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Abstract

Viruses are important agents of disease. Though we know much about the life
cycles, genetics, and biochemistry of many viruses, the link between infection and disease
remains elusive. There have been studies into the importance of host genetics and
immunity in determining outcomes to viral infection, but it has not been considered
whether small biochemical changes in host-cell species can alter infection dynamics and

resulting disease. These sorts of studies require a broad view of the biological system
since viral proteins alter the cell state to favor replication while cell-signaling feedback
loops prevent or counteract the virus-induced cell state. My goal is to elucidate how

population-level differences in host-cell species alter viral infection and resulting disease.

My work focused on coxsackievirus B3 (CVB3), a causative agent of cardiac
inflammation (myocarditis). CVB3 is one of the best studied viruses, with a clearly defined
life cycle, extensive information on each of its 11 proteins, and decades of research into its
role in myocarditis. Thus, CVB3 is perhaps one the best model systems for taking a
systems-biology approach to studying virus—host interactions.

| began by building a computational mechanistic model for the entire CVB3 life
cycle with host-cell immune responses overlaid as negative feedbacks. Using the model,
we uncovered a sensitivity to the timing of the type | interferon response that is dependent
on host-cell resistance to cleavage of the key innate-immune signaling protein MAVS by
viral proteinases. Looking further into MAVS, we identified a polymorphism at amino acid
93 that dictates susceptibility to cleavage. We show computationally and experimentally
that the polymorphism is able to modulate the severity of CVB3 infection. Thus, MAVS is
one host-cell species where a small population-level difference can have a big impact on
disease.

| then asked how differences in the abundances of the CVB3 receptors DAF and
CAR impact susceptibility to infection. Rather than sample over an artificial range of
abundances, | obtained RNA-seq data from 1489 human heart samples. However, RNA-
seq is not a good substitute for protein abundances. To obtain protein-level estimates, |
developed statistical models able to predict protein abundance from mRNA abundance. |
predicted the paired abundances of DAF and CAR. When used in the mechanistic model
for CVB3, | identified individuals with varying degrees infection severity and cases where
individuals were completely resistant to infection. The results demonstrate how intrinsic
differences in protein levels can have large impacts on susceptibility to infection.

This dissertation thus identifies two key host-cell determinants with population-level
variability that dictate susceptibility to viral infection. The finding was only possible using a
systems-biology approach that blended mechanistic and statistical modeling.



Chapter 1:

Introduction



1.1 Background

Viruses are one of the most prevalent causes of disease and death worldwide. To
date, 260+ viruses are known to infect humans (1) and cause diseases such as deadly
hemorrhagic fevers (e.g., ebolavirus) (2), pneumonia (e.g., influenza) (3), hand-foot-and-
mouth disease (e.g., enterovirus 71) (4), gastroenteritis (“stomach bug,” e.g., rotavirus) (5),
and “the cold” (e.g., rhinovirus) (6). Though there are hundreds of viruses, Nobel-laureate
virologist David Baltimore broadly classified them into seven groups based on whether
their genome i) consists of DNA or RNA, ii) is single- or double-stranded, and iii) is positive-
or negative-sense. Regardless of its class, a virus’s life cycle is generally the same: a virus
particle (virion) docks to and enters the host cell; the genome escapes; translation results
in viral proteins that perturb host-cell functions, replicate the virus, and package new
virions; and new virions are released from the host to infect neighboring cells (7). For many
viruses, the details of each step are well characterized. Yet, the link between viral infection
and disease remains elusive (8). Take, for example, SARS-CoV-2, the virus responsible for
COVID-19. We know the entry mechanism (9), the functions of most of the viral proteins (9),
and how the genome has evolved throughout its existence in the human population (10).
However, knowledge of the virus alone is not enough to explain the heterogeneity of
COVID-19 presentation. The severity of COVID-19 is determined by host genetic factors (11,
12), the timing and level of cytokine release (13), and quality of the immune response (14).
Disease, therefore, comprises direct viral damage, the host-cell response, and the immune
system operating in a (dys)regulated fashion. While SARS-CoV-2 is currently a notorious
example, every virus has complex interactions with hosts that together define disease.

Enteroviruses are a genus of non-enveloped, single-stranded, positive-sense RNA
viruses responsible for a host of diseases (15). Details of their genetics, proteins and life
cycles are found in most virology textbooks (e.g., (16)), and they have been studied for 70+
years (17). Despite this, hundreds of enterovirus serotypes persist and impact people
differently for reasons that are unclear (18). There have been studies into the importance
of host genetics in infection (19, 20), and the importance of immunity is appreciated.
However, it has not been considered whether small biochemical changes in host-cell
species can alter infection dynamics and resulting disease. My goal is to elucidate how

differences in host-cell species alter enteroviral infection and resulting disease.

In this dissertation, | focus on a prototypical enterovirus, coxsackievirus B3 (CVB3).
As a disease agent, CVB3 has been widely studied as a causative agent of viral
myocarditis, or inflammation of the heart (21-24). Upon infection of cardiomyocytes, many
proinflammatory pathways are initiated, resulting in expression of cytokines in heart tissue
(25). Cytokines recruit immune cells to fight the virus and clear infected cells. Generally,
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infections are resolved in the acute infection stage, but some progress to a chronic phase
that can lead to heart failure (26, 27). At the cellular level, host pathologies are the result
of virus—host interactions. During infection, cell-signaling feedback loops prevent or
counteract the virus-induced cell state to fight the infection (28-31). The dozens of
interactions are daunting but approachable using systems biology (7, 32).

In the remainder of this introduction, | will provide necessary background into CVB3
and provide details on host immunity to the virus. From there, | will briefly review how
systems biology has been used in virology, then conclude with a broader picture of this
dissertation.

1.2 CVB3: its life cycle, genetics, and biochemistry

The steps of the CVB3 life cycle are well defined and broadly encompass three
stages: entry, replication, and encapsidation. Entry begins with CVB3 binding to decay-
accelerating factor (DAF) on the surface of cardiomyocytes (33). DAF:CVB3 clustering
promotes signaling through the kinases Abl and Fyn. Abl promotes translocation of
DAF:CVB3 clusters to tight junctions (34), where CVB3 unbinds DAF and binds to
coxsackie and adenovirus receptor (CAR) (34-36). CAR:CVB3 undergoes endocytosis via
caveolae through signaling events triggered by Fyn (34). Once internalized, the single-
stranded, positive-sense viral RNA (+vRNA) genome is released into the cytoplasm.

The +vRNA undergoes cap-independent translation into a single polypeptide by
host ribosomes that recognize an internal ribosome entry site (37). The proteinases 2A
(2Ar™) and 3C (3Cro) autocatalytically cleave themselves from the polypeptide and
process the rest of the polypeptide (16). The viral proteins 2B, 2CATPase. gnd 3A (and
precursor 3AB) co-opt host-cell membranes to form viral replication organelles (VROs) that
tether replication machinery and support replication (38—41). Replication is carried out by
the RNA-dependent RNA polymerase 3Dre!. 3Drol recognition of VRNA is mediated by viral
protein 3BVP9 and the cis-active RNA element structure of the genome (42, 43). +vRNA is
used as a template to synthesize negative-sense (—)VRNA, and vice versa. Imbalances in
replication give rise to excess +vRNA (44) for packaging.

The final step is encapsidation of free +vRNA into new virions. The structural
proteins VPO, VP1, and VP3 bind to form a protomer, and five protomers bind to form a
pentamer, the base unit of the capsid (45). The VP3 subunit of a pentamer interacts with
2CATPase (46), recruiting pentamers to the VRO membranes where excess +vRNA is being
synthesized. +vRNA is inserted into forming capsids by a mechanism not fully known (45).
Ultimately, 12 pentamers bind to form a new virion, and cleavage of the VPO subunits into
VP2 and VP4 signal the end of the process (45). Accumulation of virions causes cell lysis

1



~8 hours following internalization.

In the midst of the viral life cycle, the 2Ar° and 3Crre disrupt host-cell processes to
create a proviral environment and inhibit the host-cell immune response. The proteinases
cleave eukaryotic translation initiation factor 4G and PABP to halt host protein synthesis
(47-49), which liberates ribosomes for translation of the CVB3 genome. Host-cell immune
proteins are also cleaved (50-52), preventing signaling through type | interferons. Further,
trafficking is disrupted, nucleocytoplasmic shuttling integrity is lost, and membrane
structural integrity is lost (53—-56). Altogether, the events alter the cell state to favor efficient
viral replication and release.

1.3 The immune response to CVB3 and implications in myocarditis

Most of the time, thinking of the immune response conjures up antibodies and white
blood cells such as macrophages and T cells. However, the first step of the pathogenic
immune response is for the infected host cell to recognize and attempt to fight the
pathogen by turning on many cell-signaling pathways. From there, the innate and adaptive
arms of the immune system are recruited.

1.3.1 The host-cell immune response

At the nexus of the antiviral cell-signaling pathway is the mitochondrial antiviral
signaling protein (MAVS). MAVS (also IPS-1, VISA, and Cardif) quickly became the subject
of much study when four seminal papers were published within six weeks of one another
in 2005 (57-60). All four papers showed the same conclusion—MAVS induces and is
required for the type | interferon response. Since then, MAVS has been characterized
extensively. At its 3’ terminus, MAVS is docked to the mitochondria (59). At its 5’ terminus,
MAVS contains a caspase activation and recruitment domain (CARD) (57-59). MAVS is
activated upon association with CARD-containing helicases in the RIG-I family (57, 58). The
RIG-I family member melanoma differentiation-associated protein 5 (MDAD) is responsible
for detecting picornaviruses (61) and associates with MAVS to drive MAVS polymerization
on the mitochondrial surface (62). Once polymerized, various domains on MAVS become
active. The TRAF2 and TRAFG6 binding sites recruit their respective TRAF, which activate a
proinflammatory response through NF-kKB activation (63, 64) and recruit TANK-binding
kinase 1 (TBK1) (65, 66). TBK1 phosphorylates the pLxIS motif on MAVS, which recruits
inactive interferon regulatory factor 3 (IRF3).IRF3—now in proximity to TBKl—is
phosphorylated, homodimerizes, translocates to the nucleus, and transcribes type |
interferons (IFN) (66). Type | IFNs signal in an autocrine—paracrine fashion through the
JAK/STAT pathway to turn on interferon-stimulated genes (ISGs) (29). Hundreds of ISGs
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switch the cell towards an antiviral state, but they generally perform a few main functions:
shutting down translation to prevent viral protein synthesis, degradation of (viral and host)
RNA, and preventing endocytic trafficking to stop entry of new virus particles (29). Other
targets include MDAGS (67), establishing a positive feedback loop to maintain the antiviral
state. The host-cell immune response through type | IFN signaling is a crucial step of the
pathogenic immune response partly responsible for preventing mortality and promoting
viral clearance.

1.3.2 The innate and adaptive immune responses

Type | IFNs and other cytokines recruit the “classical” immune systems arms: the
innate and adaptive systems. Innate immune cells are nonspecific first responders to
damage or pathogens and secrete cytokines that further the host-cell immune response
and contribute to the cytokine milieu that regulates the recruitment and function of immune
cells. The adaptive immune system consists (most generally) of T cells and B cells. Unlike
innate immune cells, T and B cells “adapt” to the pathogen and thus have highly specific
responses to clear the infection. Adaptive immune cells also provide long-term protection
against pathogens through formation of memory T cells and antibody-producing B cells.
Together, innate and adaptive immune cells provide a highly organized and robust
response to clear the pathogen.

Macrophages and NK cells are the primary innate immune cells that mediate CVB3-
induced myocarditis (26). In general, macrophages are professional phagocytes of
apoptotic cells (68) and are major producers of nitric oxide (NO), which has an antiviral
effect (69). At the same time, macrophages are partly responsible for myocarditis by
secreting proinflammatory cytokines. The picture is further muddied when considering the
polarization of macrophages into a pro-inflammatory M1 phase versus an anti-inflammatory
M2 phase. M1 macrophages are associated with worse myocarditis, whereas M2
macrophages reduce myocarditis (70). Similarly, NK cells inhibit viral replication (71) and
ameliorate myocarditis (72), primarily via secretion of IFNy (73). Together, macrophages
and NK cells quickly clear infected cells and poise the environment for adaptive responses.

The cytokines and chemokines secreted by the innate immune cells attract and
drive differentiation of adaptive immune cells. CVB3 infection induces CD4* helper T (Th)
and CD8* cytotoxic T (Tc) responses in the heart. Mice deficient for either have increased
viral titers (74). Th cells differentiate into four main subtypes: proinflammatory Th1 and Th17
cells and anti-inflammatory Th2 and regulatory T (Treg) cells. Th1 cells arise in the presence
of type I/ll IFNs and activate Tc cells (75). Th1 cells also produce large amounts of IFNy,

which promotes antibody class-switching in B cells to promote humoral immunity. Th17
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cells arise in the presence of IL-6 and TGFB (75). Upon infection with CVB3, Th17 cells
increase during the first 10 days of infection, while Th1 cells peak on days 5-7 in the heart
(76). Both exacerbate myocarditis and promote Tc activation. Tc cells contain a unique T
cell receptor (TCR) that can recognize foreign material displayed on the surface of tissue
cells by the major histocompatibility complex-I, which is the signal to kill the cell (77). Upon
CVBS3 infection, CD8* T cells peak at days 5-7 to clear infected cells (76). To limit an
overactive immune response, Treg cells provide negative feedback that reduces
inflammation (78), closing the loop on T cell responses.

The role of B cells is determined by its contribution to the cytokine milieu. IL-10
producing B cells limit Th1 and Th17 cells and reduce inflammation (79). Alternatively, B
cells producing TNF-q, IL-6, and IL-17 promote Th1and Th17 differentiation while preventing
Th2 differentiation, which serves to promote inflammation (80). B cells also promote
formation of Treg cells in the heart following CVB3 infection (81). Thus, it is difficult to define
a singular contribution of B cells to myocarditis. Altogether, the literature suggests that the
cytokine/chemokine-coordinated recruitment of innate- and adaptive-immune infiltrates
modules myocarditis.

Viral myocarditis has been long known to depend on both CVB3 cardiotoxicity and
a proinflammatory immune response. Other active areas of research involve the role of
microRNA (82), long noncoding RNA (83), and inflammasomes (84). Further, sex and host
genetics play a role in the severity of myocarditis (19, 20). Frankly, we are at the point where
a mechanistic understanding of how signaling networks, immunity, and viral cytotoxicity
produce myocarditis—all conditional on host genetics—will need computational
approaches.

1.4 Systems virology

Systems biology is an approach that—to put it colloquially—seeks to understand
how the whole is greater than the sum of its parts, with a goal to generate testable
hypotheses or discover emergent properties. To do so, the individual pieces (e.g., proteins
in a signaling network) are organized through mathematical encoding of their relationships
(model). The mathematical solution provides some prediction about the system (mine),
which is used to design an experiment (manipulate). The results (measure) may shed light
on the pieces of the model that need further refinement, such as an updated parameter or
insertion of a new species into the model (model again). This iterative process of model »
mine = manipulate » measure is the mantra of systems biology. The point at which the
model is considered “validated” and stops being updated is difficult to define and specific
to the field of research or biological question. Regardless, once “validated,” the model is
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useful for examining the emergent properties of the system—or, the behavior of the system
that is observed by the interactions of the individual pieces. This process has been widely
used in studying cardiovascular signaling networks (85), metabolism (86), and cancer (87).

Systems biology has had less traction in the virology community despite these
approaches beginning decades ago with mathematical models of bacteriophage T4 (88—
90). Systems virology gained traction in the 1990s with models of HIV-1 infection, such as
a classic study by Perelson et al. that simulated the dynamics of infection and viral
clearance (91). Susceptible target cells were “infected” at a constant rate and could recover
or produce new virus, which was added to the pool of free virus to infect target cells. Similar
models were made for hepatitis B and C viruses around the same time (92, 93). Since then,
model elaborations have included immune responses and have expanded to viruses such
as influenza, dengue virus, and ebolavirus (32). These models were useful for determining
the efficacy of drugs and at which phases of infection the dose is most appropriate.

Systems-level measurements of host responses to infection result in large datasets,
such as from high-throughput assays (28, 94) or transcriptomics (95). To draw conclusions
from these data, statistical models are used to organize the samples by similarity
(clustering), reduce the dimensionality into a more-interpretable set of variables (e.g.,
principal component analysis), or establish input—output relationships among variables
(e.g., partial least squares regression) (96). Once simplified, mechanisms can be
unpackaged experimentally (97). Transcriptomics is commoditized now, and well-
documented computational packages exist that make clustering analysis accessible for
non-computationalists. Other statistical models are less common in virology but have
proved useful for determining signaling networks highjacked by CVB3 to promote cell
death (28, 94). Now in the era of big data, statistical models will become increasingly useful
for virologists seeking to understand virus—host interactions.

Mechanistic models relate species through chemical rate equations that encode
enzyme activity, compartment-switching (e.g., nuclear vs. cytoplasmic), and/or synthesis—
degradation (97). Rate parameters are measured by biochemical studies. In cases where
rate constants are unknown, parameters are estimated heuristically to fit model predictions
to validation data. Mechanistic models are strongly suited for identifying feedbacks and
crosstalk important for capturing the dynamics of a system (97). Such models have
emerged to study facets of the viral life cycle, but many lack a holistic integration of the
entire life cycle (7). Mechanistic modeling of viruses is an active area of research, with
models recently emerging for hepatitis C virus (98) and dengue virus (99). In virology,
mechanistic models are useful because one can tune parameters to reflect different host-
cell conditions and make predictions about how the trajectory of infection will be altered.
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1.5 Overview of dissertation

In this dissertation, | seek to elucidate how population-level differences in host-cell
species alter enteroviral infection and resulting disease. A study of how changes in host-
cell proteins will affect the dynamics of CVB3 infection requires the use of systems-biology
approaches. To achieve this goal, mechanistic and statistical modeling will be used.
Mechanistic modeling is desirable for tracking dynamics of viral and host species and can
be used to generate hypotheses. To identify population-wide differences in key host
proteins, statistical modeling will be used to obtain parameters for the mechanistic model.
With a robust computational toolset, the daunting task of identifying critical virus—host
interactions becomes achievable.

In chapter 2, | describe the development of a mechanistic model for the complete
kinetics of CVB3. We constructed the model with a modular design, with each module
encoding a stage of the viral life cycle and experimentally validated. We included a
generalized host-cell innate immune response as a series of negative feedbacks overlaid
on the viral life cycle. Importantly, the model is constructed with little parameter fitting. We
generate a testable hypothesis surrounding the emergent properties of the system,
leading us to a bioinformatic search into the population genetics of the protein MAVS.
Ultimately, we identify a crucial MAVS polymorphism that is able to alter susceptibility to
CVB3 infection.

In chapter 3, | describe the conversion of the command-line CVB3 model into a
graphical user interface. This activity was spurred by an invited submission to STAR
Protocols. The hope is that an accessible model of viral infection will encourage non-
computationalists to employ models in their research or classrooms.

In chapter 4, | personalize the CVB3 model to 1489 individuals by using publicly
available data to alter parameters that are variable within the human population. However,
to use this data, | had to first develop a tool to estimate protein abundances from
transcriptomic data. | combined publicly available transcriptomic and proteomic data from
the Cancer Cell Line Encyclopedia and generated statistical models for 4000+ genes that
related mRNA abundance to absolute protein copy numbers. We examined characteristics
of these relationships and validated protein copy-number estimations against
experimental proteomic data. Finally, we apply the tool to estimation of receptor
abundances for CVB3 to generate the personalized models. Since the tool was more
generalizable, we also used it to estimate the proteome of 796 breast cancers. We
examined how the molecular classification differed between clustering by transcriptomics
and proteomics. Then, we honed in on the genes that drive these reclassifications.
Interestingly, we find many genes of clinical and therapeutic relevance to breast cancer.
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In chapter 5, | discuss the broader impacts, limitations, and future directions for the
work presented in chapters 2 and 4. Further, | will present data that did not fit nicely into a
chapter of this dissertation but that were major activities during my PhD. | package those
data and conclusions that can be drawn from them, as well as indicate where future work
is needed.

Ultimately, my dissertation identifies two proteins—MAVS and CAR—that are important for
defining susceptibility to CVB3 disease.
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2.1 Abstract

Complete kinetic models are pervasive in chemistry but lacking in biological systems. We
encoded the complete kinetics of infection for coxsackievirus B3 (CVB3), a compact and
fast-acting RNA virus. The kinetics are built from detailed modules for viral binding—
delivery, translation—replication, and encapsidation. Specific module activities are
dampened by the type | interferon response to viral double-stranded RNAs (dsRNAs),
which is itself disrupted by viral proteinases. The validated kinetics uncovered that
cleavability of the dsRNA transducer mitochondrial antiviral signaling protein (MAVS)
becomes a stronger determinant of viral outcomes when cells receive supplemental
interferon after infection. Cleavability is naturally altered in humans by a common MAVS
polymorphism, which removes a proteinase-targeted site but paradoxically elevates CVB3
infectivity. These observations are reconciled with a simple nonlinear model of MAVS
regulation. Modeling complete kinetics is an attainable goal for small, rapidly infecting
viruses and perhaps viral pathogens more broadly.

2.2 Introduction

In chemistry, a complete kinetic model specifies products and reactants, their
stoichiometry, any catalysts, and the step-by-step sequence of key elementary reactions
from start to finish (1). Direct analogies in biological systems are hard to identify because
the steps are uncertain and the definition of “start” or “finish” is often arbitrary. Not so for
picornaviruses, a family of non-enveloped, positive-strand RNA viruses that infect, rapidly
amplify their genetic material and capsid proteins, and lyse the host cell marking
termination. Steps in the picornaviral life cycle are fully delineated (2). The translation of
the coding RNA genome as a single polypeptide ensures an equal proportion of each viral
protein during synthesis. From the standpoint of products and reactants, picornaviruses
present an opportunity to construct complete kinetic models.

The power of kinetic mechanisms lies in the explanatory and predictive models that
they generate (1). Mathematical models of viral translation—replication have a rich history,
but they are formally incomplete in omitting the details of early binding—entry, intermediate
antiviral pathways, and late self-assembly of viral particles (3). Some omissions are for
simplicity and scope, but others are for lack of biological parameters or quantities. As
human disease agents, picornaviruses within the Enterovirus genus—which includes
rhinovirus, poliovirus, and coxsackievirus strains—have been parameterized extensively
(2). Enteroviruses thus represent the best-case testbed for proposing a complete kinetic
model of a biological process if one can be defined.

Here, we drafted the complete kinetics for coxsackievirus B3 (CVB3), an enterovirus
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that infects the heart and drives viral myocarditis (4). With attention to molecular detail, we
encoded interacting modules for viral delivery, translation—replication, and encapsidation,
overlaying a prototypical antiviral response along with viral antagonism of that response
(Figure 21A). Each component presented its own challenges, which we tackled module-
by-module before simulating the complete kinetics of CVB3 infection. In a cardiomyocyte-
derived cell line, the integrated modules captured host-cell susceptibility and viral RNA—
protein dynamics with little-to-no parameter fitting of specific mechanisms. The
generalized antiviral and antagonistic feedbacks were screened combinatorially to identify
time-dependent interactions later verified experimentally. Host and viral feedbacks
converged on an important role for MAVS, a polymorphic host-cell transducer of the
antiviral response to dsRNA that is cleaved by an enterovirus-encoded proteinase (5). The
centrality of MAVS led to the discovery of a common variant in humans (MAVS Q93E),
which reroutes cleavage during CVB3 infection and favors viral propagation. The net effect
of this polymorphism on feedback arises from nonlinearities in MAVS regulation, as
illustrated by a standalone model of its provisional activation mechanism. For virology,
complete kinetics provide a systems-level end goal for decades of research and possibly
an aid to prioritizing scientific activity during viral outbreaks.

2.3 Results

2.3.1 Modular draft of a complete kinetic model for the CVB3 life cycle

We pursued a complete kinetic model for acute CVB3 infection by deconstructing
its life cycle into separable modules that could be developed independently (Figure 2.1A).
The cellular tropism of CVB3 is determined by specific cell-surface receptors (6, 7), which
internalize the virus before endosomal escape of its positive-strand RNA genome (Ry) into
the cytoplasm. From here, the intracellular steps generalize to all enteroviruses: i)
translation of R, into polyprotein (CVB3pp), ii) maturation of CVB3pp into capsid subunits
and nonstructural proteins for the virus, iii) cis replication of R, through a negative-strand
intermediate by RNA-dependent RNA polymerase (3Dr°)) localized to host-cell membranes
hijacked by the virus, and iv) encapsidation of R, around 12 capsid pentamers aided by
hydrophobic proteins (2CATPase) and concluding with lytic release from the host (8). In
contrast to cell-signaling pathways (9), the viral conduits to and from these modules are
clearly defined, and an acute infection usually completes within hours if unimpeded.

At the nexus of the enteroviral life cycle is the type | interferon response. Viral
replication is associated with long, double-stranded replicative intermediates of CVB3
(dsCVB3) that are sensed by innate antiviral pathways like other dsRNAs [e.g., poly(l:C)]
(10). Cytosolic dsCVB3 gives rise to induction of IFNB, autocrine—paracrine signaling, and
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the induction of interferon-stimulated genes (ISGs) (11), such as oligoadenylate synthetases
and Mx-family GTPases (Figure 2.1B). There are hundreds of different ISGs, several of which
inhibit core enteroviral processes at multiple points (Figure 2.1A) (12). ISGs are predicted to
persist for the duration of an infection (Figure 2.1C), and active type | interferon signaling is
a potent inhibitor of enteroviral replication in vivo (13, 14). The enteroviral proteinases
(2Apro—3Cpro)—which mature the CVB3,, polyprotein and steal host-cell ribosomes for cap-
independent viral translation—interfere with activation of the interferon response by
cleavage of dsRNA sensors and transducers (Figure 2.1A) (5, 15, 16). Cleavage of host-cell
proteins occurs on the same time scale as polyprotein maturation (Figure 2.1D) (5, 17),
requiring us to overlay a network of ISG-related negative feedbacks on the CVB3 life cycle
(Figure 21A, purple).

The viral life-cycle modules and antiviral-antagonistic feedbacks were encoded as
a system of 54 differential equations that are derived in Section 2.5, STAR Methods.
Experimental evidence for 91% of the 92 parameters is provided in Table S1. In general
engineering design, modules are appealing because they enable individual components
to be developed and characterized before integration (18). Accordingly, our results are
communicated to retain the modular organization of the CVB3 model. For individual
modules, we expand biochemical mechanisms, describe critical assumptions or
considerations, compare with experiments, and conclude with non-obvious computational
predictions.
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Figure 21. A modular encoding of the CVB3 life cycle elaborated with antiviral
responses and viral antagonism of host-cell processes.

(A) Overview of the CVB3 model architecture. CVB3 enters through a module of receptors and trafficking
states that delivers its positive-strand RNA genome (Rp) to the cytoplasm. Ry is translated into a polyprotein
(CVB3pr) that matures into capsid subunits contributing one fifth of a subunit (Pentamer) in a 12-subunit
assembly, enteroviral proteinases (2AP°-3CP™), hydrophobic proteins (2CATP#s¢), and RNA-dependent RNA
polymerase (3Dr°). 3D replicates Rp through a negative-strand intermediate in a module that gives rise to
excess Rp, which joins with Pentamer in an encapsidation module that self-assembles Pentamer around Rp
and leads to virion release. Interferon stimulated genes (ISGs) are induced as a consequence of the dsRNA
associated with CVB3 replication and impede viral progression where indicated; viral sensing is also
antagonized by 3Cr (5). Expanded descriptions of the delivery, replication, and encapsidation modules are
shown in Figures 2.3A, 2.5A, 2.7A, and 2.7D, and model parameters are available in Table S1.

(B) Transfected dsCVB3 elicits a robust type | interferon response. AC16-CAR cells were lipofected with n =
5 doses of the indicated dsRNAs for four hours and analyzed for the indicated ISGs with PRDX6, HINTT, and
GUSB used for loading normalization. Differences between conditions were assessed by Sidak-corrected,
log-transformed three-way ANOVA. Uninduced target genes (EIF2ZAK2 and GAPDH) are analyzed in Figure
2.2A

(C) ISGs are long lived when translated. 293T/17 cells were lipofected with V5 epitope-tagged plasmids,
treated with 50 pM cycloheximide for the indicated times, and lysed for quantitative immunoblotting. Half-
lives for the ISGs MX1, OAS1, OAS2, OASL, and FPcontrol (a fast-degrading protein fragment used as a positive
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control) were estimated by nonlinear least-squares curve fitting. Data are shown as the mean * range of
biological duplicates at n = 6 different time points. Representative immunoblots are shown in Figure 2.2B.

(D) CVB3 polyprotein maturation coincides with cleavage of host-cell targets. AC16-CAR cells were infected
with CVB3 at MOI =10 for the indicated times and immunoblotted for VP1 capsid protein (also present in the
full-length polyprotein [CVB3pp]) and elF4G [a host protein cleaved by 2ArP™ (16)] with ectopic CAR-V5,
vinculin, tubulin, and p38 used as loading controls. The image gamma was adjusted for polyprotein—VP1
(gamma = 20) and elF4G (gamma = 2) to show band pairs at the same exposure.

See also Figure 2.2 and Table S1.
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Figure 2.2. Control genes for dsRNA induction and representative immunoblots of

the cycloheximide experiment quantified in Figure 21C.

(A) dsRNA lipofection does not give rise to nonspecific gene induction. AC16-CAR cells were lipofected with
n="5 doses of the indicated dsRNAs for four hours and analyzed for the indicated genes with PRDX6, HINTT,
and GUSB used for loading normalization. Differences between conditions were assessed by Siddk-
corrected, log-transformed three-way ANOVA.

(B) Representative immunoblots used for half-life quantification. 293T/17 cells were lipofected with V5
epitope-tagged plasmids (equal mixtures of ISG and EGFP), treated with 50 pM cycloheximide for the
indicated times, and lysed for quantitative immunoblotting. A C-terminal EGFP fragment (FP) was used as a
control for a fast-degrading protein.
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2.3.2 Explanatory modeling of CVB3 tropism requires careful extracellular

bookkeeping

A hurdle to modeling the complete kinetics of CVB3 arises even before the virus
has encountered a host cell. Stock preparations of enterovirus contain many more RNA-
filled viral particles than infectious plaque-forming-units (PFUs). Encapsidated RNA
genomes often do not reach a host-cell ribosome for translation, and some of those that
do contain deleterious mutations from the prior replication. These particles are “defective”
from the standpoint of infection, yet they are generally able to bind cell-surface receptors
and internalize (19). Defective particles thus contribute viral protein and RNA to the system,
which must be accounted for at the start of the life cycle.

Particle-to-PFU ratios vary widely within an enterovirus species—the ratio for
poliovirus, for example, is reported to be 30:1 to 1000:1 (2). We quantified sedimentable
RNA content from separately purified CVB3 preparations of known PFU titer and estimated
a particle-to-PFU ratio of 800 + 200 (n = 4 preparations; Section 2.5, STAR Methods). In the
model, we assumed an 800-fold excess of defective particles, which traffic identically to
PFUs but do not translate upon entering the host-cell cytoplasm (Section 2.5, STAR
Methods). The assumption creates a kinetic dead-end for defective particles without any
additional kinetic parameters (Table S1). More complicated defective-particle fates yielded
similar infection outcomes, as shown after the model was fully developed (see below).

A second challenge relates to the front-end model implementation of viral delivery.
The early steps of virus binding and internalization are discrete and thus intrinsically
stochastic (20). However, one negative-strand template can yield hundreds of protein-
coding positive strands within an hour (21), indicating rapid transition to a regime where
deterministic modeling is valid. We balanced these tradeoffs by postulating that the
dominant stochasticity was the Poisson noise from the number of PFUs encountered at a
given multiplicity of infection (MOI) describing the average PFU per cell within a population
(20). Cell-to-cell variation in all downstream processes was modeled by lognormal random
variables centered around the best estimates from the literature (Table S1) and sampled
with a user-defined coefficient of variation. We configured the simulations to run in one of
two modes: 1) a “single-cell” mode, in which a discrete number of PFUs is simulated with
lognormally distributed downstream parameters, and 2) a “cell-population” mode, in which
a lognormal instance of the life cycle is paired with a PFU integer drawn from a Poisson
distribution about a continuous MOI representing the average. In either mode, dynamic

trajectories were well summarized by ~100 separate iterations. The dual implementation

thereby models the average-cell response to an initial condition that is highly stochastic.
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Binding and delivery of CVB3 requires decay accelerating factor (DAF, officially
named CD55) and coxsackievirus and adenovirus receptor (CAR, officially named CXADR)

(6, 7). DAF is a low-affinity receptor (Kp ~ 3 pM) whose transcript is widely expressed at
moderate abundance in human tissues (median transcripts per million [TPM] ~ 25) (22, 23).
CAR is the high-affinity receptor (Kp ~ 0.2 pM) that is less abundant overall (median TPM

~ 3.5) and restricted to the heart, brain, and epithelial tissues that CVB3 infects (22, 24).
DAF is a GPI-linked surface protein that diffuses freely in cholesterol-rich microdomains on
the cell surface, whereas CAR is a cell-cell adhesion protein localized to tight junctions.
Binding of CVB3 to DAF enables the CVB3:DAF complex to traffic to tight junctions, where
CVB3 is bound by CAR to promote endosomal internalization (Figure 2.3A) (25). In the
model, we assumed that CAR is instantly degraded upon CVB3 internalization at
characteristic rates for endocytosis (26). However, results in permissive hosts were
unchanged if CAR was instead recycled instantaneously to the surface (Figure 2.4A). Rates
of rapid endosomal escape were estimated from live-cell experiments with labeled
poliovirus (19). The output of the delivery module is positive-strand RNA (both infectious
and defective) in the cytoplasm.

As a representative host cell, we used AC16 cells, which were originally
immortalized by cell fusion of adult ventricular cardiomyocytes with SV40-transformed
fibroblasts (27). AC16 cells are not very permissive to CVB3 infection, but they become
highly susceptible upon ectopic expression of CAR (28). We originally intended to use
CAR-overexpressing AC16 cells (AC16-CAR) under quiescent conditions in which SV40 was
knocked down and serum reduced (27). However, RNA sequencing (RNA-seq) revealed
that CAR overexpression in quiescent cells caused a considerable upregulation of ISGs
(Figure 2.3B), which would confound the analysis. Follow-up experiments revealed that ISG
upregulation was specific to the quiescence protocol (Figures 2.3C and 2.4B-D), enabling
the use of proliferating AC16-CAR cells for the study.

The delivery module is composed entirely of low copy-number events and
intermediate species that are difficult to assess experimentally. Consequently, we selected
DAF and CAR abundance for a validity check on the module, using the other modules to
amplify the effect of CVB3 receptors on viral outputs that were measurable. To
parameterize initial conditions for DAF and CAR, we derived estimates from the AC16 RNA-
seq data by using an RNA-to-protein conversion factor for each receptor estimated from a
panel of different Hela lines profiled by transcriptomics and proteomics (29, 30). HelLa
cells are highly susceptible to CVB3 and are widely used for virus propagation; thus, per-
cell receptor abundances should be in the operating range for productive infection. Both
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conversions were adequately described by a hyperbolic-to-linear fit providing approximate
protein estimates for parental AC16 and AC16-CAR cells (Figures 2.3D and 2.3E; Section
2.5, STAR Methods). However, CAR estimates from corresponding CXADR mRNA in AC16-
CAR cells required an enormous extrapolation of the fit (Figure 2.3E), prompting an
independent measurement. Ectopic CAR contains a V5 tag on the C-terminus, which
prevents the construct from transmitting adhesion signals to PDZ domain-containing
proteins (31) and enables absolute epitope quantification. Using a recombinant multitag
protein containing a V5 epitope, we calibrated V5 immunoblotting to protein copies and
interpolated CAR-V5 copies for known numbers of AC16-CAR cells (Figures 2.3F and 2.4E).

The ~5.5 million CAR-V5 molecules per cell falls within the prediction interval for the RNA-
to-protein conversion fits, supporting that fit-based estimates for DAF (~61,000 [AC16] and

~44,000 [AC16-CAR] per cell) and endogenous CAR (~2300 per cell) are realistic.

Taking an average DAF abundance between the two lines, we simulated the
quantitative importance of CAR at endogenous and ectopic levels with a CVB3 infection
of 10 PFU. When viral particles were fully accounted for, the model predicted a robust
infection in CAR-overexpressing cells but not parental AC16 cells, reflected by viral protein
1 (VP1) expression within 10 hours (Figures 21D and 2.3G). Host permissiveness was
predicted to occur at ~7000 CAR copies per cell (Figure 2.4F), a threshold surpassed by
all HelLa variants in the panel (Figure 2.3E) (30). By contrast, when defective particles were
ignored and the same host-cell conditions simulated, productive CVB3 infections occurred
at both ectopic and endogenous abundances of CAR (Figure 2.3H). Lack of receptor
competition from defective particles enables DAF-bound PFUs to access the small number
of CARs, internalize, and replicate. Competition was consequential at particle-to-PFU ratios
of 200 or greater (Figure 2.4G), partially overlapping with the range of ratios documented
for enteroviruses (2). The results suggest that host-cell permissiveness is conditioned on
PFU purity relative to defective interfering particles.
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Figure 2.3. Stoichiometric estimation and simulation of CVB3 particles, cargo, and
surface receptors.

(A) Overview of the CVB3 delivery module. CVB3 binds to DAF and translocates to tight junctions (TJ, beige).
In the tight junction, CVB3 unbinds DAF and binds to CAR by two parallel mechanisms (Section 2.5, STAR
Methods). CAR-bound CVB3is internalized and DAF is returned to the plasma membrane. At any point, CVB3
may dissociate from its receptors (reverse arrows). After internalization, the viral genome (Rp) escapes the
endosome into the cytoplasm.

(B) Ectopic expression of CAR in quiescent AC16 cells causes chronic overexpression of immune response
genes. Differentially expressed transcripts between quiescent parental AC16 cells (Parental) and CAR-
overexpressing AC16 cells (AC16-CAR) (g < 0.05; gray) that also have a logz fold change (FC) greater than +1

(green) and are immune-regulated genes (orange). Proteins encoded by IFIHT and CXADR (blue) are
independently measured in (C).

(C) The elevated interferon response of AC16-CAR cells is restricted to the quiescence protocol involving
SV40 knockdown. AC16 cells with or without quiescence (shSV40) or CAR overexpression (CAR-V5) were
immunoblotted for IFIH1, SV40 T antigen (Tag), and ectopic CAR-V5 with vinculin, tubulin, p38, and GAPDH
used as loading controls. Replicated densitometry is shown in Figures 2.4B-D.

(D and E) Estimating DAF—CAR abundance through coupled transcriptomics and proteomics of Hela cells
(30). Data from n = 14 Hela variants was used to determine a hyperbolic-to-linear fit (Section 2.5, STAR
Methods) that was combined with the AC16 transcriptomic data to estimate the per-cell DAF—CAR protein
abundances for AC16 cells (blue) and AC16-CAR cells (red). The best-fit curve (white dashed) is shown + 99%
confidence interval of the fit (gray).

(F) Direct measurement of CAR abundance in AC16-CAR cells. Recombinant V5-containing Multitag was used
to calibrate a V5 quantitative immunoblot and estimate the total per-cell abundance of CAR-V5. Data are
shown as the mean + s.e.m. of n = 4 biological replicates (red). The best-fit calibration curve (white dashed)
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is shown = 90% confidence interval of the fit (gray).

(G and H) Complete kinetics requires accounting of defective CVB3 particles to capture host-cell tropism.
For these simulations, DAF abundance was averaged to 52,500 copies per cell. Predictions are shown as
the median simulation + 90% nonparametric confidence interval from n = 100 simulations of single-cell
infections at 10 PFU with a parameter coefficient of variation of 5%. In (H), the lack of defective particles
exaggerates the drop in viral protein associated with endosomal escape (arrows; Section 2.5, STAR
Methods). Results from (G) and (H) were unchanged if endogenous CAR was estimated from a calibration
including the protein estimates from AC16-CAR cells in (F).

See also Figure 2.4.
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Figure 2.4. Delivery controls, immunoblot quantification, V5 immunoblot image, and
evaluation of receptor—ratio thresholds.

(A) Recycling of CAR upon CVB3 internalization is inconsequential for permissive hosts. Nonpermissive
(AC16, left) and permissive (AC16-CAR, right) complete kinetic models are simulated assuming total
degradation (green) or recycling (purple) of CAR upon CVB3 internalization. AC16 cells are nonpermissive
under both assumptions. Predictions of unbound CAR are shown as the median simulation + 90%
nonparametric confidence interval from n = 100 simulations of single-cell infections at 10 PFU with a
parameter coefficient of variation of 5%.

(B—D) Replicated densitometry of IFIH1, SV40 Tag, and CAR-V5. Data are shown as the mean + s.e.m. from n
= 3—4 biological replicates.

(E) V5 immunoblot image of V5-containing Multitag recombinant protein along with RIPA-soluble (left) and
RIPA-insoluble (right) extracts of AC16-CAR cells at the indicated cell abundance per lane. The abundance of
soluble and insoluble CAR-V5 was combined per biological replicate in Figure 2.3F.

(F) Minimum CAR abundance for productive infection of AC16 cells with CVB3. Predictions of total viral protein
for 5000-9000 CAR molecules per cell are shown as the median simulation + 90% nonparametric
confidence interval from n =100 simulations of single-cell infections at 10 PFU with a parameter coefficient
of variation of 5%.

(G) Critical particle-to-PFU ratio for accurately predicting the lack of CVB3 tropism in AC16 cells. Predictions
of total viral protein for particle-to-PFU rations from 1-200 are shown as the median simulation + 90%
nonparametric confidence interval from n = 100 simulations of single-cell infections at 10 PFU with a
parameter coefficient of variation of 5%.

35



2.3.3 Atwo-phase encoding of membrane replication predicts quantifiable

positive—negative strands and replicative intermediates

After entering the cytoplasm, an infectious positive-strand RNA genome is
translated by host-cell ribosomes. In cell-free systems, enteroviral RNA is recognized by
2-5 ribosomes within 15 seconds (32). We conservatively assumed a polysome size of 2—
3 ribosomes to account for ribosome competition with host-cell mMRNAs early in infection.
In the model, polysomes increase the net translation of viral proteins along with the
retention of positive strands in translation complexes (Section 2.5, STAR Methods).
Modeling polysomes was critical for appropriately timing the onset of exponential viral
protein synthesis under realistic translation rates (Figure 2.6A).

Any positive strand released from a translation complex was instantly placed on a
3Drol-containing surface to capture the cis coupling of enteroviral translation and
replication (Figure 2.5A; Section 2.5, STAR Methods) (33, 34). During infection, host-cell
membranes are redirected to create molecular factories for genome replication from a
negative-strand template (35). The formation of such “viral replication organelles” (VROs)
is widely documented in positive-strand RNA viruses and may serve multiple functions (36).
Using the model, we considered three functions for VROs: 1) shield viral RNAs from
degradation, 2) shield viral replicative intermediates from dsRNA sensing, and 3)
accelerate replicative processes by concentrating species on a surface. Recent
ultrastructural studies suggest a per-cell VRO surface area of 160-185 pm=2 (37), which
roughly agrees with our own brightfield estimates of 120 pm2 (Section 2.5, STAR Methods).
These numbers and the ~7-nm height of a 3Dr°! enzyme (PDB ID: 3CDW) yield a >2000-
fold concentrating effect of associating cytoplasmic viral molecules in the local volume of
a VRO surface. Whereas setting either viral RNA degradation or dsRNA sensing on VROs
to zero had a negligible impact on the timing of acute infection, reducing the VRO-
concentrating effect to less than 100-fold yielded no net output (Figure 2.5B). Other VRO
functions might be important for RNA viruses that replicate more slowly and organize VROs
differently (38), but these computational results strongly suggest that the dominant role for
enteroviral VROs is to accelerate biochemistry.

Next, we needed to define when the VRO acceleration was triggered kinetically.
One 3Dro enzyme by itself is dilute whether in the cytoplasm or on a membrane, but local
surface patches of enzyme and positive strand could exhibit acceleration even though the
whole-cell concentration is low. Guided by measurements of positive and negative strands
in CVB3-infected cells (Section 2.5, STAR Methods), we selected a threshold of 25 3Dre!

molecules, which triggers at ~2.5 hr after infection with 10 PFU and coincides with the first
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translational burst of an infectious virion (39). This threshold marks the early onset of the
deterministic, continuous regime (3Dr°! counting noise = 20%) and precedes the 4-5-hr
time point when VROs become ultrastructurally observable (40).

To validate the parameterization of the replication module, we sought robust,
sensitive, and absolute measurements of positive and negative strands during infection.
We devised a tagged quantitative PCR (qPCR) assay, which avoids false priming within the
CVB3 genome by using a biotinylated strand-specific primer and streptavidin pulldown
before quantification (Section 2.5, STAR Methods) (41, 42). Using purified standards, the
assay was sensitive to ~1000 CVB3 copies per 250-cell reaction and linear over at least
five decades (Figures 2.6B and 2.6C). After specifying a VRO transition consistent with
these data, the model achieved excellent quantitative agreement with the absolute
estimates of positive—negative strands (Figures 2.5C and 2.6D), and the module was
deemed valid. Results were comparable if defective RNA genomes assembled as
polysomes in the model or were further subject to nonsense-mediated decay (Figures 2.6E
and 2.6F). Future iterations will consider the de novo generation of defective genomes
during replication (43).

Model-experiment concordance required the particle-to-PFU ratio described
earlier and a quantification of the positive-to-negative strand ratio in released particles
(1790; Figure 2.6B). Notably, we also assumed that replicative intermediates—partial RNA—
RNA hybrids of positive and negative strand—were not detected by the tagged gPCR
method. Upon cell lysis, collapsed replicative intermediates would be difficult to denature
fully for biotinylated priming without thermally degrading the RNA itself. We tested the
assumption by mixing 10> copies of purified strand with increasing amounts of the
complementary strand per 250-cell reaction and measuring both with the stranded assay
(Section 2.5, STAR Methods). Although copy numbers were accurate for many mixtures,
some limiting ratios were irreproducible or grossly underestimated (Figure 2.5D). Such
strand competition is probably even more severe in cells, where replicating strands are
already nearby their complementary template (44).

There are experimental workarounds to accessing collapsed replicative
intermediates, but their detection efficiency is difficult to determine (44-46). Using the
model at 10 PFU, we simulated the positive-to-negative strand ratio predicted when
replicative intermediates were incorporated in the calculation at different efficiencies
(Section 2.5, STAR Methods). Replicative intermediates, even at 10% detection efficiency,
profoundly altered the calculated ratio and its dynamic trajectory (Figure 2.5E). Literature-
derived ratios of 50:1 to 100:1 were recapitulated in the model with detection efficiencies
of 10-30% (44, 45, 47). At 100% detection efficiency, the model predicted lower ratios near
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15:1. Lower positive-to-negative strand ratios have been observed in single-cell enterovirus
assays involving large dilutions of a cell extract after lysis that may disfavor collapse of
replicative intermediates (48). Taken together, we conclude that the replication module is

consistent with internal measurements as well as a range of observations in the literature.
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Figure 2.5. Explosive genome replication requires intracellular membranes and hides
negative-strand templates from quantitation.

(A) Overview of the replication module. After dissociating from polysomes, the positive-strand RNA genome
is released to associate with the surface of viral replication organelles (VROs), where translated RNA-
dependent RNA polymerase (3DP°) resides bound to 3AB (white box). Replication proceeds on the VRO
surface, releasing one positive strand (Rp) and one negative strand (Rn). The reciprocal process occurs with
Rn as template, except that Rs is not released from 3Dr° (Section 2.5, STAR Methods).

(B) VROs are surface accelerants. Translational output from complete kinetics altered to assume zero RNA
degradation, zero dsRNA sensing, or limited concentrating effect on the VRO surface. The concentrating
effect in the complete kinetic model is 3216x (see Section 2.5, STAR Methods).

(C) Complete kinetics captures the absolute viral RNA dynamics of positive and negative strands. Predictions
(purple) were compared to data (green) obtained by strand-specific tagged quantitative PCR (gPCR) with
purified standards. Data are shown as the geometric mean * log-transformed standard error of n = 4
biological replicates of AC16-CAR cells infected at MOl = 10 for the indicated times. Population-level
simulations are shown in Figure 2.6D.

(D) Strand competition between sense and antisense CVB3 genomes in vitro. Strand-specific tagged gPCR
of 10° positive copies (left) or negative copies (right) amidst the indicated abundance of complementary
strand on the x-axis (measured in blue). Data [black (with outliers highlighted in red) and blue] are shown as
the mean log2 relative abundance
[40 — gPCR quantification cycle (Cq)] (42) + range of assay duplicates at n = 6 separate positive-negative
strand mixtures.

(E) Observed positive-negative strand ratio depends critically on the detection efficiency of dsRNA replicative
intermediates. The complete kinetic model was simulated and inventoried with different fractional
contributions of dsRNA to the positive- and negative-strand totals.

For (B), (C), and (E), predictions are shown as the median simulation £ 90% nonparametric confidence interval
from n =100 simulations of single-cell infections at 10 PFU with a parameter coefficient of variation of 5%.

See also Figure 2.6.
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Figure 2.6. Polysome size requirements, strand-specific tagged gqPCR validation, and
population-level simulations of viral RNA strand dynamics with complete kinetics.

(A) Polysome size dictates the timing of viral protein synthesis. The start of exponential protein synthesis is
shown as the median simulation £ 90% nonparametric confidence interval from n =100 simulations of single-
cell infections at 10 PFU with a parameter coefficient of variation of 5%. The experimentally observed timing
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(Figure 2.1D) is shown for reference (green).

(B) Strand-specific tagged gqPCR assessment of positive (+) and negative () strands in purified CVB3 virions.
The measured strand ratio was 1790 + 130. Data are shown as the geometric mean of n = 3 separate CVB3
dilutions of purified virion.

(C) Quantitative precision and accuracy of the strand-specific tagged qPCR assay with positive strands from
purified CVB3 virions and negative strands prepared by in vitro transcription. Data are shown as the mean
logz relative abundance [40 — gPCR quantification cycle (Cq)] (42) £ s.e.m. of assay quadruplicates at n=7
separate positive-negative strand dilutions. Note the sporadic detection of the assay as the input approaches
the single-molecule limit (assuming ~10% conversion efficiency from RNA to amplifiable cDNA).

(D) Complete kinetics captures the absolute viral RNA dynamics of positive and negative strands at the
population level.

(E and F) Alternative fates of defective CVB3 genomes do not substantially affect the modeled viral RNA
dynamics of positive and negative strands. Defective genomes were assumed to (E) form defective polysome
translation complexes that bound—unbound but did not yield polyprotein or (F) form defective polysome
translation complexes that bound and instantly underwent nonsense-mediated decay (NMD).

For (D—F), predictions (purple) were compared to data (green) obtained by strand-specific tagged
quantitative PCR (gPCR) with purified standards. Data are reprinted from Figure 2.5C and shown as the
geometric mean + log-transformed standard error of n =4 biological replicates of AC16-CAR cells infected at
MOI = 10 for the indicated times. Predictions are shown as the mean simulation + 90% nonparametric
confidence interval from n =100 simulations of population-level infections at MOI =10 (D) or 100 simulations
of single-cell infections at 10 PFU (E and F) with a parameter coefficient of variation of 5%.
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2.3.4 Encapsidation must coordinate the kinetics of enteroviral protein

synthesis, recruitment, and self-assembly

Besides 3Dr9l, positive-strand translation also yields equal numbers of enteroviral
proteinases, hydrophobic membrane-interacting proteins, and structural proteins that form
the viral capsid (Figure 2.1A). We simplified by defining a single, lumped protease with the
substrate specificity of both 2Ar© and 3Crr (Section 2.5, STAR Methods). Likewise,
membrane-associated 3Dro in the model considers 3Drol together with the tightly
interacting hydrophobic protein, 3AB (Figure 2.5A) (49). We grouped the remaining
hydrophobic proteins into a single exemplar, 2CATPase hecause of its direct interaction with
the VP3 structural protein (50). VP3 assembles instantaneously with VPO and VP1 to form
a VPO-VP1-VP3 protomer (51). We balanced molecular detail and complexity by modeling
structural proteins as the 14S intermediate pentamer [(VPO-VP1-VP3)s], one fifth of which
was generated with each polyprotein matured (Figure 2.7A). Together, these simplifications
decompose the mature CVB3 polypeptide into four species—protease, 3Dro!, 2CATPase gnd
pentamer—that should balance stoichiometrically under limiting conditions (Figures 2.8A
and 2.8B).

One of the earliest consequences of enteroviral proteinase maturation is the
cleavage of the host-cell eukaryotic initiation factor, elF4G, by 2Ar (17). elF4G cleavage
prevents ribosomes from initiating cap-dependent translation, thereby favoring the cap-
independent translation of the virus (Figure 2.7A) (52, 53). We modeled the shutoff of host-
cell translation and theft of ribosomes by incorporating a protease-catalyzed conversion
of ribosomes from inaccessible (cap-dependent) to accessible for CVB3 (Section 2.5, STAR
Methods). The full model showed good agreement with the relative dynamics of elF4G
cleavage and the synthesis of VP1 capsid protein (Figures 2.7B, 2.7C, 2.8C, and 2.8D),
suggesting accurate encoding of the precursors to encapsidation.

Viral pentamers were not placed immediately on VROs like 3Dre! but instead were
recruited to membranes by their interaction with available 2CATPase (Figure 2.7A; Section
2.5, STAR Methods) (50). As neither kinetic nor equilibrium constants are available for the
VP3-2CATPase interaction, we began with rate parameters that were realistic and consistent
with a nominal affinity of 100 nM (Table S1). For viral RNA of either strand, there are multiple
possible binding partners (54), and thus we modeled VRO recruitment as a passive
exchange between cytoplasmic and VRO compartments (Section 2.5, STAR Methods).
Considering the VRO concentrating effect and assuming a representative RNA-protein
association rate of 25 nM'hr' (55), an exchange rate of 1 hr! equates to an effective

membrane affinity of ~125 nM. Sensitivity of the model to these approximations would be
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analyzed after defining the encapsidation steps that yield mature virions.

Encapsidation of enteroviral RNA arises from a series of individually weak
interactions (~1 mM contact affinity) that multiplicatively contribute to the final “closed”
virion (56), which we assumed to be irreversible (Figure 2.7D and Table S1; Section 2.5,
STAR Methods). Capsid self-assembly can also take place without viral RNA. We simplified
the combinatorics by assuming that assembly occurs one pentamer at a time through
reversible additions of pentamers that are either unbound or bound to RNA (Section 2.5,
STAR Methods). In this formalism, intermediate pentamer states can arise from multiple
paths. For example, an empty state of five pentamers (P5Empty) can result from the
addition of a pentamer to P4Empty, the loss of a pentamer from P6Empty, or the loss of
RNA-bound pentamer from P6Filled. The disassembly of filled intermediates was assumed
to release RNA with decreasing probability as the number of pentamers in the intermediate

increased. P6Filled, for instance, disassembles to P5Filled + free pentamer 5% of the time

and P5Empty + RNA-containing pentamer % of the time. The detailed encoding of
encapsidation enables the module to keep track of the discrete steps to virion production
and identify stoichiometric depletions of precursors or pentamer states if they occur.

To illustrate the importance of weak and balanced interactions for encapsidation,
we increased the contact affinity between RNA and pentamer from 1 mM to 100 pM and
found that the slight imbalance completely blocked encapsidation (Figure 2.7E). Pentamers
recruited to the VRO were fully sequestered by the increasing abundance of positive
strands, depleting the free pentamer pool available for higher-order assembly of capsids.
Similar kinetic-trapping mechanisms dominated when pentamer contact affinities were
tighter than 10 pM. By comparison, the module was not as sensitive to the VP3-2CATPase
interaction strength that recruits pentamer to VROs, with virtually no change observed
when the affinity was altered tenfold (Figure 2.7F and Table S1). Unrealistic delays in
encapsidation did not occur until the affinity was reduced from 100 nM to 1-10 mM,
suggesting that alanine mutants of 2CATPase disrupting encapsidation must severely hinder
interactions with pentamer (57).

In contrast to pentamer recruitment, we found that kinetic interactions between viral
RNA and the VRO surface were critical. Increasing the effective membrane affinity (tenfold
decrease in korr and thus Kp; Figure 2.7A) largely blocked capsid formation by driving RNA
prematurely to the VRO at the expense of translation complexes needed to generate
sufficient 3Dro! for replication (Figures 2.7G-Il). Even with the same equilibrium affinity,
faster exchange was problematic for effective encapsidation. We noted virion production
tailed away when on—off rates were both increased tenfold (Figure 2.7J). The shorter
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residence time at the VRO led to large increases in early pentamer species (P1Filled to
P6Filled) at the expense of later filled pentamers needed for sustained virion production
(P9Filled to P1iFilled; Figure 2.7K). The model thus provides a quantitative rationale for the
multiple RNA-binding interactions at the membrane surface (51). Overall, the encapsidation
module finishes the viral life cycle in a stoichiometrically consistent way and makes specific
predictions about the critical kinetic and thermodynamic steps of self-assembly.
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Figure 2.7. A Goldilocks zone for enteroviral encapsidation.

(A) Overview schematic of the CVB3 encapsidation module on the viral replication organelle (VRO). After
viral protein translation (aided by 2Ar™ cleavage of elF4G), viral capsid pentamers are recruited to VROs by
binding 2CATPase (white box). At the VRO, pentamers associate with one another and with positive-strand

genomes to form RNA-pentamer assemblies (RNAPent). Rate parameters investigated by perturbation are
shown.

(B and C) Complete kinetics captures the dynamics of viral protein VP1 expression and accessible ribosomes
(estimated from viral protease cleavage of host elF4G). Predictions (purple) were compared to data (green)
obtained by quantitative immunoblotting. Data are shown as the geometric mean * log-transformed standard
error of n =4 biological replicates of AC16-CAR cells infected at MOI =10 for the indicated times. Population-
level simulations are shown in Figures 2.8C and 2.8D.

(D) Overview schematic of the CVB3 encapsidation module showing viral capsid assembly. Capsids
assemble one pentamer at a time with or without a positive-strand genome. Filled virions (lower right) are
formed irreversibly.

(E) Increasing RNA-Pentamer affinity prevents virion maturation. Virion production in the base model (red)
compared to when the RNA-pentamer affinity is increased (blue) by reducing its contact dissociation constant
(RNAPent Kp) from 1 mM to 100 pM (Section 2.5, STAR Methods).
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(F) Model simulations are not sensitive to changes in pentamer recruitment to the VRO via 2CATPase pinding.
Virion production in the base model (red) compared to when pentamer-2CATPase affinity is either increased
(blue) or decreased (yellow) by reducing or increasing its apparent dissociation constant (Pent:VRO Kp) from
100 nM to 10 nM (blue) or 1 uM (yellow).

(G—1) RNA interactions with the VRO must be balanced. (G) Virion production, (H) positive-strand RNA
genomes at the VRO (+ssRNA:VRO), and (l) translation complexes in the base model (red) compared to when
RNA exchange rates with the VRO were biased (blue) by decreasing kofrto from 1 hr'to 0.1 hr'. Arrow in (H)
indicates premature recruitment of positive-strand RNA genomes to the VRO when ko = 0.1 hr'. Some
lognormally sampled parameter sets give rise to the late formation of +ssRNA:VRO, productive translation
complexes, and mature virions (blue shading).

(J and K) Kinetics of RNA-VRO interactions are important for sustained virion production. (J) Virion production
and (K) pentamer states in the base model (red) compared to when RNA association and dissociation rates
with the VRO are both increased tenfold (blue). PnF, intermediate filled capsid state of n pentamers and one
positive-strand genome.

For (B), (C), and (E—K), predictions are shown as the median simulation £ 90% nonparametric confidence
interval from n =100 simulations of single-cell infections at 10 PFU with a parameter coefficient of variation
of 5%.

See also Figure 2.8.
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Figure 2.8. Stoichiometric balance of CVB3 protein classes and population-level
simulations of viral-protein and elF4G cleavage dynamics.

(A) Dynamics for the four protein species—capsid protein, 3DP°, active protease (2AP°—3CPr), and 2CATPase—
in the complete kinetic model.

(B) Dynamics for the four protein species under the following limiting conditions for stoichiometric balance:
no protein-RNA degradation, no antiviral response, no viral antagonism, no defective particles, and no
bookkeeping of viral capsid from added PFUs. The separation of the four species at ~two hours is caused
by the immediate onset of the viral replication organelle (VRO) regime, which affects the apparent

concentration of all species except active protease (Section 2.5, STAR Methods). The solutions converge
again within two hours.

(C and D) Complete kinetics captures the dynamics of viral protein VP1 expression and accessible ribosomes
(estimated from viral protease cleavage of host elF4G) at the population level. Predictions (purple) were
compared to data (green) obtained by quantitative immunoblotting. Data are reprinted from Figures 2.7B and
2.7C and shown as the geometric mean * log-transformed standard error of n = 4 biological replicates of
AC16-CAR cells infected at MOI =10 for the indicated times. Predictions are shown as the mean simulation
90% nonparametric confidence interval from n = 100 simulations of population-level infections at MOI = 10
with a parameter coefficient of variation of 5%.

For (A) and (B), predictions are shown as the median simulation + 90% nonparametric confidence interval
from n =100 simulations of single-cell infections at 10 PFU with a parameter coefficient of variation of 5%.
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2.3.5 Loss of type | interferon signaling coincides with degradation of MAVS

during CVB3 infection

With the viral life-cycle modules encoded, we returned to host-cell signaling
responses in search of pathways engaged during an acute CVB3 infection. The CVB3
proteinase 3CPr° can block inflammatory signaling by cleaving the NF-kB inhibitor, IkBa,
and converting it to a stably-associated, non-degradable form (58). In AC16-CAR cells,
however, we detected canonical degradation of IKBa and induction of NF-kB target genes
a few hours after CVB3 infection (Figures 2.9A and 2.9B). We next considered the type |
interferon signaling pathway, which is robustly triggered by cytosolic dsCVB3 in these cells
(Figure 21B). Although phosphorylation of the effector kinase TBK1 was detected
transiently after infection, the antiviral signal was not reliably propagated to IRF3 or
interferon signaling through phosphorylated STATs (Figures 2.9C and 2.9D). There was no
induction of the IFNA locus, nor did we observe upregulation of any ISG profiled in cells
infected with live virus (Figures 2.9E and 210A-E). The results suggested that CVB3
actively severs signal transmission from its dsRNA replicative intermediate to a productive
type | interferon response.

Both 3Cr and 2Ar™ are reported to target components of the innate dsRNA
sensing and signal-transduction machinery (5, 15). Normally, long dsRNA is detected by
MDAS5, which associates with the mitochondrial transducer MAVS to drive surface
polymerization that signals through the adaptor TRAF, the kinase TBK1, and the
transcription factor IRF3 (59). Although MDAS5 was not significantly altered in AC16-CAR
cells during CVB3 infection, we noted a mid-infection dip in proteoforms of the
mitochondrial transducer, MAVS (Figure 2.9F). Later post-infection times revealed a C-
terminal fragment at 35 kDa (MAVSss), which comprised up to 20% of the endogenous
MAVS protein at 24 hours; MDA5 was not clearly affected over the same timeframe
(Figures 2.9G and 2.9H). The mid-infection decrease in full-length MAVS (MAVSk) was
concurrent with the loss of TBK1 phosphorylation and the explosive increase in CVB3
protein (Figures 2.7B, 2.9C, and 2.9F). A MAVS3s fragment implied that MAVSE. was splitin
half, separating its N-terminal oligomerization domain from the C-terminal mitochondrial—
microsomal transmembrane domain (60, 61). Even slight abundance shifts in MAVS
proteoforms can alter the propensity of the pathway to activate (62, 63). Together, the data
suggested that a CVB3-derived protein antagonizes the dsRNA-mediated interferon
response by cleaving an essential transducer (64).

We elaborated the infection model with a lumped interferon response, which pairs
a CVB3 sensing-and-transduction mechanism with a single, pleiotropic ISG effector (ISGs,

48



Figure 21A; Section 2.5, STAR Methods). The joint sensor—transducer recognizes dsRNA
and sigmoidally induces the ISG effector, streamlining the native regulation by the MDA5—
MAVS-TRAF-TBK1-IRF3 pathway (65). The ISG effector impedes CVB3 infection at three
points in the life cycle. First, the effector accelerates CVB3 RNA turnover, modeling the
activity of oligoadenylate synthetases and RNAse L (Figures 2.1A and 2.1B) (66). Second,
the effector blocks CVB3 polyprotein synthesis to capture dsRNA recognition and
translational inhibition by the PKR pathway (Section 2.5, STAR Methods) (67). Third, the
effector incorporates interferon-stimulated mechanisms for disabling CVB3 proteinases,
such as ISGylation of 2Ar© and PARP9-DTX3L-mediated ubiquitylation of 3Cprr (68, 69).
The three antiviral effects were encoded as hyperbolic feedbacks on the CVB3 RNA
degradation rates, the formation rate of CVB3 translation complexes, and the effective
production rate of active 2Aro-3Cpro respectively (Figure 2.1A; Section 2.5, STAR Methods).
The active 2Aprro-3Cpro pool reciprocally feeds back on the sensor—transducer in the model
to hyperbolically limit the maximum induction rate of the ISG effector in response to dsRNA
(Figure 21A; Section 2.5, STAR Methods). The interlinking of these four negative feedbacks
provides a compact abstraction of the multifaceted antagonism between enteroviruses
and type | interferon signaling.

The feedback parameters of the lumped interferon response are phenomenological
and not directly measurable. Nevertheless, the feedback architecture places strong
qualitative constraints on their relative potencies:

1. AC16-CAR cells are capable of mounting an interferon response to CVB3 dsRNA
(Figure 21B). However, the response is blocked during an active infection,
presumably through protease-mediated antagonism of dsRNA sensing and
cleavage of MAVS (Figures 2.9E—H). The feedback potency of the 2Arro-3Cpro pool
must therefore be potent enough to degrade dsRNA sensing in the model during
an active infection.

2. Early stimulation of AC16-CAR cells with interferons significantly impedes CVB3
propagation (28), suggesting that an endogenous interferon response would be
sufficient if it were fully mobilized and not disrupted by viral proteases. Thus, the
modeled type | interferon response should thwart the virus in simulations where
dsRNA sensing—transduction is fully intact.

3. Atlatertimes during CVB3 infection, the addition of interferons becomes ineffective
(Figure 2.10F). The 6-8 hr time window indicates that antiviral mechanisms become
ineffective after the virus has passed a critical “point of no return” in its life cycle.
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Using these constraints, we identified feedback weights with half-maximal effective
concentrations (EC50s) that conferred the specified qualitative behavior (Figure 2.9I;
Section 2.5, STAR Methods). The outcome of infection was robust when these heuristic
EC50 values were varied individually over a severalfold range (Figure 2.10G). Most EC50
values were in the nM range (5-20 nM) except for protease antagonism of dsRNA
sensing—transduction, which needed to be much lower (1 pM). Such potency could be
achieved if the relevant protease is locally complexed with the dsRNA sensor—transducer
that is cleaved. For MAVS cleavage, a plausible candidate is the precursor to 3Cr© and
3Drol, 3CDrro, which has both protease activity and nucleotide-binding activity for
replication (70). The importance of potently antagonizing ISG induction is corroborated by
a recent computational model of Dengue virus (71). Combining the enteroviral life cycle
with host-cell feedbacks created a rich dynamical system to mine for predicted behavior
that was non-intuitive and possibly important for pathogenesis.
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Figure 2.9. CVB3 partially dismantles
MAVS.

(A and B) Acute CVB3 infection activates NF-kB signaling. (A) AC16-CAR cells were infected with CVB3 at
MOI =10 for the indicated times and immunoblotted for IkBa (A, upper) with ectopic CAR-V5, p38 (A, lower),
vinculin, and tubulin used as loading controls. (B) Total RNA was collected at the indicated times and
with HINT1, PRDX6, and GUSB used as loading controls.

(C—E) Early dsRNA sensing is not propagated to a detectable type | interferon response during acute CVB3
CVB3 at MOI =10 for the indicated times and immunoblotted
for phosphorylated TBK1 (Ser'?) relative to total TBK1 (Relative pTBK1) (C, upper) or phosphorylated IRF3
lower) with ectopic CAR-V5, p38, vinculin, and tubulin used

measured for the indicated NF-kB target genes

infection. (C) AC16-CAR cells were infected with

(Ser39°) relative to total IRF3 (Relative pIRF3) (C,

antiviral signaling and the dsRNA transducer
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as loading controls. (D) AC16-CAR cells were infected with CVB3 at MOI =10 for 24 hours or treated with 30
ng/ml IFNPB for 30 minutes as a positive control and immunoblotted for phosphorylated STAT1 (pTyr’%") and
total STAT1 (D, left) or phosphorylated STAT3 (pTyr’°%) and total STAT3 (D, right) with vinculin, tubulin, and
GAPDH (+ CVB3) or actin, tubulin, and p38 (+ IFNB) used as loading controls. (E) Total RNA was collected at
the indicated times and measured for the indicated ISGs with HINT1, PRDX6, and GUSB used as loading
controls.

(F—H) Acute CVB3 infection disrupts MAVS but not MDAB. (F) AC16-CAR cells were infected with CVB3 at
MOI =10 for the indicated times and immunoblotted for MDAS (F, upper) or the full-length (FL) and mini-MAVS
[mini; translated by leaky ribosomal scanning at Met"? (62)] with ectopic CAR-V5, p38, vinculin, and tubulin
used as loading controls. (G) AC16-CAR cells were infected with CVB3 at MOI = 10 for 24 hours and
immunoblotted for MDAS or MAVS with vinculin, tubulin, and GAPDH used as loading controls. A 35 kDa
MAVS cleavage product (MAVSss) is visible 24 hours after infection. (H) Immunoblot densitometry of
replicated experiments described in (G).

() Mature virion formation predicted by complete kinetics with or without innate antiviral sensing (antiviral),
viral antagonism of antiviral sensing (antagonism), or supplemental interferon (IFN) added at the indicated
times. Predictions are shown as the median simulation + 90% nonparametric confidence interval from n =
100 simulations of single-cell infections at 10 PFU with a parameter coefficient of variation of 5%.

Data are shown as the mean = s.e.m. (A, C, D, F, H) or geometric mean + log-transformed standard error (B,
E) of n=4 biological replicates. For (A—C), (E), and (F), time courses with significant alterations were assessed
by one-way ANOVA (or, for MAVSe. and MAVSnini, two-way ANOVA) with replication, and a single asterisk
indicates p < 0.05 for individual time points compared to t = O hour (gray band) after Tukey post-hoc
correction. For (D) and (H), a double asterisk indicates p <10 by Student’s unpaired t test.

See also Figure 2.10.
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Figure 2.10. Controls for interferon-stimulated genes and time-dependent antagonism

of mature virion formation by supplemental interferon.

(A—E) Total RNA was collected at the indicated times and measured for the indicated ISGs (OAS2, OAS3,
OASL, EIF2AK2) or housekeeping gene (GAPDH) with HINT1, PRDX6, and GUSB used as loading controls.
Data are shown as the geometric mean * log-transformed standard error of n = 4 biological replicates. Time
courses with significant alterations were assessed by one-way ANOVA with replication, and a single asterisk
indicates p < 0.05 for individual time points compared to t= 0 hour after Tukey post-hoc correction.

(F) Supplemental interferon blocks CVB3 progression during early infection. AC16-CAR cells were infected
with CVB3 at MOI = 10 for 24 hours with 30 ng/ml IFNB added at the indicated times relative to the start of
CVB3 infection at t= 0, and the conditioned medium was assessed by plaque assay. Data are shown as the
mean PFU/ml £ s.e.m. from n = 3 biological replicates.

(G) Terminal virion production is not sensitive to the exact choice of half-maximal effective concentrations
(EC50s, bolded) specifying feedback weights. The listed model parameters were individually varied by the
indicated multiplication factor and the concentration of virions reported at 24 hours as the logz fold change
(FC) relative to the base parameter set. The Hill constant was varied multiplicatively below one and additively
above one (where 2 = base Hill coefficient + 1).
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2.3.6 A cleavage-resistant MAVS mutant shows enhanced antiviral activity

upon delayed stimulation with paracrine interferon

We used the model to examine viral outcomes to delayed addition of interferon
(Figure 2.10F). The scenario mimics a setting of paracrine antiviral signaling, where an
infected cell is warned of a local infection by an interferon-secreting cell nearby. The earlier
this paracrine warning signal is received, the more effective the stimulated interferon
response can be at inhibiting viral propagation. We reasoned that the timed addition of
interferon would uncover nonobvious combinatorial sensitivities in the network that could
be tested experimentally. Using mature virions as the readout, we screened a five-tiered
range of potencies for the three interferon feedbacks and viral-protease antagonism (54 =
625 simulations), and each simulation was run with or without interferon at five different
times after infection [54(1+5) = 3750 simulations]. Many of the perturbations affected mature
virions monotonically with effects that superposed when combined. However, the
computational screen revealed a sensitivity to viral-protease antagonism that was
dependent on delayed addition of interferons at intermediate times post-infection (Figures

211A and 211B). If interferon was supplemented early (t ~ 4 hr), viral propagation was

dampened to a basal level regardless of the extent of antagonism. However, when viral-
protease antagonism was reduced fivefold, the dampening persisted even when
interferon was supplemented later (t ~ 6 hr). At this time, the base model cannot maintain
peak ISG production because of excess viral protease but the resistant variant is still
maximally fighting the infection (Figures 2.12A and 2.12B). The testable prediction was that
perturbing sensor—transducer degradation by viral proteases would have analogous time-
dependent effects when infected cells received supplemental interferons.

To test this prediction, we returned to the CVB3-induced cleavage of MAVS
observed earlier (Figures 2.9G and 2.9H). MAVS can be cleaved by 3Crr at a GIn-Ala
cleavage site between positions 148 and 149 (5). However, such a cleavage product would
be electrophoretically indistinguishable from MAVSmin, an oligomerization-deficient
proteoform that is translated by leaky ribosomal scanning at Met¥2 (62). The site’s
importance for CVB3 infectivity is also unclear, because Ala'° in MAVS is undergoing rapid
positive selection in primates (72). Chimpanzees (Val*?) and African green monkeys
(Arg"°) both have substitutions that should prevent cleavage by 3Cre (73), but
coxsackievirus infections have been documented in both species (74, 75). We considered
alternative sites that would be more consistent with the observed MAVS3s product and
identified a GIn-Gly cleavage site between positions 271 and 272. The site is included in a
six amino-acid insertion distinguishing old-world monkeys/hominoids from new-world
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monkeys, which are seronegative for coxsackievirus (76). The phylogenetics and observed
cleavage pattern of MAVS built a stronger case for GIn27! as an important site for sensor—
transducer degradation during CVB3 infection.

Using a human MAVS template derived from a widely cited IMAGE clone (61, 77),
we cloned a doxycycline-inducible, FLAG-tagged MAVS with or without GIn271 substituted
for alanine (Ala2”'; Section 2.5, STAR Methods). Lentiviral transduction and selection of
AC16-CAR cells yielded lines with comparably inducible ectopic MAVS alleles, which could
be compared to one another (Figures 2.11C and 2.11D). When cells were induced and then
infected with CVB3, we found that generation of MAVS3s was significantly reduced in the
Ala27' line compared to the GIn271 line for multiple viral stocks (Figures 2.11E and 2.11F). We
attributed the residual MAVSss in the Ala271line to cleavage of endogenous MAVS at GIn271,
Thus, CVB3 antagonizes antiviral signal transduction by cleaving MAVS at GIn27!, and the
Ala27' line approximates a state of partial resistance as simulated by the complete kinetic
model.

To evaluate the impact of MAVS cleavage on viral propagation, we collected
medium from cells treated with CVB3 for 24 hours and titered infectious virions by plaque
assay (Section 2.5, STAR Methods). Titers from the Ala2’! line were significantly lower
relative to the GIn27 line for multiple CVB3 stocks (Figures 211G and 2.11H). Biological error
was usually close to the intrinsic counting noise of a plaque assay (Figures 212C and
2.12D), with the spread of biological replicates comparable to Poisson intervals about the
mean (Figure 211H). We also kept in mind the increased uncertainty of the interferon-
supplemented base model (Figure 2.11B, left) when comparing predictions to experiments.
The GIn27" and Ala?’' lines were next used to test for differences in the time-dependent
effect of paracrine interferon signaling predicted by the model. We found that interferon-8
treatment at 4 hours after infection significantly reduced the infectivity in the GIn271line, as
paracrine stimulation offset the MAVS genotype (Figure 211, left). At 5—-6 hours, however,
interferon-pB lost efficacy in the GIn27! line, returning to viral titers that were observed
without paracrine stimulation. The Ala2”7! line, by contrast, showed little, if any, time-
dependent effect for interferon-B supplementation (Figure 2.11l, right). The Ala27! mutant
agreed even more closely with model predictions when using an inducible, cleavage-
resistant MAVS allele containing a compound mutation at the other site reportedly cleaved
by 3Cpro (Ala'8Ala271; Figure 2.12E) (5). We conclude from these experiments that the overall
importance of CVB3-proteinase susceptibility for MAVS is strongly modulated by paracrine
interferon, consistent with the predictions of complete kinetics.
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Figure 2.11. MAVS is a sensitive locus for CVB3 susceptibility in the host-cell network.
(A and B) CVB3 virion production is modulated nonlinearly by host-cell resistance and time-delayed
supplementation of interferon. Virion output from complete kinetics with (blue) or without (red) fivefold
altered resistance to viral proteinases. Negative feedback from the viral proteinases on the viral dsRNA
sensor—transducer was decreased to mimic an increase in host-cell resistance. Supplemental interferon (IFN)
was simulated at the indicated times. The 24-hour terminal endpoint of the simulations in (A) are summarized
in (B). Predictions are shown as the median simulation £ 90% nonparametric confidence interval from n=100
simulations of single-cell infections at 10 PFU with a parameter coefficient of variation of 5%.

(C and D) Inducible ectopic expression of MAVS alleles. (C) AC16-CAR cells stably transduced with
doxycycline (Dox)-regulated 3xFLAG-tagged GIn?”' MAVS or Ala?”' MAVS were treated with 1 ug/ml Dox for
24 hours and immunoblotted for FLAG and MAVS with actin used as a loading control. The image gamma
was adjusted for MAVS (gamma = 4) to show the endogenous full-length MAVS (MAVSFL) and mini-MAVS
(MAVSmini) at the same exposure as the induced constructs. (D) Immunoblot densitometry of induced ectopic
MAVS relative to endogenous MAVSEL + MAVSmini in AC16-CAR cells treated with or without Dox. Data are
shown as mean * s.d. of n = 6 different MAVS alleles used in this work (see also Figure 2.13; Section 2.5,
STAR Methods).

(E and F) CVB3-induced MAVS cleavage is reduced in cells expressing the Ala?”' mutant. (E) AC16-CAR cells
stably transduced with inducible GIn?”' MAVS or Ala?’”' MAVS were induced with Dox for 24 hours, then
infected with CVB3 at MOI = 5 for 24 hours and immunoblotted for FLAG or MAVS with actin and tubulin
used as loading controls. MAVSkL, MAVSnmini, and the 35 kDa MAVS cleavage product (MAVSss) are indicated.
(F) Immunoblot densitometry of replicated experiments described in (E) using n = 3 different CVB3 batches
and 1-4 biological replicates per batch.

(G and H) CVB3-induced virion release is reduced in cells expressing Ala?”'MAVS. (G) Representative plaque
assay for infectious virion release in the conditioned medium from AC16-CAR cells after induction of GIn?!
MAVS or Ala?”' MAVS and infection with CVB3 at MOI = 5 for 24 hours. (H) Quantification of plague-forming
units (PFU) from n = 3 different CVB3 batches and 1-4 biological replicates per batch. Data are summarized
as PFU/ml £ 95% Poisson confidence intervals based on the mean or the observation.
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(I) Ala?”" MAVS sustains its antiviral potency upon delayed addition of beta-interferon (IFNB). After induction
of GIn?”" MAVS or Ala?”"MAVS, AC16-CAR cells were infected with CVB3 at MOI = 10 for 24 hours, with 30
ng/ml IFNB added at the indicated times after the start of CVB3 infection. Data are shown as the mean *
s.e.m. of n = 4 biological replicates, and differences across conditions was assessed by one-way ANOVA
(panova) with Tukey’s posthoc test for individual differences: * p < 0.05, ** p < 0.01, *** p < 0.001. The indicated
reductions in viral titers between the two genotypes are qualitatively similar to a second Ala?”-harboring
MAVS allele (Ala™8Ala?”") shown in Figure 2.12E.

For (F) and (H), the difference between MAVS genotypes was assessed by replicated two-way ANOVA with
MAVS genotype and CVB3 batch as factors.

See also Figure 212.
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Figure 2.12. Poisson noise of the plaque assay and generality of the timed-interferon
effect to Ala**8Ala27-mutant MAVS.

(A and B) Predicted concentrations of ISG product and viral protease at 24 hours after infection with CVB3
and supplemental interferon (IFN) simulated at the indicated times. Predictions are shown as the median
simulation £ 90% nonparametric confidence interval from n =100 simulations of single-cell infections at 10
PFU with a parameter coefficient of variation of 5%.

(C and D) Biological replicates of plaque assay are largely consistent with Poisson counting noise. After
induction of LacZ or different MAVS alleles (Glu23GIn™8GIn27, Glu®3GIn™8Ala?”!, or GIn23GIn'8GIn2""; Section
2.5, STAR Methods), AC16-CAR cells were infected with CVB3 at MOI =5 for 24 hours. Plaque assay data are
from n = 4 biological replicates in one experiment (LacZ-induced cells), two experiments (Glu®3GIn'&Ala2"!
and GIn3GIn™8GIn?"' MAVS-induced cells), or three experiments (Glu*3GIn™8GIn27' MAVS-induced cells). Each
experiment was bootstrapped 1000 times, yielding 8000 mean—variance pairs. The insetin (C) capturing 81%
of the bootstrap replicates (green) is expanded in (D).

(E) Ala™8Ala2” MAVS qualitatively replicates Ala?”' MAVS antiviral potency upon delayed addition of beta-
interferon (IFNB). After induction of GIn"8GIn?’' MAVS or Ala**8Ala?’”! MAVS, AC16-CAR cells were infected
with CVB3 at MOI =5 for 24 hours, with 30 ng/ml IFN3 added at the indicated times after the start of CVB3

infection. Data are from one plaque assay at n = 4 different IFN conditions. Data are summarized as PFU/ml|
1+ 95% Poisson confidence intervals based on the observation.
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2.3.7 Enteroviral proteinase cleavage of MAVS is redirected by a prevalent

human polymorphism

The IMAGE clone used to construct the MAVS alleles is valid but contains three
common polymorphisms that deviate from the reference protein sequence of humans and
other mammals: Q93E (rs17857295; 25% aggregated allele frequency), Q198K (rs7262903;
16%), and S409F (rs7269320; 16%) (78). The Q198K polymorphism is considered
functionally neutral (79), and none of these variants alter the mitochondrial localization of
MAVS (80). However, the substitution at position 93 was relevant, because GIn®3 in the
reference sequence creates the possibility of an additional site for cleavage by 3Cpro
(Figure 213A) (73). Like GIn271, cleavage at GIn®3 would separate the oligomerization
domain (CARD) of MAVS and thereby prevent signal transmission from MDAS to TRAFs on
the mitochondrial surface (Figure 2.13A).

Considering the effect of the synthetic Ala2’' mutant (Figures 2.11C-l), we reasoned
that position 93 might represent a naturally variable site affecting CVB3 infectivity in the
human population. We replaced Glu®3 in the IMAGE clone sequence with GIn®3 and
established AC16-CAR lines with equivalently inducible expression (Figure 2.11D). Upon
CVB3 infection of the GIn?3 line, we detected a specific N-terminal MAVS fragment at ~18
kDa, which was consistent with cleavage at position 93 (Figures 213A and 2.13B). Given
that the GIn93 allele of MAVS harbors an additional 3Crr site at GIn27!, we anticipated that
this line would be even more permissive to CVB3 infection than the Glu®3 line.
Unexpectedly, the opposite was true—the GIn?3 line yielded significantly fewer infectious
virions than the Glu®3 line, despite twice as many 3Cro-targetable sites (Figure 2.13C).
Moreover, the GIn®3 allele of MAVS was cleaved much less extensively at position 271 in
CVB3-infected cells, as indicated by the formation of MAVS3s (Figure 2.13D). The results
indicated a coupling between GIn®3 and GIn27!, where two cleavage options for 3Cpro
rendered MAVS more resistant to viral antagonism than one.

There are now detailed models of MAVS activation triggered by dsRNA (81).
However, before stipulating hierarchical or otherwise-special properties for different MAVS
cleavages, we asked whether a separate, highly simplified model of MAVS regulation could
be explanatory (Figure 2.13E). MAVS signaling occurs on the surface of mitochondria by
polymeric self-assembly into filaments, which are nucleated by MDAS5 binding to the
dsRNA intermediates of CVB3 (11, 82). For the model, we assumed that MAVS activation
occurs at a constant rate (kact) and on the same time scale as the activation of 3Cpro (Section
2.5, STAR Methods). Structural data suggest that polymeric MAVS (polyMAVS) filaments
are large (up to n = 800 molecules) (83, 84). We modeled polyMAVS formation as an
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instantaneous assembly given that it occurs on a two-dimensional surface, and signaling
from polyMAVS to ISGs was lumped as a first-order “transcription” process (kixn). In cells,
polyMAVS is degraded slowly by mitophagy (63), and we assumed a similar decay constant
for ISGs (kdeg; Figure 21C). These equations governed the behavior of the Glu®3Ala271 allele
that was assumed to be uncleavable by 3Cpro,

For cleavable alleles, we appended one (Glu23GIn271) or two (GIn23GIn27Y) first-order
pathways in which 3Crre slowly splits MAVS (kci) and removes it from the pool of monomers
for polymerization (CIvl or Clv2; Figure 213E). Either cleavage will remove the
oligomerization domain from MAVS and render it unable to polymerize (Figure 213A).
Recognizing that the remaining C-terminal truncations on the mitochondrial surface could
further inhibit the polymerization of full-length MAVS (63), we allowed for negative
feedback on the polymerization. In addition, we permitted unequal feedback between the
two cleavage products for the GIn23GIn27! allele (® and y®), even though the simulations
were largely insensitive to negative feedback overall (Figure 214A). When negative
feedbacks are equal (Figure 2.13F) or absent (Section 2.6, Appendix, Note S1), the only
difference between the simulations involving cleavage is that the polymerization-
competent GIn%3GIn27! is removed twice as quickly as Glu23GIn271,

In the filamentation model, all MAVS genotypes rapidly reach a pseudo-steady state
as polyMAVS and ISGs begin to accumulate (Figure 2.13F). This trajectory is sustained for
the Glu®3Ala271 allele, because nothing abates the constant rate of MAVS activation (EA;
Figure 2.13F). For the cleavable alleles, however, 3Crro eventually reaches a concentration
that depletes the reservoir of monomeric MAVS, causing polyMAVS to decline. When
MAVS depletion reaches the point that polyMAVS formation is negligible compared to its
mitophagic disposal, the kinetics of polyMAVS shift to a first-order decay with a long time
constant (Section 2.6, Appendix, Note S1). For the GIn23GIn27! allele (QQ; Figure 213F),
polyMAVS both decelerates and troughs twice as quickly, hence decaying slowly from a
higher concentration of polyMAVS than that of the Glu®3GIn27! allele (EQ; vertical arrows in
Figure 213F). In this set of model parameters, the distinction is enough to change ISG
kinetics from sustained to transient, but differences in ISG induction are preserved for a
range of parameter sets (Figure 2.14A). The model illustrates how non-intuitive antiviral
behavior arises when the kinetic competition between MAVS and 3Crr is funneled through
a surface-polymerization step that is highly nonlinear. If small differences in proteinase
susceptibility are amplified by paracrine interferons (Figure 2.11), the minor-but-prevalent
Glu®3 allele may thus contribute to the individual severity of human enteroviral infections.
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Figure 2.13. MAVS is a sensitive locus for CVB3 susceptibility in the human
population.

(A) Sequence and domain architecture of MAVS. Above: predicted molecular weights of MAVS cleaved at
the indicated positions—MAVS is acidic and separates on an SDS-polyacrylamide gel (PAGE) with an
electrophoretic mobility ~25% larger than the predicted molecular weights listed. The oligomerization
domain (CARD) and mitochondrial transmembrane (Mito TM) domains are indicated along with the
recruitment sites for TRAF2 (T2) and TRAF6 (T6). The N-terminal epitope tag is indicated as well as the
approximate peptide epitope of the anti-MAVS antibody (yellow). Below: flanking amino acids around
position 93 of human MAVS, which has a Glu/GIn polymorphism. GIn®3 is widely conserved in mammals. The
sequence logo for enteroviral 3CP™® was re-derived from the enteroviral cleavage sites analyzed by
NetPicoRNA (Section 2.5, STAR Methods) (73).

(B) Ectopic expression of GIn% MAVS gives rise to an 18 kDa cleavage fragment. AC16-CAR cells stably
transduced with inducible Glu®3 MAVS or GIn®3 MAVS were induced with doxycycline for 24 hours, then
infected with CVB3 at MOI = 5 for 24 hours and immunoblotted for FLAG with actin and tubulin used as
loading controls. The image gamma was changed for FLAGis (gamma = 4). (bottom) Immunoblot densitometry
of replicated experiments using n = 3 different CVB3 batches and 1-4 biological replicates per batch. The
difference between MAVS genotypes was assessed by replicated two-way ANOVA with MAVS genotype
and CVB3 batch as factors.

(C) Ectopic GIn?3 MAVS significantly reduces virion release compared to ectopic Glu®3 MAVS. AC16-CAR cells
stably transduced with inducible Glu®3 MAVS or GIn®3 MAVS were induced with Dox for 24 hours, then
infected with CVB3 at MOI =5 for 24 hours. Infectious virions in the conditioned medium were collected at
the end of the 24-hour CVB3 infection. Quantification of plaque-forming units (PFU) is from n = 2 different
CVB3 batches and four biological replicates per batch. The difference between MAVS genotypes was
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assessed by replicated two-way ANOVA with MAVS genotype and CVB3 batch as factors.

(D) Ectopic expression of GIn®3 MAVS reduces the 35 kDa cleavage fragment. AC16-CAR cells stably
transduced with inducible Glu®3 MAVS or GIn®3 MAVS were induced with Dox for 24 hours, then infected with
CVB3 at MOI =5 for 24 hours and immunoblotted for FLAG and MAVS with actin and tubulin used as loading
controls (left). Immunoblot densitometry of replicated experiments using n = 3 different CVB3 batches and
1-4 biological replicates per batch (right). The difference between MAVS genotypes was assessed by
replicated two-way ANOVA with MAVS genotype and CVB3 batch as factors.

(E) State-based model of MAVS self-assembly and cleavage by 3CP™. The core model for the Glu®3Ala?”!
mutant (black) is elaborated with one or two 3CP™-catalyzed cleavage reactions for the Glu®3GIn?”' MAVS
(green) or the GIn®3GIn2”! polymorphism (brown), respectively.

(F) Simulated trajectories for the three MAVS alleles: Glu®3Ala?”" (EA, black), Glu®3GIn?” (EQ, green), and
GIn%3GIn?" (QQ, brown). Single-parameter sensitivity analysis for the time-integrated ISG profile is shown in
Figure 2.14A, and the effect of MAVS genotypes in Figures 2.14B-D.

See also Figure 214 and Section 2.6, Appendix, Note S1.
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Figure 2.14. Sensitivity analysis of the MAVS regulation model.

(A) Individual model parameters were varied about their base value (bold) and simulations for the three
genotypes repeated using integrated ISG abundance from 0-250 time units as the model output.

(B—D) Effect of mixed MAVS genotypes. The original simulations from Figure 213F are reprinted in (B) for
comparison to (C) a Glu®3GIn?7"/GIn®3GIn?"" heterozygote overexpressing GIn%3GIn?”" ~12-fold (QQ o.e.,
brown; Figure 2.11C) or (D) a GIu®3GIn?""/GIn%3GIn?"" heterozygote without overexpression (EQ/QQ het, green).
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2.4 Discussion

This work examines the feasibility of complete kinetics for acute viral infections by
leveraging the unsegmented genome of picornaviruses and 70+ years of enteroviral
research in cells (85). We mathematically encoded the molecular pathways from viral
binding and entry through the formation of mature virions. Interference by host-cell
signaling was notignored but superimposed as a set of feedbacks, which themselves were
subject to increasing antagonism during viral progression. The resulting draft is consistent
with measured parameters and other observations in the literature, as well as our own
experiments. Collectively, the formalized mechanisms, computer simulations, and
experimental results point to MAVS as a critical determinant of the enteroviral response in
human cells.

Generalization to other enteroviruses and cellular contexts

Organizing the complete kinetics of CVB3 into modules is advantageous (Figure
2.1A), because it will streamline adaptation to other enteroviruses. Within the genus, the
most substantive differences lie in binding and entry. Poliovirus, for instance, uses a single
cell-surface receptor with two binding affinities and delivers genome to the cytoplasm
before it is fully endocytosed (2, 19, 86). Exchange of a poliovirus-specific delivery module
may be sufficient to explain the accelerated kinetics of infection relative to CVB3.

For any enterovirus species, results from complete kinetics suggest that the
particle-to-PFU ratio is a critical determinant for predicting host-cell tropism and
susceptibility. Viruses with large ratios of defective particles will depend on excess cell-
surface receptors to infect, which may not be true in all humans. Receptors for
coxsackievirus decline considerably with age (87), presumably to different extents among
individuals. For CAR, the interquartile range of transcript expression is 1.7-5.6 TPM (4000-
10,000 copies per cell) in the left ventricle (22), which straddles the inferred threshold for
productive infection with the CVB3 stocks used here (~7000 copies per cell; Figures 2.3E

and 2.4F). The delivery module can accommodate such host-cell variation in a scalable
and principled way.

Different VROs for different kinetic regimes of viral infection

All positive-strand RNA viruses reconfigure host-cell membranes to promote
replication (36). However, the membrane rearrangements differ among viruses, and it is
unclear whether function of the resulting VROs is the same. Complete kinetic modeling of
CVB3 indicates that the main advantage conferred by enteroviral VROs is to accelerate
replication biochemistry on membrane surfaces. The hydrophobic 3AB protein binds 3Dr°!
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and supports its intrinsic propensity to form two-dimensional lattices (54). In turn, VROs
emerge right at the onset of exponential enterovirus replication (40).

A computational model of flavivirus reached a different conclusion about the role of
VROs (38). Parameter sensitivity of VROs in this model emphasized the importance of
compartmentalizing RNA-dependent RNA polymerase and shielding the positive-strand
template from degradation. The apparent discrepancy can be reconciled when
considering the different rates of infection and replication between the two RNA-virus
genera. Flaviviral polymerase associates >60-fold more slowly and synthesizes at one-
third the rate of enteroviruses (88) (Table S1), with infections requiring multiple days to
establish. The much slower time scales should increase the importance of sequestering
flavivirus RNA with polymerase and away from host-cell ribonucleases. Indeed, flaviviral
VROs assemble as membranous webs or invaginations that shield replication components
from the host (36), supporting kinetics as a pressure for viral evolution.

Expanding and revising complete kinetic models

We emphasize that the complete kinetics of CVB3 reported here is a draft that
should be subject to future refinements. Many reaction parameters were drawn from
literature on poliovirus (Table S1), which is more similar to certain A-type coxsackievirus
strains than to CVB3 (89). Also, the physical interactions between viral RNA and the VRO
surface were not specified with the same detail as elsewhere in the kinetic model. If the
longer-lived 3CDrr precursor confers specific RNA-binding properties to the membrane
(90), the stoichiometry of this intermediate may need to be considered explicitly. The
threshold for VROs was the one instance where a model parameter was “tuned” to data.
Although uncertainty may persist around the switch to VRO-like surface behavior, future
alternatives will be easy to vet because VRO initiation is such a critical transition in the
simulations.

The feedbacks overlaid on the kinetic model could certainly be elaborated more
deeply, but there are also advantages to lumping at this scale. For example, MAVS is
cleaved at a different site (GIn*28) by the mitochondrially localized 3ABC precursor of
hepatitis A picornavirus (91). The net result, however, is the same as cleavage at GIn®3 or
GIn27"—separation of the MAVS oligomerization domain from the mitochondrial surface
where it can polymerize rapidly. A different challenge relates to incorporating the human
MAVS alleles with different cleavage susceptibilities. Although the simplified MAVS
regulatory model is intriguing, it is premature to incorporate as part of complete kinetics.
The modeled step is but one in a pathway, using parameters that were nominal
approximations of fast and slow processes. Even within this step, the true length of
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polymerized MAVS filaments in cells is actively debated (92). Frankly, cell signaling is not
really geared for complete kinetics like fast-acting RNA viruses are. For cell signaling, more
appropriate are the abstractions and flexible system boundaries of models that are
incomplete but useful (93).

Implications for enteroviral disease

The Q93E polymorphism in MAVS occurs with a mutant allele frequency of ~50%
among individuals of East Asian ancestry (78), indicating a large proportion of homozygous
individuals in these populations. Geographically, many Asian countries face widespread
cyclical outbreaks of enterovirus infection, and the understanding of risk factors is
incomplete (94). The MAVS regulatory model suggests that a pure Glu®3 context behaves
very differently from a mixture of Glu®3 and GIn®3 (Figures 2.14B-D). Based on the MAVS
RNA-seq reads, we gleaned that AC16 cells are heterozygous for the Q93E allele. Our
results argue for more-formal studies of CVB3 susceptibility in isogenic lines that
investigate different genotypes of MAVS expressed at endogenous levels.

Pharmacologically, 3CP has long been recognized as a therapeutic target for
enteroviral infections, with inhibitors reaching as far as Phase Il (95-97). The rationale for
such compounds is to block maturation of the enteroviral polypeptide, but it can be
challenging to target an intramolecular cleavage with sufficient potency in cells.
Intermolecular 3Cprro activity toward MAVS provides a means for reappraisal, especially
considering its variable cleavability in humans. According to the encoded viral feedback,
a 10-20-fold shift in the EC50 for sensor—transducer degradation is sufficient to block a
low-titer CVB3 infection (MOI = 1) entirely.

Complete kinetics is a tangible organizing principle for viruses with a limited gene
repertoire and an acute mode of infection. The concept may seem a distant goal for large
viruses with multiple unknown gene products. It is nonetheless a goal that can specify
where operational paradigms are unsatisfactory. Overall, viruses are much more modular
than the host cells they infect. Systems bioengineers should exploit this property to define
the integrated parts lists that could one day be mixed and matched to propose complete
kinetic models for viruses that have recently recombined (18, 98).
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2.5 STAR Methods

RESOURCE AVAILABILITY
Lead Contact
Further information and requests for resources and reagents should be directed to and

will be fulfilled by the Lead Contact, Kevin A. Janes (kjanes@virginia.edu).

Materials Availability
Plasmids related to this work are deposited with Addgene (#158628-158646).

Data and Code Availability

RNA-seq source data have been deposited at the NCBI Gene Expression Omnibus
and are publicly available under the accession number: GSE155312.

MATLAB original code for the complete kinetic model of CVB3 is publicly available
at https://github.com/JanesLab/CompleteKinetics-CVB3. MATLAB original code for
the MAVS filamentation model is publicly available at
https://github.com/JanesLab/MAVSfilamentation.

The scripts used to generate the modeling figure subpanels reported in this paper
are available at https://github.com/JaneslLab/LopacinskiAB-CellSyst2021. Scripts
were not used to generate the experimental figure subpanels reported in this paper.

Any additional information required to reproduce this work is available from the
Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

AC16 (27) and AC16-CAR cells (28) were cultured in DMEM/F12 (Gibco) + 12.5% fetal bovine
serum (Hyclone) + 1% penicillin/streptomycin (Gibco) and kept at 37°C, 5% CO..

METHOD DETAILS
Plasmids

The lentiviral destination vector pLX302 (Addgene #25896) was recombined with

pDONR221 EGFP (Addgene #25899) or pDONR223 MX1, OAS1, OAS2, and OASL from the
Human ORFeome v5.1 (99) to yield pLX302 EGFP-V5 puro (Addgene #158644), pLX302
MX1-V5 puro (Addgene #158640), pLX302 OAS1-V5 puro (Addgene #158641), pLX302
OAS2-V5 puro (Addgene #158642), and pLX302 OASL-V5 puro (Addgene #158643).
pDONR223 MAVS Glu23GIn¥8GIn27' was obtained from the human ORFeome v5.1 (99),
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originally derived from IMAGE clone #5751684. MAVS Glu23GIn8GIn27' amplicon was
prepared with Spel and Mfel restriction sites and cloned into pEN_TTmiRc2 3xFLAG
(Addgene #83274) that had been digested with Spel and Mfel (Addgene #158628).
pDONR223 MAVS Glu®3Ala"8GIn2' was obtained by site-directed mutagenesis of
pDONR223 MAVS Glu?3GIn™8GIn271 (99). MAVS GIlu®3Ala'#8GIn27t amplicon was prepared
with Spel and Mfel restriction sites and cloned into pEN_TTmiRc2 3xFLAG (Addgene
#83274) that had been digested with Spel and Mfel (Addgene #158630). pEN_TT-3xFLAG-
MAVS Glu23GIn'8Ala27! (Addgene #158631) and pEN_TT-3xFLAG-MAVS GIn%3GIn18GIn271
(Addgene #158629) were obtained by site-directed mutagenesis of the pEN_TT-3xFLAG-
MAVS  Glu®3GIn"8GIn271  plasmid (Addgene  #158628). pEN_TT-3xFLAG-MAVS
Glu23Ala™8Ala27! (Addgene #158633) was obtained by site-directed mutagenesis of the
PEN_TT-3XFLAG-MAVS Glu®3Ala™8GIn27! plasmid (Addgene #158630). pEN_TT-3xFLAG-
MAVS GIn23GIn™8Ala271 (Addgene #158632) was obtained by site-directed mutagenesis of
the pEN_TT-3xFLAG-MAVS GIlu23GIn"8Ala27! plasmid (Addgene #158631). Site-directed
mutagenesis of pEN_TT-3XxFLAG-MAVS GIlu®3GIn*8Ala27! consistently caused one of two
off-target mutations. Two clones with different off-target mutations were digested with Mfel
and Nael. The fragments were gel purified, and the fragments with the non-off-target
mutations were ligated together to vyield pEN_TT-3xFLAG-MAVS GIn23GIn™8Ala271
(Addgene #158632). All site-directed mutagenesis was performed with the QuikChange I
XL kit (Agilent).

PEN_TT donor vectors were recombined into pSLIK hygro by LR recombination to
obtain pSLIK 3xFLAG-MAVS Glu23GIn*8GIn27' hygro (Addgene #158634), pSLIK 3xFLAG-
MAVS Glu®3Ala™8GIn271 hygro (Addgene #158636), pSLIK 3xFLAG-MAVS Glu23GIn™#€Ala271
hygro (Addgene #158637), pSLIK 3xFLAG-MAVS GIn23GIn™8GIn271 hygro (Addgene
#158635), pSLIK 3xFLAG-MAVS Glu®3Ala*8Ala2’! hygro (Addgene #158639), and pSLIK
3xFLAG-MAVS GIn93GIn"8Ala2’t hygro (Addgene #158638).

DNA for CVB3 was obtained by partial digestion of CVB3-M1 (100) (kindly provided
by K. Klingel) with EcoRl, gel purification of the full-length CVB3 insert, and ligation into
pcDNAS3 digested with EcoRI to obtain pcDNA3 CVB3 (Addgene #158645). The shRNA
targeting SV40 T antigen (GCATAGAGTGTCTGCTATTAA) was custom designed through
the Genetic Perturbation Platform web portal
(https://portals.broadinstitute.org/gpp/public/). The oligos were modified to contain a Pstl-
containing loop, self-annealed, and ligated into pLKO.1 neo (Addgene #13425) to yield
pLKO.1 shSV40 neo (Addgene #158646).
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Viral Transduction

pSLIK MAVS alleles, pSLIK LacZ, pSLIK Luc, and pLKO.1 shSV40 were packaged as
lentivirus in HEK293T cells by calcium phosphate precipitation with an EGFP-expressing
plasmid as a positive control. AC16-CAR cells were transduced with lentivirus + 8 pg/ml
polybrene in 6-well dishes and allowed to grow for 48 hours. Transduced pSLIK cells were
then transferred to 10-cm dishes and selected with 10 pug/ml blasticidin (to maintain CAR-
V5 expression) and 100 pg/ml hygromycin until control plates had cleared. Transduced
shSV40 cells were used unselected.

AC16 Quiescence

For studies involving quiescent cells (Figures 2.3B, 2.3C, and 2.4B-D only), AC16 or
AC16-CAR cells (70,000 per well) were plated on a 12-well dish precoated with 0.02% (w/v)
gelatin for 1-2 hours at 37°C. After 24 hours, cells were washed with PBS and the culture
medium was changed to differentiation medium: DMEM/F12 (Gibco) + 2% horse serum
(Thermo Fisher) + 1x Insulin—Transferrin—Selenium supplement (Thermo Fisher) + 1%
penicillin—streptomycin (Gibco). After 24 hours, cells were washed with PBS and
transduced with shSV40 lentivirus (125 pl per well) + 8 pg/ml polybrene in a total volume
of 500 pl. After 18-21 hours, cells were washed with PBS and refed with differentiation
medium. After another 24 hours, cells were washed with PBS and refed with differentiation
medium again, and cells were lysed 24 hours after the final refeed.

CVB3 Infection

AC16-CAR cells were plated at 50,000 cells/cm? for 24 hours. AC16-CAR cells
expressing inducible MAVS Glu?3GIn“8GIn271, Glu23GIn8Ala27!, Glu?3Ala™8Ala2”, or
GIn23GIn™8GIn271 or LacZ were plated at 25,000 cells/cm? for 24 hours then treated with 1
pg/ml doxycycline for 24 hours. Before CVB3 infection, 75% of the cell culture medium was
removed, and cells were infected with CVB3 at the indicated MOI for one hour. During the
infection, the plates were incubated at 37°C and rocked every 10-15 minutes to ensure
even coverage of the virus. After one hour, the media was aspirated, and cells were refed
with fresh AC16 growth medium lacking selection antibiotics. At the end of the infection
period, the conditioned media containing released virions was collected, centrifuged at
2,500 rcf to spin out dead cells and debris, and stored at —80°C for viral titering.

Cell Morphometry

Cell dimensions were analyzed by staining terminally CVB3-infected cells as before
(101). Briefly, AC16-CAR cells were infected with CVB3 at 10 MOI for 24 hours, stained with
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the LIVE/DEAD Fixable Violet Dead Cell Stain Kit (Thermo Fisher), quenched with 10 mM
glycine in PBS for five minutes, solvent fixed—permeabilized with 100% ice-cold methanol,
and counterstained with DRAQS5 (Cell Signaling Technology). Imaging at late times after
CVB3 infection allowed VROs to fuse and grow above the diffraction limit for fluorescence
imaging (37). One hundred Violet-positive cells were imaged with an Olympus BX51
fluorescence microscope with a 40x 1.3 numerical aperture UPlanFL oil immersion
objective and an Orca R2 charge-coupled device camera (Hamamatsu) with 2x2 binning.
Images were thresholded in ImageJ to identify Violet-positive membrane borders, Violet-
negative VRO borders, and DRAQ5-positive nuclear borders. When calculating cellular
dimensions, we assumed a height equal to the diameter of a sphere corresponding to the
average aggregate VRO volume per cell.

Cell Lysis

For immunoblotting, cells were washed with ice-cold PBS and Ilysed in
radioimmunoprecipitation buffer plus protease—phosphatase inhibitors: 50 mM Tris-HCI
(PH 7.5), 150 mM NaCl, 1% (v/v) Triton X-100, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v)
SDS, 5 mM EDTA, 10 pg/ml aprotinin, 10 pg/ml leupeptin, 1 pug/ml pepstatin, 1 pg/ml
microcystin-LR, 200 pM NazVOs, and 1 mM PMSF. Protein concentrations of clarified
extracts were determined with the BCA Protein Assay Kit (Pierce).

For RNA analysis, culture medium was aspirated and cells were immediately lysed
in Buffer RLT Plus. Total RNA was purified with the RNEasy Mini Plus kit (Qiagen) as
recommended. RNA concentrations were determined by absorption spectrophotometry
on a Nanodrop.

Immunoblotting

Quantitative immunoblotting was performed on 10, 12, or 15% polyacrylamide gels
with tank transfer to polyvinylidene difluoride membrane and multiplex near-infrared
fluorescence detection as described previously (102). Primary antibodies were used at the
following dilutions: VP1 (Mediagnost, 1:2000 dilution), elF4G (Cell Signaling Technology,
1:2000 dilution), V5 epitope tag (Invitrogen, 1:5000 dilution or Bethyl, 1:5000 dilution),
HSP90 (Santa Cruz Biotechnology, 1:2000 dilution), tubulin (Abcam, 1:20,000 dilution or
Cell Signaling Technology, 1:2000 dilution), p38 (Santa Cruz Biotechnology, 1:5000
dilution), vinculin (Millipore, 1:10,000 dilution), IkBa (Cell Signaling Technology, 1:2000
dilution), phospho-TBK1 (Cell Signaling Technology, 1:1000 dilution), total TBK1 (Cell
Signaling Technology #3504), phospho-IRF3 (Cell Signaling Technology, 1:1000 dilution),
total IRF3 (Cell Signaling Technology, 1:1000 dilution), MDAS5 (Abcam, 1:1000 dilution),
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MAVS (Cell Signaling Technology, 1:1000 dilution), actin (Ambion, 1:5000 dilution), FLAG
(Sigma-Aldrich, 1:5000 dilution). Serial dilutions of V5-containing Multiple Tag (GenScript)
were used for absolute quantification of CAR-V5.

In Vitro Transcription of CVB3 Positive and Negative Strands

The pcDNA3 CVB3 plasmid was linearized at the 3’ end with Notl (positive-strand
template) or at the 5’ end with SnaBl (negative-strand template), gel purified, and used for
in vitro transcription with T7 (positive strand) or SP6 (negative strand) RNA polymerase
from the MAXIscript SP7/T7 kit (Ambion). In vitro transcription reactions were incubated at
37°C for two hours before the template was digested with TURBO DNAse | at 37°C for 15
minutes and transcripts purified by LiCl precipitation according to the manufacturer’s
recommendations (Thermo Fisher). RNA concentrations were determined by absorption
spectrophotometry on a Nanodrop.

dsRNA Transfection

Poly(l:C) (High Molecular Weight) and 5’ppp-dsRNA control were prepared
according to the manufacturer’s separate recommendations (Invivogen). dsCVB3 was
prepared by mixing equal volumes of CVB3 positive and negative strand at 100 ng/pl in
0.9% (w/v) NaCl, denaturing for at 68°C for 10 minutes, and cooling to 25°C at 0.1°C per
second on a thermocycler.

For dsRNA transfection, AC16-CAR cells were plated at 50,000 cells/cm?2 on a 12-
well plate overnight and transfected with up to 1 pg dsRNA complexed with 3
Lipofectamine 3000 + no P3000 reagent (Invitrogen) in 200 pl total volume of DMEM/F12
(Gibco). For dose responses, lipocomplexes were serially diluted threefold in DMEM/F12
over ~two decades before addition to AC16-CAR cells. Four hours after transfection, cells
were lysed in 350 pl Buffer RLT Plus and purified with the RNEasy Plus Mini Kit (Qiagen).
Purified RNA concentrations were determined by absorption spectrophotometry on a
Nanodrop.

ISG Transfection and Protein-Synthesis Inhibition

To estimate ISG cellular half-lives, 293T/17 cells were plated at 100,000 cells/cm?
on a 24-well plate and transfected with 1 pl Lipofectamine 3000 + 1 pl P3000 reagent
(Invitrogen) and 250 ng pLX302 EGFP-V5 puro + 250 ng pLX302 ISG-V5 puro (ISG = MX1,
OAS1, OAS2, or OASL) in 100 pl total volume of DMEM (Gibco). Twenty-four hours after
transfection, cells were treated with 50 uM cycloheximide (Sigma-Aldrich) for the indicated

times and lysed in 50 pl RIPA + PPIs for immunoblot analysis of ~30 pg extract for V5
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epitope tag (Invitrogen, 1:5000 dilution [MX1-V5] or Bethyl, 1:5000 dilution [OAS1-V5,
OAS2-V5, and OASL-V5]) and HSP90 (Santa Cruz Biotechnology, 1:2000 dilution)—tubulin
(Cell Signaling Technology, 1:2000 dilution)-p38 (Santa Cruz Biotechnology, 1:5000
dilution) as loading controls. Cotransfection of pLX302 EGFP-V5 yielded a short-lived FP-
V5 truncation that served as a positive control for cycloheximide efficacy (FPcontrol).

RNA-seq and Analysis

500 ng total RNA was prepared using the TruSeq Stranded mRNA Library
Preparation Kit (lllumina). Samples were sequenced on a NextSeq 500 instrument with
NextSeq 500/550 Mid Output v2 kit (150 cycles; lllumina). Pooled samples were run in
triplicate to obtain a minimum sequencing depth of 20 million reads per sample. Adaptors
were trimmed using fastg-mcf in the EAutils package (version 1.1.2) with the following
options: -q 10 -t 0.01 -k O (quality threshold 10, 0.01% occurrence frequency, and no
nucleotide skew causing cycle removal). Datasets were aligned to the human (GRCh38)
genome with additions (CVB3 genome and SV40 genome) using HISAT2 (version 1.2.0)
with the following options: --dta (downstream transcriptome assembly for subsequent
assembly step) and --rna-strandedness RF (for paired-end reads generated by the TruSeq
strand—specific library). Output SAM files were converted to BAM files using samtools
(version 1.4.1). Alignments were assembled into transcripts using StringTie (version 2.0.6)
with the following options: -e (to restrict assembly to known transcripts in the provided
annotation) and -B (to save additional files for Ballgown). Differential gene expression
analysis was carried out using edgeR (version 3.28.1) on raw read counts that passed the
abundance-filtering step. Abundance filtering was performed by the cpm function in edgeR
to retain transcripts that were expressed at greater than 100 counts per million in at least
one cell line. Trimmed mean of M values normalization using the calcNormFactors function
before differential expression analysis using exactTest in edgeR. The 1952 transcripts that
were commonly differentially expressed [5% false discovery rate (FDR)] between AC16
parental and AC16-CAR cells are shown in Figure 2.3B.

HelLa Cell Transcriptomic and Proteomic Data

Raw Hela cell transcriptomic data (GSE111485) was downloaded from the GEO
sequence read archive. The data were aligned and TPM calculated exactly as for the AC16
and AC16-CAR cells. “HelLa12” and “HelLa14” were profiled in triplicate, so each of their
TPM values were averaged. Proteomic data was obtained from
https://helaprot.shinyapps.io/crosslab/ by searching for CD55 for DAF and CXADR for CAR.
The 14 HelLa samples were paired by numeric index with the 14 HelLa TPM samples
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obtained from GEO. Obtained proteomic data was in logi format, so absolute protein
abundances were calculated by 10(log10_protein),

Determination of CVB3 Particle-to-PFU Ratio

Titered production stocks of CVB3 prepared in permissive Hela cells were
ultracentrifuged at 100,000 rcf for one hour at 4°C and lysed in Buffer RLT Plus for total
RNA purification with the RNEasy Mini Plus kit (Qiagen) as recommended. RNA
concentrations were determined by absorption spectrophotometry on a Nanodrop.
Conditioned medium from uninfected cells was used as a negative control to confirm
specificity to viral RNA. Similar results were obtained when CVB3 was ultracentrifuged at
120,000 rcf for 18 hours at 8°C through a 30% sucrose cushion and into a glycerol button
(103).

Quantitative PCR (gPCR)

Purified total RNA was digested with TURBO DNAse (Thermo Fisher) as
recommended, and 500 ng of DNAse-treated RNA was reverse transcribed with 2.5 yM
oligo(dT)24 primer as described previously (104). PRDX6, HINT1, and GUSB were used as
loading controls, and GAPDH was used as a fourth housekeeping gene to confirm
accuracy of the loading normalization.

Tagged Strand-Specific qPCR

Purified total RNA was digested with TURBO DNAse (Thermo Fisher) as
recommended, and 250 ng of DNAse-treated RNA was reverse transcribed with 1 pmol
biotinylated strand-specific primer (positive strand: 5’biotin-GGGTGTTCTTTGGATCCTTG;
negative strand: 5’biotin-TGCAACTCCCATCACCTGTA), 500 pM dNTPs, 5 mM DTT, 20 U
RNAsin Plus RNAse inhibitor (Promega), and 100 U Superscript lll reverse transcriptase
(Invitrogen) in 1x first-strand buffer as recommended in a total volume of 10 pl. After reverse
transcription for 60 minutes at 55°C, samples were heat inactivated for 15 minutes at 70°C
and RNA was digested with 2.5 U RNAse H (NEB) for 20 minutes at 37°C, followed by heat
inactivation for 20 minutes at 65°C. Purified standards—either RNA from CVB3 virions
purified by ultracentrifugation (positive strand) or in vitro transcribed RNA from SnaBI-
digested pcDNA3 CVB3 (negative strand)—were added in the range of 108-103 copies per
10 pl reverse transcription along with 250 ng of DNAse-treated RNA from cells that had
not been infected with CVB3.

Biotinylated cDNA was purified with 5 pl streptavidin magnetic beads (Thermo
Fisher) that had been washed twice with 1x first-strand buffer and resuspended to the
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original storage volume. Streptavidin beads were incubated with the first-strand reaction
for one hour with tapping every 15 minutes. The 15 pl samples were diluted with 40 pl PCR-
grade water, magnetized for one minute, and then washed three times with 50 pyl PCR-
grade water. After the final wash, the beads were resuspended in 50 pl and then 1/10th of
the nonbead volume (4.5 pl) was measured by gPCR with 2.5 pmol each of CVB3-specific
primers (Table S2) as described previously (104).

Plaque Assay

Conditioned medium from CVB3-infected AC16-CAR cells was collected and diluted
5 x 104 or 5 x 105in serum-free DMEM depending on the titer. A confluent 6-well plate of
permissive Hela cells was washed twice with serum-free DMEM, then 200 pl of diluted
conditioned medium or serum-free DMEM was added to the cells. The cells were
incubated at 37°C for one hour with rocking every 10—15 minutes to ensure even coverage
of the virus. After one hour, the medium was aspirated and cells were washed twice with
serum-free DMEM. Sterile 1.5% (w/v) agar in water was mixed with 2x DMEM in a 1:1 ratio
and added to the wells to form an agar plug. The cells were incubated at room temperature
10-15 minutes until solidification of the agar plug. Cells were incubated at 37°C for 48-65
hours depending on the clearance rate of the plaques. Once plaques reached a countable
size, 2 ml of 2% (w/v) formaldehyde was added to each well for 15 minutes to fix the cells.
After fixation, the agar plugs were carefully pulled out using a plastic spatula. Fixed cells
were stained with 0.5% (w/v) crystal violet in 25% (v/v) methanol in Milli-Q water for 10
minutes. Crystal violet staining was stopped by submerging the plates three times into a
1% bleach solution, and then wells were gently rinsed with Milli-Q water three times from a
squirt bottle. The plates were air dried and scanned on a Licor Odyssey scanner in the 700
channel.

3Cpro Sequence Logo

We recreated the sequence logo for enteroviral 3CPre substrates by assembling the
202 3Crro cleavage sites from 27 SwissProt accession numbers in Table 6 of the original
publication describing NetPicoRNA (73). Flanking sequences were amended with the
latest revisions in UniProt, and the vectorized sequence logo was generated with
WebLogo (105).

CVB3 Complete Kinetic Model

The complete kinetics of CVB3 infection were described by 54 coupled differential
equations that were organized into modules for delivery, replication, and encapsidation.
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After construction, the modules were interconnected by viral inputs—outputs and host-cell
feedback. The system of differential equations was solved numerically with the odel5s
function in MATLAB. The two core functions are 1) CVB3ODEEval.m, which defines the
initial conditions and rate parameters, takes the user-defined inputs (CVB3 dose,
simulation parameters, output options), and performs the bookkeeping on viral species
(RNA strands, replicative intermediates, and protein classes); and 2) CVB3ODEfunc.m,
which defines the rate equations, the switch to VROs, and the antiviral sensing-
transduction mechanism. Additional functions provide capabilities for systematic plotting
and sensitivity analysis (Data and Code Availability). MATLAB version 2019b or later is
required to handle the export of tabular data, and the Statistics Toolbox is required to
display sensitivity analyses. The following Method Details explain and justify the key
assumptions within each module, feedback, and bookmarked species.

Delivery Module

At the start of a single-cell infection, a user-defined number of PFUs was placed in
the restricted cell-surface volume defined by the estimated cell surface area multiplied by
the 30-nm diameter of a CVB3 capsid (Table S1). For a cell-population infection, cell-to-cell
variation in response to a viral inoculum follows a Poisson distribution (20). Therefore, a
Poisson-distributed pseudorandom number (representing a single-cell PFU) was drawn at
each simulation with A equal to the user-defined MOI. Cellular DAF and CAR were also

concentrated in the restricted cell-surface volume for CVB3 binding and trafficking.
Clustering of DAF was embedded in the rate of DAF trafficking to tight junctions, which
used a kinetic parameter drawn from observations that relocalization is complete within
25-30 minutes (25). Tight junctions were not encoded as a volume-restricted
compartment but rather as their own set of species on the plasma membrane. DAF-bound
CVB3 in tight junctions (bDAFr) was allowed to unbind-rebind in the tight junction or
transfer CVB3 directly to CAR:

koff.DAF
—
bDAFT] uDAFT] + uCVB?)T] 1
konpaF
kon,car
—
bDAFT] + CAR uDAFT] + bCAR (2)
koff.car
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In addition, CAR could bind CVB3 that had dissociated in tight junctions (uCVB3r)):

kon,CAR

CAR + uCVB3y, bCAR (3)

Koff,car

The forward rates for Equations 2 and 3 were assumed to be identical to place equal
weight on the two possible paths to CAR-bound CVB3. CAR internalizes with CVB3 (26)
and we assumed that it was not recycled; however, this assumption was inconsequential
to any of the kinetics (Figure 2.4A).

Entry of CVB3 occurs more slowly than poliovirus (19, 26). Therefore, delivery of
CVB3 to the cytoplasm was encoded as two first-order processes in series, the first using
a standard endocytosis rate and the second capturing pore formation and release of viral
RNA (Table S1). Defective viral particles were assumed to bind to DAF—CAR and deliver to
the cytoplasm identically to infectious PFUs.

Replication Module

Mammalian cells contain 105107 ribosomes (106). Considering competition with
newly transcribed host-cell RNAs and with RNA from defective particles, we assumed that
10° ribosomes per cell were theoretically accessible to the infectious virus. This number is
also roughly equivalent to the number of elF4G molecules [~1055 copies per Hela cell
(30), with TPM values comparable in AC16 cells], allowing us to equate elF4G-ribosome
as a single species in the model. We further simplified by considering viral translation in
terms of polysomes containing N ribosomes. Each polysome translated viral polyprotein N
times more rapidly but formed and released a translational complex with viral RNA N times
more slowly than an individual ribosome. Translational initiation was emphasized as a rate-
limiting step by selecting an operational early-polysome size of N = 2.5 (Figure 2.6A).
Defective viral RNAs in the cytoplasm were assumed not to interact with the ribosome pool
that was theoretically accessible, but this assumption was not critical to infection outcomes
(Figures 2.6E and 2.6F).

Among these polysomes, 80—-90% would be actively translating host-cell RNAs and
therefore be inaccessible at the time of infection (106). The conversion of polysomes from
inaccessible to accessible was encoded as an enzyme-catalyzed transition rate dependent
on the concentration of viral protease, the concentration of inaccessible ribosomes (i.e.,
uncleaved elF4G), and Michaelis-Menten parameters for rhinoviral 2Arr (107) (Table S1).
The reported Km for enterovirus 71 3Cpre is equivalently far above endogenous substrates
and shows comparable catalytic efficiency (108), enabling 2Aro-3Crr to be lumped as a
single viral protease.
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The dissociation of a translation complex is non-intuitive and thus explained in detail
here. The rate of protein production used poliovirus translation rates per amino acid
multiplied by the length of the CVB3 polyprotein (109). Each translation event yields one

3Dpol bound to VRO, one lumped protease, s of a capsid pentamer at the VRO (which

couples to ¥ of a 2CATPase) and 45 of unbound 2CATPase gt the VRO to balance polyprotein
stoichiometry. At a rate N'' times the translation rate, the translation complex dissociates
to release a positive-strand RNA at the VRO (33, 34) and repopulate the available polysome
pool by N ribosomes. Placing a translation-competent positive strand at the VRO mimics
cis replication (33, 34), in that defective viral RNAs do not reach this step in the complete
kinetic model. More-direct alternatives, such as coupling 3D with released positive-
strand RNA as a replicative intermediate at the VRO, gave rise to premature increases in
negative strand that were not observed by experiment (Figure 2.5C).

The early steps of VRO formation remain elusive and were specified heuristically in
the complete kinetic model. We assumed a switch-like transition from solution-phase
behavior in the cytoplasm to the restricted surface volume of the VRO defined by the
estimated VRO surface area multiplied by the 7.1-nm height of a 3Dr° molecule (Table S1).
Based on these calculations, the concentrating effect (Cg) of shuttling a molecule from the
cytoplasm to the VRO surface volume was 3216-fold. Degradation rates at the VRO surface
were reciprocally scaled down by Cg to yield the same turnover as in the cytoplasm. The
switch-like transition to VROs at 25 molecules of 3Dr! created a transient stoichiometric
imbalance at the start of the transition (Figure 2.8B). The shift occurred when the rate
processes of VRO-resident species were instantly scaled up and their whole-cell
concentrations were reciprocally scaled down. The imbalances were short-lived, and
alternate encodings of the VRO transition, such as a ramped transition, did not satisfactorily
capture the measured protein—RNA dynamics.

At the VRO, viral RNA interacted with 3Dr°! at the slow rate of association measured
for poliovirus 3Dro! (110). The rate of RNA-dependent RNA polymerase elongation was
likewise drawn from poliovirus (21). We did not postulate any differences in association or
elongation between positive- and negative-strand templates (111). However, we assumed
that negative strand was not released from a replicative intermediate after replication of
the positive strand was complete and had been released. This assumption reflects the
cooperative RNA binding that results from 3Dre! oligomeric arrays on the VRO surface (54).
Positive strands, by contrast, must be released for encapsidation.
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Encapsidation Module

The encapsidation module leveraged the work of Zlotnick and colleagues for
modeling viral capsid assembly (56, 112, 113). During assembly, contact affinities that are
weak individually (~1 mM) build upon one another through multivalency among symmetric
subunits with multiple binding sites (113). Using established formalisms (112), we calculated
effective pseudocritical concentrations (apparent dissociation constants) for all realistic
combinations of pentamer and contact sites in a 12-pentamer virus assembly. We took the
median  effective  pseudocritical concentration (~1 uM, calculated with
Capsid_assembly_script.m) as a representative affinity for any step during the assembly
process from 1-12 pentamers. By the same analysis, a slight increase in the individual
contact affinity (0.1 mM; Figure 2.7E) increased the median affinity to 50 nM (simulated by
decreasing the off rate; Figure 2.7E). The simplification avoids the need to assume or
inventory specific geometric paths to viral assembly while recognizing the typical binding
energies involved.

Recruitment and retention of pentamers to the VRO occurred through a direct
interaction of 1:1 stoichiometry with 2CATPase (50). Kinetic parameters for this interaction are
not known, but the complete kinetic model was not very sensitive to a biologically plausible
range of values (Figure 2.7F). Crucial to the stoichiometric balance was to keep track of
each molecule of 2CATPase “consumed” by pentamer binding to the VRO and then
“regenerated” when pentamers self-assembled. For example:

kPentameT,On
ﬁ

Pentamer + 2CATPase Pentamery g, (4)
-

kPentamer,off

kifcap
ATPase
Pentamerygo + Pentamerygg P2Empty + 2C 5)
klb,cap

Pentamer assemblies were assumed to grow and shrink linearly, with individual pentamer
or RNA-pentamer complexes recruited to or removed from an intermediate assembly.
The mechanisms retaining viral RNA in the VRO are heterogeneous, requiring a
more-generic exchange rate between cytoplasmic and VRO compartments. The on and
off rates were equal (kon = korr = 1 hr), but at the VRO, Ce (= 3216) provided a driving force
for RNA to leave that was delayed by the retention time implied by the rate of exchange:
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kP,on
e

Rp,cyt (—Rp,VRO (6)
kpoffCE

At these exchange rates, a typical RNA-protein association rate of 25 nM-hr? (55) yielded
an effective membrane affinity of (3216 x 1 hr)/25 nM-'hr1 ~ 125 nM.

RNA and pentamer interacted at the VRO with the same kinetic parameters as the
median pentamer—pentamer assemblies described above. We reduced combinatorics by
assuming that RNA filling—unfilling of an intermediate assembly only occurred through gain
or loss of an RNA—pentamer complex, which was defined to exist only at the VRO surface.
For example:

kRNAcapbind
_

Pentamerygo + R RNAPentamer (7)

PVRO
kRNAcapunbind

kaf cap
P2Empty + RNAPentamer P3Filled + 2CATPase (8)

kzb,cap

(Note the regenerated 2CATPase jn Equation 8, consistent with the stoichiometric balance
described in Equation 5.) The assembly of 12 pentamers with positive-strand RNA was
considered the irreversible endpoint of encapsidation, which could be reached two ways:

k ca
P11Empty + RNAPentamer —=3 Virion 9)
k ca
P11Filled + Pentamerygo LB Virion (10)

Empty provirions were assumed to be reversible:

k1f,cap
P11Empty + Pentamerygo EmptyProvirion (1)
pty - y
klb,cap

like the other steps in the encapsidation module. Rate parameters involving Pentamervro

(k1r.cap and kip,cap) were assumed to be identical to those involving RNAPentamer (kzfcap and

kZb,cap) .
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Antiviral and Antagonistic Feedbacks

The feedbacks overlaid on the CVB3 life cycle reflected known antiviral and
antagonistic mechanisms, but they were not mechanistically encoded. Rather than striving
for exact parameter values, we focused on lumped parameters and relationships that
appropriately reflected dependencies and input—output characteristics. Future revisions
could include more-elaborate detail when warranted by specific applications.

For the dsRNA sensor—transducer feedback leading to an interferon response, we
defined a virus detection sigmoid with parameters (Kp, nH) gleaned from the IFNBinduction
of cells lipofected with dsCVB3 (Figure 2.1B). To capture viral antagonism, the sigmoid
maximum was scaled down hyperbolically depending on the concentration of viral
protease and a half-effective concentration (EC50qetectordeg) defined by qualitative system
properties (Figure 2.9I):

(12)

P . dsRNA|"H EC50
VirDetection = ( L ] > ( detectordeg )

[dsRNA]"H+K,H ) \[Protease] + EC50getectordeg

where [dsRNA] is the total concentration of replicative intermediates (Bookkeeping). This
sigmoid was used to scale a maximum induced response of ISGs, which was defined by
the maximum transcription rate for RNA polymerase Il through a short ISG, multiplied by
the current number of virus-inaccessible ribosomes (Table S1). For simulations involving
supplemental interferon, VirDetection was superseded by StimISG = 1 (maximum
stimulated interferon response) at the time of supplementation and maintained for the rest
of the simulation.

The ISG response impinges on three facets of the viral life cycle. For i) the inhibition
of viral translation, we hyperbolically down-scaled the formation rate of translation

complexes:

EC50Trgnsiate ) (13)
[ISG]+EC50Transiate

TranslateForm' = TranslateF orm(
Although PKR (EIF2AK2) is highly abundant (~480 TPM) and does not show interferon
inducibility in AC16-CAR cells (Figure 2.2A), PKR is directly activated by dsRNA. Thus, the
feedback architecture was assumed to be functionally similar to other ISGs. For ii) the
deactivation of viral proteinases, we used a hyperbolic down-scaling function (similar to
that of Equation 13) on the rate of viral protease production, assuming that protease
deactivation was irreversible. For iii) the oligoadenylate synthetase—RNAse L acceleration
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of RNA turnover, we posited a maximum fold increase in the rate of turnover (OASrnadeg =
5) and scaled the basal rate of RNA degradation (krnadeg) hyperbolically to this maximum
based on a half-effective concentration (EC50rnadeg) and the concentration of ISGs:

! ISG
krnadeg = Krnadeg [1 + (OASRNAdeg - 1) ([15(;] +LC5;RNAdeg)] (14)

All feedback parameters were sampled lognormally about their best estimate with
a user-defined log coefficient of variation as with the parameters and initial conditions of
the complete kinetic model.

Bookkeeping

Total dsRNA concentrations combined the replicative intermediates using positive-
or negative-strand templates. For ratiometric calculations where dsRNAs were counted
with different efficiencies (Figure 2.5E), only the template strand was included in the
calculation. Total viral protein included capsid from infectious PFUs and defective particles
from internalization and all steps downstream (Figure 2.3A). Viral particles bound to DAF
or CAR on the cell surface were assumed to be removed by the washing steps associated
with cell lysis and protein analysis. Endosomal release of Ry implied instant degradation of
all associated capsid proteins. For RNA analysis, cells were not washed before lysis
according to the manufacturer’s recommendation; therefore, these calculations included
all viral particles bound to CAR on the cell surface (DAF affinity is so low that it was
assumed to be removed by aspiration).

Sensitivity Analysis

Single-parameter sensitivity analysis was performed with SensitivityAnalysisfunc.m
(Data and Code Availability) to alter individual model parameters over a 22-fold range in
either direction from the base value and record virion production at 24 hours.

MAVS Filamentation Model
The filamentation model for MAVS was described by 4-6 differential equations
depending on the MAVS genotype:

d[MAVS
P2 = Kact = Kpoty [MAVS]" — ak g, [3C77] [MAVS] (15)
d[polyMAVS] ke
= Zt = kpoty[MAVS]™ — ig <p+-ci,v—(f+clv2 [polyMAVS] (16)
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d[3¢PTO)

FT kact (17)
d[ISG Kixn
A = Eon (1olyMAVS] — Kgeg 1G] (18)
L = (a - Pkay[3C70)[MAVS] (19)
Ao = Bleci, [3C7T|[MAVS] (20)

where =0, g =0 for Glu?3Ala271, =1, B3 = 0 for Glu?3GIn27", and o = 2, 8 =1 for GIn%3GIn2",
For the GIn23GIn27Y/Glu®3GIn271 heterozygous model (Figure 2.14D), o =1.5, 8 = 0.5, and for
the GIn%3GIn271 overexpression model in a GIn?3GIn27YGIu%3GIn271  heterozygous
background (Figure 2.14C), o was set to 1+ 12.5/13 and B to 12.5/13 to reflect the ~12-fold
ectopic expression measured in Figure 2.11C.

Initial conditions were all set to zero, and rate parameters were nominally assumed
to be fast (kpoiy = 1000), average (Kact, kixn = 1), or slow (kew, Kaeg = 0.1). @ and y were set to
one as equal default feedback strengths, and n = 800 based on calculations from the
literature (83, 84). Filament assembly was assumed to occur by a two-step process used
for other biological filaments (114). Dynamic trajectories were solved numerically for 250
nominal time units with the ode15s function in MATLAB. Single-parameter sensitivities
were evaluated by changing parameters individually 22- or 102-fold in either direction about
the nominal parameter and using time-integrated ISG abundance as the model readout.

QUANTIFICATION AND STATISTICAL ANALYSIS

dsRNA-Induced Interferon Response

Dose-independent induction of IFNB, MX1, and OAST as a group (or PKR and
GAPDH as a control group) was assessed by log-transformed three-way ANOVA of ISG
transcripts with the following factors: dsRNA dose, transcript, and condition (control vs.
poly(I:C) or control vs. dsCVB3). ANOVA p values testing a condition effect were Sidak
corrected for multiple-hypothesis testing.

ISG Protein Half-Life Determination

Immunoblot bands were quantified by image densitometry as described previously
(102). V5 band intensities were normalized to the averaged proportional loadings of
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HSP9O0, tubulin, and p38 for each sample on the immunoblot. Loading-normalized
biological duplicates were averaged, and the ISG and FPcontror time courses were
normalized again by their respective maxima. Half-lives (t12) were estimated by nonlinear
least-squares curve fitting in Igor Pro (WaveMetrics) to the following:

Max-normalized protein = (1 —b)e ™ + b (21)

Where b represents a minimum baseline (estimated from the FPcontrol Of each experiment
and kept constant for the associated ISG) and ti2 = In(2)/k.

Plaque Assay Calculations
Plaques were counted manually in ImageJ after contrast enhancement. The plaque
forming units per milliliter (PFU/mI) was calculated from the following formula:

(# plaques)(dilution)
volume of virus added inml

PFU/ml =

(22)

The dilution was either 5 x 104 or 5 x 105, and the volume of virus added to the wells was
0.2 ml.

Relative Cleavage of MAVS Genotypes
MAVS cleavage was assessed via densitometry in ImageJ as

MAVS 1y
MAVS 1y +MAVS pinitMAVSEL

% cleavage = (23)

and normalized to MAVS GIu93GIn™8GIn271 such that MAVS GIlu®3GIn'8GIn271 cleavage = 1.
Differences in cleavage were assessed by two-way ANOVA with CVB3 batch and
genotype as factors.

Protein Abundance Estimation From TPM Data
Paired transcriptomic-proteomic data in HelLa cells (30) were related to one another

using the following hyperbolic-to-linear equation:

TPM
B +TPM

Protein copies = A ( + TPM) (24)

where A and B are fitted parameters. Equation 24 specifies a linear relationship between
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RNA and protein (29) but allows for some nonlinearity at low RNA copy numbers. Nonlinear
least-squares parameterization was performed with the fminsearchbnd function in
MATLAB. Asymptotic error analysis was used to calculate the 99% confidence interval of
the fit. DAF and CAR protein copies were estimated in AC16 and AC16-CAR cells using the
best-fit from the HelLa data for DAF or CAR, respectively.
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2.6 Appendix

Note S1. Behavior of MAVS alleles in the MAVS filamentation model.

The single-parameter sensitivity analysis indicated that time-integrated ISG profiles
are robust to feedback inhibition of MAVS cleavage products on the uncleaved MAVS
polymerization rate (Figure 2.14A). Feedback loops are thus omitted from this analysis of
dynamical behavior, defined by a system of 4—6 differential equations depending on the
MAVS allele:

GluszAla?’" GluGIn27" GIN%3GIn27!
% = ko = ky[M]" (1a) % = kg — kp[M]™ — k [P][M] (1b) % = ko — k,[M]" — 2k [P][M] (1c)
WM~y M~ pM] 2) L=k M-Sy @) = M) - S M) )
T = ka @ Bk, @ g, 3)
Sl=ZpM] —kall] @) =" [pM] - ky[l] @ =2 [pM] - ky[1) (4)
ol = ke [PI[M] () A=k [PI[M] (5)

L2l = ke [P][M] (6)

dc

where M is uncleaved MAVS, pM is polymerized MAVS filaments, P is 3CP, C;is MAVS
cleavage product 1, C2is MAVS cleavage product 2, /is ISGs, kj is a general activation rate,
kp is the polymerization rate, kq is @ general degradation rate, k: is the transcription rate,
and n is number of MAVS monomers in a polyMAVS filament. For the same rate
parameters, differences in the magnitude and duration of | depend entirely on the
dynamics of pM, which depends on the dynamics of M. Further, the linear accumulation of
P allows its analytical solution (kat) to be substituted directly into the governing equation
for M. Ignoring the bookkeeping equations of C;and C> reduces the system to two stable

nonlinear, nonhomogeneous differential equations:

W = kg = kp[M]" — ak kot [M] @)
d[pM k
L = ke [M]" - 2 [pM] (8)

where o = 0 (Glu23Ala27), 1 (Glu?3GIn271), or 2 (GIn23GIn271).
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For o = 0, the long-term dynamics of the system can be solved analytically, with M

rapidly reaching its pseudo steady-state value (Mss):

n|kq
Mg = Jk: ©)

and the solution:
Kq _ka
M) =522 (1- ) (1)

with pM approaching k;—n slowly with time, because n>> k.
d

When o # 0O, an analytical solution does not exist. However, it is possible to identify
critical transitions and limiting behavior of the dynamical system. For example, because t
is always linearly increasing, one can define the time at which this initial Mss is no longer
possible and M must decrease. Changing Equation (7) to an inequality:

kq — kp[M]" — ak kgt <O (12)

and solving for tyields a transition time for M (tw):

ka_kp[M]n

ty >
M akckg

(13)

Thus, if the state of M is equal, the model predicts that GIn%3GIn271 (o = 2) will transition
twice as fast as Glu%3GIn271 (o = 1; Figure SN1).

Immediately after ty, all terms in Equations (7) and (8) contribute to the dynamical-
system behavior. However, the high multiplicity of MAVS polymerization implies that M will
eventually decrease to a point that k,, [M]™ rapidly vanishes relative to the other terms in
d[m],

dt -’

W % kg — akchat[M] = ko(1 — akt[M]) (14)
At this point, both M and t are large enough that we can further approximate Equation (14)

as:

D ~ —ak kqt[M] (15)
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which is solvable analytically:

akcka, 2

M(t) ~cie 2 ° (16)

where c¢7is an unknown coefficient. Note from

3. MAVS
Equation (16) that the exponential decline occurs t, M
W ss
half as fast for Glu?3GIn27" (o« = 1) compared to 0'{
C 2l
GIn%3GIn27 (o = 2). However, the approximate .2 3 polyMAVS [PMI(f)
©
S 37t #11
time point at which the k,[M]* term would |5 0 g 718
1 *—\ dc
vanish—shortly after ty—is twice as long for % 3] — GIUE ARz w8
Glu?3GIn27 according to Equation (13). Therefore, S 3 ISGs GluBGInZ?
around the time when the system begins to én 0 GIn*Gln?"
deviate from steady state, the net decrease in M —
(and thus pM) occurs twice as fast for Glu23GIn271 Tirr;:eg 0 5'0 160

as for GIn%3GIn27! (Figure SN1).
. . . . Figure SN1. Annotated dynamics of the MAVS
Finally, at longer times, the rapid decline fjamentation model. See text for description

in M according to Equation (16) has progressed ©f variables and equations.

so much that it overwhelms the offsetting linear increase in t in Equation (14), and the
simplification in Equation (15) is no longer valid. Here, the dynamics of M are governed by
the linear, nonhomogeneous Equation (14). Numerical simulations suggest it is around this

transition when kp[M]” vanishes relative to I;—d[pM] and the governing equation for pM

[Equation (8)] can be approximated as:

~ ——[pM] (17)

and solved to yield:

k

_ka,
pM(t) = ce” n (18)

where c2is an unknown coefficient. In this regime, pM does not reach a formal steady state
but is operationally stable at c2> because n >> kg (Figure SN1). For Glu®3GIn27, the delayed
transition from steady state [Equation (13)] causes a faster rate of decline in M [Equation
(16)], leading to a deeper plunge in pM before the transition to an operationally stable
concentration [Equation (18)].
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3.1 Abstract

We describe how to use a publicly available computational model for coxsackievirus B3
(CVB3) infection that we recast as a graphical user interface (GUI). The GUI-based
implementation enables non-computationalists to incorporate systems-biology modeling
into their research and teaching. The model simulates the full life cycle of CVB3, including
the host antiviral response, and includes 44 alterable parameters. The model simplifies
some viral life cycle processes to improve interpretability and utility when performing in
silico experiments.

For complete details on the use and execution of this protocol, please refer to (2).

3.2 Before you begin

3.2.1 Background and implementation

Computational models are essential tools for hypothesis generation and testing in
systems biology (1). However, most computational models have limited documentation and
require knowledge of structured programming to operate. To overcome this barrier for
non-computationalists, we developed a graphical user interface (GUI) version of a publicly
available model of coxsackievirus B3 (CVB3) infection (2). CVB3 is a member of the
Picornavirus family of non-enveloped, positive-strand RNA viruses. Picornaviruses are a
well-studied group of viruses, with fully delineated life cycles from viral docking and entry
to cell lysis (3). After entry into the cytoplasm, the compact picornaviral genome is rapidly
translated as a single polypeptide, yielding an equal proportion of viral proteins. From a
computational modeling perspective, the abundance of quantitative information and one-
to-one protein stoichiometry make it plausible to define a complete kinetic model of CVB3
infection. Complete kinetic models maintain stoichiometric constraints and seek to explain
how reactants are converted to products from start to finish (2). The GUI maintains the
predictive and explanatory power of the CVB3 complete kinetic model and adds user-
friendliness for non-computationalists.

The model encodes the entire CVB3 lifecycle as a system of 54 differential equations
(2). To understand many of the input parameters and the model output, it is important to
be familiar with the CVB3 life cycle. The model breaks down the viral life cycle into three
main modules: delivery, replication, and encapsidation. The modules are overlaid with a
set of negative feedbacks that capture the effects of several interferon-stimulated genes
(ISGs) that approximate the innate immune response of the host cell.
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Delivery module

CVB3 uses a multi-step process to enter a host cell. The virus first binds to decay-
accelerating factor (DAF), a protein receptor on the cell surface (4). Then, CVB3
translocates to tight junctions and binds to a second receptor called coxsackievirus and
adenovirus receptor (CAR) (5). After binding CAR, CVB3 is internalized via endocytosis,
and the positive-sense RNA genome of the virus is delivered into the cytoplasm (6). In
addition to live particles, stock preparations of CVB3 also contain many defective RNA-
filled particles that are unable to replicate. For CVB3, the live-to-defective particle ratio is
approximately 1:800, depending on the viral stock (2). In the model, defective particles
follow a delivery process similar to live particles, but the defective RNA is not translated or
replicated.

Replication module

Once in the cytoplasm, the CVB3 genome is translated by host ribosomes into a single
polyprotein in a cap-independent manner (3). The CVB3 genome is simultaneously bound
by multiple ribosomes (polysome), forming a translation complex (7). After translation, the
polyprotein matures through a series of cleavage events into individual viral proteins,
including the viral RNA-dependent RNA-polymerase (3Dr°)), two proteases (2Ar© and
3Crr) an ATPase (2CATPase) and structural capsid proteins (VP1-4) (3). In parallel, the
positive-sense CVB3 genome is replicated into full-length negative-sense genomes by the
viral 3DP°l, The negative-sense genomes are subsequently replicated by 3Dro! to generate
more positive-sense genomes (3). During replication, CVB3 hydrophobic proteins
(including 2CATPase) recruit intracellular membranes to form viral replication organelles
(VROs) (8, 9). The VROs serve as a platform for replication, concentrating viral proteins and
accelerating replication.

Encapsidation module

To create new viral particles, CVB3 capsid proteins self-assemble with positive-sense
viral RNA. First, three capsid proteins (VPO [the precursor for VP2 and VP4], VP1, and VP3)
bind to form a capsid protomer (10). In the model, a protomer contributes immediately to
one fifth of a self-assembled pentamer. Twelve pentamers are assumed to bind
sequentially to form a mature viral particle. During pentamer recruitment, a positive-sense
viral RNA strand may or may not be bound to a pentamer. If viral RNA is bound when the
twelfth pentamer is added in the model, a filled (infectious) virion is formed. Otherwise, an
empty (non-infectious) virion is formed. At any point during capsid formation, pentamers or
viral RNA may unbind, but once fully assembled, the model assumes that mature virions
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do not disassemble into individual pentamers.

Feedbacks involving the innate immune response

Host cells have mechanisms to detect infecting viruses and mount an antiviral response
through a series of events that shut down transcription and translation. Reciprocally,
viruses encode countermeasures to block the antiviral response. For CVB3, melanoma
differentiation-associated protein 5 (MDAD5) recognizes double-stranded RNA formed
during CVB3 replication (11, 12). MDA5 bound to double-stranded RNA signals through
mitochondrial antiviral-signaling protein (MAVS) to stimulate type | interferon (IFN)
production (13, 14). Type | IFN is then secreted, stimulating the infected cell (as well as
nearby cells) to induce ISG expression (15). CVB3 proteases 2Ar© and 3CP© antagonize
the innate immune response by cleaving host-cell proteins, including MAVS (16, 17).
Furthermore, 2Ar© cleaves eukaryotic translation initiation factor 4G (elF4G) (18), which
prevents translation of host mMRNAs but does not affect translation of the CVB3 genome.

The model encodes the innate immune response as negative feedbacks that inhibit
translation, inactivate proteases, and accelerate RNA degradation. Viral antagonism is
encoded as a counteracting negative feedback that decreases the host-cell ability to
initiate an immune response.

Modeling implementation

The published model is publicly available as a MATLAB package at
https://github.com/JanesLab/CompleteKinetics-CVB3. To address the drawback that the
published model requires structured programming knowledge and commercial software,
we built a standalone, open-source version of the model that runs simulations behind a
GUI. The protocol below describes the installation and use of the CVB3 complete kinetics
GUI; more-advanced users are referred to the original research publication describing the
MATLAB package (2).

3.2.2 Install the graphical user interface (GUI)
Timing: 5 — 30 min

The CVB3 complete kinetics GUI requires installation of MATLAB Runtime version 9.10
(R2021a; 724 MB download size). The CVB3 GUI and MATLAB Runtime software can be
installed automatically or manually on Windows or MacOS operating systems. The
automatic installation uses an installation wizard to install both MATLAB Runtime (if
needed) and the GUI. The manual installation is provided as an alternative, where MATLAB
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Runtime is separately installed and the GUI is run directly from the .exe (Windows) or .app
(MacOS) file. The files for the following download steps can be found on the JanesLab
Github site (see 3.3 Key resources table).

Note: For Linux users, we compiled the GUI on a Centos distribution and made the
compiled application available on the JanesLab Github site (see 3.3 Key resources table).
Installing and running the GUI on Linux requires knowledge of command line-based
scripting, which is beyond the scope of this protocol. The instructions for installing and
running the GUI can be found in the readme file provided in the Linux folder on the
JanesLab Github site.

1.  Windows Automatic Installation Instructions
a. Download CVB3_Applnstaller_web.exe, then double click to run the
program.
b. Click “Yes” to allow this app from an unknown publisher to make changes to
your device.
Click “Next >” to advance past the installation start page.
If desired, check “Add a shortcut to the desktop”.
Click “Next >” to confirm the CVB3 GUI installation folder selection.
At this point, the installer checks if MATLAB Runtime is installed. If not,
perform the following steps:
i. Click “Next >” to confirm the MATLAB Runtime installation folder
selection.
ii. Check“Yes”then click “Next >" to agree to the MATLAB Runtime user
agreement.
g. Click “Install >” to install MATLAB Runtime (if needed) and the CVB3 GUIL.
h. Click “Finish” to close the installer.
i. Runthe CVB3 GUI like any other program.

"o o0

2. Windows Manual Installation Instructions
a. Verify that version 9.10 (R2021a) of MATLAB Runtime is installed. If installed,
MATLAB Runtime can be found in the “Add or remove programs” list, which
can be found by searching for “Add or remove programs” in the computer’s
search bar.
i. IfMATLAB Runtime is not installed, we advise following the “Windows
Automatic Installation Instructions” to download MATLAB Runtime
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and the GUI simultaneously. Otherwise, download and install the
appropriate version of MATLAB Runtime for R2021a from the
following link on the MathWorks website:
https://www.mathworks.com/products/compiler/mcr/index.html.
b. Download the CVB3_GUI_Manual_lInstall folder to a desired location on the
hard drive.
c. Run the CVB3 GUI by double-clicking the CVB3_GUIl.exe icon.

3. MacOS Automatic Installation Instructions
a. Download CVB3_Applnstaller_web.app.zip.
b. Right click on the file and select “Open” to open the installer.

i. The following message may appear: “macOS cannot verify the
developer of “CVB3_Applnstaller_web” Are you sure you want to
open it?”. Click “Open” to proceed with the installation.

ii. If needed, enter the administrator User Name and Password and click
“OK”.

c. Click “Next >” to advance past the installation start page.

d. Choose an installation folder and click “Next >” to confirm the CVB3 GUI
installation folder selection.

e. At this point, the installer checks if MATLAB Runtime is installed. If not,
perform the following steps:

i. Choose an installation folder for MATLAB Runtime and click “Next >”
to confirm the MATLAB Runtime installation folder selection.

Note: MATLAB Runtime must be installed in a folder named “MATLAB” in the Applications
directory (Figure 3.1). If the application is installed in another directory, copy it to the
Applications directory.

ii. Check “Yes” then click “Next >” to agree to the MATLAB Runtime user
agreement.
Click “Install >” to install MATLAB Runtime (if needed) and the CVB3 GUI.
g. Click “Finish” to close the installer.
h. Open the Janes_Lab folder (in the install location from step d—usually
“Applications”).
i. Openthe CVB3_GUI folder.
j. Open the application folder.
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k. If desired, make an alias of CVB3_GUl.app for easier access.
I.  Runthe CVB3 GUI by double-clicking the CVB3_GUl.app icon.

4. MacOS Manual Installation Instructions
a. Verify that version 9.10 (R2021a) of MATLAB Runtime is installed. If installed,
MATLAB Runtime can be found in the Applications directory.

If MATLAB Runtime is not installed, we advise following the “MacOS
Automatic Installation Instructions” to download MATLAB Runtime
and the GUI simultaneously. Otherwise, download and install the
appropriate version of MATLAB Runtime for R2021a from the
following link on the MathWorks website:
https://www.mathworks.com/products/compiler/mcr/index.html.

Note: MATLAB Runtime must be installed in a folder named “MATLAB?” in the Applications
directory (Figure 3.1). If the application is installed in another directory, copy it to the

Applications directory.

b. Download the CVB3_GUI_Manual_lInstall folder to a desired location on the
hard drive.

c. Open the CVB3_GUI_Manual_Install folder.

d. Double click on the CVB3_GUl.app.zip icon.

e. Run the CVB3 GUI by right clicking the CVB3_GUI icon and selecting
“Open”.

The following message may appear: “macOS cannot verify the
developer of “CVB3_Applnstaller_web”. Are you sure you want to
open it?”. Click “Open” to proceed with running the CVB3 GUI.

If needed, enter the administrator User Name and Password and click
“OK”.
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Figure 3.1. MacOS folder setup for MATLAB Runtime.
For the CVB3 model to run correctly on MacOS, MATLAB Runtime must be installed in the MATLAB folder
within the Applications directory. The v910 folder within “MATLAB Runtime” is set up automatically when

installing MATLAB Runtime.

3.3 Key resources table

Ov Q

Kind

Folder
Folder

Folder

CVB3 complete kinetics computational model

2021

REAGENT or RESOURCE \ SOURCE \ IDENTIFIER
Software and algorithms
https://github.co
Lopacinski et al., m/JanesLab/Com

pleteKinetics-
CVB3

CVB3 complete kinetics GUI

This paper

https://github.co
m/JanesLab/Com
pleteKinetics-
CVvB3-GUI

MATLAB R2021a

MathWorks

https://www.math
works.com/produ
cts/matlab.html

MATLAB Runtime version 9.10 (R2021a)

MathWorks

https://www.math
works.com/produ
cts/compiler/matl
ab-runtime.html

103




3.4 Step-by-step method details

3.4.1 Basic operations

Timing: 1 — 2 minutes per simulation

(Simulation time may vary with computer processing speed and non-default parameter
sets.)

This protocol describes the basic model functions to provide a starting point for further
simulations. The program runs simulations behind the GUI and stores the concentration of
59 output species as a function of time (e.g., virions, total single-stranded RNA, positive-
sense RNA, viral protein, and interferon stimulated proteins). The user selects one species
to be plotted on the main GUI figure. When multiple simulations are run sequentially, the
data from previous simulations are saved until one of three things occurs: 1) the Clear
Data/Plot button (General tab) is pressed, 2) the simulation mode is switched (Options tab),
or 3) a sensitivity analysis is enabled or disabled (Options tab). All simulations that have
not been cleared are referred to as active simulations.

To demonstrate basic operations, this protocol begins with a default infection for 16
hours at a multiplicity of infection (MOI) of 10, with all parameters set to literature or
experimental estimates (2). At the end of this outline, the reader should be able to simulate
infections, change key parameters, and export results. Descriptions of all buttons on the
main GUI page are found in Table 3.1.

1. To begin the default simulation, click Start. The median virion concentration over
time is automatically plotted along with the upper quantile (default: 95%) and lower
quantile (default: 5%) (Figure 3.2A).

Note: The upper and lower quantiles are plotted because the CVB3 complete kinetics GUI
performs multiple runs—determined by Number of runs (Options tab)—with slightly
different parameter sets for a single simulation. See the Quantification and statistical
analysis section for details on the variation between runs.

2. To infect with half as much virus, change the number in the MOI box to 5 and click

Start. The new simulation is overlaid on the previous simulation in a new color
(Figure 3.2B, blue).
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Figure 3.2. Demonstration of a single simulation and sequential simulations.

(A) The graphical output is the result of running the model with default settings. (B) The graphical output of
a second simulation (blue) using MOI 5 is overlaid on the first simulation (red). The blue box highlights
changes made for the simulation. The solid lines show the median number of virions over time, and the

dotted lines show the upper (95%) and lower (5%) quantiles.
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Note: Ten unique colors are pre-loaded, and the colors will repeat if more simulations are
overlaid.

3. To examine the effect of the host antiviral response, toggle the Antiviral Response
switch off and click Start. For simulations at an MOI of 5, the median virion
concentration is increased by toggling off the antiviral response (Figure 3.3A, green
compared to blue). Next, change the Results to Plot dropdown to Interferon
Stimulated Proteins and uncheck the Log Scale Y button. The lack of interferon
stimulated proteins confirms that the antiviral response is disabled (Figure 3.3B,
green).

4. The model can also simulate the effect of adding exogenous IFN. To perform a
simulation with exogenous IFN added 6 hours after infection, toggle the IFN
Stimulation switch on, and enter “6” in the Stimulation Time field. Next, toggle the
Antiviral Response switch back on and click Start. To plot +ssRNA instead of virion
concentration, change the Results to Plot dropdown to Total +ssRNA and check the
Log Scale Y button. Uncheck the Show Quantile Lines button to reduce crowding
and make the plot easier to interpret (Figure 3.4, cyan compared to blue).

Note: Entering a negative value in the Stimulation Time field simulates IFN pretreatment
of cells prior to infection.

Note: The Antiviral Response switch must be turned on for the exogenous IFN to stimulate
an antiviral response. Otherwise, the model does not incorporate the exogenous IFN. The
model simulation is the same with and without exogenous IFN if the Antiviral Response is
off.

5. To save the main figure plot as it is currently displayed, press the Export Plot button.
To export another plot with a different species-of-interest, change the Results to
Plot dropdown then press the Export Plot button again. Press the Export Results
button to save all of the underlying data. Export Results saves 5 tables per active
simulation (Median, Mean, Upper Quantile, Lower Quantile, and Run Parameters).

Note: The Run Parameters table is used as a reference for the settings that went into each
simulation.
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Note: To view many species without changing Results to Plot, press the Show All Plots
button. Show All Plots will plot all 59 output species grouped into 7 windows per simulation
rather than overlaying the data from multiple simulations. For example, clicking Show All
Plots after two simulations will result in 14 windows. These plots can also be saved.

6. In addition to the parameters modified in the above steps, all other parameters in
the General tab (Table 3.1), Options tab (Table 3.2), or Advanced Options tab (Table
3.3) can also be edited. Descriptions of all fields and their default values are listed
in Tables 3.1-3.

Note: All parameters can be reset to defaults values by clicking the Reset all Parameters
to Default Values button in the Advanced Options tab. Resetting to default values does
not clear the plot, remove active simulations, change simulation mode, or enable/disable
sensitivity analysis.

Note: Simulations that result in a median virion concentration greater than 326 nM will be

truncated at the time point that 326 nM is reached. See the Quantification and statistical
analysis for the rationale and calculation of the threshold.
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Figure 3.3. Turning off the antiviral response and plotting a different species.

The graphical output is the result of running a third simulation (green) after the simulations shown in Figure
2 (red and blue). The third simulation was run at an MOI of 5 with the cellular antiviral response turned off.
(A) Virion production increases without an antiviral response. (B) No interferon stimulated proteins are
produced when the antiviral response is turned off. The green box highlights changes made for the

simulation.
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Figure 3.4. Adding exogenous IFN stimulation.

The graphical output is the result of running a fourth simulation (cyan) after the simulation shown in Figure
3.3. The fourth simulation was run at an MOI of 5 with exogenous IFN stimulation starting at 6 hours post
infection and the host antiviral response on. The plot shows total positive-sense single-stranded RNA
(+ssRNA) on a logscale y-axis with the quantile lines turned off. The cyan boxes highlight changes made for
the simulation.
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3.4.2 Population mode

Timing: 1 — 2 minutes per simulation

(Simulation time may vary with computer processing speed and non-default parameter
sets.)

The default simulation mode is to model the infection of a single cell with the number
of virions specified in the MOI box. The model is also able to simulate infection of an entire
population of cells with the discrete number of virions for each run taken from a Poisson
distribution around a mean specified by the MOI, as occurs in an actual infection (19). In
population mode, each run involves a different number of virions; the mean and median

for output species are plotted as the population-wide average without quantile lines.

7. Click Reset all Parameters to Default Values under the Advanced Options tab to
undo all changes made thus far and reset the model. Under the Options tab, turn
the Simulation Mode knob from Single Cell to Population, which will clear all active
simulations. Under the General tab, click Start. Both the median and the mean virion
concentration are plotted without quantile lines (Figure 3.5).

Note: Quantile lines are disabled in population mode. No other GUI functionality is lost.

Like in single cell mode, all other model parameters can be modified, and results can be
exported.
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Figure 3.5. A simulation in population mode.

The graphical output is the result of running a simulation in Population mode instead of Single Cell mode. In
Population mode, the number of viral particles in each run is randomly selected from a Poisson distribution
with the mean set at the input MOI. The plot shows the mean (dotted line) and the median (solid line) virions

over time.
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3.4.3 Sensitivity analysis

Timing: 2 — 4 minutes

(Simulation time may vary with computer processing speed and non-default parameter
sets.)

The CVB3 computational model can run a sensitivity analysis. The sensitivity analysis
shows changes in a user-defined output species when parameters are individually scaled
up or down. Each parameter is scaled by the value in the Scaling factor box to a
maximum/minimum set by the Max orders of magnitude to scale box. The coefficient of
variation among runs is set to O so that the parameter being scaled is the only change
between iterations. As a result, quantile lines are also disabled. The sensitivity analysis
output is displayed as a heatmap showing the fold change in the output species-of-interest
at the simulation endpoint.

8. Click Reset all Parameters to Default Values under the Advanced Options tab to
reset the model. Under the Options tab, check the Sensitivity analysis box, which
will clear all active simulations. Under the General tab, click Start. The default
sensitivity analysis shows changes in positive-sense CVB3 RNA (+ssRNA) (Figure
3.6).

Note: A sensitivity analysis can be run in either single cell mode (as in Figure 3.6) or
population mode.

Note: The sensitivity analysis output can either be a single species or the sum of any
number of output species. Multiple species can be selected by selecting Other in the
Output species dropdown menu and entering the output species to sum in the Other
output box, separated by commas (no spaces).

Note: Similar to running the model with the sensitivity analysis disabled, any model
parameter can be modified, and the results can be exported. An additional table containing

the results of the sensitivity analysis will also be exported.

Note: In contrast to running the model with the sensitivity analysis disabled, virion
concentrations exceeding 326 nM will not be truncated.
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Figure 3.6. Performing a single-parameter sensitivity analysis.

The graphical output is the result of running a sensitivity analysis for positive-strand RNA concentration at 16
hours post infection. On the x-axis are parameters that were individually scaled up or down by the indicated
multiplication factor on the y-axis relative to the base parameter set. The Hill constant was varied
multiplicatively below one and additively above one, where 2 = base Hill coefficient + 1. Orange rectangles
indicate parameter values that increased positive-strand RNA concentration compared to default, whereas
blue rectangles indicate decreased positive-strand RNA concentration. The sensitivity analysis plot was
processed in Adobe lllustrator.
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3.5 Expected outcomes

The CVB3 complete kinetics computational model reproduces the entire life cycle of
CVB3. Specific viral life cycle events can be observed by examining different model output
species. To illustrate, a simulation was run using default parameters, with the time set to 6
hours (Figure 3.7). CVB3 binding occurs within the first hour, as reflected by the
disappearance of unbound CVB3 (Figure 3.7A). However, full viral entry does not finish
until shortly after 3 hours post infection, when +ssRNA is no longer present in endosomes
(Figure 3.7B). Next, the viral replication organelle (VRO) forms (Figure 3.7C, arrow), which
concentrates viral proteins and viral RNA. The concentrating effect rapidly accelerates the
formation of ribosome-bound +ssRNA viral translation complexes (Figure 3.7D), viral
protein (Figure 3.7E), and +ssRNA (Figure 3.7F) (2). The accumulation of viral proteins
initiates the self-assembly of virions. During CVB3 self-assembly, capsid pentamers come
together sequentially, along with +ssRNA. When the twelfth pentamer joins, the capsid
closes, forming an intact virion. Accordingly, two pentamers bound to +ssRNA is observed
before five pentamers bound to +ssRNA, which occurs before full virions are produced
(Figure 3.7G-l).

The CVB3 complete kinetics GUI may be used to perform experiments in silico. For
example, the model can simulate the effects of decreasing the viral polymerase rate, which
is analogous to adding a non-nucleoside analog polymerase inhibitor or introducing a
mutation in 3Dre! (20, 21). To model polymerase inhibition, four simulations were run with
iterative threefold decreases in the viral polymerase rate (180 — 6.67 kb/h). As expected,
decreasing the polymerase rate did not affect the rate of viral entry, indicated by the level
of endosomal +ssRNA (Figure 3.8A). However, there was a threshold effect for the +ssRNA
and viral protein, with substantial decreases observed at the lowest polymerase rates
(Figure 3.8B and 3.8C). The decreased protein abundances arise from less +ssRNA
template available for translation, rather than a decrease in the translation rate itself.
Similarly, the number of live virions was dramatically decreased at the lower polymerase
rates (Figure 3.8D).
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Figure 3.7. Model GUI outputs for the selected species during a viral life cycle.

The simulation was performed for 6 hours with all other parameters set to their default values. (A and B)
Species from the delivery module decrease early in the viral life cycle. The concentration of Endosomal
+ssRNA (B) is low due to the transient nature of the species. (C—F) Species from the replication module
increase over the course of viral infection. Once VROs are formed (C, arrow), the number of translation
complexes rapidly increases (D), which causes an explosive increase in viral proteins (E) that can then
replicate the viral genome (F). (G—I) Species from the encapsidation module appear in a time-dependent
manner. Early RNA—pentamer species (G) appear before intermediate RNA—pentamer species (H), which
appear earlier than filled virions (I).

+ssRNA: positive-sense single-stranded viral RNA. VRO: viral replication organelle. +ssRNA-nxPentamer: one
+ssRNA bound to n associated pentamers. The simulations were run in the CVB3 model GUI, and the plots
were collected using the Export Plot button then processed in Adobe lllustrator.
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Figure 3.8. Model GUI outputs for selected
species identify a threshold viral
polymerase rate for productive infection.
Four simulations were performed with iterative
threefold decreases in the viral polymerase rate (180 —
6.67 kb/h). All other simulation parameters were set to
default. (A) Viral entry—measured by endosomal
positive-sense single-strand viral RNA (+ssRNA)—is
unaffected by the viral polymerase rate. The
concentration of Endosomal +ssRNA is low due to the
transient nature of the species. (B—C) Species in the
replication module are sensitive to the viral polymerase
rate. The decrease in Total +ssRNA (B) decreases the
amount of available template for translation of viral
proteins (C). (D) A threshold viral polymerase rate for
productive infection. No virion production is observed
for the lowest viral polymerase rate (6.67 kb/h),
presumably due to the lack of +ssRNA (B) and capsid
protein (C). The simulations were run in the CVB3 model
GUI, and the plots were collected using the Export Plot
button then processed in Adobe lllustrator.
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In some instances, it may be more appropriate to perform simulations in population
mode rather than single cell mode. One such scenario is at a low MOI. See the Population
mode section for additional information on the differences in the MOI between single cell
mode and population mode. To demonstrate, a simulation was run in both single cell mode
and population mode at an MOI of 2. In single cell mode, two virions are not sufficient to
cause a productive infection for the given time frame (Figure 3.9A). In population mode,
the median agrees with the single cell median, as expected, because the population
median represents a single run at an MOI approximately equal to the MOI used in single
cell mode (Figure 3.9B). However, some runs in population mode simulate infection for
more than two virions since the number of virions in each run is pulled from a Poisson
distribution. Therefore, some runs yield a productive infection that is quantifiable when
looking at the population-wide average (Figure 3.9B). When using the CVB3 model to
conduct experiments, it can be worthwhile to compare single cell mode and population
mode to determine if run-to-run variation in MOI affects the experimental outcome.
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Figure 3.9. Model GUI outputs comparing single cell mode to population mode at a
low MOIL.

The simulation was performed for 16 hours with MOI set at 2 in either Single Cell mode (A) or Population
mode (B) with all other parameters set to their default values. (A) At a low MOI, a single cell does not yield a
productive infection (solid blue). (B) In a population of cells, the median response is the same as in a single
cell (solid red), while the mean virion production of the entire population yields a quantifiable response
(dotted red). The simulations were run in the CVB3 model GUI, and the plots were collected using the Export
Plot button then processed in Adobe lllustrator.
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3.6 Quantification and statistical analysis

The CVB3 complete kinetics computational model performs repeated runs for a
simulation (default: Number of runs = 100). For each run in a simulation, parameter values
are drawn from a log-normal distribution. Each log-normal distribution is parameter-specific
and centered about the user-defined value of the parameter. The default values are
derived from the literature or experiments. The spread of each log-normal distribution is
determined by a user-defined coefficient of variation (default: 5%). Drawing from log-
normal distributions causes run-to-run variability in output species. Therefore, the data are
summarized as the median value * confidence interval (default: 90%; determined by the
5th and 95t percentiles of the runs for a simulation). As a result, changing the run count,
coefficient of variation, or quantile values will all change the output graphs. For instance,
increasing the coefficient of variation will increase the spread of log-normally drawn
parameter values and increase the range of output species. In the model GUI, the
coefficient of variation is limited to a maximum of 20%, as the model becomes unstable at
higher values. Due to differences in the pseudorandom number generation seed,
performing the same simulation twice may vyield slightly different results. We have found
that there is moderate variability between simulations with a per-simulation run count of 10
(Figure 3.10A). By contrast, a run count of 100 is sufficient to limit simulation-to-simulation
variability (Figure 3.10B). However, some simulation conditions may be intrinsically more
variable and require an increased run count to obtain stable predictions.

Understanding how the model generates uncertainty is also important to draw parallels
between model outputs and biology. In the model, it is assumed that every parameter
varies a relatively small amount between runs, with all parameters varying to a similar
degree. However, in biology these assumptions are not necessarily true, where some
features between cells may vary to a great degree (such as protein abundances), while
others presumably change very little (such as protein-protein binding rates). Population
mode accounts for biological uncertainty in how many live virions infect a cell, but it cannot
account for all cell-to-cell variability. As a result, the uncertainty generated by the model
should be used to evaluate the variation in model runs and not be interpreted as biological
variation.

At the end of the replication cycle, enterovirus virions are released through host-cell
bursting. Cell bursting is not encoded in the command-line version of the model, so viral
species increase to unrealistic concentrations in some simulation conditions (e.g., over
long periods of time). To increase user-friendliness in the GUI, we hardcoded a threshold
for the maximum virion concentration based on estimates of the maximum plaque-forming
units (PFU) produced by poliovirus in a cell of similar volume to the “cell volume” parameter
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in the GUI (22). We converted from PFU to the number of particles using the reported
particle-to-PFU ratio (2). Then, we converted the number of particles to a concentration
using Equation 1:

x
concentration (nM) = — x x 1024 Equation 1

NA chto
where x = the number of particles; Na = Avogadro’s number, 6.022 x 1023 mol'; Vo =
cytoplasm volume in um3, found by subtracting the nuclear volume from the cell volume;
and 1024 is the conversion factor to obtain concentration in nanomolar (nM).

The calculated maximum virion concentration for the default cytoplasmic volume in the
GUI is 326 nM. Beyond the threshold, cell lysis is assumed, and the output data is
truncated. Further, we calculated the virion concentration at which cell lysis would be likely
to occur based on the median PFU produced by poliovirus (22). The median concentration
is 88 nM. Simulated virion outputs greater than 88 nM trigger a warning message that
reminds the user that concentrations beyond 88 nM are likely to cause cell lysis.

A Figure 3.10. Model GUI outputs comparing
Himeerer =10 ’ serial simulations with different run counts.
Siuiation i / All other parameters were set to their default values.
100} ) ) A (A) Five simulations with Number of runs set to 10. (B)
_ s almition i % Five simulations with Number of runs set to 100. The
2 | — Simulation3 ) g simulations were run in the CVB3 model GUI, and the
‘é 102 Simulation 4 Eost plots were collected using the Export Plot button then
2 — Simulation 5 processed in Adobe lllustrator.
S L
104|
10 ’
0 2 ) 6 8 10 12 14 16
B
100
s
T
%) 102
c L
2
S 3
104
10

19



3.7 Limitations

All computational models require assumptions and simplifications, and the CVB3
complete kinetics model is no exception. Assumptions are a necessary trade-off between
model accuracy and functionality. Overly complex models often have reduced
functionality—increased computational expense and difficult interpretability—and obtain
only a marginal increase in molecular detail. Simpler models can be more useful.

One frequently used simplification is lumping a group of reactions or species into a
single parameter. For the CVB3 model, three portions of the life cycle were lumped. First,
several CVB3 proteins were lumped together. CVB3 encodes two different proteases (2A
and 3C), which each have different host cell substrates. In the complete kinetics model,
2Ar and 3Cpr are lumped into a single species. Similarly, 3Dro! was grouped with the 3AB
protein since they strongly interact (23), and three capsid subunits (VPO, VP1, and VP3)
were grouped into a single capsid protomer. The remaining hydrophobic proteins were
lumped into a single protein (2CATPase) Second, capsid formation was greatly simplified.
Biologically, the binding affinity for subsequent pentamers increases as more capsid
pentamers associate and more contact points are available for the next pentamer. Rather
than model every possible capsid-forming configuration and its associated binding affinity,
the CVB3 computational model neglects geometry and uses the median affinity for every
step of capsid formation. Third, the innate immune response is collapsed into a single
equation. The full cellular antiviral response to CVB3 consists of a sensor (MDADS)
transducing a signal through MAVS and Interferon Regulatory Factor 3 (IRF3) to induce the
expression of IFN. IFN is secreted and stimulates the infected cell in an autocrine fashion
through the IFN a/f receptor and JAK/STAT pathway to induce the expression of ISGs (15).
In the CVB3 model, the entire innate immunity pathway is simplified into a Hill equation,
which is fit to ISG expression data from a cardiomyocyte cell line. Despite the
simplifications, the complete kinetics model quantitatively captures crucial pieces of the
CVB3 life cycle in molecular detail.

The CVB3 complete kinetics model uses mass action to simulate the concentrations of
different species in the cell over time. As a result, all output values for measurable species
are reported as nanomolar concentrations. Interpreting concentration is difficult for some
species, such as virions, which are typically measured in plaque-forming units per milliliter
(PFU/mL). The number of PFUs in a viral stock is not reflective of the total number of virions
in the stock. In a viral stock, some virions may lack RNA (empty), and others may be
incapable of forming plaques (defective). The model generates empty virions, but it does
not capture the generation of defective virions. Furthermore, host-cell variations determine
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whether a live virion will form a plaque in culture (24). Therefore, model outputs and
experimental results involving virions are separate from one another: 1) The complete
kinetics model does not account for defective particles, meaning it overestimates the
concentration of virions capable of forming a plaque; and 2) Experiments yielding data in
PFU/mL do not give any information on the total number of assembled virions.
Furthermore, the output virion concentration from the model is the intracellular
concentration, since there is no cell lysis component encoded. Instead of a lysis
component, a maximum intracellular virion concentration is set in the model, and data
beyond the maximum is truncated. Taken together, virion outputs from the model should
be treated in relative terms, where the relative change between treatments is more
informative than the absolute numbers.

Parameter values in the CVB3 model are set to literature- or experimentally-derived
estimates. However, some parameter values are unavailable in the CVB3 literature but are
available for closely related viruses; therefore, some default values were derived from
literature on other enteroviruses, such as poliovirus. Using parameters derived from other
viruses introduces a degree of uncertainty to the model. However, the viral proteins
encoded in the model are shared among enteroviruses, and their viral replication cycles
are highly conserved. Thus, the parameters likely deviate very little from the actual CVB3
values, lending confidence to the real-world utility of the model.

The CVB3 complete kinetics model GUI functions identically to the command line-
based version of the model and contains many adjustable parameters. However, the GUI
has some limitations compared to the command line-based CVB3 model. Specifically, 26
parameters are editable using the command line but not in the GUI. These parameters and
the rationale for not including them in the GUI are listed in Table 3.4. Additionally, the
underlying equations behind the model are rigidly set in the GUI version but can be
customized in the command line-based model. This limitation balances user-friendliness
and customizability. The GUI version of the model was created to enable any user to run
simulations without needing MATLAB installed or knowledge of how to code in MATLAB.
If users require the greater range of functions associated with the command line-based
model, it is available for download (https://github.com/JanesLab/CompleteKinetics-CVB3).
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3.8 Troubleshooting

Problem 1:

The simulation program will not open.

Potential solution:

The simulation program will not open if MATLAB Runtime (or the full version MATLAB) is
not installed in the correct location. Double check that version 9.10 (R2021a) of MATLAB

Runtime is installed. On MacOS systems, MATLAB Runtime must be in the Applications
directory in a folder named “MATLAB” (Install the graphical user interface (GUI), steps

3e and 4a — Figure 3.1). On Windows systems, MATLAB Runtime must be correctly

installed and present in the Add or remove programs list (Install the graphical user
interface (GUI), step 2a). If MATLAB Runtime cannot be located, download and install the
latest version for the appropriate operating system

(https://www.mathworks.com/products/compiler/mcr/index.html).  Alternatively, if the

simulation will not open after completing the automatic installation instructions, it may help
to instead follow the manual installation instructions.

Problem 2:

The simulation progress bar freezes.

Potential solution:

The simulation will freeze under several circumstances:
1. If the Time (h) box is set too high, the amount of data stored may cause an out of
memory error. To avoid this error, reduce the Time (h) value. In test simulations, a
Time (h) value of over 50,000 led to model freezing. (The maximum value depends
on the specifications of the computer used to run the simulation.) Similarly,
exporting data and clearing all active simulations may help if the GUI is running
slowly due to a lack of memory (Basic operations, step 5).

2. The underlying ordinary differential equation solver encounters model parameters
that are difficult to simulate. Avoid exploring input parameter combinations that lead
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to model freezing. For example, increasing the +ssRNA degradation rate to 5 and
the Time (h) value to 96 can lead to model freezing (Basic operations, step 6).

3. Incompatible input parameter values are entered into the model. Input parameters
have been constrained in the GUI to avoid incompatibilities with the model. These
incompatibilities are the reason why the coefficient of variation has been
constrained to a maximum of 20%. However, if simulations are run with the
coefficient of variation at or near 20%, freezing due to parameter incompatibility
remains a possibility (Quantification and statistical analysis). Reduce the

coefficient of variation to avoid this problem.

4. Unfortunately, the only solution when the model GUI is completely frozen is to close
the GUI and re-open it. All data from previously active simulations will be lost. To
prevent this error from occurring in the future, avoid circumstances that lead to
conditions prone to freezing.

Problem 3:

No data appear in main GUI plot after running a simulation.

Potential solution:

Check that the Simulation Ready lamp has turned from red to green. The green light
indicates that the program has completely finished running and plotting the simulation. If

there are still no data in the main GUI plot, uncheck the Log Scale Y checkbox (Basic
operations, step 3). It is possible that the output species from the simulation is at a

concentration of zero throughout the simulation and therefore cannot be plotted when the
Y axis is set at a log scale. Using a linear scale, the data will appear as a line along the
base of the plot if the species concentration is at zero (Figure 3.3B, green). Alternatively,
press the Reset all Parameters to Default Values button (in the Advanced Options tab) and
run a default simulation to restore data plotted in the main GUI plot.

Problem 4:

The model displays the same output between two simulations when a parameter is
changed, even though different output is expected.
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Potential solution:

Depending on the simulation, one of two things may be happening:

1.

If the simulation involves an exogenous interferon stimulation (i.e., IFN Stimulation
Time field is on), ensure that the Antiviral Response switch is toggled on (Basic
operations, step 4). If the Antiviral Response switch is off, IFN stimulation will not

affect the model simulation. If toggling the Antiviral Response switch on still does
not achieve the expected result, see the next potential solution.

It is possible that the current set of parameter values overshadows the effect of an
additional change. Click the Reset all Parameters to Default Values button (in the
Advanced Options tab) to restore the default values and run a baseline simulation
to ensure the model is functioning (Basic operations, step 6). Then, alter the

parameter(s)-of-interest, and perform another simulation.

If the expected output is still not achieved, the chosen parameter values may represent a

scenario in which there is truly no change to the system or the differences are so small

that the tolerances in the model do not reflect any change.

Problem 5:

The traces in the graphical output are erratic or irregularly shaped.

Potential solution:

Graphical traces will be irregularly shaped when the ordinary differential equation solver

encounters very small parameter values that cause discontinuities in the solution.

Irregularities are observed under two conditions:

1.

Irregularities occur when plotting output species at extremely low concentrations
(e.g. Endosomal +ssRNA, Expected outcomes — Figure 3.7B). It should be noted

that low concentration-based discontinuities are artifactual and should not be
interpreted as discrete jumps in species abundance.

Discrete changes in species concentrations, such as during the VRO transition,
cause artifacts in the traces (Expected outcomes — Figure 3.7C). This problem can

be mitigated by exercising caution when interpreting graphs with irregular traces.
Alternatively, changing altered parameters closer to their default values can
improve erratic model outputs.
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3.9 Tables

Table 3.1: General Tab Input Options

Default
Input Name Notes
Value
MOI 10 Multiplicity of infection.
Time (h) 16 Timepoint (in hours) to end the simulation.
Antiviral . .
On Enables/disables the interferon (IFN) response.
Response
) . Enables/disables viral antagonism of the host IFN
Viral Antagonism | On
response.
IFN Stimulation Off Enables/disables exogenous IFN stimulation.
) ) ) Time of exogenous IFN stimulation. A negative
Stimulation Time | O
value indicates pre-treatment with IFN.
Changes the parameter plotted on the GUI plot.
Results to Plot Virions All active simulations will automatically be plotted
by changing this.
Other Output Other output options for Results to Plot.
Start N/A Performs the simulation.
Refreshes the GUI plot.
Update Plot N/A .
Updates plot with new Other Output.
Log Scale Y 1 (on) Sets the GUI plot Y axis to logarithmic scale.
Show Quantile ) .
) 1 (on) Shows/hides upper and lower quantile lines.
Lines
Opens 7 figures per active simulation with plots
Show All Plots N/A )
that show all output species.
Deletes all active simulations and clears the GUI
Clear Data/Plot N/A
plot.
Export Plot N/A Saves the GUI plot to file.
For each active simulation, the following tables are
saved to file: Parameter Output, Median Results,
Export Results N/A

Upper Quantile, Lower Quantile, Mean Results, and
Sensitivity Analysis (if applicable).
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Table 3.2. Options Tab Input Options

Default
Input Name Notes
Value
) EC50_RNAdeg—the half-effective
ISG concentration for T ] )
) 5 concentration in nM of interferon-stimulated
RNA degradation ) ]
genes for viral RNA degradation.
Viral protease EC50_DetectorDeg—the half-effective
concentration for viral 0.001 concentration in nM of viral protease for viral
detector degradation detector degradation.
ISG concentration for EC50_Protease—the half-effective
viral protease 20 concentration in nM of interferon-stimulated
degradation genes for viral protease degradation.
ISG concentration for EC50_Translate—the half-effective
inhibition of viral 10 concentration in nM of interferon-stimulated
translation genes for viral translation inhibition.
Toggles between a Poisson distribution
(population) or using a single integer (single
] ) ] cell) for MOI. Quantile lines are disabled in
Simulation Mode Single Cell )
population mode.
Toggling this switch deletes all active
simulations and clears the GUI plot.
Indicates if a sensitivity analysis should be
simulated. During a sensitivity analysis the
i . run count is set to one and quantile lines are
Sensitivity Analysis 0 (off) )
disabled.
Toggling this switch deletes all active
simulations and clears the GUI plot.
Output species Plus RNA Changes Sensitivity Analysis output.
Other output options for Sensitivity Analysis.
Multiple species may be entered (separated
Other output ]
by commas, with no spaces) and the output
will be the sum of the entered species.
) Factor to scale parameters by during
Scaling factor 10 o ]
sensitivity analysis.
Max orders of magnitude | 2 Orders of magnitude to scale (in both
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to scale

directions) during sensitivity analysis.

Number of runs

100

Indicates the number of runs in a simulation.
Runs are not identical, as parameters are
stochastically sampled from independent
log-normal distributions.

Upper quantile

0.95

The upper quantile of run values to be
plotted for indicated output species.

Lower quantile

0.05

The lower quantile of run values to be
plotted for indicated output species.

Coefficient of variation 0.05

The coefficient of variation (CV) of the log-
normal distribution from which the
parameters are stochastically determined. A
larger value indicates greater parameter
variability between runs. Higher CV values
can cause model instability and increase the
likelihood of errors. When set at the CV
maximum (0.2), approximately one error will

occur every 700-800 runs.

Table 3.3. Advanced Options Tab Input Options

to tight junction

Default
Input Name Notes
Value
Initial number of unbound cell surface DAF
DAF 4.4e+04
molecules.
Initial number of unbound cell surface CAR
CAR 5.5e+06
molecules.
Ribosomes 1e+05 Initial number of host cell ribosomes.
Total volume of the cell in pm3. This must be
Cell volume 3700
greater than nucleus volume.
Nucleus volume 960 Total volume of the cell nucleus in pms3.
Cell surface area 2200 Total outer cell surface area in pm?2,
Surface area of the average viral replication
VRO surface area | 120 ]
organelle (VRO) in pm?2,
CVB3 translocation 60 k_transloc—the rate of DAF translocation into and

out of the tight junction in h”. This rate determines
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the speed at which CVB3 is delivered by DAF to
bind CAR in the tight junction. The default is set at

maximum delivery to CAR in a15 min.

k_internal—the rate of internalization of the CVB3
bound to CAR in h-l. This also results in

CVvB3
05 downregulation of CAR at the cell surface. The
internalization . . . . -
default is set to achieve maximum internalization
within ~20 min.
k_endo_escape—the rate of CVB3 +ssRNA
release from internalized endosomes into the
Endosome escape | 420 ) ) )
cytoplasm in hl. Default is set at a70 particles
released per 10 min.
) Rate of transcription by the viral polymerase for
Viral polymerase . o .
¢ 180 production of + and —ssRNA, in kilobase pairs per
rate
hour (kb/h).
k_transcribelSG—the rate of transcription for host
Host polymerase ) ] ] ] )
170 ISGs after viral detection or interferon stimulation,
rate for ISGs o )
in kilobase pairs per hour (kb/h).
3Dpol molecules Number of 3Dr°! molecules required to form a
required to form 25 membrane-bound VRO and accelerate viral
VRO replication.
Replication k_R_Ip_Form—the rate of viral +ssRNA binding to
complex formation | 0.36 3Drolin a VRO to form a replication complex in nM-
rate: +RNA Th.
Replication k_R_In_Form—the rate of viral —ssRNA binding to
complex formation | 0.36 3Drolin a VRO to form a replication complex in nM-
rate: -RNA Th.
) The translation rate of CVB3 +ssRNA into viral
Translation rate 35 o
polyprotein, in codon/s.
) kcat_cleave—the rate of host ribosome (EIF4G)
Host ribosome ) )
1158 cleavage by viral proteases in h”. The cleavage
cleavage rate ) i ) ] ]
reaction shifts host ribosomes to viral ribosomes.
Km_cleave—the Km value, indicating the affinity of
Protease Km for ) ) )
960e+03 viral protease for host ribosome (EIF4G) in nM. The

host ribosomes

cleavage reaction shifts host ribosomes to viral
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ribosomes.

Translation k_T_c_Form—the rate of viral +ssRNA binding to
) 25/Polysom | ] )
complex formation ) ribosomes to form translation complexes in nM h-
e size
rate 1. Polysome size is set at 2.5.

The capsid:capsid (with or without viral RNA) and
Pentamer 36 capsid:RNA rate of association in nM' h-!. This
assembly rate ' parameter simultaneously changes kif_cap,

k2f_cap, and kRNACapBind.

The capsid:capsid (with or without viral RNA) and
Pentamer 3600 capsid:RNA rate of dissociation in h-1. This
disassembly rate parameter simultaneously changes k1b_cap,

k2b_cap, and kRNACapUnbind.

The basal rate of positive-strand viral RNA
+ssRNA 0.93 degradation in
degradation rate ' h-'. This parameter simultaneously changes

u_P_cyt and u_P_VRO.

The basal rate of negative-strand viral RNA
-ssRNA

) 0.23 degradation in h-'. This parameter simultaneously
degradation rate

changes u_N_cyt and u_N_VRO.

u_T_c—the degradation rate for +ssRNA in

Translation translation complexes in h”'. The default is set to

complex 0 zero under the assumption that Poly(rC) binding

degradation rate proteins protect the viral RNA during polysome
formation.

The basal rate of viral 3Dr°!, protease, and capsid

Viral protein 0.05 degradation in h-'. This parameter simultaneously

degradation rate changes u_VirProt_cyt, u_VirProt_VRO,
u_cap_cyt, and u_cap_VRO.

ISG degradation 01 u_ISG—the rate of ISG protein degradation by the

rate host cell in h-.

Table 3.4. Parameters from the complete kinetic model that are excluded from the CVB3
model GUI.

Name Description Notes

RibAvail Initial concentration of ribosomes | This parameter is dependent
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available to the virus and not
host.

on the total number of
ribosomes.

RibUnavail

Initial concentration of ribosomes
available to the host and not

virus.

This parameter is dependent
on the total number of
ribosomes.

CVB3diameter

Diameter of a CVB3 virion.

Length of the CVB3 3D

Pol3DLength
polymerase.
o ] Changing the host
Length of ISG15 in kilobase pairs,
o ) polymerase rate for ISGs
ISGbpLength which is used to determine the o
) would have a similar effect
rate of ISG formation. ) )
as changing this parameter.
Changing the total number
) ) Proportion of all ribosomes that of ribosomes would have a
RiboActive

are currently active in the cell.

similar effect as changing
this parameter.

PolysomeSize

Average number of ribosomes
bound to a single mRNA during

translation.
Length of the CVB3 genome in
CVB3genomelength )
nucleotides.
Length of the CVB3 polyprotein
CVB3polyprolength | ) )
in amino acids.
Parameter is dependent on
Volume conversion to model the
VROVolConv cell volume, nucleus volume,
concentrating effect of VROs.
and VRO surface area.
Changing the DAF
Association rate between CVB3 concentration would have a
k_on_DAF L .
and DAF. similar effect as changing
this parameter.
Dissociation rate between CVB3
k_off_DAF
and DAF.
o Changing the CAR
Association rate between CVB3 )
k_on_CAR concentration would have a

and CAR.

similar effect as changing
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this parameter.

k_off _CAR

Dissociation rate between CVB3
and CAR.

k_Translate

Overall rate of CVB3 translation.

Calculated from the
translation rate, polysome
size, and polyprotein length.

k_N_Transcript

Rate of CVB3 negative-strand
synthesis.

Calculated from the viral
polymerase rate and CVB3
genome length.

k_P_Transcript

Rate of CVB3 positive-strand
synthesis.

Calculated from the viral
polymerase rate and CVB3
genome length.

Rate of CVB3 positive-strand

k_P_on
translocation to the VRO.
Rate of CVB3 positive-strand
k_P_off
translocation out of the VRO.
Rate of CVB3 negative-strand
k_N_on
translocation to the VRO.
Rate of CVB3 negative-strand
k_N_off

translocation out of the VRO.

k_Pentamer_on

Rate of CVB3 capsid pentamer
translocation to the VRO.

k_Pentamer_off

Rate of CVB3 capsid pentamer
translocation out of the VRO.

Hill coefficient used to model

Fit to ISG expression data

n_Hill
- viral detection by the host cell. from cardiomyocytes.
Dissociation constant used in the | _ )
) ] ) ) Fit to ISG expression data
kD_Hill Hill equation to model viral )
) from cardiomyocytes.
detection by the host cell.
Changing the host
) ) polymerase rate for ISGs
ISGForm Formation rate of ISG proteins.

would have a similar effect
as changing this parameter.
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41 Foreword

My second major project seems, admittedly, unrelated to my first. Thus, | would like
to briefly document its history here. When constructing the entry module for the CVB3
model, we lacked the value for DAF abundance. To estimate its abundance, we developed
a method that fit a hyperbolic-to-linear equation through paired mRNA-protein abundance
measurements for DAF from 14 Hela derivatives (Figure 2.3D). During revisions of the Cell
Systems paper describing the CVB3 model, we became aware of a new proteomic dataset
from Steve Gygi’s group—the proteomics that ultimately became our training data for this
project. The proteomics were collected in cell lines in the Cancer Cell Line Encyclopedia,
which also had RNA-seq data. We saw this paired raw data as a great opportunity for
determining whether gene-specific models that predict protein abundance from mRNA
abundance could be built.

At the same time, | became interested in using the CVB3 model to make predictions
about susceptibility to CVB3 infection based on the abundances of DAF and CAR. CAR
had previously been shown to be important for infection, but the conditional abundance
of CAR on DAF had not been shown. To build individualized models of CVB3 susceptibility,
| needed a way to estimate protein copy numbers with better accuracy than we had
previously done. With a biological question in mind and raw data at my fingertips, this
seemingly unrelated project came into existence, and | am happy to share it with you now.
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4.2 Abstract

Protein copy numbers constrain systems-level properties of regulatory networks, but
absolute proteomic data remain scarce compared to RNA-seq. We related mRNA to
protein statistically using best-available data from quantitative proteomics-transcriptomics
for 4366 genes in 369 cell lines. The approach starts with a central estimate of protein
copy humber and hierarchically appends mRNA-protein and mRNA-mRNA dependencies
to define an optimal gene-specific model linking mMRNAs to protein. For dozens of cell lines
and primary samples, these protein inferences from mRNA outmatch stringent null models,
a count-based protein-abundance repository, and empirical protein-to-mRNA ratios. The
optimal mRNA-to-protein relationships capture biological processes along with hundreds
of known protein-protein complexes, suggesting mechanistic relationships. We use the
method to estimate viral-receptor abundances from human heart transcriptomes and build
1489 systems-biology models of coxsackievirus B3 infection susceptibility. When applied
to 796 RNA-seq profiles of breast cancer, inferred copy-number estimates collectively
reclassify 26-29% of luminal tumors. By adopting a gene-centered perspective of mRNA-
protein covariation across different biological contexts, we achieve accuracies comparable
to the technical reproducibility of contemporary proteomics.

4.3 Introduction

Absolute numbers of molecules place important bounds on biological systems, but
they are hard to come by (1). One exception is deep RNA sequencing (RNA-seq) of bulk
samples, which provides absolute transcript-per-million (TPM) estimates of all expressed
genes (2). The commoditization of sequencing has made RNA-seq the prevailing omics
approach: as of mid-2023, the leading repository (3) contains >32,000 studies with human
samples. RNA-seq profiles are useful for reading out the state of the genome (4, 5), but
mapping the transcriptome to the abundance of proteins is complex. In tumor
classification, for example, the number and identity of cancer subtypes changes when
using quantitative measurements of mMRNA versus protein (6, 7). The challenge is especially
acute for mathematical models in systems biology, which need protein quantities to
constrain topology, initial conditions, or transition rates (8-10). Filling the overall gap
requires new strategies for absolute quantification of proteomes for different needs.

Progressive experimental innovations in untargeted mass spectrometry have made
quantitative proteomics a reality (11). Isobaric labeling approaches such as tandem mass
tagging (TMT) now quantify 11+ multiplex samples and are the method of choice for
proteogenomics (12, 13). Comparisons of individual proteins across samples indicate that
linear mRNA—protein relationships vary greatly in quality (Pearson R = —-0.4 to 0.8)
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depending on the gene and gene category (6, 7). Unfortunately, multiplex labeling yields
peptide-specific relative quantities that cannot examine absolute differences among
proteins within a sample (11). This difficulty is surmounted by data-independent acquisition
methods like sequential window acquisition of all theoretical mass spectra (SWATH), which
analyzes all precursor ions in a series of mass-to-charge ratio windows (14). After data
acquisition, the most sensitive peptide(s) of a protein are summed by intensity, and the
resulting data are centered at a reasonable per-cell average (104 copies) to yield absolute
estimates of the detectable proteome. SWATH is newer, harder to adapt to different cell
lineages, and lower throughput. Consequently, the leading proteomics repository contains
~tenfold fewer SWATH depositions than label-based depositions as of mid-2023 (15). The
need for commoditized SWATH-like protein estimates may forever outpace the ability to
generate them directly.

As a means for bootstrapping absolute protein copy numbers, an appealing starting
point is RNA-seq. mRNA is the template for protein translation, and in terms of scale,
depositions of human RNA-seq exceed those of quantitative proteomics (all species, all
methods) by ~fivefold (3, 15). However, despite useful transcriptomic inference of protein
activities from the gene networks surrounding them (16), directly estimating absolute
protein copy numbers from mRNA is historically fraught with uncertainty. Linear mRNA-
protein relationships adequately recapitulate protein expression among genes within a
sample, but they are poor at distinguishing protein differences among samples for any
given gene (17-20). The latter is important for systems biology when using transcriptome
profiles to instantiate personalized models of function (8—10). The current thinking is that
the steady-state abundance of mRNA and its intrinsic translation rate create a general “set
point” for protein expression, which is buffered or tuned according to the abundance of
complexes that stably contain the protein (17, 21). Unfortunately, our working inventory of
protein-protein interactions and stable complexes in mammalian cells is far from saturation
(22, 23), which has thus far prevented a bottom-up reconstruction of mRNA-to-protein
relationships that are absolute and conditional.

Here, we surmounted this challenge by adopting a top-down perspective that
statistically identifies the best working absolute mRNA-to-protein relationship for each
gene based on paired data in several hundred cancer cell lines. SWATH and TMT datasets
from different sources are encouragingly self-consistent, enabling the meta-assembly
used for model training and selection of three relationship classes. Although relationship
classes are entirely data driven, we find biological meaning and gene-specific mechanisms
in each. The approach consistently improves the accuracy of proteome-wide inferences
from RNA-seq transcriptomes of cells, tumors, and tissues when compared to other tools
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and a stringent null hypothesis specific to each gene’s protein set point. We use the
method to build 1489 personalized systems-biology models of virus infection (24, 25) and
re-classify 796 cases of breast cancer (26) according to inferred absolute protein
abundance from public RNA-seq datasets. This study provides an open and accessible
route to gleaning protein copy numbers from RNA-seq when it is impractical or impossible
to quantify the proteome directly (http://janeslab.shinyapps.io/Pinferna).

4.4 Results

4.41 Deriving three gene-specific biological classes of mMRNA-protein

relationships

To estimate mRNA-protein relationships, we obtained quantitative proteomics
measured by TMT mass spectrometry in 375 cancer cell lines (27) and placed these data
on an absolute scale by using independent SWATH proteomics from two lines—one breast
carcinoma (28) and one osteosarcoma (29)—within the TMT dataset (Figure 4.1A, Step 1,
Figure 4.2A and Dataset EV1). Training with a large, diverse panel of cancer lines avoids
confounding gene or protein covariations that may arise in primary tissues and tumors
because of cell mixtures (30). When TMT profiles scaled to one reference line were
compared to SWATH data measured directly in the other reference line, correlations were
above 0.7 in both cases (p < 10%5; Figure 4.1B and Figure 4.2B), placing bounds on the
internal consistency of the two data sources. Overall, the meta-assembly yielded protein
copy number measurements for 4384 proteins across 375 cell lines.

We discerned mathematical relationships that best captured abundance
relationships between mRNA and protein by merging SWATH-scaled proteomics with
paired Cancer Cell Line Encyclopedia transcriptomics (31) and building gene-specific
regressions of different classes (Figure 4.1A, Step 2 and Datasets EV2—-EV4). In the simplest
case, protein abundance varies nominally around the median (M) regardless of transcript
abundance (Figure 4.1C). To incorporate abundance information about the transcript, we
also evaluated a hyperbolic-to-linear (HL) relationship where low-abundance changes in
mRNA cause larger nonlinear changes in protein that linearize as mRNA abundance
increases (Figure 4.1D). Finally, we considered that the abundance of some proteins may
be further explained by the abundance of other transcripts and applied the least absolute
shrinkage and selection operator (LASSO) to residuals of the HL fit (Figure 4.1E). The best
model among the three for each gene was distinguished by the Bayesian Information
Criterion (BIC; Figure 4.1A, step 3 and Figure 4.2C-E) to arrive at preferred M, HL, or
HL+LASSO relationships for 4366 genes (Dataset EV5). The best model for each gene was

138



strongly preferred over the others in 98% of cases (Figure 4.2F). These relationships create
a template for protein inference from RNA (Pinferna) given new samples with
transcriptomic profiles (Figure 4.1A, step 4).

We examined characteristics of the genes in each model class. Consistent with
previous findings (7, 32), M genes with no clear transcript dependence showed gene
ontology (GO) enrichments for translation and mitochondrial electron transport (Figure
4.3A and Dataset EV6). Although M genes were not significantly longer lived than others
(Figure 4.4A and 4.4B), we found that they had high transcript abundances (Figure 4.4C)
and were enriched in multi-protein complexes in the CORUM database (p < 10-59) (33).
Proteins residing in stable complexes may saturate for all measured abundances of mMRNA
because their copy numbers are stoichiometrically limited by other subunits (21), causing
the loss of an observable relationship between mRNA and protein.

Most genes exhibited some dependence on their mRNA (Figure 41D and 4.1E). To
incorporate transcript information, we assessed various low-complexity models involving
one (linear), two (hyperbolic) or three (3-parameter logistic or HL) free parameters. The four
models were compared by BIC, and HL was overwhelmingly the best or near-best model
for most genes (Figure 4.3B). Results were similar when using BIC weights (34) to assess
the relative likelihood of HL against the others (Figure 4.4D). HL accommodated rare log-
concave down relationships that occurred when protein abundance saturated at high
transcript abundances (p < 10'5; Figure 4.3C). Loss of transcript dependence arises
biologically when a protein subunit surpasses the abundance of the complex in which it
resides (21, 35), as observed for M genes across their entire measured range of mRNA.
Accordingly, among HL genes, those that were log-concave down were mildly enriched in
protein complexes in the CORUM database (p < 0.05) (33). More common were log-
concave up HL relationships in which protein abundance increased only at higher mRNA
abundances (Figure 4.3D). Using a simple computational model for synthesis and turnover
of mRNA and protein with dimensionless rate-parameter estimates, we found that log-
concave up relationships arose naturally when steady-state abundances of mRNA and
protein were halved and randomly sampled along the trajectory back to steady state
(Figure 4.4E and 4.4F). Such “halving-and-random-sampling” occurs when cells
asynchronously undergo cytokinesis, halving the protein copies per cell and sporadically
re-entering into G1. Other HL genes showed mixed concavities or were linear to different
extents (Figure 4.4G—l). Taken together, HL regressions provided the flexibility needed to
capture various biological mechanisms that relate mRNA to protein (Figure 4.1D).

One-third of HL regressions were statistically improved by adding mRNA features
selected and weighted using LASSO (Figure 4.1E). LASSO features were enriched for
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cytoplasmic translation (GO:0002181; g < 10-'9) and the proteasomal pathway (GO:0043161;
g < 1079), suggesting dependencies that may promote protein synthesis or turnover.
Specific RPS- or RPL-prefixed transcripts of the ribosome and PSM-prefixed transcripts of
the proteasome were also enriched among LASSO-selected features (pribosome < 107109,
Pproteasome < 10718). Ribosome feature weights were disproportionately positive, whereas
proteasome subunits were negative (Figure 4.3E), consistent with their expected influence
on protein abundance. Overall, we asked whether LASSO-selected genes were more likely
to interact physically with the protein of interest. Using the STRING database (36), we found
a remarkable enrichment for interactions among LASSO-selected genes (p << 10-4; Figure
4 3F), indicating that features contain more than spurious statistical associations. We
conclude that Pinferna’s three-tiered modeling approach captures various biological
phenomena and mechanisms in its framework.
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Figure 4.1. Meta-assembly and inference of conditional mRNA-to-protein relationships
for 4366 human genes.

(A) Data fusion and model discrimination. (1) Tandem mass tag (TMT) proteomics of 375 cancer cell lines (27)
were calibrated to an absolute scale based on sequential window acquisition of all theoretical mass spectra
(SWATH) proteomics of CAL51 and U20S cells (PXD003278; PXD000954). (2) SWATH-scaled proteins were
regressed using three models that incorporate transcript abundance from RNA sequencing (RNA-seq) to
different extents: median (M), no contribution of mRNA; hyperbolic-to-linear (HL) relationship incorporating

mRNA of the gene, a ¢ (% + mRNA); HL + least absolute shrinkage and selection operator (LASSO)

regressors with mRNAs other than the gene of interest. (3) Model selection for each gene was based on the
Bayesian Information Criterion. The number of genes selected in each class is indicated. (4) New samples
profiled by RNA-seq were used with the calibrated models to make protein inference from RNA (Pinferna)
predictions. The number of proteins measured per sample or number of samples with data per protein is
shown at each step as the median with the range in brackets.

(B) Reliable cross-calibration of the TMT and SWATH meta-assembly. Step 1 of Figure 41A was performed
with CAL51 data alone and the SWATH-scaled TMT proteomics of U20S cells compared with data obtained

directly by SWATH. Pearson’s R and Spearman’s p are shown. The reciprocal cross-calibration is shown in
Figure 4.2B.

(C—E) Representative M, HL, and HL+LASSO genes. Absolute protein copies per cell were regressed against
the mRNA abundance normalized as transcripts per million (TPM). Best-fit calibrations £ 95% confidence
intervals are overlaid on the proteomic—transcriptomic data from n = 369 cancer cell lines. Evidence for
model selection is shown in Figure 4.2C-E.
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Figure 4.2. Calibration for the proteomic meta-assembly and model selection
examples.

(A) SWATH-TMT scaling factor estimation and calibration of the proteomic meta-assembly. Scaling factors
were estimated for each protein by dividing the SWATH intensity by the TMT intensity in U20S and CAL51
when both data types were available and averaging (avg) the two ratios when possible. The gene-specific
scaling factors were used to convert the entire TMT dataset (bold) to absolute protein abundances.

(B) The reciprocal cross-calibration to that shown in Figure 4.1B. Step 1 of Figure 4.1A was performed with
U20S data alone and the SWATH-scaled TMT proteomics of CAL51 cells compared with data obtained
directly by SWATH. Pearson’s R and Spearman’s p are shown.

(C—E) Model selection of the representative genes shown in Figure 41C—E. Absolute protein copies per cell
were regressed against the mRNA abundance normalized as transcripts per million (TPM) for n =369 cancer
cell lines. Data are fit with M, HL, and HL+LASSO models. The BIC was used to discriminate the best model
for each fit, and BIC weights (w) are shown in parentheses to indicate the relative best-model probability.
The lowest BIC is indicated.

(F) BIC weights (BICw) for each model fit to M, HL, or HL+LASSO (+LASSO) genes. Range of weights for genes
with model ambiguity (two models with a BICw > 0.4) are boxed (gray) with the percentage indicated.
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Figure 4.3. Pinferna model selection is consistent with known biological mechanisms
and mRNA-to-protein relationships.

(A) Gene ontology (GO) enrichments for M genes. The largest non-redundant GO term is shown with the fold
enrichment (FE) and false discovery rate-corrected p value (q). The complete list of GO enrichments for each
relationship class is available in Dataset EV6.

(B) HL outperforms competing mRNA-to-protein relationships. Models encoding linear, hyperbolic, three-
parameter logistic, and HL relationships were built for all genes (n = 4366) and compared by Bayesian
Information Criterion (BIC). Results are shown as the smoothed density of BIC differences (ABIC) relative to
the best model for that gene (ABIC = 0). Distributions of BIC weights (34) are shown in Figure 4.4D.

(C, D) HL captures different empirical classes of mRNA-to-protein relationships. Log concave-down genes
(C) saturate at high mRNA abundance, whereas log concave-up genes (D) plateau at low mRNA abundance.
The remaining genes exhibited characteristics of both fits or linear relationships to varying degrees (Figure
4.4G-I).

(E) Feature weights of HL+LASSO genes are biologically sensible. Smoothed densities of LASSO feature
weights (indicating strength and direction of modulation for an HL fit) among mRNAs encoding subunits of
the proteasome (n =127 feature weights; blue) and the ribosome (n = 397 feature weights; red) are shown.
(F) HL+LASSO feature weights are highly enriched for STRING interactions. For each HL+LASSO gene,
LASSO-selected features were replaced with random genes (n =10,000 iterations) to build a null distribution

for finding binary interactions in STRING (36). The actual number of STRING interactions among HL+LASSO
genes of Pinferna is indicated.
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Figure 4.4. Extended characterization of M and HL mRNA-to-protein relationship
classes.
(A, B) M genes do not exhibit longer half-lives compared to other relationship classes. Half-lives for proteins

were obtained from (37) and plotted by frequency (A) or as an empirical cumulative distribution function (B)
for all genes (n=7029 genes (37); gray) and M genes (n = 334 genes; green).

(C) M genes are more abundant by mRNA compared to other relationship classes. mRNA abundance was
normalized as TPM and placed on a log scale with a pseudocount of 1. Cumulative distribution functions are
shown for M genes (n = 395 genes; green), HL genes (n = 2569 genes; purple), and HL+LASSO genes (n =
1402 genes; orange). Distributions were compared by K-S test with Sidak correction for multiple-hypothesis
testing.

(D) Distribution of BIC weights (BICw) for models encoding linear, hyperbolic, three-parameter logistic, and
HL relationships (n = 4366 genes) shown in Figure 4.3B.

(E, F) Log concave-up patterns arise when mRNA and protein abundances recover from transient
perturbations to steady-state values. A simple transcription—translation model (E) was reduced by 50% and
randomly sampled at 10 time points (red) during the return to steady state (s.s.). For the model, the following
dimensionless rate parameters were used: kixn = 1; kin = 1; Krna_deg = O.1; Kprotein_deg = 0.01. The model was
simulated 100 times with lognormally distributed parameter noise (coefficient of variation = 10%) and the joint
observation of MRNA and protein abundances (n =10 time points x 100 simulations) is shown in F.

(G—1) Examples of other HL relationships not shown in Figure 4.3C and 4.3D: mixed concavity (G), weakly
linear (H), and strongly linear (l) relationships.
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4.4.2 Pinferna predictions in cell lines and tissues relative to competing

alternatives

To be useful for new samples, gene-specific model predictions should be more
accurate than guesses based on past copy-number estimates of the protein in other
settings. Therefore, we assessed Pinferna predictions against a null model built by
iteratively drawing randomized measurements for each protein’s abundance from the
meta-assembled dataset originally used for training (Figure 4.1A). Accuracy was quantified
by subtracting the measured value from the predicted value for each protein, taking the
absolute value, and dividing by the standard deviation of the individual protein abundance
across the 369 cell lines in the training data. This variance-scaled residual inversely weighs
error by the breadth of abundances observed in other biological contexts. Finally, we
compared the distribution of variance-scaled residuals between Pinferna and 100 null
models to arrive at a proteome-wide estimate of model performance.

The first accuracy test was performed with Hela cells, a line excluded from one of
the original meta-assembled resources. We leveraged an independent study that carefully
examined Hela-to-Hela differences with paired transcriptomics and SWATH proteomics
(38). Pinferna consistently outperformed randomized measurements for all 12 Hela
derivatives investigated (p < 10-¢; Figure 4.5A and Figure 4.6A). Accuracy estimates were
comparable when reported protein abundances were used instead of protein re-
quantifications performed exactly as done for the training data (See Materials and
Methods; Figure 4.6A and 4.6B). Pinferna predictions were similarly resilient to reductions
in transcriptomic sequencing depth—accuracies were comparable down to about 500,000
reads and remained superior to randomized measurements until about 50,000 reads
(Figure 4.6C). The results bolster recent claims that typical single-cell RNA-seq data
sequenced at ~50,000 reads per cell poorly reflect protein abundances (39, 40) and
separately indicate that Pinferna’s bulk predictions of protein from mRNA are robust to
algorithmic details.

To test Pinferna more broadly against other methods for protein estimation, we
integrated the difference between the cumulative distribution functions of a model
prediction and the median null to yield a single measure of accuracy improvement (ACDF;
Figure 4.5B). By ACDF, Pinferna was compared with two alternative approaches: 1) PaxDb,
a meta-repository of protein abundances largely determined by uncalibrated peptide- and
spectral-counting methods (41); and 2) protein-transcript ratios (PTR), which proportionately
relate mRNA to protein abundances from data collected in 29 tissues (42). PaxDb and PTR
each accommodate generic predictions using all available data and specific predictions

145



restricted to data from a cell line or tissue of interest; both implementations were tested
when possible. For the comparative evaluation, we assembled transcriptomic and SWATH
data from 29 cell lines of nine cancers from the NCI-60 panel not included in the meta-
assembly (43, 44). Overall, Pinferna was significantly more accurate than randomized
measurements, whereas PaxDb and PTR were less accurate (Figure 4.5C). Results were
unchanged when transcriptomics were pre-processed with a different alignment pipeline
(Figure 4.6D), reinforcing that Pinferna is tolerant of how mRNA TPMs are calculated. We
observed no bias in estimates among cancer types (Figure 4.5C) and thus concluded that
Pinferna was the preferred method for predicting protein copy numbers from mRNA in
cultured cell lines.

The performance in cell lines prompted us to ask whether Pinferna estimates would
hold in more complex samples such as tissue. We assembled transcriptomic and SWATH
data for 40 primary tumors and 39 normal human prostate samples (45). PaxDb remained
significantly worse than randomized measurements (p < 10%; Figure 4.5D and 4.5E),
consistent with the recognized limitations of peptide and spectral counts (11, 46). PTR was
on par with randomized measurements in prostate cancer samples and significantly better
in normal prostate samples, likely due to its tissue-centric focus (42). Nevertheless,
Pinferna remained well ahead of all methods, indicating generality of proteome-wide copy
number estimates from transcriptomics in primary tumors and nonmalignant tissues.
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Figure 4.5. Pinferna outperforms empirical guesses and competing methods for
absolute protein abundance estimation.

(A) Pinferna compared to random protein-specific guesses. Model predictions were nondimensionalized as
a scaled residual by subtracting the measured abundance, dividing by the standard deviation of the SWATH-
scaled protein measured across the meta-assembly, and taking the absolute value (IScaled residuall). The
IScaled residuall cumulative density was compared to randomized measurements drawn from the SWATH-
scaled proteomic data for each gene. Randomized measurements were iterated 100 times (gray) to identify
a median null (black) that served as a null distribution for model assessment. Left-shifted distributions indicate
improved proteome-wide accuracy (relative to each protein’s variability) compared to protein-specific
randomized measurements. Pinferna predictions of Hela cells (orange; PRIJNA437150; PXD009273) were
compared to the null distribution by K-S test (p < 103).

(B) Aggregate performance assessment of protein abundance predictions. The difference in cumulative
density functions between test predictions and the median null distribution (ACDF) was integrated to identify
approaches that performed better (ACDF > 0, orange) or worse (ACDF < O, green) than protein-specific
guessing. Data are from a prediction of Pinferna (orange) and tissue-specific protein-to-mRNA ratio (PTR;
green).

(C—E) Pinferna is consistently and uniquely superior to empirical guessing. ACDF values were calculated for
NCI-60 cell lines (C; PRINA433861; (43)) excluded from model training (Figure 4.1A) and organized by cancer
type (n =5 brain, 1 breast, 3 colon, 4 leukemia, 4 lung, 3 melanoma, 3 ovarian, 1 prostate, 5 renal), primary
prostate cancer samples organized by grade of the cancer (D; n =19 low-grade, 21 high-grade), and normal
prostate tissue (E; n =39; PRINA579899; PXD004589). PaxDb (41) and PTR (42) were used generically or in
a tissue-specific way as alternative approaches (See Materials and Methods). A cell line-specific PaxDb
estimate was only available for U251 cells. Differences between groups were assessed by rank-sum test with
Sidak correction. Box-and-whisker plots show the median (horizontal line), interquartile range (IQR, box), and
an additional 1.5 IQR extension (whiskers) of the data.
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Figure 4.6. Robustness of Pinferna predictions.

(A, B) Prediction accuracy is not dependent on SWATH analytical details. Cumulative distribution plots
comparing Pinferna and median-null predictions for paired RNA-seq—SWATH datasets of 12 Hela derivatives
(PRIJNA437150; PXD009273) named as in the publication (38). Proteins were re-quantified from raw SWATH
data processed exactly like the meta-assembly (See Materials and Methods; A); or, protein quantities were
taken directly from the publication (38) (B). Results from the re-quantified CCL2 L2 derivative are reprinted
from Figure 4.5A.

(C) Prediction accuracy is not heavily dependent on RNA-seq read depth. Count-based RNA-seq data for the
Hela lines was averaged and iteratively downsampled (n =100 iterations; gray) and TPM values re-estimated
before making proteome-wide copy-number predictions by Pinferna. See Figure 4.5B for an explanation of
ACDF.

(D) Prediction accuracy is not dependent on RNA-seq analytical details. Pinferna predictions were made
using TPM values taken directly from the original publication (44), and ACDF values were calculated for NCI-
60 cell lines excluded from model training (Figure 4.1A) and organized by cancer type (n =5 brain, 1 breast,
3 colon, 4 leukemia, 4 lung, 3 melanoma, 3 ovarian, 1 prostate, 5 renal). Differences between groups were
assessed by rank-sum test with Sidak correction.

For (C and D), box-and-whisker plots show the median (horizontal line), interquartile range (IQR; box), and an
additional 1.5 IQR extension (whiskers) of the data.
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4.4.3 Application to in silico modeling

RNA-seq often substitutes for protein when parameterizing systems-biology models
of signaling, metabolism, and cell fate (8—10). For example, in constructing a mass-action
model (25) of cardiomyocyte infection by coxsackievirus B3 (CVB3), RNA-seq was used to
estimate abundances of the serial CVB3 receptors, CD55 and CXADR (Figure 4.7A). Both
estimates were HL extrapolations from a very-limited set of SWATH-RNA-seq pairings,
which motivated a direct assessment of protein abundance by quantitative immunoblotting
with recombinant standards (25, 47). Direct protein estimation was feasible for cultured cell
lines but would be impossible for human hearts, where the severity of CVB3 infections is
highly variable (48). We reasoned that Pinferna could provide extensibility to address this
challenge and similar needs in cancer (8—10) and neurologic disease (19).

RNA-seq data was collected for 1489 healthy and failing human heart samples from
the U.S. and Europe, available through GTEx (49), MAGNet (50), and EGA (51). RNA-seq
reads from the three studies were realigned and assembled together to enable
comparability (See Materials and Methods; Dataset EV8). The realignment confirmed no
biases in expression based on data source for CD55 (Figure 4.8A). CXADR expression
increases in cases of cardiomyopathy (52, 53), and we reproduced this result by stratifying
cases from the three sources (p < 10244; Figure 4.8B). For both genes, the range of
expression in heart samples fell within the variation observed across cancer cell lines in
the meta-assembly (Figure 4.8C and 4.8D). CD55 is an HL+LASSO gene whose predictions
are conditionally dependent on nine other genes. These features reduce CD55 inferences
below the smoothed average of the training at very low TPM (Figure 4.8C). By contrast,
CXADR is an HL gene that is steeply nonlinear at low TPMs where small changes greatly
influence the protein copy number estimate (Figure 4.8D). Because of the nonlinear
inferences, CD55-CXADR proteins were strongly coupled even while CD55-CXADR
mRNAs were much less so (p < 10'2; Figure 4.8E and 4.8F). Using the Pinferna estimates
of CD55 and CXADR as initial conditions, we created a series of individualized model
variants to create a virtual cohort of the human population. The individualized models were
initiated with a high titer of CVB3 that guaranteed infection of permissive cells, and the
concentration of virions was collected at each time point for 24 hours of simulated infection
(See Materials and Methods). The goal was to investigate whether inferred CD55-CXADR
protein variations yielded a wide enough range of infection outcomes in the model that
one or both receptors could be nominated as a susceptibility factor.

Examining the predicted distribution of viral loads over time, we noted a strong
asymmetry in onset of infection (Figure 4.7B). At 12 hours, 64% of individuals were
detectably infected, producing mature virions above one plaque forming unit (1 pfu = 0.48
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1+ 012 nM in these simulations). By 24 hours, the models yielded a left-skewed distribution,
which straddled the mean lytic yield of viruses in the CVB3 genus (~100 pfu =48 + 12 nM
for a 3700 pm?3 cell) (24, 25, 54). Even at this uncharacteristically late time, 15% of
individuals remained uninfected, suggesting they were intrinsically resistant. The
remaining cases were best fit as a three-component Gaussian mixture of low, medium, and
high susceptibilities (Figure 4.7C). Based on mean lytic yield, we interpreted these groups
as prone to subinfection, infection, and severe infection, with failing hearts falling almost
entirely into the infection and severe-infection groups (Figure 4.8G). For comparison, we
abandoned Pinferna and attempted a randomized-measurement approach by linearly
scaling the RNA-seq data about a quantity of CD55 and CXADR arbitrarily selected from
the training data (See Materials and Methods). As expected, model outputs were so
dependent on the randomized measurement that they were uninterpretable when viewed

in aggregate (Figure 4.8H). Randomized measurements tended to predict ~100%

resistance or ~100% lytic infections and underestimate the low-susceptibility group,
although some fortuitously matched the true inferences. We concluded that the Pinferna-
derived model outputs were compelling enough to interpret further.

Among heart samples, the distributions of CD55 and CXADR RNA transcripts were
quite different (Figure 4.7D and 4.7E). The range of CD55 expression was ~tenfold that of
CXADR, hinting that it might be the dominant receptor for in silico susceptibility. However,
these population-wide trends changed when viewed as protein inferences (Figure 4.7F
and 4.7G). Both CD55 and CXADR were more symmetrically distributed, with CXADR
exhibiting greater overall variance. Importantly, when individuals were classified on the
basis of their inferred susceptibility, we found that CXADR abundance alone was sufficient
to stratify the population. This application of Pinferna illustrates how direct substitution of
transcriptomics can misconstrue the outputs of systems-biology models built for protein
networks.
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Figure 4.7. Simulating degrees of human cardio-susceptibility to coxsackievirus B3

(CVB3) infection based on inferred abundance differences in CVB3 receptors.

(A) An in silico model of CVB3 initiated by its receptors CD55 and CXADR. After binding, the virus undergoes
internalization, replication, and escape. The viral life cycle is mathematically modeled with 54 ordinary
differential equations (ODEs; MODEL2110250001).

(B) Distribution of viral load over time from 1489 human heart samples. Inferred abundances of CD55 and
CXADR from each sample were used to simulate CVB3 infection. Each model run consisted of 100 simulated
infections up to 24 hours with a coefficient of variation in model parameters of 5%. Viral loads (gray) at the
indicated time points are shown along with the estimated point of lysis (black: mean estimated lytic yield +
s.d. (24, 25, 54)).

(C) Four modes of infection susceptibility to terminal CVB3 infection. Viral load at 24 hours was replotted
from B fit to a Gaussian mixture model (black) of three components (purple, green, yellow). Relative
population densities in each of the susceptibility groups is shown along with the estimated point of lysis
(black: mean estimated lytic yield + s.d. (24, 25, 54)).

(D, E) Distribution of mMRNA abundances for CD55 (D) and CXADR (E) normalized as TPM.

(F, G) Distribution of inferred protein copy numbers per cell for CD55 (F) and CXADR (G) with each sample
colored by its susceptibility.
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Figure 4.8. Calibrated protein inferences of CD55 and CXADR yield disease-related

predictions of coxsackievirus B3 (CVB3) susceptibility.
(A) Distribution of CD55 abundance (Dataset EV8) separated by source data: EGA (brown;
EGAS00001002454), GTEx (gray; phs000424.v9.p2), MAGNet (blue; GSE141910).

(B) CXADR is upregulated in failing hearts. CXADR abundance (Dataset EV8) was stratified by heart health
and colored by source data as in A. Differences between groups were assessed by rank-sum test.

(C, D) Calibration plots (C, orange; D, purple) and Pinferna predictions for CD55 (C) and CXADR (D) in human
heart samples (Heart RNA-seq; red). Best-fit calibrations + 95% confidence intervals are overlaid on the
proteomic—transcriptomic data from n = 369 cancer cell lines. CD55 deviations from the smoothed best fit
are caused by cardiac-specific features in the HL+LASSO regressions.
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(E, F) CD55—CXADR coregulation is increased at the protein level (F) compared to the mRNA level (E). For
each comparison, the Pearson R is shown with 95% confidence interval in brackets calculated by the Fisher
Z transformation.

(G) Replotted histogram of Figure 4.7C separated by heart health (Dataset EV8).

(H) Predicted prevalence of susceptibility groups based on randomized measurements. After linearly scaling
to randomized abundances of CD55 and CXADR (n =100 randomizations), CVB3 infections were simulated
for 1489 heart samples as in Figure 4.7B. The 24-hour end states were quantified by the percentage of
samples with resistant ((CVB3 virions] = 0 nM), sublytic (O nM < [CVB3 virions] < 36 nM), and lytic ((CVB3
virions] > 36 nM) phenotypes (Figure 4.7B). Pinferna-derived percentages are overlaid in red. Results from
the randomized simulations are connected, and densities in each group are shown by a violin plot in the
background (yellow).

For (B—F), n =1489 heart samples.
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4.4.4 Application to molecular subtyping

Transcriptomic profiles are widely used to define disease subtypes (55-57), which
may change when gene expression is replaced by inferred protein abundance as a closer
surrogate of cell function. As a longstanding example, we selected the intrinsic molecular
subtypes of breast cancer defined by a 50-gene classifier (PAM50) for 796 cases with RNA-
seq in The Cancer Genome Atlas (26, 58, 59). For consistency, our analysis focused on the
4366 transcripts compatible with protein inference (Figure 4.1A), but results were
unchanged when using the entire available transcriptome (Figure 4.9A-D). Consensus
clustering of mRNA profiles identified five ordered and stable groups, which were
statistically enriched in PAM50-assigned cases of 1) Normal-like, 2) HER2+, 3) Luminal A, 4)
Basal-like, and 5) Luminal B breast cancer (p < 0.004 by hypergeometric test; Figure 4.10A,
49A, and 4.9B). When the analysis was repeated with Pinferna estimates after
standardization, the smallest number of stable and significant consensus clusters was
again five (Figure 4.9E and 4.9F). However, the enriched PAM50 assignments were
reordered, and 186/796 = 23% of cases changed to a different cluster (Figure 4.10A). The
aggregate transformations of Pinferna (Figure 41C-E) thus exceeded a standardized
rescaling and considerably altered subgroup composition.

Among reassigned samples, we noted preferential enrichments in Luminal A (26%)
and Luminal B (29%) tumors over Basal-like and HER2+ (Figure 4.10B). Luminal A/B cases
are often intermingled in clusters defined by transcriptomics (60), prompting us to look
more deeply at their reassignment with Pinferna (Figure 4.9G and 4.9H). We surveyed for
HL+LASSO genes whose z-score standardized values changed the most from mRNA to
inferred protein and looked within these influential genes for features (other genes) that
were STRING interactors (See Materials and Methods; Figure 4.3F and 4.9I). Calibration of
the mRNA-to-protein relationship for SDHAF2 (a mitochondrial Complex Il assembly factor)
was dramatically improved with abundance information from other genes, including its
interactors, SDHA and MDH2 (Figure 4.10C). Similarly, inference of SKA3 (a subunit of the
mitotic Ska complex) was influenced by multiple binding partners (Figure 4.10D). One of
the most notable examples of LASSO modulation was CTNNA2 (an adhesion protein
involved in actin regulation). CTNNA2 protein was ubiquitous in the meta-assembly, but its
mRNA was undetectable in 23% of training samples; of these, nonzero protein inference
of 83% was recovered by using abundances including CTNND1 and plakophilin (PKP2,
PKP3) interactors (Figure 4.10E). For cluster reassignments of breast cancer, the gene with
the most interaction-rich feature set was CDK4. Like SDHAF2, CDK4 protein abundance
was largely independent of its own mRNA, but a useful calibration was achieved when
considering various cyclins and other binding proteins (Figure 4.10F). This result is
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important because CDK4/6 inhibitors are approved to treat luminal breast cancers (61, 62),
but responsiveness has not consistently associated with the abundance of CDK4 mRNA
(63, 64). Newly meaningful subtypes with therapeutic implications might arise when
combining transcriptomics with Pinferna to get closer to the functional proteome.

A 0.8 - 4366 mMRNAs B 8 4366 mMRNAs G TCGA breast cancers clustered by transcriptomics
: ] . =
0.6 s .EE.JT—. Y ﬁhﬁ- Eﬁl o
0.4 - ° (IR — AR Transcriptomics
0'2 i 6 Ul 1| \IH\IH-I-- LT I -II- WIIINPAMSO0
5 3 . ; 3
» 0.0 2 4 3
O -0.2 =) :
o o
-0.4 - < N ” : “
-0.6 2 o o o i
° = ] 2
-0.8 - . 8 g <
% ;
-1.0 0 e
T T T T T T T T 1 T T T T T T T T 1 1
2345678910 2345678910 :
Number of clusters Number of clusters o 3 =
c 0.8 - All mMRNAs D 25 _ All mMRNAs ® H TCGA breast cancers clustered by inferred proteomlcs
06- ] o st it
0.4 20 I N Proteomics
0.2 o ] IIII\IIIIIIII --ﬂ 0BT RN | |11 INRINRA N PAMSO
0.0— 2 15+ = 4 Subtype
1) ¥ =] 2 £ HBL
O -0.2- > oyt
X -0.4- g 10+ o ® ° e £ e
-0.6 - ! . 2| = j enanlLA
-0.8 54 }T_’, x LB
N o
-1.04 0le ®® & WAL
T T 1T 1 1T 177171 T T T T T 11 o5 Log2 Z-score
2345678910 23 4567829 10 [
Number of clusters Number of clusters -4-202 4
E 0.8 4366 inferred proteins F 8 4366 inferred proteins I TCGA breast cancers: differences in Z-scores
— TR [T llllHlHMHTranscnptomlcs
016 I [ | [B Proteomics
0.4 6 AN | (1) | ] N A | A | | PAM50
0.2 _— ° .
Subtype
% 00- = 4 . . meL
© 0.2 =3 H2
-0.4 - T o ® 0 HLA
2 . o
-0.6 S LB
-0.8 ° o O] BNL
-1.0 0 e
T T T T % T3 T A Zivotein = L
2345678910 2345678910 [0
Number of clusters Number of clusters -4-20 2 4

Figure 4.9. Consensus re-clustering of 796 breast cancer cases from The Cancer
Genome Atlas (TCGA) by protein inference.

(A—F) Relative cluster stability index (RCSI; A, C, and E) and significance (B, D, and F) of cluster number for
consensus clustering (See Materials and Methods) applied to 4366 mRNAs used by Pinferna (A, B), all mRNAs
quantified by RNA-seq (C, D), and protein inferences by Pinferna (E, F). Stable maxima or near maxima at five
clusters is indicated in red.

(G, H) Two-way hierarchical clustering within transcriptomic (G) and inferred proteomic (H) clusters annotated
as in Figure 4.10A.

() One-way hierarchical clustering of genes by differences in standardized Z-scores between inferred protein
and mRNA (Zprotein - ZmRNA).

For (G—I), hierarchical clustering was performed by Euclidean distance and Ward’s linkage. BL: Basal-like; H2:
HER2+; LA: Luminal A; LB: Luminal B; NL: Normal-like.
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Figure 4.10. Inferred proteomics reassigns luminal A/B transcriptomic subtypes of

breast cancer.

(A) Reorganization of five consensus clusters defined by RNA-seq (left) and Pinferna (right) for 796 breast
cancers in The Cancer Genome Atlas (26). Clusters were determined by Monte Carlo consensus clustering
(65) and colored according to the dominant PAM50 subtype of each cluster. Samples that did not change
clusters are transparent in the background while samples that changed are opaque in the foreground. Lum
A: Luminal A; Lum B: Luminal B.

(B) Reassigned samples are predominated by luminal A/B PAM50 subtypes. (Left) Proportion of each subtype
among samples that were reassigned. (Right) Percent reassignments for each subtype. The average overall
reassignment rate is shown as a null reference (186/796 = 23%; gray dashed) with the 90% hypergeometric
confidence interval (black) for each subtype. Reassignment enrichments were determined by
hypergeometric test, asterisk indicates p < 0.05. BL: Basal-like; H2: HER2+; LA: Luminal A; LB: Luminal B; NL:
Normal-like.
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(C—F) Cluster-reorganizing genes are highly dependent on other genes. (Left) Concordance between SWATH
measurements and the HL fit £ LASSO in the meta-assembly. Perfect concordance is given by the red dashed
line. Pink points in E are samples with TPM = 0 for CTNNAZ2. (Right) STRING interactions (edges) among the
target gene (orange) and its LASSO-selected features (black). Edge thickness (gray) reflects the confidence
of the interaction as determined by STRING. Thicker lines represent a higher confidence score. Line lengths
are arbitrary.
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4.5 Discussion

We have devised a straightforward gene-by-gene formalism that uses mRNA to
achieve absolute protein estimates informed by the best measurements available for each
data type. Gene-specific inferences are gleaned from cancer cell lines, but general
accuracy and utility is verified in multiple other contexts. Although not exhaustive, our
coverage of 4366 mRNA—protein relationships is considerable given that modern SWATH
experiments reliably quantify ~5000 proteins (38). Encouraged by the robustness of
predictions to read depth and alignment details, we provide Pinferna as an open resource
(http://janeslab.shinyapps.io/Pinferna; Dataset EV9). The platform is optimal when provided
full RNA-seq profiles, but it also accommodates single-gene TPM entries for LASSO-free
inference when subset data are exported from public repositories. The hope is to attract
general users to the value in seeing genes and gene profiles of interest through the lens
of inferred proteomics (source code is available for developers; See Data Availability).

The mRNA-to-protein relationship classes used here distill the major findings of
prior models that were more fine grained (42, 66, 67). Measured mRNA is the net result of
its transcription—degradation, with the per-mRNA yield of translation for each gene being
the greatest determinant of absolute protein abundance (20, 66). Together, mRNA
abundance and per-mRNA yield define an expected set point for protein abundance as
captured by the HL relationship class. For typical in vitro cultures, cell doubling is faster
than turnover of most proteins (17, 66), creating a perpetual state of halving-and-recovery
that likely explains why many HL models are log-concave up. Nonetheless, overall
accuracy of Pinferna did not decrease with clinical samples that were less proliferative,
suggesting a role for other cyclic perturbations in vivo, such as circadian rhythms (68).
Some genes additionally require protein complexes to persist stably (17, 21), which creates
buffering dependencies on other genes that are coexpressed. The HL+LASSO approach
seeks to capture this relationship class by identifying statistical mRNA-—protein
associations in trans. Despite its heavy L1 regularization (69), LASSO recovered a
significant number of documented protein-protein interactions. Recently, a reciprocal
approach to predict relative protein abundance from mRNA was proposed that constrains
the search space for each gene to its CORUM-STRING interactors but relaxes the
regularization by using elastic net (30, 69). These models retain many more features (158—
457 (30) compared to 1-83 features for HL+LASSO), but their relative predictions cannot
be compared with the absolute copy-number estimates of Pinferna. Future versions may
consider hybrid regularizations that penalize CORUM-STRING interactors less during
LASSO feature selection. lterative approaches might also use Pinferna inferences as
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LASSO features for other genes to approximate biological dependencies more closely.
Lastly, we speculate that M genes arise from protein complexes so large that pairwise
interactions within a complex completely dictate abundance (70, 71).

Absolute protein estimates are of great practical use for making qualitative
determinations in systems-biology models. For example, using inferred protein to simulate
heart infections, we clarified that individuals with fewer than ~5000 copies of CXADR per
cell were not susceptible to CVB3 (Figure 4.7G). Another subfield of relevance is genome-
scale metabolic modeling with tailored derivatives of the generic human metabolic
network reconstruction (72). For cell- or tissue-specific modeling, the generic
reconstruction is pruned according to which metabolic genes are “not expressed” in a
biological context of interest (73, 74). Irrespective of the pruning algorithm, the choice of
threshold is made absolutely across all genes in a sample, which defines the resulting
model complexity (75). Protein abundances for some metabolic pathways scale linearly
with mRNA, but others do not (6, 7), and protein—-mRNA set points vary over several orders
of magnitude (20, 42). For metabolic models concerned with protein fidelity, estimating
copy humbers from RNA-seq is a scalable alternative to proteome immunohistochemistry
(73).

There are limitations in our approach to absolute copy-number estimation. By
relying on SWATH for calibration, we lose many of the 8000+ proteins quantified in relative
terms by TMT (27). Calibration data were all collected at steady state; thus, we caution
against using RNA-seq obtained shortly after acute perturbations when transcripts and
proteins will be most uncoupled (17). Signaling proteins rapidly turned over by
ubiquitylation (TP53, NFE2L2, NFKBIA) might require other formalisms when they become
detectable by SWATH. Broadening Pinferna predictions to non-human samples awaits the
availability of robust SWATH libraries in other mammals (76). Last, we recall that no total-
protein estimator captures functional state, such as the surface localization of CD40, the
tyrosine phosphorylation of PKP2—-PKP3, or the kinase activity of CDK4 (Figures 4.3C,
410E, and 4.10F). Despite these caveats, the method adds an immediately useful approach
for systems biology that compares favorably against existing alternatives.

In statistics, bootstrapping by computation allowed the field to tackle analytical
needs that were impossible to address by existing methods (77). Analogously, proteomics
can extend its reach by combining with RNA-seq to inform more biological samples,
including retrospective ones it would never otherwise have access to. There is already
precedent for such “transcriptomic bootstrapping” to infer genomic alterations, molecular
kinetics, and cellular trajectories (78-80).
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4.6 Materials and Methods

SWATH alignment and quantification

Raw SWATH data files were obtained from the PRIDE repository (15) (CAL51,
PXD003278 (28); U20S, PXD000954 (29); HelLa, PXD00927 (38)) and converted to .mzML
format using the MSConverGUI (version 3.0) in the ProteoWizard software suite (81) with
the following options: Output format, mzML; Extension, mzML; Binary encoding precision,
64-bit; Write index; Use zlib compression. Peptide fragments were aligned with
OpenSwathWorkflow in OpenMS (version 2.4.0) (82) with the following options: -
sort_swath_maps, -readOptions normal, -batchSize 1000, -use_msi_traces, -
mz_correction_function quadratic_regression_delta_ppm. Statistical control was
performed with PyProphet (version 2.2.5) (83) with the following options: --
group_id=transition_group_id, --tric_chromprob. Each series of SWATH runs was
realigned with TRIC (84) using msproteomicstools (version 0.11.0) with the following
options: --method LocalMST, --realign_method Ilowess, --max_rt_diff 60, --
mst:useRTCorrection True, --mst:Stdev_multiplier 3.0, --target_fdr 0.01, --max_fdr_quality
0.05, --alignment_score 0.0005. The top three peptide fragments by intensity (or all
peptide fragments if fewer than three) were summed for each protein to estimate relative
abundance. Summed intensities were mean-averaged across technical replicates when
available. To place summed intensities on an absolute scale, the median abundance of all
detected proteins within each sample was centered at 10,000 protein copies per cell (38).

RNA-seq alignment and quantification

For all studies other than Figure 4.7, SRA files were obtained from the Sequence
Read Archive (SRA) (85) (HeLa, PRJNA437150; NCI-60, PRJNA433861; Prostate,
PRJNA579899) and converted to raw FASTQ files using sratoolkit (version 2.10.5) with
fasterg_dump. TruSeq adapters were trimmed using the fastg-mcf function in the ea-utils
package with the following options: -q 10, -t 0.01, -k O. Trimmed datasets were aligned to
the human genome (GRCh38) using HISAT2 (version 2.1.0) (86) with the following options:
--dta (downstream transcriptome assembly) and either --rna-strandedness RF (for paired-
end reads generated by the TruSeq strand-specific library; NCI-60 and prostate samples)
or --rg-id (for single-end reads generated by the TruSeq library; HelLa). Output SAM files
were converted to BAM files using the sort function in samtools (version 1.12) (87), and BAM
files were indexed to create BAI files using the index function for obtaining counts
downstream. Alignments were assembled into transcripts using StringTie (version 2.1.0)
(88) with the -e option restricting assembly to known transcripts in the provided annotation.
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Counts were obtained using HTSeq (version 2.0.2) (89) using BAM files as the input with
the following options: -f bam, -r pos, -m intersection-strict, -s reverse, -a 1, -t exon, -i
gene_id. Heart RNA-seq data were obtained from dbGaP (GTEx, phs000424.v9.p2), the
Sequence Read Archive (MAGNet, SRP237337), and the European Genome-Phenome
Archive (EGA, EGAS00001002454). GTEx samples were converted from BAM files to raw
FASTQ files using samtools (version 1.12) (87). MAGNet samples were converted to raw
FASTQ files using sratoolkit (version 2.10.5) (https://hpc.nih.gov/apps/sratoolkit.ntml#doc).
EGA samples were converted to raw FASTQ files using samtools (version 110/1.12) (87) and
paired reads were recreated using the fastqCombinePairedEnd.py script from Eric
Normandeau (https://github.com/enormandeau/). Datasets were aligned to the human
genome (GRCh38) using HISAT2 (version 2.1.0) (86) with the --dta option for downstream
transcriptome assembly. Output SAM files were converted to BAM files using samtools
(version 112) (87). Alignments were assembled into transcripts using StringTie (version 2.1.0)
(88) with the -e option restricting assembly to a unified list of transcripts that was provided
by first running StringTie using the --merge option.

Data harmonization

The table of MANE Select identifiers was obtained from the source publication (90)
and filtered for “MANE Select” genes. The filtered table was appended with UniProt
accession codes using biomaRt (version 2.52.0) and GRCh38. The Ensembl BioMart
browser was used to obtain HGNC identifiers, Ensembl transcript identifiers (with version
numbers for maximum overlap), RefSeq mRNA identifiers, NCBI (formerly Entrez) gene
identifiers, UniProt accession codes, and UniProt gene symbols for Homo sapiens. Each
row of the MANE Select table was matched to at least two identifiers in the biomaRt table
to determine the UniProt accession numbers. When MANE Select annotated a gene
symbol as LOC###### and biomaRt contained a more descriptive gene symbol, the
biomaRt gene symbol replaced the MANE Select gene symbol and the “Database” column
was updated to include “biomaRt symbol” as the source. The harmonization identified 83
genes that are not currently available in UniProt. The final harmonized table of ten
identifiers (nine for the 83 genes not in UniProt) for 19,062 genes is available in Dataset
EV2.

Cancer Cell Line Encyclopedia pre-processing

The TMT proteomic dataset was obtained from the source publication (27) as a CSV
file (protein_quant_current_normalized.csv). After removing proteins annotated as
“Fragments”, gene symbols were matched to UniProt accession codes by using the
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harmonized identifier table (Dataset EV2). Protein isoforms with redundant gene symbols
were summed. The RNA-seq dataset (31) was obtained from the Depmap portal, back-
transformed from logz to TPM, and renamed with the harmonized identifier table (Dataset
EV2).

Meta-assembly, calibration, and inference

1. Scaling. For each gene, SWATH copy-number estimates were divided by the
corresponding harmonized TMT data for U20S and CAL51 cells to calculate U20S- and
CAL51-specific scaling factors. Scaling factors were averaged when possible; otherwise, a
single scaling factor was used (Figure 4.2A). The resultant scaling factors were then
multiplied across the harmonized TMT data table to yield a SWATH-scaled proteomics
dataset of 4385 total proteins across 375 cell lines (Dataset EV1).

2. Regression. The SWATH-scaled proteomics and RNA-seq transcriptomics
datasets were filtered before regression. As recommended (91), proteomics data from
replicates of CAL120 (CAL120_BREAST_TenPx02), SW948
(SW948_LARGE_INTESTINE_TenPx11), and HCT15 (HCT15_LARGE_INTESTINE_TenPx30)
were excluded. RNA-seq data were filtered to include only cell lines with SWATH-scaled
proteomics available. Both datasets were filtered to retain genes for which SWATH-scaled
proteomics was available in at least 150 cell lines (4445/4513 = 98.5% of all SWATH-scaled
proteins). Filtered datasets are available in Datasets EV3 and EV4. Numerical approaches
for building the M, HL, and HL+LASSO models and assessment of confidence intervals is
described in Appendix Supplementary Methods.

3. Model selection. The BIC for each regression was calculated under the
assumption of normally distributed random errors as follows:

~ n 7 —v:)2
BIC =pelog(n)—2e log( o \/%Ue‘(yi‘yl)z/z‘fz) where ¢ = —Z‘“O;‘ Y0

where ois the standard deviation of the fit, nis the number of observations, pis the number

of model parameters, ¥, is the predicted value of the th observation, y; is the measured
value of the ith observation, and LL is the log-likelihood with log being the natural logarithm.
Comparison of HL with linear, hyperbolic, and 3-parameter logistic alternatives is described
in Appendix Supplementary Methods.

162



Gene ontology analysis
Enrichments of M, HL, and HL+LASSO genes for biological processes were
evaluated with the GO knowledgebase (92).

Concavity analysis
The concavity of HL fits was assessed with the check_curve function of the
inflection package (version 1.3.6) in R. HL curves for TPM > 5 (~1 copy per cell) were

analyzed after log transformation of x and y coordinates.

Feature weight distributions

To obtain LASSO feature weights, each LASSO coefficient for a gene was multiplied
by the mean TPM of the feature averaged across the 369 cell lines in the meta-assembly
(including zeros). Feature weights for all HL+LASSO genes were concatenated and filtered
for subunits of the proteasome (PSM-prefixed gene names) or ribosome (RPS- or RPL-
prefixed gene names), allowing duplicates if the feature appeared in more than one gene.
Distributions were plotted as smoothed densities with the geom_density function in
ggplot2 (version 3.4.0).

STRING interactions and maps

STRING interactions were obtained with the STRINGdb (version 2.8.4) and rbioapi
(version 0.7.7) packages in R. Sessions were initialized with STRINGdb$new and the
following arguments: species = 9606 (Homo sapiens), version = 11.5, score_threshold =
400 (medium-confidence interactions). HL+LASSO genes were mapped with the
string_db$map function, and up to 1000 medium-confidence interactions were retrieved
with the rba_string_interaction_partners function and harmonized with the gene identifier
table (Dataset EV2). For comparison, LASSO-selected features were substituted with an
identical number of randomly selected genes to recalculate the number of interactions.
The substitution—recalculation step was iterated 104 times to build a null distribution.
Details about STRING visualizations are described in Appendix Supplementary Methods.

Assembly of test datasets

HelLa. Using the latest analytical procedures, SWATH data from two Hela
derivatives [Kyoto L8 and CCL2 L13] in the original study (38) did not pass the internal
calibration step of the OpenSwathWorkflow alignment and were omitted here. Pre-
quantified SWATH data for Hela derivatives were downloaded from
https://helaprot.shinyapps.io/crosslab/ and normalized to the median copy number of
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proteins co-quantified in the meta-assembly (10,000 copies per cell). Downsampling of
HelLa RNA-seq reads is described in Appendix Supplementary Methods.

NCI-60. Pre-aligned SWATH data for the NCI-60 panel of cell lines (43) were
downloaded from CellMiner as a processed data set (Protein: SWATH (Mass spectrometry)
- Peptide), quantified for protein, harmonized as described above, and normalized to the
median copy number of proteins co-quantified in the meta-assembly (14,000 copies per
cell). Pre-aligned RNA-seq data for the NCI-60 panel of cell lines (44) were downloaded
from CellMiner as a processed data set (RNA: RNA-seq - composite expression),
summarized as TPM, and harmonized as described above. The following NCI-60 lines
excluded from the meta-assembly were used as test data: SF268 (brain), SF539 (brain),
SNB-19 (brain), SNB-75 (brain), U251 (brain), Hs 578T (breast), COLO 205 (colon), HCC2998
(colon), KM12 (colon), CCRF-CEM (leukemia), HL-60(TB) (leukemia), MOLT-4 (leukemia), SR
(leukemia), EKVX (non-small cell lung), HOP-62 (non-small cell lung), HOP-92 (non-small
cell lung), NCI-H322M (non-small cell lung), M14 (melanoma), Malme-3M (melanoma), MDA-
MB-435 (melanoma), NCI-ADR-RES (ovarian), OV-CARS5 (ovarian), SK-OV-3 (ovarian), DU145
(prostate), ACHN (renal), RXF 393 (renal), SN12C (renal), TK-10 (renal), and UO-31 (renal).

Prostate. Pre-aligned SWATH data for normal and malignant prostate (45) were
downloaded from PRIDE (PXD004589), quantified for protein, harmonized for gene names
as described above, and normalized to the median copy number of proteins co-quantified
in the meta-assembly (14,000 copies per cell). Harmonization of samples was more
challenging because of different patient-coding schemes for the SWATH and RNA-seq
datasets. We obtained metadata annotation for RNA-seq from the SRA Run Selector
(PRINA579899) and then reconciled these identifiers with the PXD004589 identifiers
using a key personally communicated by Wenguang Shao (93). Tumor-normal pairs were
retained in the harmonized dataset if the tumor grade annotations were consistent
between SWATH and RNA-seq. The final patient annotations and cross-referencing key is
available in Dataset EV7.

Heart. The GTEx test dataset from the v8 final data release consisted of 432 left
ventricle and 429 atrial appendage autopsy samples from 561 healthy donors (49). Both
GTEXx heart tissue sites were considered separately in the analysis. The MAGNet test
dataset consisted of 200 cardiomyopathy and 166 healthy control samples (50). The EGA
test dataset consisted of 149 cardiomyopathy and 113 healthy control samples (51). After
RNA-seq alignment as described above, the 1489 samples were concatenated without
batch correction before the analysis.

Breast cancer. Pre-aligned RNA-seq data for ductal and lobular neoplasms in The
Cancer Genome Atlas (TCGA) were downloaded from the Genomic Data Commons portal.
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The samples were intersected by TCGA identifiers with the published samples profiled by
RNA-seq and classified by PAM50 (26), yielding 796 samples in the test dataset.

Alternative methods for protein abundance estimation

PaxDb. The following aggregated proteomics data were downloaded from PaxDb
(41) as averaged protein parts per million (ppm): for NCI-60 comparisons, H.sapiens - Cell
line (Integrated); for general tissue comparisons, H.sapiens - Whole organism (Integrated);
for prostate tissue comparisons, H.sapiens - Prostate gland (Integrated). PaxDb entries less
than 0.01 ppm were excluded, and the filtered data were harmonized as described above.
Last, each aggregated dataset was normalized to the median copy number of proteins co-
quantified in the meta-assembly: for Cell line (Integrated), 8000 copies per cell; for Whole
organism (Integrated), 8000 copies per cell; for Prostate gland (Integrated), 9000 copies
per cell. Note that PaxDb does not use information from RNA-seq and thus makes a single
prediction of protein abundance for each integrated context. Cell line-specific information
was not available for NCI-60 lines other than U251.

PTR. Protein-to-mRNA ratios in the original publication (42) were not calculated on
the scale of copies per cell. To convert, the protein abundances used for PTR estimation
were normalized to the median copy number of proteins co-quantified in the meta-
assembly (9000 copies per cell). Using the renormalized protein abundances, we
rederived PTRs from the associated RNA-seq fragments per kilobase per million mapped
reads (FPKM) as follows: PTR = logio(protein abundance) - logio(FPKM) (42). PTRs were
calculated for each of 29 tissues and in a general manner by using the median PTR. NCI-
60 predictions used the PTR specific to each cell line’s tissue of origin, which was not
available for leukemic, breast, or melanoma lines; therefore, these lines were omitted from
PTR predictions.

Randomized measurements, median null model, and ACDF

Randomized SWATH measurement profiles were constructed by randomly
sampling a gene-specific copy number estimate for each gene in the proteome and
iterating 100 times without replacement. The 100 randomized-measurement distributions
were compared to Pinferna and ordered by the K-S statistic, with the median distribution
selected as the null model for formal K-S hypothesis testing. To compare prediction
methods to the median null, the area between the two was integrated by difference (ACDF)
using the AUC function in the DescTools (version 0.99.47) package in R.
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Monte Carlo consensus clustering (M3C)

Consensus clustering of the breast cancer dataset was performed with all genes
(19,062) or all genes inferrable by Pinferna (4366). LASSO-modulated protein inferences
below zero copies per cell were set to zero. All data were log> transformed, and genes
with zero variance were eliminated before Z-score standardization. Datasets were
clustered using the M3C function from the M3C (version 118.0) package with the following
options: removeplots =T, iters =10, objective = “entropy”, clusteralg = “spectral”. Clustering
statistics lie within the M3C object, and five consensus clusters were selected based on
maximum or near-maximum cluster stability and significance. Other hierarchical clustering
of the breast cancer dataset is described Appendix Supplementary Methods.

Transcription-translation model

The system of ordinary differential equations was solved in MATLAB R2022a using
odel15s. The simulation was performed 100 times allowing parameters to vary lognormally
about their central nondimensionalized estimate with a coefficient of variation of 10%. After
each simulation, 10 time points were chosen randomly and stored, for a total of 1000 points
at the end of the simulation.

CVB3 model

A mass-action model of CVB3 infection (MODEL2110250001) was modified from its
published version (25) to accommodate CD55 and CXADR abundances as input
parameters. Each simulated infection was initialized with abundances for CD55-CXADR
and 10 plaque-forming units of CVB3. In silico infections proceeded for 24 hours and were
iterated 100 times with 5% lognormal coefficient of variation between runs. The median
virion output was stored, and overall viral load (measured as mature CVB3 virions and after
excluding cases of zero viral load) was fit with a Gaussian mixture model using the Mclust
function in the Mclust (version 6.0.0) package in R. The best mixture model by BIC was a
three-component model of unequal variance, which classified each sample based on the
probability of the sample falling into that component. For the randomized-measurement
case (Figure 4.8H), protein estimates were obtained by setting the median TPM value of
the heart samples to a randomly selected protein set point in the meta-assembly and
linearly scaling the other samples around that point. This process was replicated 100 times
to create a 1489 sample x 100 replicate matrix of randomized measurements for CD55 and
CXADR. Each CD55-CXADR pair was passed to the CVB3 model and simulated with
MATLAB (version R2022b) as before 100 times each for a total of 14,890,000 simulations,
which were threaded to 100 cores over 10 nodes on the Rivanna high-performance
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computing cluster of the University of Virginia. Taking viral load at 24 hours of infection as
the phenotype, we classified [CVB3 virions] = 0 nM as resistant, 0 nM <[CVB3 virions] < 36
nM as sublytic, and [CVB3 virions] > 36 nM as lytic.

4.7 Appendix Supplementary Methods

Median (M) regression

For each gene, the median was calculated across the SWATH-scaled proteomic
dataset, taking empty entries as missing elements rather than zeros. A 95% confidence
interval of the median was estimated by bootstrapping (n = 1000 runs).

Hyperbolic-to-linear (HL) regression
For each gene, an HL model was constructed as follows:

beTPM
c+TPM

SWATH-scaled protein copies per cell = a e ( + TPM),

where a, b, and ¢ were regression coefficients estimated by nonlinear least squares in
MATLAB (version R2022a). To prevent discontinuities from division by zero, ¢ was
constrained to be greater than zero. Additionally, a logistic weighting of the cost function
was desired to prevent high-abundance cell lines from overleveraging the regression. To
achieve both, we devised a two-step procedure in which initial estimates were made with
a linear cost function and ¢ > 0 constraint using Isqcurvefit with ‘FiniteDifferenceType’ set
to ‘Central’. The regression estimates of a, b, and ¢ were then used as an initial guess for
nlinfit with ‘RobustWgtFun’ set to ‘logistic’, and the regression was repeated without
constraints. If the updated value of ¢ was less than zero, then the updated regression
estimates of a and b were used as initial guesses for a second round of Isqcurvefit with a
linear cost function and ¢ > O constraint. A 95% confidence interval of the HL fit was
estimated by asymptotic error analysis of the regression coefficients using the F
distribution to describe the ratio of the sum-of-squared errors for the ideal and parameter-
perturbed model divided by their corresponding degrees of freedom.

HL + least absolute shrinkage and selection operator (HL+LASSO) regression
Residuals from the HL fit were regressed against all other genes in the
transcriptome by LASSO with the glmnet package (version 4.1-6) in R. To determine the

optimal penalty strength parameter (A) for each LASSO regression, we used the cv.gimnet
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function for cross-validation after increasing the function’s minimum fractional change in
deviance for stopping (fdev) to 0.01. We accounted for differences among cross-validation
runs by iterating cv.glmnet 100 times, calculating the BIC for the best A in each iteration,
and defining the best A with the lowest BIC as optimal. The optimal A was used with the
glmnet function and all observations of the gene to obtain a regularized feature set and
linear coefficients. Output of the LASSO regression was subtracted from HL fit to obtain
the HL+LASSO model. LASSO displacements were propagated linearly to the 95%
confidence interval of the HL fit, and graphical displays were LOESS smoothed with the
geom_smooth function in ggplot2 (version 3.4.0) in R.

Comparison of HL model to alternatives
For each gene, three alternative models were constructed as follows:

Linear: SWATH- scaled protein copies per cell = a « TPM

a*TPM
b+TPM

Hyperbolic: SWATH- scaled protein copies per cell = ;b >0

3-parameter logistic: SWATH- scaled protein copies per cell =a — ﬁ; a>0,b>0
b

where a, b, and ¢ were regression coefficients to be estimated in MATLAB (version
R2022a). Linear models were regressed using fitim with ‘RobustOpts’ set to ‘logistic’ and
‘Intercept’ set to false. Hyperbolic and 3-parameter logistic models were fit similarly to HL
but with a combination of Isqcurvefit for constrained regression and fitnim (which calls
nlinfit internally) for logistic weighting of the cost function and the estimation of log-
likelihood, which was used for Bayesian Information Criterion (BIC) calculation with the
aicbic function. BIC weights (BICw) were calculated as follows:

exp [— % (BIC; — BICmin)]

BICw; =
1
K_yexp |~ 5 (BIC, — BICum)|

where BICiis the BIC for the ith model and BICnin is the minimum BIC in the group of models
(34).

STRING visualization

Interaction maps were drafted on the STRING database web site (36) under
Search>Multiple proteins. The default output maps were altered as follows: meaning of
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network edges = confidence, minimum required interaction score = medium confidence
(0.400), disable 3D bubble design, and disable structure previews inside network bubbles.
Interaction maps were exported as vectorized SVG files for further stylistic refinement.

HelLa RNA-seq downsampling

Before downsampling, RNA-seq data from the HelLa derivatives were averaged.
Raw counts were converted to counts per million (CPM), and the counts per million-
normalized reads for each gene were averaged across all derivatives. Then, the average
CPM was converted back to an averaged count by multiplying the average read depth and
rounding to the nearest integer. The average counts for each gene were downsampled
100 times using rbinom in R, with the number of trials equal to the downsampled read
depth (25 million to 50,000) and the probability of success equal to the number of average
counts for that gene divided by the total number of average counts. Downsampled counts
were converted to TPM and used with Pinferna to predict the mean-averaged SWATH data
from the Hela derivatives.

Hierarchical clustering

Breast cancer RNA-seq was logx-transformed and row-standardized. For inferred
proteomic profiles, M genes were removed before standardization because of zero
variance. Data were clustered by Euclidean distance with Ward’s linkage using the
Heatmap function in the ComplexHeatmap (version 2.121) package. Columns were
clustered within a subtype defined either by transcriptomics or proteomics. To identify
genes that changed disproportionately between mRNA and protein, the Z-scores of the
species were subtracted: Zgitr = Z-SCOreprotein - Z-SCOremrna. 10 identify genes of interest that
drove luminal reassignments, we filtered for genes with a |Zqifl > 3 and ranked by the
frequency of occurrence, focusing on genes with IZqil > 3 in six or more samples that had
undergone subtype reassignment.
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5.1 Summary, limitations, broader impacts, and future directions

Viruses are important pathogens. Disease results from complex interactions among
the virus, host cell, and immune cells. Though we know much about each component, the
link between viral infection and disease is still elusive (1). In this dissertation, | used
systems-biology approaches to study virus—host interactions with one virus that is perhaps
best-poised for such approaches, coxsackievirus B3 (CVB3). Below, | summarize the two
major research projects and locally discuss their limitations, broader impacts, and future
directions. | then discuss three projects for which data were generated and potential future
follow-up before concluding this dissertation.

An accessible complete kinetic model for CVB3

In chapter 2, | described a complete kinetic model for CVB3 infection that encodes
viral entry, replication, and encapsidation overlaid with innate-immune effector negative
feedbacks (Figure 2.1A). The model was constructed with minimal parameter fitting, with
90+% of parameters derived from the literature or our own experiments, and each module
was validated experimentally (Figures 2.3-2.9). With the validated model, we predicted a
nonlinear association between i) the timing of interferon (IFN) signaling and ii) host-cell
resistance to viral-proteinase antagonism of the host-cell response. We predicted that
cells with baseline resistance to CVB3 proteinases have decreased sensitivity to IFN at
late time points, whereas cells with increased resistance have sustained sensitivity (Figures
211A and 211B). To experimentally model host-cell resistance, we mutated MAVS at
position 271 (Q271A) to confer resistance to cleavage by the 3Cr© and engineered
transformed cardiomyocytes to express MAVS wildtype or Q271A upon doxycycline
induction (Figures 211C-F). When cells were induced, infected, and treated with IFN, we
saw the same pattern of time-dependent sensitivity (Figure 211), indicating a role for MAVS
as a critical determinant of the enteroviral response in human cells.

The results prompted a closer look at MAVS. The Q271A mutation was artificial, but
we discovered a Q93E mutation that occurs in ~50% of people of East Asian ancestry (2).
The mutation was significant because Q°3 was predicted to be susceptible to cleavage by
3Crre while E23 was not (3). We thus hypothesized that cells expressing MAVS Q93 would
have increased susceptibility to infection due to double the number of cleavage sites (Q°3
+ Q271), Strikingly, the opposite was true—cells expressing MAVS E®3/Q27!" had increased
viral load (Figure 213D). The answer to this conundrum lied in the kinetics of MAVS
polymerization—signaling, cleavage, and mitophagy. Singly-cleavable MAVS (E23/Q27)
switched to a first-order decay process later than doubly-cleavable MAVS (Q23/Q27") but
from a lower starting point, ultimately leading to less sustained interferon-stimulated gene
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(ISG) production (Figure 2.13F) to fight the infection. Thus, the singly-cleavable allele would
have increased viral load, as observed experimentally. Altogether, the results indicated
that small biochemical differences are important for understanding complex host-virus
interactions.

In constructing the mechanistic model, we made major simplifications in i) the
encapsidation module, ii) the formation of viral replication organelles (VROs), and iii) the
host-cell immune response, providing important limitations on the model.

Encapsidation is the least understood process of the CVB3 life cycle, and details of
virion morphogenesis are unclear for enteroviruses broadly (4). One major question
surrounds the details about how +vRNA is packaged into the capsid. Evidence suggests
that some enteroviruses (e.g., parechovirus 1, foot-and-mouth disease virus) contain a
packaging signal within their RNA that is required for efficient encapsidation (5, 6) while
others (e.g., poliovirus, coxsackievirus B3) do not but require interactions between 2CATPase
and VP3 capsid protein (7, 8). The encapsidation module for CVB3 was encoded with the
best evidence to date but should be revisited as mechanistic details become clearer.

As the capsid forms, the evolving geometry should affect the addition of
subsequent (pentamer) subunits due to the increased number of binding sites and the
avidity effect. Further, the addition need not necessarily be a growing-capsid with a single
pentamer—a 3-mer plus a 4-mer would form a 7-mer and have a greater avidity than a 2-
mer with a 2-mer. Tracking the combinatorics would be computationally intractable, so we
abstracted the process and assumed addition of one pentamer at a time with an
unchanging weak contact affinity (9). The simplification was sufficient for our purposes but
may not be for other enteroviruses where details of morphogenesis are different. For
example, human rhinovirus (HRV) displays an inverse temperature dependence,
replicating better at 33°C than 37°C (10-12), and more-detailed models of encapsidation
may be required to capture the thermodynamic dependence. Assumptions of the
encapsidation module should be refined as the data and computational tools become
available and should be given extra attention when expanding to other enteroviruses.

VROs have been studied for decades and observed for many positive-strand RNA
viruses (13-18), yet details of their nucleation are unclear due to technical limitations (19).
Since data about VRO formation are lacking, we encoded a transition from cytoplasmic-
volume to VRO-surface biochemistry when a threshold of 25 3Dro molecules was met.
(See Chapter 2.3.3 for details and explanation.) The approach was biologically artificial.
Rather, one could encode the co-option of host-cell membranes by viral proteins 2BC and
3A (20, 21), where membranes transition from a “host-cell” compartment to a “VRO”
compartment dictated by the concentration of 2BC-3A:
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[membraneyro] = [membranep st_cen] X [2BC — 3A]. VRO formation could be modeled
by early formalisms of nucleation—elongation (22), and viral replication machinery would
be placed on the expanding VRO surface. VRO formation would be bound by experimental
evidence of VRO surface area present by 4+ hours post infection (19), providing restrictions
on the speed with which nucleation—elongation must occur.

Of course, a mechanistic encoding of VRO formation in this way could be too simple
to be useful (23). Sometimes, expanding a model to include details is required to
recapitulate observed systems-level properties. While it is unclear which details might be
required for VRO formation, one place to start would be viral protein-mediated recruitment
of the host-cell proteins Arfl and GBP1. Arfl and GBP1 are necessary for the co-option of
phosphatidylinositol-4-phosphate (PI4P) lipids that build enteroviral VROs (24). Since the
VRO transition is critical for enteroviral replication, such mechanistic explanations would
be of broad importance for virologists.

Lastly, the host-cell immune response was greatly simplified by lumping the entire
response into three negative feedback mechanisms (Figure 2.1A). Hundreds of ISGs are
expressed in response to type | IFN signaling (25), but the antiviral proteins can be
classified at a high level into a handful of main effector functions that we encode (26).
However, MDA-5 is also an ISG (27) and signals through MAVS (28), establishing a positive
feedback loop that drives the cell into an antiviral state. In the CVB3 model, we neglected
positive feedback loops. Further, we limit negative feedback of the host-cell response to
antagonism by viral proteinases, but reactive oxygen species produced during the antiviral
response can degrade MAVS (29), providing a host-cell negative feedback mechanism on
innate-immune signaling. Modeling every piece of the host-cell immune response would
be impossible and not useful for our complete kinetic model (23); however, a simple
expansion of a single positive feedback and negative feedback could be quickly
implemented to include the host-cell contribution to regulation of the antiviral response.

The work had a major experimental caveat, as well. The MAVS-overexpression cell
line retained endogenous MAVS, and induced expression was at a very high level (Figure
211C and 2.11D). It is unclear if the results would be the same if MAVS was expressed on a
MAVS-- background and at endogenous levels. In future iterations, it would be good to
perform a CRISPR/Cas9 knockout of MAVS and add back the alleles at near-endogenous
levels.
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The enterovirology community benefits greatly
from the modular organization of the complete
kinetics model because it can be quickly adapted to
other enteroviruses. Within the genus, the most
substantive differences lie in binding and entry. As an
example, the CVB3 delivery module was swapped for
poliovirus and infection simulated for 24 hours with or
without additional IFN at 1.5 hours post-infection
(Figure 51). Unlike CVB3, poliovirus binds to one
receptor (PVR) and enters the cytoplasm before the
virus—receptor complex has fully internalized (21, 30,
31). As expected, the faster delivery mechanism had a
qualitative impact on viral progression with added

A CVB3 complete kinetics B
80 80
No added IFN

Poliovirus prototype

604 IFN @ 1.5 hr

Virions (nM)
Virions (nM)

0 4 8 1216 20 24
Time (hr)

0 4 8 1216 20 24
Time (hr)

Figure 5.1. The complete kinetics model
can be quickly adapted to other viruses.
(A) A complete kinetics simulation with
interferon (IFN) added 1.5 hours post-
infection (purple) or without (green). (B)
The same simulation as (A) but with
parameters and equations for poliovirus
binding—entry using its receptor, PVR.
Predictions are shown as the median
simulation + 90%  nonparametric
confidence interval from 100 runs with a
parameter coefficient of variation of 5%.

interferon. In CVB3, interferon added 1.5 hours post-infection abrogated viral progression
(Figure 51A). Conversely, interferon at 1.5 hours post-infection in poliovirus was not early
enough to overcome the faster kinetics, and the end-state virion production was the same
with and without interferon (Figure 5.1B). Other picornaviruses are more complicated, such
as rhinoviruses that cause the common cold. Not only do rhinoviruses use different entry
receptors, they display an inverse temperature dependence, replicating better at 33°C
than 37°C (10-12). By adapting the complete kinetics model to human rhinovirus (via
delivery module swapping) and incorporating a temperature-dependent component to the
model, we could pinpoint the piece of the viral life cycle that benefits from slower kinetics
(preliminary data discussed below). If experimentally validated, such a finding would
provide one of the largest conceptual leaps in virology.

The “swappability” is also useful for studying emerging enteroviruses (32). For
example, echovirus 11 has had (sometimes fatal) outbreaks historically (33—35) and recently
(36, 37), yet there are few studies into its disease mechanism (38, 39). Such viruses could
be modeled by complete kinetics to help experimentalists triangulate critical pieces of the
viral life cycle that may be responsible for disease.

Generally speaking, the virology community is not comfortable (yet!) with
computational modeling, though there is great appreciation for the approach. Often,
modern virologists are not computationalists, and therefore models are inaccessible. The
burden is on computationalists to provide tools that bring modeling to the virology
community. To that end, we recast the complete kinetics model as a graphical user
interface (GUI; see Chapter 3 for details). We prioritized the user’s ability to make changes
to key parameters that differ between enteroviruses and host-cell systems so that the
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model could be rapidly altered to study other enteroviruses. By converting to a GUI, we
hope to encourage noncomputationalists to use the model for their own research and
education purposes.

Protein copy-number estimation from transcriptomics

In chapter 4, | described a method for obtaining protein copy-number estimates
from RNA-seq data by building statistical models that relate protein abundance to
transcript abundance in paired data for >4000 genes (Figure 4.). | found that protein
abundance was described by one of three models: i) no dependence on its transcript (i.e.,
a constant value), i) a nonlinear dependence on its transcript abundance, or iii) a
dependence on its transcript abundance + the abundance of other genes (Figures 41C-E
and 4.2C-F). The suite of models provided a platform to make proteome-wide copy
number estimation from input RNA-seq data, a method we call protein inference from RNA
(Pinferna). We validated Pinferna predictions by using independent data from dozens of
cell lines and primary tissues (Figure 4.5). The validated suite of mRNA-to-protein
relationships was considered complete and packaged as a web tool
(http://janeslab.shinyapps.io/Pinferna).

We estimated the abundance of the CVB3 entry receptors CD55 and CXADR in
1489 human heart samples. When the complete kinetics of each were simulated, we

uncovered scenarios of complete resistance to infection and three modes of productive
infection (Figure 4.7C). As a comparison, we linearly scaled the mRNA abundances about
a quantity of CD55 and CXADR randomly selected from the training data and categorized
predictions as resistant, sublytic, or lytic. Some cases matched the true inferences, but
most randomizations tended to predict ~100% resistance or ~100% lytic infection and
underestimate the sublytic group (Figure 4.8H). We further checked whether CD55,
CXADR, or both were the main contributor to susceptibility. By transcriptomics, CD55 is
much more widely distributed than CXADR (Figure 4.7D and 4.7E), hinting it may be the
dominant receptor. However, by protein, CXADR has a much larger distribution and was
the only receptor to stratify susceptibility (Figure 4.7F and 4.7G). The results indicated that
mRNA inferences can misconstrue outputs of models built for protein networks.

As a second example application of Pinferna, we asked how the intrinsic molecular
subtype of breast cancers would change when assigned by predicted proteomics. We
obtained the transcriptomics of 796 breast cancers from The Cancer Genome Atlas,
predicted their proteomics, and clustered them by both transcriptomics and predicted
proteomics. Most sample assignments were unchanged (Figure 4.10A). Of those
reassigned, we noted an enrichment for luminal subtypes (Figure 410B). We surveyed the
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genes that drove reassignments and noted that they tended to have interactions with other
genes that strongly influenced their predicted abundance (Figures 410C-F). Of particular
interest was cyclin-dependent kinase (CDK) 4 because CDK inhibitors are approved to
treat luminal breast cancers, but responsiveness has not consistently associated with the
abundance of CDK4 mRNA (40, 41). The results indicate a role for combining
transcriptomics and predictions of the proteome to study cancer subtypes.

Pinferna is a method and a tool with far-reaching implications for systems biologists
who often require protein abundances but must substitute RNA-seq (42—-44). There are
methods for obtaining protein copy numbers, such as quantitative immunoblotting (45) and
ultra-sensitive selected reaction monitoring mass spectrometry (SRM) (46).
Immunoblotting, however, requires antibodies and recombinant proteins for the
quantitative standard. The conditions may be met for a handful of proteins, but scalability
becomes an issue when dozens of protein abundances are required. SRM, and other mass
spectrometry methods, are high-throughput, but they are technically challenging and often
inaccessible. Mass spectrometry is not yet a commoditization like RNA-seq. Thus, for
modelers concerned with protein estimates, inference methods such as Pinferna provide
a scalable alternative to limited experimental techniques.

Pinferna outcompeted alternative methods for estimating protein abundances
(Figures 4.5C—E), but the method is not without limitations. First, we made the assumption
that cellular protein abundance is lognormally distributed about 10,000 copies per cell. The
assumption was the same as that of the developer of SWATH (47), so we believe it is a
valid approximation for an average cell. However, if protein abundances in a larger cell
were distributed about 50,000 copies (48), the predictions would likely be off by fivefold.
Future iterations of Pinferna could update the calibration datasets to include cell size as a
factor in selecting the distribution of protein abundances and use cell size as input to
appropriately scale the estimations.

Second, the validation data are SWATH measurements from public repositories and
thus contingent upon all the assumptions of SWATH. A more rigorous validation would be
against a select set of proteins quantified by immunoblotting. The number of genes in each
category (M, HL, HL+LASSO; Figure 41C-E) is large enough to select proteins that meet
the conditions for quantitative immunoblotting. Of course, the best outcome is that the
results corroborate the predictions for all proteins. However, we may find that a certain
class is predicted better than others, or discover that certain cell lines can be better
predicted than others. Either way, the results would provide valuable information useful for
updating Pinferna.
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Finally, Pinferna is limited in its number of models due to relying on SWATH for
calibration. SWATH is currently the best method for absolute proteomics, but relative
methods such as tandem mass tag (TMT) mass spectrometry can quantify 8,000+ proteins
(49). More proteins could be included by increasing the number of SWATH calibration
datasets and taking the union of all measured proteins, but generating (or finding) SWATH
datasets is challenging. Another potential way to increase the number of relationships
would be to estimate a model for (currently “model-less”) genes based on the model of
similar genes. For example, genes involved in cytoplasmic translation were highly enriched
as M genes with no dependence on transcript abundance (Figure 4.3A). It is reasonable to
assume, therefore, that other cytoplasmic-translation genes will not have a dependence
on their mRNA levels. Deciding the protein abundance presents a larger challenge. One
possibility would be to aggregate the abundances of all cytoplasmic-translation genes and
choose the median + bootstrapped 95% confidence interval. For assumed HL and
HL+LASSO genes, the parameter-estimation approach is more challenging. One could
assess whether genes belonging to the same ontology have similar parameter sets that
are distinct from genes other ontologies. If so, the estimated parameter set for a gene
would be the median parameter set of similar genes. Though there are experimental and
potentially computational avenues to increasing the suite of mMRNA-to-protein
relationships, the current number is still remarkable given experimental constraints.
Altogether, the limitations of Pinferna do not preclude its use or overshadow its
contribution to the field as a scalable alternative to estimating protein copy numbers.

5.2 Unpublished, but never forgotten

In vivo transduction of MAVS alleles to study their physiological impacts
Introduction

| previously demonstrated that MAVS is a crucial node for CVB3 infection dynamics
(Figures 2.11 and 2.13) (50). Human MAVS (hMAVS) is cleaved at two sites—GIn®3 and
GIn27"—that separate the CARD from the phosphorylation and mitochondrial-docking
domains (Figure 2.13A) (50). The GIn27! site arises from a six amino acid insertion resulting
from a splice-site mutation that is conserved in humans and old-world monkeys (51). New-
world monkeys lack the insertion and are also seronegative for CVB3 (52). By contrast,
GIn®3 is widely conserved in mammals except in humans of East Asian ancestry, who have
~50% prevalence of the Glu®3 minor allele (rs17857295) shown to increase viral load in
cells (2, 50). Interestingly, East Asia routinely struggles with picornaviral outbreaks (53),
perhaps as a result of the minor allele prevalence. The observations warrant study into
how the different allelotypes modulate CVB3-associated disease. In vitro, the GIn°3 allele

183



causes a ~40% reduction in viral load after 24 hours of infection (Figure 2.13C) (50). Over

the course of one week, a daily serial 40% reduction would correspond to a (1-0.40)7 =
36-fold change in viral burden. Likely, the real fold change is larger because the life cycle
for CVB3 is ~8 hours. Thus, even though viral burden seems to be only moderately
reduced by the altered cleavage site, the accumulated effects during the course of viral
infection may have drastic impacts on disease progression in vivo.

It is well known that CVB3 causes myocarditis in mice (54). It is also known that
Mavs (mMavs, for the mouse allele) is required for an immune response in mice (55) and
can modulate disease. It is not known how myocarditis, CVB3, and hMAVS/mMavs are
coordinately linked. One study in mMavs knockout (mMavs’) mice found that the mice
were more susceptible to CVB3, but disease was monitored in the pancreas and liver, not
the heart (56). In another in vivo study, different hLMAVS allelotypes were delivered to the
livers of mice and found to make a difference in combination with an interferon-based
antiviral therapy (57). However, the latter study had three caveats that distinguish it from
my study. First, the authors were studying hepatitis B virus—not a picornavirus. Second,
they explored an allelotype different from the Glu93/GIn23 polymorphism that | identified.
Third, they used mice that retained mMavs, which was sufficient for their purposes, but
would be insufficient for my purposes. Still, their results demonstrated that hMAVS
allelotypes coordinately alter the type | interferon response in tandem with stimulation from
type | interferon—the same finding as my study with hMAVS (Figure 2.11A, 2.11B, and 2.111).
Thus, in vivo studies that link hMAVS allelotypes to CVB3-induced myocarditis are
unavailable.

Viral myocarditis has long been known to depend on both viral infection and the
adaptive immune response (58). Studies in immunodeficient mice infected with CVB3
show a clear cardiopathogenesis for the virus alone (59—-61). The role of adaptive immunity
in myocarditis is more complex. In immunocompetent mice, myocarditis tends to be worse
following CVB3 infection in some cases and attenuated in others. Attenuated myocarditis
is associated with cardiac infiltration of anti-inflammatory M2 macrophages and regulatory
T cells (61-64). Macrophages and T cells are recruited by cytokines and chemokines,
indicating the cytokine/chemokine landscape produced by infected cells plays a role in
the progression of myocarditis. For example, the cytokines tumor necrosis factor-alpha
(TNF-a) and interleukin-1 (IL-1) have been shown to modulate myocarditis severity in

infections with both cardio- and non-cardiopathogenic viruses (62, 65). Together, the
literature suggests that the cytokine/chemokine-coordinated recruitment of innate-
immune and adaptive-immune infiltrates modulates myocarditis.
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The link between MAVS and adaptive immunity is undefined, but clear, for CVB3.
MAVS is responsible for relaying signals that cause production of cytokines and
chemokines. The strength and duration of MAVS signaling could alter the
cytokine/chemokine landscape, suggesting that regulation of MAVS can alter the
recruitment of macrophages and adaptive-immune cells. Indeed, a study in mMavs”- mice
demonstrated a weakened T cell response to a non-picornavirus (66), but no such link has
been explored for CVB3. Further, much of the data gathered for adaptive immunity has
come from mice that retained mMavs. Given the differences with hMAVS, there is a need
to explore how hMAVS allelotypes alter the adaptive immune landscape and attenuate
CVB3 to reduce myocarditis.
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chemistry. By both methods, we confirmed

Discussion and future directions

The work here displays only pilot data during optimization of the protocol. The
original goal was to use the same MAVS alleles as were used in cells (see chapter 2). In
future experiments, mice will be infected with CVB3 after checking for stable MAVS
expression via BLI then euthanized at peak disease 7-10 post infection. The prepped heart
will be used for biochemical analysis (western blot, gPCR) of MAVS cleavage and ISG
expression, virological analysis (plaque assay) to quantify viral load, and histological
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analysis (immunohistochemistry) to assess myocarditis and immune cell infiltration. These
experiments will demonstrate how allelotypic differences in hMAVS alter CVB3
progression and resulting disease by uniquely linking multiple levels of analysis.

Methods

An empty AAV2/9 vector containing 3xFLAG-luc was provided by Dr. Brent French
at UVA. V5-MAVS-P2A was cloned into the vector by PCR, and the sequence-verified
plasmid was shipped to Vector Biolabs for packaging into AAV2/9 capsids.

Mavs”’- mice were obtained from Jackson labs (Stock No: 008634) and used to
establish a breeding colony. Pups 7-10 days of age were anesthetized with isoflurane and
injected retro-orbitally with 3 x 10'© genome copies of AAV2/9 in 10 pL saline or with an
equal volume of saline as a control. To check stable expression after 3—4 weeks, mice
were injected intraperitoneally with luciferin and scanned using a Lago X scanner to
observe bioluminescence.

Mice were euthanized in a CO2 chamber, and the heart was quickly dissected to
ensure integrity of the tissue. Heart tissue was cut into fifths (except for
immunoprecipitation) and prepped by different methods: i) frozen in NEG-50 and
isopentane, ii) flash-frozen in liquid nitrogen and ground into a powder for protein or RNA
extraction, and iii) stored in All-Protect, a long-term storage buffer that stabilizes protein
and RNA.

Fresh-frozen tissue was cryosectioned and sent to UVA’s biorepository and tissue
research facility (BTRF) for antigen retrieval via the low-pH method. The sections were then
delivered to the Research Histology Core for H & E staining. Remaining sections were
assessed for 3xFLAG-luc and V5-MAVS by immunocytochemistry.

The immunoprecipitation experiments required large quantities of starting material
while the protocol was being optimized. Therefore, whole hearts were used in these final
experiments. Whole hearts were flash-frozen in liquid nitrogen and ground with an ice-cold
mortar and pestle on dry ice before being added to RIPA lysis buffer overnight at 4°C on
the rotator. The next morning, the tissue was further ruptured by pipetting, incubated on
ice for 20 min, then centrifuged at 16,800 RCF for 15 min. The supernatant was transferred
to a fresh tube and the lysate quantified by BCA assay.

For the pulldown, 2 mg lysate was incubated with mouse-IgG as a control, ms-FLAG,
or ms-V5. The Ips were blotted using the ms-anti-FLAG and ms-anti-V5 antibodies. The
blot was stripped with 6 M guanidine-HCI at room temperature for 10 min, washed with
PBS for 5 min, re-blocked, and re-probed for ck-anti-V5 (the more-sensitive V5 antibody).
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A cold nose is better for the cold: Deciphering a mechanism for the inverse

temperature dependence of human rhinovirus
Introduction

Human rhinoviruses (HRV) are the leading causative agents of the cold and a
billions-of-dollars economic burden annually (68). Rhinoviruses are classified into two
groups based on their cell-surface entry receptor—major group, which binds to ICAM-1
(69-71), and minor group, which binds to LDL-family receptors (LDLR) (72). Though HRV
has been studied since the 1950s (68), a major question remains: Why does HRV replicate
more efficiently at 33°C than 37°C (10-12)? From a teleological perspective, the preference
for the colder temperature makes sense as HRV infects the cooler nasal epithelia.
However, the observation is enigmatic mechanistically, as biochemical kinetics occur more
slowly at lower temperatures. How, then, do slower kinetics equal greater replication? We
proposed to use our mechanistic model to
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shed light on this inverse temperature- p <0.005 p <0.001
dependence conundrum. £ £ gﬁ ':::“
3 3
5 8- $ g o
§ == 3
Results - B
To begin, we chose HRV2 as a 7 @9 8.
representative  minor-group  virus by 33Cc  37°C
. . B 35 DA35
suggestion of Dr. Monica Lawrence and S o HRV2 model s .
= =
confirmed inverse temperature-dependent 225 g 25
. . . . £ 20 33°C £ 20
replication (Figure 5.3A). To build the HRV2 s 15 E,-AH sets s
] E;
model, we re-coded the entry module to 310 T 10
o Ss £s ,
reflect HRV2:LDLR binding and entry. The = £, # fiom LRV2

major challenge was to encode
temperature  dependence into the
parameters.

Kinetic parameters were modulated
from their base value using the Arrhenius

Gl
R \Tnew Tpase ’

where k is the kinetic parameter, T is

equation:

anew =

temperature, Ea is activation energy, and R
is the universal gas constant. The Arrhenius
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Figure 5.3. Inverse temperature dependence of
human rhinovirus 2 (HRV2). (A) Plaque assays for
HRV2 virions at 33°C (blue) or 37°C (red) (markers
indicate different paired conditions). (B) Simulations of
HRV2 complete kinetics using ten Ea—AH parameter

sets that cause inverse temperature dependence.

(C, D) Experimental and computational evidence that
CVB3 does not exhibit inverse temperature
dependence.

All experiments were performed in HelLa H1 cells, and
the same E,—AH parameter sets were used for both
models.

Acknowledgements: Mia Pergola, Page Murray, and
Dr. Cameron Griffiths helped encode temperature
dependence into the model and reformulate the entry
module for HRV2. Dr. Cameron Griffiths performed all
experiments. Dr. Kevin Janes assembled this figure.
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affinity parameters (in the encapsidation module) since they were not on-off kinetic

parameters. Thus, we employed the van’t Hoff equation:
1 1

KpTpew = KpTpys. €XP [A?H( )] where Kp is the equilibrium constant, AH is

Thew  Thase
reaction enthalpy, T is temperature and R is the universal gas constant. For many
parameters, Ea and AH were unknown. Rather than encode specific values, we sampled
over a range of biologically plausible Ea values (2 to 40 kcal/mol) for kinetic parameters
and AH values (=20 to +20 kcal/mol) for capsid affinities. For many Ea—AH sets, we were
able to achieve inverse temperature dependence (Figure 5.3B). As a control, we
performed simulations of CVB3 infection with the same parameter sets and remarkably
found no inverse temperature dependence, consistent with experimental results (Figure
5.3C and 5.3D). We dove further into the parameter sets and noticed that ISG formation
was recurrently among the most temperature sensitive (i.e., largest Ea) and, therefore,
among the most reduced kinetic parameters. Thus, the results indicate that inverse
temperature dependence arises from the faster entry of HRV2, allowing the virus to get
ahead of the slowed-down ISG response.

Discussion and future directions

Another study has demonstrated that inverse temperature dependence arises for
another minor-group rhinovirus due to slowed host-cell immune responses (12).
Interestingly, they found that viral replication was enhanced when genetic deficiencies in
MAVS slowed innate-immune signaling. The deficiency fits nicely with the results our
kinetic model of MAVS signaling (Figure 213E and 2.13F). Genetic deficiencies that alter
the kinetics of key innate-immune signalers thus represent another population-level
difference that alter susceptibility to viral infection.

Future work will expand the model to include major-group rhinoviruses. Generally,
the major-group viruses bind more slowly and less tightly than minor-group viruses (73,
74). Thus, the entry mechanics for major-group viruses may be slowed. Given the previous
results that a fast entry gets the virus ahead of innate-immune signaling, it is unclear how
the (potentially much) slower entry of major-group rhinoviruses will alter its replication
efficiency. The inverse temperature dependence is still present for the major group, but
perhaps the mechanism is different.

One major assumption that we made for the HRV model was the range of Ea and
AH values. The model should be re-parameterized using experimentally determined
values when possible. The “new” model would provide a platform to rapidly assess which
component of the viral life cycle is responsible for the inverse temperature dependence,
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providing a testable hypothesis. Identification of a mechanism would provide one of the

largest conceptual leaps in virology.

To cleave or not to cleave: IRF3 is in question

Introduction

Previous work in MAVS demonstrated that altered propensity for cleavage by viral

proteinases can have significant impacts on viral replication (Figure 211 and 2.13). | looked

into other innate immunity regulators and found that interferon regulatory factor 3 (IRF3)—

a transcription factor for ISGs that homodimerizes upon activation downstream of MAVS

signaling (28, 75—-78)—has an Arg®é to GIn26 polymorphism, with the minor allele yielding

a predicted 3Crro consensus site. Cleavage at GIn% would separate the N-terminal DNA-

binding domain (DBD) from the
C-terminal interferon-association
responsible for

(79). A GIn%6
cleavage could thus have a

domain

dimerization

dominant-negative effect since
both subunits of the homodimer
active DBD (80),
warranting a rigorous study into

need an
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Figure 5.4. Implications of IRF3 Arg96 or GIn96 in innate
immune signaling. (A) IRF3 GIn®¢ has enhanced cleavage. V5-
tagged IRF3 Arg® or GIn® was purified by IP pulldown and
incubated with or without recombinant 3CP°. Quantified
densitometry is beneath with each allele normalized to each —3Cp
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products (Clvl or Clv2) that inhibit MAVS polymerization with
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or with noncleaved IRF3 (IRF3-Clv), both of which are inactive.
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IRF3 elaboratlons
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fragment in the MAVS positive control (results not shown), prompting a more-rigorous
analysis of 3CpPro activity.

We purified recombinant 3Cr© a second time and measured its activity using a
chromogenic assay (Figure 5.4B; Methods). The proteinase was very potent, able to cleave
14.8 nmol of substrate/min/mL proteinase. We incubated saturating amounts of proteinase
with purified IRF3 but again observed no clear indication of cleavage. We expressed both
forms of IRF3 in cells and infected with CVB3, but a differential cleavage pattern was still
inconclusive (data not shown). Early experiments indicate some preference for cleavage
(Figure 5.4A), but subsequent attempts by IP and by infection in cells have different results.
More attempts are needed to optimize the protocols and reagents used for the
experiments.

Discussion and future directions

Differential cleavage of IRF3 could have potent effects on CVB3 replication due to
the dominant negative effect it would have on the IRF3 dimer pool. However, it remains
unclear whether CVB3 cleaves the minor allele of IRF3, despite the presence a consensus
sequence for cleavage. Further attempts could be tried with some optimization.

In our experiments, Vb5-IRF3 was expressed in cells, purified by
immunoprecipitation, and cleaved off of beads. In future attempts, IRF3 should be purified
as was done for 3Crro, Even though 3Cr© was added at (what was calculated to be) a
saturating concentration, the recognition of the IRF3 cleavage site could be much slower
than recognition of the substrate in the activity assay. Thus, we may have added too little
proteinase or for too little of time to get robust cleavage assessable by immunoblotting.
3Crro concentrations were maximal in the reaction volume, but longer incubation times are
possible and may be necessary.

There is conflicting evidence in the literature as to whether 2Arr or 3Crr° cleaves
certain proteins. For example, both have been reported to cleave MAVS and result in
similar cleavage patterns (81-83). Cleavage may be dependent on the experimental
system (e.g., in a tube versus in cells). Though we assumed that 3Crre is responsible for
IRF3 cleavage, cleavage could be mediated by the 2Arro. We have purified 2APro, but its
activity needs to be assessed. Afterwards, the same experiment could be performed.

Another assessment of IRF3 cleavage could happen in cells. A previous
undergraduate student (Page Murray) established transformed cardiomyocyte cell lines
that stably express 3Cpro. A second transduction with IRF3 (Arg®6 or GIn®%) would result in
a cell system that could be used to assess IRF3 cleavage. Similarly, a cell line expressing
2Ar could be established, though previous attempts (also by Page) failed, presumably
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due to toxicity of the proteinase though added in minimal amounts. A more-native
environment for the proteinases and IRF3 may give rise to a differential cleavage pattern.

The lack of differential cleavage may be a technical issue. Thus, it would be
beneficial to express the different forms of IRF3 in cells, infect with CVB3, and assess
endpoint viral titers by plaque assay. The expectation is that cleavable IRF3 will have
reduced innate-immune signaling, giving rise to increased viral titers. Further, the
proteoforms of IRF3 could be co-expressed with the proteoforms of MAVS. The dual allele-
specific susceptibility to cleavage could have interesting outcomes. | previously proposed
an elaboration of the MAVS signaling model that would expand MAVS signaling to first
activate IRF3 before production of ISGs (Figures 5.4C and 5.4D). The elaboration has not
been done but could be rapidly implemented as a first-pass as to whether interest behavior
might arise if the experiments were performed. For the MAVS—IRF3 combination model, |
would expect IRF3 GIn% to dominate the response due to the dominant-negative effect.

Finally, | focused here on IRF3. However, a deeper bioinformatic search might reveal
candidate cleavage sites that are created or destroyed in other innate-immune signalers.
All are potential candidates for assessing how they impact the dynamics of CVB3 infection.
The pointties in to the broader theme of population-level differences being used to explain
differential outcome with disease.

Methods

HA-tagged 3Cr was cloned in a pGEX-4T-1 vector for protein purification and
transformed into bacteria. Proteins were purified as described in (84). For 3Crro, we
believed that the large GST protein would hinder its proteinase activity, so we cleaved
3Crro off the column by incubating with thrombin.

The activity of 3Crro was assessed with the HRV 3C Protease Activity Assay Kit from
Abcam (ab211088) and following the provided protocol. The mass of pNA released was
calculated by

AOD — prA standard

nmol pNA =
mpNA standard

where AOD is the difference in the absorbance value at two selected time points (Figure
5.4B), b is the intercept of the best-fit line through a pNA standard curve (not shown), and
m is the slope of the best-fit line through the pNA standard curve (not shown). The mass
of pNA was then used to calculate 3Cr activity using the equation

nmol pNA

At X Vyoo

where At is the difference in the chosen time points in min and Vsc is the volume of

3C activity =
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recombinant 3Cr° added to the reaction in mL.

IRF3 Arg®¢ or GIn® was cloned into pLX302-V5 and lipofected into 293T cells.
Protein lysates were used in immunoprecipitation (IP) experiments for assessment of IRF3
cleavage by 3Crr, To assess IRF3 cleavage, 500 pg lysate was incubated with V5 antibody
overnight at 4°C then pulled down with beads. IRF3 was cleaved off the beads by
incubating with 27 pyL recombinant 3Cr for 1 hr. Based on the activity of 3Cprr, this is
enough volume to cleave 0.4 nmol substrate/min. The estimated amount of IRF3 was no
more than 9.7 nmol, yielding a required time of 24 min to cleave everything. Thus, a 1-hr
incubation time should completely saturate cleavage. Afterwards, everything was boiled
off the beads and collected for immunoblotting.

5.3 Concluding remarks

“All models are wrong, but some are useful.”
—Kevin Janes (originally, | thought at the start of my PhD), systems biologists generally (I
learned during my PhD), originally George Box (I learned when writing this dissertation)

In this dissertation, | proposed some useful models and discovered some
interesting biology. | set out to identify population-level differences in host-cell proteins
that are responsible for susceptibility to infection by CVB3. | identified two, MAVS and CAR.

The mechanistic model represents the first kinetic model (to my knowledge) of the
complete life cycle of a virus. The work joins a long history of mathematical modeling of
viral infection, and hopefully promotes interest in computational modeling among
virologists. While the model simulated CVB3 specifically, it is emphasized that the model
can be quickly adapted to other enteroviruses.

The findings with MAVS have implications for other proteins that may have
cleavage-susceptible or cleavage-resistant alleles. Such genetic differences are useful for
determining how small biochemical changes in virus—host interactions impact disease.
One area of interest would be in assessing inborn errors of interferon-immunity (IEl), which
have dysregulated type I/ll interferon responses. Since we found that the timing of type |
interferon signaling has substantial impacts on viral dynamics, people with IEls represent
a population that may have impaired innate-immune responses to enteroviruses.

It has been known for some time that CAR expression dictates susceptibility to
CVB3. However, it was not known how CAR abundance is conditional on DAF abundance.
In simulating infection in nearly 1500 human heart samples, we confirmed that population-
level differences in CAR, but not DAF, drive susceptibility and stratify predicted severity of
infection.
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To obtain DAF—CAR values, | created Pinferna, a suite of 4366 statistical models
able to estimate protein copy numbers from RNA-seq input. The work taught me that
shifting among different types of models and blending their strengths builds a toolset that
can be used to answer interesting questions—I| couldn’t have made the biological
discovery regarding surface receptor-dependent CVB3 susceptibility without
incorporating statistical modeling.

This work examined intracellular pathways. Going forward, | am broadly interested
in incorporating intercellular networks in infectious disease. Disease is the culmination of
pathogen—host-cell, host-cell-host-cell, and host-cell-immune-cell interactions. To begin
building these networks, computational and experimental approaches will be needed...
and someone willing to do the work. | am willing, and | believe the work presented in this
dissertation has given me the necessary training to go forth and model.
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