.

[Koren, 2008] Koren, Y. (2008). Factorization meets the neighborhood: a multi-
faceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 426–434.

[Koren et al., 2009] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization
techniques for recommender systems. Computer, 42(8):30–37.

[Lee and Seung, 2001] Lee, D. D. and Seung, H. S. (2001). Algorithms for non-
negative matrix factorization. In Advances in neural information processing sys-
tems, pages 556–562.

44

[Li et al., 2016] Li, J., Galley, M., Brockett, C., Spithourakis, G., Gao, J., and Dolan,
B. (2016). A persona-based neural conversation model. pages 994–1003.

[Li et al., 2017a] Li, J., Monroe, W., Shi, T., Jean, S., Ritter, A., and Jurafsky,
D. (2017a). Adversarial learning for neural dialogue generation. arXiv preprint
arXiv:1701.06547.

[Li et al., 2019] Li, P., Wang, Z., Bing, L., and Lam, W. (2019). Persona-aware tips
generation? In The World Wide Web Conference, pages 1006–1016.

[Li et al., 2017b] Li, P., Wang, Z., Ren, Z., Bing, L., and Lam, W. (2017b). Neural
rating regression with abstractive tips generation for recommendation. In Proceed-
ings of the 40th International ACM SIGIR conference on Research and Develop-
ment in Information Retrieval, pages 345–354.

[Lin, 2004] Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of sum-
maries. In Text Summarization Branches Out, pages 74–81.

[Lu et al., 2018] Lu, Y., Dong, R., and Smyth, B. (2018). Why i like it: multi-task
learning for recommendation and explanation. In Proceedings of the 12th ACM
Conference on Recommender Systems, pages 4–12.

[Lundberg and Lee, 2017] Lundberg, S. M. and Lee, S.-I. (2017). A unified approach
to interpreting model predictions. In Advances in neural information processing
systems, pages 4765–4774.

[Luong et al., 2015] Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025.

[Ma et al., 2008] Ma, H., Yang, H., Lyu, M. R., and King, I. (2008). Sorec: social
recommendation using probabilistic matrix factorization. In Proceedings of the 17th
ACM conference on Information and knowledge management, pages 931–940.

[McAuley and Leskovec, 2013] McAuley, J. and Leskovec, J. (2013). Hidden factors
and hidden topics: understanding rating dimensions with review text. In Proceed-
ings of the 7th ACM conference on Recommender systems, pages 165–172.

[Mikolov et al., 2010] Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and Khu-
danpur, S. (2010). Recurrent neural network based language model. In Eleventh
annual conference of the international speech communication association.

[Mnih and Salakhutdinov, 2008] Mnih, A. and Salakhutdinov, R. R. (2008). Proba-
bilistic matrix factorization. In Advances in neural information processing systems,
pages 1257–1264.

[Murdoch et al., 2019] Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., and
Yu, B. (2019). Interpretable machine learning: definitions, methods, and applica-
tions. arXiv preprint arXiv:1901.04592.

45

[Ni et al., 2019] Ni, J., Li, J., and McAuley, J. (2019). Justifying recommendations
using distantly-labeled reviews and fine-grained aspects. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 188–197.

[Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for computational linguistics, pages 311–
318. Association for Computational Linguistics.

[Pennington et al., 2014] Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language processing (EMNLP), pages 1532–
1543.

[Qi et al., 2020] Qi, P., Zhang, Y., Zhang, Y., Bolton, J., and Manning, C. D. (2020).
Stanza: A Python natural language processing toolkit for many human languages.

[Ranzato et al., 2015] Ranzato, M., Chopra, S., Auli, M., and Zaremba, W.
(2015). Sequence level training with recurrent neural networks. arXiv preprint
arXiv:1511.06732.

[Rendle et al., 2012] Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-
Thieme, L. (2012). Bpr: Bayesian personalized ranking from implicit feedback.
arXiv preprint arXiv:1205.2618.

[Ribeiro et al., 2016] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). " why should
i trust you?" explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining,
pages 1135–1144.

[Rush et al., 2015] Rush, A. M., Chopra, S., and Weston, J. (2015). A neu-
ral attention model for abstractive sentence summarization. arXiv preprint
arXiv:1509.00685.

[Schafer et al., 2007] Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007).
Collaborative filtering recommender systems. In The adaptive web, pages 291–324.
Springer.

[See et al., 2017] See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point:
Summarization with pointer-generator networks. arXiv preprint arXiv:1704.04368.

[Sharma and Cosley, 2013] Sharma, A. and Cosley, D. (2013). Do social explanations
work? studying and modeling the effects of social explanations in recommender
systems. In Proceedings of the 22nd international conference on World Wide Web,
pages 1133–1144.

46

[Shen et al., 2015] Shen, S., Cheng, Y., He, Z., He, W., Wu, H., Sun, M., and Liu,
Y. (2015). Minimum risk training for neural machine translation. arXiv preprint
arXiv:1512.02433.

[Sinha and Swearingen, 2002] Sinha, R. and Swearingen, K. (2002). The role of trans-
parency in recommender systems. In CHI’02 extended abstracts on Human factors
in computing systems, pages 830–831. ACM.

[Su and Khoshgoftaar, 2009] Su, X. and Khoshgoftaar, T. M. (2009). A survey of
collaborative filtering techniques. Advances in artificial intelligence, 2009.

[Tao et al., 2019] Tao, Y., Jia, Y., Wang, N., and Wang, H. (2019). The fact: Taming
latent factor models for explainability with factorization trees. In Proceedings of
the 42Nd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 295–304, New York, NY, USA. ACM.

[Vinyals et al., 2015] Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer net-
works. In Advances in neural information processing systems, pages 2692–2700.

[Vinyals and Le, 2015] Vinyals, O. and Le, Q. (2015). A neural conversational model.
arXiv preprint arXiv:1506.05869.

[Wang et al., 2010] Wang, H., Lu, Y., and Zhai, C. (2010). Latent aspect rating
analysis on review text data: a rating regression approach. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 783–792.

[Wang et al., 2015] Wang, H., Wang, N., and Yeung, D.-Y. (2015). Collaborative
deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1235–1244.

[Wang et al., 2019] Wang, K., Hua, H., and Wan, X. (2019). Controllable unsu-
pervised text attribute transfer via editing entangled latent representation. In
Advances in Neural Information Processing Systems, pages 11034–11044.

[Wang et al., 2018] Wang, N., Wang, H., Jia, Y., and Yin, Y. (2018). Explainable
recommendation via multi-task learning in opinionated text data. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval, pages 165–174.

[Williams, 1992] Williams, R. J. (1992). Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine learning, 8(3-4):229–256.

[Yu et al., 2017] Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). Seqgan: Sequence
generative adversarial nets with policy gradient. In Thirty-First AAAI Conference
on Artificial Intelligence.

47

[Zeng et al., 2016] Zeng, W., Luo, W., Fidler, S., and Urtasun, R. (2016). Ef-
ficient summarization with read-again and copy mechanism. arXiv preprint
arXiv:1611.03382.

[Zhang et al., 2019] Zhang, S., Yao, L., Sun, A., and Tay, Y. (2019). Deep learning
based recommender system: A survey and new perspectives. ACM Computing
Surveys (CSUR), 52(1):1–38.

[Zhang and Chen, 2018] Zhang, Y. and Chen, X. (2018). Explainable recommenda-
tion: A survey and new perspectives. arXiv preprint arXiv:1804.11192.

[Zhang et al., 2014] Zhang, Y., Zhang, H., Zhang, M., Liu, Y., and Ma, S. (2014). Do
users rate or review? boost phrase-level sentiment labeling with review-level senti-
ment classification. In Proceedings of the 37th international ACM SIGIR conference
on Research & development in information retrieval, pages 1027–1030.

48

	Abstract
	Contents
	List of Figures
	List of Tables

	Introduction
	Related Works
	Methods
	Foundation
	Rater
	Explanation Generator
	Multitask Learning

	Sentiment Modeling
	Disentangled Embedding
	Sentiment Encoder
	Sentiment Gate
	Feature Gate

	Sentiment Supervision
	Content Rater
	Policy Gradient
	Gumbel Softmax Sample
	Adversarial Training
	Overall Objective

	Training

	Experiments
	Data Preprocessing
	Baselines
	Personalized Recommendation
	Explanation Quality
	Qualitative Analysis

	Conclusion and Future Work
	Bibliography

