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Abstract 

Lakes are important ecosystems that are under threat from internal disturbances such 

as algal blooms and external forcings such as climate change. Algal blooms are widespread 

disturbances that can negatively affect ecosystems services. Understanding algal bloom 

dynamics can help prevent and mitigate the negative consequences including toxicity, 

disruption of potable water, and closure of recreational activities. As high frequency data 

become more accessible and cheaper, the data can be leveraged for improving the 

understanding of temporal and spatial patterns. This study used high frequency phytoplankton 

pigment and water quality data to explore disturbance and spatial dynamics. First, I applied a 

recently published disturbance-recovery algorithm to quantify the magnitude of algal blooms 

and time to recovery using high frequency pigment time series from several lakes. Results for 

the first study indicate that the algorithm can detect disturbance and recovery in experimental 

and monitored lakes. The algorithm performs best for experimental lakes where reference data 

is available, whereas the algorithm detects disturbances that are intense and occur at dissimilar 

times for monitored lakes. Second, I analyzed high resolution spatial-temporal data to identify 

spatial variability and hotspots in an experimental lake undergoing nutrient addition and in an 

adjacent, unperturbed reference lake. Results for the second study indicate that there is no 

long-lasting spatial structure and low spatial heterogeneity for both an experimental lake 

undergoing an algal bloom and a similarly sized reference lake. These studies show how 

advanced technology can reveal temporal and spatial dynamics of lakes, specifically those 

undergoing algal bloom disturbances.  
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Introduction 

Lakes are important ecosystems that provide habitat for a wide range of species, 

sources of drinking water and recreation for humans, and have high rates of biogeochemical 

cycling that contribute to greenhouse gas production (Tranvik et al. 2009, Moss 2012). Due to 

climate warming, lakes are undergoing rapid changes from loss of ice cover (Sharma et al. 

2019), warming surface temperatures (O’Reilly et al. 2015), and alterations in mixing regimes 

(Woolway et al. 2019). Additionally, enhanced inputs of nutrients and sediments are well 

known causes of eutrophication that often result in algal blooms negatively affecting water 

quality. With these threats and many others to lakes, monitoring waterbodies is essential for 

evaluating changes in resilience and implementing management interventions to mitigate 

negative impacts.  

High frequency sensors have become ubiquitous for water quality monitoring. They 

allow researchers and managers to measure dynamics at fine temporal and spatial scales. 

Widely available sensors can quantify variables such as temperature, dissolved oxygen, and 

chlorophyll-a at temporal resolution of minutes. Prior studies have used high frequency data to 

detect indicators of regime shifts (Carpenter et al., 2011), diel patterns and variability of 

temperature (Woolway et al. 2015), and diel variability of methane emissions (Sieczko et al. 

2020). Additionally, Pace et al. (2017) and Wilkinson et al. (2018) used high frequency data from 

in-situ sensors to test for early warnings of algal blooms in experimentally fertilized lakes. High 

frequency data are especially useful for assessing disturbances relative to background natural 

variability.  



 7 

 In addition to high frequency temporal data, sensors can also provide high resolution 

spatial data. One example is the Fast Limnological Automated Measurement (FLAMe,) system 

which collects high resolution water quality data by drawing water past sensors in a moving 

boat (Crawford et al., 2015). The FLAMe system simultaneously records spatial location 

enabling resolution of spatial heterogeneity for lakes and rivers. Such measurements overcome 

limitations of single point sampling that may misrepresent how an ecosystem is behaving or 

responding to a disturbance if the system exhibits spatial heterogeneity. Loken et al. (2019) 

used the FLAMe to look at spatial and temporal variability of carbon dioxide and methane flux 

and concentration in Lake Mendota and found that the single point sampling at the lake center 

overestimated CO2 and underestimated CH4 emissions, respectively. Additionally, ecosystem 

metabolism in two small temperate lakes varied by 1–2 orders of magnitude depending on the 

measurement location within the lakes (Van de Bogert et al., 2012). 

 Algal blooms can develop rapidly and unpredictably, as well as exhibit spatial 

heterogeneity as evident in satellite imagery of large lakes. High resolution sampling of blooms 

allows better understanding of dynamics with the potential to contribute to better 

management of problems associated with excessive algal biomass. In this study, I analyzed 

existing high frequency time series and high resolution spatial-temporal data with a focus on 

understanding of algal blooms as disturbances in lakes. In the first chapter, I use high frequency 

time series data and a recently published disturbance-recovery algorithm (Walter et al. 2022) to 

quantify bloom magnitudes (disturbance) and return time to non-bloom conditions (recovery). I 

analyzed high frequency data of phytoplankton pigments from both whole lake nutrient 

addition studies and routine monitoring. The first goal was to test if the method adequately 
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detects blooms in experimental lakes where nutrient inputs were controlled, and 

phytoplankton dynamics measured at both high frequency and daily time scales. The second 

goal was to explore application of the method to monitoring data where nutrient inputs are 

unknown and variables other than water quality parameters are unmonitored.  

For the second chapter, I analyzed high resolution spatial data to quantify spatial 

variability and tested for hotspots in an experimental lake undergoing a bloom and a reference 

lake where no bloom occurred. The goal was to determine if small lakes exhibit spatial 

heterogeneity and if heterogeneity increased during an algal bloom.  
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I. Quantifying algal blooms with high frequency data and disturbance-recovery algorithm 

Abstract 

Algal blooms are disturbances to aquatic ecosystems that can impact water quality and 

ecosystem services. Quantifying algal blooms is difficult due to lack of data and concentration 

thresholds can vary based on the water body. Additionally, there is no standard approach to 

detecting algal bloom disturbance magnitudes and recovery times, making it challenging to 

compare disturbances within and among aquatic systems. Using high frequency phycocyanin 

and chlorophyll-a data and a newly developed disturbance-recovery algorithm, I quantified the 

magnitude and duration of algal bloom disturbances. I applied the algorithm to nutrient 

enriched experimental lakes with detailed algal data and non-experimental lakes with pigment 

sensor time series that extended over many years. Algal bloom onsets, magnitudes, and 

recoveries were detected and consistent with observed dynamics in the experimental lakes, 

facilitating within and cross-system comparisons. In non-experimental lakes, I identified the 

most severe/intense disturbances and those that occurred at unusual times. Recovery time and 

peak disturbance magnitude differed among non-experimental lakes. Lakes with phycocyanin 

and chlorophyll-a time series rarely had concurrent disturbances in both variables. Detecting 

algal bloom disturbances and recoveries requires appropriate reference data, and this problem 

is more difficult in non-experimental lakes due to the complexities of reference data selection, 

missing values, and pigment sensor errors. Overall, the approach shows promise in quantifying 

algal bloom dynamics where long-term high frequency data are available. 
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Introduction 

Ecosystems are variably disturbed and often undergo recovery (Romme et al., 1998, 

Turner et al., 1998). Disturbances can affect an ecosystem’s resilience causing shifts from a 

stable state to an alternative state (Gunderson 2000). A critical question is whether ecosystems 

maintain the ability to recover after repeated and large disturbances or if there are changes, 

especially more extended recoveries, that might portend loss of resilience and pending 

transformation of ecosystem state (Pickett et al., 1989, Scheffer et al., 2009). Another 

important general problem is determining the magnitude of a disturbance and analyzing if 

recovery time is related to magnitude (Weathers et al., 2016). A third general problem is 

comparing disturbances both magnitudes and recovery times within and among ecosystems. 

Quantifying the magnitude of disturbance and the time to recovery is required to address these 

issues.  

Excessive developments of phytoplankton biomass (referred to as blooms) represent a 

form of ecosystem disturbance caused by conditions that promote rapid growth and 

accumulation (Paerl et al., 2001). Algal blooms occur due to high rates of nutrient loading 

accompanied by long water residence time, warm temperatures (usually), low grazing rates, 

low mortality due to disease (Paerl, 1988, Paerl et al., 2013). Algal blooms are significant 

disturbances to aquatic ecosystems and can impair water quality, result in fish die-offs, and 

create toxins dangerous to humans and animals. Cyanobacteria are the most prominent bloom 

forming species in inland waters (Sukenik et al., 2021).  

Walter et al. (2022) developed a method for detecting disturbance and recovery using 

high frequency data. The method employs long reference time series and applies an algorithm 
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that quantifies differences in the empirical cumulative distribution functions of moving 

windows over reference and test (putative disturbance) periods. The method ultimately allows 

quantification of disturbance occurrence, timing, recovery time, and severity. Buelo et al. 

(2023) recently used the algorithm to analyze high-frequency and long-term salinity and 

dissolved oxygen data across 19 estuaries and found that disturbances due to tropical cyclones 

varied and that disturbance magnitude and duration are related to cyclone and site properties. 

In this study, I used this disturbance and recovery algorithm and long-term high 

frequency time series of chlorophyll-a and phycocyanin from experimental and monitored lakes 

to ask the following questions:  

1) Can the algorithm detect known phytoplankton blooms in experimental lakes with 

nutrient additions and in this context, what are the best reference time series to facilitate 

detecting these disturbances?  

2) Can the disturbance-recovery algorithm detect anomalous phytoplankton blooms in 

monitored lakes that have long time series?  

3) Is there a relationship between disturbance magnitude and recovery time? 

 

Methods   

The algorithm identifies disturbance and recovery by quantifying the empirical 

distribution function difference between a time series variable observed within moving 

windows and a reference distribution representing the normal state of the system (Walter et 

al., 2022). The method then quantifies how atypical these differences are by benchmarking 

them against the distribution of differences observed in moving windows of the same width 
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during a reference period (Table 1). An increase in the difference from the reference state past 

a specified threshold defines the onset of disturbance, and a return toward the reference state, 

past another threshold, defines recovery. The method requires setting several aspects of the 

analysis including the reference data, the width and time step (stride) of the moving window, 

and the thresholds for disturbance and recovery. For all analyses in this study, I used a window 

width of 10 days, stride of 1, disturbance threshold of z-score=2.5, and disturbance length 

minimum of 1 day.  

 Phytoplankton pigment data, specifically chlorophyll-a and phycocyanin, are important 

water quality variables that can describe algal bloom conditions. Chlorophyll-a is commonly 

used as a proxy for primary production and phytoplankton biomass. Phycocyanin is a pigment 

unique to cyanobacteria and is related to biomass of that taxa. High concentrations of 

chlorophyll-a indicate an algal bloom, and high concentrations of phycocyanin indicate a 

cyanobacterial bloom.  

I first tested the algorithm with chlorophyll-a data collected from experimental lakes as 

part of nutrient addition studies (Table 2). Peter, Tuesday, and Paul lakes are lakes located at 

the University of Notre Dame Environmental Research Center in the Upper Peninsula of 

Michigan, United States. These lakes have been used for a variety of ecosystem manipulation 

studies with Paul Lake serving as an unmanipulated reference (Carpenter and Pace 2018). For 

the manipulations considered here, Peter and Tuesday Lakes received several years of nutrient 

additions and Paul Lake was a reference lake that never received nutrients. Peter and Tuesday 

lakes were fertilized daily with inorganic nitrogen and phosphorus during the summers of 2013, 

2014, and 2015. Additionally, Peter Lake received daily nutrient additions in the summer of 
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2019. Details of addition methods, loading rates, and nutrient ratios are in Wilkinson et al. 

(2018).  

In the experimental lake analysis, data from non-fertilization years of Peter and Tuesday 

lakes were used as a reference set for the respective lake when it is in a low nutrient state. For 

Peter Lake, there were 491 reference data points from 22 non-experimental years collected at 

weekly to daily time-intervals. For Tuesday Lake, there were 214 observations from 18 non-

experimental years. Additionally, I tested the responses of Peter and Tuesday lakes using Paul 

Lake data as a reference.  

For all the years of nutrient addition manipulations, chlorophyll-a was measured daily by 

manually collecting water samples that were then filtered, frozen, methanol extracted, and 

measured in the laboratory using a Turner Trilogy benchtop fluorometer (Holm-Hansen & 

Riemann, 1978). These daily observations provided the data for analysis of bloom disturbances. 

In a second part of this study, I used data from five monitored lakes to assess whether 

variable and unusual disturbances were detectable from high frequency time series. In the 

monitored lake analysis, I analyzed each year compared to all other years as reference data. 

Five lakes were considered that had suitable long-term, high frequency data (Table 2). In lakes 

Lillinonah, Erie, and Muskegon chlorophyll-a and phycocyanin data were available while Seneca 

and Sammamish lakes only had data for chlorophyll-a. High frequency pigment data from all the 

monitored lakes were measured with different versions of a YSI EXO sonde with the pigment 

sensors of that instrument (Zamyadi et al., 2012). The data were selected based on the criteria 

that there were at least 4 years of summer pigment data. The data collection frequency across 

the monitored lakes ranged from 15 minutes to daily, therefore, I analyzed all data using daily 
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averages. The data were further inspected to remove outliers, negative values, and 

observations marked with low quality flags from the data provider. The algorithm tested each 

year using the other years in the dataset as the reference years with the goal of identifying 

blooms either having an unusual magnitude/recovery or occurring at anomalous times.  

 

Results 

Both the experimental lakes and reference lakes typically have low chlorophyll 

concentrations (< 10 g L-1) indicative of oligotrophic to mesotrophic conditions. Specifically, 

the experimental lakes had mean chlorophyll-a concentrations during non-fertilization years of 

3.81 g L-1 (Peter Lake) and 6.10 g L-1 (Tuesday Lake). The mean chlorophyll-a concentration 

for the reference lake, Paul, was 3.16 g L-1, close to the value of Peter Lake. 

In Peter Lake, algal blooms varied among the 4 nutrient fertilization years in terms of 

detection, magnitude, and recovery. There was no detected disturbance in 2013 despite 

summer-long additions of nutrients. Mean and maximum chlorophyll-a concentrations were 

3.86 and 9.77 g L-1, respectively. There was one disturbance detected in 2014 on DOY 215 and 

the lake remained in a disturbed (or bloom) state through the remaining measurement period 

(ending DOY 250). The peak z-score for the 2014 disturbance was 4.97. The mean and 

maximum chlorophyll-a concentration in 2014 were 5.78 and 13.34 g L-1, respectively. In 2015, 

Peter Lake experienced a much earlier and larger disturbance starting on DOY 167. In this year 

nutrient additions were halted on DOY 180 (instead of continued) as a part of the study design 

(Pace et al. 2017).  The lake recovered to baseline conditions after 41 days on DOY 208. (Figure 

1.1). The peak z-score of 28.4 for the 2015 disturbance was much higher than for 2014 
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reflecting the brief but high maximum chlorophyll-a concentration of 40.2 g L-1. In 2019, Peter 

Lake experienced two disturbances and one recovery. The algorithm detected a disturbance on 

DOY 198 and recovery on DOY 229 (Figure 1.2). Nutrient additions were ongoing throughout 

this study in contrast with the more limited nutrient addition in the 2015 manipulation of Peter 

Lake (see above). The peak z-score was 38.7 and the max chlorophyll-a concentration was 49.0 

g L-1. There was a second smaller disturbance detected on DOY 237 and no recovery occurred 

prior to the end of sampling on DOY 248.  

Bloom disturbances occurred in Tuesday Lake in all three years of nutrient addition. 

Disturbances began on DOY 204 and 162 in 2013 and 2014, respectively. The peak z-scores for 

2013 and 2014 were 13.18 and 8.13, respectively. In 2015 there were two disturbances. The 

first disturbance was relatively small with a peaked z-score of 4.48 but lasted 45 days. The 

second disturbance detected on DOY 218 was large with a peak z-score 46.0.  Maximum 

chlorophyll-a concentrations were 74.7 g L-1 and the lake did not recover prior to the end of 

sampling. 

Using Paul Lake as a reference for Peter and Tuesday Lakes in the algorithm produced 

different results. When using Paul Lake as a reference for Peter Lake compared to using non-

manipulated Peter Lake data, the algorithm detected more disturbances. The algorithm 

detected one disturbance in 2013, two additional disturbances in 2014, and one more 

disturbance in 2019. The main disturbance in 2015 and 2019 lasted longer by 5 and 4 days, 

respectively. When using Paul Lake as a reference for Tuesday Lake compared to using non-

manipulated Tuesday Lake data, the algorithm detected a disturbance at the beginning of each 

of the time series and never detected recovery. Paul Lake, the reference lake, never received 
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nutrient additions. The algorithm detected no disturbance in 2013, 2014, or 2015. One 

disturbance in 2019 was detected on DOY 219 with a peak z-score of 5.65 when chlorophyll-a 

reached 5.78 g L-1. Maximum chlorophyll-a concentration was 8.28 g L-1 and the lake did not 

recover prior to the end of sampling. 

The algorithm detected disturbances in the non-experimental, monitored lakes that 

differed from ‘normal’ conditions based on using all other years as a reference. Lake Lillinonah, 

Lake Erie, and Muskegon Lake had disturbances in both types of pigment data. Collectively, the 

three lakes had eight chlorophyll-a and six phycocyanin disturbances, but these disturbances 

were typically not concurrent with the exception of Lake Lillinonah in 2014 and Muskegon Lake 

in 2012. Overall, there were six phycocyanin and thirty-one chlorophyll-a disturbances among 

the five lakes.  The peak z-scores ranged from 2.52-33.18 and the disturbance length ranged 

from 7-71 days. There was a significant, positive relationship between peak severity and 

disturbance length (Figure 1.9), with a correlation coefficient of r = 0.49 (p < 0.004). While there 

is no established period for onset of negative impacts from blooms, recovery times were often 

> 20 days (17 cases) including some of the more oligotrophic of the monitored lakes.  

 

Discussion 

The method successfully detected disturbance and recovery in experimental lakes and 

identified unusual disturbances in monitored lakes. A benefit of applying the approach is in 

objectively quantifying the exact date and pigment concentration where a disturbance was 

detected as well as a time to recovery. The z-score provides a magnitude of the disturbance 

which allows comparison of disturbances among years and lakes.  
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The experimental lakes represent an idealized case where nutrient inputs were 

controlled reference data were extensive. Paul Lake served as a reference system and had only 

one small disturbance in one year. Using Paul as the source of reference data was problematic 

because of differences both in the mean values of chlorophyll-a and the variability between the 

lakes. The early disturbances in Tuesday Lake using data from Paul Lake as reference for all 

three tested years was caused by the normally higher chlorophyll concentrations in Tuesday 

Lake compared to Paul Lake, indicating the difficulty of using a separate lake as reference data 

for the disturbance-recovery analysis. I did not try creating a specific offset based on 

differences in means for Peter and Tuesday lakes which could be one way of incorporating data 

from a separate reference lake. Using the data from the same lake in non-nutrient years as a 

reference proved more effective. Fortunately, there are many years and hundreds of 

observations from Peter and Tuesday lakes to establish non-nutrient enrichment conditions. 

The results suggest our approach would work well for quantifying algal blooms in lakes with 

long-term data that were transitioning from infrequent to more frequent blooms.   

In the experimental lakes, blooms differed among lakes and years. The cause of these 

differences has been previously analyzed and include effects of dissolved organic matter and 

grazers (Pace et al. 2019; Carpenter et al. 2022). In some of the nutrient addition years, two 

blooms were observed, specifically for Tuesday Lake, 2015 and Peter Lake 2019. Both lakes 

were fertilized throughout the season, but blooms can collapse due to disease, temperature, or 

grazing (rather than nutrient exhaustion) and there can also be a shift in the dominant bloom 

forming algae (Mayer et al., 1997, Dokulil & Teubner, 2000, Zhang et al., 2016). The important 

point from this study is these dynamics were quantifiable. The method provides a way to 
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objectively measure important features of blooms which as evidenced by the experimental 

lakes can be quite variable.  

Applying the algorithm to monitored lakes is more difficult compared to experimental 

lakes. With this application, normal algal bloom disturbances may occur regularly such that 

reference data include periods of high algal biomass. Without having a non-bloom reference 

data set similar to the experimental lakes considered above, all disturbances will not be 

detected. Instead, the most severe/intense disturbances are measurable or those that occur at 

a dissimilar time. For example, phytoplankton biomass is routinely high in Muskegon Lake, and 

the system would be considered eutrophic or hypereutrophic (Carlson, 1991). Muskegon Lake 

had intense harmful algal blooms in the past but has slowly improved with reduced blooms in 

recent years (Mancuso et al., 2021). The algorithm only detected chlorophyll-a disturbances in 

2012, 2014, and 2015, and phycocyanin disturbances in 2011 and 2012 (Figure 1.7). These 

2012, 2014, and 2015 blooms had high chlorophyll-a concentrations, but other years had 

blooms that were smaller in magnitude, such as those in 2011 and 2023 and therefore not 

detected by the analysis. Such blooms would normally be considered disturbances but there 

isn’t a non-bloom (or low algal biomass) reference dataset to compare as was the case for the 

experimental lakes. This problem also makes it difficult to evaluate whether there were 

concurrent chlorophyll-a and phycocyanin disturbances. Despite these limitations, the 

algorithm still detected the most intense disturbances and quantified disturbance initiation and 

recovery dates.  

Disturbance length and disturbance magnitude were positively correlated for the 

monitored lakes. The more intense the algal bloom, the longer it takes for the system to 
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recover. The duration of the algal bloom is important to consider and has consequences for 

system processes like anoxia and toxicity effects (Paerl et al., 2011). Comparing bloom recovery 

in water bodies over time would be of interest in determining whether stability is declining 

under eutrophication or climate warming or alternatively recovery times might decrease under 

management to reduce nutrient loading. 

One issue with using the algorithm and detecting pigment disturbances are missing 

values and pigment sensor errors. Sensor calibration and periods of sensor failure result in 

interrupted time series. Various methods of interpolation can be applied to impute missing 

values. For the monitored lakes, erroneous values were filled in with linear interpolation.  

Pigment sensor measurements rely on optical fluorescence properties. The intensity of the 

fluorescence emitted by the pigments is directly related to the concentration of the pigments in 

the water and can be affected by turbidity, dominant algal group, or fouled sensors (Chang et 

al., 2012, Zamyadi et al., 2012). Additionally, chlorophyll-a and phycocyanin can interfere with 

each other’s measurement (Bowling et al., 2016). These factors might cause erroneous 

measurements and impact the detection of bloom metrics and could explain the lack of 

concurrent chlorophyll-a and phycocyanin blooms in the monitored lake.  

There is conflicting evidence about whether algal blooms are increasing at regional and 

global scales (Ho et al., 2019, Wilkinson et al., 2022, Topp et al., 2021). Ho et al. (2019) found 

increases in phytoplankton blooms globally whereas Wilkinson et al. (2022) found no increase 

in algal bloom metrics in a regional analysis. Topp et al. (2021) found improving water clarity in 

thousands of U.S. lakes. The differences among these studies are most likely due to differences 

in the lakes studied and due to measurement methods (e.g., satellite remote sensing versus in 
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situ water samples). As improved technology and monitoring systems enable longer and more 

accurate time series, application of disturbance and recovery analysis to blooms over large 

scales might provide a way of evaluating not only trends but features of blooms. Eventually, the 

question of whether lakes are becoming greener due to increased phytoplankton could be 

extended to asking whether lakes are having more severe and more frequent blooms. The 

magnitudes and duration of blooms have important consequences for human uses of inland 

waters and better knowledge of these dynamics will enable better management to mitigate and 

reduce negative impacts. 
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Table 1.1. Steps of applying disturbance recovery algorithm adapted from Walter et al., 2022 
Steps 

1. Define reference period (entire period), test period (1 day), and test window width 
(10 days) 

2. Get empirical cumulative distribution function for reference period 
3. Find mean and standard deviation of the difference statistic for reference period 
4. Quantify difference statistic in test period 
5. Express the difference statistic during test period as a Z score benchmarked against 

reference period 
6. Assign disturbance (z=2.5) and recovery based on thresholds of Z score 
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Table 1.2. Table of lakes analyzed for algal bloom disturbance and recovery 
Lake Year Lat/ Long Type Data Source 
Peter 
(Gogebic 
County, 
Michigan) 

2013-
2015, 
2019 

46.25261, -
89.50384 

Experimental   

Tuesday 
(Gogebic 
County, 
Michigan) 

2013-
2015 

46.25131, -
89.50343 

Experimental https://portal.edirepository.org/nis/m
apbrowse?packageid=knb-lter-
ntl.413.1 

Paul (Gogebic 
County, 
Michigan) 

2013-
2015, 
2019 

46.25118, -
89.49727 

Reference for 
Experimental 

 

Lillinonah 
(Fairfield, 
Connecticut) 

2011-
2019 

41.45943, -
73.29963 

Monitored https://portal.edirepository.org/nis/m
apbrowse?packageid=edi.559.1  
https://portal.edirepository.org/nis/m
apbrowse?packageid=edi.560.1 

Sammamish 
(King County, 
Washington) 

2000-
2022 

47.59931, -
122.09603 

Monitored https://green2.kingcounty.gov/lake-
buoy/Data.aspx 

Seneca 
(Geneva, NY) 

2006-
2022 

42.80018, -
76.95728 

Monitored http://fli-
data.hws.edu/buoy/seneca/data.php 

Muskegon 
(Muskegon 
County, 
Michigan) 

2011-
2022 

43.23823, -
86.28053 

Monitored https://www.gvsu.edu/wri/buoy/data
-index.htm 

Erie (Toledo 
buoy near 
Oregon, Ohio) 

2014-
2022 

41.70203 - 
83.26145 

Monitored https://uglos.mtu.edu/ 
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Table 1.3. Table of disturbances and recoveries of chlorophyll-a from the experimental lakes. 
NA indicates a bloom was not observed. In some cases when a bloom was detected no recovery 
occurred prior to the end of sampling for the year.  

Lake Year Disturbance # Peak z-score  Disturbance Length (days) 

Peter 2013 NA NA NA 

Peter 2014 1 4.97 No recovery 
Peter 2015 1 28.43 41 

Peter  2019 1 38.66 31 

Peter 2019 2 12.27 No recovery  

Tuesday 2013 1 13.18 No recovery 

Tuesday 2014 1 8.13 No recovery 
Tuesday 2015 1 4.48 45 

Tuesday 2015 2 45.98 No recovery  

Paul 2013 NA NA NA 

Paul 2014 NA NA NA 

Paul 2015 NA NA NA 
Paul 2019 1 5.65 No recovery 
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Table 1.4. Table of disturbances and recoveries of chlorophyll-a from the monitored lakes  
Lake Year Disturbance # Peak z-score  Disturbance Length (days) Variable 

Lillinonah 2011 1 2.59 20 Chlorophyll-a 

Lillinonah 2012 1 2.79 13 Chlorophyll-a 

Lillinonah 2013 1 5.32 20 Chlorophyll-a 

Lillinonah 2014 1 6.09 15 Chlorophyll-a 
Seneca  2015 1 2.77 14 Chlorophyll-a 

Seneca 2015 2 9.81 27 Chlorophyll-a 

Seneca 2015 3 5.24 17 Chlorophyll-a 

Seneca 2015 4 3.17 NA Chlorophyll-a 

Seneca 2017 1 6.43 12 Chlorophyll-a 
Seneca 2017 2 15.10 34 Chlorophyll-a 

Seneca 2017 3 3.67 12 Chlorophyll-a 

Seneca 2017 4 8.16 26 Chlorophyll-a 

Erie (Toledo, OH) 2018 1 6.06 53 Chlorophyll-a 

Erie (Toledo, OH) 2018 2 33.18 52 Chlorophyll-a 
Muskegon 2012 1 4.85 23 Chlorophyll-a 

Muskegon 2014 1 13.39 NA Chlorophyll-a 

Muskegon 2015 1 3.028 15 Chlorophyll-a 

Sammamish 2001 1 7.86 63 Chlorophyll-a 
Sammamish 2009 1 3.47 26 Chlorophyll-a 

Sammamish 2011 1 4.67 34 Chlorophyll-a 

Sammamish 2012 1 9.45 71 Chlorophyll-a 
Sammamish 2013 1 4.27 16 Chlorophyll-a 

Sammamish 2013 2 2.62 7 Chlorophyll-a 
Sammamish 2015 1 5.01 52 Chlorophyll-a 

Sammamish 2015 2 6.33 33 Chlorophyll-a 

Sammamish 2015 3 2.99 9 Chlorophyll-a 
Sammamish 2017 1 2.52 17 Chlorophyll-a 

Sammamish 2018 1 2.94 20 Chlorophyll-a 
Sammamish 2019 1 3.01 10 Chlorophyll-a 

Sammamish 2022 1 6.04 14 Chlorophyll-a 

Lillinonah 2014 1 10.82 71 Phycocyanin 
Lillinonah 2015 1 3.23 36 Phycocyanin 

Erie (Toledo, OH) 2015 1 14.97 46  Phycocyanin 
Erie (Toledo, OH) 2017 1 5.22 10 Phycocyanin 

Muskegon 2011 1 3.17 38 Phycocyanin 

Muskegon 2012 1 4.54 17 Phycocyanin 
Muskegon 2012 2 4.85 NA Phycocyanin 
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Figure 1.1. Disturbance and recovery of Peter Lake in 2015. Black points are the test data from 
2015 and open gray circles are reference data from many prior years when the lake was not 
fertilized. Blue shaded area indicates period of nutrient addition. Red vertical lines indicate 
disturbances and green vertical lines indicate recovery. 
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Figure 1.2. Disturbances and recoveries of Peter Lake in 2019. Blue shaded area indicates 
nutrient addition period. Red vertical lines indicate disturbances and green vertical lines 
indicate recovery.  
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Figure 1.3. Disturbance and recovery of Tuesday Lake in 2015. Black points are the test data and 
open gray circles are reference data from many prior years when the lake was not fertilized. 
Blue shaded area indicates period of nutrient addition. Red vertical lines indicate disturbances 
and green vertical lines indicate recovery. 
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Figure 1.4. Disturbances and recoveries of Lake Lillinonah’s a) chlorophyll-a and b) phycocyanin. 
Red vertical lines indicate disturbances and green vertical lines indicate recovery. 
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Figure 1.5. Disturbances and recoveries of chlorophyll-a in Seneca Lake. Red vertical lines 
indicate disturbances and green vertical lines indicate recovery. 
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Figure 1.6. Disturbances and recoveries of Lake Erie’s (Toledo buoy) a) chlorophyll-a and b) 
phycocyanin. Red vertical lines indicate disturbances and green vertical lines indicate recovery. 
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Figure 1.7. Disturbances and recoveries of Muskegon Lake’s a) chlorophyll-a and b) 
phycocyanin. Red vertical lines indicate disturbances and green vertical lines indicate recovery. 
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Figure 1.8. Disturbances and recoveries of Lake Sammamish’s chlorophyll-a. Red vertical lines 
indicate disturbances and green vertical lines indicate recovery. 
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Figure 1.9. Relationship between disturbance length and peak disturbance severity for 
chlorophyll-a and phycocyanin from the monitored lakes.  
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Chapter II. Identifying spatial variability in experimental and reference lakes 

Abstract 

 Spatial heterogeneity in lakes is often caused by physical, biological, and chemical 

drivers. Larger lakes exhibit spatial heterogeneity and are often studied for their localized algal 

blooms, greenhouse gas emissions, or biological communities. However, spatial heterogeneity 

in small waterbodies is seldom studied. I analyzed high resolution spatial data in two small lakes 

(< 3 ha), including a nutrient enriched experimental lake and an adjacent unmanipulated lake, 

to better understand spatial dynamics of small water bodies and a lake undergoing an algal 

bloom. Repeated spatial surveys were conducted where temperature, nitrate, dissolved 

oxygen, pH, and phycocyanin were measured over thousands of locations in each lake. The 

periods of spatial surveys also included phytoplankton blooms in the experimental lake. Spatial 

coefficients of variation were low (<5.7%) for all lake-year-variable combinations. Moran’s I, a 

measure of spatial autocorrelation, ranged from 0-0.7 and was similar between the bloom and 

non-bloom periods. Spatial autocorrelation values were typically significant but overall 

clustering was low due to low spatial variability. A hotspot analysis based on applying the Getis 

Ord GI* method indicated that hot and cold spots were random across both lakes and there 

was no agreement between hot/cold spots with dominant wind direction. There was no 

difference between spatial variability for the lake undergoing an algal bloom when comparing 

bloom and non-bloom periods. Additionally, there was no differences in spatial patterns 

between the experimental and reference lakes. Overall, the results indicate that small lakes 

exhibit low spatial heterogeneity and single point sampling at the center of the lake is 

sufficient. 
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Introduction 

Lakes of varying sizes and shapes are spatially heterogeneous for a variety of variables 

including, for example, greenhouse gases and common water quality parameters (Schilder et 

al., 2013, Loken et al. 2019, Kislik et al., 2022, Ortiz & Wilkinson, 2021, Hou et al. 2022). Inlet 

nutrient contributions, physical processes (e.g., wind direction), morphology, and macrophytes 

contribute to creating spatial heterogeneity in lakes. Despite this known heterogeneity, most 

lake studies are based on measurements taken at the center of the lake or fixed points and 

extrapolated across the entire area of the waterbody (Stanley et al., 2019). Central and limited 

spatial measurements taken from lakes with large spatial heterogeneity can produce inaccurate 

representation of the system. Spatially distributed sampling can overcome this problem and 

provide more accurate estimates for standing stocks and fluxes as well as help identify hotspots 

or areas of concern. 

Algal blooms can be patchy and spatially heterogeneous across a lake (Buelo et al., 

2018, Serizawa et al., 2008). The availability of nutrients, light, and other growth-promoting 

conditions may vary for different parts of the water body. Additionally, the movement of water, 

via currents or turbulence, can influence the spatial distribution of algae.  

Spatial heterogeneity related to phytoplankton blooms is most obvious and most 

studied in larger lakes like Lake Erie where satellite remote sensing clearly indicates variability 

in phytoplankton pigments (Wynne et al., 2015). Spatial heterogeneity is less commonly studied 

in smaller lakes. Nevertheless, previous research documented spatial heterogeneity in 

chlorophyll-a, water temperature, and dissolved oxygen in a moderate-size (~113 ha) 

temperate lake (Mackay et al., 2011) and ecosystem metabolism in small (< 5 ha) lakes (Van de 
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Bogert et al., 2012, Van de Bogert et al., 2007). This poses the question if there is significant and 

persistent spatial heterogeneity and variability in smaller lakes amongst other variables.  

Previous research studying the same small lake considered by Van de Bogert et al. 

(2012) tested the use of spatial early warning statistics as possible indicators of pending algal 

blooms (Butitta et al. 2017, Buelo et al., 2022). Using the high resolution spatial-temporal data 

for Peter and Paul lakes from the Butitta et al. (2017) and Buelo et al. (2022) studies, I analyzed 

spatial variability to address additional questions (beyond those related to early warning) 

including:  

1) Does the spatial coefficient of variation (CV) increase over a bloom cycle due to greater 

patchiness in phytoplankton?  

2) Is there persistent spatial structure in an experimental lake undergoing an algal bloom 

and a reference lake experiencing no disturbance? 

3) How does spatial variability compare to temporal variability?  

These questions were addressed using data from years both with and without whole lake 

nutrient additions for an experimental and reference lake. In each year an extensive spatial 

sampling campaign was conducted.  

 

Methods 

The lake studies were done at the University of Notre Dame Environmental Research 

Center, located in the Upper Peninsula of Michigan, United States. Peter and Paul lakes are 

relatively small (2.6 ha for Peter Lake and 1.7 ha for Paul Lake) with bowl-shaped basins (mean 

depth 5.7 and 3.7 m, maximum depth approximately 18 and 12 m, respectively). Paul Lake is 
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upstream of Peter Lake and has been consistently used as a non-manipulated reference system, 

while Peter Lake have been subject to manipulations (Carpenter and Pace 2018). Peter and Paul 

Lakes are fed by groundwater flows and lack significant inputs and outputs, resulting in having 

long water residence times (Cole et al., 1998). 

Spatial data were collected using the FLAMe system (Fast Limnological Automated 

Measurements; Crawford et al., 2015). The FLAMe has a flow-through design to collect spatial 

measures of variables using sensors. While the boat is in motion, surface lake water is drawn 

through an intake and passed through a sensor array, while also concurrently capturing GPS 

location data. Spatial variables included phycocyanin (μg L-1), dissolved oxygen (D.O.) saturation 

(%), pH, temperature, and nitrate. Phycocyanin, DO, pH, and temperature were measured with 

a YSI, Inc. EXO 2 sonde and nitrate was measured by a SUNA nitrate sensor. Spatial resolution 

for the YSI-measured variables was < 3 m while nitrate was measured at a courser resolution of 

~10 m. Data were collected in the summers of 2015, 2018, and 2019. Spatial sampling was 

conducted from late May to early September with weekly observations in 2015 and 2018, and 

three samplings per week (Monday, Wednesday, Friday) in 2019.  

In 2015 and 2019, Peter Lake was fertilized with inorganic nitrogen and phosphorus to 

induce an algal bloom. Solutions of phosphoric acid and ammonium nitrate were prepared and 

distributed uniformly across the surface of the lake by pumping them into the prop-wash of a 

boat propelled by an electric motor. Nutrient additions started on day of year (DOY) 152 in 

2015 and DOY 161 in 2019 (Pace et al., 2017, Buelo et al., 2022). The nutrient additions ended 

on DOY 180 in 2015 and DOY 237 in 2019. To minimize disturbance from trolling motors on the 
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lake, FLAMe sampling was conducted in the morning, and nutrient additions were carried out in 

the afternoon. 

 To examine spatial variability and hotspots of the lakes, I calculated the spatial 

coefficient of variation, spatial autocorrelation (Moran’s I), and the Getis-Ord Gi* statistic for 

temperature, nitrate, DO, pH, and phycocyanin. Spatial coefficient of variation was calculated 

by formula: (Standard Deviation / Mean) * 100 for all the observations collected in a sampling 

event. Temporal variability was evaluated using data collected with sondes in the center of the 

lakes that were averaged to daily values (to remove diel variability). Additionally, wind direction 

and speed were collected with a local HOBO weather station located at the center of Peter 

Lake. 

Moran’s I, a measure of spatial autocorrelation, was calculated in R using the moranfast 

package based on equation (1) below. The Moran’s I statistic (I) is the global spatial association 

between locations and how the values at one location relate to the values at other locations, 

normalized to constrain values between -1 and 1, where N is the total number of observations, 

W is the spatial weights sum (inverse distance weighting in this case), xi and xj are the values of 

the variable at location i and j, respectively, �̅� is the mean of the variable, and wij represents the 

spatial weight between i and j.  

(1)       𝐼 =  
𝑁

𝑊

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − �̅�)(𝑥𝑗 − �̅�)𝑁
𝑗=1

𝑁
𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1

 

 

The Getis-Ord Gi* statistic is a hot spot and cold spot analysis and indicates high and low 

clusters of values, based on equation (2) below, where Xj is the value for feature j, wi,j is the 
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spatial weight between i and j, n is the total number of features, �̅� is the mean of the variable, 

and S represents the total spatial aggregation. This statistic was calculated in ArcGIS Pro using 

an inverse distance weighting and the mean distance threshold calculated from the Incremental 

Spatial Autocorrelation tool from all the sampling events for each variable. The Incremental 

Spatial Autocorrelation tool plots Moran’s I against distance and the distance where spatial 

autocorrelation was the highest was selected from each sampling event-variable combination. 

The distance thresholds for temperature, nitrate, dissolved oxygen, pH, and phycocyanin were: 

50m, 55m, 60m, 65m, and 40m, respectively.  

(2)           𝐺𝑖
∗ =  

∑ 𝑤𝑖𝑗𝑥𝑗
𝑛
𝑗=1 − �̅� ∑ 𝑤𝑖𝑗

𝑛
𝑗=1

𝑆√
𝑛 ∑ 𝑤𝑖𝑗

2 − (∑ 𝑤𝑖𝑗)2𝑛
𝑗=1

𝑛
𝑗=1

𝑛 − 1

 

 

Results 

Responses to Nutrient Addition 

 Peter Lake had blooms as measured by chlorophyll-a in 2015 and 2019 due to nutrient 

additions (Figure 2.1). In 2015, there was a brief period of nutrient addition which caused one 

bloom followed by a decline back to baseline after nutrient additions halted (Pace et al. 2017). 

In 2018 when no nutrients were added, Peter Lake had low concentrations of chlorophyll-a 

(Figure 2.1b). In 2019, Peter Lake underwent continuous nutrient addition which caused a 

bloom that collapsed and then a secondary bloom formed (Figure 2.1c). Paul Lake had low 

levels of chlorophyll-a for all three years (Figure 2.1). Additionally based on daily measures at a 

central station, Peter Lake had greater concentrations of DO, higher pH, and greater 
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phycocyanin during bloom periods compared to Paul Lake in 2015 and 2019 (Wilkinson et al. 

2018; Buelo et al. 2022).  

 

Spatial versus Temporal Variability  

During the bloom periods, concentrations of DO, pH, and phycocyanin determined from 

spatial surveys were greater compared to non-bloom periods (Figure 2.2). Additionally, 

concentrations were greater in Peter than Paul Lake. Peter and Paul Lakes had similar values 

and showed similar patterns in all variables during 2018, and dynamics of temperature were 

the same in both lakes in all three years. Spatial variability was low in the lakes and not 

substantially changed by nutrient additions. Peter Lake had similar coefficients of variation 

(hereafter CVs) as Paul Lake for the variables considered with the exception of phycocyanin 

(Figure 2.3). Phycocyanin CVs were problematic due to low and negative raw values during non-

bloom periods. The data indicated close to no cyanobacteria in the lakes and little spatial 

variability (Figure 2.2). Reliable CVs for phycocyanin could only be calculated during blooms.  

Peter Lake had similar CVs during the non-bloom periods compared to bloom periods of 

2015 and 2019, as well as years with blooms and the year without nutrient addition. The spatial 

CVs were low and ranged from 0-5.7% across all variables except for phycocyanin. A specific 

example is the comparison of mean CVs in Peter and Paul lakes for the year 2015 where values 

for temperature, DO, and pH were, respectively: 0.56% compared to 0.72%, 1.41% compared to 

0.82%, and 1.74% compared to 0.63%.  

 Temporal and spatial CVs reflect different aspects of variability and are based on 

different sets of measurements. Temporal CVs reflect daily variability for each year as 
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influenced by seasonality, weather, and blooms when nutrients were added. The spatial CVs 

represent the means of a series of average CVs from the spatial surveys for each year. The two 

measures represent different scales, but comparison is useful in indicating the importance of 

time versus space in influencing variation. The temporal CVs were greater than spatial CVs for 

temperature, DO, and pH (Table 1). Peter and Paul Lakes had similar CVs during 2018, the non-

nutrient addition year, except for temperature. pH had the greatest difference among temporal 

CVs between bloom and non-bloom years reflecting the effect of elevated primary production 

on pH in these softwater lakes.  

 

Spatial Autocorrelation in Bloom versus Non-Bloom Periods 

Here, I focused on data from 2019 because that year had the most spatial sampling 

events and two bloom periods (Figure 2.1).  Temperature followed a seasonal dynamic in both 

Peter and Paul lakes in 2019 (Figure 2.4). Nitrate was low in both lakes but rose in Peter Lake as 

nutrient addition continued indicating incomplete consumption of this nutrient by 

phytoplankton (Figure 2.4). Oxygen and pH were elevated in Peter Lake during the first bloom, 

fell below values in Paul Lake when the bloom collapsed, and increased above Paul when the 

second bloom developed at the end of the sampling season (Figure 2.4).  

In contrast with the differences observed due to blooms, Peter and Paul Lakes had 

similar values of spatial autocorrelation during the non-bloom and bloom periods (Figure 2.4). 

All mean Moran’s I values for each lake-variable combination were statistically significant. Peter 

Lake had a mean Moran’s I value of 0.28, 0.12, 0.25, 0.24, 0.15 for temperature, nitrate, DO, 

pH, and phycocyanin, respectively. Paul Lake had a mean Moran’s I value of 0.30, 0.11, 0.29, 
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0.29, 0.15 for temperature, nitrate, DO, pH, and phycocyanin, respectively. Among all the 

variables, nitrate had the lowest Moran’s I values with the other variables having similar ranges 

(Figure 2.4).  

  

Hotspot Analysis  

 There was no long-lasting spatial structure in Peter and Paul Lakes based on the Getis 

Ord GI* analysis. Peter Lake had no obvious difference in spatial structure before, during, or 

after bloom in 2019 (Figure 2.5). The Getis-Ord Gi* hotspot analysis did indicate statistically 

significant hotspots and cold spots of dissolved oxygen, but the hotspots and cold spots 

changed each sampling date. Before the bloom, the DO hotspots were on the east side of the 

lake (Figure 2.5a). The hotspots shifted to the southeast during the bloom (Figure 2.5b). Lastly 

when the bloom collapsed, there were minor hotspots located in the middle and northeast side 

of the lake (Figure 2.5c). Similarly, Paul Lake had random hot spots and cold spots that shifted 

throughout the summer without evidence of persistence (Figure 2.5).  

 

Discussion  

The variables dissolved oxygen, pH, and phycocyanin had a greater range in the spatial 

FLAMe surveys during the 2015 and 2019 bloom periods relative to other times. There were 2 

spatial sampling events during the 2019 bloom where dissolved oxygen saturation was both 

above and below 100% saturation, indicating that there were points in the lake where oxygen 

was super- and under-saturated. Despite these larger and expected ranges in variables during 

bloom periods, spatial CVs were low (< 10%) across all lake-year-variable combinations, even 
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during the bloom periods. Overall, there is low spatial variability in Peter and Paul Lakes. By 

comparison, the temporal CVs coefficient of variation for temperature, DO, and pH were 

greater than the spatial CVs for all years considered. 

All Moran’s I correlations were positive and statistically significant indicating clustering 

of values in space but because of the small magnitude of variation, spatial structure was 

relatively weak. I expected the least amount of spatial structure for temperature because 

temperature is a physical variable. I expected greater spatial variability for biologically 

influenced variables such as pH, DO (% saturation), and phycocyanin. There were a few 

sampling events where there were peaks in Moran’s I, such as DOY 170 for Peter Lake in 2015. 

In this case, Moran’s I was 0.70 for phycocyanin as the bloom was developing (i.e., rapid 

increase in cyanobacteria), but the value dropped to 0.18 and 0.24 for the immediately 

following sampling dates that occurred during the bloom (Figure 2.1a, Figure 2.4). The noisy 

and fluctuating Moran’s I values suggests that the spatial autocorrelation patterns were 

random and biologically influenced variables did not tend to have greater spatial structure than 

a physical variable like temperature. 

The hot and cold spots moved around the lake for each variable and sampling event, 

with no obvious pattern. Dominant wind direction did not match the hot or cold spots. 

Additionally, the Getis Ord GI* hotspot analysis is extremely sensitive to the distance threshold 

selected and can significantly skew the results. The distance thresholds used for this analysis 

ranged from 40-65 meters.  

The lack of spatial heterogeneity in Peter and Paul Lakes could be attributed to fast 

mixing. These lakes are small, bowl shaped, lack extensive macrophytes. These factors 
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contribute to the low heterogeneity. Overall, the results indicate mechanisms that create 

structure were slow relative to the mechanisms that homogenize structure in these lakes. In 

other lakes, spatial structure could arise from recruitment of bloom forming algae in the littoral, 

persistent directional winds, morphometric features that promote differential growth, or 

heterogeneity in nutrient concentrations. In Peter and Paul lakes, rapid mixing and apparent 

rapid spatially uniform algal growth (based on oxygen and pH dynamics) create homogeneity. 

Additionally, the effort to distribute nutrients uniformly as a methodology of the whole lake 

manipulations probably contributed to the lack of spatial heterogeneity as observed for nitrate. 

In natural systems, nutrients from the watershed often enter the system via tributaries (Rast et 

al., 1983, Robertson et al., 2011, Mooney et al., 2020) and act like point-sources contributing to 

spatial pattern (Loken et al., 2019). 

Van de Bogert et al. (2012) measured large spatial heterogeneity in ecosystem 

metabolism in Peter Lake. Calculating ecosystem metabolism involves high frequency diel 

measurements and there is likely considerable measurement error related to vertical and 

horizontal oxygen dynamics. Nevertheless, the dissolved oxygen concentrations were 

remarkably uniform spatially in the current study. Thus, the large variation in spatial 

metabolism rates is not easily explained from the spatial data of this study. Surveys done at one 

time during the morning might be insufficient to capture dynamics affecting oxygen 

concentrations over a 24-hour cycle.  

Some studies of small lakes have observed low spatial variation while in others spatial 

heterogeneity was significant. Ray et al. (2023) found low spatial heterogeneity of dissolved 

carbon dioxide and methane in ponds and shallow lakes (depths <5m). A single sample for 
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these variables is representative of the entire waterbody (Ray et al., 2023). Conversely, Ortiz & 

Wilkinson (2021) found large spatial heterogeneity in chlorophyll-a, phycocyanin, dissolved 

oxygen, and pH, and the greatest variability during an algal bloom in a shallow lake, specifically 

where there were macrophytes. Given differences among waterbodies, it is important to 

consider the factors that might create spatial heterogeneity in any given case. Based on the 

results from this study, small, spatially simple lakes exhibit low spatial heterogeneity in 

temperature, nitrate, dissolved oxygen, pH, and phycocyanin and for many purposes spatial 

variation could be ignored. 

The increasing capability of satellite and drone remote sensing for studying lakes should 

aid future research on spatial heterogeneity. Remote images can identify variation in certain 

features like phytoplankton pigments and complement field measurements to indicate the 

degree of spatial variability of lakes (Kislik et al., 2022, Fernandez-Figueroa et al., 2022, Zhou et 

al., 2023). Remote sensing and spatial surveys can complement one another to provide a better 

understanding of spatial heterogeneity (Powers et al., 2023). The degree to which a lake 

expresses spatial heterogeneity will determine the potential value of spatial information from 

in situ sampling using measurement approaches like FLAMe and satellites remote sensing. Most 

lakes are small (Downing et al., 1984) similar to those considered in this study. If the patterns 

observed in this study generalize to other small lakes, spatial variation is low and likely can be 

ignored for most purposes.  
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Table 2.1 Temporal versus spatial coefficients of variation. Coefficient of variation is reported in 
percentage.  

Lake Year Temperature 

Temporal 

 

Spatial 

DO 

Temporal 

 

Spatial 

pH 

Temporal 

 

Spatial 

Peter 2015 15.2 0.56 8.62 1.41 13.4 1.74 

Paul 2015 15.2 0.72 4.85 0.82 4.01 0.63 

Peter 2018 10.6 0.70 3.85 1.08 0.86 0.50 

Paul 2018 20.5 1.02 3.52 0.87 0.89 0.24 

Peter         2019 20.0 0.54 8.95 1.15 13.4 0.79 

Paul         2019 20.5 0.41 5.8 0.76 1.71 0.58 
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Figure 2.1. Time series of chlorophyll-a for Peter and Paul Lakes in a) 2015, b) 2018, and c) 
2019. Peter Lake received nutrient additions in 2015 and 2019.  
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Figure 2.2. Values of a) temperature, b) nitrate, c) dissolved oxygen saturation, d) pH, and e) 
phycocyanin for Peter and Paul Lakes in 2019 before, during, and after the bloom. Peter Lake is 
north of Paul Lake.  
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Figure 2.3. Time series of spatial coefficient of variation of temperature, nitrate, dissolved 
oxygen, and pH for Peter and Paul Lakes for the years studied.  
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Figure 2.4. Time series of the mean value and Moran’s I of temperature, nitrate, DO% 
Saturation, pH, and phycocyanin for Peter and Paul Lakes in 2019. The left column are time 
series of the mean values of the five studied variables. Error bars represent the range of the 
observations for each sampling event. The right column are time series of the Moran’s I value of 
the five variables. The dotted, dashed, and solid lines represent bloom onset, peak, and crash, 
respectively.  
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Figure 2.5. Hotspot analysis of dissolved oxygen for Peter Lake in 2019 on three dates indicated 
by day of year (DOY) a) before the bloom: DOY 165, b) during the bloom: DOY 210 , c) after the 
bloom collapsed: DOY 228. Hot and cold spots represent areas where high and low values 
cluster together, respectively.  
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Conclusions  
 
 Advances in water quality measurement technology increasingly enables scientists to 

examine fine temporal and spatial dynamics of waterbodies. In my study, I used high frequency 

phytoplankton pigment data and a disturbance-recovery algorithm to quantify disturbances 

and recovery in experimental and monitored lakes. Bloom onset, disturbance magnitude, and 

recovery time were measured and compared for two experimental lakes across several 

different nutrient addition manipulations. The blooms differed among lakes and years. Further, 

I demonstrated the method can be applied to monitored lakes and identify unusual 

disturbances. A next step would be to consider applying the method in real time to detect 

disturbances as they occur and to quantify their dynamics. Even more exciting would be the 

possibility of studying management interventions upon bloom detection to evaluate whether 

actions are effective.  

  I used high resolution spatial data to quantify and compare spatial heterogeneity in an 

experimental and reference lake. Surprisingly there was little spatial variability or persistent 

spatial structure in Peter and Paul Lakes even during bloom periods. An oft criticized approach 

in limnology of only sampling at the center of the lake appears effective for lakes like Peter and 

Paul. Spatial variation is so low that it can be ignored at least for the variables I considered. A 

next step in studying spatial heterogeneity in lakes would be to make similar spatial analyses 

across a large gradient of size, nutrient, and morphometry, using either the FLAMe or remote 

sensing. Such a study would allow one to characterize for what variables and conditions lakes 

transition from having low to significant spatial heterogeneity.  


