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Considering dose reductions and dose interruptions in oncology
dose-finding trial design

Jesse Elijah Helman

(ABSTRACT)

Within the past decade, the FDA has issued many post-marketing requirements

or commitments to study alternate doses in Molecularly Targeted Agents and Im-

munotherapies in reaction to a large percentage of Dose Reductions and Dose Inter-

ruptions, caused by chronic low-grade toxicities. Almost all of these trials used the

Maximum Tolerated Dose (MTD) based on Dose Limiting Toxicity (DLT) information

only. While extensions of traditional cytotoxic dose-finding designs address long-term

toxicities as well as chronic low-grade toxicities, none has explicitly and appropriately

estimated the probability of Dose Reduction and Dose Interruption. This disserta-

tion introduces a novel modeling procedure to model Dose Reductions (and/or Dose

Interruptions) and DLTs simultaneously, adopting a semi-competing risks framework

for the first time in dose-finding. Simulations are presented to evaluate operating

characteristics and design options, and to compare the proposed method to others

likely to be used in the same setting. Important quantities and some theoretical re-

sults are derived. Additionally, Dose Reductions and DLTs affect the estimation of

efficacy, which is necessary to evaluate in the current setting. No previous methods

have addressed Dose Reductions in the context of early phase efficacy. A new effi-

cacy estimand is defined for a tumor burden outcome to appropriately handle Dose

Reductions and DLTs, based on Multiple Imputation. An illustration and discussion

compare the proposed estimand with current practice. Finally, dose selection options

are discussed using toxicity and efficacy information.
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Chapter 1

Introduction

Traditional Phase I trials in oncology consider toxicity.

Traditionally, the major objective of a dose-finding clinical trial in oncology for

cytotoxic therapy (chemotherapy) is to identify the highest dose that can be given

safely in humans (Maximum Tolerated Dose), which will be evaluated for efficacy in

subsequent Phase II and Phase III trials. The Maximum Tolerated Dose (MTD) is

defined as the dose x∗ at which the probability of a Dose Limiting Toxicity (DLT) Y

equals a pre-specified limit θ,

P (Y = 1|x∗) = θ (1.1)

where the DLT endpoint Y is binary. A DLT is one of a collection of possible toxicities

defined before a trial as intolerable, typically a Grade 3 or higher on the National Can-

cer Institute Common Terminology Criteria for Adverse Events (CTCAE) 2023 scale.

Contemporary dose-finding trials may also consider efficacy with toxicity.

The increasing prevalence of Molecularly Targeted Agents (MTA) and Immunother-

apies means the majority of dose-finding trials are investigating therapies where the

toxicity and efficacy mechanisms are separate. Under the traditional paradigm of

cytotoxics, the same mechanism generates toxicity and efficacy. It is then only neces-

sary in dose-finding to set a limit on the acceptable toxicity level (MTD). Conversely,
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in the paradigm of the MTA and immunotherapy, the mechanism of action is not

cytotoxic. Efficacy may not be a function of toxicity. Toxicities are truly side ef-

fects, and higher doses may not lead to greater efficacy. Therefore, it is not enough

to identify the MTD. Toxicity and efficacy must each be modeled, and the goal of

dose-finding is to find the Optimal Biological Dose (OBD), defined as the dose with

acceptable toxicity that maximizes efficacious response. Moreover, drug developers

have an added motivation to accelerate drug trials and reduce costs. Evaluation of

efficacy from the start can help integrate previously separate trials, reducing time

and money spent in development.

MTAs and immunotherapies also differ from the traditional oncology paradigm

in their toxicity profile. Immunotherapies are given chronically, typically over a 6-24

month window or longer, and toxicities are observed beyond the one-month window

used to determine the MTD in cytotoxic therapies. Postel-Vinay et al. 2014 analyzed

54 completed Phase I trials of MTAs given as monotherapies and found 599 of 2,084

patients had a Grade 3 toxicity or higher, 50% of which occurred after the first month.

Similarly, 53% of 1,242 patients with a Grade 2 toxicity or higher happened after the

first month.

Chronic Grade 2 toxicities turn into Dose Reductions.

The protocol in oncology trials aims to keep patients on the trial at their origi-

nally assigned dose until they complete the entire course of treatment or experience

a DLT, at which point they are taken off the therapy and the trial. However, the

Grade 2 toxicities experienced on MTAs and immunotherapies are often chronic, and

can significantly affect a patient’s quality of life, yet do not fit into the definition of

a DLT. Thus, protocols have evolved to “manage” these chronic toxicities by reduc-

ing the patient’s dose from its initial level, allowing the chronic toxicity to resolve,
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while also keeping the patient on the trial (Postel-Vinay et al. 2014). This is a Dose

Reduction. However, in analyzing these trials, Dose Reductions are not incorporated

when estimating toxicity and efficacy over a dose range.

Dose Reductions are often the result of patient-reported outcomes, a topic of

expanding interest in all clinical trials. Patient-reported outcomes allow a patient to

initiate the evaluation of toxicities and change the frame of reference for what con-

stitutes an intolerable toxicity, rather than be driven solely by a clinician applying

toxicity criteria uniformly to all patients. A patient may determine a chronic low-

grade toxicity is intolerable, one that had not previously risen to the level of DLT

evaluated at clinician visits. By reporting such a toxicity, the patient would then

have their dose interrupted or reduced by a clinician in an attempt to resolve the tox-

icity. Thus, the scope of this dissertation can project into a much larger discussion

of patient-reported outcomes in clinical trials.

Ignoring Dose Reductions has substantial clinical implications.

Ignoring chronic Grade 2 toxicities and resulting Dose Reductions must under-

estimate relevant toxicity. Thus, the chosen Phase II or Phase III dose may be too

high, too toxic. This is evidenced in practice. Through 2016, 31 small-molecule ki-

nase inhibitors (KI), a specific class of MTAs, had been approved by the FDA for

oncology indications. However, among these 31 approvals, eight contained post mar-

keting requirements (PMR) or commitments (PMC) to study alternate doses, as the

FDA believed that the optimal dose may not have been identified because of the

large percentage of Dose Reductions among patients (Janne et al. 2016). Each of the

therapies in Figure 1.1, save for Idelalisib, used the MTD as the dose for its initial

registration trial (Bullock, Rahman, and Liu 2016).
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Table 1.1: Dose Interruptions and Dose Reductions for approved small molecule KIs
with PMC or PMR to study alternate doses from Janne et al. 2016.

The FDA is giving a clear signal that Dose Reductions relay relevant information

about toxicity and will affect the outcome of a drug’s application. Additionally, the

FDA–AACR Oncology Dose-Finding Workshop (Part 3) in 2017, which focused on

immunotherapies and best practices regarding patient and dose selection, reported

that “Dose Reduction from the maximum-tolerated dose (MTD) or recommended

Phase II dose for molecularly targeted agents should be considered for the start-

ing dose, due to the possibility of unexpected toxicities” (Emens et al. 2017). Note

that the concept of “unexpected” is applicable only in the typical analysis frame-

work. If Dose Reductions were considered along with DLTs during an appropriate

time window, these “unexpected” toxicities would instead be observed or estimated.

Consequently, one research question becomes clear: How do we properly model dose-

toxicity to properly include and account for Dose Reductions?
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Proposed method accounts for Dose Reductions in estimating toxicity.

In this dissertation, a method is introduced to model Dose Reduction toxicities

(DRs) and DLTs simultaneously, adopting a semi-competing risks framework for the

first time in dose-finding. A DLT can be seen as a terminal event, causing patient

removal from a trial; whereas, a DR is a non-terminal event, allowing continuation

on a trial. Observation of a DR is subject to the observation of a DLT, though, thus

defining a semi-competing risks framework. Conditional models for the hazard func-

tions of the non-terminal and terminal events are constructed in the spirit of Lee et

al. 2015 and Putter, Fiocco, and Geskus 2007. As patients are entered sequentially

in early-stage dose-finding trials, and the ethical practice is to use the information

gathered from previous patients to inform how to best dose new patients, a Bayesian

framework is utilized to continuously update estimates. A Bayesian estimation pro-

cedure for model parameters is detailed, and closed-form solutions are presented for

calculating relevant probabilities regarding the two events.

Dose Reductions also affect the estimation of efficacy.

As previously stated, proper dose-finding for immunotherapies in oncology should

model toxicity and efficacy, and Dose Reductions can have a significant impact on

efficacy as well. According to Sachs et al. 2016, overshooting the MTD by ignoring

Dose Reductions “can have significant impact on efficacy, as it has resulted in the

use of less tolerable doses over longer duration when lower doses would suffice, thus

causing poorer adherence and concomitant lower efficacy.” Beyond adherence, Dose

Reductions confuse how to model dose-efficacy. If a patient is enrolled in a trial at

an initial dose and then relatively soon after dose reduced, no obvious procedure is

established regarding how to associate this patient’s efficacy profile with the doses

received. From Janne et al. 2016, the “big problem is unknown efficacy at each dose
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level because patients are dose reduced so often and efficacy data is not reliable if

reported as the starting dose. ...unknown efficacy in light of frequent Dose Reduc-

tions in the postmarket setting raises the question of whether efficacy reported in

early-phase trials is accurate when applied to a real-world population.” Thus, a sec-

ond research question becomes clear, similar to the first: How can dose-efficacy be

appropriately modeled incorporating Dose Reductions to make dosing decisions?

Dose Reductions in a continuous longitudinal efficacy response.

This dissertation discusses modeling efficacy based upon a continuous longitudi-

nal outcome. An example common in Phase I and Phase II trials is percent change-

from-baseline in tumor burden. DLTs and DRs complicate the estimation of this out-

come. They are intercurrent events, using the language of estimands, events which

either preclude the observation of the outcome or affect its measurement or interpre-

tation. This becomes a problem of identifying the proper estimand. Ideally, patients

are observed for the full period on their initial dose, offering complete change-from-

baseline data. However, DLTs cause removal from the trial which induces missing

data. The question arises, should only observed data be used, effectively changing

the time scale of the endpoint by patient, or should data be imputed for the original

endpoint?

The complexities of DRs are more subtle. A Dose Reduction midway through

follow-up will almost surely reduce the efficacy of the treatment, compared to re-

maining on the initial dose until complete follow-up. But, another question arises,

does this matter? Should the negative contribution of a Dose Reduction be “sepa-

rated” from the hypothetical complete outcome on initial dose? With the example

of percent change-from-baseline in tumor burden, issues of monotonicity also play a

role in deciding what estimands are appropriate. Ultimately, an estimand is proposed
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that imputes missing data based on what is expected to happen to a patient after a

DLT, including the occurrence of Dose Reduction in the imputation model. Finally,

options for dose selection are presented that combine estimates from the toxicity and

efficacy models.

1.1 Literature Review

First, common methods to estimate the MTD in a Phase I trial are reviewed

based strictly on toxicity data as well as how efficacy has been retroactively built

into these methods. Dosing decisions in realization of the objectives of a Phase I trial

historically have been made using rule-based designs, such as the 3+3 design, which

are still common today. However, rule-based designs are now appropriately being

pushed aside in favor of modeling methods. Rule-based designs will not be discussed

here.

Traditional Toxicity Methods

One of the first statistical model-based designs for dose allocation and dose de-

cision was the Continual Reassessment Method (CRM) by O’Quigley and Shen 1996.

As with other similarly-aimed model-based designs, CRM uses a Bayesian framework

to sequentially update and estimate the dose level at which to treat the next avail-

able patient based on binary toxicity data (DLT). The CRM is developed under the

assumption of a discrete set of doses selected before a study.

First, some functional dose-toxicity curve, denoted by F (xi, β), is considered to

model the probability of a DLT. The CRM assumes that this function is monotonic

increasing in dose xi and fixed parameter β. As the dose increases, the probability of

a DLT is non-decreasing for a fixed parameter value; as the parameter value increases,
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the probability of a DLT is non-decreasing for a fixed dose level. The function F (xi, β)

models the true DLT probabilities π(xi) = P (Yj = 1|xi) at each given dose i. One

example of a function F , most relevant to this paper, is the basic power model, where

F (xi, β) = x
exp(β)
i . The basic power model is a single parameter model, able to build

in the assumption of monotonic increasing probability with dose by applying it to the

“skeleton” without having to use an extra parameter.

The Bayesian framework places a prior distribution h(β) on the parameter β.

Once β̂j is estimated using the posterior distribution, it can be used to find an esti-

mated probability of DLT at each dose xi in the discrete dose set, π̂(xi) = F̂ (xi, βj).

Some measure of distance, such as a simple Euclidean (L1) distance, can be used to

find the dose that has an estimated probability of toxicity closest to the target; e.g.

xi = argmini|F̂ (xi, βj)−θ|.

The basic CRM, as explained previously, addresses the problem of choosing a

single MTD from a fixed, discrete set of doses of one cytotoxic drug. Further methods

that make MTD decisions from a fixed, discrete dose set include Thall et al. 2003,

Wang and Ivanova 2005, Yin and Yuan 2009, and Braun and Wang 2010, among

many others. Each method builds on the CRM in various ways.

Efficacy Additions into Traditional Toxicity Methods

Associated literature contains extensions to the CRM where efficacy information

is considered in addition to toxicity information when selecting a dose for further

study, to accommodate the MTA and immunotherapy paradigm. Mostly, efficacy has

been treated as a binary variable similar to toxicity. The probability of efficacy at

dose level xi for patient j can be represented by πE(xi) = P (Zj = 1|xi) where Z is

a binary indicator of efficacy. Typically, Z would be dichotomized from a continuous

measure of efficacy such as tumor shrinkage or CD8 cell counts. The statistic from
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Z commonly referenced and analyzed is the “response rate,” defined as the rate of

patients on a given dose who exhibit an efficacious or antidisease response above a

threshold, say θ. Instead of exclusively aiming to limit probability of DLT to a target

level, P (Yj = 1|xi) = θ, the goal is to remain within a safe probability of toxicity

while maximizing the probability of efficacy P (Zj = 1|xi). In this way, the dose of

choice is better referred to as the Optimal Biological Dose (OBD) rather than the

MTD. Wages and Tait 2015 developed a method to address this problem built on the

foundation of the CRM under the fixed, discrete dose set paradigm. Their method

assumes

πE(x1) ≤ ... ≤ πE(xν) ≥ ... ≥ πE(xK), (1.2)

where the dose xν is the dose closest to the maximum probability of efficacy under

a unimodal dose-efficacy relationship or the beginning of the plateau in such a dose-

efficacy relationship. Possible orderings of dose-efficacy fitting (1.2) are enumerated

and treated as separate models q = 1,…,M , and model selection is used to choose

the best ordering based on the data. The model is subsequently fit via CRM based

on the chosen ordering.

The literature discussed thus far provided the entry point into methods consid-

ering both toxicity and efficacy, but the context of interest clearly differs from that

discussed above. For the current context, toxicity involves two separate binary events

instead of one, both evaluated beyond Cycle 1, while efficacy is considered ultimately

in its original form, as a longitudinal continuous measure, the full measure of efficacy,

versus a single point in time or a maximum gained effect. Literature relating to one

or more of these differences is discussed in the following.
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Long-term Toxicities

Long-term toxicities alone are addressed multiple ways in the literature. Under

a long-term observation window, a patient may be in the middle of their follow-up

period when a dosing decision needs to be made for a new patient coming onto the

trial. Thus, the former patient can be seen as censored. The Time-to-Event CRM

method or TITECRM (Cheung and Chappell 2000) weights the likelihood of sub-

jects who have not experienced toxicity (censored observations) by the length of their

follow-up times at the time of analysis. Similar weighting mechanisms are utilized in

Braun 2006, Mauguen, Deley, and Zohar 2011, and Lin et al. 2016. Imputing cen-

sored observations in a Bayesian framework, known as Bayesian Data Augmentation,

has been used to address long-term toxicities by Liu and Ning 2013 and Liu, Yin, and

Yuan 2013. Yuan and Yin 2011 use an Expectation Maximization (EM) method to

estimate dose-toxicity with censored observations. Yin and Yuan 2009 model toxicity

and efficacy as time-to-event outcomes in a traditional Cox multiplicative hazards

survival framework, selecting dose based on the ratio of the area under survival curve

for toxicity and efficacy. However, none of these methods addresses multiple toxic

outcomes or Dose Reductions.

Multiple Toxicities

The CRM Multiple Constraints (CRM-MC) method by Lee, Cheng, and Cheung

2011 allows for the specification of multiple toxicity thresholds to address multiple

possible toxic outcomes, including “moderate toxicities,” the chronic low-grade toxi-

cities that are responsible for Dose Reductions. The CRM is used for each toxicity,

and the chosen dose is the largest dose with estimated toxicity probabilities under

each threshold. Some methods address multiple possible toxic outcomes by treat-
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ing toxicity as an ordinal variable. Paoletti et al. 2015 and Meter, Garrett-Mayer,

and Bandyopadhyay 2012 use cumulative logit formulations to estimate probability

of each toxic outcome, the latter in an explicit CRM framework. Ivanova and Kim

2019 present a broad approach that can be used for ordinal outcomes assuming an

underlying continuous objective function. Lee et al. 2012, among many others, de-

velop a Toxicity Burden Score to measure total toxicity over time. However, these

methods are not developed for the long-term toxicity problem or for the dose change

that happens when a DR occurs.

One simple method that considers Dose Reductions is the longitudinal Relative

Dose Intensity (RDI) procedure proposed by Hirakawa, Yonemori, et al. 2018 and

Hirakawa, Tanaka, and Kaneko 2019. In this design, the average dose a patient re-

ceives over the entire follow-up period is their mRDI (mean relative dose intensity).

If a patient experiences a DLT, the dose is assumed to be zero for the rest of the

prescribed follow-up period. Thus, if a patient experiences a DLT early, the mRDI

will be very low, whether or not Dose Reductions were experienced before the DLT.

The mRDI is averaged over all patients who started at the same dose; this value is

the pRDI (population Relative Dose Intensity) for that dose. A dose is considered

acceptable if the pRDI is greater than 0.75.

TITECRM Multiple Constraints

The only existing design in the literature that considers the same multiple tox-

icity, long-term context is the TITECRM-MC method from Lee et al. 2019. The

authors combine TITECRM and CRM-MC to estimate the probability of multiple

toxicities over a dose range allowing censored data. Let Z be an ordinal toxicity out-

come, where Z = 0 if the patient does not experience a toxicity; Z = 1 if the patient

experiences moderate toxicity without a DLT; Z = 2 if the patient experiences a
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DLT. The target probabilities are defined as πMT and πDLT ; thus, the chosen dose θ

is the maximum dose such that P (Z ≥ 1|x) ≤ πMT and P (Z ≥ 2|x) ≤ πDLT ,

θ = argmaxxP (Z ≥ tl|x) ≤ πl, l = 1, 2. (1.3)

As in the original CRM, a working model is assumed P (Z ≥ tl�x) = Fl(x; β), this

time with two parameters β = (β1, β2)
T relating to the two types of toxicity.

Semi-Competing Risks

The semi-competing risks framework used in this paper for modeling toxicity

was not developed, nor has been proposed, for dose-finding scenarios. Lee et al. 2015

worked in the context of pancreatic cancer, with death as the terminal outcome, and

readmission to the hospital following initial diagnosis as the non-terminal outcome.

In semi-competing risks, the main challenge is the unidentifiability of the marginal

survivor function of the non-terminal outcome because occurrence of the terminal

outcome excludes occurrence of the non-terminal outcome. The marginal survivor

function for the terminal outcome can be fully observed. From Lee et al. 2015,

methods to deal with this unidentifiability typically fall into two groups: modeling

the dependence with a copula or building conditional hazard functions for the terminal

and non-terminal events.

Lee et al. 2015 take the path of conditional hazard functions. Let T1 represent the

time to non-terminal event (Dose Reduction), and T2 represent the time to terminal

event (DLT), both taken from entry into the trial. A cause-specific hazard is built

for the non-terminal event, h1(t1), for the terminal event, h2(t2), and for the terminal

event conditional on the previous occurrence of the non-terminal event, h3(t2|t1). The

hazard functions are defined on 0 < t1 < t2 in a Cox multiplicative hazards style as
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follows,

h1(t1i|γi, xi) = γih01(t1i)e
xT
i β1 , t1i > 0; (1.4)

h2(t2i|γi, xi) = γih02(t2i)e
xT
i β2 , t2i > 0; (1.5)

h3(t2i|t1i, γi, xi) = γih03(t2i)e
xT
i β3 , 0 < t1i < t2i, (1.6)

where h0g (g = 1, 2, 3) is a baseline hazard function; xi is a p×1 vector of covariates;

βg is a vector of p log-hazard ratio regression parameters; γi is a shared frailty (ran-

dom effect, taken to be distributed independent of xi). If a patient experiences the

terminal event prior to the non-terminal event, then T1 is set to ∞, and the remaining

probability mass not contained in 0 < T1 < T2 is sent to the line T1 = ∞.

Figure 1.1: Illness-death (three-transition) semi-competing risks model with Dose
Reductions and DLTs.

The method developed in this paper uses the conditional hazard function formu-

lation. An Accelerated Failure Time formulation can be seen as a close relative (Lee,

Rondeau, and Haneuse 2017). This formulation of the semi-competing risks frame-

work can also be viewed as a multi-state model, as in Putter, Fiocco, and Geskus

2007 and Hougaard 1999. The states “Healthy,” “Dose Reduced,” and “DLT,” define
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an illness-death model with interest lying in the probability of transition between the

states at a given time. A diagram of the illness-death multi-state model in the current

setting is shown in Figure 1.1.

Estimands

Discussion of efficacy modeling in this dissertation uses the language of esti-

mands. The Estimand framework, resulting from the International Council for Har-

monisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) E9

guideline addendum, expands on the definition of a statistical estimand (target pa-

rameter to be estimated) to as well list possible intercurrent events and how they will

be handled (ICH 2017). It is now expected to be detailed in a separate section of a

study protocol.

Estimand Strategy Definition

Treatment Policy
Intention-to-treat. Measure value of the outcome of interest as 
observed, regardless of the occurrence of the intercurrent event.

Composite Intercurrent event included in the definition of outcome variable. 

Hypothetical
Assumes and attempts to estimate as if the intercurrent event did 
not happen.

Principal Stratum
Measurement of variable of interest limited to a subgroup unlikely 
to experience intercurrent events.

While-on-Treatment Measurement until the time of event and not after. 

Table 1.2: Estimand strategies to handle intercurrent events.

Intercurrent events, as stated previously, are events that either preclude the ob-

servation of the outcome or affect its measurement or interpretation. Some examples

of intercurrent events are: discontinuation of treatment due to lack of efficacy, dis-

continuation of treatment due to toxicity, surgery related/unrelated to the study,
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starting alternative treatment while on study, developing a side-effect, and experi-

encing a treatment change but continuing treatment. Each of these events affects the

measurement of the true effect of therapy. Five main strategies address intercurrent

events, explained in Table 1.2. If multiple intercurrent events are considered, different

estimand strategies could be used for each in combination.

1.2 Motivating Trials

This work is motivated by considerations of real trials that involve MTAs and

immunotherapies as well as the practical biologic foundations of these therapies. One

such trial is LURET, an open-label, multi-center, Phase II trial of vandetanib, a mul-

titargeted tyrosine kinase inhibitor exhibiting RET kinase activity (a class of MTA),

for patients with advanced RET-rearranged non-small cell lung cancer (Yoh et al.

2017). All patients in the trial were initially assigned to receive 300 mg of oral vande-

tanib daily. Therapy was continued until disease progression, unacceptable toxicity,

death, or withdrawal from the study. Toxicities were graded according to the CTCAE

version 4.03. Tumor burden was evaluated based on Response Evaluation Criteria in

Solid Tumors (RECIST) version 1.1 (Eisenhauer et al. 2009). Tumor response was

assessed every four weeks. Although this trial was Phase II and considered a single

dose, it is illustrative of the endpoints considered for both toxicity and efficacy that

would ideally be used in a Phase I/II design considering multiple doses.

Of the 19 patients eligible for safety analysis in LURET, four had a DLT and

were removed from the trial; 16 patients had a Dose Interruption due to an adverse

event; and 10 had a Dose Reduction (to 200 mg) due to an adverse event. Thus, with

only four DLTs, daily 300 mg vandetanib was deemed to be “tolerable” with a “man-

ageable safety profile,” as is common. The timing of Dose Reductions for each patient
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in the study was not published. The primary efficacy analysis evaluated whether a

patient had an “objective response” or not. Objective response was a dichotomization

of at least 30% maximum tumor shrinkage achieved during the follow-up period taken

from the full longitudinal tumor shrinkage profiles presented in Figure 1.2 (sustained

for at least four weeks). The RECIST guidelines classified nine of the 17 patients in

Figure 1.2 as objective responders.

Figure 1.2: Percent change in tumor burden from baseline, from Yoh et al. 2017.

Table 1.1 presents other examples of therapies that caused a significant percent-

age of Dose Reductions. More such examples can be found in Roda, Jimenez, and

Banerji 2016. In regards to efficacy, rarely does a trial publish longitudinal tumor

response data. Rather, these trials take some maximum change-from-baseline tumor

shrinkage achieved for each patient and use a responder analysis to categorize efficacy

outcomes. The few other examples of published longitudinal tumor shrinkage data
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that could be found are presented in Appendix A.1: Wolchok et al. 2013, Seiwert

et al. 2016, and Hamid et al. 2013.
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Chapter 2

Toxicity Methods

A basic illness-death model contains three possible transitions. In the context of

Dose Reductions and DLTs, these transitions are: (1) Healthy to Dose Reduced; (2)

Healthy to DLT; (3) Dose Reduced to DLT. A Healthy state simply represents the

state of the patient at randomization. It is possible, though rare, in immunotherapy

trials to be Dose Reduced twice (Johnson et al. 2005, Philip et al. 2005). In this case,

there are five possible transitions: the three previous transitions; (4) Dose Reduced

once to Dose Reduced twice; (5) Dose Reduced twice to DLT. These states and tran-

sitions are diagrammed in Figure 2.1.

Figure 2.1: Illness-death and five-transition semi-competing risks models with Dose
Reductions and DLTs.

In the illness-death model, a DLT can be reached via two unique paths. In

the five-transition model, there are three unique DLT paths instead of two, and the

“Dose Reduced Twice” state cannot be reached directly from the “Healthy” state.
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Depending on the protocol of the trial, the illness-death or five-transition model may

be more appropriate. Far more common are trials that allow and observe only a

single possible Dose Reduction for each patient. Details of the illness-death model

are specified here as well as in Chapter 3, with details of the five-transition model

referred to Appendix B.

2.1 The Three-Transition Toxicity Model

Let T1 be the time to DR and T2 be the time to DLT, measured from entry on

the trial. The hazards in limit form can be written as follows:

h1(t1) = lim
∆→0

P (T1 ∈ [t1, t1 +∆)|T1 ≥ t1, T2 ≥ t1)

∆
(2.1)

h2(t2) = lim
∆→0

P (T2 ∈ [t2, t2 +∆)|T1 ≥ t2, T2 ≥ t2)

∆
(2.2)

h3(t2|t1) = lim
∆→0

P (T2 ∈ [t2, t2 +∆)|T1 = t1, T2 ≥ t2)

∆
(2.3)

where h1(t1) represents transition 1→2; h2(t2) represents the transition 1→3; and

h3(t2|t1) represents the transition 2→3. The hazard functions in Lee et al. 2015 are

given a Cox-style formulation with a shared frailty, h(x|z) = γih0(x)exp (βtz), where

h0(x) is a baseline hazard rate and z is a vector of covariates. The shared frailty

is analogous to the random intercept used in mixed models to induce dependence

among clustered responses.

Constant-Skeleton Specification

However, the assumption in dose-finding is a small data setting. Thus, the power

model from the CRM, with dose on the “skeleton,” is adapted in specifying the hazard

functions. The hazard functions remain multiplicative, but do not have the Cox-style
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baseline hazards model formulation. The shared frailty γi is foregone for the same

small data reasoning. This formulation assumes no dependence between T1 and T2,

which rigorously is incorrect, but valuable in the desire to estimate one less parameter

that would not anyway provide much added benefit for the prediction tasks of interest.

The simplest formulation assumes constant baseline hazards λ1 and λ2 for T1 and T2,

respectively. Let i represent one of a sample of n patients:

h1(t1|xj) = λ1xij (2.4)

h2(t2|xj) = λ2xij (2.5)

h3(t2|t1, xj) = λ2x
exp(β1)
i,j−1 (2.6)

This is a three-parameter model, λ1, λ2, β1. The parameter exp (β1) is a “history”

parameter. No assumptions are made about the sign of β1; if β1 is positive, the hazard

of a DLT is assumed to increase after a patient experiences a DR, given the dose to

which they have been reduced. This is analogous to saying a DR puts a patient in a

“weakened” position, more susceptible to toxicity. If β1 is negative, the hazard of a

DLT is assumed to decrease after a patient experiences a DR, given the dose to which

they have been reduced. This is analogous to saying a DR has induced resistance to

the therapy, causing the patient to become less susceptible to toxicity. If clinicians

have information regarding this assumption before the trial, it can be incorporated

in the prior for β1.

The doses xj are scaled to the [0, 1] interval, remaining in their original ordering

assuming monotonic increasing toxicity with dose. Notice that a reduced dose, xj−1,

is included in h3. This is a fundamental difference from TITECRM-MC, where the

initial dose is used exclusively in all modeling. The proposed model assumes the

reduced dose is the cause of a DLT that occurs after a DR, not the initial dose, and



21

should more appropriately represent the toxicity of each dose. This assumption also

guides the assessment of efficacy in Chapter 5.

Baseline hazards cannot be left unspecified in a Bayesian setting. The baseline

hazards are initially assumed to be constant, which may be an oversimplification, but

is motivated by the sparse-data setting. The baseline hazard rate of a DR is λ1, and

the baseline hazard rate of a DLT is λ2, assuming 0 < λ2 ≤ λ1.

Hypothetically, the parameter exp (β1) could be omitted as well, creating a two-

parameter model. Then, the hazard of a DLT before a DR (h2) compared to the

hazard of a DLT after a DR (h3) would be entirely determined by the scaling of

xj and xj−1. This places large importance on the choice of skeleton; consequently,

exp (β1) allows some valuable flexibility. A Cox-style with a frailty term would involve

five parameters to estimate. Modeling in dose-finding designs is always a balance

between necessary complexity and valuable parsimony due to limited data available

for estimating large, more complex models, with the balance often favoring valuable

parsimony.

Notice that h3, the conditional hazard of DLT given DR, does not depend on the

time of DR, t1i. This is labeled in the literature as a “Markov” model. Conversely, if

h3 were modeled using the time since DR (t2i − t1i), the model would be labeled as

“Semi-Markov.” The five-transition model hazard rates can be found in Appendix B.

Weibull-Skeleton Specification

Though long-term toxicities are expected with targeted agents and immunother-

apies, it may not be reasonable to assume constant hazards over the entire follow-up

period. Rather, it may be that most toxicities are observed early, within a few weeks,

or that most are a result of cumulative toxicities and occur later in the observation

window.
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If observed data truly follow a non-constant hazard form, then fitting a constant

hazard model form can greatly bias the dose-selection process, given the amount of

partial follow-up expected. Specifically, if hazard rates are truly decreasing and a

sizable percentage of patients have not completed follow-up (partial information),

then fitting with constant hazards will overestimate the average hazard and select

too conservative of a dose. On the other hand, if hazard rates are truly increasing,

a constant hazard model will underestimate the average hazard and may choose too

high of a dose.

Therefore, including a shape parameter in the hazard specification becomes nec-

essary complexity. A Weibull-style hazard, while retaining dose on the skeleton, offers

a solution. Let i represent one of a sample of n patients:

h1(t1|xj) = αλ1xijt
α−1
1i (2.7)

h2(t2|xj) = αλ2xijt
α−1
2i (2.8)

h3(t2|t1, xj) = αλ2x
exp(β1)
i,j−1 tα−1

2i (2.9)

The parameter α is a shape parameter defined on (0,∞). If α > 1, the hazard rate is

increasing over time, while 0 < α < 1 means the hazard rate is decreasing. If α = 1,

the hazards above reduce to the Constant-Skeleton specification.

Other Possible Specifications

Other specifications are possible for an illness-death model. Accelerated failure

time (AFT) models are common in survival analysis. The AFT directly models sur-
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vival time (log of survival time) rather than hazard rates with a linear representation.

log(T1i) = β1xi + ϵi1, T1i > 0 (2.10)

log(T2i) = β1xi + ϵi2, T2i > 0 (2.11)

log(T2i) = β1xi + β2ϵi2, T2i > T1i (2.12)

The error distributions ϵi1 and ϵi2 require specification, and with at least one pa-

rameter each, the model contains at least four parameters, but with less flexibility

compared to the four-parameter hazards model. The AFT and conditional hazard

models are the same only if ϵ has an Extreme Value Distribution and the conditional

hazards are Cox-style with Weibull (Exponential/Constant) baseline hazards.

One reason to avoid hazard specifications in general and utilizing the AFT is

the difficulty in interpreting the hazard ratio commonly used to assess the effect of

covariates in survival analysis. This topic has been given noticeable attention in the

literature (Wei 1992, Hernán 2010, Uno et al. 2015). However, the current problem

does not use the hazard ratio in any way. Baseline hazards are fully specified and

event probabilities are directly calculated. Relative effects of covariates are not of

interest. Additive hazard models can also be considered to estimate survival curves,

but are not considered because of the same necessary linear representation mentioned

above.

Dose Interruptions

One of the main differences between the current method and TITECRM-MC

is the inclusion of Dose Interruptions versus Dose Reductions. Dose Interruptions

are a different attempt to manage chronic low-grade toxicities, yet they still signal

a relevant toxicity has occurred, and are incorporated into study protocols at least
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as often as Dose Reductions. Summary statistics of these two events are typically

reported together. The LURET trial reported that 16 out of 19 patients experienced

a Dose Interruption while 10 experienced a Dose Reduction. In TITECRM-MC,

Dose Interruptions could be included in the same outcome as a Dose Reduction. The

variable Z = 1 then, if the patient has a Dose Interruption or a Dose Reduction. In

this way, both events are treated identically and no distinction is made between the

differing dosing regimes induced by the events. Conversely, an additional level of Z

could be included such that Z = 1 for Dose Interruption, Z = 2 for Dose Reduction,

and Z = 3 for DLT. This assumes Dose Reductions as distinctly worse toxic events

than Dose Interruptions and requires another parameter. Because no reduced dose

can be explicitly included in the TITECRM-MC model, this model is more suited for

Dose Interruptions only.

With the proposed method, Dose Interruptions can be modeled more naturally.

Let i represent one of a sample of n patients, and let wi = 1 if patient i has a Dose

Reduction, and wi = 0 if patient i has a Dose Interruption:

h1(t1|xj) = αλ1xijt
α−1
1i (2.13)

h2(t2|xj) = αλ2xijt
α−1
2i (2.14)

h3(t2|t1, xj) = αλ2x
exp(β1)
i,j−wi

tα−1
2i (2.15)

The hazard h3 applies after a Dose Interruption or Dose Reduction, but the dose

expressed xi,j−wi
depends on which event occurred. It is possible for a patient to have

both a Dose Interruption and Dose Reduction. In that case, the five-transition model

would be needed, where the first intermediate event is a Dose Interruption and the

second intermediate event is a Dose Reduction. A middle ground of complexity would

involve the five-transition model, with five transitions but needing only four unique
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hazard rates needed (see Appendix B).

Dose Interruptions (and often Dose Reductions as well) imply a period of time

when the patient does not receive the therapy, perhaps a week or two. Some clarity

should be provided with regard to this period in terms of time scale. It can be

assumed the patient has no chance of experiencing a DLT during this period. Thus,

the interrupted period could be treated as if it never happened. A patient who is

Dose Interrupted at week 14 and resumes in week 16 (real time) would have their

analysis time scale resume at week 14. Alternatively, the time scale could continue to

track real time. The first accommodation should be preferred, but the overall effect

on dose selection would likely be minimal in any realistic scenario.

2.2 Observed Data Likelihood

The observed data likelihood of the illness-death model for an individual patient

arises from four possible outcomes. Whereas for the five-transition model, this ex-

pands to six possible outcomes. The survival functions S1, S2, and S3 correspond to

their respectively labeled hazard functions, where S(t) = exp (−
∫ t

0
h(u)du). Let Ci

be the time of censoring for patient i if the patient remains on the trial at the time

of analysis. The four possible outcomes are:

1. Censored before DLT or DR: L1i(α, β1, λ1, λ2) = S1(Ci)S2(Ci)

2. DLT before DR: L2i(α, β1, λ1, λ2) = h2(t21)S1(Ci)S2(Ci)

3. Censored following first DR: L3i(α, β1, λ1, λ2) = h1(t1i)S1(t1i)S2(t1i)
S3(Ci)

S3(t1i)

4. DLT following first DR: L4i(α, β1, λ1, λ2) = h1(t1i)h3(t2i|t1i)S1(t1i)S2(t1i)
S3(t2i)

S3(t1i)
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These outcomes lead to the likelihood function:

L(α, β1, λ1, λ2) =
∏
i∈L1i

L1i

∏
i∈L2i

L2i

∏
i∈L3i

L3i

∏
i∈L4i

L4i (2.16)

Using L4i as an example, the reasoning of each likelihood element can be ex-

plained as follows (derivations are shown in Chapter 3). The patient experiences a

DLT after a DR. The DR occurs at t1i, contributing h1(t1i). The patient must have

survived a DR and a DLT up until t1i, contributing S1(t1i)S2(t1i). Then, starting at

t1i, the patient must have survived a DLT until t2i, contributing S3(t2i)

S3(t1i)
. The other

likelihood elements can be explained in a similar fashion. If a DR occurs, the original

dose is used for h1, h2, S1, and S2, while the reduced dose is used for h3 and S3.

2.3 Prior Distributions

Under a Bayesian framework, a prior distribution must be specified for λ1, λ2,

and β1 in the Constant-Skeleton specification, with an additional prior for α in the

Weibull-Skeleton. A simple, uninformative choice is to specify a uniform prior for

each parameter, with an upper bound on each of α, λ1, and λ2 that is above all

plausible values, and a lower and upper bound on β1.

α ∼ Uniform(0, bα) (2.17)

λ1 ∼ Uniform(0, bλ1) (2.18)

λ2 ∼ Uniform(0, λ1) (2.19)

β1 ∼ Uniform(aβ1 , bβ1) (2.20)
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A second choice for priors that can remain relatively uninformative, but provide more

realistic values for parameter when little data is available is a truncated Normal,

α ∼ N+(µα, σ
2
α) (2.21)

λ1 ∼ N+(µλ1 , σ
2
λ1
) (2.22)

λ2 ∼ N+,λ1(µλ2 , σ
2
λ2
) (2.23)

β1 ∼ N(µβ1 , σ
2
β1
), (2.24)

where α, λ1, and λ2 are bounded positive and λ2 is also bounded above by λ1. The

suggestion of these priors is partially motivated by the unique formulation of the

hazards. There is no experiential knowledge to lean on in choosing more specialized

prior distributions that may be more cohesive with the model. Moreover, this situ-

ation represents a real-life scenario where a study team is likely to choose the most

basic, common prior distributions for fear of choosing overly specific or complex prior

distributions. The simulations in Chapter 4 cannot then be accused of using bespoke

prior distributions nor of benefiting in performance versus comparators.

Given data from j patients on the trial and the likelihood, the joint posterior

distribution of the parameters can be given in the general form using Bayes’ Rule,

p(τ |Dj) =
L(τ |Dj)h(τ)

p(Dj)
(2.25)

p(τ |Dj) =
L(τ |Dj)h(τ)∫
L(τ |Dj)h(τ)dτ

, (2.26)

where τ = {λ1, λ2, β1} or τ = {α, λ1, λ2, β1}. The Maximum a posteriori (MAP)

estimate from the posterior distribution of τ can be used to obtain τ̂ . The MAP

estimate for a parameter maximizes the probability of the posterior distribution of τ ,
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or equivalently stated, finds the mode of the posterior distribution,

τ̂ = argmaxτP (τ |Dj). (2.27)

2.4 Transition Probabilities

To answer clinical questions of interest, the estimated conditional hazard and

survival functions can be used to estimate the conditional probability of a future

state given a current state, or rather transition probabilities. The two most rel-

evant transition probabilities in a clinical setting might be P (Healthy→DR) and

P (Healthy→DLT), via any possible path. The probabilities are specified below, fol-

lowing the form of Putter, Fiocco, and Geskus 2007. Transition probabilities for

the five-transition model with explicit forms for the Constant-Skeleton and Weibull-

Skeleton specifications, are in Appendix B. Let tc be the time at which patients begin

observation, likely tc = 0, and let t be the future time of interest in the prediction.

1. P(Healthy → DR)

P (H → DR) = Ptc(T1 ≤ t, T2 > T1|T1 > tc, T2 > tc)

=

∫ t

tc
h1(r)S1(r)S2(r)dr

S1(tc)S2(tc)
(2.28)

2. P(Healthy → DLT) directly

P (H → DLT ) = Ptc(T1 > T2, T2 ≤ t|T1 > tc, T2 > tc)

=

∫ t

tc
h2(r)S1(r)S2(r)dr

S1(tc)S2(tc)
(2.29)



29

3. P(Healthy → DLT) via any possible path

P (H → DLT ) + P (H → DR → DLT )

= Ptc(T2 ≤ t|T1 > tc, T2 > tc)

=

∫ t

tc
h2(r)S1(r)S2(r)dr

S1(tc)S2(tc)
+

∫ t

tc
h1(r)S1(r)S2(r)

∫ t

r
h3(u)S3(u)du

S3(r)
dr

S1(tc)S2(tc)
(2.30)

Using transition probability P (Healthy→DLT) directly as an example, a rea-

soning of the transition probability expressions is similar to that of the likelihood

scenarios. A patient, starting in a Healthy state at time tc, must survive a DR and

a DLT up until time r, sometime between tc and t, contributing S1(r)S2(r). At that

point, the patient experiences a DR, contributing h1(r). From the time of DR, the

patient must then survive a DLT until time t, contributing S3(t)

S3(r)
. The probability

P(H → DR) is importantly expressed as the probability of having a Dose Reduction

by time t, not the probability of being in a Dose Reduced state by time t. This means

a patient could also have a DLT by time t, and would still be counted as having a

DR. The quantity of interest is how likely it is for a patient to make the transition,

not finish in the state. This is also where the current method fundamentally differs

from the TITECRM-MC in prediction.

2.5 Dose Assignment and Selection

To adaptively assign a dose to new patients entering a trial, as well as ultimately

select one or more doses at the end of a trial, various dose assignment and selection

rules could be applied using estimates from the explained model. A simple approach
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is minimal “Total Distance” estimated from each dose to two pre-specified toxicity

targets. Let πDR and πDLT be toxicity targets for each respective event, between 0

and 1. The dose estimated to have the smallest total distance is defined as

argmaxj(|π̂DR(xj)− πDR|+ |π̂DLT (xj)− πDLT |), (2.31)

where π̂DR(xj) is the estimated probability of Dose Reduction by end of follow-up

at dose xj; and π̂DLT (xj) is the estimated probability of DLT. This dose would be

assigned to the next patient brought onto the trial, or if at the end of the trial, chosen

as the dose to move forward. If multiple forward doses are desired k, the doses with

the k smallest estimated distances would be chosen. This approach does not penalize

doses for having estimated probabilities above the targets. The chosen dose may be

above both targets, below both targets, or above one and below the other.

A modification of the Total Distance approach is Weighted Total Distance. A

linear weight ω is applied to the DLT distance

argminj(|π̂DR(xj)− πDR|+ ω|π̂DLT (xj)− πDLT |), (2.32)

so that the DLT distance becomes more or less important, relative to the DR distance

in choosing the best dose. Most often under this approach, ω would be greater than

1 to make DLT distance relatively more important. (Note that until now, DLTs have

been treated with exclusive importance.) A more conservative approach, one that

treats πDR and πDLT as upper bounds or thresholds instead of targets, is choosing

the maximum dose with an estimated probability of DLT under a target θ. Call this
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the Maximum Uniformly Tolerated Dose (MUTD) x∗
j ,

x∗
j = max{xj ∈ X : π̂DLT (xj) ≤ πDLT , π̂DR(xj) ≤ πDR}. (2.33)

The MUTD, like many dose-finding designs and CRM extensions, is cautious of

overdosing. The dose remains low throughout a trial, leading to difficulty exploring

the high end of the dose range, especially when sample sizes are small. With targeted

agents providing a different toxicity profile, it may be more beneficial to relax control

on overdosing in order to better explore the higher end of the dose range. Therefore,

a combination strategy of Total Distance and MUTD may be the most prudent, as

πDR and πDLT are still important thresholds. During a trial, each new patient is

dosed based on Total Distance, with a weight if desired. At the end of the trial, a

dose or multiple doses are selected to move forward based on the MUTD.

Often with dose-finding models, an adaptive randomization stage is used at the

beginning of the trial to dose patients. Researchers are cautious that there may not

be enough data early on to trust the estimates of a dose-finding model. An adaptive

randomization stage is a separate algorithm that encourages controlled exploration

of the dose range. The sample size used in the adaptive randomization stage is

based on preference of the researchers. No adaptive randomization stage is proposed

for this method to reduce complexity of the algorithm in total, primarily because a

suitable prior and dose skeleton, which must be specified anyway, can go lengths in

encouraging or discouraging dose exploration.
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Chapter 3

Theoretical Results

Considering semi-competing risks data, the joint distribution of (T1, T2), defined

in this case by conditional hazard functions, is fully identified only when (0 < t1 < t2).

Consequently, P (T1 < ∞) ≤ 1 (Lee et al. 2015). A resolution is to set T1 = ∞ if the

terminal event T2 occurs before T1. Xu, Kalbfleisch, and Tai 2010 argue this strategy

is preferable to assuming a latent distribution of (T1, T2) over the region (t1 > t2),

and a more true reflection of the physical situation.

3.1 Likelihood and Joint Density

The observed data likelihood for the three-transition illness-death model can

be derived generally via joint density for T1 and T2. Thinking about the paths an

observed data point can take, the joint density can be separated where T2 comes before

T1 and where T2 comes after T1. Let t1 and t2 be the observed times of toxicity.

P (T1 = t1, T2 = t2)

= P (T1 = t1, T2 = t2, T2 > t1)+ (3.1)

P (T1 = t1, T2 = t2, T1 > t2) (3.2)

= fa(t1, t2) + fb(t1, t2) (3.3)
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The two likelihood elements fa and fb can then be derived separately. Let h1, h2, and

h3 be defined as hazard functions of Dose Reduction, DLT before Dose Reduction, and

DLT after Dose Reduction. Let S1, S2, and S3 be the associated survival functions.

h1(t1) =
P (T1 = t1|T2 > t1)

P (T1 > t1|T2 > t1)
(3.4)

h2(t2) =
P (T2 = t2|T1 > t2)

P (T2 > t2|T1 > t2)
(3.5)

h3(t2|t1) =
P (T2 = t2|T1 = t1, T2 > t1)

P (T2 > t2|T1 = t1, T2 > t1)
(3.6)

S1(t1) = P (T1 > t1) (3.7)

S2(t2) = P (T2 > t2) (3.8)

S3(t2|t1) = P (T2 > t2|T1 = t1) (3.9)

Joint Density Piece 1. fa(t1, t2) = h1(t1)S1(t1)S2(t1)h3(t2|t1)
S3(t2|t1)
S3(t1|t1)

.

Derivation:

P (T1 = t1, T2 = t2, T2 > t1)

= P (T1 = t1, T2 > t1)P (T2 = t2|T1 = t1, T2 > t1) (3.10)

= P (T1 = t1, T2 > t1)
P (T1 > t1, T2 > t1)

P (T1 > t1, T2 > t1)
P (T2 = t2|T1 = t1, T2 > t1) (3.11)

=
P (T1 = t1, T2 > t1)

P (T1 > t1, T2 > t1)
P (T1 > t1, T2 > t1)

P (T2 = t2|T1 = t1, T2 > t1)

P (T2 > t2, T1 = t1, T2 > t1)
× (3.12)

P (T2 > t2, T1 = t1, T2 > t1)

=
P (T1 = t1, T2 > t1)

P (T1 > t1, T2 > t1)
P (T1 > t1, T2 > t1)

P (T2 = t2|T1 = t1, T2 > t1)

P (T2 > t2, T1 = t1, T2 > t1)
× (3.13)

P (T2 > t2, T2 > t1|T1 = t1)

P (T2 > t1|T1 = t1)
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In the expression P (T2 > t2, T2 > t1|T1 = t1), because t1 is given and finite, it

must be allowed to happen, thus T2 > t1. The expression can then be simplified to

P (T2 > t2|T1 = t1),

=
P (T1 = t1, T2 > t1)

P (T1 > t1, T2 > t1)
P (T1 > t1, T2 > t1) × (3.14)

P (T2 = t2|T1 = t1, T2 > t1)

P (T2 > t2, T1 = t1, T2 > t1)

P (T2 > t2|T1 = t1)

P (T2 > t1|T1 = t1)

= h1(t1)S1(t1)S2(t1)h3(t2|t1)
S3(t2|t1)
S3(t1|t1)

(3.15)

Note, this derivation is based on the conditional independence of the joint sur-

vival function P (T1 > t1, T2 > t2), given a frailty parameter γ to account for the

dependence between T1 and T2 (Rodriguez 2010). Thus, a rigorous application of this

method would include a frailty parameter. However, for reasons stated previously in

Section 2.1, the current application of this method foregoes a frailty parameter for

simplicity and efficiency.

Joint Density Piece 2. fb(t1, t2) = h2(t2)S1(t2)S2(t2)

Derivation:

P (T1 = t1, T2 = t2, T1 > t2)

= P (T1 = t1|T2 = t2, T1 > t2)P (T2 = t2, T1 > t2) (3.16)

= P (T1 = t1|T2 = t2, T1 > t2)
P (T2 = t2, T1 > t2)

P (T2 > t2, T1 > t2)
P (T2 > t2, T1 > t2) (3.17)
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If T1 > t2, then t1 is assumed to be ∞.

= P (T1 = ∞|T2 = t2, T1 > t2)
P (T2 = t2, T1 > t2)

P (T2 > t2, T1 > t2
P (T2 > t2, T1 > t2) (3.18)

= 1 ∗ h2(t2)S2(t2)S1(t2) (3.19)

These two likelihood elements can then be used to specify the four unique paths

of the illness-death model. The four paths are: 1) Censored before any toxicity. 2)

DLT before Dose Reduction. 3) Censored after Dose Reduction. 4) DLT after Dose

Reduction. Let Ci represent a time of censoring. Each path is expressed in terms of

hazard and survival functions, thus (2.4), (2.5), and (2.6) or (2.7), (2.8), and (2.9) can

be directly substituted with their associated survival functions to give specifications

for the current dose-finding context. These explicit forms are given in Appendix B.

1. Censored before any toxicity: L1i = P (T1 > Ci, T2 > Ci) = S1(Ci)S2(Ci)

Derivation: Direct result from joint survivor function as explained in (3.14).

2. DLT before Dose Reduction: L2i = P (T1 = ∞, T2 = t2i, T1 > t2i)

= h2(t2i)S1(t2i)S2(t2i)

Derivation:

P (T1 = ∞, T2 = t2i, T1 > t2i)

= P (T1 = t1, T2 = t2, T1 > t2) (3.20)

= fb(t1, t2) (3.21)

= h2(t2)S1(t2)S2(t2) (3.22)
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3. Censored after Dose Reduction: L3i = h1(t1i)S1(t1i)S2(t1i)
S3(Ci|t1i)
S3(t1i|t1i)

Derivation:∫ ∞

Ci

fa(t1i, s)ds

= h1(t1i)S1(t1i)
S2(t1i)

S3(t1i)

∫ ∞

Ci

h3(s|t1i)S3(s)ds (3.23)

= h1(t1i)S1(t1i)
S2(t1i)

S3(t1i)

∫ ∞

Ci

h3(s|t1i)exp(−
∫ u

0

h3(u|t1i))duds (3.24)

= h1(t1i)S1(t1i)
S2(t1i)

S3(t1i)
[−exp(−

∫ u

0

h3(u|t1i)du|Ci
0 ] (3.25)

= h1(t1i)S1(t1i)
S2(t1i)

S3(t1i)
[−0 + S3(Ci)] (3.26)

= h1(t1i)S1(t1i)S2(t1i)
S3(Ci)

S3(t1i)
(3.27)

4. DLT after Dose Reduction: L4i = h1(t1i)h3(t2i|t1i)S1(t1i)S2(t1i)
S3(t2i|t1i)
S3(t1i|t1i)

Derivation:

P (T1 = t1i, T2 = t2i, T2 > t1i)

= fa(t1, t2) (3.28)

= h1(t1i)S1(tt1i)S2(t1i)h3(t2i|t1i)
S3(t2i)

S3(t1i)
(3.29)

3.2 Transition Probabilities

The transition probabilities are derived in a similarly straightforward manner.

Let t be the transition time of interest, and let tc be the time at which patients started
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observation.

Healthy → DR: Ptc(T1 ≤ t, T2 > T1|T1 > tc, T2 > tc) =

∫ t

tc
h1(r)S1(r)S2(r)dr

S1(tc)S2(tc)

Derivation:

Ptc(T1 ≤ t, T2 > T1|T1 > tc, T2 > tc)

=
Ptc(T1 ≤ t, T2 > T1, T1 > tc, T2 > tc)

Ptc(T1 > tc, T2 > tc)
(3.30)

=
Ptc(tc < T1 ≤ t, T2 > T1)

S1(tc)S2(tc)
(3.31)

=

∫ t

tc
P (T1 = r, T2 > r)dr

S1(tc)S2(tc)
(3.32)

=

∫ t

tc
P (T1 = r, T2 > r)

P (T1 > r, T2 > r)

P (T1 > r, T2 > r)
dr

S1(tc)S2(tc)
(3.33)

=

∫ t

tc
h1(r)P (T1 > r, T2 > r)dr

S1(tc)S2(tc)
(3.34)

=

∫ t

tc
h1(r)S1(r)S2(r)dr

S1(tc)S2(tc)
(3.35)
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Healthy → DLT, directly: Ptc(T1 > T2, T2 ≤ t|T1 > tc, T2 > tc)

=

∫ t

tc
h2(r)S1(r)S2(r)dr

S1(tc)S2(tc)

Derivation:

Ptc(T2 ≤ t, T1 > T2|T1 > tc, T2 > tc)

=
Ptc(T1 ≤ t, T2 > T1, T1 > tc, T2 > tc)

Ptc(T1 > tc, T2 > tc)
(3.36)

=
Ptc(tc < T2 ≤ t, T1 > T2)

S1(tc)S2(tc)
(3.37)

=

∫ t

tc
P (T2 = r, T1 > r)dr

S1(tc)S2(tc)
(3.38)

=

∫ t

tc
P (T2 = r, T1 > r)

P (T2 > r, T1 > r)

P (T2 > r, T1 > r)
dr

S1(tc)S2(tc)
(3.39)

=

∫ t

tc
h2(r)P (T2 > r, T1 > r)dr

S1(tc)S2(tc)
(3.40)

=

∫ t

tc
h2(r)S1(r)S2(r)dr

S1(tc)S2(tc)
(3.41)
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Healthy → DLT via any path: Ptc(T2 ≤ t|T1 > tc, T2 > tc)

=

∫ t

tc
h2(r)S1(r)S2(r)dr

S1(tc)S2(tc)
+

∫ t

tc
h1(r)S1(r)S2(r)

∫ t

r
h3(u)S3(u|r)du

S3(r|r)
dr

S1(tc)S2(tc)

Derivation:

Ptc(T2 ≤ t|T1 > tc, T2 > tc)

= Ptc(T1 > T2, T2 ≤ t|T1 > tc, T2 > tc) + Ptc(T1 < T2, T2 ≤ t|T1 > tc, T2 > tc)

=

∫ t

tc
h2(r)S1(r)S2(r)

S1(tc)S2(tc)
+ Ptc(T1 < T2, T2 ≤ t|T1 > tc, T2 > tc) (3.42)

=

∫ t

tc
h2(r)S1(r)S2(r)

S1(tc)S2(tc)
+

Ptc(T1 < T2, T2 ≤ t, T1 > tc, T2 > tc)

Ptc(T1 > tc, T2 > tc)
(3.43)

=

∫ t

tc
h2(r)S1(r)S2(r)

S1(tc)S2(tc)
+

Ptc(tc < T1 < t, T1 < T2 ≤ t)

Ptc(T1 > tc, T2 > tc)
(3.44)

=

∫ t

tc
h2(r)S1(r)S2(r)

S1(tc)S2(tc)
+

∫ t

tc
P (T1 = r, r < T2 < t)dr

S1(tc)S2(tc)
(3.45)

=

∫ t

tc
h2(r)S1(r)S2(r)

S1(tc)S2(tc)
+

∫ t

tc
P (T1 = r, r < T2 < t)

P (T1 > r, r < T2 < t)

P (T1 > r, r < T2 < t)
dr

S1(tc)S2(tc)
(3.46)

=

∫ t

tc
h2(r)S1(r)S2(r)

S1(tc)S2(tc)
+

∫ t

tc
h1(r)P (T1 > r, r < T2 < t)dr

S1(tc)S2(tc)
(3.47)

=

∫ t

tc
h2(r)S1(r)S2(r)

S1(tc)S2(tc)
+

∫ t

tc
h1(r)P (T1 > r, T2 > r)P (T2 < t|T1 > r, T2 > r)dr

S1(tc)S2(tc)

(3.48)

=

∫ t

tc
h2(r)S1(r)S2(r)

S1(tc)S2(tc)
+

∫ t

tc
h1(r)S1(r)S2(r)

∫ t

r
h3(u)S3(u|r)
S3(r|r)

dr

S1(tc)S2(tc)
(3.49)
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DR → DLT: Ptc(T2 < t|T1 = t1 < tc, T2 > tc) =

∫ t

tc
h3(r)S3(r|tc)dr
S3(tc|tc)

Derivation:

Ptc(T2 ≤ t|T1 < tc, T2 > tc)

=
Ptc(T2 ≤ t, T2 > tc|T1 < tc)

Ptc(T2 > tc|T1 < tc)
(3.50)

=

∫ t

tc
P (T2 = r|T1 < tc)dr

S3(tc|tc)
(3.51)

=

∫ t

tc
P (T2 = r|T1 < tc)

P (T2 > r|T1 < tc)

P (T2 > r|T1 < tc)
dr

S3(tc|tc)
(3.52)

=

∫ t

tc
h3(r)S3(r|tc)
S3(tc|tc)

(3.53)

3.3 Connection to Counting Processes

As a multi-state model, the semi-competing risks framework can also be described

using the language of Counting or Stochastic Processes. A stochastic process Xt,

t ∈ [0,∞) is defined as Xt = ℓ, if the process is in state ℓ at time t. Let Ft be

a σ-algebra covering the information over [0, t]. The hazard function, alternatively

named an intensity with represenation λ, of the transition from state m to state ℓ is

defined as

λmℓ(t|Xu, u ∈ [0, t)) = lim
∆t↓0

Pr{Xt+∆t = ℓ|Ft− , Xt− = m}
∆t

. (3.54)

Again, transition probabilities are typically the quantity of interest, and defining

hazards or intensities are an efficient tool in calculating these probabilities. Transition
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probabilities evaluated at time t can be generally defined as

Pℓ(ν, t) = Pr(Xt = ℓ|Xu, u ∈ [0, ν]) (3.55)

which are conditional on Xu, the whole process history up to time ν.

The ideas of Markov and Semi-Markov exist in the same way (Semi-Markov also

being referred to as Markov Extension, Hougaard 1999). A Markov model considers

Xu to contain information only about the current state at time ν. Semi-Markov addi-

tionally considers the time at which the process moved into the current state. Thus,

in the Markov setting, the intensity and transition probabilities can be simplified as

λmℓ(t) = lim
∆t↓0

Pr{Xt+∆t = ℓ|Xt− = m}
∆t

(3.56)

Pmℓ(ν, t) = Pr(Xt = ℓ|Xν = m) (3.57)

The total hazard of leaving state m is λm(t) =
∑

ℓ̸=m λml(t). The likelihood for the

Markov model comes from Hougaard 1999. Let an observation have E events from

time 0 to C experienced at times j = {1, ..., E}. The process starts at state s0 and

moves into states sj. The likelihood of a single observation is defined as

[
E∏

j=1

λsj−1sj(tj)exp{−
∫ tj

tj−1

λsj−1
(u)du}

]
exp{−

∫ C

tE

λSE
(u)du}. (3.58)

This specification has the same explanation as the likelihood previously. Transitions

are experienced at times j = {1, ..., E}, represented by the intensities. Then, within

each state, all other possible hazards leading out of that state are “survived” until the

next transition time, represented by the exponential terms (survival functions). The

likelihood for each of the four paths in an illness-death model is formulated below
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using this notation.

1. Censored before any toxicity: E = 0

L1 =

[
0∏
λsj−1sj(tj)exp{−

∫ tj

tj−1

λsj−1
(u)du}

]
exp{−

∫ C

0

(λ1(u) + λ2(u))du} (3.59)

= exp{−
∫ C

0

λ1(u)du} exp{−
∫ C

0

λ2(u)du} (3.60)

2. DLT before Dose Reduction: E = 1

L2 =

[
1∏

j=1

λsj−1sj(tj)exp{−
∫ tj

tj−1

λsj−1
(u)du}

]
(3.61)

= λ2(t2) exp{−
∫ C

0

(λ1(u) + λ2(u))du} (3.62)

= λ2(t2) exp{−
∫ C

0

λ1(u)du} exp{−
∫ C

0

λ2(u)du} (3.63)

3. Censored after Dose Reduction: E = 1

L3 =

[
1∏

j=1

λsj−1sj(tj)exp{−
∫ tj

tj−1

λsj−1
(u)du}

]
exp{−

∫ C

t1

λ3(u)du} (3.64)

= λ1(t1) exp{−
∫ t1

0

(λ1(u) + λ2(u))du}exp{−
∫ C

t1

λ3(u)du} (3.65)

= λ2(t2) exp{−
∫ t1

0

λ1(u)du} exp{−
∫ t1

0

λ2(u)du} exp{−
∫ C

t1

λ3(u)du} (3.66)
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4. DLT after Dose Reduction: E = 2

L4 =

[
2∏

j=1

λsj−1sj(tj)exp{−
∫ tj

tj−1

λsj−1
(u)du}

]
(3.67)

=

[
λ1(t1) exp{−

∫ t1

0

(λ1(u) + λ2(u))du}
] [

λ3(t2)exp{−
∫ t2

t1

λ3(u)du}
]

(3.68)

= λ1(t1)λ3(t2) exp{−
∫ t1

0

λ1(u)du} exp{−
∫ t1

0

λ2(u)du} exp{−
∫ t2

t1

λ3(u)du}

(3.69)

Thus, each potential path and the resulting full likelihood is confirmed to be

identical as that derived previously. As for asymptotics, in applying these models, one

often does not consider whether the asymptotic distributions really apply (Hougaard

1999). Especially in the current setting, sample sizes are unavoidably small, and

large sample properties are not relevant. Additionally, nice asymptotic distributions

are not always possible with multi-state models. For completeness, though, the next

section derives an asymptotic result of choosing the correct dose based on the current

model.

3.4 Asymptotic Properties

A brief result is shown to guarantee the selection of the correct dose with infinite

data, including discussion of an alternative version of the same result.

Result

The observed data are assumed to follow an illness-death model defined by con-

ditional hazard functions, independent and identically distributed between subjects.
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Let there be J doses under consideration xj, j ∈ {1, ...J}. The probability of a pa-

tient experiencing a DR or DLT by a time of interest tmax is conditional upon initial

dose and expressed previously by (3.33) and (3.47).

p(DR, j) =

∫ tmax

0

h1(r|xj)S1(r|xj)S2(r|xj)dr (3.70)

p(DLT, j) =

∫ tmax

0

h1(r|xj)S1(r|xj)S2(r|xj)dr + (3.71)∫ tmax

0

h1(r|xj)S1(r|xj)S2(r|xj)

∫ tmax

r
h3(u|xj−1)S3(u|xj−1)du

S3(r|xj−1)
dr

There exists a desired dose x∗
j in the set X such that,

x∗
j = max{xj ∈ X : p(DR, j) ≤ πDR, p(DLT, j) ≤ πDLT}, (3.72)

where πDR and πDLT are prespecified probability targets between 0 and 1.

The proof can proceed in two steps. First, the posterior distribution of the model

converges to the true parameter values as shown by Gelman et al. 2013. Then, the

estimated probabilities of each event p̂(DR, j), p̂(DLT, j), plugging in MAP estimates,

converges to the true probabilities via the continuous mapping theorem, whereby the

correct dose will be selected.

Step 1: Let there be a vector of parameters θ defined on a continuous space Θ

for which there is a prior distribution p(θ) and a likelihood p(y|θ). Assuming the

likelihood model is correct, there is some true parameter value θ0 in the space.

Define a neighborhood of θ0 as an open set of all points in Θ within a fixed

nonzero distance of θ0. Let A be a neighborhood of θ0 with nonzero prior probability.

Place a neighborhood around each point in Θ, e.g. (A, B1, B2,...Bn), such that θ0 is

exclusively in A. Let Θ be compact, so that a finite subset of neighborhoods covering
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Θ can always be chosen.

First, KL divergence at any value θ is defined as

KL(θ) = E(log(
f(yi)

p(yi|θ)
)) =

∫
log(

f(yi)

p(yi|θ)
)f(yi)dyi. (3.73)

where f is the true distribution of the data and p is the probability model. By

Jensen’s Inequality,

∫
log(

f(yi)

p(yi|θ)
)f(yi)dyi =

∫
−log(

p(yi|θ)
f(yi)

)f(yi)dyi (3.74)

≥ −log(

∫
p(yi|θ)
f(yi)

f(yi)dyi) (3.75)

= −log(

∫
p(yi|θ)dyi) (3.76)

= −log(1) (3.77)

Thus, KL divergence is greater than or equal to zero. If θ = θ0, then f(yi)

p(yi|θ)
= 1 and

KL divergence becomes

∫
log(1)f(yi)dyi ≥ log(

∫
f(yi)dyi) (3.78)∫

0dyi = 0 ≥ log(1) = 0. (3.79)

and the true parameter value θ0 necessarily minimizes the KL divergence as KL(θ) =

0.

A posterior log odds-type expression relative to A is

log(
p(θ|y)

p(θ ∈ A|y)
) = log(

p(θ)

p(θ ∈ A)
) +

n∑
i=1

log(
p(yi|θ)

p(yi|θ ∈ A)
). (3.80)
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Taking the expectation of each term in the summation gives

E(log(
p(yi|θ)

p(yi|θ ∈ A)
)) = KL(θ ∈ A)−KL(θ). (3.81)

This expression is zero if θ ∈ A and negative in all other scenarios as θ0 is the

minimizing value of KL(θ). If θ /∈ A, then the summation is of random variables

with negative mean. By Law of Large Numbers, the summation goes to −∞ as

n → ∞.

If P (θ ∈ A) > 0, then the term log(
p(θ)

p(θ ∈ A)
) is finite, and the right side of

(3.89) goes to −∞. Thus, p(θ)

p(θ ∈ A)
on the left side → 0 , and p(θ) → 0. Then it

must be that P (θ ∈ A) → 1. The posterior converges to the true parameters with

infinite sample size.

Step 2: Let the vector of parameters of the stated illness-death model be defined

on a continuous space. With infinite data, assuming the likelihood model is cor-

rect, the vector of parameters will converge to the true parameters. The expressions

p̂(DR, j) and p̂(DLT, j) are continuous functions of parameter estimates and known data.

Thus, by the Continuous Mapping Theorem, as θ̂ → θ0, therefore p̂(DR, j) → p(DR, j)

and p̂(DLT, j) → p(DLT, j) as n → ∞. The desired dose x∗
j is guaranteed to be selected.

Alternative version

An alternative version of the same proof can be shown using only observed events,

foregoing a prediction model entirely. Let there be n patients who have at least started

the trial. Let the event data of these patients be represented by the set D, where

the pair Di = {D1i, D2i} represents whether the patient i has experienced a DR or

DLT, respectively. The number of patients n can be separated into those on each

dose who have completed follow-up to tmax and those who have not, n =
∑j nj,
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nj = nmax,j + npart,j . Assume patients can be accrued only at integer time points;

also, assume a maximum of m patients can be accrued at each time point. Thus,

npart must be finite.

The data Dmax
i from completed follow-up are guaranteed to each follow a Bernoulli

distribution with associated probability.

Dmax
1i, j ∼ bern(p(DR,j)) (3.82)

Dmax
2i, j ∼ bern(p(DLT,j)) (3.83)

The data Dpart
i from patients still on the trial are Bernoulli distributed, but with

probability less than p(DR,j) or p(DR,j), each determined individually by the amount

of time on the trial. Let X1j be the number of DRs observed on dose j and X2 be

the number of DLTs observed on dose j.

X1j =
N∑

D1ij =
∑

Dmax
1ij +

∑
Dpart

1ij (3.84)

X2j =
N∑

D2ij =
∑

Dmax
2ij +

∑
Dpart

2ij (3.85)

The sums
∑

Dpart
1ij and

∑
Dpart

2ij are necessarily finite, so as n → ∞, X1j →
∑

Dmax
1ij

and X2j →
∑

Dmax
2ij as long as p(DR, j), p(DLT, j) > 0 and the probability of selecting

each dose for the next patient is always greater than zero. Thus, X1j

nj

→ p(DR, j)

and X2j

nj

→ p(DLT, j) by the Weak Law of Large Numbers. As n → ∞, a prediction

model is not necessary. If the dose selection mechanism is max{xj ∈ X : p̂(DR, j) ≤

πDR, p̂(DLT, j) ≤ πDLT}, then defining p̂(DR, j) =
X1j

nj

and p̂(DR, j) =
X2j

nj

simply,

the correct dose x∗
j is guaranteed to be selected.
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Chapter 4

Simulations

Simulation is used to compare modeling choices, specifically to identify a best

common model, and compare the performance of this common model with that of the

TITECRM-MC (Lee et al. 2019), CRM-MC (Lee, Cheng, and Cheung 2011), and

TITECRM (Cheung and Chappell 2000). The TITECRM uses only DLT information,

while the other two “main” comparator methods also use DLT information as well as

Dose Reduction information. Here, only the three-transition illness-death model is

studied as it is most relevant. Simulation of the five-transition model is left for future

work.

For all simulations, J = 5 dose levels are assumed, the first patient starting on

the lowest dose. The maximum time of follow-up, as well as the prediction time of

interest, is 52 weeks. Sample sizes n = 30, n = 60, and n = 100 are considered,

three patients accrued per month. The trial ends when the (n+1) patient is accrued.

(With the CRM-MC, this is modified to allow full follow-up for all patients.) The

most realistic sample size scenarios are seen as n = 30 and n = 60, with n = 100

included as a large sample type evaluation. For non-constant hazard settings (see

below), data is generated via a Cox-Weibull conditional hazard formulation, similar

but different from the conditional hazard formulation of the proposed model (for
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constant hazard settings, data is generated from the proposed model).

h1 = αλ1t
α−1
1 eβ1xj ; S1 = e−λ1tα1 exp (β1xj) (4.1)

h2 = αλ2t
α−1
2 eβ1xj ; S2 = e−λ2tα2 exp (β1xj) (4.2)

h3 = αλ2t
α−1
2 eβ0+β1xj ; S3 = e−λ2tα2 exp (β0+β1xj) (4.3)

Using the conditional survival functions, data can be generated using inverse

transform sampling given F = 1− S, where F is the CDF. Three times to event are

generated. If t1 from S1 is less than t2 from S2, a patient had a Dose Reduction before

a DLT; consequently, t1 and t2 from S3 become the two event times, with 52 weeks as

a censoring time. If t2 from S3 is less than t1, then no event t2 is considered possible

and 52 is the censoring time. When t2 from S2 is less than t1, the patient has had

a DLT before a Dose Reduction, a terminal event, again limited by 52 weeks. This

process is valid as the Markov property is assumed, where h3 and S3 are measured

from time zero.

Data is generated under four hazard rates, or four conditions for α: Constant

(α = 1), Small Increasing (α > 1), Small Decreasing (α < 1), and Large Decreasing

(α << 1). One example of each scenario is shown in Figure 4.1. While the setting

assumes chronic treatment and events are expected to occur at late time points, it

is expected that relatively more events will occur early in the observation period,

making Small Decreasing and Large Decreasing the most likely scenarios in practice.

For each sample size/hazard rate combination, dose-toxicity curves are generated

such that the target probability πDLT (0.3 or 0.2) is reached at dose level 1, dose level

3, or dose level 5; and the sister target probability πDR is relatively higher, lower,

or equal to its target (0.5 or 0.4) at that same dose. The dose-toxicity curves for

πDLT = 0.2 and πDR = 0.4 are shown in Figure 4.2. (The curves for πDLT = 0.3 and
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Figure 4.1: Examples of the four hazard rate shapes used to simulate data.

πDR = 0.5, and parameter settings of all toxicity curves are in Appendix A.)

Models are evaluated based on 1) Percent Correct Selection (PCS), the percent-

age of time maximum dose that falls under both toxicity thresholds is chosen; 2)

Overdose Percentage (OD), the percentage the selected dose is higher than desired;

and 3) Accuracy Index for DR and DLT. The Accuracy Index (Cheung 2011) goes

beyond PCS, taking into account how “close” the selected dose was to the desired

dose,

Accuracy index = 1− J

∑J
j=1 ρjP (select dose j)∑J

j=1 ρj
,

where ρj is the absolute difference between the true toxicity probability πj at dose

j and the target probability θ. Just as there are two events (two θs), there are two

Accuracy Indices, ADR and ADLT . The range of an Accuracy Index is [−1, 1] where 1
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is perfect selection and zero is equivalent to randomly choosing a dose. All simulation

instances are run for N = 1, 000 iterations. The Bayesian models are fit in STAN

within an R environment (Stan Development Team 2022b, Stan Development Team

2022a, R Core Team 2022).

4.1 Model Selection

To select a best common model, the prior distribution, hazard specification, and

dosing decision rule are evaluated. One Uniform prior distribution and two Normal

prior distributions are considered, one “uninformative” and one “informative,” for the

constant model only: (λ1, λ2, β1).

Uniform:

λ1 ∼ Uniform(0, 0.5) (4.4)

λ2 ∼ Uniform(0, λ1) (4.5)

β1 ∼ Uniform(−4, 4) (4.6)

Normal (uninformative):

λ1 ∼ N+(0.2, 0.2
2) (4.7)

λ2 ∼ N+,λ1(0.1, 0.2
2) (4.8)

β1 ∼ N(0.5,
√
2
2
) (4.9)
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Normal (informative):

λ1 ∼ N+(0.1, 0.05
2) (4.10)

λ2 ∼ N+,λ1(0.05, 0.05
2) (4.11)

β1 ∼ N(0.5, 12) (4.12)

The “uninformative” Normal prior, in addition to setting higher variances, sets the

mean value of baseline hazard rates higher than the “informative” Normal prior, in

order to be conservative. A higher baseline hazard rate estimates a higher toxicity

at a given dose, consequentially choosing a lower dose. The bounds of the Uniform

priors are set just outside realistic values.

Hazard specifications under consideration are the Constant-Skeleton and Weibull-

Skeleton as presented in Section 2.1. The method of dosing patients can be different

during the trial compared to the end of the trial, thus dosing decision rules are Total

Distance, Weighted Total Distance (3:1 DLT to DR), Maximum Uniformly Tolerated

Dose, Total Distance during plus MUTD at the end of the trial, and Weighted Total

Distance during plus MUTD at the end of the trial, as defined in Section 2.5.

Prior Distribution

Table 4.1 shows dose selection of the five dose levels over nine dose-toxicity

scenarios, using the three prior distributions (n = 30, with n = 60 in parentheses).

The Total Distance dosing rule guided dose selection, allowing freedom of movement

to better assess the affect of the priors. DR target toxicity and DLT target toxicity

(πDR = 0.4, πDLT = 0.2 only) occur on the same dose in Scenarios 1, 2, 3, and

6. By the Total Distance criteria, Scenario 4 is split between dose levels 1 and 2,

Scenario 5 between dose levels 3 and 4, Scenario 8 between dose levels 2 and 3, and
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Scenario 9 between dose levels 3, 4, and 5. Scenario 7 does not describe any doses that

satisfy both target toxicities, however for the table values, dose level 1 is considered

the desired dose. Any stopping rule for a scenario like this is not considered in the

current work.

Dose selection is reasonably similar over priors given each scenario. The informa-

tive Normal prior struggles somewhat, especially when target toxicities are on higher

doses, most likely because this prior is set where dose is drawn to the middle of the

dose set and fights exploration of higher doses. The prior should not restrict explo-

ration of higher doses but should give good probability to all reasonable values. The

Uniform prior slightly outperforms the uninformative Normal prior in scenarios where

target toxicities fall on the same dose. Where target toxicities differ, the uninforma-

tive Normal prior is a bit more conservative. Although it is ultimately the dosing

decision rule’s responsibility to control dose under its uniformly tolerated bounds, it

is desirable to have a prior that allows for exploration of the dose range while not

being ignorant of overdosing. Thus, the uninformative Normal prior is selected for

use in the rest of the simulation results.

Hazard Formulation and Dosing Decision

Both hazard specification and dosing rule directly affect the flexibility of the

method when assigning doses, thus, they are evaluated in tandem. The Weibull-

Skeleton model adds a shape parameter α, and another prior is necessary. Fitting

with the previous uninformative priors,

α ∼ N+(1, 0.3
2). (4.13)

Figure 4.3 shows PCS and Overdose percentage for Scenarios 1-3, 5, 8, and 9 for sam-
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Scenario Prior
1 2 3 4 5 Dose 1 Dose 2 Dose 3 Dose 4 Dose 5

DR 40 58 71 74 74 92 (97) 8 (3) 0 (0) 0 (0) 0 (0) Normal (inf.)
DLT 20 35 53 69 80 91 (97) 9 (3) 0 (0) 0 (0) 0 (0) Normal (un.)

89 (96) 11 (4) 0 (0) 0 (0) 0 (0) Uniform

DR 14 25 40 54 63 8 (0) 60 (29) 29 (64) 3 (7) 0 (0) Normal (inf.)
DLT 6 11 20 30 40 8 (0) 46 (22) 37 (70) 8 (8) 1 (0) Normal (un.)

8 (1) 42 (19) 38 (71) 10 (8) 2 (0) Uniform

DR 6 11 20 30 40 0 (0) 15 (0) 43 (5) 28 (39) 14 (57) Normal (inf.)
DLT 2 5 9 14 20 0 (0) 8 (0) 31 (4) 33 (31) 28 (65) Normal (un.)

0 (0) 5 (0) 29 (3) 37 (30) 29 (67) Uniform

DR 25 40 54 59 61 65 (64) 34 (36) 1 (0) 0 (0) 0 (0) Normal (inf.)
DLT 20 36 56 72 82 62 (61) 35 (39) 3 (0) 0 (0) 0 (0) Normal (un.)

63 (60) 35 (39) 2 (1) 0 (0) 0 (0) Uniform

DR 8 14 25 35 44 2 (0) 36 (3) 46 (46) 14 (44) 3 (7) Normal (inf.)
DLT 6 11 20 30 41 2 (0) 20 (2) 45 (39) 24 (50) 9 (8) Normal (un.)

1 (0) 18 (1) 48 (39) 25 (50) 8 (9) Uniform

DR 3 6 12 18 25 0 (0) 6 (0) 27 (1) 30 (7) 37 (93) Normal (inf.)
DLT 2 5 9 14 20 0 (0) 2 (0) 16 (0) 29 (3) 54 (97) Normal (un.)

0 (0) 2 (0) 12 (0) 28 (4) 58 (96) Uniform

DR 55 74 82 83 83 99 (100) 1 (0) 0 (0) 0 (0) 0 (0) Normal (inf.)
DLT 20 34 51 67 77 99 (100) 1 (0) 0 (0) 0 (0) 0 (0) Normal (un.)

99 (100) 1 (0) 0 (0) 0 (0) 0 (0) Uniform

DR 20 35 55 68 76 27 (4) 60 (75) 12 (21) 1 (0) 0 (0) Normal (inf.)
DLT 6 11 20 30 39 24 (4) 56 (70) 18 (26) 2 (0) 0 (0) Normal (un.)

24 (3) 53 (70) 20 (26) 3 (1) 0 (0) Uniform

DR 9 17 30 43 55 2 (0) 32 (3) 46 (35) 16 (51) 4 (11) Normal (inf.)
DLT 3 5 9 14 20 2 (0) 19 (2) 43 (33) 27 (52) 10 (14) Normal (un.)

1 (0) 17 (1) 41 (31) 29 (55) 12 (13) Uniform

Dose Level

9

1

2

3

4

5

6

7

8

Dose Selection

Table 4.1: Evaluation of three prior distributions on Constant data generating hazards
using Constant model (n = 30, with n = 60 in parentheses).
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ple size n = 30. (Remaining scenarios are omitted due to redundancy.) The larger

grouping label shown on the right side is the data generating hazard rate. The indi-

vidual labeling on the left side lists six model/dosing rule combinations: a) Weibull-

Skeleton model with 3:1 Weighted Total Distance during the trial + MUTD selection

at the end, b) Weibull-Skeleton model with Total Distance during the trial + MUTD

selection at the end, c) Weibull-Skeleton model with Total Distance throughout, d)

Constant-Skeleton model with Total Distance during the trial + MUTD selection at

the end, e) Constant-Skeleton model with 3:1 Weighted Total Distance throughout,

and f) Constant-Skeleton model with Total Distance throughout. Note, while Table

4.1 indicates dose levels (4, 3), (2, 3), and (3, 5) are the location of target probabilities

in Scenarios 5, 8, and 9, this is a result of constant generating hazards. When the

generating hazards are non-constant, the location of target probabilities are instead

dose levels (5, 3), (1, 3), and (3, 5), as shown in Figure 4.2.

Scenario 1 is entirely Correct Selection or Overdose, as the desired dose is dose

level 1; conversely, Scenario 3 has no overdose as the desired dose is dose level 5. In

Scenario 1, the Constant models reveal consistently better PCS, with Constant +

MUTD leading the group for each data generating hazard. Both toxicity targets here

are met at dose level 1; and the Constant models, especially the Constant + MUTD

model, are more conservative. In Scenarios 2 and 3, where the toxicity targets both

fall on dose level 3 and dose level 5, respectively, the Weibull models outperform the

Constant models. The decreasing generating hazards, considered the most realistic,

drastically favor the Weibull models. If data follow a decreasing hazard, but are

only observed for a short time period, fitting a Constant model will estimate the

average hazard to be higher than it would be over the entire curve. Thus, estimated

toxicity is higher, and dose selection is too conservative. The best decision rule for the

first three scenarios in terms of PCS is simple Total Distance because both toxicity
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Figure 4.3: Percent Correct Selection (green) and Overdose (navy) for each candidate
model combination over all data generating hazards (n = 30).
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Figure 4.4: Dose Reduction and DLT Accuracy Index values for each candidate model
over all data generating hazards (n = 30).
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targets are leading models to the same dose. However, in Scenario 2 the Weibull +

MUTD options fare much better on Overdose. The Total Distance Weibull model

sees relatively high Overdose rates.

In Scenario 5, DLT is the limiting toxicity. The current method is less necessary

in this potential situation, but because it is a possible scenario and DRs will still

occur, it is important to evaluate nonetheless. Under Constant and Small Increasing

generating hazards, Weibull + MUTD and Total Distance Constant models perform

similarly; however, under decreasing generating hazards, the Weibull models outper-

form with either Weibull + MUTD option performing best. In Scenarios 8 and 9, DR

is the limiting toxicity. These are especially situations of interest which traditional

methods would not be able to handle appropriately. Under constant generating haz-

ards, again a Weibull and Constant model are competitive. Under all other hazards,

Constant models perform much better than Weibull models, which may seem unex-

pected; yet the desired dose in all of those scenarios is dose level 1. (DLT toxicity

target falls on dose level 3.) This relates back to Scenario 1 where the Constant

models are more conservative and will often choose dose level 1. Also, the true prob-

ability of DR on dose level 1 (∼38%) and dose level 2 (∼43%) have little separation

and are close to the target of 40%. Scenario 9 follows similarly to Scenario 5, with

even more drastic underperformance of the constant models. Again, the Weibull +

MUTD models present much better Overdose performance than the simple Weibull

model.

Figure 4.4 shows the Accuracy Indices for the same scenarios and models. Many

of the trends from Figure 4.3 hold here. The Constant models perform better in

Scenario 1, but the gap is much smaller. The Weibull models again outperform the

Constant models in Scenarios 2 and 3. Only Constant models have instances of

negative index, meaning their dose allocation was more inefficient than random dose
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selection. Accuracy Index (DR) and Accuracy Index (DLT) mostly mirror each other,

except for minor differences in Scenario 2 with decreasing hazards. Scenario 8 has

more parity in Accuracy Index than in PCS and Overdose. This provides evidence

that the previous explanation of Scenario 8 holds. Constant models are conservative

and will stay on dose level 1, while Weibull models stay close to the correct dose

level, on average, even if they overdose, choosing dose level 2 instead, just one above.

Weibull models again outperform drastically in Scenario 9.

According to these results, it is clear that a Weibull model will fit most scenarios

the best and not fall victim to the drastic shortcomings of the Constant models in

some scenarios. Additionally, the Weibull + MUTD dosing mechanism performs near

the best in most scenarios and has a distinct advantage in overdose control versus

the Total Distance Weibull model. Thus, the best common model chosen to move

forward is the Weibull model using Total Distance dosing during the trial + MUTD

dose selection at the end of the trial, and the uninformative prior specification.

4.2 Model Comparison

Figure 4.5 likewise shows PCS and Overdose Percentage (n = 30), here com-

paring the best common model, Weibull + MUTD, to the three comparator models:

TITECRM-MC, CRM-MC (assuming all patients have been followed to full observa-

tion), and TITECRM (using partial DLT information only). In Scenario 1, Weibull

+ MUTD performs similarly to the two main comparators under constant generating

hazards, but underperforms for all other generating hazards. This underperformance

occurs due to the comparator methods being conservative and choosing dose level

1 more often in any situation. The common model outperforms the comparators in

Scenarios 2 and 3 under all generating hazards. In Scenario 5 and 9, the common
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model outperforms under non-constant hazards and noticeably more with decreas-

ing hazards. The two main comparator models significantly outperform the common

model in Scenario 8. As before, this outcome can be explained, realizing that the

comparator models are conservative, and the DR toxicity is tightly spread around

the target on dose level 1 as well as dose level 2. The common model has higher

overdose percentage in many scenarios even when PCS is higher. Note, TITECRM

severely underperforms in Scenarios 5 and 8 as expected, and interestingly Scenario

1 as well.

All models struggle somewhat to reach the highest end of the dose range when

dose level 3 or 5 is desired. This is a common problem with dose-finding designs, that

is, the desire to prevent overdosing while also exploring the upper range of doses,

all with a small sample size. Figure 4.6 shows PCS and Overdose Percentage for

n = 60. The differences within scenario are similar, with overall more parity between

the models. The large sample situation n = 100 is left to Appendix A.

Figures 4.7 and 4.8 compare the Accuracy Indices of the best common model

and the comparator models. Where the common model was outperformed in Sce-

nario 1 for PCS and Overdose, there is minimal difference in Accuracy Index. The

common model remains superior in Scenarios 2, 3, and 9 under all generating haz-

ards. Interestingly, the comparator models are negative or close to zero in most

decreasing generating hazard instances for these Scenarios, meaning that on average,

dose selection for these models is less efficient than random selection. The common

model slightly outperforms the comparators in Scenario 5 under decreasing generat-

ing hazards. The drastic difference in Scenario 8 from PCS and Overdose is absent,

here realizing only a subtle difference, because the common model stays close to the

correct dose even when it overdoses (choosing dose level 2).

Overall, there are positives and negatives to both the Weibull + MUTD and
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Figure 4.5: Percent Correct Selection (green/light green) and Overdose (navy) for
Weibull-Skeleton + MUTD candidate model and comparator models (n = 30).
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Figure 4.6: Percent Correct Selection (green/light green) and Overdose (navy) for
Weibull-Skeleton + MUTD candidate model and comparator models (n = 60).
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Figure 4.7: Dose Reduction (light brown/light gray) and DLT (brown/gray) Accuracy
Index values for Weibull-Skeleton + MUTD candidate model and comparator models
(n = 30).
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Figure 4.8: Dose Reduction (light brown/light gray) and DLT (brown/gray) Accuracy
Index values for Weibull-Skeleton + MUTD candidate model and comparator models
(n = 60).
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TITECRM-MC models. The Weibull + MUTD model excels when the desired dose

is higher in the dose range and when the data follow decreasing hazard rates, both

of which are most realistic. Additionally, when the Weibull + MUTD model does

not select the desired dose, it remains reliably close. There are no instances where

the Weibull + MUTD selects dose less efficiently than random, something to which

TITECRM-MC falls victim. However, the Weibull + MUTD does overdose more often

than the comparators. The most direct remedy for this would likely be a modified

decision rule, a path for future work. The TITECRM-MC model excels when desired

dose is the lowest in the dose set. It is also fairly competitive with Weibull + MUTD

in most instances, and keeps overdose relatively low.

4.3 Finite Sample Size Evaluation

While dose selection is the ultimate arbiter of dose-finding designs, that result

is a combination of the underlying model and the dosing decision rule in equal parts.

Fundamentally, the proposed toxicity model in this dissertation is designed to estimate

probabilities. Bias and variance of these estimates from simulation can help evaluate

how well the model is performing at its fundamental task as well as the effect of sample

size on this performance. With true probability of toxicity p and estimated probability

p̂, sample bias, sample variance, and sample mean squared error are defined as

bias = (
1

N

N∑
i=1

p̂i)− p; (4.14)

variance =

∑N
i=1(p̂−

∑N
i=1 p̂

N
)2

N − 1
; (4.15)

MSE = bias2 + variance. (4.16)
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In the presented simulations, each scenario has a desired dose x∗
j , and two true prob-

abilities of toxicity at that dose, pDR and pDLT . The model generates estimated

probabilities p̂DR and p̂DLT . Because the proposed model is Bayesian and updates

after each patient is accrued, both estimated probabilities are available for any sample

size, up to the maximum considered, n = 100.

Figure 4.9 shows the bias and the variance of probability estimates on dose x∗
j ,

and Figure 4.10 shows MSE averaged over the six scenarios shown previously. Again,

each of the four data generating hazards, and here both toxicity threshold pairings

(piDR = 0.4, πDLT = 0.2) or (piDR = 0.5, πDLT = 0.3), are included. Both Constant-

Skeleton and Weibull-Skeleton models are included. In the proposed method, dosing

decision is always based on Total Distance during a trial; so, there is only one instance

of each model.

From Figure 4.9, Constant-Skeleton and Weibull-Skeleton models are ultimately

unbiased under Constant generating hazards. For all other generating hazards, the

Constant-Skeleton model is positive biased over a large sample, while the Weibull-

Skeleton model seems to reach the target probability eventually (some rounding of

true probabilities likely affects exact unbiasedness), getting quite close by n = 40. The

Weibull-Skeleton model often underestimates probability at the beginning. The DLT

bias is lower for both models compared to DR bias (note the varying y-axis scales on

the figure). The variance of probability estimates favors the Weibull-Skeleton model

as well. What may seem odd, the Constant-Skeleton model has lower variance at

n = 10 than n = 20 and n = 30. However, this outcome is related to the positive

bias. The Constant-Skeleton model naturally overestimates hazards and probability,

and compounded with a conservative prior and little data, leads to estimates close to

1. In this situation, variance will naturally be low. After the initial jump, variance

begins to flatten out a touch later than bias, around n = 60.
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The mean squared error, a combination of bias and variance, is monotone de-

creasing over sample size as expected. The Weibull-Skeleton model is better for DLT

and DR probabilities under each generating hazard, even slightly so for Constant gen-

erating hazards. Again, n = 40 seems to be the sample size where the curve begins

to flatten, beyond which extra sample size gives relatively little reduction in MSE.

Overall, bias and variance may be slightly improved in situations when (πDR =

0.4, πDLT = 0.2), but with only subtle differences compared to (πDR = 0.5, πDLT =

0.3). Based on the trajectory of bias, variance, and mean squared error over sample

size, and the previous simulation results, a conservative estimate for recommended

sample size would be n = 60, while n = 40 should provide adequate operating

characteristics and is recommended for efficiency.
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Chapter 5

Efficacy Methods

For Molecularly Targeted Agents and Immunotherapies, efficacy should be evalu-

ated simultaneously along with toxicity in order to recommend doses to carry forward,

as efficacy may not be strictly monotone. Yoh et al. 2017, Hamid et al. 2013, Seiwert

et al. 2016, and Wolchok et al. 2013 are examples of the common way to evaluate

efficacy in an early oncology trial. Tumor burden is recorded at baseline and multiple

follow-up time points for each patient. Percent change-from-baseline is calculated,

and a responder analysis applied to label Complete Response, Partial Response, Sta-

ble Disease, or Progressive Disease. The most common response evaluation criteria

is RECIST. Table 5.1 gives RECIST criteria, including definition of tumor burden.

Other responder criteria include Modified WHO criteria (WHO) and immune-related

Response Criteria (irRC), each quite similar. The percent thresholds in RECIST are

required to be confirmed at separate visits (≥ 4 weeks apart), thus it is not strictly

a maximum change-from-baseline measure.

The only trial mentioned previously that evaluated more than one dose was Wol-

chok et al. 2013 in the form of an individual dose escalation trial. The others had

already chosen a single dose from a previous trial based on toxicity evaluation. Addi-

tionally, in each of these trials, DLTs and Dose Reductions were prevalent; but missing

data after DLTs was ignored, and efficacy was associated exclusively with the initial

dose the patient received. This is a Treatment Policy/While-on-Treatment strategy

for handling DLTs (the strategies are identical if no more follow-up is observed after
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Response Category Definition

Complete Response (CR) Disappearance of all target lesions.

Partial Response (PR)
At least 30% decrease in the sum of the Longest Diameter (LD) of 
target lesions, taking as reference the baseline sum LD. 

Stable Disease (SD) Neither sufficient shrinkage for PR nor increase for PD.

Progressive Disease (PD)

At least 20% increase in the sum of the LD of target lesions, taking as 
reference the smallest sum LD recorded since the treatment started or 
the appearance of one or more new lesions. 

Table 5.1: RECIST responder criteria

DLT) and a Treatment Policy strategy for Dose Reductions, where DLTs and DRs

are intercurrent events in the estimand framework (see Chapter 1 for definitions).

Treatment Policy is the primary estimand strategy for efficacy trials in the United

States as it is meant to provide a realistic description of efficacy, including events

that are expected to occur in practice. The estimand resulting from a combination of

these strategies and a maximum change-from-baseline-type outcome, defined fully in

Table 5.2, attempts to answer the question, What is the maximum achievable tumor

response for a given dose in a clinical setting?

Element Characteristic

Population Patients with certain type of cancer, inclusion criteria.

Variable Maximum CfB or Maximum CfB (2 visits) by time t (e.g. 48/52 weeks).

Intercurrent Events
Dose Reduction (Treatment Policy),  DLT (Treatment Policy/While-on-
Treatment).

Population Level Summary Proportion of overall responders, by dose.

Table 5.2: Estimand definition of common maximum change-from-baseline outcome
criteria.

However, chronic therapies, such as targeted agents and immunotherapies, should

be evaluated chronically, characterizing the full efficacy profile of the drug. This
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estimand, then, fails to identify the treatment effect of interest. A more relevant

question would be, What is the expected efficacy by time t after an expected number

of toxicity events? The next section presents an illustration of artificial data to help

describe these shortcomings and present a better estimand.

5.1 Illustration

Tumor burden data from the previously mentioned trials (Figure 1.2 and Ap-

pendix A.1) are valuable for observing the possible trajectories and levels of noise in

percent change-from-baseline response. However, the same data are limited in their

ability to study potential estimands as they do not label which patients have had

DLTs, label which patients have had Dose Reductions and when, or contain multiple

initial dose groups. Thus, an illustration of artificial data is generated in Figure 5.1

where all of this information is known.

Three dose levels are assumed, with six patients on each dose measured at base-

line as well as every 8 weeks up to 48 weeks. Patients can come off the trial early for

an uninformative reason (large circle) or a DLT (large square), and can have a Dose

Reduction while continuing the trial (large triangle). A dose level 0 is assumed to

exist to which dose level 1 patients would be reduced. On dose level 3, 2/6 patients

have a DLT and 3/6 patients have a DR, with 1/6 DLTs and 2/6 DRs on dose level

2, and 0/6 DLTs and 1/6 DRs on dose level 1. All dose levels have two patients with

missing data for reasons unrelated to either the toxicity or efficacy outcomes of the

trial, such as loss to follow-up or trial end.

The “Small Regression,” “Medium Regression,” and “Large Regression” scenarios

refer to the degree to which patients tend to regress (increase) after a period of tumor

reduction, as evidenced in practice in Figures 1.2 and Figure A.3. The responder
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cutoffs are set at 80%, 30%, and 0% reduction (a slight modification of RECIST).

In this situation, assume the drug development stakeholders are looking for at least

a 50% overall response rate (PR + CR) to move forward with a dose. Toxicity

thresholds are set as πDR = 0.5 and πDLT = 0.33.

The three scenarios have noticeably different average trajectories. The Small

Regression scenario exhibits monotonic tumor change almost exclusively, with most

reduction occurring early, similar to Figure A.2. Conversely, most patients in the

Medium Regression scenario have a non-monotone U-shaped trajectory, where tumor

burden increases by the end of follow-up after an initial sharp decrease, similar to

Figure A.3. The Large Regression scenario is a more extreme U-shaped example,

similar to a version of Figure 1.2, with longer observation. If the entire trajectory is

important in assessing efficacy, as asserted, intuitively these scenarios have differing

efficacy profiles over a follow-up time of interest 48/52 weeks. However, Table 5.3

shows that the traditional estimands would describe these scenarios as exactly or

almost exactly the same.

The Max CfB estimand has the same number of responders (PR and CR) in

each scenario for a given dose. The amount of regression in later follow-up visits

makes no difference. The Max CfB (2) estimand, meant to represent a RECIST-type

evaluation, is almost exactly the same over scenarios, with a few minor differences.

In the Medium and Large Regression scenarios, Max CfB (2) assigns one overall

responder on Dose 1 (instead of two) and four overall responders on Dose 3 (instead

of five). Using just sample estimates, all three doses are safe (Dose 3 just on the

threshold), and Doses 2 and 3 are efficacious on either estimand. These two doses

could move forward.

The traditional estimands are not able to use the observed level of regression to

meaningfully distinguish between scenarios. Similarly, the effect of dose reductions
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Figure 5.1: Artificial percent tumor change data for three different trajectory situa-
tions including missing data.
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Dose Estimand

prog. stable part. comp. prog. stable part. comp. prog. stable part. comp.

Max. CfB 1 3 2 0 2 1 3 2 0 2 1 3 2 0 2
Max. CfB (2) 1 3 2 0 2 1 4 1 0 1 1 4 1 0 1
LOCF 1 4 1 0 1 3 3 0 0 0 5 1 0 0 0

Max. CfB 0 1 4 1 5 0 1 4 1 5 0 1 4 1 5
Max. CfB (2) 0 1 4 1 5 0 1 5 0 5 1 1 4 0 4
LOCF 0 1 4 1 5 0 3 3 0 3 3 0 3 0 3

Max. CfB 1 0 2 3 5 1 0 2 3 5 1 0 2 3 5
Max. CfB (2) 1 0 2 3 5 1 1 1 3 4 1 1 2 2 4
LOCF 1 0 3 2 5 1 1 3 1 4 2 1 3 0 3

Scenario

Small Regression Medium Regression Large Regression

Dose 3

Efficacy Efficacy Efficacy

Dose 1

Dose 2

Table 5.3: Responder analysis of artificial data using traditional estimands.

is not taken into account. If a patient experiences a dose reduction, their efficacy

trajectory will almost certainly be diminished compared to the patient remaining on

their initial dose. But because the maximum tumor decrease often occurs in one

of the first visits, the effect of a dose reduction will not be reflected much in this

measure, if at all. The effect would show in later visits.

A missing data method common in efficacy trials uses the last observation for

each patient, or Last Observation Carried Forward (LOCF), again recording post-

DLT visits as missing and associating the response with initial dose. An estimand

using this method is defined in Table 5.4. The Population and Intercurrent Event

elements remain the same, but the Variable and Population Level Summary elements

are now redefined. LOCF is the most basic way to estimate the response at time of

interest t in the face of missing data. The efficacy responses using this estimand are

shown in Table 5.6 as well (LOCF).
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Element Characteristic

Population Patients with certain type of cancer, inclusion criteria.

Variable Change-from-baseline at time t (e.g. 48 weeks).

Intercurrent Events
Dose Reduction (Treatment Policy),  DLT (Treatment Policy/While-on-
Treatment).

Population Level Summary Proportion of overall responders, by dose.

Table 5.4: Estimand definition using Last Observation Carried Forward method.

The LOCF estimand attempts to answer a more appropriate question, What

is the efficacy by time t for a given dose in a clinical setting? It can incorporate

some tumor regression and some effect of dose reduction, characterizes the observed

trajectory, and would be preferred over the previous estimands. However, the LOCF

estimand fails to answer its question appropriately. It suffers from a time scale issue,

again caused by the potential U-shaped trajectory. If a dose level contains a high

number of DLTs happening near the bottom of the “U,” these DLT patients will be

recorded as experiencing a large reduction in tumor burden because the observation

is occurring on an abbreviated time scale. The LOCF procedure implies the response

profile of the subject remains constant after missing until the timepoint of interest.

A lower dose that causes minimal DLTs would be seen as much worse because these

patients complete follow-up and follow their U-shape through its regression, even if

maximum tumor change between doses are similar. The more toxic dose benefits

from causing a harmful event. This would not be an issue if efficacy trajectory were

reliably monotonic. In this case, coming off the drug early would express poorly in

the recorded efficacy, and would be a realistic representation of what to expect in

a clinical setting, so the LOCF estimand would suffice. Significant literature exists

criticizing the shortcomings of LOCF endpoints (Gadbury, Coffey, and Allison 2003,

Streiner 2008, Lachin 2016).
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Increasingly more often, an estimand procedure is being used in clinical trials

where negative intercurrent events are incorporated into the efficacy response variable

itself via “poor” imputation, in an attempt to address multiple outcomes with a

single measure. In this procedure, patients who experience an intercurrent event and

subsequently produce missing data are not imputed with their expected outcome, but

with an artificial poor outcome worse than expected. This is a Composite estimand.

With the proposed model, Dose Reductions are included in the toxicity evaluation,

thus a Composite estimand is unnecessary. What is desired is a realistic outlook for

efficacy, while addressing the issues at hand.

5.2 Two-Level Multiple Imputation

With the potential of U-shaped tumor burden trajectories, data from the latter

half of follow-up must be considered in order to fully characterize the efficacy profile

of the dose/drug. Moreover, a common time point is necessary to properly compare

efficacy among doses. Patients with incomplete data should have their missing visits

imputed by a model, one that incorporates a potential U-shape, (doses can then be

compared at a common time point), as well as Dose Reductions and DLTs (to include

the effect of toxicities). The goal is to create an estimand that follows the theme of

Treatment Policy while addressing the major issues caused by missingness.

Multiple imputation (M.I.) is a common and accepted procedure for handling

missing data. Covariates can be included that better inform imputation of the re-

sponse, validate a Missing at Random assumption, and can be imputed themselves

if missing. The present setting is rare in the M.I. context, though, because longi-

tudinal data, like tumor burden, is two-level or clustered data. Multiple responses

are recorded on the same patient over time, thus each response is not independent;
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responses within an individual are correlated. A two-level multiple imputation model

is necessary. Initial dose, DLT occurrence, and Dose Reduction occurrence are im-

portant covariates in the current setting. Other covariates could be included as well,

if measured. The estimand definition for this Treatment Policy M.I. estimand is given

in Table 5.5.

Element Characteristic

Population Patients with certain type of cancer, inclusion criteria.

Variable Change-from-baseline at time t (e.g. 48 weeks).

Intercurrent Events
Dose Reduction (Treatment Policy with M.I.),  DLT (Treatment 
Policy with M.I.).

Population Level Summary Proportion of overall responders, by dose.

Table 5.5: Estimand definition for the proposed Multiple Imputation-based method.

Assumptions

By definition, data is monotone missing for a patient after a DLT. An imputation

model thus makes an assumption about patients after they have a DLT. For example,

if initial dose is included as the only covariate in a two-level imputation model, this

assumes DLTs and Dose Reductions are uninformative. Patients with DLTs and

Dose Reductions are expected to have the same average trajectory as those with no

toxicity events, which is unrealistic. The goal is to make an assumption that most

closely follows the theme of Treatment Policy, or what would be expected to occur

in practice. What happens after a DLT in practice can vary. A patient may likely

begin a different therapy, or may come off therapy entirely. It is also possible that

DLTs could be reversible, and a patient could return back to the drug after a period

of time, akin to a more severe Dose Interruption or Reduction.
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If DLTs are reversible, then a patient with a DLT could be assumed to move

to the next lower dose level and imputed. Toxicity occurrence could be imputed

as well to see if any more dose reductions should be expected during the missing

visits. If a patient is assumed to come off therapy entirely, this assumption could be

implemented directly as a “jump-to-reference,” where the patient is imputed based

on a reference or placebo group. To assume a patient goes on a different therapy

is undesirable, even if expected, because information regarding the different therapy

for use in the imputation model might be hard to come by, and the resulting efficacy

estimates would be a combination of effects between the two therapies. In this case, it

is preferable to again assume a “jump-to-reference” group. The effect of DLTs would

be appropriately incorporated, and efficacy attributable to the drug of interest would

be isolated.

Information on a placebo group is preferred in order to implement jump-to-

reference in the imputation model, signaling a switch to placebo when a DLT occurs.

However, most dose-finding trials do not include a placebo group. A substitute could

be imputing DLT patients based on switching to the lowest dose given in the trial.

Theoretically, this action should overestimate efficacy, but would still be closer to the

true effect of interest than traditional estimands.

For the current illustration, no placebo data is assumed to be available, so jump-

to-reference via dose level 1 is the best option. Any patient who has a DLT is assumed

to move to dose level 1 for the remainder of their visits. Patients who come off for an

uninformative reason have both dose and tumor burden imputed. This imputation

model then begs the question, What is the estimated efficacy of patients at time t,

attributable to the drug of interest, after an expected number of toxicity events? Dose

Reductions are also treated with Treatment Policy by including their occurrence in

the imputation model. Dose Reductions are an event expected to occur in practice,
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and the question ”what is a patient’s expected efficacy if they stayed on their initial

dose?” is not of interest.

Model

Van Buuren and Groothuis-Oudshoorn 2011 implement a Bayesian Gibbs sam-

pler for the multivariate linear mixed effects model (Schafer and Yucel 2002) in the

special case where within-group variance is homogeneous. Let the multivariate linear

mixed effects model be represented as

yj = Xjβ + Zjbj + ϵj, (5.1)

where yj is an nj × r matrix of multivariate responses from j clusters (individuals in

this case), j = 1, ...,m. The matrices Xj(nj ×p) and Zj(nj × q) are known covariates,

and β(p× r) and bj(q × r) are fixed effects and random effects, respectively. The nj

individual response vectors are independently distributed N(0,Σ) while each vector

of bj is N(0,Ψ).

Assume parts of yj = (y1, y2, ..., ym) are Missing at Random. Let yj(obs) and

yj(mis) denote the observed and missing parts of yj, respectively, and let the unknown

parameters be θ = (β,Σ,Ψ). Multiple Imputation generates m independent draws of

yj(mis) from the posterior predictive distribution for the missing data,

P (Yj(mis)|Yj(obs)) =

∫
P (Yj(mis)|Yj(obs), θ)P (θ|Yj(obs))dθ, (5.2)

where P (θ|Yj(obs)) is the posterior distribution. See Van Buuren and Groothuis-

Oudshoorn 2011 for more details regarding the Gibbs sampling and imputation algo-

rithm to estimate P (Yj(mis)|Yj(obs)) and sample yj(mis).
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The response variable tumor burden is imputed as a continuous variable with

time, time2, and dose level as fixed effects and time, time2, and an intercept with

additional random effects. Including dose level itself to signify toxicity events means

that Dose Interruptions, if recorded, would not show up in the model (regular Treat-

ment Policy strategy). This assumption is reasonable as Dose Interruptions are not

expected to meaningfully affect the efficacy trajectory as the patient stays on their

initial dose.

Depending on the assumption made of patients post-DLT, dose level may be

missing as a covariate as well. Dose level is a categorical variable with more than

two categories. Without a two-level multinomial model available, a single-level multi-

nomial model is used to impute missing dose level values with time, time2, tumor

burden, and initial dose level as covariates. The illustrated data is imputed via the

MICE package in R, using a Fully Conditional Specification (FCS) approach, where

missing covariates and missing responses are imputed through specifying a condi-

tional density for each incomplete variable, via the models described previously. The

imputation algorithm can be summarized as follows.

1. Create random starting imputations for missing tumor response and dose level

covariate.

2. Fit dose level model with its “complete” covariates. Generate imputations for

missing dose level.

3. Fit tumor burden model with its “complete” covariates, using previously im-

puted values of missing dose level. Generate imputations for missing tumor

burden.

4. Fit analysis model if desired.



83

5. Repeat steps 2 through 4 m times.

If desired, any valid full-data analysis model could be fit to the imputed data at

each step, and the resulting parameter estimates combined via Rubin’s Rules (Rubin

2004). For the purpose of this illustration, imputed data alone is enough. Average im-

puted tumor burden data from the two-level multiple imputation model with m = 20

imputations is shown in Figure 5.2.

Illustration results

Patients who initially experienced tumor reduction are imputed with a seemingly

reasonable level of regression (increase) based on the scenario. Those patients with an

initial increase in tumor burden show a regression to the mean that may or may not

be realistic in all scenarios, but on average should still allow for effective conclusions.

Table 5.6 shows the outcomes of previous estimands with the Imputation esti-

mand now included. Dose 2 and Dose 3 Imputation outcomes are slightly different

over scenario compared to the LOCF estimand. The important changes result from

Dose 2 in Medium Regression and Dose 2 and 3 in Large Regression. In the Medium

Regression scenario, all estimands describe Dose 3 as efficacious and Dose 1 as non-

efficacious using sample estimates. With Dose 2, the three previous estimands all

show efficacy (5/6, 5/6, 3/6 overall responders) while Imputation does not show effi-

cacy (2/6). According to the three previous estimands, Dose 2 and Dose 3 could be

selected to move forward, but the Imputation estimand would choose only Dose 3.

In the Large Regression scenario, the differences between estimands exacerbate.

Dose 2 offers the same conclusion as in the Medium Regression scenario, with Im-

putation as the only estimand showing no efficacy (2/6). Here, Imputation shows

Dose 3 as non-efficacious as well (2/6), while each of the previous estimands shows
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Figure 5.2: Artificial percent tumor change data for three different trajectory situa-
tions with two-level imputation (m = 20).
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Dose Estimand

prog. stable part. comp. prog. stable part. comp. prog. stable part. comp.
Max. CfB 1 3 2 0 2 1 3 2 0 2 1 3 2 0 2
Max. CfB (2) 1 3 2 0 2 1 4 1 0 1 1 4 1 0 1
LOCF 1 4 1 0 1 3 3 0 0 0 5 1 0 0 0
Imput. 1 4 1 0 1 2 4 0 0 0 4 2 0 0 0

Max. CfB 0 1 4 1 5 0 1 4 1 5 0 1 4 1 5
Max. CfB (2) 0 1 4 1 5 0 1 5 0 5 1 1 4 0 4
LOCF 0 1 4 1 5 0 3 3 0 3 3 0 3 0 3
Imput. 1 1 3 1 4 0 4 2 0 2 3 1 2 0 2

Max. CfB 1 0 2 3 5 1 0 2 3 5 1 0 2 3 5
Max. CfB (2) 1 0 2 3 5 1 1 1 3 4 1 1 2 2 4
LOCF 1 0 3 2 5 1 1 3 1 4 2 1 3 0 3
Imput. 1 1 3 1 4 1 1 4 0 4 3 1 2 0 2

Scenario

Small Regression Medium Regression Large Regression

Efficacy Efficacy Efficacy

Dose 1

Dose 2

Dose 3

Table 5.6: Responder analysis of artificial data using traditional and proposed esti-
mands.

efficacy again (5/6, 4/6, 3/6). Therefore, the Imputation estimand would recommend

no doses to move forward, while the previous estimands would each recommend Dose

2 and Dose 3.

When an obvious U-shape is present, the chosen estimand clearly affects which

doses are considered efficacious. Depending on how closely tumor burden correlates

to a survival endpoint, this difference could mean preventing non-efficacious (and

possibly toxic) doses from being studied in late phase trials, saving time, money, and

sub-optimal patient outcomes. Ultimately, though, the desired estimand should be

chosen to best address the treatment effect of interest. The Imputation estimand is

fundamentally better in this regard than other potential estimands.

An imputation procedure can be effective using a responder outcome, as shown,

but would be more appropriate using raw tumor change data or simply raw tumor

data. (Tumor change itself is not an ideal response, see Chapter 6.) Regarding the
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estimand definition, only the Population Level Summary element would change. An

analogous analysis to the responder method would be to set a target of 30% average

tumor reduction for a given dose. Table 5.7 shows average percent change in tumor

burden for each dose, estimand, and scenario.

Dose Estimand

Max. CfB -20 -20 -17
Max. CfB (2) -14 -9 -7
LOCF -12 13 37
Imput. -8 16 26

Max. CfB -54 -54 -50
Max. CfB (2) -48 -42 -32
LOCF -51 -31 -10
Imput. -44 -23 -4

Max. CfB -62 -64 -62
Max. CfB (2) -60 -53 -49
LOCF -58 -41 -20
Imput. -54 -42 -6

Dose 1

Dose 2

Dose 3

Scenario

Medium Large Small

Table 5.7: Average percent tumor burden change-from-baseline of artificial data using
traditional and proposed estimands.

Many of the trends from the responder analysis table are consistent, except now

shown in more detail. The Max CfB estimand is almost identical for a given dose over

regression scenarios, while each estimand is fairly similar for a given dose under the

Small Regression scenario. Doses 2 and 3 would be recommended by all estimands in

Small Regression. In Medium Regression, LOCF and Imputation are different from

the other estimands; moreover, there is a significant difference between each other on

Dose 2, where LOCF would recommend (-31), but Imputation would not (-23), based
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on sample estimates alone. All estimands would recommend Dose 3 here. In Large

Regression, neither LOCF nor Imputation would recommend any of the three doses

(a change for LOCF from responder analysis), while the traditional estimands would

recommend Dose 2 and Dose 3 as before.

5.3 Dose Selection

Under the current framework, dose is assigned during the trial utilizing toxicity

information only. At the end of a trial, the dose x∗
j is the maximum dose with

estimated toxicity of probability under both targets πDR and πDLT . Thus, all doses

x∗
j or lower are considered safe, if x∗

j exists. Let the set of safe doses be defined as

X∗
−.

X∗
− = {xj ∈ X : xj ≤ x∗

j}. (5.3)

It may be that there is a plateau or peak in efficacy such that consecutive doses provide

similar efficacy. To determine which dose or doses are recommended in order to move

forward, the question then becomes whether doses in X∗
− below x∗

j can provide an

adequate efficacy profile with significantly lower toxicity. A definition must be given

then for what is required of efficacy to be adequate and what is required toxicity to

be significantly lower.

Let there be an efficacy threshold πE (binary outcome) or µE (continuous out-

come) specified before the trial (if none is specified, (πE, µE) = 0) where XE− is the

set of doses in X∗
j− such that the estimated efficacy of each dose is greater than or
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equal to πE or µE.

XE− = {xj ∈ X∗
− : π̂E,j ≥ πE} (5.4)

XE− = {xj ∈ X∗
− : µ̂E,j ≥ µE}. (5.5)

If the set XE− is empty, the drug is considered too toxic or not efficacious enough

to continue study. Let the maximum dose in this set be represented as xmax
E−

. If the

proposed method is being used in a combined Phase I/II setting with a relatively

larger sample size, and a single dose is desired to begin an efficacy registration trial,

then the “best dose among safe doses” xmax
E−

is recommended. This is the Optimal

Biological Dose as defined in Chapter 1.

If the proposed method is being used in a strictly Phase I dose-finding setting

with a relatively smaller sample size, and a separate Phase II toxicity and efficacy

evaluation planned, it is beneficial to recommend multiple doses to move forward (see

Chapter 6 for discussion). The following simple algorithm can be used. When XE−

contains one or two doses, then all of XE− is selected for further study. When XE−

contains three or more doses, define an adequacy proportion parameter aE and a

toxicity proportion parameter bT , 0 < aE, bT ≤ 1. A suggestion would be aE = 0.75

and aT = 0.25. If xmax−1
E−

and xmax−2
E−

in XE− have estimated efficacy within aE∗π̂E,max

and toxicity lower than (1− aT ) ∗ π̂DR,max and (1− aT ) ∗ π̂DLT,max, then xmax−1
E−

and

xmax−2
E−

are selected for further study without xmax
E−

. The dose xmax−3
E , if it exists, is

never considered for further study. In other words, using the suggested values, doses

xmax−1
E−

and xmax
E−

are selected for further study, unless estimated efficacy on xmax−1
E−

and xmax−2
E−

is within 75% and estimated toxicity is reduced by more than 25% (Dose

Reductions and DLTs) of xmax−1
E−

.
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Chapter 6

Discussion

Decisions are guided by limited data setting.

When operating in Phase I and Phase I/II trials, the greatest limitation is sample

size. These trials are necessarily “small” data. This fact has guided each modeling

decision within this dissertation. The forms of the conditional hazards in the toxic-

ity model can be viewed as under-parameterized. This decision was made, though,

for the same reasons the original CRM is a one-parameter model. Estimating addi-

tional parameters with such limited data comes at a great variance cost. The current

specifications are an attempt to retain important assumptions about the data while

minimizing the number of parameters.

The Bayesian framework for estimation is adopted for two reasons, common to

the literature. With toxic drugs (even if less toxic than chemotherapies), it is ethical

to update the model throughout the trial, so that new patients are not enrolled at

dangerous doses based on the data at hand. The Bayesian framework allows for this

updating without the need for multiple comparison adjustments to control some Type

I error rate. Similarly, data already collected can be used effectively to inform the

dose that a newly enrolled patient receives.

Sample size of n = 40 is recommended for toxicity evaluation.

Based on simulation results, a sample size of n = 40 provides good operating

characteristics and selection performance based on toxicity estimation alone. Con-
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versely, sample sizes of n = 10 and n = 20 are quite noisy and biased, and should not

be considered for a robust evaluation of toxicity. A conservative sample size, to bet-

ter guarantee accurate estimates and selection, is n = 60. Beyond n = 60, there are

negligible improvements in PCS, Overdose percentage, accuracy index, and bias and

variance of toxicity probability estimates. Somewhere between n = 40 and n = 60

should suit efficacy evaluation as well, where ∼5 doses are studied. Sample size for

efficacy is not studied in this dissertation. To design a proper simulation study would

require more information about real trial efficacy.

Responder analysis and change-from-baseline response are flawed.

Regarding efficacy, two aspects of the outcome variable should be discussed

further: responder analysis and percent change-from-baseline transformation. A

RECIST-type responder analysis is a discretization of a continuous outcome into

four, and ultimately two, categories. From Diniz, Tighiouart, and Rogatko 2019,

“[d]espite...an extensive statistical literature showing that discretizing continuous

variables results in substantial loss of information, categorization of continuous vari-

ables has been a common practice in clinical research and in cancer dose finding

(Phase I) clinical trials.” The context of Diniz’s statement was set in the discretiza-

tion of dose sets, but this general statement is equally applicable to the context

of measurable endpoints. Much work has been accomplished in various contexts at-

tempting to discretize continuous variables optimally. However, the fact remains that

discretizing a continuous variable leads to a loss of information. Modeling longitudi-

nal tumor burden directly is preferred in order to utilize the maximum information

available, when limited information is available to begin with, instead of an arbitrary

dichomtomization.

Additionally, although change-from-baseline outcomes are ubiquitous in clinical
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trials, a strong argument can be made that they are inappropriate in parallel group

studies, of which a dose-finding trial is one, especially percent change-from-baseline.

The purpose of a parallel-group study is not to compare a patient with themselves

at baseline, but to compare the groups. Per Harrell 2022, “Within-patient change

is affected strongly by regression to the mean and measurement error. When the

baseline value is one of the patient inclusion/exclusion criteria, the only meaning-

ful change score requires one to have a second baseline measurement post patient

qualification to cancel out much of the regression to the mean effect. It is the second

baseline that would be subtracted from the follow-up measurement.” Additionally, the

baseline value must be linearly related to the post value to allow for valid analysis.

Percent change-from-baseline compounds these issues by creating an asymmet-

ric measure where subtracting itself does not make sense. Suppose a patient started

with 5cm tumor burden and increased to 10cm, while another patient started at 10cm

tumor burden and decreased to 5cm. This effect should be zero; however, percent

change-from-baseline is 100% and -50%, averaging out to +25% change. The solu-

tion would be to analyze raw tumor burden value. As mentioned in Chapter 5, the

proposed imputation procedure could be used with such a continuous response. The

illustration focuses on a responder analysis and percent change-from-baseline out-

come, despite their faults, because of ubiquity, that a researcher may see immediate

value in applying the current methods.

Multiple imputation with a mixed model allows necessary flexibility.

Repeated Measures ANCOVA compares responses of groups when individuals

have repeated measures, but there are conflicts with the assumptions of this model

and the current efficacy setting. Time of visit is often not fixed and visits are un-

balanced, as evidenced in the example trials, in which case a mixed model treating
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time as continuous is necessary. Subsequently, the effect of time can be modeled as

nonlinear. Also, the goal of evaluating efficacy is likely identifying which dose levels

exceed a separate, prespecified target value, rather than identifying which dose levels

are significantly different from each other. Imputing continuous values better allows

for this comparison, whether the target value is an average tumor burden reduction

or a categorized response rate.

Selecting more than one dose is encouraged.

As suggested in Section 2.5, more than one dose should be evaluated until at

least the start of a Phase III registration trial. Targeted therapies are expected to

have long-term and cumulative toxicities; and while proper design of the trial can

create an efficient environment, more time and information is necessary for proper

evaluation (Janne et al. 2016). Targeted therapies often exhibit a delicate balance of

benefits and risks; and with the greater possibility of an efficacy plateau, evaluating

toxicity and efficacy more thoroughly over a range of doses is beneficial (Bullock,

Rahman, and Liu 2016). The proposed toxicity and efficacy methods can be utilized

in a small Phase I dose-finding trial that suggests multiple doses to move forward.

Or, it can be utilized in a more expansive Phase I/II setting that evaluates multiple

doses throughout, choosing a single dose at the end.

TITECRM-MC significantly contrasts with the proposed toxicity method.

As TITECRM-MC is the only other method in the literature that addresses

dose reductions by incorporating both graded toxicity and partial information, the

important differences with the proposed toxicity method should be highlighted. The

main difference is that toxicity in TITECRM-MC is ordinal. This means a patient

can be recorded as a Moderate Toxicity (Dose Reduction) or a DLT, but not both.
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If a patient has a Dose Reduction and a subsequent DLT, the model considers that

patient only as a DLT. Conversely, the proposed method would consider one Dose

Reduction and one DLT for such a situation.

An ordinal outcome also means that all toxicity is associated with initial dose.

In the situation described previously, the DLT is associated with the patient’s initial

dose, even though the patient is on a lower dose between the time of Dose Reduction

and DLT. The reduced dose in never included in the model. It is likely in trial protocol

that an interruption period is applied after a Dose Reduction to allow the initial

toxicity to resolve. This means that a subsequent DLT would be a combination of

the cumulative effects of the initial dose and the reduced dose, but more appropriately

associated with the reduced dose. The proposed method is fit to handle both Dose

Reduction and Dose Interruption situations. TITECRM-MC is more appropriately

designed for inclusion of Dose Interruptions only, during which a patient stays on

their initial dose.

If the likelihood weight parameter of TITECRM-MC is linearly constant, as is

common, this would also be unfavorable, as the probability of toxicity will most likely

be decreasing over the time window. This is evidenced in the simulations, where the

proposed method performed better on data generated by decreasing hazard rates.

The proposed method does pay a price by estimating four parameters instead of two,

but seems to benefit.

6.1 Novel Contributions

Listed below are what are assumed to be the novel contributions in this disser-

tation.

• The application of a semi-competing risks framework to dose-finding trials.
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• Constant-Skeleton and Weibull-Skeleton conditional hazard formulations.

• A toxicity model that can incorporate both Dose Interruptions and Dose Re-

ductions separately.

• A method that explicitly controls the rate of Dose Reductions.

• The development of the likelihood associated with the five-transition model.

• The development of the transition probabilities associated with the five-transition

model.

• An original derivation of the likelihood and transition probabilities associated

with the three-transition or illness-death model.

• A simulation study of the Constant-Skeleton and Weibull-Skeleton illness-death

models in a realistic setting compared with other designs used in current clinical

settings.

• Asymptotic proof that the MUTD dose selection mechanism using derived tran-

sition probabilities will choose the desired dose.

• Recommendation of appropriate sample size when using the proposed toxicity

method based on simulation.

• Application of two-level multiple imputation to handle missing tumor reduction

data resulting from DLTs while incorporating Dose Reductions.

• A novel efficacy estimand for binary and continuous outcomes in tumor burden

context.

• Use of the above methods in order to make dosing decisions in an oncological

setting.



95

6.2 Limitations and Future Work

Nowadays, targeted agents and immunotherapies are often given in combina-

tion with each other or in combination with traditional therapies. Drug combination

strategies are not discussed in this dissertation, but could be explored to make the

proposed framework more robust for application. A reasonable strategy to handle

multiple drugs is to specify a set of “simple orderings” from the known “partial or-

derings” induced by a two-dimensional or n-dimensional grid of doses, as detailed in

Wages, Conaway, and O’Quigley 2011. Then, when dosing patients, the observed

data can be used to first choose the most likely simple ordering of dose combinations

before choosing the best dose combination within that simple ordering.

Moreover, a common characteristic of initial dose-finding trials is a stopping rule,

where a trial can be terminated early for success or failure based on overwhelming

toxicity or efficacy data. With stopping rules also come multiple comparison consid-

erations. Using the data to make inferences at multiple time points, each with its

own error rate, requires adjustments to each individual inference to control an overall

decision-making error rate. Stopping rules and related multiple comparison consider-

ations are not discussed in this dissertation. Similarly, in the simulations, never was

it the case that zero doses were chosen. Instead, if all doses were estimated to be too

toxic, dose level 1 was chosen. It may be interesting to see how often the proposed

method rejects all doses as too toxic when it should do such, as in simulation Scenario

7.

The most complex toxicity model considered was the Weibull-Skeleton model,

a four parameter model. More complexity is unlikely to be beneficial. But because

the Weibull-Skeleton became the preferred model, a model with an extra parameter

could be considered to explore additional complexity. This extra parameter could add
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flexibility to dose scaling or represent patient heterogeneity. Or rather, the Weibull-

Skeleton model could have β removed, leaving dose scaling to the skeleton itself,

trying fit non-constant hazards with a three-parameter model.

Obviously, more priors and more data generating scenarios could be considered

in simulation. If feedback identifies additional scenarios that were not considered,

further simulations could be added. One situation that may be of interest in the

context of the illness-death model is when a patient may have a Dose Interruption or

a Dose Reduction. Similarly, simulations could be conducted on the five-transition

model, assuming there could be two Dose Reductions, or that each patient could

have a Dose Interruption and a Dose Reduction. Also, the dosing decision rules could

be further modified in order to find an optimal balance of aggressiveness in dose

escalation and restriction. The dosing decision rule used in the TITECRM-MC (Lee

et al. 2019) is different from any considered in the proposed method, and may present

an interesting balance in cautiousness.

With regard to the Multiple Imputation model for efficacy, the optimal set of

covariates for imputation of the response may be different depending on the specific

drug and population setting. For example, it may be beneficial to structurally differ-

entiate between responders and non-responders. From the real trial efficacy shown

in this dissertation, there is reliably a set of patients that immediately respond to

the drug, seeing their tumor burden decrease in the first follow-up visits, and a set a

patients that do not respond to the drug, seeing their tumor burden stay constant or

only increase from the start. Two populations thus emerge. Values from initial visits

could be used to define these populations and subsequently included as a covariate

in the imputation model. This should help generate more realistic imputations for

those whom experience initial increase in tumor burden, as in the current illustration

there is regression to the mean which may not be most realistic. Additionally, the
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multinomial model used to impute dose level was not a two-level model because such

a model is not readily available to use for imputation. The focus of the current ef-

ficacy work is on the estimand and missing data assumptions and not the technical

modeling aspects, yet in the future, more work could be done to adapt or develop a

multinomial imputation model for this purpose.
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Appendix A

Figures and Tables

A.1 Tumor burden from real trials

Figure A.1: Percent change from baseline in tumor burden for nivolumab plus ipili-
mumab in patients with advanced melanoma from Wolchok et al. 2013.
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Figure A.2: Percent change from baseline in tumor burden for lambrolizumab in
patients with advanced melanoma from Hamid et al. 2013.

Figure A.3: Percent change from baseline in tumor burden for pembrolizumab in
patients with recurrent or metastatic squamous cell carcinoma of the head and neck
from Seiwert et al. 2016.
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A.2 Simulation supplement
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model combination over all data generating hazards (n=60).
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Figure A.6: Percent Correct Selection (green) and overdose (navy) for each candidate
model combination over all data generating hazards (n=100).
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Figure A.8: Dose Reduction and DLT Accuracy Index values for each candidate model
over all data generating hazards (n = 60).
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Figure A.9: Dose Reduction and DLT Accuracy Index values for each candidate model
over all data generating hazards (n = 100).



115

−1.0 −0.5 0.0 0.5 1.0

TITECRM

CRM−MC

TITECRM−MC

weib/mutd

TITECRM

CRM−MC

TITECRM−MC

weib/mutd

TITECRM

CRM−MC

TITECRM−MC

weib/mutd

TITECRM

CRM−MC

TITECRM−MC

weib/mutd

Scenario 1
C

onstant
S

m
all

Increasing
S

m
all

D
ecreasing

Large
D

ecreasing

−1.0 −0.5 0.0 0.5

Scenario 2

−1.0 −0.5 0.0 0.5

TITECRM

CRM−MC

TITECRM−MC

weib/mutd

TITECRM

CRM−MC

TITECRM−MC

weib/mutd

TITECRM

CRM−MC

TITECRM−MC

weib/mutd

TITECRM

CRM−MC

TITECRM−MC

weib/mutd

Scenario 3

C
onstant

S
m

all
Increasing

S
m

all
D

ecreasing
Large

D
ecreasing

−1.0 −0.5 0.0 0.5

Scenario 5

−1.0 −0.5 0.0 0.5

TITECRM

CRM−MC

TITECRM−MC

weib/mutd

TITECRM

CRM−MC

TITECRM−MC

weib/mutd

TITECRM

CRM−MC

TITECRM−MC

weib/mutd

TITECRM

CRM−MC

TITECRM−MC

weib/mutd

Scenario 8

C
onstant

S
m

all
Increasing

S
m

all
D

ecreasing
Large

D
ecreasing

−1.0 −0.5 0.0 0.5

Scenario 9

 Accuracy Index: DR              Accuracy Index: DLT.. ..
Figure A.10: Dose Reduction (light brown/light gray) and DLT (brown/gray) Accu-
racy Index values for Weibull-Skeleton + MUTD candidate model and comparator
models (n = 30).
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Hazards Scenario Targets

alpha lambda1 lambda2 beta0 beta1 Dose1 Dose2 Dose3 Dose4 Dose5 Dose1 Dose2 Dose3 Dose4 Dose5

Constant Scenario 7 0.5/0.3 1 0.248 0.0545 -0.5 65 79 82 82 82 30 48 66 81 89

Constant Scenario 8 0.5/0.3 1 0.066 0.0177 -0.5 28 46 65 74 78 10 18 30 43 54

Constant Scenario 9 0.5/0.3 1 0.027 0.0077 -0.5 13 24 40 54 65 4 8 15 22 30

Constant Scenario 7 0.4/0.2 1 0.174 0.036 -0.5 55 74 82 83 83 20 34 51 67 77

Constant Scenario 8 0.4/0.2 1 0.0447 0.011 -0.5 20 35 55 68 76 6 11 20 30 39

Constant Scenario 9 0.4/0.2 1 0.0181 0.0047 -0.5 9 17 30 43 55 3 5 9 14 20

Constant Scenario 4 0.5/0.3 1 0.1 0.061 -0.5 35 51 60 62 62 30 50 71 85 92

Constant Scenario 5 0.5/0.3 1 0.0255 0.0175 -0.5 12 21 35 45 53 9 17 30 43 56

Constant Scenario 6 0.5/0.3 1 0.0105 0.0073 -0.5 5 10 18 27 36 4 7 14 22 30

Constant Scenario 4 0.4/0.2 1 0.062 0.04 -0.5 25 40 54 59 61 20 36 56 72 82

Constant Scenario 5 0.4/0.2 1 0.0156 0.0108 -0.5 8 14 25 35 44 6 11 20 30 41

Constant Scenario 6 0.4/0.2 1 0.0063 0.0045 -0.5 3 6 12 18 25 2 5 9 14 20

Constant Scenario 1 0.5/0.3 1 0.162 0.058 -0.5 50 66 73 74 74 30 49 69 83 91

Constant Scenario 2 0.5/0.3 1 0.042 0.0175 -0.5 19 33 50 61 67 9 17 30 43 54

Constant Scenario 3 0.5/0.3 1 0.017 0.0074 -0.5 8 16 28 39 50 4 8 14 22 30

Constant Scenario 1 0.4/0.2 1 0.111 0.038 -0.5 40 58 71 74 74 20 35 53 69 80

Constant Scenario 2 0.4/0.2 1 0.029 0.011 -0.5 14 25 41 54 63 6 11 20 30 40

Constant Scenario 3 0.4/0.2 1 0.0113 0.0045 -0.5 6 11 20 30 40 2 5 9 14 20

Small Inc. Scenario 7 0.5/0.3 1.1 0.0156 0.0049 -0.5 2 65 69 74 76 76 30 34 40 49 60

Small Inc. Scenario 8 0.5/0.3 1.1 0.0088 0.00295 -0.5 2 50 56 65 71 73 21 24 30 38 46

Small Inc. Scenario 9 0.5/0.3 1.1 0.0047 0.0015 -0.5 2 34 39 50 60 65 12 14 19 25 30

Small Inc. Scenario 7 0.4/0.2 1.1 0.0101 0.00284 -0.5 2 55 61 70 75 77 20 23 28 36 44

Small Inc. Scenario 8 0.4/0.2 1.1 0.0056 0.0017 -0.5 2 38 44 55 65 69 13 16 20 27 32

Small Inc. Scenario 9 0.4/0.2 1.1 0.00305 0.00087 -0.5 2 24 28 38 49 55 7 9 12 17 20

Small Inc. Scenario 4 0.5/0.3 1.1 0.0058 0.0043 -0.5 2 35 40 47 53 55 30 35 43 53 62

Small Inc. Scenario 5 0.5/0.3 1.1 0.00315 0.0024 -0.5 2 23 27 35 43 47 19 22 30 39 45

Small Inc. Scenario 6 0.5/0.3 1.1 0.00173 0.0013 -0.5 2 14 17 23 31 35 11 13 19 25 30

Small Inc. Scenario 4 0.4/0.2 1.1 0.00345 0.00255 -0.5 2 25 29 37 45 49 20 23 31 40 47

Small Inc. Scenario 5 0.4/0.2 1.1 0.0019 0.0014 -0.5 2 15 18 25 33 37 12 14 20 27 32

Small Inc. Scenario 6 0.4/0.2 1.1 0.00104 0.00077 -0.5 2 9 11 15 21 25 7 8 12 17 20

Small Inc. Scenario 1 0.5/0.3 1.1 0.0097 0.0046 -0.5 2 50 55 62 66 67 31 34 42 51 60

Small Inc. Scenario 2 0.5/0.3 1.1 0.0054 0.0026 -0.5 2 36 41 50 59 62 20 23 30 38 45

Small Inc. Scenario 3 0.5/0.3 1.1 0.0029 0.00138 -0.5 2 23 26 35 45 50 12 14 19 25 30

Small Inc. Scenario 1 0.4/0.2 1.1 0.0063 0.0027 -0.5 2 40 45 55 63 66 20 23 30 38 45

Small Inc. Scenario 2 0.4/0.2 1.1 0.00345 0.00153 -0.5 2 26 30 40 50 55 13 15 20 27 32

Small Inc. Scenario 3 0.4/0.2 1.1 0.0019 0.00082 -0.5 2 16 19 26 35 40 7 9 12 17 20

True Probabilities

Dose Reduction DLT

Parameters

Figure A.11: Parameter settings for generating data from Constant and Small In-
creasing hazards. Small Increasing uses Cox-Weibull style hazards, while Constant
uses the proposed model to give an example of assuming a “correct” model, which is
why only one Beta parameter is given.
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Hazards Scenario Targets

alpha lambda1lambda2 beta0 beta1 Dose1 Dose2 Dose3 Dose4 Dose5 Dose1 Dose2 Dose3 Dose4 Dose5

Large Dec. Scenario 7 0.5/0.3 0.5 0.167 0.052 -0.5 2 65 69 74 76 76 30 33 39 49 59

Large Dec. Scenario 8 0.5/0.3 0.5 0.093 0.031 -0.5 2 50 55 65 71 73 21 24 30 37 45

Large Dec. Scenario 9 0.5/0.3 0.5 0.0504 0.0161 -0.5 2 34 39 50 60 65 12 14 19 25 30

Large Dec. Scenario 7 0.4/0.2 0.5 0.1085 0.031 -0.5 2 55 60 70 75 77 20 23 29 36 44

Large Dec. Scenario 8 0.4/0.2 0.5 0.06 0.0178 -0.5 2 38 44 55 65 69 13 15 20 26 32

Large Dec. Scenario 9 0.4/0.2 0.5 0.0326 0.0093 -0.5 2 24 28 38 49 55 7 9 12 17 20

Large Dec. Scenario 4 0.5/0.3 0.5 0.0613 0.0454 -0.5 2 35 39 47 53 55 30 34 43 53 61

Large Dec. Scenario 5 0.5/0.3 0.5 0.034 0.026 -0.5 2 23 27 35 43 47 19 23 30 39 46

Large Dec. Scenario 6 0.5/0.3 0.5 0.0185 0.0139 -0.5 2 14 17 23 31 35 11 13 19 25 30

Large Dec. Scenario 4 0.4/0.2 0.5 0.0374 0.0275 -0.5 2 25 29 37 45 49 20 24 31 40 47

Large Dec. Scenario 5 0.4/0.2 0.5 0.0204 0.0153 -0.5 2 15 18 25 33 37 12 14 20 27 32

Large Dec. Scenario 6 0.4/0.2 0.5 0.0112 0.0082 -0.5 2 9 11 15 21 25 7 8 12 17 20

Large Dec. Scenario 1 0.5/0.3 0.5 0.104 0.049 -0.5 2 50 55 62 66 67 30 34 41 51 60

Large Dec. Scenario 2 0.5/0.3 0.5 0.057 0.028 -0.5 2 35 40 50 58 62 20 23 30 38 45

Large Dec. Scenario 3 0.5/0.3 0.5 0.031 0.015 -0.5 2 22 26 35 45 50 12 14 19 25 30

Large Dec. Scenario 1 0.4/0.2 0.5 0.068 0.029 -0.5 2 40 45 55 63 66 20 23 30 38 45

Large Dec. Scenario 2 0.4/0.2 0.5 0.037 0.0165 -0.5 2 26 30 40 50 55 13 15 20 27 32

Large Dec. Scenario 3 0.4/0.2 0.5 0.0202 0.0087 -0.5 2 16 19 26 35 40 7 9 12 17 20

Small Dec. Scenario 7 0.5/0.3 0.8 0.0508 0.0159 -0.5 2 65 69 74 76 76 30 33 40 49 59

Small Dec. Scenario 8 0.5/0.3 0.8 0.0288 0.0097 -0.5 2 50 56 65 71 73 21 24 30 38 46

Small Dec. Scenario 9 0.5/0.3 0.8 0.0154 0.0049 -0.5 2 34 39 50 60 65 12 14 19 25 30

Small Dec. Scenario 7 0.4/0.2 0.8 0.0332 0.0094 -0.5 2 55 61 70 75 77 20 23 28 36 44

Small Dec. Scenario 8 0.4/0.2 0.8 0.0183 0.0054 -0.5 2 38 44 55 65 69 13 15 20 26 31

Small Dec. Scenario 9 0.4/0.2 0.8 0.01 0.0028 -0.5 2 24 28 38 50 55 7 9 12 16 20

Small Dec. Scenario 4 0.5/0.3 0.8 0.0188 0.014 -0.5 2 35 39 47 53 55 30 35 43 53 61

Small Dec. Scenario 5 0.5/0.3 0.8 0.0103 0.0078 -0.5 2 23 27 35 43 47 19 22 30 39 45

Small Dec. Scenario 6 0.5/0.3 0.8 0.0056 0.0042 -0.5 2 14 17 23 31 35 11 13 18 25 30

Small Dec. Scenario 4 0.4/0.2 0.8 0.0114 0.0084 -0.5 2 25 29 37 45 49 20 24 31 40 47

Small Dec. Scenario 5 0.4/0.2 0.8 0.0062 0.0046 -0.5 2 15 18 25 33 37 12 14 20 27 32

Small Dec. Scenario 6 0.4/0.2 0.8 0.0034 0.0025 -0.5 2 9 11 15 21 25 7 8 12 17 20

Small Dec. Scenario 1 0.5/0.3 0.8 0.0315 0.0148 -0.5 2 50 55 62 66 67 30 34 41 51 60

Small Dec. Scenario 2 0.5/0.3 0.8 0.0175 0.0087 -0.5 2 35 40 50 58 61 20 23 30 39 46

Small Dec. Scenario 3 0.5/0.3 0.8 0.0095 0.0045 -0.5 2 23 26 35 45 50 12 14 19 25 30

Small Dec. Scenario 1 0.4/0.2 0.8 0.0206 0.0088 -0.5 2 40 45 55 63 66 20 23 30 38 45

Small Dec. Scenario 2 0.4/0.2 0.8 0.0113 0.005 -0.5 2 26 30 40 50 55 13 15 20 27 32

Small Dec. Scenario 3 0.4/0.2 0.8 0.0062 0.0027 -0.5 2 16 19 26 35 40 7 9 12 17 20

Parameters True Probabilities

Dose Reduction DLT

Figure A.12: Parameter settings for generating data from Small Decreasing and Large
Decreasing hazards. Both use Cox-Weibull style hazards.
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Appendix B

Derivations and Specifications

B.1 Three-transition: transition probabilities

Constant-Skeleton model

pDR,j =
λ1

−λ1 − λ2

× exp ((−λ1xj − λ2xj) ∗ tmax − 1) (B.1)

pDLT,j =
λ1

−λ1 − λ2

× exp ((−λ1xj − λ2xj) ∗ tmax − 1)− (B.2)

exp(−λ2x
expβ1

j−1 tmax)×
λ1xj

−λ1xj − λ2xj + λ2x
exp(β1)
j−1

×

exp ((−λ1xj − λ2xj + λ2x
expβ1

j−1 ) ∗ tmax − 1)+

λ2

−λ1 − λ2

× exp ((−λ1xj − λ2xj) ∗ tmax − 1)

Weibull-Skeleton model

pDR,j =
λ1

−λ1 − λ2

× exp ((−λ1xj − λ2xj) ∗ tαmax − 1) (B.3)

pDLT,j =
λ1

−λ1 − λ2

× exp ((−λ1xj − λ2xj) ∗ tαmax − 1)− (B.4)

exp(−λ2x
expβ1

j−1 tαmax)×
λ1xj

−λ1xj − λ2xj + λ2x
exp(β1)
j−1

×

exp ((−λ1xj − λ2xj + λ2x
expβ1

j−1 )tαmax − 1)+

λ2

−λ1 − λ2

× exp ((−λ1xj − λ2xj) ∗ tαmax − 1)
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B.2 Five-transition: hazards

The five-transition model needs five associated hazard functions to be specified.

The following specifies each of the five uniquely with a Constant-Skeleton specifica-

tion. As stated in the text, a frailty parameter γi could be multiplied on each hazard

to induce dependence between observed events on the same patient.

h1(t1|xj) = λ1xij (B.5)

h2(t2|xj) = λ2xij (B.6)

h3(t2|t1, xj) = λ2x
exp(β1)
i,j−1 (B.7)

h4(t2|t1, xj) = λ1x
exp(β1+β2)
i,j−1 (B.8)

h5(t2|t1, xj) = λ2x
exp(β1+β2)
i,j−2 (B.9)

The above model contains four paramters. An analogous Weibull-Skeleton specifica-

tion would contain five parameters. If the setting dictates a five-transition model,

but there is not much difference expected between the hazard of first Dose Reduc-

tion versus hazard of second Dose Reduction given first Dose Reduction, or hazard

of DLT given one Dose Reduction versus hazard of DLT given two Dose Reductions,

the previous hazards can be simplified. In this case, set h4 = h1 and/or h5 = h3 (but

still changing doses). Thus, the five-transition setting is respected, but there are the

same number of parameters to estimate as in the three-transition model.
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B.3 Five-transition: likelihood and transition prob-

ability derivations

The observed data likelihood can again be separated into pieces. Let T3 be the

time to second Dose Reduction. likelihood

P (T1 = t1, T2 = t2, T3 = t3) (B.10)

= P (t3 < T1 = t1, T2 = t2, T3 = t3) + P (t3 > T1 = t1, T2 = t2, T3 = t3) (B.11)

= 0 + P (T1 = t1, T2 = t2, T3 = t3, T1 < t3) (B.12)

= P (T1 = t1, T2 = t2, T3 = t3|T1 < t3)P (T1 < t3) (B.13)

= P (T1 = t1, T2 = t2, T3 = t3|T1 < t3)× 1 (B.14)

Then,

P (T1 = t1, T2 = t2, T3 = t3|T1 < t3) (B.15)

= P (T1 = t1, T2 = t2, T3 = t3, T1 > t2, T3 > t2|T1 < t3) (B.16)

+ P (T1 = t1, T2 = t2, T3 = t3, T2 > t1, T3 > t2|T1 < t3) (B.17)

+ P (T1 = t1, T2 = t2, T3 = t3, T2 > t1, T2 > t3|T1 < t3) (B.18)

Let these three linear terms be defined as . These three linear terms or likelihood

elements can be defined as fc, fd, and fe and derived separately. Then, the elements

are the foundation to generate the six likelihood paths in the five-transition model

(as compared to four paths in the three-transition model).
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Joint Density Piece 1. fc(t1, t2, t3) = h2(t2)S1(t2)S2(t2)

Derivation:

P (T1 = t1, T2 = t2, T3 = t3, T1 > t2, T3 > t2|T1 < t3) (B.19)

= P (T1 = ∞, T2 = t2, T3 = ∞, T1 > t2, T3 > t2|T1 < t3) (B.20)

= P (T3 = ∞|T1 = ∞, T2 = t2, T1 > t2, T3 > t2, T1 < t3)× (B.21)

P (T1 = ∞, T2 = t2, T1 > t2, T3 > t2|T1 < t3)

= P (T3 = ∞|T1 = ∞, T2 = t2, T1 > t2, T3 > t2, T1 < t3)× (B.22)

P (T1 = ∞|T2 = t2, T1 > t2, T3 > t2, T1 < t3)×

P (T2 = t2, T1 > t2, T3 > t2, T1 < t3)

= 1× 1× P (T1 > t2, T3 > t2, T2 = t2|T1 < t3)

P (T1 > t2, T3 > t2, T2 > t2|T1 < t3)
× (B.23)

P (T1 > t2, T3 > t2, T2 > t2|T1 < t3)

=
P (T2 = t2|T1 > t2, T2 > t2, T1 < t3)

P (T2 > t2|T1 > t2, T2 > t2, T1 < t3)
P (T3 > t2|T1 > t2, T2 > t2, T1 < t3)× (B.24)

P (T1 > t2, T2 > t2|T1 < t3)

= h2(t2)S1(t2)S2(t2) (B.25)
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Joint Density Piece 2. fd(t1, t2, t3) = h1(t1)S1(t1)S2(t1)h3(t2|t1)
S3(t2|t1)
S3(t1|t1)

S4(t2|t1)
S4(t1|t1)

Derivation:

P (T1 = t1, T2 = t2, T3 = t3, T2 > t1, T3 > t2|T1 < t3)

P (T1 = t1, T2 = t2, T3 = ∞, T2 > t1, T3 > t2|T1 < t3) (B.26)

= P (T2 = t2|T1 = t1, T3 = ∞, T2 > t1, T3 > t2, T1 < t3)× (B.27)

P (T1 = t1, T3 = ∞, T2 > t1, T3 > t2|T1 < t3)

= P (T2 = t2|T1 = t1, T3 = ∞, T2 > t1, T3 > t2, T1 < t3)× (B.28)
P (T2 > t2|T1 = t1, T3 = ∞, T2 > t1, T3 > t2, T1 < t3)

P (T2 > t2|T1 = t1, T3 = ∞, T2 > t1, T3 > t2, T1 < t3)
×

P (T3 > ∞|T1 = t1, T2 > t1, T3 > t2, T1 < t3)×

P (T1 = t1, T2 > t1, T3 > t2|T1 < t3)

= h3(t2|t1)
S3(t2|t1)
S3(t1|t1)

× 1× P (T1 = t1, T2 > t1, T3 > t2|T1 < t3) (B.29)

= h3(t2|t1)
S3(t2|t1)
S3(t1|t1)

P (T3 > t2|T1 = t1, T2 > t1, T1 < t3)× (B.30)

P (T1 = t1, T2 > t1|T1 < t3)

= h3(t2|t1)
S3(t2|t1)
S3(t1|t1)

S4(t2|t1)
S4(t1|t1)

P (T1 = t1, T2 > t1|T1 < t3)× (B.31)

P (T1 > t1, T2 > t1|T1 < t3)

P (T1 > t1, T2 > t1|T1 < t3)

= h1(t1)S1(t1)S2(t1)h3(t2|t1)
S3(t2|t1)
S3(t1|t1)

S4(t2|t1)
S4(t1|t1)

(B.32)
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Joint Density Piece 3. fe(t1, t2, t3) = h1(t1)S1(t1)S2(t1)h4(t3|t1)
S3(t3|t1)
S3(t1|t1)

S4(t3|t1)
S4(t1|t1)

×

h5(t2|t3, t1)
S5(t2|t3, t1)
S5(t3|t1, t3)

Derivation:

P (T1 = t1, T2 = t2, T3 = t3, T2 > t1, T2 > t3|T1 < t3)

= P (T2 = t2|T1 = t1, T3 = t3, T2 > t1, T2 > t3, T1 < t3)× (B.33)
P (T2 > t2|T1 = t1, T3 = t3, T2 > t3, T2 > t1, T1 < t3)

P (T2 > t2|T1 = t1, T3 = t3, T2 > t3, T2 > t1, T1 < t3)
×

P (T3 > t3|T1 = t1, T2 > t3, T2 > t1, T1 < t3)

P (T3 > t3|T1 = t1, T2 > t3, T2 > t1, T1 < t3)
×

P (T3 = t3|T1 = t1, T2 > t1, T2 > t3, T1 < t3)×

P (T1 = t1, T2 > t1, T2 > t3|T1 < t3)

= h5(t2|t1, t3)
S5(t2|t1, t3
S5(t3|t1, t3

h4(t3|t1, t3)
S4(t3|t1, t3)
S4(t1|t1, t3)

× (B.34)

P (T2 > t3|T1 = t1, T2 > t1, T1 < t3)P (T1 = t1, T2 > t1|T1 < t3)

= h5(t2|t1, t3)
S5(t2|t1, t3)
S5(t3|t1, t3)

h4(t3|t1, t3)
S4(t3|t1, t3)
S4(t1|t1, t3)

S3(t3|t1, t3)
S3(t1|t1, t3)

× (B.35)

P (T1 > t1, T2 > t1|T1 < t3)

P (T1 > t1, T2 > t1|T1 < t3)
P (T1 = t1, T2 > t1|T1 < t3)

= h1(t1)S1(t1)S2(t1)h4(t3|t1)
S3(t3|t1)
S3(t1|t1)

S4(t3|t1)
S4(t1|t1)

h5(t2|t3, t1)
S5(t2|t3, t1)
S5(t3|t1, t3)

(B.36)
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1. Censored before any toxicity:

L1 = P (T1 > C, T2 > C, T3 > C|T1 < t3) = S1(C)S2(C)

Derivation:

P (T1 > C, T2 > C, T3 > C|T1 < t3) (B.37)

= P (T1 > C, T2 > C|T1 < t3) (B.38)

= S1(C)S2(C)

Again, direct result from joint survivor function as explained in (3.14).

2. DLT before Dose Reduction:

L2 = P (T1 = ∞, T3 = ∞, T2 = t2, T1 > t2, T3 > t2|T1 < t3) = h2(t2)S1(t2)S2(t2)

Derivation:

P (T1 = ∞, T3 = ∞, T2 = t2, T1 > t2, T3 > t2|T1 < t3) (B.39)

= P (T1 = t1, T2 = t2, T3 = t3, T1 > t2, T3 > t2|T1 < t3) (B.40)

= fc(t1, t2, t3) (B.41)

= h2(t2)S1(t2)S2(t2) (B.42)
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3. Censored after 1 Dose Reduction:

L3 = P (T1 = t1, T3 > C, T2 > C, T2 > t3, T2 > t1|T1 < t3)

= h1(t1)S1(t1)S2(t1)
S4(t3|t1)
S4(t1|t1)

S3(t3|t1)
S3(t1|t1)

Derivation:

P (T1 = t1, T3 > C, T2 > C, T2 > t3, T2 > t1|T1 < t3)

=

∫ ∞

C

fd(t1, s, t3)ds (B.43)

(except h4 is also included in fd as it is a possible event in this scenario, (B.44)

that previously fd specifying a DLT did not contain)

=
h1(t1)S1(t1)S2(t1)

S4(t1|t1)S3(t1|t1)

∫ ∞

C

h3(s|t1)h4(s|t1) exp(−H3(s|t1)) exp(−H4(s|t1))ds (B.45)

= h1(t1)S1(t1)S2(t1)
S4(C|t1)
S4(t1|t1)

S3(C|t1)
S3(t1|t1)

(B.46)

4. DLT after 1 Dose Reduction:

L4 = P (T1 = t1, T3 = ∞, T2 = t2, T2 > t1, T3 > t2|T1 < t3)

= h1(t1)S1(t1)S2(t1)h3(t2|t1)
S3(t2|t1)
S3(t1|t1)

S4(t2|t1)
S4(t1|t1)

Derivation:

P (T1 = t1, T3 = ∞, T2 = t2, T2 > t1, T3 > t2|T1 < t3)

= P (T1 = t1, T3 = t3, T2 = t2, T2 > t1, T3 > t2|T1 < t3)

= fd(t1, t2, t3) (B.47)

= h1(t1)S1(t1)S2(t1)h3(t2|t1)
S3(t2|t1)
S3(t1|t1)

S4(t2|t1)
S4(t1|t1)

(B.48)
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5. Censored after 2 Dose Reductions:

L6 = P (T1 = t1, T3 = t3, T2 > Ci, T2 > t3, T2 > t1|T1 < t3)

= h1(t1)S1(t1)S2(t1)
S4(t3|t1)
S4(t1|t1)

S3(t3|t1)
S3(t1|t1)

h4(t3|t1)
S5(Ci|t1, t3)
S5(t3|t1, t3)

Derivation:

P (T1 = t1, T3 = t3, T2 > Ci, T2 > t3, T2 > t1|T1 < t3)

=

∫ ∞

C

fe(t1, t3, s)ds (B.49)

= h1(t1)S1(t1)S2(t1)
S4(t3|t1)
S4(t1|t1)

S3(t3|t1)
S3(t1|t1)

h4(t3|t1)
1

S5(t3|t1)

∫ ∞

C

h5(s|t1, t3) exp(−H5(s|t1, t3))ds

(B.50)

= h1(t1)S1(t1)S2(t1)
S4(t3|t1)
S4(t1|t1)

S3(t3|t1)
S3(t1|t1)

h4(t3|t1)
S5(C|t1, t3)
S5(t3|t1, t3)

(B.51)

6. DLT after 2 Dose Reductions:

L6 = P (T1 = t1, T3 = t3, T2 = t2, T2 > t3, T2 > t1|T1 < t3)

= h1(t1)S1(t1)S2(t1)h4(t3|t1)
S3(t3|t1)
S3(t1|t1)

S4(t3|t1)
S4(t1|t1)

h5(t2|t3, t1)
S5(t2|t3, t1)
S5(t3|t1, t3)

Derivation:

P (T1 = t1, T3 = t3, T2 = t2i, T2 > t1i, T2 > t3|T1 < t3)

= fe(t1, t2, t3) (B.52)

= h1(t1)S1(t1)S2(t1)h4(t3|t1)
S3(t3|t1)
S3(t1|t1)

S4(t3|t1)
S4(t1|t1)

h5(t2|t3, t1)
S5(t2|t3, t1)
S5(t3|t1, t3)

(B.53)

The likelihood could also be derived using the Counting Process method. The result

will be the same.
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Transition Probabilities

In a five-transition model, the two most important transition probabilities are

still Healthy → DR (pDR,j) and Healthy → DLT via any path (pDLT,j). Healthy →

DR has the same specification as the three-transition model.

Healthy → DR: Ptc(T1 < t, T2 > t, T3 > t|T1 > tc, T2 > tc, T1 < t3) (B.54)

=

∫ t

tc
h1(u)S1(u)S2(u)

S1(tc)S2(tc)

Derivation:

Ptc(T1 < t, T2 > t, T3 > t|T1 > tc, T2 > tc, T1 < t3)

=

∫ t

tc

P (T1 = u, T2 > u, T3 > u|T1 > tc, T2 > tc, T1 < t3)du (B.55)

=

∫ t

tc
P (T1 = u, T2 > u, T3 > u|T1 < t3)du

P (T1 > tc, T2 > tc|T1 < t3)
(B.56)

=

∫ t

tc
P (T1 = u, T2 > u, T3 > u|T1 < t3)du

St(tc)S2(tc)
(B.57)

=

∫ t

tc
P (T1 = u, T2 > u, T3 > u|T1 < t3)

P (T1 > u, T2 > u, T3 > u|T1 < t3)

P (T1 > u, T2 > u, T3 > u|T1 < t3)
du

St(tc)S2(tc)

(B.58)

=

∫ t

tc
h1(u)S1(u)S2(u)

S1(tc)S2(tc)
(B.59)
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Healthy → DLT via any path: Ptc(T2 < t|T1 < t, T3 < t, T1 < t3, T1 > tc, T2 > tc)

P (Healthy → DLT directly) + P (Healthy → DR1 → DLT) + (B.60)

P (Healthy → DR1 → DR2 → DLT) = a+ b+ c

Derivation:

a = P (T2 < t, T1 > t, T3 > t|T1 > tc, T2 > tc, T1 < t3) (B.61)

=

∫ t

tc

P (T2 = u, T1 > u, T3 > u|T1 > tc, T2 > tc, T1 < t3)du (B.62)

=

∫ t

tc

P (T2 = u, T1 = ∞, T3 = ∞, T1 > u, T3 > u|T1 > tc, T2 > tc, T1 < t3)du

(B.63)

=

∫ t

tc
P (T2 = u, T1 = ∞, T3 = ∞, T1 > u, T3 > u, T1 > tc, T2 > tc|T1 < t3)du

P (T1 > tc, T2 > tc|T1 < t3)

(B.64)

=

∫ t

tc
P (T2 = u, T1 = ∞, T3 = ∞, T1 > u, T3 > u|T1 < t3)du

P (T1 > tc, T2 > tc|T1 < t3)
(B.65)

From joint density piece 1,

=

∫ t

tc
h2(u)S1(u)S2(u)du

S1(tc)S2(tc)
(B.66)
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b = P (Healthy → DR1)P (DR1 → DLT |Healthy → DR1) (B.67)

= P (Healthy → DR1)P (T2 < t, T3 > t|T1 < u, T2 > u, T3 > u, T1 < t3) (B.68)

= P (Healthy → DR1)
∫ t

u

P (T2 = r, T3 > r|T1 < u, T2 > u, T3 > u, T1 < t3)dr

(B.69)

= P (Healthy → DR1)
∫ t

u
P (T2 = r, T3 > r, T2 > u, T3 > u|T1 < u, T1 < t3)dr

P (T2 > u, T3 > u|T1 < u, T1 < t3)

(B.70)

= P (Healthy → DR1)
∫ t

u
P (T2 = r, T3 > r|T1 < u, T1 < t3)dr

S3(u)S4(u)
(B.71)

= P (Healthy → DR1) × (B.72)∫ t

u
P (T2 = r, T3 > r|T1 < u, T1 < t3)

P (T2 > r, T3 > r|T1 < u, T1 < t3)

P (T2 > r, T3 > r|T1 < u, T1 < t3)
dr

S3(u)S4(u)

=

∫ t

tc
h1(u)S1(u)S2(u)

∫ t

u
h3(r)S4(r)S3(r)dr

S3(u)S4(u)
du

S1(tc)S2(tc)
(B.73)

c = P (Healthy → DR1)P (DR1 → DR2 |Healthy → DR1)× (B.74)

P (DR2 → DLT |Healthy → DR1, DR1 → DLT)

P (DR1 → DR2 |Healthy → DR1) follows similarly from P (DR1 → DLT |Healthy →

DR1) previously. P (DR2 → DLT |Healthy → DR1, DR1 → DLT) follows similarly

from Putter, Fiocco, and Geskus 2007, based in the fact there is only one state in



130

which to transition.

= P (Healthy → DR1)P (DR1 → DR2 |Healthy → DR1)(1− S5(t)

S5(r)
) (B.75)

=

∫ t

tc
h1(u)S1(u)S2(u)

∫ t

u
h3(r)S4(r)S3(r)(1−

S5(t)

S5(r)
)dr

S3(u)S4(u)
du

S1(tc)S2(tc)
(B.76)

Thus, the full transition probability a+ b+ c,

Ptc(T2 < t|T1 < t, T3 < t, T1 < t3, T1 > tc, T2 > tc)

= a+ b+ c

=

∫ t

tc
h2(u)S1(u)S2(u)du

S1(tc)S2(tc)
+ (B.77)

∫ t

tc
h1(u)S1(u)S2(u)

∫ t

u
h3(r)S4(r)S3(r)dr

S3(u)S4(u)
du

S1(tc)S2(tc)
+

∫ t

tc
h1(u)S1(u)S2(u)

∫ t

u
h3(r)S4(r)S3(r)(1−

S5(t)

S5(r)
)dr

S3(u)S4(u)
du

S1(tc)S2(tc)
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