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Abstract 

For more than a century, various technological and biological limitations have hindered 
attempts to comprehensively taxonomize cells present in the mammalian nervous 
system. Although single-cell transcriptomics (scRNA-seq) are rapidly expanding our 
appreciation of the cellular diversity of neural tissues, the numerous mechanisms involved 
in translating RNA into functional and properly trafficked proteins means these results 
provide only a recipe for individual cell identities and states. To better understand the 
molecular profiles driving neural cell identity and functions, protein-based measurements 
are necessary. Herein, we generated the first single-cell protein-based atlases of the 
developing mouse brain (Chapter II) and dorsal root ganglia (DRG, Chapter III) by using 
mass cytometry, a cutting-edge technique similar to flow cytometry that employs metal-
conjugated antibodies and time-of-flight detection to quantify expression of up to 50 
biomarkers. Our results quantify simultaneous expression of neurofilaments, transcription 
factors, surface receptors, adhesion molecules, enzymes, glycoproteins, and other 
relevant molecules in millions of cells. By examining tissues collected at daily timepoints 
from embryonic day 11.5 until postnatal day 4, we surveyed how the molecular profiles 
and abundances of cells change in the brain and DRG during this critical period of 
development. The results are corroborated by immunohistochemistry (IHC) and confocal 
fluorescence microscopy of brain and DRG tissue slices. We also evaluated the 
relationship between mRNA and protein expression by comparing our single-cell protein 
measurements with scRNA-seq data published in La Manno, et al. [Nature (596):92–96, 

2021] and Sharma, et al. [Nature (577):392–398, 2022] for mouse brain and DRG, 
respectively. The results, which were confirmed by IHC and RNAscope for select makers, 
indicate discordances between mRNA and protein during mouse nervous system 
development. Pseudotime-based trajectory analyses employing the URD algorithm 
replicate canonical molecular transitions for cortical excitatory neurons, somatosensory 
neurons, glial precursors, oligodendrocytes, and Schwann cells; moreover, they predict 
two distinct pathways for producing oligodendrocyte progenitor cells in the forebrain. Our 
findings provide the highest resolution profile of single-cell protein expression in mouse 
brain and DRG available to date. Moreover, our methods and analytical strategies lay the 
foundation for future protein-based and multiomic approaches to precisely identify neural 
cells – an important step for building a complete atlas of the nervous system. 
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FUNDAMENTAL PRINCIPLES 

A Brief Historical and Evolutionary Perspective 

For millennia, identifying the composition of the nervous system was beyond our 

technological capabilities. This changed in the late nineteenth century when Santiago 

Ramón y Cajal employed light microscopy and an innovative staining technique devised 

by his mentor, Camillo Golgi, to catalog the morphology of individual neural cells 

throughout the central nervous system (CNS) and peripheral nervous system (PNS) 

(Garcia-Lopez et al., 2010). His findings, built from an enormous collection of drawings, 

led him to conclude that neurons were individual units with distinct connections – a 

controversial concept that contradicted both his mentor and the dogma widely accepted 

by the field at the time, namely, that neuronal processes form a continuous web or 

“reticulum”. Cajal’s contributions, which earned him the title of “Father of Modern 

Neuroscience”, provide the foundation upon which all neural cells are classified.  

Since then, classification of neural cells has vastly expanded beyond morphology to 

include ultrastructural features (Gray, 1959), electrophysiological properties (Adrian, 

1954; Curtis and Cole, 1940; Eccles et al., 1957; Renshaw et al., 1940; Woldring and 

Dirken, 1950), metabolic properties (Magistretti and Allaman, 2015), nucleic acid 

expression (Gall and Pardue, 1969; Macaulay et al., 2017), protein expression (Coons et 

al., 1941), and developmental lineage (Rakic, 1982). Some of the key milestones in efforts 

to classify neural cells are shown in Figure 1. 
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Figure 1. Milestones of neural cell identification. Select events key to our ability to understand and 

classify neural cell types are shown. The primary researcher or institute to which each milestone is attributed 

is shown in parentheses. 

In one of the simplest species with a centralized nervous system, Caenorhabditis elegans 

(worm), the specific identity of each neuron has been characterized 

(http://www.wormatlas.org/). However, as organisms evolved to become more complex 

and undertake more complicated tasks, neural networks became more extensive in size, 

specialized in function, and diverse in composition (Geisler, 2018; Wilsch-Bräuninger et 

al., 2016). Therefore, in many invertebrates (e.g., echinoderms, arthropods, nematodes, 

mollusks, and annelids) and nearly all vertebrates (e.g., fish, amphibians, reptiles, birds, 

and mammals), the vast cellular diversity and sheer magnitude of cell numbers has thus 

far prevented such comprehensive classification. Notably, several databases are 

maintaining growing lists of neuronal subtypes, including the Allen Brain Institute 

(http://celltypes.brain-map.org/) and Hippocampome (http:///hippocampome.org).  

The human brain is large [86 billion neurons and 85 billion non-neuronal cells (Azevedo 

et al., 2009)] and contains a far more heterogeneous population of neural cells compared 
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with other species. In particular, the human neocortex supports a wide array of highly 

specialized activities that form the basis for higher functions such as perception, 

language, and emotion. Indeed, the increased relative size and gyrated structure of the 

human cortex compared with other primates is what affords humans our “higher” 

intelligence (Geisler, 2018; Wilsch-Bräuninger et al., 2016), including an advanced 

prefrontal cortex that permits “executive control” of complex behaviors such as planning, 

personality, decision making, and modulation of social interactions (Domenech and 

Koechlin, 2015; Miller, 2000). 

Because of these vast evolutionary differences, it is important to consider the 

conservation and divergence of neural cell types and network properties when 

approaching neuroscience-related questions and interpreting data from model systems 

used in the laboratory. This is perhaps most important when considering hypotheses 

related to human health and neurological disease. 

Significance for Human Health 

Development of the nervous system involves a highly regulated symphony of intrinsic and 

extrinsic cues that guide cells into their proper fates, functions, and locations. Disruption 

of this symphony by genetic or metabolic disorders, nutrient deprivation, immune 

dysfunction, infectious disease, or physical trauma is associated with a wide array of 

debilitating neurological disorders.  

Clinically, neurodevelopmental disorders can be divided into four general categories: 

structural malformations, cognitive and neuropsychiatric disorders, localized cortical 
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dysplasias, and motor disorders. However, from a research perspective, it is often more 

useful to consider the developmental origin of these disorders, i.e., defects in cell 

proliferation, specification, migration, and/or survival (Manzini and Walsh, 2011). For 

example, microcephaly (reduced brain size and volume) occurs because of proliferation-

related defects in neural progenitors (Dwyer et al., 2016; Romero et al., 2018; Sun and 

Hevner, 2014), while lissencephaly (loss of gyral patterning and normal laminar structure) 

arises from defective neuronal migration (Pilz et al., 1998; Romero et al., 2018). Thus, 

neurodevelopmental disorders, which are primarily classified by clinical symptoms, often 

comprise multiple disorders with slightly varying causes but similar symptomatic output. 

For this reason, many disorders thought to originate during cortical development are 

classified as “spectrum” disorders, perhaps most notably autism (Lauritsen, 2013), which 

encompasses a broad range of genetic etiologies and clinical manifestations.  

Neurodevelopmental disruptions have also been implicated in several neurological 

disorders that manifest during adulthood, including schizophrenia (Nour and Howes, 

2015; Owen et al., 2011), Alzheimer’s disease (Arendt et al., 2017; Bothwell and Giniger, 

2000), and epilepsy (Bozzi et al., 2012; Nickels et al., 2016). Therefore, as both the 

average age of the global population (World Bank Group, http://data.worldbank.org) and 

incidence of neurodegeneration (McGovern Institute for Brain Research, 

https://mcgovern.mit.edu) continue to increase, roles for neurodevelopment in 

neurodegenerative disorders are of growing importance. Accordingly, it is more important 

than ever to increase our understanding of how the nervous system develops so that we 
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might intervene as early as possible to prevent disease and improve human health 

outcomes. 

Modeling Mammalian Development in the Laboratory 

Use of in vitro and in vivo models has greatly enhanced understanding of the molecular 

and cellular processes essential for nervous system development. Generally, such 

models employ cells from three sources: immortalized cell lines, pluripotent stem cells, 

and primary neural tissue – each with its own unique benefits and limitations (Azari and 

Reynolds, 2016). Primary cell models, including cells and tissue slices, are directly 

harvested from animal neural tissues. Outside of performing in vivo studies, this source 

of cells provides the best approximation of in vivo physiology. However, it remains of 

utmost importance to consider conserved and divergent properties when applying the 

results of studies performed in model systems to interpretation of human functions and 

disease mechanisms – especially for the brain. For brevity, we will limit further discussion 

of this topic to mouse models of nervous system development. 

First, in terms of neuroanatomy, humans exhibit an extensively folded gyrencephalic 

brain, while mice have a lissencephalic (smooth) brain lacking gyrations. This expansion 

and gyration of the human brain compels differentiating neurons to migrate along longer 

paths, which has been correlated with an increased number of transit-amplifying basal 

progenitors [including neural progenitors cells (NPCs) and radial glial cells (RGCs)] in 

humans compared with mice and small primates (De Juan Romero and Borrell, 2015; 

Wilsch-Bräuninger et al., 2016; Romero et al., 2018). In addition, although essential 
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features of cortical lamination appear to be preserved between mice and humans, layers 

II and III are greatly expanded in humans, which has enormous implications on intellectual 

function (DeFelipe, 2011). As such, it is especially important to consider mechanisms 

underlying cortical growth and folding when abstracting information about human cortical 

disorders from mouse model results.  

Figure 2. Comparison of human and mouse brain anatomy. a) Coronal sections of human and mouse 

brain from the Allen Institute’s Human Brain Atlas (https://human.brain-map.org) and Mouse Brain Atlas 

(https://mouse.brain-map.org). b) Comparison of cortical layer thicknesses between humans and mice. 

Adapted from DeFelipe, 2011. The evolution of the brain, the human nature of cortical circuits, and 

intellectual creativity. Frontiers Neuroanatomy. 

Second, species-specific patterns in the temporal progression of developmental 

neurogenesis and gliogenesis must be taken into account. As shown in Figure 8, human 
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cortical development takes much longer and displays an amplified period of neurogenesis 

for layer II/III neurons compared with mice. These expanded features increase the chance 

for developmental perturbations that cause cortical dysfunction in humans (Ross and 

Walsh, 2001; Romero et al., 2018).  

Figure 3. Timeline of key events during human and mouse cortical development. Figure and legend 

originally published in van den Ameele, et al, 2014. Thinking out of the dish: what to learn about cortical 

development using pluripotent stem cells. Trends in Neuroscience. Reprinted with permission from Elsevier 

(License No. 5678150511157). 

Finally, molecular and cellular differences between mice and humans must be 

considered. A ratio of approximately 50% neurons and 50% glia is conserved amongst 

rodents (Herculano-Houzel et al., 2006), primates, and humans (Herculano-Houzel et al., 

2014, 2007). However, numerous theories have been put forward to describe how 

discrete changes in the development of neurons, astrocytes, and/or oligodendrocytes 

result in enhancement of specific functions/behaviors in mice or humans (Oberheim et 

al., 2009; Miller et al., 2010; Oberheim et al., 2012; Molnár and Pollen, 2014). In terms of 

gene expression in neural tissues, the Allen Institute (https://portal.brain-map.org/) 

provides one of the most comprehensive databases of results from mouse and human 

studies, while the Gene Expression Omnibus/Sequence Read Archive and other 
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databases are rapidly accruing microarray, RNA sequencing, and other high-throughput 

gene expression data (https://www.ncbi.nlm.nih.gov/geo/). However, differences in 

protein expression – an essential driver of cell identity and function – and cellular 

compositions are not as well catalogued.  

CELLULAR COMPONENTS OF THE NERVOUS SYSTEM 

Although the mammalian brain contains an enormous diversity of neural cells, they 

remarkably arise from just two types of cells: neural stem cells (NSCs) in the CNS and 

neural crest cells (NCCs) in the PNS. In response to an array of intrinsic and extrinsic 

factors (e.g., morphogens, pro-neural transcription factors, and cell cycle kinetics), these 

cells proliferate, differentiate, migrate, or die to ultimately produce the nervous tissue 

structures observed in adults (Edlund and Jessell, 1999). This process also involves 

many nonneural cell types, such as microglia and vascular cells, which perform essential 

functions to ensure proper nervous system development (Morimoto and Nakajima, 2019; 

Vogenstahl et al., 2022). In this section, the major classes of neural and nonneural cells 

found in the mammalian nervous system are briefly overviewed.   

Neural Cells 
Neural Stem Cells and Progenitors 

The term “neural stem cell” is applied to self-renewing cells with the multipotent capacity 

to differentiate into all three major classes of neural cells: neurons, astrocytes, and 

oligodendroglia (Gage, 2000). In practice, the term NSCs is applied to neuroepithelial 

9



cells, radial glial cells (RGCs), adult neural stem cells, and even NCCs in vivo, as well as 

pluripotent stem-cell derived cells biased towards a neural phenotype in vitro.  

In vertebrates, NSCs arise from the neural tube and ultimately generate virtually all the 

neural cells found in the brain and spinal cord. Molecularly they can be identified by their 

expression of the intermediate filament nestin and transcription factor Sox2 (Hutton and 

Pevny, 2011). In addition, they can be further classified by their location, polarity, and 

expression of factors responsible for their patterning and identity [e.g., Pax6 for cortical 

neural progenitors (Heins et al., 2002) and Mnx1 for spinal cord motor neurons (Lee et 

al., 2004)].  

As indicated by their name, NCCs arise from the neural crest, which initially forms the 

border between the neural plate and ectoderm. These cells are highly migratory and 

eventually form a wide range of cell types, including neurons and glia of the PNS, as well 

as melanocytes, smooth muscle, and craniofacial cartilage and bone (Le Douarin et al., 

2004). In addition to nestin and Sox2, NCCs express the transcription factor Sox10, which 

is essential for maintaining their multipotency (Kim et al., 2003).   

As development proceeds, the ability of NSCs/NCCs to produce different progeny is 

spatiotemporally restricted by cell intrinsic programs and extrinsic cues (Yoon et al., 

2018). As shown in Figure 4, NSCs ultimately terminate neurogenesis in favor of 

gliogenesis. During this progression, NSCs display increased expression of astroglial 

genes such as brain lipid-binding protein [BLBP, also known as fatty acid-binding protein 

7 (FABP7)], astrocyte-specific glutamate transporter (GLAST), and glial fibrillary acidic 
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protein (GFAP) (Hartfuss et al., 2001; Heins et al., 2002; Kriegstein and Alvarez-Buylla, 

2009; Noctor et al., 2002). In addition, a quiescent subset of NSCs give rise to adult neural 

stem cells (Fuentealba et al., 2015; Furutachi et al., 2015; Hu et al., 2017; Merkle et al., 

2004; Yuzwa et al., 2017), which retain their core transcriptional identity (Yuzwa et al., 

2017) and express vascular cell adhesion molecule (VCAM) to maintain their stem-like 

properties (Hu et al., 2017).  

Figure 4. Lineage tree of neural stem cells. Lineages of neural stem cells in the embryonic and postnatal 

brain are shown in the upper half, while lineages in the adult SVZ and hippocampus are shown in the bottom 

half. Solid lines indicate experimentally validated lineages, while dashed arrows indicate hypothetical 

pathways. INP, intermediate neuronal progenitor; GPC, astroglial progenitor cells; OPC, oligodendrocyte 

progenitor cell; SGZ: subgranular zone; SVZ, subventricular zone. Adapted from Kriegstein and Alavarez-

Buylla, 2009. The glial nature of embryonic and adult neural stem cells. Annual Review of Neuroscience. 

Reprinted with permission from Annual Reviews, Inc. (License No. 1472119-1). 

Neural progenitor cells (NPCs) represent an intermediate cell state in which cells retain a 

limited capacity for self-renewal but no longer have the multipotency of NSCs to generate 
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all neural cell types. Instead, NPCs can be subclassified at their most basic level as either 

“neuronal” or “glial” according to their biomarker expression profile, proliferative capacity, 

polarity, and lineage restriction. 

In the neocortex, a key event in the transition from NSC to intermediate neuronal 

progenitor (INP) is downregulation of Pax6 and upregulation of Tbr2 (Englund et al., 2005; 

Sessa et al., 2017), which serves as a specific biomarker of INPs. Similarly, Sox10 

expression is downregulated in favor of neurogenins 1/2 and Islet1 in during early 

specification of sensory neuronal progenitors in the dorsal root ganglia (DRG) (Ma et al., 

1999; Sun et al., 2008), a collection of sensory ganglia found along the spinal cord (Figure 

5). 

Figure 5. Anatomy of the mouse dorsal root ganglia. a, Location of dorsal root ganglia (DRG) along the 

spinal cord in relationship to a peripheral nerve. b, Illustration of DRG connections to the spinal cord. Figure 

generated using BioRender (http://www.biorender.com). 

Expression of pro-neuronal transcription factors like Tbr2 and Islet1 occurs in response 

to a symphony of instructive and permissive cues. These factors act to suppress 

gliogenesis of NSCs [considered the default differentiation pathway (Doetsch, 2003)], 
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thus permitting a tightly regulated window of neurogenesis (Florio and Huttner, 2014; 

Kriegstein and Alvarez-Buylla, 2009).  

Excitatory Neurons 

Neurons are specialized cells that transmit information throughout the body via 

electrochemical signaling. To achieve this, they express a diverse range of proteins (such 

as ionotropic and metabotropic channels, electrogenic pumps, and vesicular transporters) 

that maintain dynamic stability of specific ions and metabolites within the cell, thus 

generating an electrical potential across the cell membrane. However, signaling by 

neurons is highly refined throughout the CNS and PNS in a geographic and cell type-

specific manner, resulting in enormous complexity of neuronal cell types, especially in the 

brain.  

For example, in the cerebral cortex, neurons with similar projection patterns are frequently 

dispersed across multiple laminar layers and organized into ontogenetic columns (or 

“cortical fields”) responsible for different functions (Arai and Pierani, 2014; Mountcastle, 

1997). As information about cortical connectivity and the molecular profile of these cells 

has expanded, it has become clear that hodological and laminar criteria are insufficient 

to define all excitatory projection neuron subtypes (Franco and Müller, 2013). Moreover, 

although NPCs are thought to be pre-destined for specific neuronal and laminar fates 

(Bedogni et al., 2010; Chen et al., 2008; Leone et al., 2008; Zimmer et al., 2004), the 

developmental mechanisms underlying specification and integration of distinct neuronal 

subtypes are only beginning to be understood (Ohtaka-Maruyama and Okado, 2015).  
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Neuronal cell diversity is first established by the location in which the neuronal progenitor 

was born. For example, in the cerebral cortex, neuronal progenitors in the pallium almost 

exclusively generate glutamatergic excitatory neurons, while those arising more ventrally 

in the medial ganglionic eminence almost exclusively produce GABAergic inhibitory 

neurons (Lavdas et al., 1999; Miyoshi et al., 2010; Xu et al., 2004). Similarly, in the PNS, 

the identity of cells derived from NCCs is heavily influenced by their original position along 

the anterior-posterior axis, as shown in Figure 6. 
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Figure 6. Overview of early development, anatomy, and the major DRG somatosensory neuron 
subtypes. (A) Dorsal root ganglia (DRG) neurons derive from neural crest cells that delaminate from the 

dorsal neural tube and coalesce to form DRGs. Rodents typically have 30 or 31 pairs of DRGs; 8 pairs of 

cervical, 13 pairs of thoracic, 5 or 6 pairs of lumbar, and 4 pairs of sacral DRGs. Nascent DRG neurons 
assume a spindle-shaped, bipolar morphology, with axons emanating from opposite sides of the cell body. 

A stem axonal protrusion containing the two axonal branches then forms and refines to assume the mature 

T shape pseudo-unipolar morphology by birth. (B) Somatosensory neuron cell bodies reside in DRG, 

adjacent to the spinal cord. DRG neurons have a pseudo-unipolar morphology with axonal branches 

extending into both the periphery and the spinal cord. The major peripheral end organs formed by DRG 

neuron subtypes are illustrated on the right, and the general, albeit oversimplified spinal cord lamination 

patterns of their central projections are also shown. Note that Aβ LTMR fibers and proprioceptors also have 

central branches with multiple collaterals extending along the rostral-caudal axis of the spinal cord and an 
additional branch that ascends via the dorsal column, often reaching the dorsal column nuclei of the 

brainstem. Figure and legend originally published in Meltzer, et al., 2021. The cellular and molecular bases 

of somatosensory neuron development. Neuron. Reprinted with permission from Elsevier (License No. 

5678160104207). 

Subsequent mechanisms of neuronal specification are far more complicated, involving 

changes in epigenetics, gene expression, cell polarity, cytoskeletal dynamics, adhesion 

properties, and a host of other factors, as well as interactions with nonneural cells. 

Evaluating gene and protein expression of neurons at the single-cell level promises to 

significantly increase our understanding of these mechanisms, as well as provide an 

answer to the question: how many types of neurons exist? 

Generally, cortical neuronal precursors and early neurons can be identified by their 

expression of specific surface antigens [e.g., CD24 and polysialylated neural cell 

adhesion molecule (PSA-NCAM)], pro-neuronal transcription factors (e.g., NeuroD1 and 

Tbr1), and neurofilaments (e.g., doublecortin and beta III tubulin). More mature neurons 

can be identified by their expression of various neurofilaments [e.g., mitogen-activated 
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protein 2 (MAP2)], the nuclear proteins Rbfox3 (NeuN) and ELAV3/4 (HuC/HuD), as well 

as numerous other markers specific for individual neuronal subtypes. Mature neurons can 

be classified as either excitatory (glutamatergic) or inhibitory (GABAergic), in addition to 

further classification by their expression of a range of neurotransmitters and/or receptors. 

For example, dopaminergic neurons express receptors specific for dopamine, while 

serotonergic neurons express receptors that specifically bind serotonin. 

Inhibitory Neurons 

Unlike excitatory neurons, which frequently make long-range projections, interneurons 

participate in localized circuit regulation to inhibit signaling of target neurons. This 

inhibitory function is produced by the inhibitory neurotransmitter γ-aminobutyric acid 

(GABA) (McCormick, 1989). Accordingly, inhibitory neurons can be molecularly identified 

by their expression of proteins related to GABA synthesis and transmission, such as 

glutamic acid decarboxylases 1 and 2 (GAD67 and GAD65, respectively) and vesicular 

GABA transporter, respectively. 

In the cerebral cortex, cortical interneurons arise from NPCs in the subpallium (Yuste et 

al., 2020), while cortical excitatory neurons are born in the ventricular zone (VZ) and 

subventricular zone (SVZ). Similar spatial restriction of inhibitory and excitatory 

neurogenesis in other regions of the brain (e.g., cerebellar ventricular zone and rhombic 

lip, respectively) initially led researchers to believe that these two main lineages of 

neurons diverge at the level of NPC or even RGC. However, it was recently shown that 

individual NPCs in the embryonic mouse cerebellum are capable of generating both 

16



excitatory and inhibitory neurons (Zhang et al., 2021), suggesting that specification of 

these cell types may occur later during neuronal differentiation. 

Astroglia 

Named for their unique star-shaped morphologies, astrocytes are a glial cell subtype 

found in the CNS that is important for brain structure, metabolic support, 

neurotransmission, and regulation of the extracellular space surrounding neurons and 

oligodendroglia (Khakh and Sofroniew, 2015; Sofroniew and Vinters, 2010). Satellite glial 

cells (SGCs) are the equivalent of astrocytes in sensory, parasympathetic, and 

sympathetic ganglia. They display similar expression profiles, morphologies, and 

functions as astrocytes (Hanani and Spray, 2020). Originally thought to primarily function 

as support cells for neurons, the neuroscience community has recognized more important 

roles for astroglia and SGCs during development (Molofsky et al., 2012), 

neuroinflammation (Colombo and Farina, 2016), and neurotransmission (Cornell-Bell and 

Finkbeiner, 1991; Perea et al., 2009). Moreover, astrocytes have been implicated in 

neurological disorders such as epilepsy (Coulter and Steinhäuser, 2015) and multiple 

sclerosis (Ponath et al., 2018). 

All glial cells are thought to arise from a common glial-restricted progenitor, although 

discrete lineage pathways underlying astroglia development are less clear. Indeed, it has 

been exceptionally difficult to fully elucidate the developmental specification and/or 

spatiotemporal diversification of astrocytes and SGCs because there is not a single 

biomarker or method to characterize different subtypes. That is, expression of numerous 
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“glial” markers by astrocytes has not been satisfactorily correlated to their identity, as 

opposed to their signaling state (e.g., activation in response to injury or inflammation). 

However, the existence of an “O2A” neural progenitor with the capacity to generate type 

2 astrocytes and oligodendrocytes has been reported (Baracskay et al., 2007; Hart et al., 

1989). These cells express a mix of NSC, astroglia, and oligodendrocyte progenitor cell 

markers, including A2B5, GLAST, and platelet-derived growth factor α (PDGFRα). 

Morphologically, three types of astrocytes exist: fibrous, protoplasmic, and radial. 

Although astrocytes exhibit regional heterogeneity in the CNS (Chai et al., 2017), which 

is important for synaptogenesis and repair (Tsai et al., 2012), how this is achieved and 

maintained remains unknown. In the PNS, as many as five distinct SGC subtypes have 

been identified, including SGCs “transcriptionally tuned” to accommodate sensory and 

sympathetic ganglia-specific functions (Mapps et al., 2022). 

To achieve better understanding of the identity and functional characteristics of astrocytes 

and SGCs, approaches capable of measuring an increased number of biomarkers are 

necessary, such as single-cell transcriptomic or proteomic techniques. 

Oligodendroglia 

As neural circuitry became more refined, it became necessary to develop strategies to 

increase the speed and fidelity of certain types of neuronal transmission. To achieve this, 

the majority of bilaterian species evolved oligodendroglia and/or Schwann cells, which 
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form myelin sheaths around the axons of specific neurons to insulate signals in the CNS 

and PNS, respectively (Hartline, 2011; Salzer, 2015).  

In the CNS, oligodendrocyte progenitor cells (OPCs) are initially specified from glial-

restricted NPCs by downregulation of NSC markers such as Sox2 and sequential 

upregulation of Sox8, Sox9 (Wegner and Stolt, 2005), and Olig2, which induces 

expression of Sox10 and PDGFRα (Hart et al., 1989; Kuhlbrodt et al., 1998; Noble et al., 

1988; Richardson et al., 1988). In mice, the first wave of oligodendrogenesis originates in 

the SVZ of the medial ganglionic eminence at E12.5, followed by two rounds arising from 

the lateral and caudal ganglionic eminences commencing at E15.5 (Fancy et al., 2009; 

Kessaris et al., 2006), and a final wave at P0 in the dorsal SVZ (Kessaris et al., 2006; 

Rowitch and Kriegstein, 2010). OPCs originating from these waves migrate throughout 

the cerebral cortex, whereby they begin to differentiate and mature, generating non-

myelinating oligodendrocytes characterized by O4 glycoprotein expression in addition to 

OPC markers (Sommer and Schachner, 1981). As oligodendrocytes mature and become 

myelinating cells, they begin to express myelin-associated markers such as myelin-

binding protein (MBP) and myelin oligodendrocyte glycoprotein (Linington and Lassmann, 

1987).  

In the PNS, Schwann cell precursors are specified from NCCs through upregulation of 

Sox2 and Egr1 (Svaren and Meijer, 2008). Initial differentiation occurs around E12.5 in 

mice and by E15.5, immature Schwann cells expressing can be observed (Jessen et al., 
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2015). During the postnatal period, subsets of immature Schwann cells begin to express 

Egr2, Olig1, and myelin-associated proteins (Svaren and Meijer, 2008). 

Notably, although distinct waves and discrete locations of oligodendrogenesis have been 

described in the brain (Jakovcevski et al., 2009; van Tilborg et al., 2018), how and whether 

this spatiotemporal restriction produces functionally distinct OPC or oligodendrocyte 

subtypes remains unknown. Investigating such questions is important because OPCs and 

oligodendrocytes play important roles in the maintenance of normal CNS function and 

have been implicated in traumatic brain injury (Dent et al., 2015) and neurological 

disorders such as multiple sclerosis (Patel and Balabanov, 2012). Similarly, relatively little 

is known about potential ganglia-specific subsets of Schwann cells, although these cells 

have been implicated in chronic pain (Wei et al., 2019), peripheral neuropathies 

(Lehmann and Höke, 2010), and other PNS disorders (Kamil et al., 2019). 

Ependymal Cells 

Ependymal cells, a type of glial cell that lines the ventricles of the brain, play an important 

role in production and regulation of cerebral spinal fluid. Notably, while a few studies 

identified ependymal cells to be a source of adult NSCs (Carlén et al., 2009; Johansson 

et al., 1999), these cells lack the capacity to regenerate; thus, ependymal cells do not 

satisfy one of the key criteria for NSCs: self-renewal. Regardless, ependymal cells 

express several markers associated with NSCs and NPCs including S100B, CD133, and 

CD124. In rats, the majority of ependymal cells arise from between E14 and E16, and it 

does not appear that these cells proliferate during adulthood (Spassky et al., 2001).  
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Nonneural Cells 
Microglia and Macrophages 

Derived from yolk sac-primitive macrophages (Ginhoux et al., 2013, 2010), microglia are 

considered to be tissue-resident macrophages of the CNS, whose role is protecting the 

brain against infection and injury (Gehrmann et al., 1995; Kreutzberg, 1996). To achieve 

this, microglia constantly survey the brain parenchyma for signals indicating damage or 

infection (Davalos et al., 2005; Lehnardt, 2010; Nimmerjahn et al., 2005). Detection of 

such signals stimulate microglia to adapt either a pro-inflammatory or anti-inflammatory 

state, which allows them to clear pathogens, protect neural cells from inflammation-

induced damage, and repair injury (Goldmann and Prinz, 2013; Minghetti and Levi, 1998). 

Microglia begin to invade the CNS during early development (Alliot et al., 1999; Ransohoff 

and Perry, 2009) and thereafter comprise 5%–15% of all cells in the brain (Pelvig et al., 

2008). Colonization of the early embryonic brain is a conserved feature among vertebrate 

species (Hanisch and Kettenmann, 2007; Herbomel et al., 2001; Schlegelmilch et al., 

2011; Swinnen et al., 2013; Verney et al., 2010), suggesting an essential role for microglia 

in brain development. Indeed, during CNS development, the balance of microglial 

activation can significantly impact NSC differentiation (Alliot et al., 1999; Osman et al., 

2019; Ransohoff and Perry, 2009), neuronal survival (Bessis et al., 2007), and circuit 

integration (Squarzoni et al., 2014). Moreover, CNS infection or injury during development 

results in microglial activation and concomitant release of a variety of pro- and/or anti-

inflammatory factors that can profoundly affect neurogenesis and gliogenesis 

(Shigemoto-Mogami et al., 2014). 
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The functions and surface marker expression profile of microglia and myeloid cells is 

extremely similar, with both expressing integrin alpha M (CD11b), protein tyrosine 

phosphatase receptor type C (CD45), and the surface glycoproteins Ly6C, Ly6G, and 

F4/80 (Korzhevskii and Kirik, 2016). However, much less is known about the functions 

and expression profile of tissue-resident macrophages in the PNS. Although they 

reportedly display similar transcriptional profiles with CNS microglia, some regional 

specificity was observed between tissue-resident macrophages of the brain, spinal cord, 

DRG, sciatic nerve, fascia, and vagus nerve (Wang et al., 2020). Considering the 

increasing number of functions attributed to microglia, research to better understand the 

functions of tissue-resident macrophages in the PNS seems a very worthwhile endeavor. 

Vascular Cells 

Vascularization of the CNS begins around E9.5 when endothelial cells form primitive 

vessels by interacting with pericytes (specialized cells that wrap around vessels) in a 

process chaperoned by yolk sac-derived tissue macrophages (microglia precursors) 

(Fantin et al., 2010; Schmidt and Carmeliet, 2010). By E11, neighboring radial vessels 

anastomose the ventral and dorsal forebrain (Fantin et al., 2010; Tata et al., 2015; 

Vasudevan et al., 2008) under the guidance of neuroepithelial cells and NPCs, which 

directly and indirectly attract sprouting vessels towards the VZ (Engelhardt and Sorokin, 

2009; Fantin et al., 2010; Tata et al., 2016). As endothelial cells mature, they form 

specialized interactions (tight junctions) with pericytes and the end feet of astrocytes to 

establish a blood–brain barrier, the integrity of which is essential for spatially restricting 

blood flow and controlling the brain’s interactions with the circulatory system throughout 
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life (Engelhardt and Liebner, 2014; Ruhrberg and Bautch, 2013; Tata et al., 2015). 

Notably, proper vascularization is also essential for proper OPC migration (Tsai et al., 

2016). 

Key markers for brain endothelial cells include platelet endothelial cell adhesion molecule 

1 (PECAM), PDGFRβ, melanoma cell adhesion molecule (MCAM), and VCAM (He et al., 

2016; Zeisel et al., 2015). Thus, to fully comprehend how interactions between vascular 

cells and neural cells drive differentiation, migration, and survival during CNS 

development, an approach incorporating a broad range of markers for both neural and 

nonneural cell types is required. 

Fibroblasts 

Fibroblasts serve as the main cellular component of connective tissues that support 

various organs and tissues throughout the body. They achieve this function by secreting 

collagen to maintain the extracellular matrix (P. Lu et al., 2011). In the CNS, fibroblasts 

are an important component of the meninges, which stabilize the brain and spinal cord to 

prevent injury. In addition, the meninges support functions of the neurovasculature, 

nerves, lymphatics, and cerebrospinal fluid (Decimo et al., 2012). In the PNS, fibroblasts 

form the meninges that envelop the spinal roots and serve as a constituent of other 

connective tissues (e.g., epineurium, perineurium, and endoneurium) (Richard et al., 

2012). All fibroblasts characteristically express collagens (typically A1 and A2). In 

addition, they may express p75 neurotrophic receptor (p75NTR), PDGFR⍺, vimentin, 

and a range of other markers (Muhl et al., 2020). 
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THE SINGLE-CELL OMICS REVOLUTION 

Genomics and Transcriptomics 

Technology is essential for expanding our knowledge about the nervous system. Although 

a multitude of approaches have been applied to evaluate mechanisms responsible for 

nervous system development and disease in species ranging from worms to humans, 

progress has been stymied by low-throughput and/or low-resolution methods, which 

restrict the number of cells or biomarkers that can be examined. 

Fortunately, recent advances in high-throughput sequencing technology permit high-

resolution methods, such as genomic sequencing and transcriptomic sequencing (RNA-

Seq), that provide quantifiable data about millions of molecular targets (Adams et al., 

1991; Shendure and Ji, 2008). Collectively, such techniques are referred to as “omics” 

technologies (e.g., genomics, epigenomics, transcriptomics, and proteomics) and their 

goal is to define all the molecular constituents within a sample. Further refinement led to 

single-nuclei and single-cell versions of these techniques (C. Chen et al., 2017; Chu et 

al., 2017; Fu et al., 2015; Lister et al., 2008; Tang et al., 2009; Xing et al., 2021; Zong et 

al., 2012), which are quickly revolutionizing our understanding of the molecular and 

cellular complexity of a wide range of tissues.  

Indeed, in the few short years since the advent of these techniques, the number of distinct 

neural cell types thought to exist in the CNS has vastly increased (Cuevas-Diaz Duran et 

al., 2017). In the hypothalamus alone, there are currently predicted to be at least 62 
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neuronal subtypes (Romanov et al., 2017) – a number that pales in comparison with the 

distinct number of neurons in the neocortex. Accordingly, high-resolution, single-nuclei or 

single-cell techniques are required to distinguish the potentially thousands of 

neurochemically and physiologically distinct cell types in the mammalian nervous system. 

Single-cell transcriptomics (scRNA-seq) is particularly informative for distinguishing 

neural cell types (La Manno et al., 2016; Kee et al., 2017; Frazer et al., 2017; Bifari et al., 

2017; Y.-J. J. Chen et al., 2017; Yuzwa et al., 2017; Mayer et al., 2018; Rosenberg et al., 

2018; Tiklová et al., 2019; Wizeman et al., 2019; Guo and Li, 2019; Zhang et al., 2020; 

Romanov et al., 2020; Zhou et al., 2020; Kim et al., 2020; Li et al., 2020; Lee et al., 2022). 

The accumulating results are producing a high-dimensional atlas of distinct neural cell 

types in the adult brain and shedding light on the dynamic molecular profiles of cells 

during nervous system development.  

scRNA-seq has been especially useful for refining classifications of inhibitory neurons. 

Previously, it was noted that use of only three markers (parvalbumin, somatostatin and 

the ionotropic serotonin receptor 5HT3a) can account for nearly all neocortical GABAergic 

neurons (Rudy et al., 2011). However, a recent scRNA-seq study identified a range of 

cell-adhesion molecules, transmitter-modulator receptors, ion channels, signaling 

proteins, neuropeptides, vesicular release components, and transcription factors related 

to cellular communication as essential for GABAergic neuronal identity (Paul et al., 2017). 

Moreover, transcriptomic profiling demonstrates the existence of as many as 16 distinct 
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interneuron subtypes in the developing and juvenile mouse cortex and hippocampus 

(Yuzwa et al., 2017; Zeisel et al., 2015). 

It should be noted that because measurements of mRNA transcripts are still several steps 

removed from protein function (e.g., translation, post-translational modification, and 

subcellular trafficking), scRNA-seq provides only a limited view of cellular identity and 

function. Moreover, it remains a low-throughput and expensive technique with the 

inherent potential for dropouts (AlJanahi et al., 2018; Kharchenko et al., 2014). 

Regardless, these studies provide an enormously valuable unbiased set of information 

about individual cells, meaning improved analytical and intersectional methods are now 

needed to evaluate the functional outcomes of scRNA-seq and other omics findings.   

Methods to Analyze Single-Cell Omics Data 

Early attempts to characterize high-dimensional data sets employed principal component 

analysis (PCA), a statistical method that reduces the dimensionality of data by calculating 

a small number of “principal components” that preserve the variability of the original data 

while displaying it in a reduced number (usually two or three) of dimensions (Bendall et 

al., 2011; Gewers et al., 2021; Newell et al., 2012). However, because PCA assumes that 

inputs have linear relationships, it is of limited utility for analyzing complex biological 

processes, which exhibit more dynamic activities.  

To overcome challenges associated with high-dimensional data, several methods have 

been developed. As shown in Figure 8, Spanning-Tree Progression Analysis of Density-
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Normalized Events (SPADE) outputs a minimal-spanning tree consisting of “nodes” 

representing clusters of cells with similar phenotypes (Qiu et al., 2011). However, 

because nodes represent multiple cells, use of SPADE eliminates the single-cell 

resolution of input data. To enhance visual interpretation of data, nonlinear 

dimensionality can be reduced using methods such as t-Distributed Stochastic 

Neighbor Embedding (t-SNE) and Uniform Manifold and Approximation (UMAP) 

(McInnes et al., 2018), which output data as a two- or three-dimensional scatter plot 

(Figure 7). Briefly, cells are first clustered by their pairwise molecular similarity for 

all data points before an iterative process to evaluate differences between high- and 

low-dimensional matrices is performed. This is achieved using the k-nearest neighbors 

(k-NN) algorithm (Fix and Hodges, 1989), which predicts the groupings of individual 

cells in high-dimensional space. The results provide a visualization of local and global 

relationships between cells, including local and global structures. 

Figure 7. Example outputs of high-dimensional analysis for mouse brain samples. Spanning-Tree 

Progression Analysis of Density-Normalized Events (SPADE), t-distributed Stochastic Neighbor 

Embedding (t-SNE), and Uniform Manifold and Approximation (UMAP) are shown. 
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Neither t-SNE nor UMAP assign cells to specific clusters, but this can be achieved with 

manual gating, PhenoGraph (Levine et al., 2015) or CITRUS (Polikowsky and Drake, 

2019) software, or publicly available algorithms for R or Python. At present, the Leiden 

algorithm (Traag et al., 2019) is the premier choice for single-cell clustering analyses. As 

shown in Figure 8, the algorithm uses the k-NN graph to compute local communities and 

calculate partitions between these communities until an aggregate network is generated. 

Application of these tools can be useful for identifying the presence, absence, or change 

in abundance of specific subpopulations.  

Figure 8. Schematic of how the Leiden algorithm functions. The algorithm moves individual nodes 

between communities to identify partitions, each of which is then refined and aggregated into a network 

based on the refined partition (the non-refined partition is used to create an initial partition for the aggregate 

network). Subsequently, the algorithm moves individual nodes in the aggregate to determine the best 

partition. These steps are iterated until no further improvements can be made. Adapted from Traag, et al., 
2019. From Louvain to Leiden: guaranteeing well-connected communities. Scientific Reports. 

In addition to providing insights into cell identity, high-dimensional data can be exploited 

to make predictions about the molecular dynamics underlying changes in cell state or 

identity. For example, by restricting connections between cells from different time points 

to cells in the immediately preceding or proceeding time point, Wanderlust (Bendall et al., 

2014) and FlowMap (Ko et al., 2020; Zunder et al., 2015b) offer the ability to examine the 

progression of high-dimensional molecular phenotypes over time. Similarly, the URD 
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algorithm predicts molecular trajectories underlying cell differentiation and specification 

by “simulating diffusion” of molecular factors (Farrell et al., 2018).  

The ability to evaluate molecular changes in cells in a high-dimensional manner is 

particularly useful in the context of examining developmental or disease progression, as 

it permits high-resolution fate mapping. At present, the abovementioned techniques have 

almost exclusively been applied to single-cell transcriptomic data, which provide only a 

limited view of cell functions. In the future, employing these analytical approaches to 

protein-based data promises to yield further insights into the molecular expression and 

signaling that drive cellular identity and functions. 

EMERGENCE OF MASS CYTOMETRY 

Overview of Mass Cytometry Technology 

Mass cytometry is a technique combining inductively coupled plasma mass spectrometry 

(ICP-MS) with time-of-flight mass spectrometry (TOF-MS) to detect metal ions present in 

single cells with high sensitivity (Bandura et al., 2009; Bendall et al., 2011). By using 

standard immunochemistry techniques to label cells with antibodies conjugated to rare 

earths metals (i.e., not endogenously found in cells), mass cytometry can be used to 

quantify expression of proteins and nucleic acids, as well as post-translational and 

epigenetic modifications important for cell signaling (Frei et al., 2016).  
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As shown in Figure 9, to prepare cells for mass cytometry, they are dissociated into a 

single-cell suspension, cross-linked with a fixative solution, incubated with metal-

conjugated primary antibodies against surface epitopes, permeabilized, incubated with 

metal-conjugated primary antibodies against intracellular epitopes, and then exposed to 

an iridium (Ir191 and Ir193) DNA intercalator. For subsequent data acquisition, cells are 

suspended in water and then pumped through a capillary tube, which forms a stream of 

single cells that is nebulized into droplets and passed through an argon plasma flame 

(7500 K). This process (ICP-MS) ionizes the cell and antibodies into an “ion cloud”, which 

is filtered by mass-to-charge ratio so that only ions with an atomic mass greater than 80 

reach the TOF detector (necessary to prevent the detector from being bombarded with 

ions common in organic material such as carbon, hydrogen, and oxygen). Quantities of 

individual ion types present in each ion cloud are resolved according to their relative 

velocity (TOF-MS), a feature determined by their mass and kinetic energy. Using this 

method, expression levels of up to 50 antibodies can be simultaneously measured in 

single cells at a rate of up to 2 × 106 cells per hour (Bandura et al., 2009; Bendall et al., 

2011).  

The chemistry enabling immunocytochemical measurements by mass cytometry involves 

labeling antibodies with heavy metals that are not endogenously present in animal cells. 

To achieve this, an isotopically pure metal from the lanthanide series is mixed with 

polyethylene glycol polymers (each containing 16–22 chelating sites); meanwhile, the 

antibody is subjected to a reducing agent in the presence of maleimide linker molecules, 

which typically bind to reduced cysteine residues within the constant (Fc) region. By 
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subsequently incubating the metal-labeled polymers with maleimide-linked antibodies, 

the antibodies are metal-conjugated through a cross-linking reaction. Notably, the metal-

conjugation process is incompatible with labeling of IgM antibodies, typically expressed 

during development, as their constant regions are exclusively linked by cysteine residues. 

Therefore, the reduction process would destroy the structure and function of these 

antibodies.  

Figure 9. Schematic overview of mass cytometry 
method. Figure originally published in Hartmann and 

Bendall, 2019. Immune monitoring using mass 

cytometry and related high-dimensional imaging 
approaches. Nature Reviews Rheumatology. Reprinted 

with permission from Springer Nature (License No. 

5678641033568). 
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Mass cytometry can also be used to detect nucleic acids using metal-conjugated 

oligonucleotides (Frei, 2016), iridium-based DNA intercalators (Ir191 and Ir193), and live-

cell impermeant cisplatin (Pt195 or Pt198), which serve as useful markers of cell identity 

and viability, respectively. Thus, mass cytometry offers a uniquely intersectional approach 

to examine molecular mechanisms underlying fundamental cellular processes.  

Methods to Analyze Mass Cytometry Data 

As mass cytometry imparts the ability to acquire quantified data for up to 50 markers in 

millions of individual cells (Bandura et al., 2009; Bendall et al., 2011), a high-dimensional 

approach is necessary to maximize interpretation of the data. Luckily, software capable 

of handling copious amounts of data are increasing in number and features.  

The mass cytometer instrument outputs a specialized file type (.fcs) that can be read by 

R packages or software specifically created for cytometric measurements, such as 

FlowJo (https://www.flowjo.com) and CytoBank (http://community.cytobank.org). Data in 

these files can be visualized by examining a single parameter against another single 

parameter in the form of biaxial plots, or in high-dimensional space. Similar to analyses 

presented for flow cytometry, cells can then be divided into subpopulations that are high, 

low, or negative for a given marker by drawing “gates”. However, as mass cytometry of 

50 markers results in data sufficient for 1225 unique biaxial plots, manual gating is an 

inefficient method to handle the data. For example, a manual gating strategy for isolating 

single viable cells and identifying major cell types in P4 telencephalon is shown in Figure 

10. 
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Figure 10. Manual gating strategy to isolate single viable cells and identify major cell types in P4 
mouse telencephalon. Manual gating (cytobank.org) of biaxial plots can be performed in sequence to 

isolate single cell events (Pre-Processing) and identify cell populations. 
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To overcome this challenge, automated gating or high-dimensional clustering can be 

performed on expression data for cells. Indeed, many of the algorithms developed to 

analyze and visualize scRNA-seq data are readily adaptable for mass cytometry data, 

including UMAP and Leiden clustering algorithms, which we described above. One of the 

primary benefits for using such software packages is that algorithm-based gating removes 

many potential errors or bias resulting from manual gating (Mair et al., 2016). 

Advantages and Limitations of Mass Cytometry 

Advantages of Mass Cytometry 

There are several key advantages for using mass cytometry to analyze cells. Compared 

with other immunocytochemical techniques, such as those involving microscopy or other 

optically based measurements, mass cytometry affords the ability to examine up to 50 

markers simultaneously – an up to 16-fold increase (Bandura et al., 2009; Bendall et al., 

2011). Moreover, the method by which mass cytometry data is acquired is quantitative, 

incredibly sensitive, and has low background.  

In addition to being relatively high-throughput (currently, only flow cytometry has higher 

single-cell throughput), mass cytometry has expanded potential to simultaneously 

measure protein expression across multiple samples by barcoding cells (Zunder et al., 

2015a). By processing samples together (i.e., barcoding cells, pooling them for staining 

in the same antibody cocktail, and acquiring data simultaneously), errors resulting from 

sample-to-sample variability are greatly reduced. Notably, although barcoding strategies 

have previously been applied for flow cytometry (Krutzik et al., 2011), this requires use of 
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one or more of the limited number of channels available for analysis. In contrast, the 

barcoding strategy used for mass cytometry employs palladium metals (Pd102, Pd104–106, 

Pd108, and Pd110) in a 3-on/3-off system, resulting in 20 available barcodes that do not 

interfere with measurements of lanthanide metal-conjugated antibodies (Zunder et al., 

2015a). Thus, mass cytometry is a high-resolution immunocytochemical method for 

quantifying protein expression in single cells with enhanced utility for direct comparison 

of samples.  

Mass cytometry can be used to quantify virtually any target for which there is an available 

antibody (Bandura et al., 2009; Bendall et al., 2011), including post-translational 

modifications (Teh et al., 2020), as well as RNA transcripts (Frei et al., 2016). Moreover, 

innovative chemistry techniques are being employed to generate an increased variety of 

reagents compatible with mass cytometry. For example, a lanthanide-chelated, azide-

containing probe was recently developed to perform copper-catalyzed azide-alkyne 

Huisgen cycloaddition (also known as “click chemistry”) on EdU for quantification of DNA 

synthesis by mass cytometry (Shaklee et al., 2018). Importantly, as the click chemistry 

approach is applicable to a broad range of molecular targets, this opens the door for 

increased diversity of tools suitable for mass cytometry. Thus, while mass cytometry may 

have slightly lower throughput than flow cytometry and far lower resolution compared with 

scRNA-Seq in terms of the number of markers quantified per cell, it permits examination 

of a much broader range of biological targets and is superior in terms of deep profiling of 

cellular functional states.  
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Alternative single-cell approaches for multiplex protein detection exploit sequencing 

technologies like those used for scRNA-seq to measure both mRNA and protein 

expression levels, however each has its own limitations. For example, a method 

employing oligonucleotide-conjugated antibodies with strain-promoted alkyne–azide 

cycloaddition (SPAAC) (Gong et al., 2016) is only suitable for measuring surface proteins. 

Another method using Cas9 programmed with single-guide RNAs (CITE-seq) (Stoeckius 

et al., 2017) has similarly only been used to investigate surface proteins. In contrast, a 

method combining scRNA-seq with proximity extension assays (SPARC) (Reimegård et 

al., 2021) can only measure intracellular protein levels. In addition, all these methods 

have the general limitations of scRNA-seq, such as relatively low throughput and high 

cost. 

Limitations of Mass Cytometry 

General limitations of working with antibodies also apply to mass cytometry, including 

issues related to antigen availability, specificity, and signal-to-noise ratio (Ivell et al., 

2014). Generally, antibodies that work for immunofluorescence will also work for mass 

cytometry. However, the process of metal-conjugating antibodies has the potential to 

affect their variable region (Fv), which is responsible for antigen specificity and binding. 

Thus, the specificity of antibodies should be compared before and after metal conjugation. 

Notably, it can be difficult to directly compare metal-conjugated antibodies by mass 

cytometry and other immunocytochemistry-based methods requiring use of a secondary 

antibody, as the Fc region typically bound by secondary antibodies may be blocked by 

the metal-polymer tag. Moreover, the metal-conjugation process is incompatible with 
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labeling of IgM antibodies, further restricting the availability of antibodies suitable for this 

technique.  

As mass cytometry is a variation of flow cytometry, it shares many of the same general 

limitations – perhaps the most prominent being a requirement for samples to be in a 

single-cell suspension. Indeed, both cytometric methods have been widely applied to 

analyze hematopoietic cell lineages, which naturally occur in suspension in vivo, but are 

rarely applied to cells from solid tissues because of the loss of spatial information.  

To obtain single-cell suspensions from solid tissue, mechanical and/or enzymatic 

dissociation is necessary. As these processes occur over several minutes or hours, the 

in vivo signaling state of most proteins is lost and replaced by their response to 

dissociation. This could be overcome by fixing cells prior to dissociation, however using 

paraformaldehyde to fix cells makes it difficult to dissociate tissue and obtain intact single 

cells. In addition, mass cytometry requires the use of fixed cells and destroys them during 

the data acquisition process, unlike flow cytometry, which can even be used to sort live 

cells for clinical applications. 

In addition to technological restrictions, there are specific limitations for using mass 

cytometry to analyze neural cells. First, neural cells have polarized morphologies that are 

vital to their identity and function. The process of dissociating neural cells, whether from 

in vitro or in vivo sources, into a single-cell suspension has a dramatic impact on their 

morphology; namely, it “chops off” neurites and/or causes cells to retract their processes 
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and adapt a more spherical shape. Although this processing results in viable cells (at 

least until fixation) that maintain their essential molecular identity, it limits analysis of 

neural cells to components present within the cell soma. For example, proteins associated 

with synaptic transmission, which are localized and/or translated peripherally in neuronal 

processes, are inaccessible for analysis by mass cytometry. Thus, designing antibody 

panels to address specific hypotheses must take into consideration whether this 

technique is feasible.  

Imaging mass cytometry (or multiplexed ion beam imaging) (Angelo et al., 2014; Giesen 

et al., 2014), an emergent technology combining mass cytometry with laser-scanning 

microscopy, restores the ability to resolve spatial information and in vivo signaling states 

in cells with intact morphologies. Importantly, the same metal-conjugated antibodies can 

be used for both methods, allowing for parallel cytometric and microscopic studies.   

Reported Applications of Mass Cytometry 

Mass cytometry has previously been applied to molecularly characterize pluripotent stem 

cell reprogramming in in vitro-cultured cell lines (Lujan et al., 2015; Zunder et al., 2015b), 

perform lineage mapping of myogenic cells (Porpiglia et al., 2017), and examine the 

pathogenesis of a wide range of cancers (Fisher et al., 2017; Kaiser et al., 2017; Knapp 

et al., 2017; Krieg et al., 2018; Spitzer and Nolan, 2016). In addition, several studies have 

used mass cytometry to evaluate hematopoietic cells in the CNS. For example, 

comparison of CNS immune cell profiles of healthy adult mice, geriatric mice, and multiple 

sclerosis (experimental autoimmune encephalomyelitis) model mice distinguished 
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several subsets of CNS dendritic cells and revealed previously uncharacterized subsets 

of border-associated microglia (Mrdjen et al., 2018). Additional studies have investigated 

rodent models of multiple sclerosis (Ajami et al., 2018; Böttcher et al., 2019, 2020b), 

Huntington’s disease (Ajami et al., 2018), and major depressive disorder (Böttcher et al., 

2020a), as well as human glioma tissues (Fu et al., 2020b; Goswami et al., 2020; Koch 

et al., 2022; Mueller et al., 2020; Robinson et al., 2020; Simonds et al., 2021; Vasquez et 

al., 2017; Yao et al., 2021). 

Collectively, the results of these studies demonstrate the power of mass cytometry to 

identify and molecularly characterize cell subsets in the nervous system. However, only 

a single previous study (using seven neural markers) employed mass cytometry to 

actually assess neural cells (Ogrodnik et al., 2019). Therefore, the utility of mass 

cytometry for analyzing neural cell types has not been thoroughly described. 

Herein, the potential of mass cytometry to provide high-throughput, high-resolution 

proteomic analyses of single neural cells during mouse CNS and PNS development is 

described. In addition, the utility of this technique for resolving key neurodevelopmental 

questions and strategies, as well as challenges for its application, are discussed. Use of 

mass cytometry enables a highly intersectional approach capable of accounting for 

numerous factors associated with neural cell proliferation, differentiation, function, and 

disease.  
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Chapter II: Mass Cytometry Analysis of Mouse 

Brain Development 

The contents of this chapter have been accepted for publication as “A developmental 
atlas of the mouse brain by single-cell mass cytometry.” Amy Van Deusen, 
Sushanth Kumar, O. Yipkin Calhan, Sarah Goggin, Jiachen Shi, Corey Williams, 
Austin Keeler, Kristen Fread, Irene Gadani, Christopher Deppmann, Eli 
Zunder. Nature Neuroscience [Accepted Jan 8 2024].  
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Abstract 

Development of the mammalian brain requires precisely controlled differentiation of 

neurons, glia, and nonneural cells. To investigate protein-level changes in these diverse 

cell types and their progenitors, we performed single-cell mass cytometry on whole brain 

(E11.5/E12.5) and microdissected telencephalon, diencephalon, mesencephalon, and 

rhombencephalon (E13.5–P4) collected daily from C57/BL6 mice. Measuring 24,290,787 

cells from 112 sample replicates with a 40-antibody panel, we quantified 85 molecularly 

distinct cell populations across embryonic and postnatal development, including 

microglia/macrophages putatively phagocytosing neurites, neural cells, and myelin. 

Differentiation trajectory analyses emulate canonical molecular pathways underlying 

cortical neurogenesis and gliogenesis, and predict two distinct pathways for 

oligodendrogenesis. Differences in cell abundances measured by mass cytometry, 

immunohistochemistry, scRNA-Seq, and RNAscope affirm the value of protein-level 

measurements for identifying functional cell states in the developing brain. Overall, our 

findings demonstrate the utility of mass cytometry as a high-throughput, scalable platform 

for single-cell profiling of brain tissue. 
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Introduction 

While numerous studies have cataloged cells present in the brain at maturity (Yuste et 

al., 2020), many fundamental questions about their development remain unresolved. In 

particular, the molecular profiles, timing of appearance, and cell-lineage relationships of 

neural stem cells (NSCs) and intermediate progenitors remain poorly characterized. 

Mapping the molecular trajectories and cell fate decisions underlying brain development 

promises to enhance our understanding of developmental disorders such as autism 

spectrum disorder (Courchesne et al., 2007) and epilepsy (Bozzi et al., 2012; Nickels et 

al., 2016), as well as mature-onset diseases that may originate during development, such 

as schizophrenia (Owen et al., 2011; Nour and Howes, 2015) and Alzheimer’s disease 

(Bothwell and Giniger, 2000; Arendt et al., 2017). 

Previous efforts to identify and characterize cell populations in the central nervous system 

(CNS) primarily relied on either immunofluorescence microscopy, which detects a small 

number of proteins simultaneously, or single-cell RNA sequencing (scRNA-seq), which 

detects a large number of transcripts simultaneously. scRNA-seq and the related 

technique single-nuclei RNA sequencing have been applied to characterize the molecular 

diversity of cells in a wide range of embryonic and postnatal mouse brain tissues (La 

Manno et al., 2016; Kee et al., 2017; Frazer et al., 2017; Bifari et al., 2017; Y.-J. J. Chen 

et al., 2017; Yuzwa et al., 2017; Mayer et al., 2018; Rosenberg et al., 2018; Tiklová et al., 

2019; Wizeman et al., 2019; Guo and Li, 2019; Zhang et al., 2020; Romanov et al., 2020; 

Zhou et al., 2020; Kim et al., 2020; Li et al., 2020; Lee et al., 2022). However, no previous 

study has molecularly profiled single cells from every brain region at daily time points 
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across embryonic and postnatal development, and no single-cell omics study to date has 

quantified protein instead of mRNA abundance levels in the developing brain. 

In this study, we leveraged the high throughput (1 × 106 cells/hour) of single-cell mass 

cytometry to profile four regions of the developing brain: telencephalon diencephalon, 

mesencephalon, and rhombencephalon, with daily time points from embryonic day 11.5 

(E11.5) to postnatal day (P4). Mass cytometry is a variation of flow cytometry in which 

abundances of proteins and other biomolecules are quantified at the single-cell level 

using rare earth metal isotope-labeled antibodies and other affinity reagents (Bandura et 

al., 2009; Bendall et al., 2011). Commercially available reagents permit over 40 molecular 

markers to be measured and quantified simultaneously in each cell by mass cytometry, 

including cell surface receptors, transcription factors, cytoskeletal proteins, and markers 

of cell cycle status and viability. 

The antibody-based measurements from mass cytometry can directly read out functional 

biomolecules, unlike mRNA transcripts that do not necessarily correlate with protein 

abundance – a disconnect most pronounced during dynamic cell transitions (Liu et al., 

2016; Reimegård et al., 2021) like those occurring in early brain development. Mass 

cytometry was previously employed to investigate glioma (Galdieri et al., 2021; Hu et al., 

2019; Kondo et al., 2020; Leelatian et al., 2020, 2017; Sankowski et al., 2019; Shaim et 

al., 2021; Yan et al., 2021), microglia(Ajami et al., 2018; Mrdjen et al., 2018; Böttcher et 

al., 2019, 2020a; Ormel et al., 2020; Zilkha-Falb et al., 2020; Li et al., 2021; Xie et al., 

2022), and dorsal root ganglia(Keeler et al., 2022), but this approach has yet to be applied 
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to study neural cell types in the brain, except for one limited analysis with seven neural-

specific markers in a study of obesity-inhibited adult neurogenesis (Ogrodnik et al., 2019). 

 

To adapt mass cytometry for neural cells from embryonic and postnatal brain tissue, we 

developed a 40-antibody panel of markers relevant to CNS development and optimized 

cell dissociation techniques. Once this iterative development and optimization process 

was complete, we profiled brains of C57/BL6 mouse embryos and pups from E11.5, 

shortly after the secondary vesicles have formed and cortical neurogenesis begins, to P4, 

when the brain regions have assumed their final morphology, mature neural cell types 

are present, and synaptic connections begin to form(V. S. Chen et al., 2017). 

 

Using this neural mass cytometry approach, we identified and quantified 85 molecularly 

distinct cell populations across embryonic and postnatal development in the 

telencephalon, diencephalon, mesencephalon, and rhombencephalon. These cell 

populations generally show complementary overlap with those previously identified by 

scRNA-seq studies (La Manno et al., 2016; Kee et al., 2017; Frazer et al., 2017; Y.-J. J. 

Chen et al., 2017; Yuzwa et al., 2017; Mayer et al., 2018; Mi et al., 2018; Rosenberg et 

al., 2018; Carter et al., 2018; Tiklová et al., 2019; Wizeman et al., 2019; Guo and Li, 2019; 

Zhang et al., 2020; Romanov et al., 2020; Zhou et al., 2020; Kim et al., 2020; Li et al., 

2020; Ruan et al., 2021; Di Bella et al., 2021; La Manno et al., 2021; Sarropoulos et al., 

2021; Turrero García et al., 2021; Lee et al., 2022), although our time-course comparison 

reveals that mRNA transcript levels do not necessarily predict protein abundance during 

early brain development. Application of URD pseudotime analysis (Farrell et al., 2018) to 
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map cell differentiation captures classical neuronal and oligodendroglial trajectories, and 

predicts two potentially distinct cell-lineage hierarchies for producing embryonic OPCs. 

Additionally, our measurements detected putative phagocytic cargo within individual 

microglia/macrophages, highlighting their dynamic functions during early brain 

development. Collectively, our findings, methods, and analytical strategies establish 

mass cytometry as a platform to identify cell types in the developing brain, as well as the 

transition states and molecular trajectories underlying their specification. 

Materials and Methods 

Animals 

All animal husbandry and experiments were carried out in accordance with guidelines of 

the Association for Assessment of Laboratory Animal Care and approved by the 

University of Virginia Animal Care and Use Committee (Deppmann Protocol No. 3795). 

Mice were harvested from C57/BL6 females (Jackson Labs, 000664) bred in house from 

embryonic day 11.5 (E11.5) to postnatal day 4 (P4). For timed pregnancies, animals were 

mated overnight and removed the following day, and pregnancy was confirmed by the 

presence of a plug and consistent weight gain after 1 week. Animals were housed with a 

12-h light/dark cycle with food and water ad libitum.

Dissection  

For collection of embryonic mice, timed-pregnant mice were anesthetized and subjected 

to cervical dislocation before surgically removing all embryos. Postnatal pups were placed 

on ice before decapitation. Subsequently, whole brains were removed from mice aged 
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E11.5 to P4 and placed in 35-mm Petri dishes containing Dulbecco’s phosphate-buffered 

saline (PBS; Thermo Fisher Scientific, 14190) on ice.  

Single-cell dissociation of brain tissue 

Following decapitation of embryonic and postnatal mice, dissociation of viable single cells 

from brain tissue was optimized similar to a previously reported strategy (Volovitz et al., 

2016). After dissection of whole brains (E11.5/E12/5) or microdissection into cortex, 

diencephalon, midbrain, and cerebellum/hindbrain (E13.5–P4) (Fig. 1a), tissues were 

separated, meninges were removed, and samples from mice in a single litter were pooled 

into Eppendorf tubes as follows: 1–2 telencephalons, 3–5 diencephalons, 3–5 

mesencephalons, or 2–3 rhombencephalons. Preliminary experiments using flow and 

mass cytometry (described below) revealed that enzymatic dissociation was necessary 

to generate preparations with high levels of viable single cells and minimal cellular debris. 

As shown in Extended Data Figure 1a, flow cytometry demonstrates that mechanical 

dissociation alone (No Enzyme) yielded roughly half the single cells produced by our 

optimized protocol (as indicated by the percentage of cells in the gate) and far less TuJ1-

Ax488-positive cells negative for DRAQ7 (nuclear stain; Biolegend) debris. Mass 

cytometry analysis of the same samples with a DNA intercalator (DNA-Ir191) and metal 

conjugated form of the same antibody (TuJ1-Pr141) produced similar results, although 

the extra filtration and dilution steps used for mass cytometry appeared to enrich for 

singlet cells (Extended Data Fig. 1b). Further quantification of singlet viable cells using 

DNA-Ir191 and cisplatin (Pt195, described in detail below) demonstrates that enzymatic 

dissociation vastly improved viability of cells in final preparations (Extended Data Fig. 1c), 
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while analysis with an antibody against histone H3 (a core nuclear protein) confirmed that 

events positive for TuJ1 and negative for DNA intercalator were indeed cellular debris 

without cell nuclei (Extended Data Fig. 1d). Although we tested collagenases II and IV, 

dispase II, papain, and Accutase™ at various concentrations and in different 

combinations (data not shown), we ultimately chose a combination of collagenase IV and 

dispase II, as well as small amounts of DNAse-I and hyaluronidase, which were found to 

be essential to prevent samples from taking on a mucus-like viscosity that thwarted cell 

recovery. Specifically, a P1000 micropipette was used to add 1 mL of Dulbecco’s Modified 

Eagle’s Medium containing 4.6 mg/mL dispase II (Sigma-Aldrich, D4693), 1 mg/mL 

collagenase type IV (Worthington, LS004186), 0.2 mg/mL DNAse-I (Sigma-Aldrich, 

11284932001), and 0.2 mg/mL hyaluronidase (Sigma-Aldrich, H3884) to each dish. 

Tissue was immediately mechanically dissociated by mincing with forceps and gently 

pipetting up and down five times with a P1000 micropipette, before transferring the 

resulting cell slurry to a microcentrifuge tube. After incubation at 37ºC in a water bath for 

20 min, the cell suspension was passed through a 75-µm sieve and 45-µm sieve (Thermo 

Fisher Scientific, 50871316 and 50871319) with a P1000 micropipette. Tubes were then 

centrifuged at 300 × g for 3 min at 4ºC, the supernatant was discarded, and cells were 

washed by adding 1.5 mL of PBS containing 0.5% bovine serum albumin (BSA; Sigma-

Aldrich, A9418) and gently pipetting. After centrifugation at 300 × g for 3 min at 4ºC, cells 

were resuspended in 100 µL of PBS. 
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Cisplatin staining and fixation of single-cell suspensions  

Resuspended cells were mixed with 100 µL of 2× cisplatin solution (10 µM in PBS; Sigma 

Aldrich, P4394) with a P1000 micropipette, incubated at room temperature for 30 sec, 

and then quenched with 1.3 mL of PBS containing 0.5% BSA. Following centrifugation at 

300 × g for 3 min at 4ºC, supernatants were removed, and the resulting cell pellets were 

washed once with PBS containing 0.5% BSA. Subsequently, cells were fixed for 10 min 

at room temperature in 1 mL of 1.6% PFA solution (Electron Microscopy Services, CAS 

30525-89-4) in PBS. Following fixation, the cell suspension was centrifuged at 600 × g 

for 3 min at 4ºC, washed once with PBS, centrifuged again, and resuspended in 1 mL of 

cell staining medium (CSM; 0.5% BSA, 0.02% NaN3 in PBS). A 100-µL aliquot of each 

sample was placed in a separate tube (for flow cytometry analysis) before storing samples 

and aliquots at -80ºC until use for analysis. 

 

Cell counts and visual inspection by light microscopy 

To preliminarily confirm the quality of dissociation, fixed cells were visually inspected in 

bright field mode at 4×, 10×, and 20× using an EVOS AMF4300 microscope (Thermo 

Fisher Scientific). Samples exhibiting a preponderance of single cells with low levels of 

debris and cell clumps were counted using a Bio-Rad TC20 Automated Cell Counter. 

 

Immunocytochemistry and flow cytometry  

To further validate the quality of dissociated cell preparations, we quantified the presence 

of cell singlets, aggregates, and neurite debris in each sample that passed visual 

inspection using flow cytometry with the fluorescent nuclear stain DRAQ7 and an Alexa 
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Fluor™ 488-conjugated antibody against the neuronal intermediate filament TuJ1. Briefly, 

aliquots of each cell sample were thawed on ice, pelleted by centrifugation at 600 × g for 

3 min at 4ºC, and the supernatant was discarded. Next, cells were permeabilized with 

ice-cold 100% methanol and incubated on ice for 10 min with vortexing every 2 min. After 

centrifugation at 600 × g for 3 min at 4ºC, the supernatant was discarded and cells were 

washed once with CSM before blocking in a solution of 10% normal donkey serum (NDS; 

Millipore, S30-100ML) in CSM. Cells were incubated with TuJ1 antibody (1:1000 in CSM; 

Biolegend) for 1 h at room temperature on a shaker. After incubation, cells were 

centrifuged at 600 × g for 3 min at 4ºC, the supernatant was discarded, and DRAQ7 

(1:5000 in PBS) was added for 5 min. Samples were immediately measured on an 

Attune™ NxT flow cytometer (Thermo Fisher Scientific) and analyzed using CytoBank 

(community.cytobank.org).  

 

Mass cytometry antibody panel design 

The 40-antibody panel for mass cytometry was designed to capture virtually all cell types 

present in the mouse brain during development and therefore included established 

markers of neural and nonneural cell identity, as outlined in Extended Data Table 1. Metal 

labels were chosen with consideration for antigen abundance, variations in instrument 

sensitivity for isotopes, signal spillover, environmental background, and the purity of 

available metal isotopes, as described in the manufacturer’s technical support information 

(Fluidigm, 2015). Additional technical constraints were also taken into consideration 

during panel design. For example, the loss of cell processes (e.g., neuronal axons and 

dendrites, astrocytic end feet, and myelin sheaths) during single-cell dissociation is an 
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important caveat for analyses of neural tissues by flow/mass cytometry and scRNA-seq. 

Therefore, peripherally expressed proteins that are also synthesized in the cell body and 

can be detected there at lower levels (e.g., DCX, TuJ1, and MAP2) were chosen for the 

antibody panel. Cell dissociation and sample processing may also cause fragments of 

cells or sheared processes to stick to the surface of other cells, resulting in cells appearing 

positive for markers of two discrepant cell types. This appears to be the case for the mural 

cells observed in the present study, which are positive for both the mural cell marker 

MCAM and neural cell markers such as TuJ1. Once we observed this phenomenon, we 

chose to keep MCAM in the antibody panel to be able to exclude these cells from analysis 

as neural cells. 

 

Metal conjugation of antibodies 

Purified antibodies (lyophilized or in buffer free of BSA and gelatin) were conjugated to 

isotopically pure metals (listed in Table 1) for mass cytometry analysis using Maxpar® 

Antibody Labeling Kits (Standard BioTools) according to the manufacturer’s instructions. 

Immediately following conjugation, stock solutions were prepared for long-term storage 

at 4°C by diluting conjugated antibodies at least two-fold with Candor PBS Antibody 

Stabilization Solution (Candor Bioscience GmbH). Final concentrations of antibodies in 

stock solutions ranged from 0.05–0.4 mg/mL.  

 

Validation of antibodies 

Following metal conjugation, each antibody was titrated to determine the optimal 

concentration for mass cytometry analysis. To define the antibody concentration providing 
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the highest signal-to-noise ratio, we employed positive and negative counterstains (e.g., 

TuJ1 for neurons, BLBP for glial cells, CD45 for hematopoietic cells) to evaluate cell 

samples from mouse brain, a mouse embryonic stem cell line (E14Tg2a, ATCC, CRL-

1821), two mouse neuroblastoma cell lines [N1E-115 (ATCC, CRL-2263) and Neuro-2a 

(ATCC, CCl-131)], one mouse glioma cell line (GL261, National Cancer Institute Division 

of Cancer Treatment and Diagnosis Tumor Repository, Glioma 261), two mouse OPC cell 

lines (OPC-1052 and OPC-8173, gift from Prof. Hui Zong, University of Virginia), and a 

human embryonic kidney cell line (293T, ATCC, CRL-3216). The optimal concentration 

of each metal-conjugated antibody preparation was defined as the concentration 

providing the highest signal-to-noise ratio between appropriate positive and negative 

controls (Extended Data Fig. 1g,h). Antibodies were considered specific and reliable if 

they produced signal in DNA intercalator-positive cells exhibiting one or more positive 

counterstains, and were absent in cells exhibiting a negative counterstain (Extended Data 

Fig. 1i). Notably, although signal compensation is possible (Chevrier et al., 2018), it is not 

standardly applied in the field or this experiment because minimal overlap occurs between 

signals for individual metals and each antibody was titrated to an optimal concentration.  

Sample barcoding, staining, and intercalation for mass cytometry 

To prepare samples for mass cytometry, frozen cells were thawed and pelleted by 

centrifugation at 600 × g for 3 min at 4ºC. After removing the supernatant, cells were 

washed once with CSM and resuspended in 0.5 mL of cold saponin solution (0.02% in 

PBS) containing one of the twenty 6-choose-3 combinations of 1 mM  palladium 

barcoding reagents, as previously described (Zunder et al., 2015a; Fread et al., 2017). 
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Following incubation on a shaker at 800 rpm for 15 min at room temperature, samples 

were centrifuged at 600 × g for 3 min at 4ºC and the supernatant was discarded. The 

resulting cell pellet was washed three times with CSM and then pooled with other samples 

into a total of seven barcoded sets for antibody staining (Supplementary Table 1).  

 

Prior to staining of surface epitopes, each barcoded set was blocked in CSM containing 

10% (v/v) NDS for 30 min at room temperature. After blocking, antibodies indicated as 

“Surface” in Extended Data Table 1 were diluted in CSM and added to cells (100 µL 

staining volume per 1 × 106 cells). Following incubation at room temperature on a shaker 

at 800 rpm for 30 min, samples were centrifuged at 600 × g for 3 minutes at 4ºC and the 

supernatant was discarded. After washing the cell pellet three times with CSM, cells were 

permeabilized for intracellular staining by filling the sample tube with ice-cold 100% 

methanol and incubating on ice for 10 min with vortexing every 2 min. Next, samples were 

centrifuged at 600 × g for 3 min at 4ºC, the supernatant was discarded, and cells were 

washed once with CSM. Samples were then incubated with primary antibodies listed as 

“Intracellular” in Extended Data Table 1 (diluted in CSM) for 1 h at room temperature on 

a shaker at 800 rpm. After incubation, samples were centrifuged at 600 × g for 3 min at 

4ºC, the supernatant was discarded, and cells were washed three times with CSM.  

 

After primary antibody staining, cells were stained with 0.1 µM Cell-ID™ Intercalator-Ir 

(201192, Standard BioTools) in 1.6% PFA containing for 15 min overnight at 4ºC. After 

intercalation, cells were washed once with CSM, once with water, once with 0.05% 

Tween-20 (in water), and again with water. Finally, cells were pelleted by centrifugation 
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at 600 × g for 3 min at 4ºC and then samples were kept on ice until measurement on the 

mass cytometer. As outlined in Supplemental Table 1, the 112 samples analyzed in this 

study were prepared as seven barcoded sets, which were stained with fresh antibody 

solutions and run on the mass cytometer on three occasions (first run included barcode 

sets 1–3, second included sets 4–6, and third included set 7). 

 

Mass cytometry  

Immediately before analysis, cells were resuspended in Maxpar® Cell Acquisition 

Solution (approximately 1 mL per 1 × 106 cells, Standard BioTools) containing 1:20 EQ™ 

Four Element Calibration Beads (Standard BioTools) and pipetted through a 40-µm nylon 

mesh filter. Cells were analyzed in multiple runs on a Helios™ CyTOF® 2 System 

(Standard BioTools) at a rate of 500 cells per second or less. 

 

Normalization and debarcoding 

To control for variations in instrument signal sensitivity across individual mass cytometry 

runs, raw .fcs data files were normalized using EQ Four Element Calibration Beads as 

described in Finck et al. 2013 (https://github.com/nolanlab/bead-normalization) 

(Extended Data Fig. 2a). The resulting normalized .fcs files from each run were 

concatenated for each sample set and then debarcoded using software described in 

Fread et al., 2017 (https://github.com/zunderlab/single-cell-debarcoder) to deconvolute 

palladium metal expression on single cells, thus permitting identification of individual 

samples according to a 6-choose-3 combinatorial system (Zunder et al., 2015a) 

(Extended Data Fig. 2b–d). The modified version adds a new parameter for barcode 
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negativity (bc_neg) that is the sum of the counts for the three barcode metals expected 

to equal zero based on the barcode deconvolution assignment. High values of this 

parameter signify events likely containing two or more cells. 

 

Isolation of single-cell events with two-dimensional gating 

To isolate single cells from debris and clumps of multiple cells, .fcs files processed as 

described above were uploaded to CytoBank (community.cytobank.org) and gated 

according to the strategy illustrated in Extended Data Figure 2e–j. First, an additional 

debarcoding process was performed by gating out events with a low barcode separation 

distance, high Mahalanobis distance, and/or high signal for non-barcode metals 

(Extended Data Fig. 2e). Subsequently, singlets were isolated by gating out events with 

exceptionally high or low lengths or widths relative to the center (Extended Data Fig. 2f).  

 

To remove non-viable cells, events with high Pt195 signal (indicating high cisplatin uptake 

before fixation) were removed (Extended Data Fig. 2g). Next, events with a high cerium 

(Ce140) signal, indicating potential failure to remove a calibration bead during 

normalization, were removed (Extended Data Fig. 2h). Finally, gating was applied to 

remove events exhibiting high spectral overlap between metal isotopes (Extended Data 

Fig. 2i) and cellular debris (Extended Data Fig. 2j). Isolated single-cell events for 

individual timepoints were exported to .fcs files for further analysis.  
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Batch correction 

To account for changes in antibody signals between barcode sets and remove the 

potentially negative influence of aberrant signals from debris or cell clumps on 

normalization of signals from individual markers, batch correction was performed after 

isolating single-cell events as described above. To correct for differences in signal 

intensities of individual markers across the seven barcoded sets (batch effects), 

debarcoded .fcs files were processed as described in Schuyler et al., 2019 

(https://github.com/CUHIMSR/CytofBatchAdjust). Briefly, each barcoded set contained a 

universal sample (mixture of all ages and brain regions examined). Antibodies that 

produced Gaussian distributions and mean signals with variance greater than 1% for this 

universal sample were corrected at the 50th percentile, including: A2B5, BLBP, CD24, 

Cux1, DCX, NeuroD1, PSA-NCAM, Sox2, Sox10, and TuJ1 (Extended Data Fig. 2k). 

Mean signals for ALDH1A1, CD11b, and SSEA-1 had 2%–3% variance and normal 

distributions with truncated lower tails. Batch correction of these markers at 80th and 95th 

percentiles was determined to be ineffective at reducing the variance of mean signal, 

while correction at the 50th percentile resulted in overcorrection (ALDH1A1 and SSEA-1) 

or a non-zero mean (CD11b); therefore, these markers were not batch corrected. The 

remaining markers were not batch corrected because the variance of their mean signal 

was determined to be less than 1%. Protein expression levels of each marker in the 

universal sample for the seven barcoded sets are shown for all cells and positive cells in 

Extended Data Figure 2l,m, respectively. Positive cells were manually thresholded for 

expression using the values listed in Extended Data Figure 6b.  
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ArcSinH scaling 

To minimize background signal levels and provide the greatest signal-to-noise ratio, 

ArcSinH values were manually scaled for each antibody using CytoBank. Default 

(ArcSinH = 5) and final ArcSinH transformation values are shown in Extended Data Fig. 

2n. The default value was used for markers not shown.  

 

Clustering of high-dimensional data 

To reduce the effect of differences in tissue and sample size on clustering, 5 × 105 cells 

were randomly selected from each age/region for the global analyses shown in Figures 

1–4, yielding a total of 5.75 × 106 (~24%) cells from the original dataset (2.43 × 107 cells). 

For analyses shown in Figure 5, clustering was performed on all Sox2highnestinhigh cells 

(isolated by the manual gating strategy in Fig. 5a), yielding a total of 3,253,641 cells 

(~13%) from the original dataset. For analyses of the telencephalon shown in Figure 6, 

clustering was performed on 1.25 × 105 cells randomly sampled from each replicate (n = 

2 per age), yielding a total of 3.25 × 106 cells (~47%) from the 6,855,672 telencephalon 

cells in the original dataset. For analyses shown in Figure 7, clustering was performed on 

all CD45-positive cells (defined by the manual gating strategy shown in the inset in Fig. 

7a and Extended Data Fig. 9a), yielding a total of 1,345,841 cells (~5.5%) of the original 

dataset.  

 

To identify discrete cell populations within the developing mouse brain, isolated single 

cells were subjected to two rounds of high-dimensional analysis. For both rounds of 

clustering, all markers were included for generation of UMAP layouts to distinguish major 
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classes (i.e., NSCs, neuronal progenitors, glial progenitors, neurons, astrocytes, 

oligodendrocyte progenitors, hematopoietic cells, and mural cells).  

 

To analyze potential artifacts related to our use of seven barcoded sets, which were 

stained with three freshly prepared antibody cocktails and run on the mass cytometer on 

three different days (as described above), a UMAP layout was generated from 5 × 105 

cells randomly selected from each of the seven universal samples included in each run 

(Extended Data Fig. 3b). 

 

Assignment of cluster identities 

The cell-type specificity of each antibody used in the panel is outlined in Extended Data 

Table 1. Accordingly, cells were organized into major classes by their molecular profile 

as follows: 1. Neural stem cells (NSCs): positive for Sox2 and nestin with or without Pax6, 

Sox1, Olig2, CD133, and CD24; negative for mature neural markers. 2. Intermediate 

neuronal progenitors: positive for Tbr2. 3. Neurons: positive for DCX, TuJ1, and/or MAP2, 

with low levels of the postmitotic neuronal marker NeuN. 4. Inhibitory neurons: positive 

for GAD65. 5. Radial glial cells/glial precursors: high expression GLAST and BLBP, with 

or without GFAP. 6. OPCs: variable levels of Olig2, PDGFRɑ, and Sox10; two clusters 

also expressed low levels of OligoO4, suggesting differentiation into early 

oligodendrocytes. 7. Neuronal progenitors: combined expression of markers associated 

with NSCs and mature neurons, negative for glial markers. 8. Glial progenitors: combined 

expression of markers associated with NSCs, RGCs/glial precursors, and astroglial cells, 

with or without Olig2; negative for neuronal markers. 9. Endothelial cells: positive for 
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platelet endothelial cell adhesion molecule-1 (PECAM1) with or without Ly6C. 10. Mural 

cells: positive for MCAM or PDGFRꞵ; notably, mural cell clusters also contain several 

neural markers, but do not have elevated DNA-intercalator levels, indicating that these 

are not cell doublets or aggregates. Instead, the most likely explanation is that neural cell 

debris is sticking to their cell surfaces. 11. Non-neural cells: negative for virtually all neural 

cell markers, although the presence of markers such as PDGFR⍺, P75NTR, Cux1, CD24, 

and VCAM suggest the presence of putative fibroblasts among these clusters. 12. 

Microglia/macrophages: low expression of canonical markers CD45 and CD11b, as well 

as positive expression of F4/80. 13. Other hematopoietic cells: high expression of CD45 

and CD11b. 14. Neural crest-derived cells: high expression of Sox10 and negative for 

Olig2. Two putative non-brain populations appeared to contaminate early embryonic 

dissections, a cluster exhibiting low expression of P75NTR, BLBP, and some stem cell 

markers presumably representing developing cranial ganglia; and a cluster exhibiting 

ALDH1A1 expression presumably representing a population of developing glial cells. 15. 

“Apoptotic” cells: high expression of cleaved caspase 3; notably, cells with low to 

moderate expression were observed in numerous clusters (especially glial progenitors). 

16. Low-complexity cells: one small cluster of cells was negative for expression of all 

panel proteins, representing 2.16% of total cells analyzed. Cluster numbers presented in 

the manuscript have been reordered to improve readability. Original and reordered cluster 

numbers are provided in the Source Data for Figures 1 and 5–7.  
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Visualization of high-dimensional data with UMAP 

Mass cytometry datasets were visualized by uniform manifold approximation and 

projection (UMAP, https://github.com/lmcinnes/umap) (McInnes et al., 2018) using the 

following parameters: nearest neighbors = 15, metric = Euclidean, local connectivity = 1, 

N components layout = 2 (3 for UMAP in Fig. 7a), N components cluster = 2, N epochs = 

1000. 

Leiden clustering 

Community detection with the Leiden algorithm (Traag et al., 2019) was performed to 

partition cells into clusters according to molecular profile similarity using Python. To 

improve computational speed and scalability, the hnswlib package 

(https://github.com/nmslib/hnswlib) was incorporated into this process 

(https://github.com/zunderlab/VanDeusen-et-al.-CNS-Development-Manuscript/blob/ 

main/02_UMAP_and_Leiden_Clustering/03_Leiden.py) using the following parameters: 

Hierarchical Navigable Small World Graphs (HNSWG) space = 12, HNSWG EFConstruction 

= 200, HNSWG M = 16, HNSWG EFSet = 20. 

Immunohistochemistry 

Following dissection of whole brains, they were immersed in 4% PFA overnight before 

cyroprotection in 30% sucrose in PBS for 2 days, all at 4°C. Subsequently, brains were 

embedded in Optimal Cutting Temperature Compound (VWR, 25608-930), frozen on dry 

ice, and stored at -80ºC until cryosectioning into 40-μm sections. Mounted sections were 

warmed to room temperature, washed with 1× PBS three times for 5 minutes each, and 
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subjected to antigen retrieval by microwave boiling slides/sections in 10 mM sodium 

citrate buffer (pH 6.0). After cooling sections to room temperature, the sodium citrate 

buffer was replaced with 1× PBS and sections were microwaved until boiling again. Next, 

sections were washed three times with 1× PBS and incubated in blocking solution (0.2% 

Triton X-100 and 3% NDS) for 1 hour at room temperature. Subsequently, sections were 

incubated with primary antibodies diluted in blocking solution overnight at 4 °C. Primary 

antibodies used for IHC were the same clones as used for mass cytometry except for 

rabbit anti-BFABP (Abcam, ab281734, 1:250, RRID: unknown). Following primary 

antibody staining, sections were washed with 1× PBS three times for 5 minutes each, 

incubated with secondary antibodies for 1 hour at room temperature protected from light, 

and washed with 1× PBS three times for 5 minutes each. Secondary antibodies used in 

this study included: Alexa Fluor 488 donkey anti-mouse (Thermo Fisher Scientific, 

A21202, 1:500, RRID: AB_141607), Alexa Fluor 568 donkey anti-rabbit (Thermo Fisher 

Scientific, A10042, 1:500, RRID: AB_2534017), and Alexa Fluor 647 donkey anti-goat 

(Thermo Fisher Scientific, A21447, 1:500, RRID: AB_2535864). Following secondary 

staining, sections were mounted in Fluoromount-G with DAPI (SouthernBiotech, 0100-

20).  

 

In situ hybridization assay by RNAscope 

Following dissection, E13.5, E15.5, and E17.5 brain tissues were immersed in 4% PFA 

overnight before cyroprotection in 30% sucrose in PBS for 2 days, all at 4°C. 

Subsequently, brains were embedded in Optimal Cutting Temperature Compound, frozen 

on dry ice, and stored at -80ºC until cryosectioning into 20-μm sections onto positively 
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charged slides (Shandon Superfrost Plus, Thermo Fisher Scientific, 6776214). After air 

drying sections overnight in the dark, they were twice washed for 2 minutes in PBS, 

incubated for 10 minutes in H2O2 (RNAscope H2O2 and Protease Reagents Kit, Advanced 

Cell Diagnostics, 322381), and washed again twice for 2 minutes with distilled water. 

Next, sections were incubated with protease IV solution (RNAscope H2O2 and Protease 

Reagents Kit) for 30 minutes at 40°C in a HybEZ II oven (Advanced Cell Diagnostics, 

321710/321720), washed twice with distilled water for 2 minutes each, and incubated in 

one of two probe master mixes for 2 hours at 40°C [Mix 1: Mm-Fabp7 (414651-C1) and 

Mm-Sox2 (401041-C2); Mix 2: Mm-Eomes (429641-C1) and Mm-nestin (313161-C2); 

Advanced Cell Diagnostics]. After washing sections twice with 1 × wash buffer 

(RNAscope Wash Buffer Reagents, Advanced Cell Diagnostics, 310091), amplification 

was performed by sequential incubations with AMP1, AMP2 and AMP3 solutions 

(RNAscope Multiplex Fluorescent Detection Kit Version 2, Advanced Cell Diagnostics, 

323110) for 30 minutes at 40°C, with two 2-minute washes with wash buffer between 

solutions. Next, sections were incubated with horseradish peroxidase (HRP)-channel 1 

(HRP-C1) (RNAscope Multiplex Fluorescent Detection Kit Version 2) for 15 minutes at 

40°C, washed twice for 2 minutes each in wash buffer, and incubated in fluorescent dye 

for 30 minutes at 40°C [1:750 dilution; Tyramide Signal Amplification (TSA) Cyanine 3, 

Akoya, TS000202]. After washing sections with wash buffer twice for 2 minutes each, 

they were blocked with HRP blocker for 15 minutes at 40°C. The same HRP steps were 

repeated for channel 2 by applying a second fluorescent dye (1:750 dilution; TSA 

Fluorescein, Akoya, TS000200). Finally, 10–20 mL of DAPI was applied at room 

temperature to stain cell nuclei (Fluoromount-G) and slides were sealed with coverslips. 
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Confocal microscopy 

Brain sections were imaged on a laser-scanning confocal Zeiss 980 NLO at 40× 

resolution in Z-stacks at 1-μm intervals for automated quantification using QuPath. Ratios 

of positive cells and expression levels in cells were evaluated using the Positive Cell 

Detection feature in QuPath with the following parameters: requested pixel size = 0.4 µm, 

background radius = 8 µm, medium filter radius = 0 µm, sigma = 1.5, minimum area = 10 

µm, maximum area = 100 µm, threshold (DAPI) = 5, cell expansion = 2 µm. Thresholds 

for identifying positive cells (Extended Data Fig. 4b) were manually adjusted for each 

batch of images to minimize the effects of variations in staining or background levels. 

Plotting and statistical analysis of confocal microscopy results was performed with R. 

 

Comparison of protein and RNA expression profiles 

To compare protein and RNA expression levels, we chose one of the largest scRNA-seq 

datasets describing nervous system tissue published to date (La Manno et al., 2021). 

Samples were first matched for microdissected regions and ages for the two datasets 

(Extended Data Fig. 6a). Expression counts matrix for the scRNA-seq data were 

downloaded from mousebrain.org and preprocessed according to the original publication 

(La Manno et al., 2021). Differences in the processes used to dissociate single cells from 

embryonic brain tissues are outlined in Extended Data Fig. 6c for each dataset. To 

calculate percentages of expressing cells for scRNA-seq and mass cytometry data, cells 

in scRNA-seq data were considered ‘expressing’ if their value was above zero. For mass 

cytometry data, which typically exhibits low background for individual markers compared 

with antibody-based techniques, thresholds for labeling cells as positive were manually 
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assessed as the 99th percentile of expression in low-complexity cells (Extended Data Fig. 

6b). To evaluate expression levels by cell class for each brain region, our clusters (shown 

in Fig. 1c,d) were manually matched with those identified using scRNA-seq, resulting in 

17 distinct cell classes (Extended Data Fig. 6d). Mean expression was then calculated for 

the identified population of cells expressing each gene/marker for each brain region. For 

both datasets, the calculated mean expression values were finally per-feature range-

normalized to fall between 0 and 1. Percentages of cells expressing each marker, 

normalized mean expression values, and expression values for individual cells were then 

examined for each RNA-protein pair in each brain region and plotted using R (Fig. 4a).  

 

Identification of developmental cell trajectories with URD 

To model the cell fate decisions involved in developmental cell trajectories, the R package 

URD (Farrell et al., 2018) was adapted for use with mass cytometry data. “Root” and “tip” 

cells were manually chosen as the beginning and end points for construction of a map 

based on diffusion of protein expression levels (Fig. 5a and Fig. 6b). All markers were 

used for analysis with the following URD parameters: floodPseudotime n= 500, 

minimum.cells.flooded = 2, max.frac.NA = 40, knn = 15. Because of computational 

limitations, both the Sox2highnestinhigh cell dataset and telencephalon dataset were 

randomly and proportionally (with regard to sample age and cluster, respectively) 

sampled to a total 61,000 cells. The URD algorithm assigned each cell a pseudotime 

value based on its distance from the root, indicating its relative position along the 

differentiation trajectory from root to tip. By identifying intersecting paths from thousands 

of random walks from each tip back to the root, URD constructs a dendrogram from which 
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molecular trajectories and branchpoints can be derived. Pax6high NSCs present at E11.5 

were chosen as the root for both URD analyses, while clusters chosen as tips were 

selected because their molecular profile suggest a mature differentiation status (i.e., 

relatively high expression of mature neural markers and low expression of stem/immature 

markers relative to subclusters of similar identity). To ensure proper representation of 

neurogenic Sox2highnestinhigh subpopulations that became sparse postnatally, cells in tip 

subclusters from P0–P4 samples were included in this analysis and selected irrespective 

of their origin in the brain. 

 

Quantification of cell doublets/aggregates by flow cytometry and mass cytometry 

As described above in the Flow Cytometry section, cells were stained with DRAQ7 (a 

DNA intercalator) and TuJ1 conjugated to Alexa Fluor 488. Positive cells exhibiting 

increased ratios of forward- or side-scatter area to width were considered doublets/cell 

aggregates, as verified by increased DRAQ7 positivity. To approximate this approach 

using mass cytometry, proportions of cells exhibiting high positivity for non-barcode-

specific palladium isotopes, low barcode separation distance (indicating cell 

aggregates/doublets occurring because of immunocytochemical processing), and/or off-

center signals (indicating abnormally dense metal ion contents of potential 

doublets/aggregates occurring in the original “single-cell” suspension) were quantified.  

 

To test the robustness of our method to identify (and exclude) cell doublets and 

aggregates by mass cytometry, differences between relative abundances of doublets 

quantified by flow and mass cytometry were compared for ages and brain regions using 
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Student’s t-test. Of the 42 ages/brain regions analyzed (four were excluded because of a 

lack of paired samples), none exhibited a significant difference (p > 0.09) in proportions 

of doublets identified by mass or flow cytometry. Moreover, Wilcoxon test of all paired 

samples revealed no significant difference between proportions of doublets/cell 

aggregates identified by flow cytometry and mass cytometry (p = 0.078, Fig. 7h).  

 

Statistics and reproducibility 

No statistical method was used to predetermine sample size. No data were excluded from 

analyses and experiments were not randomized. The investigators were not blinded to 

allocation during experiments or outcome assessments.  

 

Results 

Classification of cells in the developing mouse brain by mass cytometry 

To characterize single cells in the developing brain by their protein expression signatures, 

we first adapted mass cytometry for brain tissue by optimizing dissection and cell 

dissociation techniques for single-cell analysis (Methods, Extended Data Fig. 1a–f), and 

developed a 40-antibody staining panel for specific cell types in the brain (Extended Data 

Table 1). The antibody panel includes general markers of neural identity (CD24, N-

cadherin, Cux1), neuronal development [doublecortin (DCX), β-tubulin III (TuJ1), NeuN, 

microtubule-associated protein 2 (MAP2), glutamic acid decarboxylase 65 (GAD65), 

Tbr2, NeuroD1, Ctip2, Tbr1], glial development [A2B5, brain lipid-binding protein (BLBP), 

glial fibrillary acidic protein (GFAP), glutamate/aspartate transporter 1 (GLAST), Olig2, 

OligoO4, Sox10, platelet-derived growth factor α (PDGFRα)], leukocytes and microglia 
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(CD45, CD11b, Ly6C, F4/80), and vascular cells (CD31, vascular cell adhesion molecule 

(VCAM), melanoma cell adhesion molecule (MCAM), PDGFRβ]. We also included 

markers of NSCs and progenitor cells (Sox1, Sox2, nestin, Pax6, polysialylated-neuronal 

cell adhesion molecule (PSA-NCAM), CD133, stage-specific embryonic antigen-1 

(SSEA1)], cell signaling and proliferation [Ki67, TrkB, p75 neurotrophic receptor 

(p75NTR)], and apoptosis (cleaved caspase 3). As annotated in Extended Data Table 1, 

many of these markers are not restricted to a single cell type, such as BLBP, which is 

expressed in radial glial cells (RGCs) as well as astrocytes. Antibodies for each marker 

were conjugated to unique rare earth metal isotopes with Maxpar® X8 Antibody Labeling 

Kits (Standard BioTools, South San Francisco, CA), and then titrated to identify their 

optimal staining concentrations using known-positive and known-negative control cells on 

a CyTOF® Helios™ mass cytometer (Standard BioTools) (Extended Data Fig. 1g–i). 

Additional details are provided in the Methods section. 

 

Brain samples from C57/BL6 mouse litters were collected at daily timepoints from E11.5 

to P4 by dissection of timed-pregnant females (embryonic) and newborn pups (postnatal). 

Because E11.5 and E12.5 brains are difficult to reliably microdissect, we analyzed whole 

brain samples for these early ages. Brains aged E13.5 and older were microdissected 

into the telencephalon, diencephalon, mesencephalon, and rhombencephalon; for each 

litter, tissues from each brain region were pooled prior to dissociation as shown in Figure 

1a. Following mechanical and enzymatic dissociation (Methods), single-cell suspensions 

were briefly incubated with cisplatin as a non-cell-permeant viability stain(Fienberg et al., 

2012), fixed with 1.6% paraformaldehyde (PFA), and stored at -80°C. For mass cytometry 
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analysis, cell samples were thawed and labeled with palladium barcodes (Zunder et al., 

2015a), followed by pooling into barcode sets for uniform antibody staining.  

 

After mass cytometry measurement, the resulting 37,913,425 cell events were pre-

processed to isolate viable single cells. Briefly, pre-processing steps included: 1) bead 

normalization (Finck et al., 2013) (Extended Data Fig. 2a); 2) debarcoding (Zunder et al., 

2015a; Fread et al., 2017) (Extended Data Fig. 2b–d); 3) clean-up gating to remove cell 

doublets, aggregates, dead cells, debris, calibration beads, and other metal contaminants 

(Extended Data Fig. 2e–j; www.cytobank.org); 4) batch correction(Schuyler et al., 2019) 

(Extended Data Fig. 2k–m); and 5) marker scaling (Extended Data Fig. 2n). As detailed 

in the Methods section, batch correction was necessary to correct for minor variability in 

antibody signals resulting from the use of three separate antibody cocktails to stain the 

seven barcoded sets, which varied slightly in total numbers of cells. These preprocessing 

steps resulted in 24,290,787 high-quality, viable, singlet cells from 112 samples of 

C57/BL6 mice, with at least two biological replicates (n = 2–4 litters) analyzed for each 

age and brain region (Supplementary Table 1). Kruskal-Wallis testing of marker variances 

in the processed sample replicates reveals that expression of an individual marker 

significantly varied (p < 0.05) in 94 (5.1%) of 1840 comparisons (40 markers × 46 sample 

types; Extended Data. Fig. 2o). 

 

To identify and categorize cell populations in the mouse brain throughout development 

and across brain regions, we performed Leiden clustering (Traag et al., 2019) on all 

samples and visualized the results on a 2D Uniform Manifold Approximation and 
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Projection (UMAP) layout (McInnes et al., 2018). An initial round of Leiden clustering 

yielded 22 clusters (Extended Data Fig. 3a–d), which were manually grouped by protein 

expression profile into six subsets: NSCs and progenitors, neurons and neuronal 

progenitors, glial progenitors and precursors, oligodendroglia and contaminating non-

brain neural cells, endothelial and other nonneural cells, and hematopoietic cells. A 

second round of Leiden clustering on these six subsets yielded 85 distinct clusters in total 

(Fig. 1b; Extended Data Fig. 3e), each with a unique age profile [Fig. 1b (left inset), 

Extended Data Fig. 3f], distribution throughout the brain [Fig. 1b (right inset), Extended 

Data Fig. 3g], and protein expression pattern (Fig. 1c). As outlined in the Methods section, 

these properties were used to identify the following major cell classes: NSCs (4.99%), 

intermediate neuronal progenitors (INPs, 4.45%), neuronal progenitors (8.56%), putative 

excitatory neurons (14.45%), inhibitory neurons (17.45%), RGCs/glial precursors 

(5.65%), Olig2mid neural progenitor cells (Olig2mid NPCs, 5.01%), Olig2mid glial precursors 

(13.19%), OPCs (2.61%), nonneural cells (5.96%), endothelial cells (5.18%), mural cells 

(0.03%), microglia/macrophages (8.37%), other hematopoietic cells (0.56%), non-brain-

derived neural cells (0.39%), apoptotic cells (0.99%). Overall, 97.84% of all cells 

examined were classified as specific cell types, with the remaining 2.16% categorized as 

low-complexity cells (Methods). Consistent overlap of biological replicates in UMAPs for 

each sample type (Extended Data Fig. 3h) indicates that the layout was not overtly biased 

by any individual sample. Moreover, overlap of replicates in a UMAP generated using 

only the seven universal samples (Extended Data Fig. 3i–k) suggests technical variability 

only occurred in a subset of early neuronal cells.  
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Figure 1. Classification of cells in the developing mouse brain by mass cytometry. a, Overview of 

workflow for isolating and processing single cells from developing mouse telencephalon, diencephalon, 

mesencephalon, and rhombencephalon for mass cytometry and high-dimensional analysis. Inset bar graph 

shows numbers of cells analyzed for each age (E11.5–P4) and brain region (n = 2–4 litters per age, 112 

samples, 24,290,078 cells total). b, UMAP of Leiden clustering of all samples colored by cluster with insets 
colored by developmental age and tissue origin. An equal number of randomly sampled cells (1.25 × 105) 

was analyzed for each sample type, yielding a total of 5.75 × 106 cells. c, Violin plot showing expression of 

all 40 markers in the 85 identified clusters. Clusters are arranged according to class and molecular profile. 
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Corroboration of mass cytometry protein measurements by immunohistochemistry 

To validate our ability to reliably identify brain cells and evaluate the potential for systemic 

bias resulting from cell enrichment or loss during single-cell dissociation, we compared 

relative abundances of cells positive for BLBP, Ctip2, Olig2, or Sox2 assessed by mass 

cytometry with those quantified using immunohistochemistry (IHC) and confocal 

fluorescence microscopy. Both UMAPs overlaid with expression of individual markers and 

representative IHC images show that protein expression varies considerably across cell 

types and ages (Fig. 2a, Extended Data Fig. 4a). Quantification of the relative 

percentages of cells positive for each marker (Fig. 2b–e) was performed by dividing the 

number of cells whose expression exceeded a threshold value (Extended Data Fig. 4b) 

by the total number of cells using customized R scripts and QuPath (Bankhead et al., 

2017) software.  

 

Proportions of cells expressing BLBP, Ctip2, Olig2, and Sox2 measured by mass 

cytometry and IHC (Fig. 2b–e) were largely congruent. Although trends for proportions of 

Olig2-expressing cells were nearly identical, values for IHC were slightly lower than those 

measured by mass cytometry, likely because the former represents quantification of a 

dorsal region of cortical tissue slices while the latter represents quantification of Olig2-

expressing cells distributed throughout both dorsal and ventral areas of the cortex. 

Similarly, the relatively low proportions of Sox2-expressing cells measured by mass 

cytometry compared with IHC at E13.5 reflect that the imaged regions of cortical tissue 

slices contain large areas of ventricular/subventricular zones, which are enriched for 
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Sox2-expressing cells at this age, whereas mass cytometry results again reflect the entire 

tissue. 

 

 
 

Figure 2. Corroboration of mass cytometry protein measurements by immunohistochemistry (IHC). 
a, Representative IHC of mouse telencephalon stained for BLBP, Ctip2, Olig2, or Sox2 at E13.5, E15.5, 
E17.5, P0, and P3. IHC images are paired with mass cytometry UMAP layouts from the corresponding age, 

colored by expression of the same marker. Scale bar, 20 μm. b–e, Proportions of cells positive for BLBP 

(b), Ctip2 (c), Olig2 (d), and Sox2 (e) across matching timepoints between IHC and mass cytometry. Data 

are presented as mean values ± s.e.m. Mass cytometry data include n = 2 litters per age, 3.75 × 105 cells 

total. IHC data include n = 3 litters per age, 2.07 × 106 cells total. 
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In combination with our previous evaluation of mouse dorsal root ganglia (Keeler et al., 

2022), these corroboratory results provide evidence that mass cytometry can accurately 

quantify protein expression of key markers for identification of neuronal, glial, and 

nonneural cells in the developing mouse nervous system. 

Spatiotemporal profile of cell abundances in the developing mouse brain 

Transformation of the neural tube from a sheet of polarized cells (~E8.5) into the complex 

structure of the mouse brain (~90% of adult brain volume achieved by P14) (Orr et al., 

2016) is accomplished by rapid proliferation and diversification of cells embryonically and 

postnatally. To explore these changes, we first used UMAPs to visualize cells present in 

the mouse telencephalon, diencephalon, mesencephalon, and rhombencephalon from 

E11.5 to P4 (Fig. 3a). Changes in the abundances of major cell types (Fig. 3b, Extended 

Data Fig. 5a) provide evidence for the following general trends: large proportions of NSCs 

and neuronal cells during embryonic ages, vast proliferation of glial cells perinatally, and 

steady expansion of nonneural cells across embryonic and postnatal development. In 

contrast to other brain regions, populations of neuronal progenitors steadily increase in 

the rhombencephalon, consistent with previous reports of prolonged neurogenesis in the 

cerebellum postnatally (Carter et al., 2018; Wizeman et al., 2019).  

72



 

 
 

Figure 3. Spatiotemporal profile of cell abundances in the developing mouse brain. a, UMAP of 

Leiden clustering (from Fig. 1b) colored by cluster for indicated brain regions and ages. Insets show the 

same UMAP colored by age. For all UMAPs, cells from other brain regions/ages are colored gray. b, 

Relative abundances of major cell classes in each brain region from E11.5–P4. Individual replicates are 
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shown along with Loess curve fitting of the data. c, Dot plots showing relative cluster abundances at each 

developmental age. Results for E13.5–P4 in the whole brain plot represent the mean for all four brain 

regions. Results for E11.5 and E12.5 are replicated in each regional plot to facilitate comparison. d, Scatter 

plots showing relative abundances of select clusters for each sample type. Plots for all clusters are shown 
in Extended Data Figure 5d,e. For a–d, an equal number of randomly sampled cells (1.25 × 105) was 

analyzed for each sample type, yielding a total of 5.75 × 106 cells  (n = 2–4 litters per age, 112 samples). 

The data used to generate plots in b–d are available in .csv format in the Source Data for this figure. 

 

To further evaluate developmental trends, relative percentages of each cell type cluster 

were visualized in Figure 3c. Among NSCs and INPs, we observed a Pax6neg subset in 

the embryonic diencephalon and mesencephalon, while populations expressing Pax6 

and Tbr2 are enriched in the telencephalon and rhombencephalon, where they ultimately 

produce glutamatergic neuronal lineages (Götz et al., 1998; Englund et al., 2005; Luo et 

al., 2021). A small fraction of Tbr2midPax6high INPs in the rhombencephalon is positive for 

Olig2 (Fig. 1c), consistent with reports of Olig2-expressing cells in the embryonic 

cerebellar ventricular zone and rhombic lip (Schüller et al., 2008; Ju et al., 2016).  

 

In line with the cerebellum containing as many as 70% of total neurons in the adult mouse 

brain (Herculano-Houzel and Lent, 2005), six of the seven neuronal progenitor 

populations are observed almost exclusively in the rhombencephalon (Fig. 3c). Although 

the majority presumably go on to produce cerebellar granule cells, the rare 

Ctip2highNeuroD1highOlig2low population observed at the earliest ages likely corresponds 

to early Purkinje cell progenitors, which were previously shown to express both Olig2 and 

NeuroD1 (Seto et al., 2014). Other putative glutamatergic and inhibitory neuron 

populations are distinguished by positive or negative GAD65 expression, respectively 

(Fig. 1c), although GAD65 is expressed by GABAergic (Kaufman et al., 1991), 
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dopaminergic (González-Hernández et al., 2001), and cholinergic neurons (Lozovaya et 

al., 2018). Two waves of Cux1lowTuJ1lowMAP2neg neurons in the telencephalon (Fig. 3c) 

suggest that this is a transitional population [presumably derived from waves of direct and 

indirect neurogenesis around E13.5 and E18.5, as previously observed by Dwyer et al. 

(Dwyer et al., 2016)] that ultimately matures into the observed Cux2low, Cux1high, and 

Ctip2high populations.  

 

Three of the six GABAergic inhibitory neuron populations are predominantly observed in 

the forebrain and express Ctip2 (Fig. 1c), a classical marker of deep layer subcerebral 

projection neurons that is also expressed by  Purkinje cells in the cerebellum (Leid et al., 

2004) and parvalbumin, somatostatin, and 5-HT3 inhibitory neurons in layers I–V of the 

neocortex (Nikouei et al., 2016). Of the four observed Ctip2neg GABAergic subtypes, 

Pax6highGAD65mixed cells in the embryonic diencephalon and rhombencephalon (Fig. 3c) 

likely correspond to inhibitory neurons in the developing dorsal white matter, which were 

previously found to express Pax6 (Riccio et al., 2012). Similarly, the observed 

ALDH1A1highGAD65low population likely corresponds to ventral mesencephalic 

dopaminergic neuron precursors, which were previously found to localize within the 

substantia nigra pars compacta (Tiklová et al., 2019).  

 

RGCs/glial precursors (Olig2neg cells expressing stemness markers such as Sox2, BLBP, 

and GLAST, but not mature neuronal or glial markers; Fig. 1c) gradually increase in 

proportion as the brain develops, except for a GLASThighBLBPlowPax6low population 

observed almost exclusively in the rhombencephalon that rapidly expands immediately 
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after birth (Fig. 3c). Sox2high and A2B5low RGCs/glial precursors generally exhibit caudal-

to-rostral expansion across the four brain regions, while a CD133highCD24highMAP2low 

population [likely containing ependymal cells (Pfenninger et al., 2007)] is primarily 

observed in the diencephalon and mesencephalon. 

The four Olig2mid neural progenitor clusters likely represent cells that can give rise to 

neuronal and glial lineages. Two of these populations, Olig2midnestinhigh and 

Olig2midnestinlow NSCs, express no mature neural markers (Fig. 1c) and are principally 

observed in the forebrain (Fig. 3c). An Olig2/Tbr2/Ctip2mixed population most abundant at 

E14.5 likely corresponds to a mixed population of early neuronal progenitors, including 

early basal forebrain cholinergic neuronal progenitors regulated by Olig2 (Furusho et al., 

2006). Finally, a nestinhighVCAMhighDCXlow population exhibiting caudal-to-rostral 

expansion corresponds to uncommitted Olig2-expressing neural progenitors.  

Eight molecularly similar glial precursor clusters expressing Olig2 are designated as 

Olig2mid glial precursors, including a GFAPhigh population that expands from E16.5 in all 

brain regions (Fig. 3c), consistent with previous observations of “Olig2-lineage” or “OPC-

derived” astrocytes (Ono et al., 2008; Huang et al., 2014; Tatsumi et al., 2018; H. Wang 

et al., 2021). Thus, these cells likely represent various states of intermediate glial cells 

(iGCs), which were previously shown to have distinct astrocytic or oligogenic potentials 

(Weng et al., 2019). Interestingly, only BLBPlownestinlow Olig2mid glial precursors highly 

expressed the proliferation marker Ki67 (Fig. 1c). 
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OPCs and oligodendrocytes are characterized by high Olig2 and PDGFRα expression, 

although one PDGFRαneg OPC population expressing Sox10 was also identified, in 

agreement with previous reports (Spassky et al., 2001; Zheng et al., 2018). Consistent 

with multiple waves of OPC generation in distinct ventricular zones during embryonic 

development (Kessaris et al., 2006), expansion of OPC populations varies 

spatiotemporally (Fig. 3c). However, the eventual presence of OPCs with similar protein 

expression profiles by P4 in all microdissected brain regions is consistent with previously 

reported transcriptional uniformity of postnatal OPCs (Marques et al., 2018). 

 

Nonneural cells (generally defined by a lack of Sox2 and neural cell markers, Fig. 1c) 

could not be precisely identified by our CNS-focused antibody panel, but likely contain 

brain fibroblasts, vascular smooth muscle cells, and other cerebrovascular cells. All six 

endothelial cell populations generally exhibit caudal-to-rostral expansion (Fig. 3c), 

including a rare subset of CD45lowPECAMhigh cells resembling erythromyeloid progenitors 

(EMPs), a cell type previously shown to be capable of producing erythroid, myeloid, and 

endothelial cell lineages (Plein et al., 2018). Mural cells, characterized by MCAM and 

PDGFRβ expression, were sparsely present at all ages but also contain neural markers, 

likely due to incomplete removal of neural debris from the surface of these adhesive cells 

(Fig. 1c).  

 

Microglia/macrophages displaying characteristic CD45 and CD11b expression gradually 

increase in proportion throughout the brain (Fig. 3c). However, many subsets also contain 

various neural markers (Fig. 1c), which we believe result from the established phenomena 
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of microglial phagocytosis (VanRyzin, 2021), as discussed below. Finally, we observed 

two Sox10high populations exclusively in the whole brain and rhombencephalon (Fig. 3c), 

likely representing contaminating spinal cord and neural crest-derived cells.  

 

To evaluate biological and technical variability in our clustering results, we evaluated the 

variability of identified clusters across each brain region (Fig. 3d; Extended Data Fig. 5b–

d). Although some intralitter and interlitter variation is expected because of slight 

differences in the timing of fertilization and intrauterine environment, analysis of variance 

for biological replicates suggests high consistency of results overall. Generally, the 

highest variances are observed in neuronal populations from E11.5–P0 and glial 

populations from P0–P4, corresponding with periods during which these cells vastly 

increase in number; in contrast, low variances were observed for OPC populations at all 

ages. Notably, most of the smallest clusters identified (< 1000 cells or 0.016% of 5.75 × 

106 cells; clusters 25, 56, 62–65, and 84) appeared to be mural cell doublets or nonneural 

cells. Because of the low abundances of these clusters and our lack of additional 

identifying markers, our ability to reliably detect and quantify such populations is limited. 

 

Comparison of protein and mRNA expression patterns in the developing mouse brain 

Because protein and mRNA are each subject to numerous regulatory mechanisms that 

control their synthesis and degradation, there is no universal method to accurately predict 

protein abundances from mRNA expression levels, or vice versa (Liu et al., 2016). To 

investigate how well mRNA expression predicts protein abundance for various classes of 

cells in the developing brain, we compared our antibody-based mass cytometry 
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measurements with age-matched (from E11.5–E18.5) and tissue-matched scRNA-seq 

measurements from Linnarsson and colleagues (La Manno et al., 2021) (Extended Data 

Fig. 6a). Our antibody panel has 34 proteins with directly comparable cognate mRNAs in 

the Linnarsson dataset, but other markers are not directly comparable, such as cleaved 

caspase 3 and the ganglioside A2B5 (Extended Data Fig. 6b). Moreover, there were 

minor differences in the enzymes, buffers, mechanical filtration methods, incubation 

times, and centrifugation speeds used to dissociate single cells for mass cytometry and 

scRNA-seq analyses (Extended Data Fig. 6c). 

To evaluate expression levels by cell class, we first manually matched our clusters 

(shown in Fig. 1b,c) with those identified using scRNA-seq, resulting in 17 distinct cell 

classes (Extended Data Fig. 6d). Next, we evaluated percentages of cells expressing 

each protein-mRNA cognate pair and their normalized mean abundance levels in each 

class (Fig. 4a). As indicated by the size of dots in the plot, percentages of cells expressing 

key markers for each class are generally in agreement between mRNA and protein 

expression with a few notable exceptions. Although INPs are present from E11.5–P4 in 

all four brain regions according to protein expression, no INPs expressing Pax6, Tbr2, or 

NeuroD1 mRNA are observed in the mesencephalon or rhombencephalon after E12.5. 

In contrast, many NSCs, RGCs, and glial precursors express GLAST mRNA but not 

GLAST protein, and more early oligodendrocytes express Sox10 mRNA than Sox10 

protein. 

79



 

 

Figure 4. Comparison of protein and mRNA expression patterns in the developing mouse brain. a, 
Dot plot comparing protein expression evaluated by mass cytometry and RNA expression evaluated by 

scRNA-seq (published by La Manno et al. Nature, 2021). Select genes important for classifying cell type 

identities are shown. For mass cytometry data, results for E11.5 and E12.5 are replicated in each plot 

because they were normalized separately for comparison with each region; n = 2–4 litters per age for a 

total of 5.75 × 106 cells from 112 samples were analyzed. For scRNA-seq data, n = 1–3 litters per age for 
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a total of 1.92 × 105 cells from 75 samples were analyzed. Overlapping samples and clusters are outlined 

in Extended Data Figure 6. b,c, Representative images of RNAScope™ and IHC of nestin (b) and Tbr2 (c) 

in mouse telencephalon at E13.5, E15.5, and E17.5. Scale bar, 50 μm. d,e, Quantification of proportions of 

nestin-positive cells (c) and Tbr2-positive cells (d) in mouse telencephalon at E13.5, E15.5, and E17.5 by 
mass cytometry, IHC, RNAScope, and scRNA-seq. For d and e, mass cytometry (CyTOF) data include n = 

2 litters per age, 3.75 × 105 cells total; IHC data include n = 3 litters per age, 1.33 × 105 cells total; RNAScope 

data include n = 3 litters per age, 3.87 × 104 cells total; and scRNA-seq data include n = 1–3 litters per age, 

2.27 × 104 cells total. 

 

The highest levels of mRNA expression tend to precede or coincide with the highest levels 

of protein expression for many markers (Fig. 4a). In particular, mRNA and protein 

expression levels of certain transcription factors (e.g., Pax6 and Ctip2), neurofilaments 

(e.g., DCX, MAP2, and TuJ1), and enzymes (e.g., ALDH1A1 and GAD65) are 

concordant. In contrast, mRNA and protein expression levels of most cell surface markers 

(e.g., GLAST, PDGFRɑ, PECAM, and TrkB) are poorly related, potentially due to 

biological factors (e.g., numerous cellular processes involved in generating and properly 

localizing cell surface receptors) or technical artifacts (e.g., dropout of low-abundance 

RNA transcripts). 

 

To investigate whether the differences we observed in mRNA and protein expression at 

the single-cell level are corroborated by alternative methods, we analyzed nestin and Tbr2 

expression in the mouse telencephalon by IHC and RNAscope™ (Fig. 4b,c), and 

compared percentages of cells expressing nestin and Tbr2 measured by mass cytometry, 

IHC, scRNA-seq, and RNAscope. At E13.5, both mass cytometry and IHC indicate that 

higher proportions of cells express nestin protein compared with nestin mRNA measured 

by RNAscope and scRNA-seq (Fig. 4d). Both mass cytometry and IHC results exhibit a 
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trend of increasing proportions of cells expressing nestin protein from E13.5 to E15.5, 

followed by a substantial decline of 25%–50% between E15.5 and E17.5. In contrast, 

percentages of cells expressing nestin mRNA assessed using scRNA-seq and RNAscope 

demonstrate a consistent decrease from E13.5 onwards. Similar to nestin, percentages 

of cells expressing Tbr2 protein were consistently higher than percentages expressing 

Tbr2 mRNA at all ages examined (Fig. 4e). The microscopy-based IHC and RNAscope 

measurements corroborate single-cell measurements and comparison between cognate 

protein and mRNA levels, even though these would not be expected to match perfectly, 

because they only measure tissue sections rather than the entire tissue with characteristic 

heterogeneity of spatial organization. 

 

Differentiation trajectories of Sox2highnestinhigh cells in the developing mouse brain 

We next investigated how the molecular profile of NSCs, RGCs/glial precursors, and 

intermediate progenitors changes over the course of development and between brain 

regions. Because cells positive for stem cell markers were distributed across a large 

number of clusters (Extended Data Fig. 4a), this subset of cells was isolated by gating on 

two canonical NSC markers: Sox2 (Avilion et al., 2003; Ellis et al., 2004; Hutton and 

Pevny, 2011; Okita et al., 2007; Suh et al., 2007; Yu et al., 2007) and nestin (Lendahl et 

al., 1990; Mignone et al., 2004; Park et al., 2010) (Fig. 5a). Sox2highnestinhigh cells display 

the highest abundance at E14.5, reach a nadir around E18.5/P0, and increase postnatally 

(P1–P4) in all brain regions, although relative proportions of postnatal NSCs and 

RGCs/glial precursors vary between regions (Fig. 5b). The first embryonic wave of NSCs 

expresses neurogenic markers such as Tbr2, NeuroD1, DCX, and TuJ1; while the second 
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postnatal wave expresses glial markers such as BLBP, GLAST, and GFAP (Fig. 5c), 

consistent with a neurogenic to gliogenic switch of NSC fates in the developing brain 

before birth (Qian et al., 2000; Gao et al., 2014).  

 

To identify cell populations in the NSC/RGC/glial precursor compartment, we performed 

two rounds of Leiden clustering on Sox2highnestinhigh cells (first round results are shown 

in Extended Data Fig. 7a,b). The resulting 43 neural cell populations include three distinct 

clusters of NSCs (Pax6high, Olig2low, and Pax6neg), two INP clusters (Tbr2highPax6low and 

Tbr2highNeuroD1low), 17 clusters of neuronal progenitors, and 22 clusters representing 

various glial progenitors (Fig. 5d; Extended Data Fig. 7c–e). In addition, three PECAMhigh 

populations and small populations of mural cells, microglia/macrophages, apoptotic cells, 

and contaminating non-brain cells were observed. Generally, these clusters molecularly 

resemble those described in Figure 1. 
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Figure 5. Differentiation trajectories of Sox2+Nestin+ cells in the developing mouse brain.  a, Biaxial 

plots showing gating of Sox2+Nestin+ cells with CytoBank. Percentages of cells in each quadrant are shown. 

n = 2–4 litters per age for a total of 2.53 × 107 cells from 112 samples. Cells in the upper right quadrant 
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were included in subsequent analyses. b, Relative abundances of Sox2+Nestin+ cells in each brain region 

from E11.5–P4. Mean (solid line) shown along with range. c, Heatmap showing mean expression levels of 

all 40 markers in the antibody panel for each developmental age. d, UMAP of Leiden clustering of 

Sox2+Nestin+ cells colored according to cluster identity. Inset shows UMAP colored according to 
developmental age. For c–e, n = 2–4 litters per age, 3.25 × 105 cells total from 112 samples. e, Stacked 

bar graphs showing relative abundances of Sox2+Nestin+ clusters in each brain region from E11.5–P4. Note 

that results for E11.5 and E12.5 are replicated in each plot to facilitate comparison with that region. The 

data used to generate these plots is available in .csv format in the Source Data for this figure. n = 2–4 litters 

per age for a total of 3.25  × 105 cells in 112 samples. f,g, URD dendrogram colored according to Leiden 

clustering (f) and developmental age (g). Numbers indicate branch numbers. h, URD dendrogram with pie 

charts showing relative abundances of cells from each brain region for that branch. i, Heatmaps colored by 

marker expression for select trajectories identified by URD analysis. For f–i,  n = 2–4 litters per age, 6.10 × 
104 cells from 112 samples. 

 

Evaluation of relative Sox2highnestinhigh cluster abundances across brain regions (Fig. 5e) 

reveals that uncommitted Pax6high, Pax6low, and Olig2mid NSC-like cell populations are 

maintained in all brain regions from E11.5 to P4, although at relatively low proportions 

postnatally. The forebrain exhibits similar cell population dynamics with two major 

exceptions: 1) expansion of Olig2-expressing neuronal and glial progenitors begins two 

days earlier in the diencephalon, around E15.5; and 2) more than 30% of cells in the 

telencephalon from E13.5–E18.5 are Tbr2high INPs, a cell population not observed in other 

brain regions (Fig. 5e). Unlike the forebrain, which contains numerous GAD65high 

neuronal cell populations at all ages examined, GAD65-expressing neuronal progenitors 

are far less prevalent in the mesencephalon and rhombencephalon during late embryonic 

and postnatal ages, consistent with observed maturation of Purkinje cells (Beekhof et al., 

2021) and expansion of other cerebellar inhibitory neuron populations after P5 (Leto et 

al., 2006; Miale and Sidman, 1961; Weisheit et al., 2006). Moreover, in the 

mesencephalon, a VCAMhighPax6mixedSox2mid population not observed in other brain 
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regions rapidly expands from E17.5 to comprise over 50% of all Sox2highnestinhigh cells by 

P4. Similar VCAMhigh cells reported at this stage have been described as quiescent NSCs 

that persist until adulthood in the lateral ventricles (Fuentealba et al., 2015) and neocortex 

(Yuzwa et al., 2017). At the cell-subtype level, our clustering analysis recapitulates the 

progressive switch from neurogenic to gliogenic NSCs (Fu et al., 2021). However, our 

results also demonstrate that an array of glial progenitors are already present at E13.5 

and neuronal progenitors persist until after P0, albeit at much lower relative abundances 

in the forebrain and mesencephalon (Fig. 5e). These findings are consistent with previous 

reports (La Manno et al., 2016; Yuzwa et al., 2017; Rosenberg et al., 2018; Carter et al., 

2018; Wizeman et al., 2019; Zhang et al., 2020; Romanov et al., 2020; La Manno et al., 

2021; Sarropoulos et al., 2021), including clonal neuron, astrocyte, and oligodendrocyte 

progeny arising from individual RGCs genetically labeled between E10 and E13 (Gao et 

al., 2014). 

 

To explore the molecular dynamics underlying specification of NSC/RGCs into 

intermediate progenitors, we applied URD pseudotime analysis (Farrell et al., 2018) to 

predict differentiation trajectories of Sox2highnestinhigh cells (excluding endothelial cells, 

nonneural cells, and microglia/macrophages) from all brain regions and ages (Extended 

Data Fig. 7f–i). We chose Pax6high NSCs from E11.5 whole brain as root cells because 

Pax6 expression commences at the earliest point of CNS development (~E8) and acts 

upstream of many other factors defining neural fates [including Tbr2 (Englund et al., 

2005), Olig2 (Jang and Goldman, 2011), and BLBP (Arai et al., 2005)], while neural cell 
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populations with mature expression profiles at P0–P4 were chosen as tip cells (Extended 

Data Fig. 7f).  

 

In the resulting URD dendrogram (Fig. 5f–h), the first branchpoint separates two neuronal 

trajectories (cortical INPs destined to generate pyramidal neurons and 

Pax6highNeuroD1high neuronal progenitors destined to produce cerebellar granule cells) 

from all other neural progenitors, while the second branchpoint separates the remaining 

neuronal progenitors from glial progenitors. The neuronal branch (segment 3) splits 

further into Olig2highCtip2high neuronal precursors and various inhibitory 

progenitor/precursor populations. Paradoxically, GAD65highCtip2low and 

GAD65highCtip2high inhibitory neuron precursors (segments 7 and 8) were NeuNhigh 

embryonically and NeuNlow postnatally (Extended Data Fig. 7k). One possible explanation 

is that phosphorylation or protein-protein interactions of NeuN masked the epitope 

targeted by our NeuN antibody (Gusel’nikova and Korzhevskiy, 2015). Analysis of the 

contribution of each brain region to URD branches (Fig. 5h) predicts distinct regional 

biases of these neuronal progenitors: INPs (segment 26) are primarily located in the 

telencephalon, Pax6highNeuroD1high INPs (segment 25) are primarily located in the 

rhombencephalon, and all GAD65high inhibitory neurons (segments 3–11) are primarily 

located in the forebrain. Differences in marker expression underlying each branchpoint 

are shown in Extended Data Figure 7k,l.  

 

The glial branch (segment 12) of the URD lineage hierarchy splits into two sub-branches: 

Olig2high cells predicted to only give rise to OPCs, and Olig2low cells predicted to 
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differentiate into both OPC and astroglial lineages (Fig. 5f). Olig2high committed OPC 

progenitors (segment 13) only branch again much later in pseudotime, while Olig2low glial 

cells (segment 16) branch early in pseudotime to separate Pax6highSox2high glial 

precursors from the remaining glial cells. These remaining glial cells subsequently branch 

into Pax6/Olig2/GFAPneg glial progenitors, GFAPhigh glial precursors, 

Olig2midBLBPhighGLASThigh glial precursors, and Cux1high OPCs (Fig. 5f). By this analysis, 

cells in segments 16–18 are predicted to be bipotent iGCs capable of producing both 

astrocytes and oligodendrocytes (Cai et al., 2007; Fu et al., 2021). In contrast to neuronal 

progenitors, cells in glial trajectories (segments 12–23) are predicted to more evenly 

represent the four microdissected brain regions, with the exception of BLBPhighGLASThigh 

RGCs/glial progenitors (segment 24), which were observed almost exclusively in the 

rhombencephalon (Fig. 5h) and likely represent Bergmann glia, as previously described 

by Heng et al. (Heng et al., 2017). Proportions of OPCs in three of the four terminal OPC 

branches (segments 14, 15, and 21 but not 20) display a pattern of rhombencephalon > 

mesencephalon > diencephalon > telencephalon, therefore predicting a generally caudal-

to-rostral pattern of early OPC maturation that mimics myelination patterns in mouse 

(Kanfer et al., 1989; Verity and Campagnoni, 1988) and human brain (Inder and Huppi, 

2000; Jakovcevski and Zecevic, 2005).   

 

Analysis of protein expression levels along URD pseudotime trajectories predicts the 

relative timing and sequence of molecular transitions contributing to cell specification (Fig. 

5i, Extended Data Fig. 7m). As expected, the INP trajectory is defined by Tbr2 expression; 

inhibitory neuron trajectories are distinguished by GAD65 and neuronal filaments 
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(commencing with DCX); and glial precursors sequentially express A2B5, BLBP, and 

GLAST, followed by GFAP in GFAPhigh glial precursors and Olig2 in 

Olig2medBLBPhighGLASThigh glial precursors. ⍺ 

 

Differentiation trajectories and molecular dynamics in the telencephalon 

Expanding our trajectory analysis beyond progenitors to include the maturation of 

neuronal and glial cells, we performed Leiden clustering on E11.5–E12.5 whole brain and 

E13.5–P4 telencephalon (Fig. 6a,b; Extended Data Fig. 8a–f), and analyzed the neural 

cells by URD using Pax6high NSCs from E11.5 as the root, and twelve terminal populations 

from P4 telencephalon as tips (Extended Data Fig. 8g–j). The predicted cell lineage 

hierarchy first separates neuronal cells from glial cells (Fig. 6c), with enrichment of the 

former during embryogenesis and the latter postnatally (Fig. 6d). 
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Figure 6. Differentiation trajectories and molecular dynamics in the telencephalon. a, UMAP of 

Leiden clustering of cells in the mouse telencephalon from E11.5–P4 colored according to cluster identity. 

Inset shows UMAP colored according to developmental age. n = 2 litters per age, 3.05 × 106  cells from 26 
samples. b, UMAP of telencephalon cells chosen as the root and tips for URD analysis. c, URD dendrogram 
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colored according to Leiden cluster identity. d, URD dendrogram colored by developmental age. e, URD 

dendrogram with branch numbers indicated. f, Dot plot showing expression of markers key for the division 

of each branchpoint in URD analysis. g, URD dendrograms colored according to expression levels of select 

markers. h, Relative expression levels of proteins key for defining select molecular trajectories with URD 
analysis. Bars underneath graphs show median developmental ages of cells within each corresponding 

pseudotime bin. For c–h, n = 2 litters per age, 6.10 × 104 cells from 26 samples. 

 

To evaluate markers underlying cell fate decisions, we evaluated the most significant 

differences in protein expression between child segments at each URD branch point (Fig. 

6e,f). Neuronal cells (segment 2) are distinguished from glial cells (segment 9) by 

expression of DCX and CD24. Neuronal trajectories first separate Tbr2high excitatory 

neurons (segment 3) from GAD65highnestinhigh inhibitory neurons (segment 6). Next, 

excitatory neurons split into Tbr1low upper-layer neurons (segment 4) and Ctip2high deep-

layer neurons expressing high levels of DCX, TuJ1, and MAP2 (segment 5), consistent 

with inside-out formation of the cerebral cortex (Shen et al., 2006). Inhibitory neurons split 

further into GAD65mixedCtip2neg neuronal precursors (segment 7) and GAD65mixedCtip2neg 

interneurons (segment 8). Similar to our URD analysis of Sox2highnestinhigh cells (Fig. 5), 

glial trajectories were predicted to first separate into BLBPhighGLASThigh glial progenitors 

(segment 10) and Olig2mid glial precursors (segment 13). The former trajectory branches 

into Pax6lowBLBPhigh glial precursors (segment 11) and GFAPhigh glial precursors 

(segment 12), while the latter splits into Olig2highPDGFRɑhigh OPCs (segment 14) and 

Olig2mid glial precursors (segment 15).  

 

Inspection of key proteins across the URD pseudotime trajectories predicts their 

dynamics and order of expression with improved resolution. For example, sequential 

expression of Pax6, Tbr2, NeuroD1, and Tbr1 is observed in the two excitatory neuron 
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trajectories (Fig. 6g,h; Extended Data Fig. 8k), consistent with previous reports on 

glutamatergic neuron development in the dorsal telencephalon (Englund et al., 2005; 

Telley et al., 2016). On closer inspection, we observed that Pax6 does not decrease until 

after Tbr2 is elevated, resulting in a subset of Pax6highTbr2high cells. Moreover, NeuN and 

TuJ1 began to rise with Tbr2, but then paused and did not increase further until Tbr2 

decreases, consistent with Tbr2 temporarily inhibiting neuronal maturation by 

transcriptionally repressing genes associated with axonal growth and dendritic complexity 

(Sessa et al., 2017). A similar pause in neuronal maturation was observed in the 

development of GAD65highCtip2high GABAergic neurons (Fig. 6h; Extended Data Fig. 8k). 

Produced by RGCs in the ventral telencephalon, these cells do not traverse through Pax6, 

Tbr2, and Tbr1 stages; however, their trends for GAD65, Ctip2, and MAP2 expression 

suggest that a similar mechanism of temporary transcriptional repression may occur 

during maturation of inhibitory neurons. 

 

Sox2 expression decreases to undetectable levels during neuronal development and 

maturation, but expression of this stem cell-associated transcription factor was predicted 

to be maintained throughout GFAPhigh glial precursor and OPC differentiation trajectories 

(Fig. 6g,h; Extended Data Fig. 8k). In the GFAPhigh glial precursor trajectory, A2B5, BLBP, 

and GLAST all increased with similar kinetics, while GFAP increased at a slower rate until 

Pax6 levels dropped, at which point GFAP rapidly increased. While previous studies 

reported that OPCs sequentially express Olig2, Sox10, PDGFRɑ, and OligoO4 as they 

mature (Lu et al., 2000; Zhou et al., 2000; Tekki-Kessaris et al., 2001), our results predict 
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simultaneous increases in Sox10 and PDGFRɑ protein levels, perhaps due to 

translational control or protein degradation preventing earlier accumulation of Sox10.     

 

Microglia/macrophage expansion and putative phagocytic cargoes in the developing 

mouse brain 

To investigate subsets of microglia/macrophages in the developing brain, CD45high cells 

from all brain regions and ages were selected by two-dimensional gating (Extended Data 

Fig. 9a), partitioned by Leiden clustering to identify cell subtypes, and visualized with a 

3D UMAP layout to improve visualization of cell clusters (Fig. 7a). Microglia/macrophages 

were identified as CD45midCD11bhigh cells, but our ability to further specify cell subtypes 

was restricted by the inclusion of only four cell type-specific markers in our antibody panel 

relative to the microglia-focused panels used in previous mass cytometry studies (Mrdjen 

et al., 2018; Ajami et al., 2018; Li et al., 2019; Böttcher et al., 2019; Fu et al., 2020b, 

2020a; Ormel et al., 2020; Xie et al., 2022). However, while lacking in cell-subtype 

specificity, our antibody panel enables detection and quantification of putative phagocytic 

cargoes, allowing us to divide microglia/macrophages into two functional subtypes: 

“unladen” without cargo and “cargo-laden” containing neuronal or glial markers (indicated 

by dashed lines in Fig. 7a). Importantly, these cargo-laden microglia/macrophages were 

retained as cell singlets by our gating parameters and not removed from analysis as 

artifactual cell doublets or aggregates (Extended Data Fig. 2e–j).   
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Figure 7. Microglia/macrophage expansion and putative phagocytic cargoes in the developing 
mouse brain. a, Three-dimensional UMAP of CD45+ cells colored according to Leiden cluster identity. 

Dashed lines indicate grouping of microglia into non-interacting (orange) and interacting (blue) clusters. 
Inset shows gating of CD45+ cells using CytoBank. Cells inside the red box were included in analysis. b, 

Biaxial plots showing relative abundances of cells positive for select neural proteins. c, Violin plot showing 

expression of select proteins key for distinguishing functional macrophage/microglia subpopulations in the 

developing mouse brain. d, Dot plot showing relative abundances of CD45+ clusters in each brain region 

from E11.5–P4. n = 2–4 litters per age/brain region, 1.756 × 106 cells from 112 samples. 

Evaluation of the microglia/macrophage marker CD11b with key markers of neuronal cells 

(Tbr2, NeuroD1, and TuJ1) and various glial populations (Sox2, BLBP, Olig2, and 
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OligoO4) reveals discrete patterns across cargo-laden microglia/macrophage clusters, 

whereas these markers are generally absent in all other clusters (Fig. 7b). 

Microglia/macrophage clusters with positive but low DCX, TuJ1, and MAP2 levels suggest 

engulfment of neurite debris, while clusters positive for these neurofilaments plus 

neuronal-related transcription factors (e.g., Tbr2, NeuroD1, Tbr1, and/or Ctip2) provide 

evidence for the engulfment of entire neurons (Fig. 7c, Extended Data Fig. 9b). Similarly, 

microglia/macrophages positive for glial and OPC markers suggest phagocytosis of these 

cell types, as previously reported (Li et al., 2019; Nemes-Baran et al., 2020). 

Microglia/macrophages positive for OligoO4 (a surface antigen of oligodendrocytes) but 

not other markers of OPCs/oligodendrocytes or neurites may represent myelin-engulfing 

microglia/macrophages (Djannatian et al., 2021; Hughes and Appel, 2020) and display 

caudal-to-rostral expansion mirroring reported patterns of myelination in the developing 

mouse brain (Kanfer et al., 1989; Verity and Campagnoni, 1988). These observations are 

supported by the identification of mRNAs for MBP and GFAP in P7 microglia by scRNA-

seq (Li et al., 2019), as well as our previous identification of presumptive cargos in 

immature satellite glial cells by mass cytometry (Keeler et al., 2022). 

Among unladen microglia/macrophages, we observed Ki67high proliferative cells, cleaved-

caspase 3high apoptotic cells, and several states without further defining characteristics 

other than varying expression levels of F4/80, A2B5, and Cux1. Although relative 

abundances of unladen microglia/macrophages generally increase as brain development 

progresses (Fig. 7d), we observed more distinct trends for phagocytic 

microglia/macrophages: a consistent increase after E15.5 in the telencephalon, a plateau 
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after E17.5 in the diencephalon, two waves of expansion before and after birth in the 

mesencephalon, and one wave of expansion centered around birth in the 

rhombencephalon.  

To investigate whether these observations represent single-cell events or cell aggregates, 

we  quantified the extent of cell doublets and aggregates in our single-cell samples by 

two methods: flow cytometry with a DNA intercalator to identify cell events with greater 

than 4n DNA content (Extended Data Fig. 9c), and the 6-choose-3 doublet-filtering 

scheme used for mass cytometry barcoding (Extended Data Fig. 9d), whereby any cell 

event with greater than three palladium metals must contain cells from more than one 

barcoded sample (Zunder et al., 2015a). As measured by both methods, the frequency 

of cell doublets or aggregates in samples (before pre-processing) did not exhibit any 

noticeable trend across age or tissues (Extended Data Fig. 9e,f). In contrast, observed 

frequencies of both unladen and cargo-laden microglia/macrophages vary across ages 

and brain regions. Unladen microglia/macrophages generally increase in abundance with 

age in the forebrain and mesencephalon, although their numbers plateau in the 

rhombencephalon (Extended Data Fig. 9g). Cargo-laden microglia/macrophages 

increase with age in the telencephalon, plateau early in the diencephalon, display two 

waves centered around birth in the mesencephalon, and apex before birth in the 

rhombencephalon (Extended Data Fig. 9h). Notably, relative abundances of both unladen 

and cargo-laden microglia/macrophages were lowest in the rhombencephalon. These 

differences in frequency from known doublets and aggregates, coupled with the 

established propensity of microglia/macrophages for phagocytosis during brain 
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development (VanRyzin, 2021), suggest our observations represent bona fide phagocytic 

events for microglia/macrophages in the developing brain. 

Discussion 

In this study, we adapted mass cytometry for single-cell profiling of brain tissues to 

produce a protein-based cell atlas of the developing mouse telencephalon, diencephalon, 

mesencephalon, and rhombencephalon. Using sample replicates acquired daily across 

embryonic and postnatal development, we identified molecularly distinct cell populations, 

quantified their variability, and modeled their differentiation trajectories. As a resource, 

the companion dataset to this manuscript recapitulates decades of neural development 

research, characterizing the molecular profile and timing of appearance of virtually every 

major cell type, from progenitor cells, neurons, astrocytes, and oligodendrocytes, to 

microglia/macrophages, vascular cells, and other nonneural cell types (as summarized in 

Figure 8). In addition to recapitulating previous studies, our survey of the developing 

mouse brain provides novel insights into: 1) abundances and timing of rare neuronal and 

intermediate glial cell populations, 2) variations in timing between protein and mRNA 

levels during brain development, 3) expression of Sox2 and nestin across a wide variety 

of cell types, including endothelial cells, 4) two potentially distinct differentiation 

trajectories for generation of OPCs (direct-differentiating and iGC-derived), 5) molecular 

dynamics underlying specification of glutamatergic neurons in the telencephalon, and 6) 

cargo-laden microglia/macrophages in the developing brain. 
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Figure 8. Overview of key processes in mouse brain development. Relative cluster abundances and 

schematics of major processes involved in development of the mouse telencephalon (a,b), diencephalon 

(c,d), mesencephalon (e,f), and rhombencephalon (g,h) from E11.5–P4. Note that results for E11.5 and 

E12.5 whole brain are replicated in each plot to facilitate comparison with that region.  
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Reminiscent of our previous observation of putative phagocytosis by satellite glial 

precursors in the dorsal root ganglia (Keeler et al., 2022), a fortuitous result of this study 

was the observation of putative phagocytic cargoes in microglia/macrophages. 

Phagocytosis by microglia plays an important role in brain development (Paolicelli et al., 

2011; Squarzoni et al., 2014; Hughes and Appel, 2020), homeostasis (Li et al., 2019), 

injury (Hammond et al., 2019), and disease (Derecki et al., 2012). Notably, our findings 

suggesting phagocytosis of myelin by microglia/macrophages at embryonic ages 

represent the earliest description of this developmental phenomenon, corroborating 

recent findings in zebrafish, P10 mouse optic nerve, and P14 mouse brain (Hughes and 

Appel, 2020; Djannatian et al., 2021). Clean-up gating and doublet analysis suggest that 

it is unlikely the putative phagocytic cargoes observed here are due to cell doublets or 

larger aggregates. Future studies could provide a more detailed view of microglial 

subtypes and their phagocytic behavior by employing a hybrid antibody panel including 

additional markers to define microglial subpopulations (Mrdjen et al., 2018; Ajami et al., 

2018; Li et al., 2019; Ogrodnik et al., 2019; Dusoswa et al., 2020; Zilkha-Falb et al., 2020; 

Li et al., 2021; Xie et al., 2022), as well as markers of phagocytic activity and cargoes. 

With additional validation and characterization, this approach to quantify phagocytic 

cargoes could be extended beyond microglia/macrophages to “non-professional” 

phagocytes like neural crest cells (Zhu et al., 2019). While the antibody panel used in this 

study was not designed to probe microglia/macrophage subtypes, the ability to quantify 

cargoes within these cells provides a novel method to monitor and characterize how 

microglia and macrophages sculpt the developing brain with their phagocytic activity. 
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One caveat for single-cell analysis of neural tissues is the potential for systematic bias in 

the quantification of relative cell-type abundances, which could be caused by lysing or 

depletion of specific cell populations, or resistance of specific cell populations to 

enzymatic/mechanical dissociation during sample processing. For example, the relatively 

low numbers of cleaved-caspase 3-positive cells in our study may reflect the fragility of 

cells undergoing apoptosis, rather than their low abundance in the developing brain. To 

directly estimate losses of NSCs, neurons, glia, and OPCs during the dissociation 

process, we performed flow cytometry to quantify relative abundances of (DAPI-positive) 

cells expressing Sox2, nestin, TuJ1, or Olig2 in supernatants discarded during single-cell 

dissociation of P3 mouse cortex (Extended Data Fig. 1e,f). The results show that cells 

expressing each marker were present in all five supernatants at roughly equivalent 

proportions to the final sample preparation, suggesting that neural populations were not 

selectively enriched/depleted during our single-cell dissociation process. Moreover, 

immunofluorescence microscopy of age-matched tissue slices corroborated trends for 

cell abundances measured by mass cytometry (Fig. 2). For tissue imaging with enhanced 

capacity for molecular profiling, the metal isotope-labeled antibodies used in this study 

can also be applied for mass spectrometry-based imaging, either with imaging mass 

cytometry (Giesen et al., 2014) or multiplexed ion beam imaging (Angelo et al., 2014). 

While the cell populations we identified by protein-based measurements show general 

agreement with those previously identified by scRNA-seq (La Manno et al., 2016; Kee et 

al., 2017; Frazer et al., 2017; Y.-J. J. Chen et al., 2017; Yuzwa et al., 2017; Mayer et al., 

2018; Mi et al., 2018; Rosenberg et al., 2018; Carter et al., 2018; Tiklová et al., 2019; 
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Wizeman et al., 2019; Guo and Li, 2019; Zhang et al., 2020; Romanov et al., 2020; Zhou 

et al., 2020; Kim et al., 2020; Li et al., 2020; Ruan et al., 2021; Di Bella et al., 2021; La 

Manno et al., 2021; Sarropoulos et al., 2021; Turrero García et al., 2021; Lee et al., 2022), 

the observed differences between specific protein-mRNA pairs demonstrate the value of 

protein measurements to characterize and quantify functional cell states. The variety of 

relationships we observed between mRNA and protein abundance likely arises from a 

combination of many factors, such as varying rates of mRNA processing and degradation, 

as well as varying rates of protein translation, maturation, trafficking, and degradation; all 

of which can differ between specific protein-mRNA pairs, across cell types, and across 

developmental stages within a single cell type. For example, translational control, protein 

degradation, and incomplete trafficking or internalization of surface proteins may result in 

high levels of mRNA but no protein present. Conversely, mRNA degradation may result 

in high levels of long-lived proteins, but no mRNA present. Investigating these 

mechanisms is beyond the scope of this study, but could be investigated further by split 

sample measurements with mass cytometry and scRNA-seq, or with CITE-seq (Stoeckius 

et al., 2017) to simultaneously detect protein and RNA abundances in single cells. 

 

The neural mass cytometry approach developed in this manuscript will enable future 

mechanistic studies on mouse neurological disease models, enhance characterization of 

genetic and pharmacological perturbations of brain development, and can also be used 

to study in vitro models of neural differentiation employing embryonic or induced 

pluripotent stem cells. The high sample throughput and relatively low cost of mass 

cytometry make it particularly attractive for larger scale studies, where increased sample 
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numbers allow for statistical comparisons between conditions, and increased cell 

numbers allow for the characterization of rare, low-frequency cell populations. Indeed, the 

breadth of findings presented in this manuscript are derived from a single experiment run 

over 3 days with barcode-multiplexed samples, demonstrating the power of mass 

cytometry as a high-throughput platform for single-cell analyses. Potential for further 

optimization includes adapting the antibody panel to measure human brain cells; at 

present, 27 out of 40 antibodies in our mouse CNS staining panel are cross-reactive for 

their respective human homologs (Extended Data Table 1). The antibody panel could also 

be modified to focus on specific brain regions or use with imaging mass cytometry (Giesen 

et al., 2014), and tissue dissociation methods could be optimized for analysis of adult 

tissues. Collectively, our mass cytometry analyses represent a region-specific roadmap 

of cell specification and maturation in the mouse brain, and provide a high-throughput, 

multiplexed platform to investigate fundamental mechanisms of development at the 

protein level. 
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Chapter III: Mass Cytometry Analysis of Mouse 
Dorsal Root Ganglia Development

The contents of this chapter were previously published as “A developmental atlas of 

somatosensory diversification in the dorsal root ganglia by single-cell mass cytometry.” Austin 

Keeler*, Amy Van Deusen*, Irene Gadani, Corey Williams, Sarah Goggin, Ashley Hirt, Shayla 

Vradenburgh, Kristen Fread, Emily Puleo, Lucy Jin, O. Yipkin Calhan, Christopher Deppmann, 

Eli Zunder. Nature Neuroscience. 2022;25(11):1543–1558.
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Abstract 

Precisely controlled development of the somatosensory system is essential for detecting 

pain, itch, temperature, mechanical touch and body position. To investigate the protein-

level changes that occur during somatosensory development, we performed single-cell 

mass cytometry on dorsal root ganglia from C57/BL6 mice of both sexes, with litter 

replicates collected daily from embryonic day 11.5 to postnatal day 4. Measuring nearly 

3 million cells, we quantified 30 molecularly distinct somatosensory glial and 41 distinct 

neuronal states across all timepoints. Analysis of differentiation trajectories revealed rare 

cells that co-express two or more Trk receptors and over-express stem cell markers, 

suggesting that these neurotrophic factor receptors play a role in cell fate specification. 

Comparison to previous RNA-based studies identified substantial differences between 

many protein–mRNA pairs, demonstrating the importance of protein-level measurements 

to identify functional cell states. Overall, this study demonstrates that mass cytometry is 

a high-throughput, scalable platform to rapidly phenotype somatosensory tissues. 
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Introduction 

Somatosensory neurons residing in the dorsal root ganglia (DRG) transmit diverse 

sensory stimuli to the central nervous system (CNS), including mechanical pressure, 

changes in limb position, temperature, pain and itch. Previous studies have identified up 

to 13 subpopulations of mature sensory neurons in the peripheral nervous system (PNS) 

by the first month of development in mice and up to 18 subpopulations in adulthood 

(Emery and Ernfors, 2020; Lallemend and Ernfors, 2012; Li et al., 2018, 2016; Usoskin 

et al., 2015). Although somatosensory neurons are relatively well-characterized at 

maturity, many fundamental questions with respect to their development remain 

unresolved. In particular, intermediate progenitor cell types of the DRG remain poorly 

characterized, and the molecular profiles that control cell type specification have not been 

defined. Identifying the molecular trajectories and cell fate decisions that control DRG 

development promises to improve understanding of sensory disorders with 

developmental components, such as congenital insensitivity to pain with anhidrosis 

(CIPA) and autism spectrum disorder (ASD) (Orefice et al., 2019, 2016; Özkaya et al., 

2014). 

Previous efforts to monitor the diversification and maturation of somatosensory neurons 

have primarily relied either on microscopy, which detects a small number of proteins 

simultaneously, or single-cell RNA sequencing (scRNA-seq), which detects a large 

number of transcripts simultaneously. scRNA-seq and the related technique, single-nuclei 

RNA sequencing (snRNA-seq), have been applied to characterize the molecular diversity 

of cell types in a wide range of adult and developing neural tissues (Darmanis et al., 2015; 
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Habib et al., 2016; Macosko et al., 2015; Tasic et al., 2016; Zeisel et al., 2018), including 

the dorsal root ganglion (Chiu et al., n.d.; Faure et al., 2020; Finno et al., 2019; Hockley 

et al., 2019; Kupari et al., 2021; Li et al., 2016; Nguyen et al., 2021; Rosenberg et al., 

2018; Sharma et al., 2020; Usoskin et al., 2015; K. Wang et al., 2021; Wu et al., 2021), 

but no study to date has measured every day of development across embryonic and 

postnatal timepoints. Such temporal resolution is essential if we are to determine precise 

lineages of both abundant and rare cell types that are responsible for somatosensory 

perception. In this study, we leveraged the relatively high-throughput (1 × 106 cells per 

hour) single-cell analysis technique—mass cytometry—to exhaustively profile the 

composition of the DRG at every day of development from embryonic day (E) 11.5 to 

postnatal day (P) 4. 

 

Mass cytometry is a flow cytometry variant that uses rare earth metal isotope-labeled 

antibodies and other affinity reagents to quantify the abundance of proteins and other 

biomolecules at the single-cell level (Bandura et al., 2009). Commercially available 

reagents permit over 40 molecular markers to be measured and quantified simultaneously 

in each cell, including cell surface receptors and intracellular signaling molecules (Bendall 

et al., 2011), transcription factors (Zunder et al., 2015b), cell cycle status and proliferation 

state (Behbehani et al., 2012) and cell viability (Fienberg et al., 2012). Mass cytometry 

has been used previously to characterize glioma cells and microglia in neural tissues 

(Ajami et al., 2018; Friebel et al., 2020; Mrdjen et al., 2018), but, until now, it has not been 

applied to neurons or other glial cell types in the CNS or PNS. 
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To investigate DRG development with mass cytometry, we developed a 41-antibody 

panel including key transcription factors, neurotrophic factor receptors and other protein 

markers known to play a critical role in the specification and maturation of DRG cell types. 

We applied this panel to measure single-cell DRG samples from E11.5, shortly after the 

DRG have coalesced from migratory neural crest cells, to P4, when somatosensory 

neurons have innervated their peripheral targets and have begun to mature into distinct 

functional types (Lallemend and Ernfors, 2012). With this approach, we identified and 

quantified the abundance of 30 molecularly distinct somatosensory glia and 41 

somatosensory neuron subtypes across embryonic and postnatal development in the 

DRG. 

 

The 41 somatosensory neuron subtypes that we identify here show complementary 

overlap with postnatal DRG neurons previously identified by scRNA-seq (Emery and 

Ernfors, 2020; Sharma et al., 2020; Usoskin et al., 2015). However, a time course 

comparison reveals that mRNA transcript abundance does not accurately predict protein 

abundance, which is the best representation of a cell’s functional state. Collectively, the 

findings presented in this study demonstrate, to our knowledge for the first time, that mass 

cytometry is a high-throughput, scalable platform for single-cell analysis of neural tissues 

such as the DRG. 
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Materials and Methods 

Animals 

All animal experiments were carried out in compliance with policies of the Association for 

Assessment of Laboratory Animal Care and approved by the University of Virginia Animal 

Care and Use Committee (Deppmann protocol no. 3795). Mice aged E11.5 to P4 were 

harvested from C57/BL6 females (Jackson Labs, 000664) bred in house. For timed 

pregnancies, animals were mated overnight and separated after 16 hours. Animals were 

housed on a 12-hour light/dark cycle with food and water ad libitum at 21 °C with 45–50% 

humidity. For embryonic timepoints, pregnant females from single overnight (harem set 

up between 17:00 and 18:00 and split between 7:00 and 8:00 the next morning) timed 

matings were used to ensure accurate embryo age. 

 

Validation of antibodies 

After conjugation to a specific metal isotope, each antibody was titrated using a variety of 

cell samples and counterstains. Antibodies that generated signal in DNA intercalator-

positive cells that also correlated with one or more positive counterstains, but were absent 

in cells with a negative counterstain, were considered to be specific and reliable. Optimal 

concentrations for the discernment of relative protein expression were determined by 

titration to identify the concentration with the greatest separation between signal in 

positive controls compared to signal in negative controls while minimizing background. 

Optimal staining concentrations for each antibody are listed in Supplementary Table 1. 
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Metal conjugation of antibodies 

Purified antibodies were conjugated to metals (listed in Supplementary Table 1) for mass 

cytometry analysis using MaxPAR antibody conjugation kits (Fluidigm) according to the 

manufacturer’s instructions. After labeling, antibodies were diluted at least 1:2 to a final 

concentration ranging from 0.05 mg ml−1 to 0.4 mg ml−1 in Candor PBS Antibody 

Stabilization solution (Candor Bioscience) for long-term storage at 4 °C. 

 

Dissection 

Spinal cords were removed from mice aged E11.5 to P4 and placed in 35-mm Petri dishes 

containing Dulbecco’s PBS (Thermo Fisher Scientific, 14190) on ice. DRG were plucked 

either off the isolated spinal cord (E11.5–E15.5) or from within the ossified vertebrae 

(E16.5–P4), depending on age. All DRG were collected upon dissection, including the 

sacral, lumbar, thoracic and cervical ganglia. Total numbers of animals and cells analyzed 

are listed in Supplementary Table 2. 

 

Single-cell dissociation 

After dissection, all the DRG from a whole litter (6+ pups) were transferred to a 15-ml 

conical filled with cold DMEM/F-12. Excess media was then removed, followed by the 

addition of 5 ml of Enzyme Solution 1. For tissues E15.5 to P4, Enzyme Solution 1 is 

composed of 5 mg ml−1 of BSA (Sigma-Aldrich, A9418), 2 mg ml−1 of Collagenase Type 2 

(Worthington, LS004176), 0.2 mg ml−1 of DNAse-I (Sigma-Aldrich, 11284932001) and 

0.2 mg ml−1 of hyaluronidase (Sigma-Aldrich, H3884) in DMEM/F-12. For E11.5 to E14.5 

tissues, Enzyme Solution 1 was prepared as above and then diluted 1:10 in DMEM/F-12. 
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After 20 minutes of incubation in Enzyme Solution 1 at 37 °C, this was then removed and 

replaced with 5 ml of Enzyme Solution 2 (trypsin in DMEM/F-12) for tissue from E15.5 to 

P4. Again, E11.5 to E14.5 was treated with Enzyme Solution 2 diluted 1:10 in DMEM/F-

12. The tissue was incubated for 15 minutes in Enzyme Solution 2 at 37 °C before the 

solution was removed, leaving a residual volume of approximately 750 μl. Serial 

dissociation was performed with four fire-polished pipettes with decreasing pore diameter, 

with approximately ten triturations per pipette. 

 

Our comparisons to IHC and scRNA-seq indicate that, generally, we were able to retain 

known cell types through our workflow and analysis. We also were not able to collect 

tissue older than P4 with enough efficiency and yield for mass cytometry analysis, due to 

the abundance of myelin and debris. Alternative dissociation methods or post-dissociation 

clean-up may make mass cytometry analysis possible for DRG past P4, including adult 

tissue. 

 

Optimizing neural dissociation and antibody validation for mass cytometry of neural 

tissues 

This study was begun without optimized protocols for cell dissociation of dissected 

samples and without an optimized antibody panel for neural cell types. Without a working 

antibody panel, it was challenging to validate and optimize our dissection and cell 

dissociations, but, without high-quality dissociated samples, it was challenging to validate 

and optimize our antibodies. To solve this ‘chicken and egg’ problem, we adopted a 

bootstrapping approach, starting with a few antibodies that worked relatively well (TuJ1 
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and Sox2) and using these to test and optimize cell dissociation techniques for samples 

from various timepoints. These improved-quality samples were then used to test more 

antibodies, and, in this iterative manner, over many back-and-forth iterations, we were 

able to build up our antibody panel and improve our cell dissociation techniques to identify 

all the DRG cell types discussed in this study. 

 

Cisplatin staining and fixation of cells 

Final cell suspensions were mixed with 100 μl of 2× cisplatin solution (10 μM in PBS; 

Sigma-Aldrich, P4394) and incubated for 30 seconds before quenching with 1.3 ml of PBS 

containing 0.5% BSA. After centrifugation at 300g for 3 minutes at 4 °C, resulting cell 

pellets were washed once with PBS with 0.5% BSA before fixation in 1 ml of 1.6% PFA 

solution (Electron Microscopy Services, CAS 30525-89-4) in PBS for 10 minutes at room 

temperature. After centrifugation at 600 × g for 3 minutes at 4 °C, cells were washed once 

with PBS before final resuspension in 1 ml of cell staining medium (CSM; 0.5% BSA and 

0.02% NaN3 in PBS), and then the cell suspension was passed through a 75-μm sieve 

and a 45-μm sieve (Thermo Fisher Scientific, 50871316 and 50871319) with a P1000 

micropipette. Then, the cells were stored at −80 °C until all samples were collected. 

 

Cell counts and visual inspection by light microscopy 

Fixed cells were thawed and then visually inspected in bright-field mode at ×4, ×10 and 

×20 on an EVOS AMF4300 microscope (Thermo Fisher Scientific) to determine if 

excessive amounts of cell clumping or debris were present in samples. Samples that 
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passed visual inspection were counted using a Bio-Rad TC20 Automated Cell Counter to 

determine cell number (Supplementary Table 2). 

 

Sample barcoding, staining and intercalation 

Cells were thawed on ice and pelleted by centrifugation at 600 × g for 3 minutes at 4 °C, 

and the supernatant was discarded. After washing once with CSM, cells were 

resuspended in 0.5 ml of cold saponin solution (0.02% in PBS) containing one of 20 

specific combinations of 1 mM isothiocyanobenzyl EDTA-chelated palladium metals to 

barcode samples, as previously described (Fread et al., 2017; Zunder et al., 2015a). After 

incubation at room temperature for 15 minutes on a shaker at 800 rpm, tubes were 

centrifuged at 600 × g for 3 minutes at 4 °C; the supernatant was discarded; and the cell 

pellet was washed three times with CSM. At this point, individual samples were pooled 

into a total of three barcoded sets for antibody staining. 

 

For staining of surface epitopes, cells were blocked in CSM containing 10% (v/v) normal 

donkey serum (Millipore, S30-100ML) for 30 minutes at room temperature. Next, primary 

antibodies indicated as ‘surface’ in Supplementary Table 1 were diluted in CSM and 

added to cells (100-μl staining volume per 1 × 106 cells), which were incubated on a 

shaker at 800 rpm for 30 minutes at room temperature. After incubation, tubes were 

centrifuged at 600 × g for 3 minutes at 4 °C; the supernatant was discarded; and the cell 

pellet was washed three times with CSM. For intracellular staining, cells were 

permeabilized by adding ice-cold 100% methanol to fill the tube and incubating on ice for 

10 minutes with vortexing every 2 minutes. Next, tubes were centrifuged at 600 × g for 
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3 minutes at 4 °C, and the supernatant was discarded. After washing cells once with CSM, 

primary antibodies listed as ‘intracellular’ in Supplementary Table 1 were diluted in CSM 

and added to cells on a shaker at 800 rpm for 1 hour at room temperature. After 

incubation, tubes were centrifuged at 600 × g for 3 minutes at 4 °C; the supernatant was 

discarded; and cells were washed three times with CSM. 

 

After primary antibody staining, cells were incubated in 1.6% PFA containing 0.1 μM Cell-

ID Intercalator-Ir (201192, Fluidigm) for 15 minutes at room temperature on a shaker at 

800 rpm or overnight at 4 °C without shaking. After intercalation, cells were washed once 

with CSM, once with water, once with 0.05% Tween 20 (in water) and again with water. 

Cells were pelleted by centrifugation at 600 × g for 3 minutes at 4 °C and then kept on ice 

until run on the mass cytometer. 

 

Mass cytometry 

Immediately before analysis on a Helios CyTOF 2 system (Fluidigm), cells were 

resuspended in water (approximately 1 ml per 1 × 106 cells) containing 1:20 EQ Four 

Element Calibration Beads (Fluidigm) and passed through a 40-μm nylon mesh filter. 

Cells were analyzed in multiple runs at a rate of 500 cells per second or less. Data were 

collected on a Helios CyTOF 2 using CyTOF Software version 6.7.1014. 

 

Normalization and debarcoding 

To control for variations in signal sensitivity across individual runs on the mass cytometer, 

raw .FCS data files were first normalized using EQ Four Element Calibration Beads 
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(https://github.com/nolanlab/bead-normalization) (Finck et al., 2013). Next, normalized 

.FCS files from each run were concatenated for each sample set. Concatenated .FCS 

files were then debarcoded using software to deconvolute the 6-choose-3 Pd 

combinatorial barcode (Fread et al., 2017; Zunder et al., 2015a), permitting identification 

of individual samples (https://github.com/zunderlab/single-cell-debarcoder) (Fread et al., 

2017). A new parameter was added to the .FCS files: bc_neg, which is the sum of the 

3 Pd measurements expected to be zero based on the cell barcode deconvolution 

assignment. High values for this bc_neg parameter indicate that the cell event in question 

is likely to contain two or more cells, and this was used for an additional clean-up gating 

step below. 

 

Isolation of quality, single-cell events 

To isolate single cells from fragments/debris and clumps of multiple cells, the normalized 

and debarcoded .FCS files described above were uploaded to Cytobank 

(https://community.cytobank.org), and clean-up gating was performed according to the 

strategy illustrated in Extended Data Fig. 2b. First, a secondary debarcoding clean-up 

process was performed by gating out events with high bc_neg values, followed by gating 

out events with a low barcode separation distance and/or high Mahalanobis distance. 

Next, singlets and quality events were isolated by comparing the ion count length, center 

and width parameters. Then, cells that were alive at the time of fixation were distinguished 

from debris and dissociation-damaged or destroyed cells with a gate using DNA-

intercalator and cisplatin viability dye. Six unused channels (120Sn, 127I, 133Cs, 138Ba, 

140Ce and 208Pb) were identified in Cytobank to contain some background levels, and 
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events high in these channels were then gated out. Finally, the 4th sample set exhibited 

an elevated background (in nearly all channels, NeuN shown) in the last third of the 

runtime. These events were gated out with a time gate. 

 

Batch correction 

Although sets 1 and 2 were exposed to a single master mix of antibodies, they were run 

independently after antibody staining. Furthermore, set 3 was run later. To account for 

possible batch-dependent effects, batch correction was performed on universal samples 

made by combining excess cells from all samples after isolating single-cell events as 

described above. To correct signal intensities of individual markers for batch effects, 

debarcoded .FCS files were subjected to the batch adjustment process described in 

Schuyler et al. (https://github.com/CUHIMSR/CytofBatchAdjust) (Schuyler et al., 2019). 

Specifically, signal intensities for the following antibodies were corrected at the 50th 

percentile because they yielded approximately Gaussian distributions and produced 

mean signals with variance greater than 1% for a universal sample included in each 

barcoded set: TuJ1, cMet, Connexin43, Sox2, CD9, CD117, Nestin, Sox1, CD24, NFH, 

CD133, CGRP, NeuN, Sox10, Ki67, Vimentin, Thy1.2, TrkC, Runx3, N-Cadherin, GAD65, 

Calbindin, MAP2, TrkA, MafA, Islet1, PDGFRa, Ret, Cux1, BFABP, Cleaved Caspase-3, 

TrkB, PGP9.5, p75NTR and IB4. Mean signals for OligO4, CD31 and CD45 had 2–3% 

variance and normal distributions with truncated lower tails. Batch correction of CD31 and 

CD45 markers at 65th and OligO4 85th percentiles was determined to be effective at 

reducing the variance of mean signal. As the variance of mean signal for GFAP or CD44 

was less than 1%, these markers were not subjected to batch correction. 
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Leiden clustering 

Cells were partitioned with Leiden clustering (version 0.7.0, 

https://github.com/vtraag/leidenalg) (Traag et al., 2019) to identify molecularly defined cell 

types, with the nearest neighbors parameter set to 100. In some cases, this resulted in a 

memory error on 240-GB High Mem compute nodes, and nearest neighbors = 15 were 

used instead. To assess if clusters were homogenous and unimodal, we inspected violin 

plots of marker expression for each cluster. To improve the homogeneity of cell 

populations, cell types of interest were subjected to multiple rounds of Leiden clustering. 

For the first round of clustering (primary clustering) and all subsequent rounds of 

clustering (secondary, tertiary, etc.), all 41 expression markers were used for Leiden 

clustering analysis. Cell cluster identities were annotated by comparison to previously 

reported expression profiles of DRG cell types. 

 

UMAP dimensionality reduction 

Next, 41-dimensional mass cytometry datasets (including all antibody markers) were 

embedded into two dimensions by UMAP (version 0.2.6.0, 

https://github.com/lmcinnes/umap/archive/0.2.4.tar.gz) with the following parameters: 

nearest neighbors = 15, metric = Euclidean, local connectivity = 1, components = 2 and 

epochs = 1,000 (McInnes et al., 2018). 

 

Identification of developmental cell trajectories with URD 

Code for the URD algorithm (version 1.1.1, https://github.com/farrellja/URD) (Farrell et 

al., 2018), originally designed to run on scRNA-seq datasets, was modified to interoperate 
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with mass cytometry. Code including modified functions and a script to run the full analysis 

is included (see ‘Code availability’ section). Datasets were downsampled proportionally 

(to ~65,000 cells) to accommodate the computational demands of URD except for the 

TrkB/TrkC dataset in Fig. 7, which was smaller (39,944 cells) than the computational limits 

encountered. The URD parameters used were floodPseudotime n = 500, 

minimum.cells.flooded = 2 and knn = 100. The sigma parameter was determined 

individually for each dataset with global auto-detection via Destiny in the URD pipeline. 

 

Nearest Neighbor URD Trajectory Tool for analysis of rare cell populations 

The Nearest Neighbor URD Trajectory Tool (NNUTT) was created to position a selected 

subset of cells on a full URD dendrogram. The code is available on GitHub at 

https://github.com/zunderlab/Keeler-et-al.-DRG-Development-Manuscript. The cells in 

this subset could (1) be included in the approximately 60,000 cells used to generate the 

URD dendrogram, (2) come from the larger non-downsampled original dataset or (3) 

come from a completely different dataset, measured separately. This tool simply maps 

each cell to its nearest neighbor in the 60,000-cell URD set by expression marker 

Euclidean distance. Subsequent analyses can then be performed to identify which 

dendrogram segments are best represented by each mapped subset and how protein 

expression in the mapped subsets compares to the original dendrogram cells for each 

segment. 

 

All multi-Trk+ cells on the TrkB/TrkC dendrogram come from the original URD analysis 

(no downsampling was used for URD construction), but most multi-Trk+ cells on the 
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TrkA/Ret dendrogram were not in the original URD analysis (64,997 downsampled from 

493,544 for URD construction). Segments were excluded from analysis with fewer than 

ten cells and less than 0.1% proportion of multi-Trk-expressor/all neurons or fewer than 

five cells regardless of proportion. 

 

Tissue processing for IHC 

Embryonic and postnatal mice were euthanized by decapitation. The lower lumbar spinal 

columns were dissected and fixed in 4% PFA overnight before cyroprotection in 30% 

sucrose in PBS for 2 days, all at 4 °C. The tissue was subsequently embedded in OCT 

(VWR, 25608-930) and then cryosectioned into 10-μm sections. The DRG from lower 

lumbar segments were analyzed at E11.5 and E12.5, immediately above the lower limb 

buds. The L4 DRG were analyzed at E13.5, E14.5 and P0, using the last rib as a landmark 

for T13. 

 

Immunostaining 

Mounted sections were warmed to room temperature and washed with 1× PBS three 

times for 5 minutes each. Antigen retrieval was performed for all antibodies by microwave 

boiling slides/sections in sodium citrate buffer (10 mM sodium citrate, pH 6.0). Sections 

were cooled to room temperature; sodium citrate buffer was replaced; and sections were 

microwaved until boiling again. Sections were then rinsed three times with 1× PBS and 

incubated with blocking solution (0.2% Triton X-100 and 3% normal donkey serum) for 

1 hour at room temperature. Sections were incubated with primary antibodies diluted as 

detailed below in blocking solution overnight at 4 °C. Sections were washed with 1× PBS 
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three times for 5 minutes each, incubated with secondary antibodies for 1 hour at room 

temperature protected from light and then washed with 1× PBS three times for 5 minutes 

each. Sections were mounted in Fluoromount-G with DAPI (SouthernBiotech). Primary 

antibodies used in this study included: goat anti-TrkA (R&D Systems, AF1056, 1:200 or 

0.2 mg ml−1, RRID: AB_2283049), rabbit anti-TrkA (Millipore Sigma, 06-574, 1:50, RRID: 

AB_310180), goat anti-TrkB (R&D Systems, AF1494, 1:100 or 0.2 mg ml−1, RRID: 

AB_2155264), mouse anti-TrkB (R&D Systems, MAB397, 1:50, RRID: AB_2298820), 

goat anti-TrkC (R&D Systems, AF1404, 1:500 or 1:1,000, RRID: AB_2155412), mouse 

anti-beta III Tubulin (TuJ1) (Covance, MMS-435P, 1:500 or 1:1,000, RRID: AB_2313773), 

mouse anti-Islet1/2 (DSHB, 39.4D5, 1:100, RRID: AB_528173), rabbit anti-Islet1/2 

(Abcam, ab275990, 1:100, RRID: AB_10866454), goat anti-Ret (Neuromics, GT15002, 

1:1,000, RRID: AB_1622006), rabbit anti-Sox10 (gift from S. Kucenas, 1:5,000), rabbit 

anti-BFABP [gift from C. Birchmeier and T. Müller, 1:10,000; (Kurtz et al., 1994)], rabbit 

anti-BFABP (Abcam, ab281734, 1:250, RRID: unknown) and rat anti-Vimentin 

(BioLegend, 699302, 1:250, RRID: AB_2716137). Secondary antibodies used in this 

study included: Alexa Fluor 488 donkey anti-mouse (Thermo Fisher Scientific, A-21202, 

1:500, RRID: AB_141607), Alexa Fluor 633 donkey anti-goat (Thermo Fisher Scientific, 

A-21082, 1:500, RRID: AB_141493) and Alexa Fluor 568 donkey anti-rabbit (Thermo 

Fisher Scientific, A10042, 1:500, RRID: AB_2534017). 

 

Cell count quantification 

DRG were sectioned into fifths (five representative sets), and each section was collected 

and stained with the indicated marker. All tissue was imaged on the laser scanning 
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confocal Zeiss 780 NLO at ×20 resolution in Z-stacks at 3-μm intervals for manual 

quantification in Fiji (Schindelin et al., 2012). Cells expressing each marker were counted 

and compared to counts of all cells determined from counting DAPI-stained nuclei. To 

determine the percentage of Islet1+ and RTK+ cells observed by mass cytometry at these 

timepoints, we set a threshold value for each protein determined by the 99th percentile of 

expression of the low-complexity cells as a measure of background: Islet1 > 0.75, 

TrkA > 0.9, TrkB > 3, TrkC > 2 and Ret > 1.9. 

 

scRNA-seq data mining 

Pre-processed and annotated scRNA-seq data from Sharma et al. were downloaded from 

the data browser provided with their publication 

(https://kleintools.hms.harvard.edu/tools/springViewer_1_6_dev.html?datasets/Sharma2

019/all) (Sharma et al., 2020). As our analysis was focused on DRG development, we 

excluded the adult mouse timepoint (P40) from our analyses. For a per-feature 

comparison with our mass cytometry dataset, we selected the transcripts (from within 

those that had passed quality control thresholds) that corresponded to our protein 

markers. The scRNA-seq dataset (External Resource Table 1) from Usoskin et al. was 

downloaded from the additional supporting data for the manuscript 

(http://linnarssonlab.org/drg/) (Usoskin et al., 2015). 

 

Comparison of mRNA versus protein expression 

To compare scRNA-seq and mass cytometry, neurons from both analyses were first 

selected by thresholding for positive neuronal marker expression. For the scRNA-seq 
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data, expression above zero was considered as ‘expressing’. For mass cytometry data, 

which typically exhibit low background for each marker similar to any antibody-based 

technique, thresholds for labeling cells as ‘expressing’ were determined by the 99th 

percentile marker expression of the low-complexity cluster 6 (Extended Data Fig. 3). For 

both datasets, expression values after respective pre-processing were per-feature range-

normalized to fall between 0 and 1. 

 

Visualization of high-dimensional data with FLOW-MAP 

To incorporate time as a variable in inferring developmental trajectories of cell 

populations, graph structures incorporating the indicated timepoints from mass cytometry 

and scRNA-seq datasets were generated with FLOW-MAP (Ko et al., 2020; Zunder et al., 

2015b). FLOW-MAP output (.graphml files) was visualized with Gephi software 

(http://www.gephi.org) (Bastian et al., 2009), and force-directed layout was performed 

with the ForceAtlas2 algorithm (Jacomy et al., 2014). For visualization, node size was 

adjusted to indicate cell type abundance, and the ‘prevent overlap’ option was selected 

in Gephi to ensure that all graph indices remained visible in the layout. 

 

Population sorting and mRNA/protein comparison 

For Trk+ population selection and comparison between scRNA-seq and mass cytometry 

datasets, both were thresholded on positive expression for TrkA, TrkB or TrkC. For 

protein expression, we established TrkA, TrkB or TrkC expression value by the 99th 

percentile of expression of the low-complexity cells as a measure of background: 

TrkA > 0.9, TrkB > 3 and TrkC > 2, respectively. For RNA expression, we included any 
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expression value above 0 for each Trk transcript. Cells were sorted in silico based on 

these per-marker expression thresholds to extract ‘positive’ cells for the respective 

markers at each timepoint. 

 

In situ hybridization assay by RNAscope 

E12, E15, P0 and P4 DRG tissues were dissected from C57BL/6J mice and perfused with 

4% PFA in PBS for 24 hours at 4 °C. Tissues were then incubated in 30% sucrose solution 

at 4 °C for 3 days. Fixed tissues were embedded in OCT compound, frozen on dry ice 

and stored at −80 °C. Frozen tissues were cryosectioned at 15-μm thickness, collected 

onto positively charged slides (Shandon Superfrost Plus, Thermo Fisher Scientific, 

6776214) and air dried overnight in the dark. The next day, slides were twice washed for 

2 minutes in PBS and then incubated for 10 minutes in H2O2 (RNAscope H2O2 and 

Protease Reagents Kit, Advanced Cell Diagnostics, 322381). Slides were then twice 

washed for 2 minutes with distilled water to remove H2O2, before incubation with protease 

IV solution (RNAscope H2O2 and Protease Reagents Kit, Advanced Cell Diagnostics, 

322381) for 30 minutes at 40 °C in a HybEZ II oven (Advanced Cell Diagnostics, 

321710/321720) and two additional 2-minute washes in distilled water. Tissues were then 

incubated in probe master mix for 2 hours at 40 °C (Probe1: Mm-Ntrk1, 435791; Probe2: 

Mm-TUBB3-C2, 423391-C2; Advanced Cell Diagnostics) and then washed twice in 1 × 

wash buffer (RNAscope Wash Buffer Reagents, Advanced Cell Diagnostics, 310091). 

After amplification by sequential incubations with AMP1, AMP2 and AMP3 solutions 

(RNAscope Multiplex Fluorescent Detection Kit version 2, Advanced Cell Diagnostics, 

323110) for 30 minutes at 40 °C (separated with two 2-minute washes with wash buffer 
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between solutions), slides were incubated for 15 minutes at 40 °C with horseradish 

peroxidase (HRP)-channel 1 (HRP-C1) (RNAscope Multiplex Fluorescent Detection Kit 

version 2, Advanced Cell Diagnostics, 323110), before an additional two washes for 

2 minutes in wash buffer. Slides were then incubated in a fluorescent dye for 30 minutes 

at 40 °C [1:750 dilution; Tyramide Signal Amplification (TSA) Cyanine 3, Akoya, 

TS000202] before two 2-minute washes with wash buffer and blocking with HRP blocker 

for 15 minutes at 40 °C. The same HRP steps were repeated for channel 2 by applying a 

second fluorescent dye (1:750 dilution; TSA Fluorescein, Akoya, TS000200). Finally, 10–

20 ml of DAPI was applied at room temperature to stain the nuclei (Fluoromount-G, 

SouthernBiotech, 0100-20), and then slides were sealed with coverslips. 

 

Statistics and reproducibility 

No statistical method was used to predetermine sample size. No data were excluded from 

the analyses. The experiments were not randomized. The investigators were not blinded 

to allocation during experiments and outcome assessment. Data distribution was 

assumed to be normal, but this was not formally tested. 

 

Results 

DRG cell type characterization by protein expression 

To identify and characterize cell types in the DRG by their protein expression signatures, 

we first adapted mass cytometry methods for neural tissues. This involved optimizing 

tissue dissection and cell dissociation techniques (Methods) and developing a 41-

antibody staining panel for specific neuronal and glial subtypes (Supplementary Table 1) 
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(Lallemend and Ernfors, 2012). Each antibody was conjugated to a unique rare earth 

metal isotope (Ornatsky et al., 2008) and then titrated to identify its optimal staining 

concentration using known-positive and known-negative control cells (Extended Data Fig. 

1a,b). Mouse DRGs were collected at daily timepoints from E11.5 to P4 to provide a 

continuous molecular expression profile (Fig. 1a and Supplementary Table 2). For 

embryonic timepoints, DRGs from a single litter were pooled for cell dissociation and 

mass cytometry analysis. For postnatal timepoints, the pups were first separated by sex, 

and then DRGs were combined to generate a pooled male and female sample from each 

litter. At least two biological replicates (that is, pooled litters) were used for each 

developmental timepoint (Supplementary Table 2). After dissection, the pooled DRGs 

were dissociated into a single-cell suspension (Wheeler et al., 2014) and then briefly 

incubated with cisplatin as a non-cell permeant viability stain (Fienberg et al., 2012), 

followed by paraformaldehyde (PFA) fixation and storage at −80 °C (Fig. 1a). 
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Figure 1. Characterization of DRG cell types from E11.5 to P4 by mass cytometry. a, Neural mass 

cytometry workflow. Created with BioRender. b, Total number of clean-up gated and pre-processed cells 

analyzed at each day of DRG development. These show the sum of 2–4 separately analyzed litters 
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(biological replicates) at each timepoint, for 43 samples in total. Bars are colored by timepoint. c, UMAP of 

all DRG cells after clean-up gating, colored by primary Leiden clustering and labeled by presumptive cell 

type according to protein expression profiles. d, UMAP from c, colored by age. e, Violin plots of protein 

expression for clusters from c. f, The proportional abundance of major cell type classes across DRG 
development, created by combining the Leiden clusters from c into (1) leukocytes: CD45+; (2) endothelia: 

CD31+ and CD133+; (3) smooth muscle: p75NTR+, PDGFRα+, TrkB+ and neuronal marker negative; (4) 

neurons: Islet1+, MAP2+, NeuN+, PGP9.5+ and TuJ1+; (5) SGCs: BFABP+, Sox10+ and Vimentin+; (6) 

phagocytic glial precursors: BFABP+, Sox10+ and Vimentin+, plus a mixture of neuronal markers such as 

Islet1+, MAP2+, NeuN+, PGP9.5+ and TuJ1+; (7) neural progenitors: Ki67+, Nestin+, Sox10+ and Vimentin+; 

and (8) Schwann cells: CD9+, cMet+ and OligO4+. g, Changes in neuronal and glial abundance during 

periods of neuronal and SGC expansion, glial phagocytosis and postnatal Schwann cell proliferation. Data 

are presented as mean values ± s.e.m. with biologically independent samples consisting of pool litters 
including both sexes with n = 2 for E11.5–E13.5 and E18.5; n = 3 for E14.5–E16.5; and n = 4 for E18.5. 

Postnatal ages were biologically independent samples consisting of sex-separated litters with n = 2 female 

and n = 2 male for P2–P4 and n = 2 female and n = 3 male for P0–P1. Number of pups per litter for each 

sample is provided in Supplementary Table 2. phago, phagocytosis; prod, production. 

 

After all samples were collected, they were thawed and barcode labeled (Zunder et al., 

2015a), followed by pooling into barcode sets (Supplementary Table 2) for uniform 

staining and subsequent mass cytometry analysis (Fig. 1a). Preliminary inspection 

revealed that five samples had a low percentage of Islet1+ cells, and two additional 

samples had low overall cell numbers, so additional litters were collected for these 

timepoints and run as a third barcode set (Supplementary Table 3). The resulting 

4,974,302 events from three barcode sets were pre-processed by (1) bead normalization 

(Extended Data Fig. 2a) (Finck et al., 2013); (2) debarcoding (Fread et al., 2017); (3) 

clean-up gating to remove dead cells, aggregates and debris (Extended Data Fig. 2b; 

www.cytobank.org); (4) batch normalization (Schuyler et al., 2019); (5) marker scaling 

(Extended Data Fig. 2c); and (6) removal of low-complexity cells (Extended Data Fig. 3a–

126



 

f). After these pre-processing and clean-up steps, we were left with 2,768,945 high-

quality, viable, singlet DRG cells for analysis (Fig. 1b and Supplementary Table 3). 

 

To identify broad classes of DRG cell types, we performed Leiden clustering (Traag et 

al., 2019) on the full ~2.8 million cell dataset and visualized the resulting clusters, or 

developmental age, on a two-dimensional (2D) uniform manifold approximation and 

projection (UMAP) layout (Becht et al., 2019; McInnes et al., 2018) (Fig. 1c,d and 

Extended Data Fig. 3g–j). Cell type assignment for each cluster was determined by 

protein expression profiles matching neurons (23.09%), stem cells and glial progenitors 

(28.18%), satellite glial cells (SGCs) (12.21%), Schwann cells (11.87%), vascular smooth 

muscle cells (VSMCs) (11.51%), endothelial cells (5.17%) and leukocytes (3.07%) (Fig. 

1e). Because glial precursors can act as ‘non-professional’ phagocytes (Wu et al., 2009), 

we assigned the identity of putative phagocytosing glial precursors (4.9%) to cells that 

express glial precursor markers along with additional markers of their presumptive 

phagocytosed cargo (Fig. 1e). In addition to clustering analysis, we also prepared a 2D 

gating hierarchy as an alternative method to identify key cell types (Extended Data Fig. 

2d). 

 

To investigate how the abundances of all DRG cell types change across development, 

we grouped the cell populations identified by Leiden clustering (Fig. 1c) by cell class and 

calculated their abundance and s.e.m. for sample replicates at each timepoint (Fig. 1f and 

Extended Data Fig. 3k,l). Generally, leukocytes, endothelia and VSMCs showed 

consistent abundance across development. Consistent with previous studies, we 
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observed that the relative abundance of neurons increases until E16.5 due to initial 

proliferation and migration waves and then diminishes due to apoptosis and concurrent 

increase in glial progenitors (Fig. 1f) (Cheng et al., 2018; Crowley et al., 1994; Fariñas et 

al., 1996; Patel et al., 2000; White et al., 1998, 1996). The proportion of neurons, SGCs, 

putative phagocytic glial precursors and Schwann cells across the time course 

correspond to the expected windows of neuronal proliferation and glial subtype 

expansion, as indicated in Fig. 1g. 

 

Comparison of DRG mass cytometry with immunohistochemistry 

Neuronal cell types have not previously been characterized by mass cytometry, so we 

sought to validate our results by comparison with immunohistochemistry (IHC), assessing 

the total abundance of neurons observed with each technique, plus the relative 

abundance of TrkA-, TrkB-, TrkC- and Ret-expressing neurons. These neurotrophic factor 

receptors are essential for somatosensory growth and survival, but they also delineate 

the broad neuronal cell types (Fig. 2a). First, we performed IHC on DRGs from E11.5, 

E12.5, E13.5, E14.5 and P0, using Islet1 as a global marker for somatosensory neurons; 

assessed the percentage of Islet1+ cells out of total DAPI+ cells by IHC; and compared 

this to the percentage of Islet1+ cells observed by mass cytometry at the same ages, 

excluding non-DRG cells (blood, endothelia, VSMCs and Schwann cells) (Fig. 2b). In both 

our mass cytometry and IHC analysis, the percentage of Islet1+ cells was relatively 

consistent across E11.5 to E14.5 and then dropped approximately 50% by P0, which is 

due to both neuron death and expansion of non-neuronal cell types (Cheng et al., 2018; 

Fariñas et al., 1996; White et al., 1998, 1996). 
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We next examined specific neuron subtypes by performing IHC on E11.5, E12.5, E13.5, 

E14.5 and P0 DRGs with antibodies against the receptor tyrosine kinases (RTKs) TrkA, 

TrkB, TrkC and Ret, to distinguish the major classes of somatosensory neurons1. To 

compare cell abundance and staining intensity between mass cytometry and IHC, the 

microscopy images are shown side by side with UMAP plots from the same respective 

timepoints, subset for Islet1+ somatosensory neurons (Fig. 2c–e and Extended Data Fig. 

4a–c). To quantify the abundance of somatosensory neuron subtypes observed by IHC, 

we counted the percentage of RTK+DAPI+ double-positive cells (Fig. 2c). To quantify the 

abundance of somatosensory neuron subtypes observed by mass cytometry, the 

percentage of cells positive for each RTK was counted and then normalized to the 

percentage of Islet1+ cells from the same developmental age (Fig. 2d). 

 

The patterns of cell abundance across this developmental window were similar for TrkA+, 

TrkB+ and Ret+ neurons, but TrkC+ neurons are more abundant in IHC than mass 

cytometry at E11.5–E12.5 (Fig. 2c,d). One potential explanation for this discrepancy is 

that only cell surface TrkC is detected by mass cytometry, whereas IHC detects total 

TrkC. 

129



 

 

Figure 2. Comparison of DRG analysis by mass cytometry and IHC. a, Schematic illustration of 

somatosensory neuron subtypes divided by TrkA+, TrkB+, TrkC+ and Ret+ expression during development. 

Created with BioRender. b, Proportion of Islet1+ cells out of all DRG cells, by IHC and mass cytometry. All 

ages are normalized to E14.5, the peak of Islet1+ cell abundance by IHC. Data are presented as mean 
values ± s.e.m. with biologically independent samples as in Fig. 1g except just E11.5–E14.5 and P0 for the 

mass cytometry and one or two sections from the L4 DRG of three mice (sexes unknown) from three litters, 

thus 17 datapoints for IHC at each age. c,d, Proportion of TrkA+, TrkB+, TrkC+ and/or Ret+ neurons across 

matching timepoints between IHC (c) and mass cytometry (d), respectively. Mass cytometry also identifies 

the number of neurons that express Islet1 but none of TrkA, TrB, TrkC or Ret. Data are presented as mean 
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values ± s.e.m. with the same samples in b. e, Representative IHC of lower lumbar (L3–L6) DRGs stained 

for TrkA, TrkB, TrkC or Ret, at ages E11.5, E12.5, E13.5, E14.5 and P0 quantified in c,d. IHC images are 

paired with mass cytometry UMAP layouts from neurons of the corresponding age, colored by protein 

expression for each RTK. Scale bar, 100 μm. f, Representative IHC of P0 DRGs for BFABP and PGP9.5 
quantified in g and UMAP layouts of all P0 DRG cells colored by expression of these two markers. Scale 

bar, 100 μm. g, Relative abundance of BFABP+ and PGP9.5+ DRG cells at P0 by IHC or mass cytometry. 

Data are presented as mean values ± s.e.m. with the same samples as in b except just P0. MC, mass 

cytometry. 

We also compared IHC and mass cytometry with the glial marker BFABP and the 

neuronal marker PGP9.5 at P0 (Fig. 2f,g). At P0, the relative percentages of BFABP+ cells 

are similar between techniques, although the proportion of PGP9.5-expressing cells is 

slightly lower by mass cytometry (Fig. 2f,g). This difference is likely due to the expansion 

of glial Schwann cell precursors in proximal nerve roots that can be spatially excluded by 

IHC but not when dissected for mass cytometry. 

Glial cell subtypes and their developmental trajectories 

To further investigate how glia mature in the DRG, we selected all cell clusters that 

expressed glial markers Sox10, Vimentin, BFABP, CD9, cMet, OligO4 and GFAP and 

then performed an additional round of Leiden clustering on this subset (Fig. 3a and 

Extended Data Fig. 5a–d), identifying four distinct glial cell types: (1) Schwann cells, (2) 

SGCs, (3) unspecified glial progenitors and (4) putative phagocytic glial precursors. We 

then performed URD pseudotime analysis (Farrell et al., 2018), which uses timepoint-

biased random walk iterations to identify the most likely cellular trajectory from a manually 

selected ‘root’ cell type to manually selected ‘tip’ cell types. We selected all E11.5 cells in 

the glial subset as the root and each of the three mature cell types as tips (Fig. 3b,c and 
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Extended Data Fig. 5e–i). For finer cluster-level resolution, we performed an additional 

tertiary round of subclustering on the SGCs, Schwann cells and phagocytic glial 

precursors, producing 30 molecularly distinct clusters (Fig. 3d,e,h,i,l,m). 

 

Glial precursors arrive in the DRG and start ensheathing somatosensory neuron cell 

bodies and phagocytosing dying neurons by E13.5 (Britsch et al., 2001; Fariñas et al., 

1996; Maro et al., 2004; Taylor et al., 2007; Wu et al., 2009). The non-myelinating, 

presumptive SGCs that we observed here all express BFABP, N-cadherin, Sox2, Sox10 

and Vimentin (Fig. 3d–g) and subcluster into 11 populations, four of which are retained at 

P4 (Fig. 3d). The early embryonic clusters express Nestin and a mix of Ki67, Ret and c-

Kit, whereas the postnatal SGCs upregulate TrkB (Fig. 3d–g). GFAP is a commonly used 

marker for SGCs, but only a small percentage of glial cells expressed GFAP, first 

appearing as ~2% of all BFABP+ glia at E16.5 and increasing to ~17% of BFABP+ glia by 

P4 (Fig. 3d,e). 

 

Schwann cells (CD9+ and Sox2low) appear around birth and rapidly expand into two 

distinct classes: immature/non-myelinating (Nestin, Sox10 and Vimentin) and 

maturing/myelinating (cMet, OligO4 and one subcluster still expressing Sox10 and 

Vimentin, suggesting a less mature state) (Fig. 3h). Each of these groups contains a 

subset of TuJ1low cells, which is likely not expressed by these cells but rather comes from 

axons wrapped by these Schwann cells and not removed by dissociation (Fig. 3h–k). The 

neurofilament NFH is also present in a subset of the maturing/myelinating cells. These 

subtypes do not simply transition from the immature/non-myelinating (clusters 2, 4 and 5) 
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to maturing/myelinating island (clusters 1, 3, 6 and 7), suggesting that the distinct islands 

are likely delineating between non-myelinating and myelinating pools of the same 

populations rather than a difference in developmental lineages or maturation state (Fig. 

3h,i). 

 
 
Figure 3. Glial subtypes show distinct developmental trajectories. a, Leiden clustering and UMAP of 
E11.5–P4 DRG glia and glial precursors, performed on all cells from the clusters in Fig. 1c that expressed 

glial markers BFABP, CD9, cMet, GFAP, OligO4, Sox10 and/or Vimentin, labeled by glial types and key 

markers. Inset: colored by age. b, E11.5 or P4 cells only, colored by Leiden clustering, overlaid on the full 

UMAP from a, colored gray. c, URD pseudotime hierarchy for SGCs, Schwann cells and putative 

phagocytic glial precursors, produced with E11.5 root (pooled) and P4 tips (individual clusters) from b, 

colored by pseudotime. d–g, SGC clusters were extracted from the glial dataset for an additional secondary 
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round of Leiden clustering and UMAP, with SGC subtypes labeled by their characteristic marker expression 

(d). Inset is colored by age. Relative abundances for each SGC subtype are plotted across sample 

collection ages (e), and changes in protein expression are plotted across the SGC pseudotime trajectory 

(f). Expression markers denoted by asterisks are also plotted by scatter plot (g) to illustrate the cells 
underlying the pseudotime heat map in f. Similar analysis was performed for Schwann cells (h–k) and 

putative phagocytic glial precursors (l–o). p, Percentage of doublets counted in the samples from ages 

E13.5, E15.5, E17.5, P1 and P3 from manual inspection under bright-field analysis with a hemocytometer. 

Data are biologically independent samples as in Fig. 1g for the ages used here. q, Percentage of phagocytic 

glia by mass cytometry after all clean-up gating. Data are biologically independent samples as in Fig. 1g 

for E13.5, E15.5, E17.5, P1 and P3. r, Representative IHC of E15.5 L4/L5 DRGs with anti-Islet1 (neuronal 

marker) and anti-BFABP (satellite glial marker). Similar results were obtained across three or more DRGs 

per litter and three separate litters. Scale bar, 20 μm. Insets i–iii show three phagocytic events as previously 
described (Wu et al., 2009). 

 
Putative phagocytic glial precursors co-express non-myelinating glial markers (BFABP, 

Vimentin and Sox10) but also contain neuronal markers (for example, Islet1, NeuN and 

TuJ1) (Fig. 3l–o). Glial precursors have been shown to phagocytose dying neurons in the 

embryonic DRG before macrophages infiltrate and become the primary phagocytosing 

cell type (Wu et al., 2009). We identified these putative phagocytic cells and performed 

the following analyses to rule out false positives associated with doublets and aberrant 

association with debris: (1) DNA intercalator gating, (2) ‘barcode-negative’ filtering, (3) 

abundance comparisons, (4) expression intensity comparisons and (5) hemocytometer 

doublet analysis (Fig. 3p,q and Extended Data Fig. 5j). What are these glial precursors 

likely phagocytosing? Their subclustering is largely driven by the four RTKs that define 

somatosensory neuron types, TrkA, TrkB, TrkC and Ret, but other neuronal proteins are 

also present, including nuclear transcription factors that indicate entire cell engulfment 

(Fig. 3l and Extended Data Fig. 5k,l). These putative phagocytosis events are observed 

across embryonic and postnatal development but peak during the late embryonic stage 

(Fig. 3l,m). To validate these results, we performed IHC on E15.5 DRGs with anti-Islet1 
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and anti-BFABP antibodies and DNA-label DAPI to demonstrate phagocytosis as 

previously observed by others (Wu et al., 2009). Immature glial precursors were identified 

phagocytosing neuronal fragments (Fig. 3r). 

 

Somatosensory neuron subtypes 

To further investigate neuronal subtypes in the DRG, we extracted all clusters that 

expressed TuJ1, NeuN, Islet1, PGP9.5 and/or MAP2 and performed an additional round 

of clustering on this 637,744-cell subset. Specific subclusters were identified for removal 

as errant non-neurons, including putative phagocytic glia and spinal cord contamination 

(Extended Data Fig. 6a). After these clean-up steps, the remaining 533,488 cells were 

clustered again, dividing into three primary groups: TrkA+Ret+, TrkB+ and TrkC+ 

(Extended Data Fig. 6b–h). These three groups were separated for a final round of 

subclustering to identify, as completely as possible, the somatosensory neuronal 

subtypes present across the DRG time course (Fig. 4a–d and Extended Data Fig. 7a–v). 

From E11.5 to P4, we identified 41 neuronal cell types and/or cell states, each molecularly 

distinguished by at least one of the 41 markers measured, and included transient 

intermediates as well as all known somatosensory neuron subtypes, such as mechano-

noxious heat peptidergic (PEP) neurons, itch-mechano-heat non-peptidergic (NP) 

neurons, cold-sensing neurons (which remain as a subpopulation within NP at P4; 

Extended Data Fig. 6i), C-low-threshold mechanoreceptors (C-LTMRs) (TH; Fig. 4f–n), 

A-low-threshold mechanoreceptors (NF1, NF2 and NF3) and proprioceptors (NF4) (Fig. 

4d and Extended Data Fig. 6b–h). These previously reported subtypes are labeled ‘E&E’ 
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in Fig. 4d, in reference to the review by Emery and Ernfors where they were described 

(Emery and Ernfors, 2020). 

 

Figure 4. Distinct neuron subtypes emerge across development. a–c, Clusters from Fig. 1c 

expressing only neuronal markers (Islet1, MAP2, NeuN, PGP9.5 and/or TuJ1) were extracted for 

a secondary round of analysis (Extended Data Fig. 6), producing three groups of somatosensory 
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neurons characterized by TrkA/Ret, TrkB or TrkC expression. Each group was extracted for 

tertiary analysis on TrkA+Ret+ (a), TrkB+ (b) and TrkC+ (c) neurons. Cells from all ages are shown 

in the left UMAP, with clusters numbered by age of appearance. Black arrows denote population 

shifts across development from E11.5 to P4. In the right UMAP, all cells except P4 are colored 

gray to highlight the final timepoint populations. d, Table of all 41 neuron populations, listed in 

order of emergence. Cell types with protein expression that match designations from the recent 

Emery and Ernfors review are labeled5. Proteins expressed at a higher level relative to other 

neuronal populations are noted. Bolded proteins were used for subtype identification. The age 

range where each subtype was 1% or greater of all neurons in the TrkA/Ret, TrkB or TrkC group 

is indicated. e, Relative abundance for neuronal subtypes, from E11.5 to P4. f, TrkA/Ret UMAP 

from a colored by TuJ1 expression. Inset panels show cluster 6. g, Representative IHC of P3 

DRGs stained for Islet1 (Alexa Fluor 488, green) and TuJ1 (Alexa Fluor 568, red) quantified in h. 

Scale bar, 50 μm. Inset highlighting Islet1+ cells with corresponding high and low expression of 

TuJ1. Asterisk (*) denotes Islet1+TuJ1low neurons, and pound sign (#) denotes Islet1+TuJ1+ 

neurons. h, Percentage of TuJ1low neurons observed by mass cytometry (left) and IHC (right) as 

shown in g at P3. For mass cytometry, two litters, sex-separated, were assessed (two litters, four 

samples). For IHC, L4/L5 DRGs were stained from five pups, 2–3 females and males per litter, 

from three litters and counted for TuJ1 expression (15 DRGs in total). i, On the left, protein 

expression of TuJ1 from mass cytometry from P4 mice (in orange) for non-peptidergic (NP) 

nociceptors, peptidergic (PEP) nociceptors and cluster 6 (C6) neurons. On the right, gene 

expression of TUBB3 (TuJ1) from the scRNA-seq dataset from Usoskin et al.2 for the same 

nociceptive populations and TH+ C-LTMRs (TH) from P42–P56 mice2 (in blue). Data are 

presented as mean values. j–n, Comparison of protein and mRNA transcript expression from the 

same datasets for CGRP, c-Kit, p75NTR, Ret and TrkC, respectively. Data are presented as mean 

values. MC, mass cytometry. 

 

Separately clustering 493,544 TrkA+Ret+ neurons, 21,652 TrkB+ neurons and 18,292 

TrkC+ neurons revealed 19, 11 and 11 distinct somatosensory subtypes and/or cell states, 

respectively, labeled by their order of appearance during development (Fig. 4e). The 

TrkA+Ret+ subtypes appear to emerge from three immature populations at E11.5 (clusters 

1, 2 and 3) and diverge into four distinct subtypes: peptidergic nociceptors (c-Kit+, CGRP+ 

137



 

and IB4low; clusters 11, 12 and 18), non-peptidergic nociceptors (IB4+, Ret+ and CD44+; 

TrkA/Ret clusters 17 and 19), Calbindin+ neurons (TrkA/Ret cluster 13) and TH+ C-LTMRs 

(TuJ1low; TrkA/Ret cluster 6; Fig. 4f–n) (Fig. 4a,d). The TrkB+ neurons separated into two 

distinct groups: Aδ low-threshold mechanoreceptors (Aδ-LTMR) (TrkB+ and Retlow) and 

rapidly adapting low-threshold mechanoreceptors (RA-LTMRs) (TrkB+, Ret+, Calbindin+ 

and CGRP+). RA-LTMR clusters 2, 7 and 10 do not express the mature markers CGRP 

or Calbindin even at P4, indicating that these neurons do not mature until after P4 (Fig. 

4b,d). TrkC+ neurons separate into two distinct groups: slowly adapting low-threshold 

mechanoreceptor (SA-LTMR) (TrkC+ and Ret+) and proprioceptors (TrkC+ and Runx3+). 

Interestingly, a small population of mostly postnatal TrkC+ neurons (TrkC cluster 11) 

express both Ret and Runx3 (Fig. 4c,d), indicating that these cells may undergo a period 

of cell fate plasticity during innervation of their final tissue targets, between SA-LTMR and 

proprioceptors. 

 

We were initially surprised to find neuronal clusters with low TuJ1 expression, as TuJ1 is 

a widely accepted marker of somatosensory neurons (Fig. 4a–c) (Avraham et al., 2020; 

Guo et al., 2013; Levin et al., 2017). TrkB+ and TrkC+TuJ1low clusters were identified by 

their differential expression of Ret and other key markers (Aδ-LTMR−: TrkB+, Retlow, 

Calbindin− and CGRP−; SA-LTMR−: TrkC+, Ret+ and Runx3−). However, no markers were 

uniquely expressed in the TrkA+Ret+TuJ1low cluster 6 (Fig. 4f and Extended Data Fig. 6j–

m). We verified that TuJ1low neurons exist in P3 L4/L5 DRG cryosections stained with 

TuJ1 and Islet1. These two neuronal markers were co-expressed in most cells examined 

(Fig. 4g), but 7.16% (±0.8% s.e.m.) of the Islet1+ cells had faint or no TuJ1 signal 
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compared to 6.2% (±1.9% s.e.m.) by mass cytometry (Fig. 4h). In a publicly available 

scRNA-seq dataset on DRG neurons (Usoskin et al., 2015), we identified a single TuJ1low 

population, C-LTMRs (Fig. 4i), which exhibited a similar expression pattern (CGRP, c-Kit, 

p75NTR, Ret and TrkC) to our TrkA+Ret+TuJ1low cluster 6 (Fig. 4j–n and Extended Data 

Fig. 6n), and, therefore, we labeled cluster 6 as TH+ C-LTMRs. 

 

Developmental trajectories of somatosensory neurons 

The TrkA+Ret+ and TrkB+TrkC+ lineages are thought to be distinct as separate migration 

waves of specific progenitors, with a common progenitor in the neural crest (Lallemend 

and Ernfors, 2012). Because this common progenitor is present before our earliest 

collection, we performed URD pseudotime analysis (Farrell et al., 2018) on each lineage 

separately, with unique roots for TrkA+Ret+ (TrkA/Ret clusters 1, 2 and 3 at E11.5) versus 

TrkB+TrkC+ (TrkB clusters 1 and 2; TrkC clusters 1, 2 and 3; all at E11.5) (Fig. 4a–d and 

Extended Data Fig. 8a–f). Viewed together, these trajectories represent the maturation of 

14 somatosensory cell types: mechanoreceptors (segments 1, 4, 7, 9, 14 and 17), 

proprioceptors (segments 10, 20 and 23), Th+ C-LTRMs (segment 6), peptidergic 

nociceptors (segments 11, 13, 15, 19 and 21) and non-peptidergic nociceptors (segments 

12, 16, 18 and 22) (Fig. 5a and Extended Data Fig. 8e,f). As expected, these 

somatosensory subtype trajectories are distinguished by Trk paralog expression as well 

as markers such as Ret, IB4, CGRP and c-Kit. (Fig. 5b and Extended Data Fig. 8g–t). 
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Figure 5. Pseudotime analysis of neuronal differentiation. a, URD pseudotime analysis of TrkB/TrkC 

neurons (39,944 cells) and TrkA/Ret neurons (64,997 cells downsampled from 493,544 total). These were 

run separately (gray dashed line), each with all E11.5 cells designated as root, and all mature P4 clusters 

were designated as tips (Extended Data Fig. 8). Cells are colored by their dendrogram segment, which are 

numbered by median pseudotime, from youngest to oldest. Key cell fate bifurcations are labeled at branch 
points. b, URD dendrograms from a colored by protein expression for key markers of somatosensory 

neurons and subtypes. c, Proteins with the highest URD branch point divergence, ranked by P value of the 

two-sample t-test between protein expression in the cell populations of each child segment. For branch 

points with more than two child segments, pairwise comparisons were made, and the most highly divergent 

P value was used for rank ordering. Circle size indicates these P values (log-transformed), and circle color 
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indicates marker expression in each child segment. d, Trajectory plots showing protein expression by 

pseudotime for non-peptidergic and peptidergic nociceptors. Each URD segment (colored in the grayed 

URD in the top-left box in e) is plotted with all cells from that segment overlaid with a smoothed spline (for 

example, CD44). For clarity, the dots representing the cells on both trajectories were removed from the 
subsequent markers. 

 

To investigate cell fate decisions at URD branch points, we identified the most significant 

differences in protein expression between child segments at each branch point in the 

TrkBTrkC and TrkARet URDs (Fig. 5c). As expected, TrkB and TrkC are the key markers 

that divide TrkB+ RA-LTMR and Aδ-LTMR from the TrkC+ SA-LTMR and proprioceptors, 

along with Runx3 (Fig. 5b,c). Divergence between RA-LTMR and Aδ-LTMR trajectories 

(from parent segment 1 into child segments 7 and 9; Fig. 5a) corresponds to changes in 

expression of Thy1, Cux1, Islet1, CD24, Calbindin, p75NTR and NFH, among others (Fig. 

5b,c). NeuN, Runx3 and N-Cadherin similarly show the largest shift in expression 

between SA-LTMRs and proprioceptors (Fig. 5b,c). In the TrkARet URD branchpoints, 

the split between peptidergic and non-peptidergic nociceptors corresponded to 

expression differences in MAP2, N-Cadherin, p75NTR and c-Kit, suggesting that 

peptidergic nociceptors mature earlier than non-peptidergic nociceptors (Fig. 5b,c). 

 

We observed differences in the timing and expression level of neuronal maturation 

markers across both pseudotime dendrograms. For example, MAP2 increases across all 

somatosensory populations except for the presumptive non-peptidergic nociceptors, 

indicating that maturation for this subtype is delayed until after P4 (Fig. 5b,c). The TNFR 

family member p75NTR, a pro-growth signal in somatosensory development, is 

expressed broadly in both TrkB+ and TrkC+ types but only strongly in a single TrkA+ 
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branch, a presumptive peptidergic (CGRP+ and c-Kit+) cell type (Fig. 5b,c) (Cheng et al., 

2018). CD44 signaling is involved in nociception, and we observed early expression of 

CD44 in non-peptidergic nociceptors as well as the TuJ1low TH cluster (Ferrari et al., 2018) 

(Fig. 5b,c). Direct comparison of the peptidergic (PEP) and non-peptidergic (NP) 

trajectories revealed an increase in CGRP, c-Kit, MAP2, N-Cadherin and p75NTR for 

PEP and elevated CD44, IB4, Ret and TrkA for NP (Fig. 5d). 

 

Multi-Trk+ neurons with elevated pro-growth and stem markers 

Because Trk receptors delineate somatosensory neuron subtypes and link a neuron’s 

survival to proper innervation of targets (Lallemend and Ernfors, 2012), we investigated 

whether neurons could transiently express two or more Trks simultaneously before 

committing to a specific cell fate. This analysis revealed a small pool of multi-Trk+ neurons 

that express two Trk receptors simultaneously (TrkA+TrkB+, TrkA+TrkC+ or TrkB+TrkC+, 

respectively) (Extended Data Fig. 9a–c). We also identified multi-Trk+ neurons in publicly 

available scRNA-seq datasets (Sharma et al., 2020; Usoskin et al., 2015) (Extended Data 

Fig. 9d,e), although these were not highlighted or commented on in the publication of 

these datasets. 

The abundance of multi-Trk+ neurons begins to increase at E15.5 and peaks at P0 (Fig. 

6a,c and Extended Data Fig. 9f). To confirm the presence of these multi-Trk+ neurons, 

we performed IHC analysis before, during and after this peak, at E15.5, P0 and P4, 

respectively (Fig. 6b,d,e). This analysis suggests that P0 is a peak of abundance for all 

three types of multi-Trk+ neurons within this time course (Fig. 6a–e). 
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Figure 6. Elevated expression of stem cell and pro-growth markers in multi-Trk+ neurons. a, 

Proportion of multi-Trk+ neurons out of all Trk+ neurons (determined by thresholding expression values; 

TrkA > 2, TrkB > 3 and TrkC > 2) at E15.5, P0 and P4 by mass cytometry. Data are presented as mean 
values ± s.e.m. with sample size as in Fig. 1g for the relevant age. b, Proportion of multi-Trk+ neurons out 

of all Trk+ neurons at E15.5, P0 and P4 by IHC of individual L4/L5 DRG cryosections. Data are presented 

as mean values ± s.e.m. with three litters with multiple DRGs analyzed per age for a total of 10, 23 and 14 

DRGs at E15.5, P0 and P4, respectively. c, Relative proportion of each multi-Trk population in each P0 

mass cytometry sample from a. Data are presented as mean values ± s.e.m. with sample size as in Fig. 1g 

for only P0. d, Relative proportion of each multi-Trk population in individual L4/L5 DRG cryosections. Data 

are presented as mean values ± s.e.m. with three litters with 7–8 DRGs analyzed per litter, 23 DRGs in 

total. e, Representative IHC images of P0 L4/L5 DRGs with anti-TrkA, anti-TrkB and anti-TrkC quantified 
in b and d. Insets show a multi-Trk+ expressing neuron. Scale bar, 100 μm. f, All 1,480 multi-Trk+ neurons 

mapped onto the URD dendrogram from Fig. 5a by NNUTT (Methods). In each segment, the relative 

proportions of each type of multi-Trk+ cells are indicated by pie charts, and the total proportion for all multi-

Trk+ neurons relative to total neurons is indicated as a percentage. g, log2 fold change of protein expression 

in the multi-Trk+ neurons versus total neurons in each URD dendrogram segment (Fig. 5a). Pound sign (#) 

denotes paired segments where all multiTrk+ neurons were, in fact, triple-Trk+ neurons producing identical 

expression profiles in both segments. h, URD dendrograms of the proprioceptor population colored by 
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p75NTR expression for the full dataset and two multi-Trk+-expressing neuron types. i, Every cell in 

segments 12, 22 and 25, respectively, plotted by pseudotime value and p75NTR expression. All neurons 

colored in black with the multi-Trk+ neurons are overlaid in red. j, log2 fold change multi-Trk+ to all neuron 

comparisons of marker expressions for immature/stem markers (left) and for neuronal markers (right) for 
all segments. Data are presented as mean values with the minimum value shown as the lower whisker; the 

maximal value shown as the upper whisker; and the box bottom and top defines the first and third quartiles, 

respectively. Data are the marker expression comparisons for each URD segment, thus n = 35. k, 

Representative IHC of P4 L4/L5 DRG with anti-TrkA, anti-TrkC and anti-Vimentin. Dotted lines outline the 

indicated DRG neuron. Scale bar, 5 μm. l, Quantification of Vimentin IHC pixel intensity for single-Trk+ and 

multi-Trk+ neurons measured in Fiji. Three P4 litters with three L4/L5 DRGs (nine total) per litter were 

analyzed. Only four TrkA+TrkB+ neurons, five TrkA+TrkC+ and zero TrkB+TrkC+ neurons were detected in 

these DRGs. Statistical analysis: one-way ANOVA using Tukey’s multiple comparison test and P value 
**<0.005. Exact P values for all comparisons are in Extended Data Fig. 9i. Data are presented as mean 

values ± s.e.m. m, Quantification of Vimentin expression from the mass cytometry dataset for single-Trk+ 

and multi-Trk+ neurons only from P4 samples. As in a, multi-Trk+ neurons were determined by thresholding 

expression values; TrkA > 2, TrkB > 3 and TrkC > 2. Statistical analysis: one-way ANOVA using Tukey’s 

multiple comparison test and P value *<0.05. Exact P values for all comparisons are in Extended Data Fig. 

9j. All neurons from P4 samples (n = 2 biologically independent samples of pooled female and male litters) 

were included: 6,034 TrkA+ neurons, 31 TrkB+ neurons, 20 TrkC+ neurons, ten TrkA+TrkB+ neurons, seven 

TrkA+TrkC+ neurons and one TrkB+TrkC+ neuron. Data are presented as mean values ± s.e.m. ND, not 
detected. 

 

To assess whether the multi-Trk+ neurons were concentrated at cell fate decision points, 

we mapped all multi-Trk+ neurons from our analysis onto the URD dendrograms by 

Euclidean distance to estimate their trajectory and pseudotime position (Fig. 6f and 

Extended Data Fig. 9g,h). Interestingly, the incidence of these multi-Trk+ neurons 

increases over pseudotime for many lineages (Fig. 6f and Extended Data Fig. 9g,h), and 

they exhibit characteristic shifts in the expression of pro-growth and stem cell markers 

when compared to single-Trk+ neurons from the same URD segment (Fig. 6g). 
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p75NTR, a receptor that promotes progressive developmental signaling in 

somatosensory neurons (Z. Chen et al., 2017; Cheng et al., 2018; Fan et al., 1999; Lee 

et al., 1992; Murray et al., 1999), was expressed in TrkB+ and TrkC+ neurons from E11.5 

to P4 and in peptidergic nociceptors and not in all non-peptidergic nociceptors (Fig. 4d 

and Extended Data Fig. 6f,h). In multi-Trk+ neurons, however, expression of the pro-

growth p75NTR was elevated in many URD segments, such as TrkA+TrkC+ neurons in 

the proprioceptor trajectory (Fig. 6h,i). Multi-Trk+ neurons also showed increased 

expression of stem markers but remained largely unchanged for other marker types (Fig. 

6j). IHC staining for Vimentin in all three types of multi-Trk+ neurons confirms elevated 

Vimentin compared to single-Trk+ neurons (Fig. 6k–m) These rare cells could represent 

a state of increased plasticity before cell fate decisions are made. Alternatively, they may 

be neurons with delayed cell fate or a residual pool of immature cells that is destined to 

act as neural stem cells in the adult DRG. 

 

Comparison of DRG mass cytometry with scRNA-seq 

To determine the degree of correlation between our protein-based mass cytometry 

measurements and mRNA abundances, we compared our results to an scRNA-seq study 

with closely overlapping timepoints: E11.5, E12.5, E15.5, P0 and P5 (Sharma et al., 

2020). Our antibody panel has 36 proteins with directly comparable cognate mRNAs, but 

the other markers are not directly comparable, such as the lectin IB4 and Cleaved 

Caspase-3. Because mRNA and protein levels are not strictly related in a linear or 

predictable manner (see analysis below), we first compared the normalized mean 

expressions and the percentage of cells expressing these protein–mRNA cognate pairs. 
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This comparison was performed at each matching timepoint plus the close timepoints P4 

(protein) and P5 (RNA) (Fig. 7a). In several cases, protein expression closely tracked 

RNA expression, but, for most protein–mRNA cognate pairs, there were large differences 

in the timing of relative trends in expression levels. For example, the transcription factors 

Cux1, Islet1, MafA, NeuN, Sox1, Sox2 and Sox10 all exhibited protein expression delayed 

by at least 5 days relative to RNA expression, and we saw similar patterns for BFABP, 

GAD65, PGP9.5, TrkA, cMet, CD133, c-Kit, MAP2 and GFAP. In rare cases, we even 

saw relative trends in protein expression levels occur before those for RNA, such as for 

Thy1 and CD31. 
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Figure 7. Comparison of DRG analysis by mass cytometry and scRNA-seq. a, Protein abundance 

measured by mass cytometry (E11.5 to P4) and mRNA transcript abundance measured by scRNA-seq 

(E11.5, E12.5, E15.5, P0 and P5; Sharma et al.19). Circle size indicates the percentage of cells with 

expression above marker-specific thresholds. For mass cytometry, the threshold was set at greater than 
the 99th percentile expression level of low-complexity cells. For scRNA-seq, the threshold was set at zero; 

all non-zero values were included. Circle color indicates mean intensity of expression within the positive 

expressing cells. Protein–mRNA pairs are grouped by protein subcellular localization. P, protein (mass 

cytometry measurements); R, mRNA (Sharma et al. scRNA-seq measurements19). b,c, FLOW-MAP 

layouts from mass cytometry (25,000 cells downsampled from all neuronal cells; Fig. 4a–c) (a) and scRNA-

seq (full 32,169-cell dataset19) (b), colored by age and marker expression level. d–f, Comparison of protein 

and mRNA expression levels in TrkA+, TrkB+ or TrkC+ neurons. Positive expressing cells for each RTK 

were separated from non-expressers (gray) by thresholding for mass cytometry (orange) and scRNA-seq 
(blue) as described above. Violin plot overlays compare the normalized protein and mRNA abundance in 

each Trk-expressing population. g, Comparison of IHC and RNAscope for TuJ1/TUBB3 and TrkA/NTRK1 

of L4/L5 DRG at E12.5, E15.5 and P0. IHC scale bar, 100 μm; RNAscope scale bar, 200 μm. h–k, 

Quantification of the IHC (h,j) and RNAscope (i,k) in g for TuJ1/TUBB3 and TrkA/NTRK1. Twenty cells 

from one or more DRGs per litter with three litters (60 total DRG neurons) were traced per age per 

technique, and pixel intensity was measured in Fiji for each marker. Statistical analysis: one-way ANOVA 

using Tukey’s multiple comparison test and P values *<0.05, ***<0.001 and ****<0.0001. Exact P values for 

h: E12 versus E15 P = 0.0745, E12 versus P0 P < 0.0001, E15 versus P0 P < 0.0001; exact P values for i: 
E12 versus E15 P = 0.0492, E12 versus P0 P < 0.0001, E15 versus P0 P < 0.0001; exact P values for j: 
E12 versus E15 P = 0.0003, E12 versus P0 P < 0.0001, E15 versus P0 P < 0.0001; exact P values for k: 

E12 versus E15 P = 0.0794, E12 versus P0 P < 0.0001, E15 versus P0 P < 0.0001. Data are presented as 

mean values ± s.e.m. 

 

We next compared mass cytometry and scRNA-seq DRG measurements across 

development at the population level. Due to the larger gaps in developmental time, 

FLOW-MAP was applied to promote connections between the most similar cells from 

adjacent timepoints (Ko et al., 2020). Along with the 32,169 scRNA-seq neurons, we 

analyzed approximately 25,000 mass cytometry neurons, evenly downsampled to 

approximately 5,000 cells per timepoint (Extended Data Fig. 10a). By mass cytometry, 

three distinct trajectories correspond to TrkA/Ret (top), TrkB (bottom) and TrkC (middle) 
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(Fig. 7b); and, by scRNA-seq, two distinct trajectories correspond to TrkA (top) and TrkB, 

TrkC and Ret (bottom) (Fig. 7c). Islet1 expression increases similarly with age along each 

trajectory for both datasets. 

Because mRNA and protein levels are not well-correlated, one-to-one comparison of 

mass cytometry and scRNA-seq cell clusters was not feasible. Instead, we used the 

general and widely accepted TrkA+, TrkB+ and TrkC+ populations (Extended Data Fig. 

10b) to compare RNA and protein expression in a more cell-type-specific context (Fig. 

7d–f). As in the bulk comparison, we observed markers where RNA and protein levels 

track closely together; markers where RNA expression precedes the protein (Islet1 in all 

cell types or CD44 in TrkA+ neurons); markers where the RNA levels swiftly diminish but 

the protein expression remains high (TuJ1 in all cell types or Runx3 in TrkC+ neurons); 

and even markers where protein expression precedes the RNA levels (for example, 

p75NTR in TrkB+ neurons). In agreement with these findings, we observed the same 

discrepancy between protein and mRNA levels in the two cognate pairs that we selected 

for validation by IHC and RNAscope: TuJ1/TUBB3 and TrkA/NTRK1 (Fig. 7d). 

Discussion 

Seventy-one neural cell types were identified in this study by their protein expression 

profiles, using an antibody panel with canonical markers of somatosensory development 

(Lallemend and Ernfors, 2012) (Fig. 8a). Our panel provided sufficient intersectional 

coverage to identify cell types even when lacking canonical markers. For example, C-

LTMRs could be identified by low TuJ1 expression, even without their canonical marker 

tyrosine hydroxylase. The high-throughput nature of our dataset, with over 550,000 
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neurons, revealed rare neurons that co-expressed multiple Trk receptors and over-

expressed stem cell markers. Comparison between our mass cytometry results and 

previous scRNA-seq data highlighted the complex relationship between transcripts and 

proteins. Thus, this study illustrates that mass cytometry is a high-throughput, scalable 

platform for developing neural tissues.  

An unexpected result of this study was the observation of putative phagocytic events, 

consistent with previous reports (Wu et al., 2009). We were not intending to investigate 

this phenomenon, so we did not include glial subtype markers or markers of phagocytosis, 

such as CD68 (da Silva and Gordon, 1999), Jedi-1 and MEGF10 (Wu et al., 2009), in our 

antibody staining panel. Based on our gating strategy (Extended Data Fig. 2b), it is 

unlikely that most putative phagocytic events result from cell doublets, larger aggregates 

or incomplete dissociation of debris sticking to cells (Extended Data Fig. 5). After 

additional validation, future studies could investigate whether glial subtypes have different 

patterns of phagocytic ‘food’ over the course of development and better characterize the 

molecular nature of these phagocytic events. This approach could provide additional 

insight into how the somatosensory nervous system is sculpted by axonal pruning and 

phagocytosis of whole cells and track the switch from phagocytosis by glial precursor cells 

to phagocytosis by macrophages later in development. 
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Figure 8. Somatosensory maturation and development in the DRG. a, Expression level overlap from 

analysis in Fig. 7 between the cell types identified by mass cytometry at P4 (orange) and scRNA-seq at P5 

(ref. 19) (blue). b, Summary diagram of DRG cell populations identified by mass cytometry analysis. Marker 

expression changes between segments are indicated by upward arrows, with red text denoting marker 

expression increases and downward arrows with blue text denoting marker expression decreases. The age 

range where each population comprises at least 1% of that cell type (for example, a neuronal cell type is at 

least 1% of all neurons, not all cells) is indicated beside each population label. 

  

151



 

As illustrated in the discussion of putative phagocytic glia, an important caveat for single-

cell analyses of neural tissue is that cell processes, such as axons, dendrites, glial feet 

and ensheathing membranes, can be ripped away during tissue dissociation. For cell 

identification of neurons, the loss of pre-synaptic markers is more problematic than post-

synaptic markers, because the latter can also be detected in synapses on the cell body. 

Many axonal and dendritic proteins are synthesized in the cell body and can be detected 

here, too, although at lower levels. Glial process shearing can result in neurons appearing 

to express ensheathing membrane markers from glial cells, although neuronal identity 

can be confirmed by the lack of glial nuclear proteins. In this case, the wrapping 

membranes can be viewed as an additional level of characterization for the neuron’s 

phenotype and maturity. 

 

Another caveat for single-cell analysis of neural tissue is the potential for biased loss of 

specific cell types during dissociation and processing. This could be due to more fragile 

cell types lysing during cell dissociation or stickier cell types adhering to the inner walls 

of storage and processing tubes. Another potential source of biased cell loss is 

incomplete tissue dissociation, because the cells present in non-dissociated tissue are 

filtered out with a 40-µm strainer and lost to analysis. To validate the abundance levels of 

specific cell types, IHC can be applied to tissue slices (Fig. 2). Additionally, the metal-

labeled antibodies described in this study can also be used for imaging mass cytometry 

(IMC) (Giesen et al., 2014) or multiplexed ion beam imaging (MIBI) (Angelo et al., 2014). 

The multi-Trk+ neurons that we identified in this study may represent transient cell states 

that can react to neurotrophic factors and switch cell fates if necessary, possibly related 
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to previous work that showed cell-state-specific differentiation outcomes from the same 

neurotrophin stimulus (Luo et al., 2007). A signaling mass cytometry approach that 

combines antibodies for cell identity markers with antibodies for cell signaling molecules, 

such as phospho-specific antibodies, could facilitate a mechanistic investigation of these 

downstream pathways and cell states in every somatosensory cell type simultaneously, 

to determine how the internal cell signaling response to neurotrophins, such as NGF, NT-

3, BDNF and GDNF, differs between cell types and contributes to cell fate and survival 

decisions. Another aspect of cell state, receptor internalization, could be added to this 

analysis by staining with one antibody before permeabilization and the same antibody 

with a different metal label after permeabilization, to investigate the distinct roles of 

surface versus internalized receptors (Kuruvilla et al., 2004). 

 

Expression profiles from scRNA-seq have previously been used to define DRG cell types, 

but mRNA expression cannot directly predict protein expression and functional cell states. 

For example, translational control, protein degradation and incomplete trafficking or 

internalization of surface proteins may result in high levels of mRNA but no protein 

present. On the other hand, mRNA degradation may result in high levels of long-lived 

proteins but no mRNA remaining present. The discrepancy between RNA and protein is 

thought to be largest during dynamic cell transitions (Liu et al., 2016; Reimegård et al., 

2021), such as DRG development. We, therefore, sought to determine how well scRNA-

seq could predict protein expression and functional cell states in the DRG (Sharma et al., 

2020). In direct comparison, many protein–mRNA cognate pairs showed poor agreement 

across timepoints, highlighting the value of protein-level measurements by mass 
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cytometry to identify functional cell states in the DRG. The mechanisms that control these 

observed differences are likely to be different for each protein–mRNA cognate pair and 

could change considerably across developmental stages and between cell types. This 

could be investigated further by parallel measurement of split samples with scRNA-seq 

and mass cytometry and by performing CITE-seq to simultaneously detect protein and 

RNA at the single-cell level, although this technique is limited to cell surface proteins 

(Stoeckius et al., 2017). 

 

Although the cell types defined by clustering of mass cytometry or scRNA-seq datasets 

are not expected to correspond perfectly, we were still interested to compare their 

similarities and differences. Because Ginty and colleagues found that early DRG 

timepoints were transcriptionally unspecialized (Sharma et al., 2020), we decided to focus 

on their P5 cell type clusters and manually compare these with our P4 mass cytometry-

based clusters. The two methods identified similar cell types, but, interestingly, both 

methods found subpopulations not present in the other study (Fig. 8b). For example, 

although scRNA-seq identified six CGRP subtypes, mass cytometry discerned at least 

three. Alternatively, although scRNA-seq identified a single cluster of Aβ RA-LTMRs, 

mass cytometry identified six molecularly distinct Aβ RA-LTMRs at P4. These similar (yet 

complementary) results were obtained by mass cytometry with a panel of just 41 markers, 

compared to the transcriptome-level measurements by scRNA-seq. Although proper 

antibody selection and panel design is critical for successful identification of specific cell 

types by mass cytometry, these results suggest that the relatively limited number of 

measurement parameters is not an impediment to deep cell profiling, whereas the high 
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sample throughput of mass cytometry facilitates replicate analysis and characterization 

of rare populations, such as the multi-Trk neurons. 

The neural mass cytometry platform developed in this study and the resulting cell atlas of 

somatosensory development will facilitate future mechanistic studies to characterize the 

effects of specific genetic or pharmacological perturbations on DRG development. 

Additionally, further optimization of tissue dissection and cell dissociation techniques for 

adult DRG tissues could expand our roadmap of embryonic and postnatal development 

to include DRG maturation and adult states, an important piece of the puzzle for studies 

linking animal behavior to cell population-level changes. Collectively, our mass cytometry 

analyses of the developing DRG demonstrate replicable ground truths associated with 

somatosensory development and provide a platform for future studies to ask fundamental 

developmental questions with enhanced speed and resolution. 
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Chapter IV: Conclusions, Perspectives and 

Future Directions 

Figure 4 in this chapter was previously published in “Sexual dimorphism in the dorsal root 

ganglia of neonatal mice identified by protein expression profiling with single-cell mass 

cytometry.” Shayla Vradenburgh, Amy Van Deusen, Allison Beachum, Jacqueline Moats, 

Ashley Hirt, Christopher Deppmann, Austin Keeler, Eli Zunder. Molecular and Cellular 

Neuroscience. 2023;126:103866.  
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Development of the nervous system requires precisely controlled differentiation, 

maturation, and integration of neural and nonneural cell types. However, we are only 

beginning to understand the molecular and cellular complexity involved in orchestrating 

this developmental symphony. The most comprehensive databases of molecular 

expression in the nervous system, such as those maintained by the Allen Institute 

(http://brain-map.org) and National Institutes of Health (http://www.ncbi.nlm.nih.gov/geo), 

are heavily focused on mRNA expression. However, as our results show (Chapter II 

Figure 4 and Chapter III Figure 7), mRNA expression does not perfectly correlate with 

protein expression.  

In this thesis, we leveraged the high throughput of mass cytometry to profile expression 

of 40 proteins in millions of cells in the mouse brain (i.e., telencephalon, diencephalon, 

mesencephalon, and rhombencephalon) and DRG at daily time points from embryonic 

E11.5 to P4. No previous study has molecularly profiled single cells from these tissues at 

daily time points across embryonic and postnatal development, and no single-cell omics 

study to date has quantified protein instead of mRNA abundance levels in the developing 

mouse nervous system. 

In this chapter, we highlight our key conclusions and discuss mechanisms to expand our 

findings to a broader array of neuroscience applications. Finally, we conclude with 

thoughts on future efforts to generate a complete molecular and cellular atlas of the 

mammalian nervous system.  
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Mass Cytometry is a Validated Method to Analyze Neural Cells 

Our first goal was to establish methodologies that would allow mass cytometry to be used 

for analysis of neural cells. To achieve this, we initially performed preliminary experiments 

with neural cell lines (i.e., Neuro2A, N1E-115, GL261, OPC-1052, and OPC-8713) to 

provide proof-of-principle. Next, to adapt mass cytometry for analysis of neural tissues, 

we optimized protocols for dissociation of mouse brain and DRG into single-cell 

suspensions. As demonstrated by the results presented in Chapters II and III, our 

protocols are capable of generating sample preparations with high percentages of single 

viable cells, low amounts of cellular debris, and relatively few cell aggregates. 

We next used our optimized cell preparations to develop a library of primary antibodies 

suitable for identifying neural and nonneural cell types in neural tissues. In total, we 

validated over 150 surface and intracellular antibodies for neural tissues and cell lines, 

including transcription factors, neurofilaments, neurotrophic receptors, enzymes, and 

other factors relevant to cell identity and functions in neural tissues (Figure 1). Given the 

number of key markers for neural cell identity that were validated (e.g., Sox2 for NSCs, 

Tbr2 for INPs, NeuN for neurons, and Islet1 for sensory neurons), publication of this 

resource provides a strong foundation for researchers seeking to incorporate mass 

cytometry or IMC in the future. 
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Figure 1. Validated antibody library for mass cytometry of neural cells and tissues. Primary 

antibodies are organized according to the cell type or process with which they are associated. 

Next, we optimized parameters for isolating single-cell events from raw mass cytometry 

data. In addition to approaches generally applied for all mass cytometry studies (i.e., 

bead-based signal normalization, marker scaling, iridium-based identification of singlets, 

and removal of metal contaminants), we identified optimal strategies for previously 

reported barcoding, batch correction, and platinum-based viability staining protocols. 

Moreover, we defined neural tissue-specific parameters for cleanup gating, such as the 

removal of neurite debris, which is essential for faithfully isolating neuronal cells. We also 

describe observations of neural marker positivity for nonneural cells (e.g., microglia and 
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mural cells positive for TuJ1) and how interactions between different cell types must be 

taken into consideration when analyzing protein expression data using mass cytometry.  

 

To further validate our observations of protein expression in cells isolated from neural 

tissues, we corroborated trends observed by mass cytometry with the more traditional 

approach of IHC and fluorescence microscopy. As shown in Figure 2 of Chapter II and 

Figure 2 of Chapter III, our results confirm that trends for relative proportions of marker-

expressing cells were largely consistent between mass cytometry and IHC 

measurements for both the brain and DRG. 

 

Altogether, the methods, materials, and analytical strategies published as part of this 

thesis provide the foundation for future mass cytometry-based studies of neural tissues.  

 

First Protein-Based Atlas of Embryonic and Postnatal Mouse Brain Development 

Our next goal was to generate a high-dimensional protein-based atlas of mouse brain 

development using mass cytometry. To achieve this, we selected a 40-antibody panel 

(Chapter II, Table 1) of markers relevant to CNS development from our validated antibody 

library and analyzed samples collected at daily time points from E13.5 to P4. As shown 

in Figure 1 of Chapter II, UMAP and Leiden clustering yielded 85 distinct clusters, 

including 49 neural cell clusters, 33 nonneural cell clusters, and three unidentifiable 

(apoptotic or low-complexity) clusters. In total, 97.84% of all cells examined in the brain 

were classified as specific cell types by their protein expression profile, localization (i.e., 

telencephalon, diencephalon, mesencephalon, or rhombencephalon), and age.  
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Our results also allowed us to observe changes in the abundances of neural and 

nonneural cells during brain development. The large proportions of NSCs and neuronal 

cells observed during embryonic ages decreased before birth, whereas glial cells 

expanded perinatally and nonneural cells steadily increased (Chapter II, Figure 3). 

However, as expected, trends for each of these cell types varied across the different 

regions of the developing brain. For example, proportions of neural progenitors were 

highest at early ages (E13.5–E16.5) in the telencephalon but steadily increased only after 

E15.5 in the rhombencephalon, consistent with high levels of postnatal neurogenesis in 

the cerebellum (Carter et al., 2018; Wizeman et al., 2019). 

Because this is one of the first reported mass cytometry datasets for neural cells, we 

evaluated the robustness of our clustering results using several methods. Our 

examinations of both technical (Chapter II, Figure 3i–k) and biological (Chapter II, Figure 

3b; Appendix I, Extended Data Figure 5) reproducibility show that our analytical approach 

employing UMAP and Leiden clustering is robust for mass cytometry analysis of brain 

tissues. 

First Protein-Based Atlas of Embryonic and Postnatal Mouse DRG Development 

Given our success evaluating cell populations in the developing mouse brain, we also 

generated a protein-based atlas of cells present in the developing mouse DRG from 

E11.5 to P4. By selecting a 41-antibody panel including markers of somatosensory 

neuron subtypes and tissue-resident nonneural cell populations, we identified 41 neuronal 
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populations, 30 glial populations, and 5 nonneural cell populations, together 

encompassing over 95% of cells examined. Approximately 75% of cells were identified 

as neural subtypes (i.e., neurons, stem cells/glial progenitors, SGCs, Schwann cells), 

approximately 20% were nonneural cells (i.e., VSMCs, endothelial cells, and leukocytes), 

and the remaining 5% were unidentifiable due to a lack of marker expression.  

We also investigated how abundances of these cell types changed over the course of 

development. Consistent with previous studies (Cheng et al., 2018; Crowley et al., 1994; 

Fariñas et al., 1996; Patel et al., 2000; White et al., 1998, 1996), we observed increases 

in the relative abundances of neurons until E16.5, followed by a sustained decrease in 

neurons that coincided with increasing proportions of glial progenitors (Chapter III, Figure 

1f). Similar to our observations for the mouse brain, nonneural cells such as leukocytes, 

endothelia, and VSMCs consistently increased in abundance as development proceeded. 

Importantly, although our panel did not include TH or other markers frequently used to 

identify certain somatosensory neuron subtypes, we had sufficient intersectional 

coverage to identify cell types even in the absence of these markers. These results 

demonstrate both the benefit of having more than 40 biomarkers and power of thoughtful 

antibody panel design.  
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Mass Cytometry Permits Quantification of Rare Cell Populations in Neural Tissues 

With the ability to assess up to 1 × 106 cells per hour, mass cytometry allows for 

characterization and quantification of rare cell populations in neural tissues. This feature 

is useful for evaluating cells undergoing molecular transitions, which may be infrequent 

or occur rapidly, and especially important for investigation of neural tissues given the 

uniqueness of certain neuronal subtypes.  

 

As shown in Figure 1 of Chapter II, we were able to observe small populations of cells 

expressing Pax6 and Olig2, as well as a subset of dopaminergic neuronal progenitors in 

the mouse brain. Similarly, as shown in Figure 6 of Chapter III, we were able to discern 

small populations of sensory neurons positive for multiple tyrosine kinases (i.e., TrkA, 

TrkB, and TrkC), representing transient differentiation states, that were confirmed by IHC. 

Together, these results validate our ability to resolve small populations of cells with mass 

cytometry. 

 

Although neither of the antibody panels used for these studies set out to identify rare cell 

types, we nonetheless were able to observe these populations with ease thanks to the 

number of cells we analyzed and our robust high-dimensional analysis pipeline. In the 

future, we hope to apply this functionality to distinguish molecular and cellular 

mechanisms underlying disease phenotypes, especially those believed to be driven by 

changes in transient or low-abundance cell types. 
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Protein and mRNA Expression Are Discordant During Nervous System 

Development 

Both mRNA and protein expression are frequently used to characterize cells, however 

there is no universal method to accurately predict protein abundances from mRNA 

expression levels, or vice versa (Liu et al., 2016). To compare how protein and mRNA 

expression profiles vary in the developing mouse nervous system, we compared our 

protein-based mass cytometry results with mRNA-based measurements of scRNA-seq. 

 

We first compared our antibody-based mass cytometry measurements of mouse brain 

tissues with age- and tissue-matched scRNA-seq measurements from Linnarsson and 

colleagues (La Manno et al., 2021). As shown in Chapter II Figure 4a, expression profiles 

of markers key for identifying specific cell types were mostly congruent, although the 

highest levels of mRNA expression tended to precede or coincide with the highest levels 

of protein expression for many markers.  

 

To take a closer look at how evaluating cells by mRNA or protein positivity affects 

quantification of relative cell abundances in the developing brain, trends for relative 

percentages of nestin- and Tbr2-positive cells were confirmed by IHC and RNAscope in 

the mouse telencephalon (Chapter II, Figure 4b,c). At nearly every age examined, 

proportions of positive cells evaluated by mRNA expression were much lower than those 

measured by protein expression. Moreover, the localization of positive cells varied 

slightly, with Tbr2-positive cells being observed closer to the ventricle than Tbr2-positive 

cells (Chapter II, Figure 4c).  

164



As shown in Figure 7 of Chapter III, direct comparison of many protein–mRNA cognate 

pairs in the DRG resulted in poor agreement across timepoints. A more refined analysis 

comparing our results for P4 DRG with those published by Ginty and colleagues for P5 

DRG (Sharma et al., 2020) revealed that each method identified cell types not identified 

by the other method (Chapter III, Figure 8). These results suggest the using a limited 

number of measurement parameters does not necessarily impede the identification of cell 

subtypes in single-cell samples. Moreover, because mass cytometry can easily be used 

to quantify protein expression in millions of cells, it affords the ability to run numerous 

sample replicates and capture rare cell populations, as discussed above. 

We did not expect our comparisons of mRNA and protein to perfectly match because of 

differences in mRNA and protein production, regulation, and trafficking, as well as 

artifacts associated with comparing tissue sections to dissociated samples of whole 

tissue. However, trends for mRNA expression were consistent between scRNA-seq and 

RNAScope, while trends for protein expression were consistent between mass cytometry 

and IHC (Chapter II, Figure 4).  

In summary, our results highlight the need for protein-based measurements to 

corroborate the many findings reported from in situ hybridization, microarray, scRNA-seq, 

and other approaches quantifying mRNA. Future investigations would benefit from 

parallel measurement of split samples with scRNA-seq and mass cytometry, or use of an 

alternative method capable of simultaneously detecting protein and RNA at the single-

cell level [e.g., CITE-seq (Stoeckius et al., 2017)]. 
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Pseudotime-Based Trajectory Analysis Replicates Canonical Molecular 

Progressions of Neural Cell Differentiation 

Mapping the molecular trajectories underlying cell fate decisions during brain 

development will facilitate understanding of neurodevelopmental disorders such as ASD 

(Courchesne et al., 2007) and epilepsy (Bozzi et al., 2012; Nickels et al., 2016), as well 

as neurological diseases that may originate during development, such as schizophrenia 

(Owen et al., 2011; Nour and Howes, 2015) and Alzheimer’s disease (Bothwell and 

Giniger, 2000; Arendt et al., 2017). Therefore, we next sought to use our high-

dimensional, single-cell protein expression profiles to evaluate the molecular trajectories 

underlying differentiation of specific neural cell types.  To achieve this, we employed URD 

(Farrell et al., 2018), which is just one of many trajectory-inference approaches developed 

to predict molecular progressions based on scRNA-seq data (Saelens et al., 2019). 

Although we evaluated several of these approaches, we chose URD because of its tree-

based approach, scalability, and user-friendliness.   

 

Initially, we evaluated changes in protein expression associated with early specification 

of neuronal and glial progenitors/precursors in NSCs from all brain regions and ages. As 

shown in Figure 5 of Chapter II and Figure 7 of Chapter III, URD analysis of 

Sox2highnestinhigh cells (excluding endothelial cells, nonneural cells, and 

microglia/macrophages) predicted early separation of neuronal and glial trajectories 

based on expression of Pax6, Tbr2, and DCX. Further separation of individual neuronal 

and glial trajectories was based on decreasing expression of stem/progenitor cell markers 
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(e.g., Pax6, CD24, and N-cadherin) and increasing expression of mature markers (e.g., 

NeuN for neuronal progenitors, GLAST for glial progenitors, and Olig2 for OPCs). 

 

Next, we used URD to examine the molecular progressions underpinning differentiation 

and maturation of neural cells in the mouse telencephalon. As shown in Figure 6 of 

Chapter II, the predicted trajectories for cortical excitatory neurons displayed canonical 

(Englund et al., 2005) downregulation of Pax6 coinciding with upregulation of Tbr2, which 

subsequently decreased as NeuroD1, Tbr1, TuJ1, and NeuN increased. Similarly, the 

predicted trajectory for OPCs exhibited high Olig2 expression from an early age and 

sequential increases in PDGFR⍺, Sox10, and OligoO4, consistent with the reported 

molecular sequence for OPC specification and maturation into oligodendrocytes (Lu et 

al., 2000; Tekki-Kessaris et al., 2001; Zhou et al., 2000). 

 

Similar results were observed for Schwann cells in URD analysis of the DRG. Initially, 

these cells expressed nestin, vimentin, and Sox10 before downregulating these markers 

in favor of cMet and OligoO4 (Chapter III, Figure 3). In addition, evaluation of 

somatosensory neuron differentiation with URD replicated the molecular trajectories of 

distinct Trk-positive progenitors (Chapter III, Figure 5) previously reported in the literature 

(Lallemend and Ernfors, 2012). 

 

Based on these results, we conclude that analysis of protein expression levels along URD 

pseudotime trajectories can accurately predict the relative timing and sequence of 

molecular transitions contributing to neural cell specification. 
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Pseudotime-Based Trajectory Analysis Predicts Two Distinct Pathways for 

Generating OPCs 

In addition to replicating canonical molecular progressions of neural cell differentiation, 

URD predicted two pathways by which OPCs can be generated from NSCs in the 

developing mouse brain (Chapter II, Figure 5). In the first pathway, NSCs directly 

differentiate into OPCs by increasing expression of Olig2, followed sequentially by 

PDGFR⍺ and Sox10. In the second pathway, NSCs indirectly produce OPCs by 

proceeding through a BLBPhighGLASThigh intermediate state before sequentially 

upregulating PDGFR⍺ and Sox10. Although we have yet to validate these novel findings 

with an appropriate confirmatory method, they are consistent with previous reports of O2A 

cells (Baracskay et al., 2007).  

 

Mass Cytometry is Useful for Evaluating Phagocytosis in Neural Tissues  

Although mass cytometry has previously been employed to evaluate microglia and other 

hematopoietic lineages in the nervous system (Mrdjen et al., 2018; Ajami et al., 2018; Li 

et al., 2019; Böttcher et al., 2019; Fu et al., 2020b, 2020a; Ormel et al., 2020; Xie et al., 

2022), none of the previous studies included markers for neural cells. In contrast, the 

antibody panels we applied to evaluate the brain and DRG only included a few markers 

of microglia/macrophages (e.g., CD45 and CD11b) and numerous neural markers. 

Fortuitously, this combination allowed us to observe populations of cells known to display 

phagocytic functions (e.g., macrophages, microglia, and glial progenitors) in both the 

brain and DRG. 
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As shown in Figure 7 of Chapter II and Extended Data Figure 9 (Appendix I), microglia 

and macrophages were observed from the earliest age examined (E11.5) in the brain and 

gradually increased in proportion. However, populations of microglia with engulfed 

neuronal cells and neurite debris displayed trends that coincided with peaks of 

neurogenesis in the forebrain and mesencephalon. Further, proportions of microglia with 

presumptive myelin cargo (OligoO4+ microglia) increased in a caudal-to-rostral manner 

that mimics reported myelination patterns in the brain (Inder and Huppi, 2000; 

Jakovcevski and Zecevic, 2005; Kanfer et al., 1989; Verity and Campagnoni, 1988). 

 

In the DRG, populations of cells containing presumptive phagocytosed cargoes were not 

just limited to hematopoietic lineages. Glial precursors, which were previously 

demonstrated to phagocytose dying neurons in the DRG prior to infiltration of 

macrophages into this tissue (Wu et al., 2009), were also positive neuronal markers (e.g., 

Islet1, NeuN and TuJ1) (Chapter III, Figure 3l–o). These results were confirmed by IHC, 

which showed BFABP+ immature glial precursors phagocytosing Islet1+ neuronal 

fragments (Chapter III, Figure 3r). 

 
Future Directions 

Current phenotyping approaches demand thousands of personnel hours for data 

collection and analysis, but often yield highly oversimplified depictions of cell identity, 

developmental origin, and behavior. By overcoming limitations accompanying 

fluorescence-based methods to examine protein expression (Bendall et al., 2011), mass 

cytometry allows one individual to do in an afternoon what previously would have taken 

years – conveying enormous potential to explore previously unidentified cell subtypes, 
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developmental pathways, and phenotypes. Given the successes and limitations 

described in this thesis, we believe that there are several avenues to move forward.  

 

Profiling Cellular Phenotypes During Neurodevelopment Disorders 

The antibody panels described Chapters II and III of this thesis permitted identification of 

over 97% of cells in the brain and over 95% of cells in the DRG of C57/BL6 mice from 

E11.5 to P4. In addition to providing baseline values for the abundances of major neural 

and nonneural cell types in this frequently used research model, our findings immediately 

enable quantification of global changes in cellular composition during mouse nervous 

system development. Application of our methodology to models of neurodevelopmental 

disorders promises to enhance and expedite these investigations. 

 

Preliminary studies we performed in partnership with Dr. Noelle Dwyer (UVA Department 

of Cell Biology) demonstrate proof of this principle. Previously, the Dwyer laboratory 

showed that mice homozygous for a mutation in Kif20b (Kif20bmagoo) display reduced 

cortical thickness (Figure 2a) and size (Figure 2b) compared with their heterozygous 

littermates (Janisch et al., 2013). Our subsequent mass cytometry analysis reveals 

apparent reductions in BLBPhighGLASThigh cells and Olig2high cells (corresponding to glial 

precursors and OPCs, respectively) in the telencephalon of Kif20bmagoo homozygous mice 

at P0 compared with their wild-type and heterozygous littermates (Figure 2c). Although 

further studies are necessary to verify these findings, they demonstrate the potential of 

mass cytometry to immediately improve our understanding of neurodevelopmental 
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phenotypes, especially those underlying structural abnormalities (e.g., microcephaly, 

macrocephaly, and cortical dysplasia). 

Figure 2. Evaluation of Kif20bmagoo mutant mice with mass cytometry. a, Dorsal view of Kif20bmagoo 

heterozygous control (+/-) and homozygous mutant (-/-) mouse cortices at E18.5. b, Cortical sections from 
comparable levels of P0 control and homozygous Kif20bmagoo mutant littermates stained with hematoxylin 

and eosin. mz, marginal zone; cp, cortical plate neurons; iz, intermediate zone; svz, subventricular zone; 

vz, ventricular zone. Scale bars, 100 µm. Panels a and b were originally published in Janisch, et al., 2013. 

The vertebrate-specific kinesin-6, Kif20b, is required for normal cytokinesis of polarized cortical stem cells 

and cerebral cortex size. Development. Reprinted with permission from The Company of Biologists Ltd. 

(License No. 1422232-1). c, Biaxial plots (cytobank.org) showing expression of glial markers BLBP and 

GLAST, OPC marker Olig2, neuronal marker NeuN, mural cell marker MCAM, and endothelial cell marker 

PECAM in E14.5 and P0 telencephalon, as measured by mass cytometry. 
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In addition, the broad approach afforded by mass cytometry will be useful to investigate 

more profound neurodevelopmental disorders, such as autism spectrum disorder (ASD). 

In partnership with Dr. John Lukens (UVA Department of Neuroscience), we performed 

experiments to evaluate mouse brain development in the context of maternal immune 

activation (MIA), a hypothesized cause of both ASD and schizophrenia. Modeling MIA in 

the laboratory can be achieved with application of either immunogenic approaches [e.g., 

infection, lipopolysaccharide, or polyinosinic:polycytidylic acid (polyI:C)] or valproic acid 

to pregnant mice at a critical period of development (around E12.5) (Woods et al., 2021). 

Although male mice display MIA-associated phenotypes at a higher rate than females 

(Xuan and Hampson, 2014), the mechanisms underpinning susceptibility of males (or 

conversely protection of females) are not well understood. Although preliminary, our 

results demonstrate increases in the relative proportions of NeuroD1high and Tbr1high cells 

at E14.5 in males from polyI:C-injected dams compared with their female littermates and 

control males from saline-injected dams (Figure 3), consistent with reports of increased 

numbers of neurons in male children diagnosed with ASD (Courchesne et al., 2007).   
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Figure 3. Comparison of neuronal cells in maternal immune activation model mice using mass 
cytometry. Biaxial gating (cytobank.org) of TuJ1, NeuroD1, and Tbr1 expression in sindividual 

telencephalic cells of E14.5 mice from saline-injected and polyI:C-injected dams. 

Notably, although individuals with ASD experience can experience a diverse array of 

sensory effects [e.g., auditory sensitivity, hyperesthesia, increased tolerance to pain, 

oronasal effects, and visual disturbances (Leekam et al., 2007)], how transmission of this 

information is altered at cellular and tissue levels remains largely unknown. The antibody 

panel described in Chapter III permits quantification of the abundances and molecular 

profiles of somatosensory neurons, glia, and nonneural cells in the DRG. Applying our 

approach to ASD models may finally shed light on changes driving some of the sensory 

phenotypes observed in individuals with ASD.  
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Defining Sex-Related Differences in Nervous System Development and Disease 

The contribution of sex to developmental and disease-related phenotypes is only 

beginning to be appreciated, primarily because the bulk of previous studies employed 

only male samples to save on cost and reduce complexity. Thanks to the high throughput 

and high dimensionality of mass cytometry, future studies of the CNS and PNS can more 

easily evaluate the differences between sexes that are important for health and disease.   

Indeed, we have already used this atlas to design an antibody panel to evaluate sexual 

dimorphism in sensory neuron specification during mouse DRG development (Figure 4). 

These experiments, performed by Dr. Shayla Vradenburgh, show significant increases in 

the relative abundances of endothelial cells in males (Fig. 4d) and neuronal cells in 

females (Fig. 4f) that were confirmed by IHC (Fig. 4m, n) (Vradenburgh et al., 2023).  
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Figure 4. Sexual dimorphism within general cell populations in the DRG. a) Relative abundance UMAP 

of all cells colored by which sex has the highest relative abundance for each bin. b) Density UMAP showing 

the normalized density of cells within each bin. c-f) Graphs depicting the relative abundance in female and 
male pups of the four general cell populations identified in Fig. 1 – leukocytes/macrophages (c), endothelial 

cells (d), glial cells (e), and neuronal cells (f). g) Stacked bar graph depicting the average relative abundance 

for all females and all males colored by the different cell types. Low complexity and unidentified cells were 

included in this graph and are colored in gray. h–k) Graphs depicting the SEM of the relative percentage of 
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cells present for each male and female sample in distinct clusters within each cell population – 

leukocytes/macrophages (h), endothelial cells (i), glia (j), and neurons (k). l) Depiction of the SEM calculated 

on the combined relative percentage of cells for each male and female sample within the different clusters 

that form the four broad cell populations. m) Proportion of Islet1+ cells out of all DRG cells (DAPI+) by IHC. 
One to eight DRG sections were imaged and analyzed for up to two animals per litter for six litters for each 

sex. Counts from all sections from a single litter were averaged. n) Representative IHC images of P0 L4/L5 

DRGs with anti-Islet1 and DAPI quantified in (m). Scale bar = 50 μm Bins = 200 for subpanels (a) and (b). 

Connecting lines in subpanels (c)–(f) and (h)–(m) signify females and males from the same litter. 

At present, it is difficult to predict the extent to which sex-related differences contribute to 

observed neurological phenotypes because so little information is available. However, 

recent technological advancements (e.g., omics and machine learning) and an increased 

focus on sex and gender equity in scientific research (Heidari et al., 2016) are helping to 

fill this void. Doing so will finally allow researchers to address such questions as: 

• How are male and female brains different at a cellular level?

• Is there a molecular/cellular foundation for gender identity?

• Why are males more susceptible to dyslexia, autism, schizophrenia, Parkinson’s

disease, and brain cancer?

• Why are females more susceptible to migraines, chronic pain, and multiple

sclerosis?

• Why does epilepsy manifest differently in males and females?

• How do females effectuate higher tolerances to pain than males?

The answers to these questions may substantially impact how we view the nervous 

system and potentially, human identity. In addition, better understanding of the molecular 
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and cellular differences between sexes may have significant implications for how we treat 

neurological disease.  

 

Deep Profiling of Neural Cell Types  

Perhaps the most obvious extension of the work described in this thesis is the 

performance of studies targeted at a specific cell type or differentiation pathway. As 

shown in Figure 1, we have already validated numerous antibodies to further refine the 

identities of neural and nonneural cells, as well as characterize their intracellular signaling 

(e.g., S6 phosphorylation, H3K9 acetylation, and caspase-3 cleavage). Based on our 

experience validating these antibodies and mapping cells in the developing mouse 

nervous system, we believe that some ideal applications of mass cytometry-based deep 

profiling include: 

• Defining sequences of transcription factor expression underlying specification, 

differentiation, and maturation of specific neural cell types;  

• Establishing specific biomarkers to distinguish astroglia from neural stem cells; 

• High-dimensional profiling of cell surface receptors key for neuronal identity; 

• Increasing molecular resolution of cells in established neural circuits (e.g., refining 

the identities of neurons involved in appetite control in the arcuate nucleus); and 

• Multiplexed evaluations of developmental and pathological cell death in the 

nervous system (e.g., apoptosis, necroptosis, and pyroptosis). 
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Lineage-Tracing Studies to Probe Neurogenesis and Gliogenesis  

The entire milieu of neuronal and glial cells found in the adult CNS and PNS originate 

from two relatively homogenous population of stem cells, NSCs (Götz and Huttner, 2005)

and NCCs (Stemple and Anderson, 1992). However, the molecular pathways and 

transitions states predicating proper differentiation, maturation, and integration of neural 

cells are only beginning to be understood. Combining the advantages of mass cytometry 

with the power of modern lineage-tracing approaches, such as Cre- and/or CRISPR-

based genetic recombination systems and genetically encoded markers, has the potential 

to exponentially enhance investigations of neural cell lineages. 

For example, as described above and in Chapter II, our trajectory analyses both 

reproduced canonical molecular progressions underlying neural cell differentiation and 

predicted a somewhat novel finding: two distinct molecular pathways for OPC 

differentiation in the mouse forebrain. Based on these findings and localization data, we 

hypothesize that Olig2mid NSCs are capable of directly producing OPCs early during 

development before switching to a progenitor phenotype capable of producing both OPCs 

and astrocytes, while Pax6high NSCs in the dorsal telencephalon are incapable of directly 

producing OPCs, as outlined in Figure 5.  
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Figure 5. Predicted model for generation of OPCs from Olig2mid NSCs by two distinct pathways in 
the mouse forebrain. Markers key for the identification of each cell subtype are indicated.  
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Although we have yet to validate these findings, which emulate previous reports of O2A 

cells (Baracskay et al., 2007), resolving two distinct trajectories for OPCs could help 

unlock some as yet unexplained mysteries about these cells, such as: 

• Why do some OPCs mature into oligodendrocytes while others maintain a

progenitor cell state?

• Are ventrally and dorsally derived OPCs functionally redundant?

• Why does the first wave of OPCs die off postnatally in all regions of the brain

except the ventral forebrain and corpus callosum?

• How can we exploit OPCs in vivo to repair demyelination and nerve injury?

Moreover, because OPCs are the cell of origin for many glioblastoma (Zong et al., 2012), 

the ability to perform more detailed investigations of how their stemness and potency are 

regulated can have monumental implications for the treatment of brain cancers – 

especially glioblastoma, which has notoriously poor survival rates (American Cancer 

Society, 2020). 

Profiling Phagocytic Phenotypes During Development and Disease 

A diverse array of cell types can perform phagocytosis, including cells considered to be 

professional (e.g., microglia, macrophages, neutrophils, and osteoclasts) and non-

professional phagocytes (e.g., glial precursors, endothelial cells, and fibroblasts) 

(Rabinovitch, 1995). However, because phagocytic cells are motile, highly dynamic, and 

sparsely localized in the absence of injury or inflammation (Silvin and Ginhoux, 2018), it 

is difficult to evaluate their homeostatic functions.  
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As described in Chapters II and III, we were able to capture microglia, macrophages, and 

glial precursors engulfing neural cells and debris in the mouse brain and DRG during 

development. Notably, our observations of microglia positive for OligoO4 provide 

evidence for microglial regulation of myelin at an earlier age than previously reported. 

Given their relative sparsity, it is unsurprising that these cells have previously eluded 

detection. 

 

Importantly, our mass cytometry approach is agnostic to the both the type of cell 

performing engulfment and the engulfed cargo, meaning that it can be theoretically  

adapted to quantify any phagocytic cell type and target for which there is an antibody 

available. This includes the increasing number of cells identified to serve as ‘non-

professional’ phagocytes (Wu et al., 2009), such as glial precursors, fibroblasts, 

endothelial cells, and mesenchymal cells (Ichimura et al., 2008; Juncadella et al., 2013; 

Z. Lu et al., 2011; Mesa et al., 2015; Wood et al., 2000). 

 

We anticipate that future use of our approach will yield a greater appreciation of both the 

homeostatic and pathological functions of phagocytic cells, both within and outside the 

nervous system. Because the functions of phagocytic cells are increasingly implicated in 

neurological health and disease (Galloway et al., 2019), our approach represents a 

valuable new tool for investigators. Future use of this technique may facilitate 

understanding of the role of microglia in aggregation of amyloid β plaques in patients with 
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Alzheimer’s disease or why myelin is degraded in the CNS of patients with multiple 

sclerosis but not their peripheral nerves.  

Final Thoughts 

Mass cytometry is a highly useful tool to quantify protein expression of single cells 

collected from neural tissues. The breadth and depth of the results it provides are an 

important complement to the growing number of scRNA-seq studies focused on the 

nervous system. Together, these single-cell approaches enable high-resolution 

delineation of molecular features that define specific cell types, which is absolutely 

required to build an atlas of the thousands of neuronal subtypes predicted to exist in the 

mammalian brain. 

Although the findings described in this thesis focused on single-cell studies, mass 

cytometry can also be used to evaluate subcellular components such as synaptosomes 

(Gajera et al., 2022) and exosomes (Wang et al., 2020). Virtually all the analytical tools 

we developed to precisely identify cells, transition states, and molecular trajectories are 

also applicable for such studies, although strategies for data cleanup would need 

modification. We look forward to seeing future innovations of this methodology, especially 

for multiomic studies. 

It is worth noting that there are many ways in which existing and future molecular probes 

can be combined with mass cytometry to immediately expand its capabilities for 

discerning molecular features of cells or subcellular components. For example, cell cycle 
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kinetics and proliferation can be examined at high-resolution using multiplexed IdU and 

EdU labels generated with Click chemistry (Tosevski et al., 2017). Furthermore, based 

on the molecular flexibility of Click chemistry, a wide array of reagents could presumably 

be adapted for mass cytometry. 

In addition, based on some very preliminary experiments, we predict that circuit tracing 

studies can be performed using appropriate molecular tracers such as wheat germ 

agglutinin or viruses. In sum, virtually anything that can be targeted with an antibody – 

and many things that cannot – can be measured by mass cytometry. In the future, it will 

be exciting to see how this combinatorial power is wielded to advance our understanding 

of molecular and cellular biology. 

IMC (Giesen et al., 2014) and MIBI (Angelo et al., 2014) represent important 

advancements of mass cytometry that can both resolve spatial information and quantify 

protein expression. Neuroscience-related studies employing these approaches have 

primarily focused on the very worthy target of human brain tumors (Ajaib et al., 2023; 

Surendran et al., 2023; van Hooren et al., 2023). At present, the Deppmann and Zunder 

laboratories are working to capitalize on our extensive library of validated antibodies to 

extend IMC/MIBI analyses to rodent models of neurodevelopmental disorders and 

neurodegeneration. Collectively, the methodologies and results of these studies have the 

potential to revolutionize pathology. 
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Building an atlas of the nervous system is an enormous but vastly important undertaking. 

Fortunately, the extraordinary intelligence afforded by our highly developed prefrontal 

cortex allows humans to develop the tools to solve such complex problems. The findings 

presented in this thesis represent only the beginning of our ability to harness high-

dimensional, single-cell protein data to unravel the mysteries of the nervous system. I am 

honored to have played my small part.  
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Appendix I: Extended Data for Mass Cytometry 

Analysis of Mouse Brain Development 

The contents of this chapter, corresponding to Chapter II, have been accepted for 

publication as “A developmental atlas of the mouse brain by single-cell mass 

cytometry.” Amy Van Deusen, Sushanth Kumar, O. Yipkin Calhan, Sarah Goggin, 

Jiachen Shi, Corey Williams, Austin Keeler, Kristen Fread, Irene Gadani, 

Christopher Deppmann, Eli Zunder. Nature Neuroscience [Accepted Jan 8 2024]. 
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Metal Reagent Full Name(s) Cell Types Reference Vendor Catalog No. Host Clone [CyTOF] Localization Reactivity
Y89 TuJ1 Beta 3-tubulin Neurons Caccamo, 1989 Gift (A. Spano) – Mouse TuJ1 1000 ng/mL Intracellular Hu, Ms, Rt
In113 Olig2 Oligodendrocyte transcription factor 2 OPCs, Cholinergic Neuron and Interneuron ProgenitorsLu, 2000; Zhou, 2000 Millipore MABN50 Mouse 211F1.1 1000 ng/mL Intracellular Hu, Ms, Rt

In115 A2B5 – O2A Progenitors, Type 2 Astrocytes Eisenbarth, 1979; Raff, 1983 Biolegend 150702 Mouse 105/A2B5 300 ng/mL Surface Hu, Ms
La139 PSA-NCAM Polysialylated-neural cell adhesion molecule Neuronal Progenitors Theiry, 1979 eBioscience 14-9118-82 Mouse 12E3 300 ng/mL Surface Hu, Ms, Rt
Pr141 CD140b Platelet-derived growth factor beta OPCs, Fibroblasts Richardson, 1988; Noble, 1988 eBioscience 14-1402-82 Rat APB5 10 ng/mL Surface Hu, Ms, Fish
Nd142 VCAM1 CD106, Vascular cell adhesion molecule NSCs, Glial Progenitors, and Neurovascular Cells Osborn, 1989; Kokovay, 2012 Biolegend 105702 Mouse 429 (MVCAM.A) 100 ng/mL Surface Ms
Nd143 CD31 PECAM-1, Endothelial cell adhesion molecule Endothelial cells Newman, 1990; Vasudevan, 2008Biolegend 102425 Rat 390 50 ng/mL Surface Ms
Nd144 Nestin – NSCs, Glial Progenitors, and Neurovascular Cells Dahlstrand, 1992 R&D Systems MAB2736 Mouse 307501 30 ng/mL Intracellular Ms, Rt
Nd145 Sox1 SRY-box transcription factor 1 Neural stem cells (especially striatal neuronal) Gubbay, 1990; Pevny, 1998 R&D Systems AF3369 Goat Polyclonal 300 ng/mL Intracellular Hu, Ms, Rt
Nd146 Tbr2 T-box brain gene 2, EOMES, eomesdermin Intermediate neuronal progenitors Russ, 2000 Thermo Fisher 14-4875-82 Mouse Dan11mag 1000 ng/mL Intracellular Ms
Sm147 CD140a Platelet-derived growth factor alpha OPCs and brain fibroblasts Pringle, 1989 Biolegend 135902 Rat APA5 30 ng/mL Surface Ms
Nd148 CD133 Prominin Ependymal cells; apical neural progenitors Weigmann, 1997 Biolegend 141202 Rat 315-2C11 100 ng/mL Surface Ms
Sm149 CD45 Tyrosine phosphatase receptor type C Microglia and other leukocytes Akiyama, 1988 Fluidigm 3089005B Mouse 30-F11 10 ng/mL Surface Ms
Nd150 NeuN Neuronal Nuclei Neurons Mullen, 1992 Novus NBP1-92693 Mouse 1B7 100 ng/mL Intracellular Hu, Ms, Rt
Eu151 Sox10 Sex-determining region Y box 10 OPCs Hu, 2009 Gift (S. Kucenas)– Rabbit Monoclonal 3000 ng/mL Intracellular Ms, Rt, Fish
Sm152 Ki67 MKI67, Marker of proliferation Ki-67 Proliferative cells Gerdes, 1983 BD Biosciences 550609 Mouse B56 1000 ng/mL Intracellular Hu, Ms
Eu153 Oligo O4 Oligodendrocyte marker O4 Oligodendrocytes, Microglia? Yokoyama, 2003 R&D Systems MAB1326 Mouse O4 300 ng/mL Surface Hu, Ms, Rt, Ck
Sm154 Pax6 Paired box 6 Neural stem cells, dorsal endothelial progenitors Walther, 1991; Vasudevan, 2008 BD Biosciences 561462 Mouse O18-1330 50 ng/mL Intracellular Hu, Ms
Gd155 MCAM CD146, Melanoma cell adhersion molecule Neurovascular cells Schwarz, 1998 eBioscience 14-1469-80 Mouse P1H12 30 ng/mL Surface Hu, Ms, Rb
Gd156 NeuroD1 Neurogenic differentiation 1 Differentiating neurons Lee, 1998 R&D Systems AF2746 Goat Polyclonal 1000 ng/mL Intracellular Hu, Ms
Gd157 SSEA-1 CD15, Stage-specific embryonic antigen, Sialyl LewisX Stem cells Knowles, 1978 eBioscience 14-8813-80 Mouse MC-480 10 ng/mL Surface Hu, Ms
Gd158 CD11b Integrin aN, Mac-1 Microglia and monocytes Perry, 1985 Biolegend 101249 Rat M1/70 100 ng/mL Surface Hu, Ms
Tb159 CD24 Heat stable antigen Postmitotic neural cells Shirasawa, 1993 BD Biosciences 557436 Rat m1/69 30 ng/mL Surface Ms
Gd160 Sox2 Sex-determining region Y box 2 Neural stem cells Uwanogho, 1995 R&D Systems MAB2018 Mouse 245610 1000 ng/mL Intracellular Hu, Ms, Rt
Dy161 CD325 N-cadherin Most neural cells Hatta, 1985 Biolegend 844702 Mouse 13A9 100 ng/mL Surface Hu, Ms, Rt
Dy162 GAD65 Glutamic acid decarboxylase 65-kD, glutamate decarboxylase 2Interneurons Kaufman, 1991 Biolegend 844502 Mouse N-GAD65 300 ng/mL Intracellular Hu, Ms, Rt
Dy163 DCX Doublecortin Newborn neurons des Portes, 1998 Thermo Fisher 481200 Rabbit Polyclonal 500 ng/mL Intracellular Hu, Ms, Rt
Dy164 MAP2 Microtubule-associated protein 2 Differentiated neurons Izant and McIntosh, 1980 Novus NBP2-25156 Mouse 4H5 500 ng/mL Intracellular Hu, Ms

Ho165 ALDH1A1 Aldehyde dehydrogenase 1A1 Dopaminergic neurons, astrocyte progenitors Galter, 2003; Adam, 2012 R&D Systems AF5869 Goat Polyclonal 100 ng/mL Intracellular Hu, Ms
Er166 Ly-6C Lymphocyte antigen 6 complex, locus C T cells LeClair, 1989 Biolegend 128002 Rat HK1.4 30 ng/mL Surface Ms
Er167 GLAST Glutamate asparate transporter Glial cells Storck, 1992 Novus NB100-1869 Rabbit Polyclonal 1000 ng/mL Surface Hu, Ms, Rt
Er168 Ctip2 COUP-TF-interacting protein 2, Bcl11b Developing neurons Yamamato, 1999 Abcam ab18465 Rat 25B6 200 ng/mL Intracellular Hu, Ms
Tm169 GFAP Glial fibrillary acidic protein Astrocytes Uyeda, 1972 BD Biosciences 556330 Mouse 102 100 ng/mL Intracellular Hu, Ms, Rt
Er170 Cux1 Cut-like homeobox 1 Neural cells Quaggin, 1996 Abcam ab54583 Mouse 2A10 10 ng/mL Intracellular Hu, Ms
Yb171 Tbr1 T-box brain gene 1 Neurons (predominantly cortical) Bulfone, 1995 Abcam ab31940 Rabbit Polyclonal 1000 ng/mL Intracellular Hu, Ms, Rt
Yb172 BLBP Brain lipid-binding protein, fatty acid binding protein 7 Radial glial cells Feng, 1994; Kurtz, 1994 Gift (C. Birchmeier & T. Müller) Rabbit Polyclonal 1000 ng/mL Intracellular Hu, Ms, Rt, Fish
Yb173 Cl. Casp-3 Caspase 3 (Cleaved Form) Apoptotic Cells Fernandes-Alnemri, 1994 BD Biosciences 559565 Rabbit C92-605 500 ng/mL Intracellular Hu, Ms
Yb174 TrkB Neurotrophic tyrosine kinase receptor type 2 Developing neural cells Klein, 1989 Thermo Fisher AF1494 Goat Polyclonal 100 ng/mL Surface Ms
Yb175 F4/80 EMR1, Ly-71 Macrophages Austyn, 1981 Biolegend 123101 Rat BM8 100 ng/mL Surface Ms
Yb176 p75NTR P75 neurotrophic receptor, TNF receptor 16 Neural cells Herrup, 1973 R&D Systems AF1157 Goat Polyclonal 300 ng/mL Surface Ms
Ir191/193 DNA Intercalator Cell-ID Intercalator-Ir All fixed cells – Fluidigm 201192A - - (1:5000) Intracellular Eukaryotic cells
Pt195/198 Cisplatin Cisplatin Dead cells Fienberg, 2012 EMD Millipore 23120 - - 5 uM - -
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Appendix II: Extended Data for Mass Cytometry 

Analysis of Mouse DRG Development 

The contents of this chapter, corresponding to Chapter III, were previously 

published as “A developmental atlas of somatosensory diversification in the dorsal 

root ganglia by single-cell mass cytometry.” Austin Keeler*, Amy Van Deusen*, 

Irene Gadani, Corey Williams, Sarah Goggin, Ashley Hirt, Shayla Vradenburgh, 

Kristen Fread, Emily Puleo, Lucy Jin, O. Yipkin Calhan, Christopher 

Deppmann, Eli Zunder. Nature Neuroscience. 2022;25(11):1543–1558. 
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Extended Data Fig. 1 Validation of antibodies for mass cytometry. All antibodies validated and 

included in the DRG mass cytometry antibody panel. a) Each antibody was titrated across a range of 

concentrations (for example 9 μg/ml to 0.01 μg/ml). Known-positive and known-negative control cell 

samples were tailored for each antibody. Sometimes these were separate samples, and sometimes the 
known-positive and known-negative cells coexisted in a single sample, distinguishable by a separate 

antibody counterstain. Optimal staining concentrations for each antibody were determined by identifying 

the largest difference in signal intensity between known-positive and known-negative cells. b) Biaxials 

scatterplots for each antibody except for anti-Islet1 (y-axis) in the panel at each age by Islet1 (x-axis), 

demonstrating positive and negative staining across the DRG developmental time course. Samples were 

selected from Set 1. For postnatal ages the female sample from Set 1 was used. Full data available in 

Data Availability. 

229



230



Extended Data Fig. 2 Pre-processing of DRG samples for mass cytometry. a) Calibration bead 

normalization of the raw mass cytometry data (stored as .fcs files) using the Matlab software described in 

Finck. et al35. b) Clean up gating done with Cytobank (cytobank.org) to remove low quality events from 

the dataset. Biaxial gates as follows (from left to right, top to bottom): 1) barcode_separation x 
barcode_negative and 2) barcode_separation x malahoidis_distance removes events that cannot be 

confidently separated by barcode label; 3) event_length x center and 4) width x center remove events that 

fall outside of normal Gaussian parameter distribution – these events are often enriched for cell doublets; 

5) intercalator x cisplatin removes both non-cell events (for example cellular debris) and dying cells; 6–11)

unused metals x intercalator removes high background events. A twelfth clean up gate was required for

samples from barcode Set 3 to remove a runtime-dependent increase in background in a subset of

channels: time x NeuN. c) Batch correction was run to normalize signal strength between runs (Schuyler

et al.)37. Each barcode set included a ‘universal’ sample consisting of excess samples from across the
DRG time course. These excess cells were pooled together, and then aliquoted and stored at −80 °C, to

be included with each mass cytometry run as an unvarying control. After all samples were run, the

universal samples between barcode sets were batch corrected to be as similar as possible on a per-

marker basis, and then the batch adjustment process corrected the rest of the samples in that barcode

set based on its corresponding universal sample. Arcsinh transformation values were manually adjusted

to provide the greatest contrast between background and physiological values. d) A gating hierarchy of

major populations found by high dimensional analysis of the whole time course. This gating hierarchy

recapitulates the delineation of general cell types identified through high dimensional analysis with UMAP
and leiden clustering.
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Extended Data Fig. 3 High dimensional analysis of the entire somatosensory time course data set. 
a) UMAP embedding of all ‘Cells to Analyze’ (cleanup gating applied) from the whole DRG time course. b)
UMAP plot from (a) colored by age. c) UMAP plot grayed out except for low complexity Cluster 6. d) Cells

from all ages in Cluster 6, with predominant contribution from E11.5. e) UMAP embedding of Cluster 6
after extraction and secondary Leiden clustering. f) UMAP plot from (e), colored by age. g) Unmodified

UMAP embedding from Fig. 1c. UMAP layout was rotated and white space removed for improved

visualization. h) UMAP plot from (g) colored by age. i) UMAP plot from (g) colored by expression level for

every marker in the DRG antibody panel. j) Violin plots of all markers for all clusters; Fig. 1e is truncated

to show just the most salient markers for the general populations. k) Analysis of the variability of each

cluster by each sample at each age. The number of cells assigned to each cluster in each sample at each

age was determined and the relative abundance of each cluster per sample per age calculated. Line and

error bars denote the standard error of the mean. l) The standard error of the mean of the percentage of
all cells for each cluster is shown, but only during the ages where the average abundance of that cluster

comprised 1% or more of the cells at that age. Note, three clusters (Endothelia 3, Unassigned cells 1, and

Unassigned cells 2) never reached that threshold.
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Extended Data Fig. 4 Extraction of single age neuron sets for comparison to IHC. a) Neuronal 

clusters were extracted from the DRG time course (Fig. 1c), b) and then subjected to secondary Leiden 

clustering and UMAP embedding. c) Then, individual ages matched to IHC samples were further 

extracted and subjected to tertiary Leiden clustering and UMAP embedding. 
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Extended Data Fig. 5 High dimensional analysis of all glial cells and precursors. a) Cell number per 

age for all glia and glial precursors. b) Unmodified UMAP embedding from Fig. 3a. White space was 

trimmed for ease of visualization. c) UMAP plot from (b) colored by age. d) Violin plot of all markers for 

the glial clusters (from Fig. 3a) e) During pseudotime calculation, several simulations are run, allowing 
pseudotime to be calculated from these iterations. For ideal pseudotime stability (for example decreased 

change in cell pseudotime with increasing runs) we assessed the number of runs required to approach an 

asymptote. We determined 500 simulations was sufficient to reach a stability asymptote. f) We next 

assessed the distribution of pseudotime by real age (E11.5 to P4). There is a general progression across 

pseudotime with age with overlap between stages, as expected. g) UMAP plot colored by pseudotime 

value for all 63,796 downsampled cells included in this analysis. h) UMAP plot from (g) colored by URD 

segment. i) URD dendrogram of the 4 general populations colored by segment. j) Representative 

brightfield image of E15.5 sample on a hemocytometer quantified in Fig. 3p. Scale bar, 500 μm.k) Biaxial 
scatterplots from only putative phagocytic glia showing expression of 4 neuronal markers (TrkA,TrkC, 

TuJ1, and Islet1), by satellite glial cell marker BFABP at E13.5, E15.5, and P0. l) Biaxial scatterplots 

comparing marker expression for several neuronally expressed markers (Islet1, NeuN, PGP9.5, TuJ1, 

TrkA, TrkB, and TrkC) and glial markers (Sox10, TrkB, and Vimentin) by BFABP between only putative 

phagocytic glia and all Islet1+ cells (neurons and putative phagocytic glia) from all ages. 
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Extended Data Fig. 6 High dimensional analysis of all neurons. a) Leiden clustering (LC) and UMAP 

embedding of neurons extracted from the whole time course, labeled by cell type. Circles indicate the 3 

main neuronal subtypes by RTK expression: TrkA+;Ret+, TrkB+, and TrkC+, respectively. b) LC and UMAP 

of the TrkA+;Ret+ neurons, extracted from a). Three clusters that did not exhibit neuronal markers were 
removed from the dataset before a final round of LC and UMAP (plot on right). c) LC and UMAP of the 

TrkB+ neurons extracted from a). d) LC and UMAP of the TrkC+ neurons extracted from a). Putative 

phagocytic glia expressing TrkC+ could not be removed from TrkC+ neurons in previous analytic 

iterations, but this could be done at this resolution resulting in a ‘cleaned’ TrkC+ neuronal clustering and 

UMAP (plot on right). e) TrkA+;Ret+, TrkB+, and TrkC+ UMAP plots colored by age. f) Violin plots of all 

markers for TrkA+;Ret+, TrkB+, and TrkC+ neurons. g) Key markers in our panel that allow identification of 

somatosensory DRG populations5. h) UMAP plots colored by expression for all panel markers for 

TrkA+;Ret+, TrkB+, and TrkC+ neurons. i) TrpM8 transcript data from Usoskin et al.2 showing that TrpM8-
expressing neurons are a subset of peptidergic nociceptors. j) UMAP plot of TH+ cells that were extracted 

from Fig. 4a (Cluster 6) and reclustered. k) UMAP plot of the TH+ cells from P4 overlaid on the grayed out 

UMAP plot from j). These were the cells used in the comparison to the Usoskin et al2 transcript data in 

Fig. 4i-n. l) UMAP plot from j) colored by age. m) Violin plot of marker expression of all clusters from j). n) 
Comparison of TH+ C-LTMR transcripts expression to protein expression for all markers in the mass 

cytometry panel2. In both cases, transcript or protein expression in C-LTMRs was normalized to all 

nociceptors. 
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Extended Data Fig. 7 Analysis of inter-replicate variability for TrkA+, TrkB+, and TrkC+ neuron 
subclusters. a) Analysis of the variability of each cluster by each sample for each age for the TrkA+/Ret+ 

neuron subcluster. The number of cells assigned to each cluster in each sample at each age was 

determined and the relative abundance of each compared to all neurons in the TrkA+/Ret+ cluster was 
calculated. b) The standard error of the mean of the percentage of all neurons from the TrkA+/Ret+ 

dataset for each TrkA+/Ret+ cluster is shown, but only during the ages where the average proportion of 

that cluster comprised 1% or more of the cells at that age. c) UMAP where TrkA+/Ret+ subclusters have 

been grouped together by similar expression of markers into a more general cell type. d) UMAP where 

TrkA+/Ret+ subclusters were recolored by general groups expressing similar markers as denoted in (c). e) 
The relative abundance for the general groups created in (d) are shown with the samples deemed ‘poorer 

quality’ (see Supplementary Table 3) indicated as a red circle. f) The relative abundance for the general 

groups created in (d) shown without the ‘poorer quality’ samples. g) The standard error of the mean of the 
percentage of all neurons from the grouped TrkA+/Ret+ dataset with the ‘poorer quality’ samples data 

removed for each TrkA+/Ret+ cluster is shown, but only during the ages where the average proportion of 

that cluster comprised 1% or more of the cells at that age. h-n) The same analysis as (a-g) except for 

TrkB+ neurons. (o-u) The same analysis as (a-g) except for TrkC+ neurons. v) Frequency distribution of 

the S.E.M % of either all cells or neurons for 1) the whole time course (from Extended Data Fig. 3k, l), 2) 

all neuron subclusters, 3) subclusters grouped by general cell types, and 4) these general cell types with 

the ‘poorer quality’ samples removed. 
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Extended Data Fig. 8 URD pseudotime analysis of all neurons. We initially defined tips as clusters 

present with ≥ 1% at P4 and all clusters at E11.5 as the root. However, this produced excessively 

branched pseudotime dendrograms for both a) TrkB+;TrkC+ and b) TrkA+;Ret+ where intermediate and 

more mature cell states were paired as tips. For instance, TrkA+/Ret+ clusters 5 and 13 are presumptively 
immature nonpeptidergic nociceptors. The presence of these immature cell types at P4 is expected as 

cell populations mature over development. By removing presumptive intermediates as tips, we were able 

to produce the most appropriate molecular trajectory across pseudotime, such as Fig. 5a. c-f) 
Supplemental URD analysis, same as in Extended Data Fig. 5: c, d) pseudotime stability to calculate 

simulation number, pseudotime by stage, UMAP of pseudotime value for all 39,944 (TrkB+;TrkC+) not 

downsampled and 64,997 (TrkA+/Ret+) downsampled cells included in this analysis, UMAP colored by 

URD segment, for TrkB+;TrkC+ and TrkA+/Ret+ datasets, respectively, and e, f) URD dendrogram colored 

by URD segment for TrkB+;TrkC+ and TrkA+/Ret+ datasets, respectively. g-t) Heatmaps for all URD tips 
from TrkB+;TrkC+ and TrkA+/Ret+ datasets, respectively, for all markers. 
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Extended Data Fig. 9 Multi-Trk+ neurons exhibit altered protein expression. a) Biaxial scatterplots 

showing the neurons that express at least two Trks for all 3 combinations: TrkA;TrkB, TrkA;TrkC, and 

TrkB;TrkC. b) Violin plots of Trk expression for all single-Trk+ neurons (Fig. 4a-c) compared to multi-Trk+ 

neurons. c) Proportion of TrkA+;TrkB+, TrkA+;TrkC+, and TrkB+;TrkC+ populations at different threshold 
values: left, TrkA>1.5, TrkB>2.5, TrkC>1.5 and right, TrkA>2, TrkB>3, TrkC>2. d) Proportion of 

TrkA+;TrkB+, TrkA+;TrkC+, and TrkB+;TrkC+ populations at E11, E12, E15, P0, P5, and P40 from Sharma 

et al19 scRNA-seq. All cells with transcript expression values >0 were designated as expressing the given 

transcript. e) Proportion of TrkA+;TrkB+, TrkA+;TrkC+, and TrkB+;TrkC+ populations at P42-56 from 

Usoskin et al2. Transcript expression was determined by thresholding as in Usoskin et al2: briefly, the 

three cells with the highest expression for a given transcript were averaged and then multiplied by 5%. 

Cells with transcript expression greater than this threshold are designated as expressors. f) Proportion of 

all multi-Trk+ neurons combined at each age across the whole time course from the mass cytometry 
dataset. g, h) URD dendrograms from Fig. 5a without the URD dataset cells. Instead, each multi-Trk+ 

neuron type are mapped on the URDs, colored by the age of each cell, over the TrkB;TrkC URD (d) and 

the TrkA;Ret URD (e). Multi-Trk+ neuron numbers were counted and compared to the number of cells 

within each TrkB;TrkC URD segment (d). However, the TrkA+ and Ret+ neurons were downsampled 

(64,997 out of 492,982 neurons). Thus we multiplied the number of neurons in each segment of the 

TrkA;Ret URD by the downsampling coefficient (7.584689) before determining the proportion of multi-Trk+ 

neurons over the URD (e). i, j) All p Values for Fig. 6l, m, respectively. 
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