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CHAPTER 1: Introduction 
 

The tumor microenvironment (TME) is composed of varied factors. Cancer cells display unique 

characteristics that lead to the development of disordered vasculature, hypoxia, elevated pH, and necrosis. 

Additionally, the developing tumor is affected by several local environment factors including cancer 

associated cell signaling, extracellular matrix remodeling, and interstitial fluid flow. Together, these TME 

factors lead to pro-metastatic phenomena.  

Therapeutic delivery within the tumor is attenuated by static pressure and the permeability of the 

tissue, which is mediated by the extent of ECM remodeling. Additionally, cellular signaling from stromal 

fibroblasts limits the efficacy of treatment. This phenomenon is of particular relevance at the tumor 

border, where there is a transitional region from predominantly cancer cells to predominantly stromal 

cells. These factors promote cancer growth and select for a potentially metastatic subpopulation. 

Furthermore, interstitial fluid flow at the tumor border affects the migration characteristics of cancer cells. 

Interstitial fluid flow has been implicated in an increase in cancer cell invasion, which is the major 

effector of cancer spread and decreased patient viability. In brain cancer, two different mechanisms have 

been implicated in this increased invasion, and this invasion is mediated by both CXCR4 and CD44. 

Therefore, TME complexity necessitates utilization of robust models to elucidate the effects of 

the TME on cancer development and progression. The current work defines two novel agent-based 

models that describe and predict cancer specific outcomes within in vitro TME mimetic systems. Our 

models indicate that brain cancer cell invasion is increased in the presence of interstitial flow, and this 

increased invasion is driven by two specific mechanisms, CXCR4-CXCL12 autologous chemotaxis and 

CD44 mechanotransduction. Additionally, in vitro and in silico models of the tumor border transition 

zone predict that regional viability within the breast tumor border is affected by both fibroblast signaling 

and transport mechanisms, and this affect could be selecting for important resistant subpopulations. 

Together, our data describe varied TME factors that mediate cancer cell response, and the utilization of 

agent-based models has facilitated the prediction, characterization, and explanation of in vitro findings. 
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CHAPTER 2: Background 
 

2.1 The Tumor Microenvironment 

 The tumor microenvironment is generally defined as the local factors that influence the growth 

and progression of cancer. While the components of the tumor microenvironment are cancer type and 

context specific, there are several common constituents inherent to tumors. Cancer associated cells 

(Figure 1F/E), the physical adherent matrix or extracellular matrix (Figure 1D), and biophysical forces 

(Figure 1H) are several key components of the tumor microenvironment1,2, while vasculature is 

additionally important for drug delivery considerations (Figure 1A). Characterization of the tumor 

microenvironment provides insight into the mechanisms of cancer migration, proliferation, metastasis, 

and chemotherapy resistance, thus facilitating better standard of care and increased treatment efficacy. 

 

Figure 1|Components of the tumor microenvironment. 

The tumor microenvironment is characterized by (A) fenestrated vasculature, (B) cancer cells, 

(C) necrotic regions, (D) extracellular matrix, (E) chemokine gradients, (F/G) cancer associated 

cells (activated fibroblasts and normal fibroblasts respectively), and (H) interstitial fluid pressure. 
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2.1.1 Tumor Characteristics 

The most abundant component of the tumor microenvironment is cancer cells (Figure 1B). These 

cells are defined by several universal hallmarks, classically defined by Hanahan and Weinberg, including 

growth suppression evasion, mutation, replicative immortality, inflammation, invasion mechanisms, and 

stimulating angiogenesis3,4. These ubiquitous cancer hallmarks facilitate the development of unique tumor 

characteristics. Unchecked growth coupled with replicative immortality yields increased metabolic 

activity and associated decrease in pH5 within the tumor microenvironment. Increased metabolic activity 

additionally causes oxygen depletion6 and regions of hypoxia. Therefore, unchecked growth creates a 

detrimental environment for the cancer cells and subsequent regions of necrosis (Figure 1C). 

Additionally, this environment creates a selective pressure that yields regional subpopulations that are 

more likely to proliferate and invade7. 

The lack of oxygen within tumors causes cancer cells to secrete pro-angiogenic factors to 

stimulate the growth of new blood vessels8 (Figure 1A), however, this tumor vasculature, or 

neovasculature, is significantly altered from normal tissue blood vessels. Neovasculature is defined by 

abnormal blood vessel shapes, and large fenestrations caused by misalignment of endothelial cells9. These 

gaps allow cells to intravasate into the vasculature, which has been proposed as a mechanism of 

metastasis10. Interestingly, these neovasculature abnormalities also lead to a distinct phenomenon known 

as the enhanced permeability retention (EPR) effect. Treatment of tumors with large molecule drugs is 

enhanced over small molecule treatment due to accumulation into the tumor by extravasation from the 

leaky vasculature into the tumor bulk, while simultaneously being blocked from extravasation from the 

vasculature into other organs due to normal epithelial junction size exclusion10. 

 

2.2.2 Tumor Associated Cells 

 While cancer cells are the most abundant cell type in the TME, they do not act alone. Propinquity 

to surrounding stroma yields infiltration of several cell types into the tumor bulk, which then interact with 

the cancer cells. These cell types include immune cells, such as T lymphocytes and B lymphocytes, 
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myeloid cells, such as neutrophils and macrophages, adipocytes, and fibroblasts11.  T lymphocytes and B 

lymphocytes either help promote or hinder the growth of cancer depending on the particular secreted 

factors and the cancer context12,13.  Tumor associated macrophages are generally considered to be pro-

tumorgenic13, and these macrophages have been shown to enhance cancer cell migration14. Adipocytes 

recruit cancer cells in specific via adipocyte specific secreted factors15.  

 However, perhaps the most important cell type in the development and progression of cancer is 

the fibroblast (Figure 1G). Normally, fibroblasts are active in the native wound healing response. After an 

injury, platelets in the blood activate fibroblasts by releasing transforming growth factor beta (TGF-β); 

the fibroblasts then facilitate the remodeling and repair of local tissue. Activated fibroblasts secrete pro-

inflammatory and pro-angiogenic cytokines that further stimulate remodeling and repair, and these 

fibroblasts deposit the structural components of the tissue, or the extracellular matrix (ECM)16. After the 

wound has been healed, the fibroblasts are inactivated or removed from the injury site.  

Contrastingly, in chronic wounds such as ulcerative colitis, where fibroblasts remain activated for 

extended periods of time, the risk of cancer development is much greater than in normal tissue due to the 

pro-tumorgenic properties of these cells17. Interestingly, developing tumors displays many of the 

characteristics of a chronic wound as inflammation, increased angiogenesis, and matrix remodeling by 

fibroblasts (Figure 1D) are all present in tumor growth18. Cancer associated fibroblasts (CAFs) are the 

most abundant cell type in the tumor stroma, and cancer cells have been shown to secrete fibroblast 

activating factors including TGF-β. Activated fibroblasts in the TME (Figure 1F), in turn, secrete 

mitogenic growth factors (Figure E), and secrete their own TGF-β, which suppresses cells in the immune 

system19. Finally, fibroblast-cancer interactions have been directly implicated in decreased chemotherapy 

efficacy 20, leading to sustained tumor growth and the potential for subsequent metastasis. 

 

2.2.3 Extracellular Matrix 

 The extracellular matrix (ECM) is defined by the various macromolecules that the give tissue 

structural integrity and rigidity. These molecules include proteins, glycoproteins, proteoglycans, and 
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polysaccharides, with unique physical properties that allow for chemical crosslinking and tissue cellular 

development21. The ECM provides a unique biological scaffold for cell adherence, growth, and 

development. Cells utilize several signaling mechanisms to respond to biomechanical forces and sense the 

rigidity of the matrix. The extent of ECM elasticity allows cells to sense external stresses and modulate 

their behavior, and the elasticity is also driver for cell differentiation and stem cell maintenance22. The 

ECM also provides a structural framework for cellular motility. Signal transduction is modulated 

indirectly by the ECM because the ECM can act as a signal reservoir. Secreted factors, adhere to the 

ECM, and cells interact with the bound ligands23. The major components of the ECM are variable 

depending on the tissue of interest, which facilitates varied tissue development and growth. For example, 

the major component of the breast ECM is collagen 1, while the major component of the brain ECM is 

hylaronan24. Fibroblasts are the main mediators of ECM alteration and remodeling, and they facilitate the 

deposition and degradation of ECM components; however, this process is precisely controlled by 

transcriptional and translational regulation25.  

 In tumors, the ECM is significantly altered from normal tissue ECM. Normal regulatory function 

is disrupted in CAFs, and these fibroblasts actively deposit collagen in the TME, leading to fibrosis and 

increased stromal density26. In addition to upregulation of collagen deposition, matrix degradation 

enzymes are concurrently downregulated, which leads to further accumulation of ECM in the TME. For 

example, breast cancer tissue is 10 times stiffer than normal tissue27. The orientation of fibers is also 

altered in tumors. While normal tissue is characterized by random non-oriented fibers, the ECM in tumors 

is linearized parallel to epithelium, which has been hypothesized to support cellular migration and 

invasion. In fact, metastatic cancer progression is defined by upregulation of ECM sensing mechanisms 

such as CD44, and cancer cell populations with these receptors are more likely to survive and spread28. 

 

2.2.4 Biophysical Forces 

 Increased ECM deposition, unchecked cellular growth, and compromised vasculature all lead to 

elevated pressure in the tumor bulk. Interestingly, as classically described by Jain and colleagues29,30, this 
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pressure is consistently high throughout the tumor bulk, as compared to the tumor border. At the tumor 

border, the pressure is normal compared to the elevated pressure in the tumor bulk, which drives 

interstitial fluid from the tumor bulk into the surrounding stroma (Figure 1H). The extent of pressure 

gradient formation is modulated by the leakiness of the vasculature, and vascular normalization has been 

shown to decrease IFP29. This interstitial flow has implications for disease spread and metastasis as well 

as therapeutic efficacy. Both of these topics are discussed below. 

 

2.2 Barriers to Therapeutic Efficacy 

 Tumors are notoriously difficult to treat. The combination of leaky vasculature, elevated 

interstitial fluid pressure, abundant extracellular matrix deposition, adaptive cellular resistance, and CAF-

tumor cell interactions all lead to attenuated chemotherapeutic efficacy. In general, the obstacles to 

therapy can be described by physical barriers and cell-mediated barriers. In order to be effective, 

therapeutic agents must reach the tumor cells; however, several factors mitigate the transport of solute in 

the TME. Therapy that does reach tumor cells must then overcome barriers of adaptive tumor cell 

immunity and tumor-associated cell signaling. Together, these factors lead to detrimental patient 

outcomes and the possibility for disease recurrence. 

 

2.2.1 Physical Barriers to Therapeutic Efficacy 

 As discussed previously, matrix deposition, rapid cellular growth, and disrupted vasculature lead 

to elevated pressure within tumors. This pressure leads to two distinct physical barriers. Firstly, while 

large molecule drugs, such as nanoparticles or antibodies, accumulate in the tumor due to the EPR effect, 

this accumulation is mostly perivascular. Drug penetration into the tumor from the vasculature is limited 

by a relatively constant pressure throughout the tumor bulk, meaning that diffusion dominates convection 

in this context. Since large molecules do not readily diffuse, the distribution is localized, and particles are 

more likely to get trapped in the matrix31,32. However, it should be noted that tumor heterogeneity could 
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yield a moderate amount of drug penetration depending on the distribution of vasculature and the shape of 

the tumor33. 

 Secondly, at the tumor border the differential in pressure between the tumor bulk and the 

surrounding stroma yields fluid efflux from the tumor into the surrounding stroma30,34,35. This means that 

any drug that diffuses to the tumor border, or any drug released by vasculature near the border, will leave 

the tumor via convective transport. As large molecule delivery is dominated by convection, this is 

especially problematic for many chemotherapeutics delivered via nanoparticles or targeted antibodies.  

 However, the ECM composition also affects the extent of interstitial flow independently of the 

interstitial pressure, as permeability and porosity of the tissue of interest affect the likelihood of fluid 

transport. Neoplastic tissue ECM displays remarkable heterogeneity36, and the resistance to convective 

flow in the interstitium is dependent on the abundance and type of matrix molecule in the particular TME 

context. For example, transport in chondrosarcoma, a cartilage tumor, vs hepatoma, a liver tumor, would 

be significantly different due to greater relative abundance of ECM molecules in cartilage as compared to 

the liver34. Mass transfer of a molecule of molecular weight of 103 g/mol would be dominated by 

diffusion in chondrosarcoma and convection in hepatoma due solely to the abundance of ECM 

components. Increased ECM secretion by fibroblasts in the TME, therefore, significantly hinders solute 

transport. 

 

2.2.2 Cellular Resistance 

 In addition to physical barriers, therapeutic efficacy is attenuated by cellular dynamics. Cancer 

cells can be inherently resistant to drugs due to mutations and adaptations. For example, the above 

mentioned interstitial fluid flow at the tumor border causes gradients of drugs to form near the tumor 

edge. These drug gradients provide a selective pressure for adaptive immunity37.  Several mechanisms 

have been implicated for multi-drug resistance in cancer cells including upregulation of DNA repair 

mechanisms, drug metabolism, and drug alteration38, however, two of the major effectors of classical drug 

resistance in cancer is increased drug efflux or decreased drug uptake39. ATP binding cassette transporters 
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or ABC transporters have been characterized as major mediators of drug removal from the cell, thus 

limiting cytotoxic effects. ABC transporter expression is upregulated in multi-drug resistance, and this 

mechanism non-specifically yields broad resistance to multiple and varied drugs40. Additionally, some 

cancer cells have observable decrease in drug uptake due to specific downregulation of plasma membrane 

binding proteins41. 

While, cancer cells can develop resistance independently, cancer associated cells also play a role 

in tumor resistance to chemotherapy, and fibroblasts, specifically, have been implicated in cancer cell 

chemotherapy immunity. Marusyk and colleagues describe cancer cell insensitivity to lapatanib due to 

coculture and proximity to fibroblasts. This resistance is mediated by decreased drug accumulation and 

drug interaction with fibroblast secreted factors42. Cancer associated fibroblasts also secrete pro-survival 

factors that limit cancer cell apoptosis and could act to protect cancer cells from chemotherapeutic effects20. 

In the context of neoadjuvant breast cancer therapy, the presence of cancer associated fibroblasts signatures 

has been directly implicated in poorer survival outcomes43,and targeted therapy against these stromal cells 

has been shown to improve intratumoral uptake of doxorubicin within in vivo murine models44.   

 

2.3 Mechanisms of Invasion and Migration 

Cancer cells are not stationary. These cells utilize several mechanisms to interact with the ECM 

and migrate. More severe forms of cancer are characterized by the invasive nature of the cancer cells, as 

cancer progression by metastasis is mediated by cellular invasion and motility. Gliomas, brain tumors, are 

composed of particularly invasive cell populations, which are highly metastatic, leading to extremely poor 

patient outcomes. However, the mechanisms of this migration are relatively unknown, necessitating 

further research and experimentation. 

 

2.3.1 Cancer Cell Motility 

 In general, the motility of cancer is mediated by a distinct phenotypic switch from epithelial cell 

types to mesenchymal cell types. This switch is defined by lack of E-cadherin expression. Cadherins are 
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cell-cell adhesion proteins that allow cells to adhere to surrounding cells, and disruption of this particular 

cadherin leads to disruption of tight junctions and cell polarity, which frees the cancer cell from close 

contact with surrounding cells45. Disruption of E-cadherin function has also been implicated with the loss 

of cell-matrix adhesion mechanisms, thus freeing the cancer cells and promoting unhampered migration 

and associated metastasis46. 

 In addition to a decrease in adhesion, migratory cancer cells also display an alteration of gene 

expression related to cancer cell invasion. CXCR4, a receptor associated with directed cellular motility 

toward the complementary ligand CXCL12, is over-expressed in many cancers47. Vimentin, a filament 

protein associated with mesenchymal motility48, cathepsin and MMPs49, proteases that degrade matrix, 

integrins50, ECM adhesion molecules associated with signaling, CD4451, a matrix adhesion protein and 

signal transducer, and RhoA/C52, proteins that generate contractile force, are all overexpressed in invasive 

cancers. The combination of extracellular matrix degradation, increased motility, contractile force 

generation, directed motility, and heightened signal transduction could, therefore, all mediated cancer 

motility and metastasis. 

 

2.3.2 Interstitial Flow and Increased Invasion 

 While many mechanisms have been implicated with migration in general, research indicates that 

interstitial flow enhances the invasion of cancer cells53,54,55 as compared to normal motility levels. Since 

interstitial flow is dominant at the tumor border, this increased invasion could be a major factor mediating 

cancer metastasis53. Two mechanisms have been proposed for this increased invasion with interstitial 

flow. Firstly, it is known that the migratory receptor CXCR4 expression is upregulated in invasive cancer 

cells55,47, however, certain cell populations have both the receptor (CXCR4) and secrete the ligand for that 

receptor (CXCL12). In flow conditions, it is hypothesized that secreted CXCL12 is convectively driven 

away from the cell secreting the ligand, thus forming a gradient of CXCL12 in front of the cell in the flow 

direction (Figure 2A) 54,55. If a cell has the receptor for CXCR4, it will migrate in the direction of flow in 

response to the stimulatory gradient. This directed invasion is termed autologous chemotaxis54.  
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 It has also been shown that CD44 expression is upregulated in migratory cancer cells51. CD44 

mediates migration via signal transduction due to interaction with the ECM, and it has been shown that 

blocking of this receptor can alleviated increased invasion in the presence of interstitial flow56. Rousseau 

further describes the importance of CD44 as a mediator of dimerization and activation of other receptors, 

notably CXCR4, through interaction with the ECM and mechanotransduction57. It is therefore possible 

that increased invasion in the presence of interstitial flow is also mediated by a mechanotransduction 

mechanism and concurrent phosphorylation of CXCR4 (Figure 2B). 

 

 

Figure 2| Proposed dominant mechanisms for increased invasion with interstitial flow. 

(A) Directed invasion of cells via CXCL12 gradient development under flow conditions and 

response by CXCR4. (B) CD44+/CXCR4+ dimerization and signal transduction for random 

migration under flow conditions. 

 

2.4  3D In Vitro Models of the Tumor Microenvironment 

 As the tumor microenvironment is very complex, and there are many factors that influence the 

progression and spread of cancer, it is necessary to develop relevant experimental models to study cancer 

in an appropriate environment. 2D culture models are the easiest method to study cancer, however, 

research has shown that 2D culture models are not always relevant for the unique 3D environment 

observed in vivo.58 Murine models are the current standard for experimental and preclinical cancer 

research, however, these models are complex and are less controllable than in vitro models. Therefore, 
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bridging this experimental gap with simple and relevant 3D culture models provide medium throughput 

results comparable to in vivo conditions. Several in vitro systems have been developed to study cancer 

within the 3D context. 

 

2.4.1 Simple 3D Models 

 Perhaps the simplest 3D models utilized to study cancer are tumor spheroids. Spheroids are 3D 

masses or cellular clusters within a cell culture dish that are grown from single cell suspensions. These 

masses replicate many of the properties inherent to in vivo tumors including cell to cell interactions, 

regions of hypoxia, elevated pH, and natural ECM deposition42. Spheroids can also be utilized for co-

culture studies as other cell types can be incorporated into the tumor spheroids59. Spheroids are especially 

optimal for drug screening studies, as the 3D spheroids display regional heterogeneity replicative of the 

actual tumor60. 

 Despite several advantages, tumor spheroids are also limited. Firstly, several types of cancer do 

not form spheroids60; therefore, these models cannot be utilized. Secondly, while ECM components can 

be incorporated into spheroids, the abundance and type of components are not always replicative of the 

real tumor environment61. Additionally, the morphology and structure of the spheroids is highly variable. 

While this is a benefit in terms of developing varied tumor-like structures, it is not advantageous if the 

composition of the tumor is to be tuned experimentally60. Finally, the method of spheroid formation does 

not account for interstitial flow dynamics. 

 

2.4.2 ECM Hydrogel Models 

 In order to address the limitations of simple 3D models, hydrogel scaffolds have been developed 

to replicate the 3D tumor microenvironment. Natural hydrogel scaffolds are characterized by the 

utilization of physiologically relevant ECM components to create a structurally stable 3D growth medium 

for cancer cell development and study62. These models are robust, as the ECM composition can be tuned 

to relevant concentrations and the dominant types of ECM components can incorporated to create 
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hydrogels with mechanical properties similar to the tissue of interest63. Additionally, cancer associated 

cell types can be co-cultured in these hydrogels for cell to cell interaction characterization, and the ratios 

of cells can be tuned to values observed in vivo64. Finally, incorporation of fluid on top of these hydrogels 

introduces a flow rate through the gel comparable to the interstitial flow rate observed within tumors, thus 

providing an experimental model for the study of interstitial flow effects on cancer cells54,55,64. 

 

2.5 Agent-Based Models 

 The same complexities that necessitate robust in vitro models also demand appropriate in silico 

modeling platforms. In silico research methodologies provide a supplementary data analysis context that 

can enhance and predict biological phenomena. Agent-based models (ABMs) are particularly suited for 

biological applications, as they can predict and describe complex spatial and temporal biological 

interactions65,66. In particular, the benefit of agent-based models is the emergent behavior that is possible 

through incorporation of specific model components. In essence, the sum of many components yields 

results that would not be predicted by the individual components separately.  

 

2.5.1 An Introduction to Agent-Based Models 

 Agent-based models are composed of several key components. The most important components 

of these models are the agents, and there are two types of agents utilized in these models, patches and 

turtles. Patches are equivalently sized squares that make up the coordinate grid of the agent-based model. 

The user defines a spatial framework for the model that has dimensions N x N where N is the number of 

patches in either a row or a column. For example, a spatial framework of 4 x 4 would have a total of 16 

patches in a symmetric square grid. Each patch is unique, and can be utilized within the model. For 

example, a patch can be programmed to store a specific variable and the user can reference that variable 

later. 

 The second component of these models are turtles. Turtles are the objects that interact on top of 

the patch grid. Turtles are dynamic objects that can move, grow, shrink, die, etc based on the desired 
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outcome and the programmed rules of the model. Turtles can also store variables, like the patches, and the 

turtles can also receive variables from patches beneath them or transfer them to other turtles. The user can 

specify as many types of turtles as desired, and each individual turtle or each type of turtle can be 

programmed with different governing behavior.  

 The behavior of the agents is updated at successive intervals determined by the user and outputted 

to a display screen. Much like individual frames in a movie or animation, the location, behavior, size, etc 

of the turtles and/or patches is updated dynamically according to the specific programming methods. This 

yields a viewable dynamic model with temporal aspects controlled by the degree of change between 

frames. For example, if the user desired to create an agent-based model of a car moving rightward at a 

speed of 20mph, the user could specify a patch grid of 20 x 20 with each patch being 5 miles long. At 

each individual frame, the user specified program could tell the car turtle to move rightward by a one 

patch distance on the coordinate grid. If the time between two frames was specified as 15 minutes, 

iterating this method for four frames would move the car rightward by 20 miles in 60 minutes or 20mph. 

This method could then be iterated as necessary.    

 

2.5.2 Agent-Based Models of Cellular Motility 

 As agent-based models are inherently spatial, agent-based models characterizing cellular motility 

have been previously utilized. Emmonet et al. describe an agent-based model of bacterial chemotaxis with 

and without chemo-attractant using the predictive equations developed from classical microbiology. Here, 

motility in the absence of attractant is defined by random motility synonymous to chemical diffusion67. 

Enderling and colleagues developed an agent-based model of tumor development that incorporates 

migration programming methods in order to predict tumor morphology68. Interestingly, Heiko and 

Enderling also explore tumor development as a result of random migration and chemoattractant-mediated 

migration. Here the morphology is dependent on the directionality of migration69.   
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2.5.3 Agent-Based Models in Pharmacology 

 While agent-based models are not utilized as readily for the dynamics of chemotherapy, as other 

modeling methodologies are more ubiquitous, model-based descriptive techniques are being utilized in 

the area of pharmacology. These models help to facilitate hypothesis testing and characterize complex 

dynamics in a simple and replicable platform70. For example, an agent-based model has been used to 

predict the effect of novel drug targets on the fungal infections based on either inhibition of fungal growth 

or phenotypic transition71. Agent-based models have also been utilized concurrently with descriptive 

pharmacokinetics and pharmacodynamics to predict the effect of drugs at the cellular level72. In general, 

however, it appears that many models are context and hypothesis specific, and the utilization of agent-

based models to describe treatment dynamics is an emerging field70. 

  

2.6 Motivation and Conclusion 

 The tumor microenvironment is very diverse; the combination of cellular factors, ECM, 

biophysical forces, and therapeutic barriers all contribute to complexity, which is difficult to characterize 

and difficult  to study. Therefore, robust research methods must be employed to elucidate the effects of 

this unique environment on the development and spread of cancer. In vitro hydrogel systems utilized 

concurrently with robust in silico agent-based models facilitate the discovery of TME specific tumor 

outcomes in the context of interstitial flow and chemotherapy treatment. Here we describe two agent-

based models that predict the effects of interstitial flow on brain cancer invasion and the effects of 

fibroblasts co-culture on cancer cell viability in the presences of chemotherapy. 

 While agent-based models have been utilized to describe cellular motility67, 68, 69, these models 

have not incorporated cellular invasion as a specific outcome measure. Additionally, interstitial flow was 

not a factor in any of the above models. Here we describe a novel agent-based model that replicates our in 

vitro invasion assay and predicts mechanisms of interstitial flow-mediated increased invasion of glioma 

cells. 
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 Agent-based models describing the effects of therapy are limited, however, it is clear that these 

models provide insight into complex systems, and can be utilized in this context70. Here we describe a 

novel agent-based model that predicts the region specific response of cancer cells to chemotherapy within 

the tumor border to stroma transition region based on the kinetics of therapeutic transport and the 

protective effect of fibroblasts. We have concurrently developed a layered hydrogel system of the tumor 

border to stroma transition zone. Regional variability in this in vitro model, in response to chemotherapy, 

further elucidate the importance of the TME in mediating cancer cell resistance to chemotherapy.    
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CHAPTER 3: An Agent-Based Model of Cancer Cell Invasion and 

Migration 
 

3.1 Introduction 

 Cancer cell motility is linked to decreased patient survival due to metastasis and evasion of 

treatment. Glioblastoma, brain cancer, is particularly deadly as the cancer cells are characteristically 

invasive73,74. This effect is enhanced by interstitial flow at the tumor border. Interstitial flow develops due 

to a pressure differential between the tumor bulk and the surrounding tissue, which leads to fold increases 

in flow velocities75. This interstitial flow has been shown to increase the invasion of the cancer cells55. 

Since the standard of care involves surgical resection of the primary bulk, which often misses cells at the 

invasive edge of the tumor, this population is optimally primed for further invasion76. 

 Increased invasion due to interstitial flow has been predicted by two distinct mechanisms. Firstly, 

autologous chemotaxis, mediated by cell populations expressing both the migratory receptor CXCR4 and 

secreting the ligand to that receptor CXCL12, has been proposed by Munson et al.55 as a dominating 

mechanism for increased invasion. These cells secrete CXCL12 which is convectively drive by interstitial 

flow. This mediates the creation of autologous gradients of CXCL12, which the cell can respond to with 

its CXCR4 receptor. 

 Tarbell and colleagues have also described an alternative mechanism in several cancer cell 

lines56. This mechanism involves CD44 mechanotransduction, where cancer cells respond to interstitial 

flow indirectly by mechanical sensing by the CD44 receptor. It has further been shown that CD44 can 

phosphorylate other membrane proteins, including CXCR4, which indicates that the increase in flow-

mediated invasion could also be mediated by CXCR4 phosphorylation by CD44. Here, both in vitro and 

in silico experimental models have been utilized to describe flow-mediated invasion, and they have been 

utilized to predict the dominating mechanism of this motility. Additionally, specific subpopulations have 

been implicated in mediation both mechanotransduction and autologous chemotaxis. 
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3.2 Materials and Methods 

3.2.1 Glioma Stem Cell Culture 

G34 cells were primary derived as described and were provided as a kind gift from Dr Jakub 

Godlewski (Cleveland Clinic) and have been previously published and characterized.77 Cells were 

cultured following the previously described protocol.77 Briefly, GSCs were cultured in Neurobasal media 

(ThermoFisher) with N2 and B27 without vitamin A supplements (ThermoFisher), human recombinant 

bFGF and EGF (50 ng/mL, ThermoFisher), Glutamax (ThermoFisher) and Penicillin-Streptomycin 

(ThermoFisher) in low-adhesion tissue culture flasks (Grenier). [Methods modified from Kingsmore et 

al.] 

 

3.2.2 Three-Dimensonal (3D) In Vitro Interstitial Flow Model 

Hyaluronan is the most abundant extracellular matrix element in the brain and was therefore chosen 

to be a primary matrix component of our 3D in vitro model.24 This matrix gel replicates both the stiffness 

and composition of the brain, but also allows us to achieve comparable flows that have been reported in 

vivo.55,78 Glioblastoma stem cells were resuspended in hyaluronan-collagen matrix at a density of 1 million 

cells/ml as previously described.55 Briefly, cells were resuspended in 50 µl of 0.2% hyaluronan (ESIBIO) 

/0.12% rat tail collagen I (Corning) and cross-linked with PEGDA (ESIBIO). This solution was applied to 

an 8-micron pore 96-well tissue culture insert system (Corning), and allowed to gel for 2 hours.55 Interstitial 

flow was applied by creating a pressure head atop the gel of approximately 1 cm with GSC media to yield 

an average superficial velocity of 0.15-2 µm/s (Figure 3B). For static conditions (Figure 3A), the pressure 

head was removed. After 18 hours in a 37˚C/ 5% CO2 incubator, gel containing nonmigrated cells was 

removed and inserts fixed in 2% paraformaldehyde. Tissue culture insert bottoms were stained with DAPI 

(Sigma, St. Louis, MO) and counted in five representative images. % Invasion was calculated as previously 

described.55,79 
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Figure 3| Experimental setup of in vitro hydrogels for invasion studies 

(A) Static control for baseline motility without flow. (B) Hydrogel system with pressure 

induced flow 

 

 

For blocking antibody studies, anti-CXCR4 (R&D, clone 44716, 5 µg/mL), anti-CXCL12 (R&D, 

clone 79014, 50 µg/mL), anti-CD44 (ThermoFisher, clone 5F12, 10 µg/mL), or Isotype Control (R&D, 

clone 11711, 50 µg/mL) antibodies were added to gel solution and media. All experiments were run 

independently at least three times (as defined in figure captions), and each experiment had three technical 

replicates per experimental condition averaged to yield the value for a single n used in statistical analyses. 

[Methods modified from Kingsmore et al.] 

 

3.2.3 Flow cytometry 

Cells in suspension cultures were incubated for 14 hours with Brefeldin A (5 ug/ml, Sigma). To 

identify cell populations, flow cytometric analysis was performed with Fixable Live/Dead Stain (Life 

Technologies), APC- mouse anti-human CXCR4 (12G5, eBioscience), PE-rat anti-human CD44 (IM7, 

eBioscience), and PerCP- mouse anti-human CXCL12 (79018, R&D) along with appropriate isotype 

controls. Flow cytometry was run using a Millipore Guava 8HT system with data analyzed and graphs 
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generated using the accompanying proprietary software (EasyCyte). [Methods modified from Kingsmore 

et al.] 

 

3.2.4 Agent-Based Cell Migration Model Construction 

The agent-based model (ABM) was constructed using the Repast Java framework and the Relogo 

Java package. Cell types were determined by the permutation of all receptor and/or ligand conditions (Table 

1). 

Table 1| Definition of all cell types used in the motility agent-based model 

Cell Type CXCR4
+

 CD44
+

 CXCL12
+

 

A + + + 

B + + - 

C + - - 

D - + + 

E - - + 

F - - - 

G + - + 

H - + - 

 

Migration behavior was defined by the receptors and/or chemokines associated with each defined cell type, 

the presence or absence of interstitial flow, and the blocking conditions (Figure 4). Of note, all 

CXCR4+CXL12+ double positive cells (Type A/G) invade semi-randomly toward the bottom of the gel in 

the presence of interstitial flow, while all CD44+CXCR4+ double positive cells (Type A/B) migrate 

randomly in the presence of interstitial flow. By contrast, all CXCR4+CXL12+ double positive cells migrate 

randomly under static conditions due to autocrine CXCL12 signaling; while, CD44+CXCR4+ double 

positive cells, similar to other cell types (Type C/D/E/F/H), only display baseline motility. Baseline 

movement was established as 10% random motility of all cell types regardless of the model conditions, to 

account for inherent cellular mechanisms of migration other than our receptor-ligand pairs, and it was 

assumed that CD44 does not activate CXCR4 in the absence of flow. Therefore, cell types A/B/G have 
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increased motility under flow as compared to static conditions, with all cells, of these types, moving either 

randomly or semi-randomly. 

 

 

Figure 4| Agent-based model logic flow chart. 

Model simulations include static and flow conditions coupled with simulated blocking of relevant 

receptors or chemokines. 

 

Semi-directional invasion was implemented by introducing one movement in the flow direction for 

every 13 random movements (Figure 5). Each tic of the scheduling method was defined as one minute, and 

invasion percentages were produced after an 18 hour timespan. The velocity of the cells was defined as 7 

µm/min as calculated by Munson et al. previously, and the 2D coordinate grid was initiated to model a 

vertical cross-section of a tissue culture insert with dimensions of 4.5 mm x 3.5 mm (7 by 9 patch box grid 

with side length equal to 0.5mm).55 The number of total cells (2800) was established by the number of cells 
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in a finite slice of an experimental gel.  The percentage of each type of receptor positive/negative cell was 

determined from flow cytometry data, and the baseline brain cancer model was created from the range of 

the percentages for all glioma stem cells.  

 

 

Figure 5| Specific ABM methods flow chart. 

Programming methods for each type of motility utilized in the agent-based model. 
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3.2.5 Random Motility Validation 

 As random motility was an essential component of the computational model, the random motility 

programming method, described by facing cells in random directions at each scheduling tic and moving 

them forward a distance related to their average velocity, was validated using protocols established to 

describe bacterial motility in the absence of attractant. 

 In 1967 Adler and Dahl pioneered a method for determining bacterial motility by relating 

displacement to a motility coefficient synonymous to a diffusion coefficient.80 The authors described a 

general equation for the diffusion of glucose in a gel based on experimentally observed behaviors 

ln (
𝑐

𝑐0
) = −

1

2
∗ ln(𝜋𝐷𝑡) − (

𝑥2

4𝐷𝑡
)  [1] 

where 𝑐0 is the initial concentration, c is the concentration at distance x measured from the origin at time 

t, and D is the diffusion coefficient of the substance. The authors noted that, in the case of their 

experimental setup, the first term of the equation was negligible, and the equation could be written as 

𝑥2 = −4𝐷𝑡 ∗ ln⁡(
𝑐

𝑐0
)  [2] 

where the variables are described above. The authors additionally noted that the migration of bacteria 

within gels matched the trends observed with glucose diffusion. This lead to an equation of squared 

displacement of bacteria 

𝑥2 = −4𝑀𝑡 ∗ ln⁡(
𝑐

𝑐0
)  [3] 

where M is motility coefficient synonymous to a diffusion coefficient, c is the minimum number of 

detectable bacteria, and 𝑐0 is the number of bacteria added to the assay. 

 Emonet et al. provide a variant of the equation established by Adler and Dahl (Equation 1) in 

their agent-based AgentCell model of bacterial motility67   

𝐶(𝑟, 𝑡) =
𝑁0

(4𝜋𝐷𝑡)
3
2

∗ 𝑒𝑥𝑝(−
𝑟2

4𝐷𝑡
)  [4] 
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where C is the concentration of cells at radial distance r from the origin at time t, 𝑁0 is the number of cells 

present in the model, and D is the random motility coefficient. This equation can be rearranged into the 

form 

ln (
𝐶(𝑟,𝑡)

𝑁0
) = −𝑟2 ∗ 4𝐷𝑡 −

3

2
ln⁡(4𝜋𝐷𝑡)  [5] 

which is almost identical to the equation determined by Adler and Dahl except for an additional term 

(3/2) to account for the 3rd dimensionality of the agent-based model. This equation simplifies to  

𝑟2 = −4𝐷𝑡 ∗ ln⁡(
𝐶(𝑟,𝑡)

𝑁0
)  [6] 

assuming that the second term in Equation (5) is negligible, as stated by Adler and Dahl. This expression 

is equivalent to  

< 𝑟2 >⁡= 2𝑑𝐷𝑡  [7] 

where <r2> is ensemble mean squared displacement of all cells and d is the dimensionality of the system. 

This is clear from the explanation and analysis of the agent-based model by Emonet et al. This implies 

that a plot of the ensemble mean squared displacement of all the cells from the origin over time would 

yield the random motility coefficient D, where <r2> is additionally defined as81 

< 𝑟2 >⁡=
1

𝑘
∑ 𝑚𝑑𝑖

2(∆𝑡)𝑘
𝑖=1  ; 𝑚𝑑2 =

1

𝑛
∑ 𝑟𝑖

2(∆𝑡)𝑛
𝑖=1   [8] 

where 𝑚𝑑𝑖
2(∆𝑡) is the mean squared displacement at a particular time step 𝑟𝑖

2(∆𝑡) is the squared 

displacement of a cell from the origin at a particular time step. It should be noted that the squared 

displacement 𝑟𝑖
2(∆𝑡) is calculated as follows 

𝑟𝑖
2(∆𝑡) = (𝑥𝑡 − 𝑥0)

2 + (𝑦𝑡 − 𝑦0)
2  [9] 

in order to normalize displacement of the cells at the zero coordinate in an x-y grid, where xt is the x 

coordinate at time t, yt is the y coordinate, x0 is the x coordinate at time zero, and y0 is the y coordinate at 

time zero. 

  An agent-based model of random E.coli cell motility was developed and compared to the results 

determined by Emonet et al. Cells were spawned in the center of a 32 by 32 mm coordinate system. For 
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every step of the agent method, all cells faced toward a random coordinate within 360 degrees of the cell. 

All cells then moved forward at a constant velocity toward each associated random coordinate. This 

procedures was repeated for the desired timeframe. The mean squared displacement relative to time was 

then calculated (Equations 8-9) using the stored coordinate readings for all the cells at each step of the 

agent model. The motility coefficient was then calculated (Equation 7) and compared to the model output 

described by Emonet et al. The velocity of the cells was adjusted based on the relative error of the 

diffusion coefficient compared to the value stated by Emonet et al. 

After confirming the validity of the agent model approach for modelling E.coli motility, the 

iterative method described above was applied to determine an agent-based model for the random motility 

of cancer cells in the absence of fluid flow and attractants, using the velocity of cancer cells determined 

by live imaging. The simulation included 1000 cells and a coordinate system of 100 by 100 um with each 

model step corresponding to one minute for 250 minute simulation.  

 

3.2.6 Statistical Analysis 

Statistical analyses were run using Graphpad Prism. Paired t-tests and two-way ANOVA were used 

for analysis of same subject groups. Unpaired t-tests and two-way ANOVA were used for analysis of 

independent experimental groups and computational data. . Multivariate ANOVA was used to compare 

generated curves for sensitivity analyses of the agent-based model. For all data, *p<0.05, **p<0.01, and 

***p<0.001, and graphs are given as mean +/- standard error of the mean. 

 

3.3 Results 

3.3.1 Simulated random motility is representative of experimental cellular motility in the absence of 

stimulant 

Comparison of the simple random bacterial ABM to the AgentCell model developed by Emonet 

et al. showed that at a simulated velocity of 0.058 mm/s, the random motility coefficient was determined 

to be 3.99 *10-6 cm^2/s (Figure 6A). This was compared to the value of 4.21*10-6 cm^2/s reported by 
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Emonet et al. It should be noted that 400 cells were used instead of the 1166 stated by Emonet et. al. due 

to size limitations of output excel files, and the difference in slope is accounted for by the dimensionality 

difference (2D vs 3D). The histogram of displacement r was comparable to the normal trend observed in 

the AgentCell model (Figure 6B). The trend followed a normal distribution, with mean of 1.39 mm, as 

confirmed by a normal probability plot. 

 

Figure 6| Replication of supplemental Figure 5 from Emonet et al. for validation of agent model. 

(A) plot of representative squared displacement of four cells from the origin relative to time (here six 

representative cells are displayed). The best fit line indicates average mean squared displacement for 400 

cells with a slope related to the random motility coefficient D=3.99 *10-6 cm^2/s. (B) A plot of number 

of cells at particular displacement r at 1000 seconds (1000 cells total, bin size 0.112mm).  

 

After validation of the random motility with bacterial cells, the same method was used to 

determine the motility coefficient for glioma cells in the absence of fluid flow for both simulated 

displacements (Figure 7A) and experimental cell displacement (Figure 7C). The agent model motility 

coefficient obtained from calculating the mean squared displacement for all cells (Equations 7-9) at a cell 

velocity of 1.077 um/s was determined to be 2.39*10-9 cm2/s. This was compared to the experimentally 

determined motility coefficient of 2.38*10-9 cm2/s. The percentage of cells above 1.2 um in the positive y 

direction was also determined for the agent model (Figure 7B) and experimental conditions (Figure 7D).  

The trend was similar with a maximum between 0.35 and 0.45 for both cases. Any discrepancy was most 
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likely due to the limited number cells in the experimental conditions (60 cells) compared to the agent 

model (1000 cells). 

 

Figure 7| Random motility validation with experimental data.  

Computational agent model output for random cancer cell motility (top panel) versus experimentally 

determined data for cancer cell motility in the absence of attractant (bottom panel).  (A/C) Squared 

displacement from the origin relative to time for four representative cancer cells and average mean 

squared displacement (solid black line) for all cells (1000 model, 60 experimental). (B/D) The relative 

cells (cells/total cells) above 1.2 um in the positive y direction. 

 

3.3.2 Mechanotransduction and autologous chemotaxis mediate flow responsive invasion 

 After validation of random motility, blocking studies were performed both in vitro and in silico to 

simulate disruption of specific receptors (CD44/CXCR4) and the specific ligand (CXCR4) hypothesized 

to be important in flow stimulated invasion. Migration simulations were performed using the percentages 
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of expected cell types based on flow cytometry data (Figure 8A). Simulated invasion and experimental 

invasion results were comparable (Figure 8B). 

 

Figure 8| Development of an agent-based model predicts flow-stimulated invasion response to 

blocking in G34. 

(A) Representative ranges for single and double positive populations of receptor and ligand positive cells 

in G34 as based on experimental flow cytometry data. (B) Agent-based model output for G34 compared 

with experimental data with blocking. Significance is for agent-based model output by unpaired t-tests 

with n=6 independent simulation runs. *p<0.05, **p<0.01 [Figure Modified from Kingsmore et. al]. 

 

Notably, the G34 cell line was flow responsive, as the invasion of the cells increased with introduction of 

interstitial flow; however, blocking of either CD44, CXCL12, or CXCR4 reduced this response to 

insignificant levels as compared to the static control. Model simulations confirmed this result. This 

implies that flow responsive invasion in this particular cell line is likely mediated both by CD44 

facilitated mechanotransduction and CXCR4-CXCL12 migratory signaling, as blocking of either of these 

mechanisms removed the flow response. Neither mechanism was sufficient to elicit flow responsive 

invasion alone, but taken together, the effect is observe. It was further hypothesized that autologous 
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chemotaxis was the major effector of this increased invasion in relation to the CXCR4/CXCL12 receptor-

ligand paired signaling. 

 

3.3.3 Two subpopulations account for increased motility in the presence of interstitial flow 

 Since it was hypothesized that autologous chemotaxis and mechanotransduction were both 

necessary for flow responsive invasion, a sensitivity analysis of the ABM was performed to test the 

importance of specific cell types on the overall invasion response. Specifically, the cell types of relevance 

to autologous chemotaxis (CXCR4+/CXCL12+, Figure 9A/B) and increased CD44 phosphorlyation due 

to receptor coupling (CD44+/CXCR4+, Figure 9C/D) were manipulated in silico (Figure 9 E/F).  
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Figure 9| Sensitivity analysis of ABM indicates the importance of cell type subpopulations. 

Description of ABM motility mechanisms for CXCR4+CXCL12+ with (A) and without (B) 

simulated interstitial flow and CXCR4+CD44+ populations with (C) and without (D) simulated 

interstitial flow. (E) Sensitivity analysis of CXCR4+CXCL12+ populations (n=6 simulation runs). 

Arrows indicates baseline percentage (0.24%) (F) Sensitivity analysis of CXCR4+CD44+ 

populations (n=6 simulation runs). Arrows indicates baseline percentage (1.67%). Data shown are 

mean ± SEM. static flow lines significant p<0.001 by MANOVA. 

 

Baseline percent expression of Type G (CXCR4+CXCL12+) cells was 0.15-0.34%. Baseline percent 

expression of Type B (CXCR4+CD44+) cells was 1.30-2.03%. Static and flow curves were significantly 

different (p<0.001). A decrease in the percentage of either cell type was sufficient to mitigate flow 
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responsive invasion. A single percentage point increase in the population of CXCR4+CXCL12+ cells 

causes larger increase in invasion than a single percent increase in the CXCR4+CD44+ population. 

 

3.4 Discussion and Conclusion 

3.4.1 Subpopulation protein expression mediates flow responsive invasion 

 Replication of blocking in vitro interstitial flow studies with a comparable agent-based model of 

cellular migration and invasion indicates that the increase in invasion under flow conditions is mediated 

by two separate mechanisms, autologous chemotaxis, previously described by Munson et al.55, and CD44 

mechanotransduction. Blocking of either CD44 or CXCR4 in vitro was sufficient to remove increased 

invasion with flow, which indicated that both proteins mediate flow responsive invasion, however, the 

extent of flow responsive invasion is mediated by the stochasticity of the system. 

  The importance of autologous chemotaxis was confirmed by sensitivity analysis. Reduction of 

CXCR4+/CXCL12+ cell populations removed increased flow responsive invasion. This indicates that 

autologous chemotaxis is a major effector of the invasion response. A comparable decrease in the 

CD44+/CXCR4+ population also removed flow responsive invasion effects. This could indicated that 

phosphorylation of the CXCR4 receptor in response to ECM mediated mechanotransduction by CD44, as 

described by Rousseau57,  could be responsible for the increased invasion with flow. Additionally, the 

sensitivity analysis indicates that autologous chemotaxis dominates this effect as compared to 

mechanotransduction, as a single percentage point increase in the population of CXCR4+CXCL12+ cells 

causes larger increase in invasion than a single percent increase in the CXCR4+CD44+ population. 

 

3.4.3 Conclusion 

 An agent-based model of glioma cell invasion was developed using the methods described by 

others, and its utilization confirms the propriety of agent-based models utilizing motility algorithms. 

Random motility was validated using established equations of cellular motility. Incorporation of both 

directed motility and random motility rules into the agent-based model elucidated the importance of both 
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mechanisms to increased glioma invasion in the presence of interstitial flow. Results indicate that two 

important subpopulations could be driving this response, and selection of either population could increase 

overall likelihood of metastatic spread. 
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CHAPTER 4: An Agent-Based Model of the Tumor Border 

Transitional Microenvironment 
 

4.1 Introduction 

 Chemotherapy is still a near-ubiquitous treatment approach for multiple forms of solid tumor 

cancers. Though it works in many cases, chemotherapy often fails against cancer, resulting in poor 

prognosis across multiple forms of the disease. Doxorubicin (DOX) is a commonly used chemotherapy 

against multiple cancers including breast, bladder, ovarian, and lung, alone or in concert with other 

treatments.82–84 Doxorubicin is a common chemotherapeutic delivered prior to, or after surgery in cases of 

the deadliest form of breast cancer, triple negative. In addition to its clinical relevance, as a drug with well-

understood pharmacokinetics, doxorubicin provides an optimal model drug for probing dynamics of 

chemotherapeutic treatment.    

 Systemic chemotherapeutic delivery has been limited, first and foremost, by transport restrictions 

to and within tumors32.  Specifically, the tumor microenvironment (TME), defined as the tumor cells, 

tumor-associated cells, extracellular matrix, and biomechanical forces1,2, that interact in and around the 

tumor, provides two distinct barriers to drug delivery. Firstly, delivery of chemotherapeutic agents to the 

tumor bulk from the circulation is attenuated by interstitial fluid pressure, which is elevated in tumors.85 

This pressure can limit the transvascular movement of small molecule drugs into the interstitial spaces 

leading to retention of therapy, particularly larger molecules, near the tumor-associated blood vessels. Drug 

that does move into the interstitial tumor space is subject to a number of further constraints that limit the 

transport through the tissue. Limited transport of therapeutic agents results from matrix deposition and 

crosslinking by cancer associated fibroblasts, uptake by therapeutics by stromal cells, and reduced overall 

void space due to unrestricted cell growth1. This limited drug distribution is thought to particularly reduce 

therapeutic access to invading cancer cells at the tumor border. These cells are especially deadly as they are 

thought to be responsible for subsequent metastasis of cancers, which is a leading cause of death. 

Interestingly, at these border regions of the tumors, where cells are invading, there is increased interstitial 
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fluid flow. The higher interstitial fluid pressure in the tumor bulk relative to the normal pressure in the 

surrounding stroma yields an efflux of fluid from the tumor to the surrounding tissue76. These forces are 

known to alter cellular invasion, promoting movement towards draining lymphatics. However, the 

interaction of these particular forces with chemotherapeutic transport and delivery is not explored in the 

context of this complex transitional microenvironment.  

Secondly, intercellular interactions in the tumor microenvironment can contribute to reduced 

therapeutic response. Several TME-mediated factors have been implicated in the development of 

chemotherapy resistance within solid tumors86. These factors include hypoxia87, reduced pH88, nutrient 

deprivation89, adhesion-mediated resistance90,91, and drug gradient formation37. However, cancer-stromal 

interactions, specifically between cancer cells and fibroblasts in breast cancer,  appear to be a dominating 

factor in acquired chemotherapy resistance92. Cancer associated fibroblasts secrete pro-survival factors that 

limit cancer cell apoptosis and could act to protect cancer cells from chemotherapeutic effects20. In the 

context of neoadjuvant breast cancer therapy, the presence of cancer associated fibroblasts signatures has 

been directly implicated in poorer survival outcomes43,and targeted therapy against these stromal cells has 

been shown to improve intratumoral uptake of doxorubicin within in vivo murine models44.   

In relation to these barriers to chemotherapy treatment, the tumor border is a unique environment, 

as stromal interactions, chemotherapy gradients, and interstitial flow are all present in this region.  

Interstitial fluid velocity and pressure are the greatest at the tumor border29, thus mediating convection-

driven chemotherapy transport through this region35. Additionally, gradients of doxorubicin have been 

observed at the breast tumor border in vivo37, providing a potential for adaptive chemotherapy resistance. 

Finally, cancer cell propinquity to stromal fibroblasts, coupled with zones of cellular transition93 from the 

tumor to the surrounding stroma, yields stromal heterogeneity. At the tumor border, the tissue transitions 

from regions of very few fibroblasts in the tumor bulk to regions of very few cancer cells relative to stromal 

cells; therefore, this transition region is defined by cellular gradients, which could mediate further cancer 

cell insensitivity to chemotherapy due to fibroblast interactions.  Collectively, this distinct environment 
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couples several TME-specific factors that could lead to chemotherapy resistance and decreased patient 

survival.  

Due to the complexity of this region, robust in vitro and in silico models are necessary to probe the 

effects of therapy coupled with interstitial flow. 3D collagen hydrogels have been utilized in several cancer 

contexts as in vitro models of the tumor microenvironment76. These models can incorporate extracellular 

matrix proteins and pressure driven flow, thus replicating biophysical parameters inherent to in vivo tumors 

and providing a culture medium that is more replicative of real tissues than 2D culture systems94. In silico 

research methodologies provide a supplementary data analysis context that can enhance and predict 

biological phenomena. Agent-based models (ABMs) are particularly suited for biological applications, as 

they can predict and describe complex spatial and temporal biological interactions65,66. 

Here, we establish in vitro and in silico models that elucidate the effects of fluid and solute 

transport, cellular heterogeneity, and fibroblast interactions on breast cancer viability following 

doxorubicin treatment. Our study utilizes a novel 3D in vitro tumor bulk to stroma transition model 

(TSTM), as well as concurrent 2D culture systems, to predict the regional variations in viability that occur 

within the microenvironment at the tumor border. Additionally, in silico methodologies predict the 

dominant fluid dynamic properties that influence doxorubicin treatment efficacy within the tumor border 

transitional region. Together our data provide evidence of a unique fibroblast protective effect that yields 

varied resistance to chemotherapy in a cancer to fibroblast ratiometric dependent manner, which is sustained 

in several experimental models. These findings illuminate the importance of regional TME heterogeneity 

in selecting for viable populations that could be impacting breast cancer progression. 

 

4.2 Materials and Methods 

4.2.1 Cell Culture 

 MDA-MB-231 human breast adenocarcinoma (Tumor cells: TCs) and human dermal fibroblasts 

(Fibroblasts: Fbs) were obtained from the American Type Culture Collection (ATCC). Both cell types were 

cultured in Dulbecco’s modified Eagle’s medium (DMEM, Gibco), supplemented with 10% fetal bovine 
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serum (FBS, Seradigm). Cells were passaged weekly and grown at 37°C in a sterile incubator (5% CO2 

and 95% Oxygen) in gamma irradiated tissue culture treated flasks. 

  

4.2.2 Two-Dimensional (2D) Conditioned Media Assay 

Fb-conditioned media was created by incubating fibroblasts in cell culture flasks with full 

(DMEM+10%FBS) media for 24 hours. Control media was collected from a second flask incubated 

simultaneously, in the absence of cells. MDA-MB-231 cells were seeded into a 48 well tissue culture treated 

plate at a density of 20,000 cells per well into either Fb-conditioned or unconditioned media. After 24 hours, 

the media was replaced with 10uM of doxorubicin HCl (Fisher Scientific) in serum free media.  TC percent 

live and doxorubicin accumulation were determined as described. 

 

4.2.3 Two-Dimensional (2D) Hanging Well Coculture Assay 

 MDA-MB-231 cells were seeded into a 24 well tissue culture companion plate for hanging cell 

culture inserts (VWR International) at a density of 40,000 cells per well. HDFs were seeded into hanging 

culture inserts (VWR international), with 1.0 micron membrane pore size, at a density of 10,000 cells per 

insert. For the control condition, HDF seeding was neglected. Cells were grown in serum free DMEM for 

24 hours. Prior to introduction of chemotherapy, the cell culture insert was removed for the conditioned 

experimental group. Doxorubicin was introduced, to bring the final concentration to 10uM. TC percent live 

and doxorubicin accumulation were determined as described. 

 

4.2.4 Two-Dimensional (2D) Ratiometric Coculture Assay 

Constant Total Cell Number Ratio Experiment 

 For the first experiment, HDFs and Cell Tracker (ThermoFisher) deep red labelled MDA-MB-231 

cells were introduced into the same well of a 48 well tissue culture treated cell culture plate at varied ratios 

of cancer cells to fibroblasts (4:1, 2:1, 1:1, 1:2, 1:4).  Here, the total cell density was held constant at 30,000 

cells, and cell numbers were varied internally. For example, a ratio of 4:1 had 24,000 cancer cells and 6,000 
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fibroblasts, while a ratio of 2:1 had 20,000 cancer cells and 10,000 fibroblasts. Control conditions were 

seeded at cancer cell densities comparable to experimental conditions, however, fibroblasts were not 

introduced. The cells were incubated for 24 hours at 37°C, followed by introduction of doxorubicin HCL 

diluted in serum free DMEM (10uM). 

 

Constant Total Tumor Cell Number Ratio Experiment 

For the second experiment, HDFs and Cell Tracker (ThermoFisher) deep red labelled MDA-MB-

231 cells were also introduced into the same well of a 48 well tissue culture treated cell culture plate at 

varied ratios of cancer cells to fibroblasts (4:1, 2:1, 1:1, 1:2, 1:4). Here, the cancer cells were kept constant 

at 10,000 cells while the fibroblast seeding varied. For example, a ratio of 4:1 had 10,000 cancer cells and 

2,500 fibroblasts, while a ratio of 2:1 had 10,000 cancer cells and 5,000 fibroblasts. MDA-MB-231 cells 

were seeded at 10,000 cells per well without fibroblasts, for control comparison. The cells were incubated 

for 24 hours at 37°C, followed by introduction of doxorubicin HCL diluted in serum free DMEM (10uM).  

 

4.2.5 Two-Dimensional (2D) Live/Dead Analysis 

Following 6 hours of doxorubicin treatment (10uM) and subsequent 24 hour incubation in serum 

free DMEM, cells were incubated with NucBlue live cell stain (Life Technologies) and NucGreen Dead 

488 cell stain (Life Technologies) in serum free DMEM for 20 minutes at room temperature. Each 

experimental well was imaged using fluorescence microscopy (EVOS FL). Live and dead cells were 

counted using the ImageJ cell counter plugin (NIH). For co-culture assays, cancer cells were identified by 

the presence of the CellTracker Deep Red dye prior to assessment for live/dead. For all assays, five images 

were taken per experimental technical replicate (n=3 per experiment) and averaged for statistical analysis. 

 

4.2.6 Doxorubicin Accumulation Analysis 

For doxorubicin accumulation experiments, the cells were trypsinized (0.25% trypsin, Gibco) at 

two hour time points (at 6 hours post doxorubicin introduction for the 2D hanging well experiments), 
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centrifuged at 2000 rpm for two minutes, and subsequently lysed with RIPA Buffer (Thermo Scientific) for 

15 minutes on ice. Cellular lysate fluorescence intensity was determined using a fluorescent plate reader 

(Omega FLUOstar) at 495nm excitation and 590nm emission. Fluorescence intensity was compared to a 

doxorubicin standard curve for concentration determination. 

 

4.2.7 Three-Dimensional (3D) Homogenous In vitro Interstitial Flow Model 

 50ul of rat tail collagen I (Corning) and basement membrane extract (Trevigen) (1.8 mg/ml 

Collagen, 0.5 mg/ml BME), containing cell tracker deep red dye (ThermoFisher) labelled MDA-MB-231 

cells and HDFs at varied ratios (TC alone, 4:1, 1:1, 1:4) of cancer cells to fibroblasts, was added into a 96-

well tissue culture insert (Corning). Total cell density in the gels was 100,000 total cells/mL. Hydrogels 

were crosslinked at 37°C for 30 minutes. Afterward, the gels were rehydrated with a drop of serum free 

media and placed in an incubator for 3 hours, to allow for cell adhesion within the matrix. After three hours, 

serum free DMEM was added to the bottom compartment of the insert and either serum free DMEM 

(control condition) or 10uM doxorubicin diluted in basal DMEM was added onto the top of the gel. Gravity 

driven flow (~0.5 microns/s) was introduced for 18 hours, at which point the media was removed, and the 

gels were flushed with basal media for a comparable amount of time. The basal media was replaced with 

NucBlue live cell stain (Life Technologies) and NucGreen Dead 488 cell stain (Life Technologies) in serum 

free DMEM and incubated for one hour at 37°C. 

 The gels were removed from the inserts and imaged using fluorescent microscopy (EVOS FL). 

Five images were taken per experimental technical replicate and averaged for statistical analysis. Dead 

cancer cells were determined by colocalization of blue, deep red, and green fluorescent markers. 

 

4.2.8 Three Dimensional (3D) In vitro Tumor to Stroma Transition Hydrogel Model 

 Five separate solutions of rat tail collagen I (Corning) and basement membrane extract (Trevigen) 

(1.8 mg/mL collagen, 0.5 mg/ml BME) containing cell tracker deep red dye (Thermo Fisher) labelled 

MDA-MB-231 cells and HDFs at varied ratios (4:1, 2:1, 1:1, 1:2, 1:4) of cancer cells to fibroblasts were 
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created. Each solution had a total cell density of 100,000 total cells/ml. 50 uL of successive ratios starting 

with 1:4 were introduced into a tissue culture insert (Corning) with 20 minutes of crosslinking at 37°C 

between the addition of each new layer. After the final layer was added, the entire gel was crosslinked at 

37°C for 45 minutes. For the single culture layered gels, the same procedure was followed, however, cancer 

cells were seeded in the gels in the absence of HDFs at densities comparable to the experimental MDA-

MB-231 densities. 

 Basal media was introduced into the bottom of the cell culture insert. Either basal media or 10uM 

doxorubicin solution was added to the top of the hydrogel. Fluid flowed through the gel (~0.5 microns/s) 

for 18 hours. The media was removed and the gels were flushed with basal media for 18 hours. Live/dead 

fixable green dye (Life Technologies) in PBS was flushed through the gel for one hour. Afterward, the gels 

were fixed with 4% paraformaldehyde for 18 hours at 4°C. The hydrogels were removed from the inserts 

and stained with DAPI diluted in PBS on a shaker for 1 hour. Gels were imaged using confocal fluorescent 

imaging (Zeiss 700). Z-stacks were developed with 25 slices through the gel. Dead cancer cells were 

determined by colocalization of green, deep red, and glue fluorescent markers. The dead cells in five 

successive slices were averaged for each technical replicate. 

 For imaging of the gel prior to introduction of flow, the cancer cells in the top, middle, and bottom 

layer were labelled with cell tracker deep red (Thermo Fisher), while all other cancer cells were labelled 

with cell tracker green (Thermo Fisher). The gels were immediately fixed with 4% paraformaldehyde at 

4°C for 18 hours, following crosslinking. The gels were removed from the inserts and stained with DAPI 

diluted in PBS on a shaker for 1 hour. Gels were imaged using confocal fluorescent imaging (Zeiss LSM 

700). Z-stacks were developed with 200 separate slices. 

 

4.2.9 Generation of IC50 Curves 

 HDFs and MDA-MB-231 cells were seeded into separate 96 well tissue culture plates at a density 

of 10,000 cells per well. Cells were incubated for 24 hours at 37°C. Afterward, doxorubicin solutions at 
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varying concentrations diluted from 100uM were introduced into appropriate wells. Dead cells were 

determined as previously described. IC50 values were determined using Matlab curve fitting algorithms. 

 

4.2.10 Development of Concentration Gradients using Comsol 

 Spatial concentration profiles were developed using a finite element based, partial differential 

boundary solver in Comsol Multiphysics. 2D Geometry of the hydrogel spatial grid (4.5 mm by 3.5 mm) 

was determined by the volume of hydrogel introduced into the cell culture insert and the cell culture insert 

dimensions provided by the manufacturer.  

Time dependent convection within the simulated hydrogel space was defined by Darcy’s law of 

fluid dynamics, which has previously been applied to interstitial fluid flow in hydrogels and tumors95. 

Darcy’s law describes volumetric flow rate (𝑄𝑚), as  

𝑄𝑚 =
𝜕

𝜕𝑡
(𝜀𝑝𝜌) +  𝛻 ∗ (𝜌𝑢)   [10] 

where 𝜀𝑝⁡(𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠) is the porosity coefficient of the matrix, 𝜌⁡(
𝑘𝑔

𝑚3) is the fluid density and 𝑢⁡ (
𝑚

𝑠
) is the 

average velocity within the simulated space. Porosity was determined from specific collagen content and 

the collagen concentration within the hydrogels as described by Ramanujan et. al. (Table 2). The velocity 

in the hydrogel is further described by 

𝑢 =
−𝐾

𝜇
𝛻𝑝   [11] 

where 𝐾⁡(𝑚2) is the matrix permeability coefficent, 𝜇⁡(𝑃𝑎 ∗ 𝑠) is the dynamic viscosity of the fluid, and 

𝑝⁡(𝑃𝑎) is the pressure. The permeability coefficient (Table 2) was determined experimentally using a 

similar relationship 

𝐾 =
𝑄

𝐴
∗ (

𝐿

∆𝑝
) ∗ 𝜇  [12] 

where 𝑄⁡(
𝑚3

𝑠
) is the volumetric flow rate through the gel,  𝐴⁡(𝑚2) is the cross-sectional area of the gel, 

𝐿⁡(𝑚) is the height of the gel, and ∆𝑝 (Pa) is the difference in pressure between the top and the bottom of 

the gel. 
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 Concentration profiles at various times using the general diffusion convection differential 

equation 

𝜕𝑐

𝜕𝑡
+  𝛻 ∗ (−𝐷𝑖𝛻𝑐𝑖) + u ∗ (𝛻𝑐𝑖) =  𝑅𝑖  [13] 

where 𝑐 (
𝑚𝑜𝑙

𝑚3 )  is the concentration of drug, 𝐷𝑖 ⁡(
𝑚2

𝑠
) is the diffusion coefficient, R is the reaction term, 

assumed to be zero, and u⁡ (
m

s
) is the Darcy velocity determined previously. The diffusion coefficient was 

determined from literature representation of diffusion within low collagen percentage hydrogels 

normalized with a hydrodynamic radius of 2 nm (Table 1).  

 

Table 2| Comsol modeling parameters 

Parameter Symbol Value Source 

Permeability 𝐾 3.19 e-14 [m^2] Experimental 

Porosity 𝜀𝑝 0.997  [Dimensionless] [95] 

Diffusion 
Coefficient 

𝐷 6 e-11   [m^2/s] [95] 

Time Dependent 
Fluid Volume 

𝑉 𝑉 = 𝛽1 + (
𝛽2−𝛽1

1+
𝛽3
𝑡

)

𝛽4

 [µL] Experimental 

Curve Fitting 
Parameter 

𝛽1 37.94  [µL] Experimental 

Curve Fitting 
Parameter 

𝛽2 84.56  [µL] Experimental 

Curve Fitting 
Parameter 

𝛽3 1.09    [hr] Experimental 

Curve Fitting 
Parameter 

𝛽4 4.00    [Dimensionless] Experimental 

Fluid Density 𝜌 998    [
𝑘𝑔

𝑚3] Known 

Dynamic Viscosity 𝜇 9.79 e-4 [𝑃𝑎 ∗ 𝑠] Known 

 

 

4.2.11 Agent-based Model Construction 

 Comsol time-dependent convection diffusion concentration gradients (Comsol Multiphysics 5.1) 

were developed using Darcy’s law of fluid flow coupled with simple diffusion dynamics, representative of 
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doxorubicin transport within in vitro breast mimetic collagen hydrogel/BME hydrogels95 (Supplemental 

Methods). Physical model parameters were determined from experimental methods and literature values 

(Table 3). Concentration profiles were outputted as text files for use in agent-based model (ABM) 

simulations (Figure 10a). 

 

Table 3| Agent-based model equations and parameters 

 

 

The agent-based model (ABM) was constructed using the Repast Java framework and the Relogo 

Java package. A 2D coordinate grid of 64 x 64 patches was initiated to represent a 4.0mm x 3.5mm finite 

slice of experimental gel54. For homogenous gel simulations, the total number of cells was 2800, and the 

fibroblasts and/or cancer cells were spawned randomly within the gel at the user specified ratios (Figure 

10a). For the layered tumor transition model, the grid space was split into 5 equivalent segments (Figure 

10c). Fibroblasts and cancer cells were spawned randomly within the sections at user specified ratios for a 

Parameter Cell Type Equation Units Bounds/Variables 

2D IC50 Percent Live MDAMB-231 𝑝𝑙𝑖𝑣𝑒 = 𝛽𝑀1 +(
𝛽𝑀2 − 𝛽𝑀1

1 +
𝛽𝑀3
𝐷𝑜𝑠𝑒

)

𝛽𝑀4

 % 

𝛽𝑀1 = 78.11 % 

𝛽𝑀2 = −0.48 % 

𝛽𝑀3 = 3.66 µM 

𝛽𝑀4 = 1.09 [𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠] 

2D Cellular Density 
Dependent Percent live 

MDAMB-231 
𝑝𝑙𝑖𝑣𝑒 = 0.0003 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 34.484 

𝑝𝑙𝑖𝑣𝑒 =  41.68 
𝑝𝑙𝑖𝑣𝑒 = 36.28 

% 
6000 ≤ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ≤ 24000 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 > 24000 
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 < 6000 

2D 231/HDF Ratio 
Dependent Percent Live 

MDAMB-231 

𝑝𝑙𝑖𝑣𝑒 =  − 2.50 ∗ 𝑟𝑎𝑡𝑖𝑜2 
+18.77 ∗ 𝑟𝑎𝑡𝑖𝑜 + 41.054 

𝑝𝑙𝑖𝑣𝑒 = 76.38 
𝑝𝑙𝑖𝑣𝑒 = 43.71 

% 
0.25 ≤ 𝑟𝑎𝑡𝑖𝑜 ≤ 4 

𝑟𝑎𝑡𝑖𝑜 > 4 
𝑟𝑎𝑡𝑖𝑜 < 0.25 

2D IC50 Percent Live HDF 𝑝𝑙𝑖𝑣𝑒 = 𝛽𝐻1 + (
𝛽𝐻2 − 𝛽𝐻1

1 +
𝛽𝐻3
𝐷𝑜𝑠𝑒

)

𝛽𝐻4

 % 

𝛽𝐻1 = 74.07 % 
𝛽𝐻2 = 0.04⁡% 
𝛽𝐻3 = 2.105⁡µM 

𝛽𝐻4 = 1.01 [𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠] 

2D Cellular Density 
Dependent Percent Live 

HDF 
𝑝𝑙𝑖𝑣𝑒 = −0.0011 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 + 60.88 

𝑝𝑙𝑖𝑣𝑒 =  54.28 
𝑝𝑙𝑖𝑣𝑒 = 34.48 

% 
6000 ≤ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ≤ 24000 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 > 24000 
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 < 6000 

2D 231/HDF Ratio 
Dependent Percent Live 

HDF 

𝑝𝑙𝑖𝑣𝑒 =  − 4.30 ∗ 𝑟𝑎𝑡𝑖𝑜2 
+29.75 ∗ 𝑟𝑎𝑡𝑖𝑜 + 15.82 

𝑝𝑙𝑖𝑣𝑒 = 66.02 
𝑝𝑙𝑖𝑣𝑒 = 22.99 

% 
0.25 ≤ 𝑟𝑎𝑡𝑖𝑜 ≤ 4 

𝑟𝑎𝑡𝑖𝑜 > 4 
𝑟𝑎𝑡𝑖𝑜 < 0.25 
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total cell number of 2800. For the single culture tumor transition model, cancer cells were spawned within 

segments at densities comparable to experimental conditions. The total cell number was 1400 (Figure 9b).  

 

 

Figure 10| Development of an agent-based model to predict cancer cell response to doxorubicin in 

3D tumor bulk to stroma transition environments. 

(A) Diffusion-convection concentration gradient developed in Comsol within a simulated 3D hydrogel. 

(B) The agent-based model incorporates concentration profiles and cancer cells for time dependent cell 

viability determination. Single culture condition incorporates varied cancer cell numbers decreasing from 

the top to the bottom of the gel. Fibroblasts are neglected. (C) The agent-based model incorporates 

concentration profiles, fibroblasts, and cancer cells for time dependent cell viability determination. The 

coculture condition incorporates varied cancer cell numbers, decreasing from the top to the bottom of the 

gel and varied fibroblast number decreasing from the bottom to the top of the gel. 

 

 Each tic of the scheduling method corresponded to one minute. At each subsequent tic of the 

scheduling method (Figure 11a), a new concentration profile was parsed and concentration values were 

stored in appropriate patches. The patches passed these values to corresponding cell(s) located on the 

patches (Figure 11b). 
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Figure 11| Logic flow charts for in silico modelling. 

(A) Comsol programing method for development of spatial and time dependent concentration gradients 

for use in associated agent-based models. (B) Logic flowchart for agent-based models of doxorubicin 

treatment within collagen/bme hydrogels incorporating Comsol drug concentration profiles and 

experimental viability equations (Table 2). 

 

The average concentration encountered by the cells was updated based on the stored value. At specified 

time intervals, the expected live percentage, based on IC50 curves and the average concentration 

encountered by the cells, was determined. This value was scaled to account for cellular density (Table 2). 

If the modeling condition accounted for both fibroblast and cancer cells, the expected live percentage was 

scaled to account for the fibroblast protective effect based on the ratio of cancer cells to fibroblasts. The 

cells were removed or kept in the simulation after comparing a randomly generated number to the expected 

live percentage. Percent live of remaining cells was then calculated. 
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4.2.12 Sample Selection 

Patient samples were accessed through the University of Virginia Biorepository and Tissue 

Research Facility. These samples were selected from patients with a definitive diagnosis of node-negative 

breast cancer and who received no treatment prior to tumor resection. Samples were de-identified before 

use. All procedures performed in studies involving human participants were in accordance with the ethical 

standards of the institutional review board of the University of Virginia and with the 1964 Helsinki 

declaration and its later amendments or comparable ethical standards. 

 

4.2.13 Immunohistochemistry 

Formalin-fixed, paraffin-embedded sections were deparaffinized with xylene and rehydrated in 

graded ethanols and citrate-based antigen retrieval was performed (Vector Labs, Burlingame, CA). Samples 

were permeabilized (0.01% Triton) and blocked in goat serum. Based on markers previously established in 

the literature, breast cancer cells were identified by anti-pan-cytokeratin staining and cancer-associated 

fibroblasts were identified by anti-alpha-smooth muscle actin staining. Samples were incubated with pan-

cytokeratin antibody (Thermoscientific) followed by secondary Cy5-goat anti-mouse (Thermoscientific). 

These steps were then repeated for the TRITC-conjugated alpha-smooth muscle actin antibody 

(ebioscience). The samples were incubated with DAPI (Sigma-Aldrich, St. Louis, MO) and mounted with 

Fluoromount-G (SouthernBiotech). All antibodies were used at dilutions recommended by the 

manufacturer for paraffin-embedded tissues. Stained slides were imaged with an EVOS fluorescent 

microscope (Thermoscientific). Random non-overlapping 856 × 476 µm (407, 465 µm2) regions at the 

tumor-stroma border were selected for imaging. Images were processed using ImageJ and Photoshop. 

 

Table 4| Antibodies used for immunohistochemical staining. 

Antigen 
Antibody 

Manufacturer 
Cat No. Host 

Concentration 

(μg/mL) 

Pan-Cytokeratin 
Thermo Scientific, 

Waltham, MA 
MS-343-P0 

Mouse 

monoclonal 
4.0 

Mouse IgG 
Invitrogen, 

Waltham, MA 
A-21054 

Goat 

polyclonal 
10.0 
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Alpha-Smooth Muscle 

Actin, eFluor 570 

eBioscience, 

Waltham, MA 
41-9760-80 

Mouse 

monoclonal 
1.0 

 

 

4.2.14 Statistical Analysis 

 Statistical analyses were run using Graphpad Prism. Paired t-tests and two-way ANOVA were used 

for analysis of same subject groups. Unpaired t-tests and two-way ANOVA were used for analysis of 

independent experimental groups and computational data. MANOVA analysis using the SPSS software 

package was utilized for normalized distance comparisons within experimental gels for both computational 

and experimental conditions. All assays were performed with a minimum of three biological replicates.  

P<0.05 was considered statistically significant for all statistical tests. 

 

4.3 Results 

4.3.1 Fibroblasts reduce cancer cell death in response to doxorubicin and lowered levels of doxorubicin 

accumulation 

 The effects of contact independent fibroblast signaling on cancer cell response to doxorubicin were 

first tested by treating MDA-MB-231 cells with either HDF conditioned media or comparable control media 

(Figure 12A) in 2D for 24 hours. Following doxorubicin treatment, tumor cells grown in conditioned media 

had a greater percentage of live cells compared to unconditioned controls (Figure 12B). Furthermore, tumor 

cells treated with either Fb-conditioned or unconditioned media showed no difference in percent live tumor 

cells in the absence of doxorubicin. Notably, at 2 and 6 hours, the mass of doxorubicin present in cell lysate 

was significantly decreased following pre-incubation with fb-conditioned media prior to treatment 

compared to unconditioned media controls (Figure 12C). 

To further test contact independent fibroblast signaling, fibroblasts were seeded on a hanging 

porous insert with tumor cells seeded onto the bottom of the well plate at a ratio of 4:1 tumor cells to 

fibroblasts (Figure 12D). While preconditioning with fibroblasts showed no effect, co-culturing with 

fibroblasts during treatment yielded a significant increase in the percentage of live tumor cells compared to 
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controls (Figure 12E). The co-culture condition yielded a decrease in cancer cell-internalized mass of 

doxorubicin compared to the tumor cells alone control (Figure 12F). 

 

Figure 12| Doxorubicin is less cytotoxic to breast cancer cells cultured in fibroblast-conditioned 

media or co-culture. 

(A) Schematic of conditioned media experiments: Conditioned media is harvested from incubated HDFs 

(Fbs) after 24 hours and applied to MDA-MB-231 breast tumor cells (TCs). (B) Live TCs assessed by 

nuclear dead stain +/- doxorubicin (10μM) in Fb-conditioned or control media after 24 hours as percent of 

total TCs. (n=5) (C) Cellular uptake of doxorubicin by TCs at successive time points after Doxorubicin 

(10μM) application as assessed by fluorescent signal of lysed cells (n=6).  (D) Schematic of insert co-

culture experiments: MDA-MB-231 cells (TCs) and HDFs (Fbs) are co-cultured independent of contact 

for 24 hours prior to doxorubicin treatment. In the Fb-conditioned experimental group, the Fbs are 

removed prior to dosing chemotherapy. (E) Live TCs assessed by nuclear dead stain +/- doxorubicin 

(10μM) in Fb-conditioned or control media after 24 hours as percent of total TCs. (n=5) (F) Cellular 

uptake of doxorubicin by TCs at successive time points after Doxorubicin (10μM) application as assessed 

by fluorescent signal of lysed cells (n=6). Data are represented as mean ±SEM. *p<0.05, ** p<0.01, 

****p<0.0001 by paired t-tests (B, E, F) and two-way ANOVA followed by post-hoc paired t-tests (C).  
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However, there was no difference in doxorubicin accumulation in the conditioned group as compared to 

the tumor cells alone control. Examination of the fibroblasts also revealed that the co-culture condition not 

only led to changes in the tumor cell population, but also led to opposite effects in fibroblasts. Co-culture 

led to increased death of fibroblasts and increased uptake of doxorubicin by fibroblasts (Figure S1). This 

decrease in doxorubicin accumulation correlated with increased percentage of live cells in comparable 

conditions after doxorubicin treatment, indicating the potential for fibroblast-mediated alterations in tumor 

cell drug accumulation and reduced treatment response.  

 

4.3.2 Cancer cell response to doxorubicin is dependent on the ratio of tumor cells:fibroblasts 

 The tumor border includes a transition from the tumor bulk, with relatively few fibroblasts, to the 

surrounding stroma, with very few tumor cells. Therefore, it was desirable to determine the extent of the 

fibroblast protective effect within the context of varied cancer cell to fibroblast ratios and varied total cell 

densities, of relevance to the tumor-stroma transition (TST) zone.  

 We selected a range of ratios of tumor cells:fibroblasts (TC:Fb) from 4:1 to 1:4 and created 2D co-

cultures in single wells prior to introduction of doxorubicin (Figure 13A). The total cell number was held 

constant, and ratios of cells were varied internally. For control comparison, tumor cells were seeded at the 

same number as the coculture condition in the absence of fibroblasts. No difference was observed in the 

viability of the single cultured tumor cells with regards to the seeding number (Figure 13B). Contrastingly, 

the percentage of live tumor cells increased linearly with an increase in the seeding number of tumor cells 

in coculture with fibroblasts (Figure 13B, S2). Cocultures at 1:4 TC:Fb showed comparable cell survival to 

single culture conditions, while a ratio of 4:1 yielded the greatest percent live. The fibroblast protective 

effect was, therefore, absent at lower ratios of tumor cells to fibroblasts. 
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Figure 13| In co-culture, the ratio of tumor cells to fibroblasts alters the viability of tumor cells in 

response to doxorubicin treatment. 

 (A) Schematic of constant total cell seeding density experiment: TCs (red) and Fbs (blue) were seeded in 

a culture dish with the total number of cells (TCs+Fbs) held constant. Single cultured TCs were seeded at 

the same TC density as experimental conditions with no fibroblasts. (B) Live TCs assessed by nuclear 

dead stain +/- doxorubicin (10μM) after Doxorubicin treatment for 6 hours with varied ratios of TC:Fb in 

2D (n=5) (C) Schematic of constant total cancer cell seeding density: Cells were seeded in a culture dish 

with the total number of cancer cells held constant. Fibroblast cell numbers were adjusted relative to the 

cancer cells. Fibroblasts are represented in blue, cancer cells in red. (D) Live TCs assessed by nuclear 

dead stain +/- doxorubicin (10μM) after doxorubicin application for 6 hours with varied ratios of TC:Fb 

in 2D (n=3). Data are represented as mean ±SEM. *p<0.05, ****p<0.0001 by post-hoc unpaired t-tests 

following two-way ANOVA. 

 

 To further probe this phenomenon, the number of tumor cells was held constant, and the cell ratio 

was altered by adjusting only the total number of fibroblasts in coculture (Figure 13C), prior to doxorubicin 

treatment. A control group was also made by seeding tumor cells at the same number as all other 

experimental conditions without the addition of fibroblasts. A comparable viability effect was observed as 
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seen in the hanging well cultures: A ratio of 4:1 tumor cells to fibroblasts yielded the greatest viability of 

tumor cells and the greatest difference in viability as compared to the control condition (Figure 13D). These 

data indicate that the fibroblast protective effect is not dependent on the total number of tumor cells; rather, 

it depends on the ratio of tumor cells to fibroblasts. Additionally, while fibroblast-derived factors need to 

be present to observe the effect, the ratio of tumor cells to fibroblasts and not the total number of fibroblasts 

is the determining factor.  

 

4.3.3 Ratiometric effects are conserved when cells are cultured in a breast-mimetic 3D microenvironment  

 Since the in vivo microenvironment is a 3-Dimensional space with which the cells can readily 

interact, and it has been shown that dimensionality can affect therapeutic outcomes in cancer, comparable 

in vitro hydrogel doxorubicin treatment experiments were developed to extend the coculture experimental 

findings. Collagen-basement membrane hydrogels were developed with varying ratios of tumor cells and 

fibroblasts found to be relevant (4:1, 1:1, 1:4) in 2D (Figure 14A,B). Control gels were seeded with tumor 

cells, alone, at the same total cell number as the coculture hydrogels (Figure 4B). Media with and without 

doxorubicin was applied to the gels for 18 hours. Total tumor cell viability in the absence of doxorubicin 

was approximately 90% for all conditions (Figure S3, 13C). Analysis of the total tumor cell viability within 

the gels after treatment indicated that a ratio of 4:1 tumor cells to fibroblasts yielded a significantly higher 

viability than the comparable single culture condition.  
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Figure 14| Ratiometric response of tumor cells occurs when cells are co-cultured in a breast-

mimetic collagen I matrix 

(A) Schematic of independent tissue culture insert set-ups for increasing ratios of TCs:Fbs in a collagen I 

matrix. Arrow indicates direction of application of doxorubicin for 18 hours. (B) Fluorescent images of 

Celltracker deep red-labeled MDA-MB-231(red, TCs) and total cell nuclei (blue, NucBlue) in 3D 

collagen hydrogels prior to doxorubicin treatment. Cells were seeded at varied ratios with overall cellular 

concentration held constant (1E6 cells/mL). Blue label without red indicates a fibroblast. (C) Live TCs 

assessed by nuclear dead stain within collagen gels +/- doxorubicin (10μM) after 24h application via 

interstitial flow (n=3). Data are represented as mean ±SEM.  *p<0.01, ***p<0.001 by post-hoc unpaired 

t-tests following two-way ANOVA analysis. *** Signifies statistical significance to matched 

+doxorubicin condition. 
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4.3.4 Gradients of chemotherapy form across invading edges of tumors 

 In addition to the cellular heterogeneity at the tumor edge, increased fluid pressure at the tumor 

border drives interstitial fluid flow into the adjacent stroma generating a gradient of chemotherapeutic37. 

Collagen hydrogels have been utilized in the past to mimic this region. Here, we developed in silico 

theoretical concentration profiles within collagen hydrogel mimetics based on the geometry of the 

hydrogels, Darcy’s law of fluid transport, and the general diffusion equation (Table 1). Because the fluid 

velocity is very low (~0.5 um/s), concentration gradients develop between the top and the bottom of the gel 

(Figure 15A). Notably, the concentration of the drug was greatest at the top of the gel relative to the bottom. 

However, it should be noted that the concentration became homogenous in the hydrogel after 3 hours of 

simulated flow. 

 

4.3.5 High tumor cells to fibroblasts ratios reduce cancer cell response in an Agent-Based Model of the 

tumor microenvironment 

 An agent-based in silico model (ABM) was developed using the concentration profiles determined 

in COMSOL, to represent flow mediated doxorubicin treatment through homogenously seeded hydrogels 

at varied cancer cell to fibroblast ratios (Figure 15A/B). Predictive equations for the percentage of live 

tumor cells were determined from the 2D results (Table 2, S4). Simulations of 18-hour doxorubicin 

treatment delivered via top-to-bottom interstitial flow indicated an increase in overall percentage of live 

tumor cells in coculture conditions relative to the tumor cells alone condition (Figure 15C) and this 

percentage was greater with increasing ratios of tumor cells to fibroblasts.  

 The ABM was further utilized to probe spatial variations in cancer cell survival through 

homogenously seeded hydrogels with different tumor cell:fibroblast ratios. At each depth in the gel, greater 

ratios of tumor cells to fibroblasts yielded a greater percentage of live tumor cells relative to successively 

lower ratios (Figure 15D). All conditions yielded significantly greater viability than the tumor cell alone 

control condition. Interestingly, for samples with higher ratios, tumor cells at the top of the gel had a 

significantly lower percent survival as compared to the bottom of the gel due to drug concentration profiles. 
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Our ABM predicted more significant results than our 3D hydrogel experiments, however, the viability trend 

was comparable between in vitro and in silico models. Viability of tumor cells in each cocultured condition 

was approximately half of the ABM predicted viability percentage. This is likely due to a reduction in the 

fibroblast protective effect within 3D systems, as compared to 2D culture system, as a result of the 

extracellular matrix components and greater dispersal of cells.  

 

 

Figure 15| Agent-based model (ABM) predicts overall and distance-dependent response of tumor 

cells to doxorubicin in the 3D collagen hydrogel system  

(A) Diffusion-convection concentration gradient developed in Comsol within a simulated 3D hydrogel. 

Scale gives normalized concentration (C/Cmax) (B) The agent-based model incorporates concentration 

profiles, cancer cells, and fibroblasts for in silico drug screening. (C) ABM-predicted overall viability for 

homogenous gels of varied tumor cell:fibroblast ratios (n=20) (D) Location dependent viability of tumor 

cells in homogenous gels seeded at varied tumor cell:fibroblast ratios (n=20). Data are represented as 

mean ±SEM.   ****p<0.0001 compared to 231 control by post-hoc unpaired t-tests following two-way 

ANOVA analysis. (D) post-hoc t-tests after MANOVA analysis which shows significant effects 

(p<0.001) for ratios and distance. 
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4.3.6 Development of an in silico tumor to stromal transition (TST) model ABM shows response across 

the invasive edge of tumors 

 Following confirmation of the fibroblast protective effect in 3D, an in silico ABM tumor to stroma 

transition (TST) model (Figure 11), representing the in vivo tumor bulk to stroma transition area (Figure 

16A), was utilized to predict the region specific effects of doxorubicin treatment within a heterogeneous 

3D-hydrogel breast mimetic system. For tumor cell alone simulations, the tumor cells in each successive 

layer within the simulated hydrogel correspond to the number of tumor cells in the comparable layer in the 

coculture simulation (Figure 10). 
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Figure 16| Layered in silico and in vitro models of the tumor to stroma transition zone indicate that 

tumor cells in the bulk are more viable after doxorubicin than those in the stroma. 

 (A) Tumor-stroma interface from a resected patient breast carcinoma showing tumor cells (pan-

cytokeratins, red) and fibroblasts (alpha-smooth muscle actin, blue). (B) ABM predicted percent viability 

in varied depths within a layered hydrogel with counter-correlated gradients of TCs and Fbs after 18 

hours of simulated drug treatment. (n=20). (C) Schematic of a penta-layered collagen hydrogel setup in a 

tissue culture insert with countercorrelated gradients of TCs and Fbs to model the tumor to stroma 

transition zone (TST model).  (D) Confocal images of the TST model under control (no treatment) 

condition prior to (left) and after (right flow) with tumor cells (false colored -top) and fibroblasts 

(bottom). The tumor cells are labelled with alternating cell tracker dyes (green and deep red) to 

distinguish each layer. Dotted line indicates top of gel. (F) Live TCs assessed by nuclear dead stain within 

collagen gels +/- doxorubicin (10μM) and +/- fibroblasts at varied depths within the hydrogel for 18 hours 

of treatment. (n=3) Data are represented as mean ±SEM.  *p<0.05, *** p<0.001 by t-test after MANOVA 

analysis showing significance for distance and group.  
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 Results predicted that tumor cells alone, region specific, cell viability followed the same trend as 

homogenously seeded tumor cell alone simulations (Figure 16B), where cancer cell populations that 

encountered a higher concentration of drug for the longest period of time (top of the gel) had significantly 

lower viability compared to cell populations at the bottom of the hydrogel, that encountered a lower average 

concentration of drug. Interestingly, this trend was reversed for coculture simulations. Tumor cells at the 

top of the hydrogel, representative of the tumor bulk region, had a greater percentage of live tumor cells as 

compared to the cancer cell populations at the bottom of the gel, representative of the tumor stromal region. 

The simulations indicated that tumor cells in the tumor bulk are protected from doxorubicin chemotherapy 

to a greater extent than tumor cells in the simulated stroma, indicating the potential for a resistant 

subpopulation within the tumor microenvironment. 

   

4.3.7 A corresponding in vitro model of the invasive edge indicates similar region specific cancer cell 

response 

 A penta-layered hydrogel in vitro TST model was created by successively depositing hydrogel 

solutions with increasing cancer cell to fibroblast ratios from bottom to top of a cell culture insert (Figure 

16C). Tumor cells in alternating layers were labelled with different cell tracker dyes (Figure 16D). Distinct 

regions were confirmed, via confocal imaging, prior to introduction of flow. These regions were confirmed 

following flow application (Figure 16D).  

 The region-specific viability within the in vitro TST model confirmed the trends predicted by the 

comparable ABM (Figure 16E), with the addition of fibroblasts increasing viability overall. However, 

fibroblasts did not confer significantly increased viability in the lowest layer of the TST model as was 

predicted by the ABM. Tumor cells alone with flow-applied doxorubicin treatment yielded regions at the 

top of the gel with significantly decreased percentages of live tumor cells as compared to the bottom the 

hydrogel. By contrast, coculture (TCs+Fbs) hydrogels yielded significantly greater cancer cell viability at 
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the top of the gel as compared to the bottom of the gel. In the absence of doxorubicin, there was no 

difference in region specific viability for cocultured and tumor cell alone TST models.  

 

4.3.8 The interaction of transport properties with cellular interactions in the ABM shows the importance 

of tissue- level changes in cancer cell response to chemotherapy 

 Sensitivity analyses of COMSOL parameters emphasize the effects of transport properties on 

region specific and average cancer cell viability (Figure 15A). Diffusion alone, in the absence of convection, 

was not a major mediator of cancer cell death, as drug does not penetrate into the gel after 18 hours (Figure 

16). Transport from the bottom of the gel to the top, simulating flow from the stroma to the tumor, yielded 

an even greater difference in the viability of the cells at the top relative to the bottom of the gel, which 

yielded a corresponding overall increase in cancer cell viability as compared to the normal flow control 

(Figure 15B).  
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Figure 17| The agent-based model reveals complex interactions between transport properties and 

cellular response to chemotherapy across the TST Zone. 

 Cancer cell viability at increasing depth through the agent-based TST model for varied (A) transport 

conditions including normal flow (top to bottom), reversed flow (bottom to top) and no flow (diffusion 

only) (C) diffusion coefficients, and (E) permeability coefficients, after 18 hours of simulated treatment 

with 10μM doxorubicin. (n=20) Total cancer cell viability within the agent-based TST model for varied 

(B) transport conditions, (D) diffusion coefficients, and (F) permeability coefficients, after 18 hours of 

simulated treatment with 10μM doxorubicin. D indicates baseline diffusion coefficient value (6 e-11   

[m^2/s]), and K represents baseline permeability coefficient value (3.19 e-14 [m^2]) (n=20). Data are 

represented as mean ±SEM.   ****p<0.0001 by post-hoc unpaired t-test following MANOVA (A,C,E) 

and by post-hoc unpaired t-tests following two-way ANOVA analysis (B,D,F). All main effects were 

significant by MANOVA or ANOVA. 

 

 Altering the diffusion coefficient, analogous to changing the size of the drug, while maintaining 

convective parameters, yielded no significant difference in the general region specific viability of tumor 

cells (Figure 17C), except for a 100-fold increase in the diffusion coefficient. Similarly, overall percent live 

tumor cells within the hydrogels was only significantly altered from the control condition in the case of 

100-fold increase in the diffusion coefficient (Figure 17D). Analysis of the concentration profiles indicated 

that convection was dominating diffusion in this context (Figure 18). 

 



58 
 

 

Figure 18| The agent-based model reveals complex interactions between transport properties and 

concentration profiles. 

Normalized drug concentration within a simulated cancer cell and fibroblast coculture layered gel at 

varied depths for varied (A) types of transport, (B) diffusion coefficients, and (C) permeability 

coefficients. Data is represented at 60 minutes. D indicates baseline diffusion coefficient value (6 e-11   

[m^2/s]), and K represents baseline permeability coefficient value (3.19 e-14 [m^2]). (D) Simulated fold 

changes in permeability relate to comparable fold changes in fluid velocity through the simulated 

hydrogel. The arrow indicates the baseline permeability (3.19 e-14 [m^2]) 

 

 Alterations of the permeability coefficient, analogous to altering the matrix density, and associated 

alterations in velocity (Figure 18D), while maintaining the diffusion parameters, yielded varied alterations 

in region specific and overall cancer cell viability (Figure 17E). While the viability at the top of the gels 

was always greater than the bottom of the gel, for comparable conditions, increasing the permeability 

decreased the overall viability (Figure 17F). At low values of permeability (0.01K and 0.1K) there was no 

difference in region specific or overall viability, however, the viability was not zero. This was due to the 

fact that the gel becomes saturated with drug almost instantly at these values; therefore, the viability effects 
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become dominated by the drug dosage and the fibroblast protective effect. At very low values of 

permeability, the region specific and overall viability was comparable to diffusion only conditions, 

indicating that diffusion was dominating convection in these conditions.  

  

4.4 Discussion and Conclusion 

4.4.1 Mechanisms behind fibroblast induced chemotherapy resistance 

Multidrug resistance in cancers is a documented phenomenon, and can be meditated by several 

cellular mechanisms; however, anthracycline resistance is dominated primarily by classical multidrug 

resistance40. Classical multidrug resistance is described by acquired resistance to chemotherapy by lowered 

intracellular drug concentration; this can be mediated by increased drug efflux or decreased drug uptake. 

For anthracyclines, such as doxorubicin, intracellular drug accumulation is decreased by increased drug 

efflux via ATP-dependent transporters96. Shen and colleagues97 describe the uptake and efflux of 

doxorubicin within wildtype and multidrug resistant MDA-MB-435 cells and indicate that multidrug 

resistance in breast cancer cell lines is dominated by increased drug efflux. Therefore, it is predicted that 

the decrease in cancer cell doxorubicin concentration and comparable increase in the percentage of live 

tumor cells may be due to classical drug resistance, mediated by drug efflux. Additionally, fibroblast 

doxorubicin accumulation in the coculture condition was not negligible, however, the concentration of 

extracellular doxorubicin after 6 hours (~8 μM) was still above the determined IC50 (3.7 μM) for MDA-

MB-231 cells. Two studies have found that both the cytoplasm and the nucleus of MDA breast tumor cells 

become saturated prior to 6 hours at varied doses of doxorubicin97,98, and this saturation occurs even at a 

dosed doxorubicin concentration as low as 5μM97. Therefore, it is not likely that the reduced viability in 

coculture conditions is simply due to uptake by stromal fibroblasts. That being said, localized effects of this 

accumulation could have further reaching effects on total tumor treatment response based on observations 

of gradient formation of doxorubicin in patients and resistance to treatment99. 

 One of our more perplexing findings is that there is a protective effect at greater ratios of tumor 

cells to fibroblasts, yet mechanisms underlying this response are more challenging to parse. From our data, 
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we interpret that a concentration-dependent, fibroblast-derived signaling molecule is necessary for the 

protective effect to occur, and this effect is observed at higher ratios of tumor cells to fibroblasts, regardless 

of the overall cell numbers. In other words, increasing the number of fibroblasts relative to tumor cells 

decreases the protective effect. Fibroblast activation, a major hallmark of cancer-associated fibroblasts, has 

been attributed to TGFβ, reactive oxygen species, and modifications to the extracellular matrix, among 

other mechanisms. Activation of fibroblasts leads to further secretion of TGFβ, as well as increased 

secretion of other cytokines such as IL-6 and extracellular matrix molecules such as Tenascin C100. TGFβ 

and IL-6 both increase resistance to anthracycline chemotherapy in breast cancer101,102, and Tenascin C is 

associated with chemoresistance in lung cancer103. It’s possible that in our system, the ratiometric effect is 

due to a unique balance between signaling molecules from cancer cells to fibroblasts on a per cell basis 

needing to be higher than signaling molecules from fibroblasts to cancer cells, but the effect is amplified 

regardless when cells are touching or sharing an extracellular matrix as in our co-culture systems. 

Fibroblasts have also been associated with creating niches in which cancer stem cells, a particularly drug 

resistant population of cancer cells, reside and proliferate104. The ratio effect may be due to finding a 

particular sweet spot for creation of such a niche for these chemoresistant cells.     

 Regardless, the fibroblast protective effect is a dominating factor for increased cancer cell viability 

in our 2D and 3D in vitro systems. In silico homogenous gel models predict that region specific cancer cell 

viability is affected by chemotherapy gradients; however, our in vitro and in silico models predict that the 

overall viability is dominated by the dependent fibroblast protective effect. This indicates that viability 

trends within homogenous tumor regions are predicted by concentration gradients, yet the magnitude of the 

viability percentage may be dominated by the relative abundance of fibroblasts.  

However, within regions of cellular heterogeneity, the region-specific viability response to 

doxorubicin treatment is not solely predicted by the average doxorubicin concentration that the tumor cells 

experience (Figure 5). While tumor cells at the top of the hydrogels, representative of the tumor bulk region, 

experience a greater average concentration of drug as compared to the bottom of the gel, representative of 
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normal stroma, the viability in this region is greater. This indicates a potentially important subpopulation 

for cancer progression and recurrence.  

 

4.4.2 Drug transport in the tumor microenvironment 

Fluid dynamics can alter drug concentration gradients and affect region specific and overall 

viability trends in the tumor border region95,34.  Reversed flow enhances the cancer cell viability in the bulk 

region and simultaneously decreases the viability in the stromal region, while additionally increasing the 

overall viability. This condition is of import, as the direction of fluid velocity in vivo is not known, and 

regional tumor heterogeneity could yield solute influx into the tumor from the surrounding stroma34. 

Diffusion, in the absence of convection, does not alter viability at 18 hours of simulation due to lack of 

solute penetration into the hydrogel. These results indicate that convection is a dominating factor for 

concentration profile development and corresponding cancer viability response37. This is further confirmed 

by alterations of the diffusion coefficient, while simultaneously keeping convection constant. In these 

simulations, the diffusion coefficient only affects the viability at very large values. This confirms that 

convection is the driving force for doxorubicin concentration development, and diffusion dominates only 

when molecules are very small.  

These results are comparable to those reported by Jain and colleagues29,30,34,35; the authors highlight 

the importance of convection and diffusion for solute transport in neoplastic tissues. Specifically, 

convection is dominant in these tissues when the molecular weight of the solute is significantly large, while 

diffusion dominates with very small particles32. This rationale was further used to explore the transport 

effects of large molecules within the tumor interstitium and corresponding implications for antibody-based 

drug delivery30. The results indicate that high molecular weight drug efficacy, in whole tumors, is attenuated 

by extravasation from the tumor bulk. While doxorubicin would not be considered a large molecule drug, 

it is well within the size range for convection driven flow in neoplastic tissues34. 

   However, convection dominance is also mediated by the permeability of the tissue of interest. As 

breast tumor heterogeneity affects the permeability and corresponding fluid velocity105 in vivo, 
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characterizations of alterations in permeability were explored to determine the effect of tumor permeability 

heterogeneity on cancer cell viability. Physiologic breast tumor interstitial fluid velocities are predicted to 

be between 0-10 µm/s as compared to normal interstitial velocities between 0.1-1 µm/s53. The permeability 

sensitivity analysis accounted for velocity alterations within these ranges. Diffusion dominates convection 

when interstitial velocities are decreased to normal tissue values (0.1K and 0.01K), as is apparent from 

comparison to the diffusion alone concentration profile. Similarly, regional viability was comparable 

between the low permeability and diffusion only conditions. As permeability is increased, viability 

decreases due to rapid homogenization of concentration gradients. Therefore, decreasing the permeability 

would decrease the extravasation rate from the tumor bulk and subsequently increase the efficacy of overall 

drug penetration into the tumor, previously reported as a method to increase whole tumor therapeutic 

efficacy106. However, regional drug efficacy at the tumor border could be potentially attenuated with 

decreased permeability, as dispersed concentration profiles would develop in this region. 

 

4.4.3 Implications of our models to therapeutic efficacy and clinical response 

Together our data indicate that several TME-specific factors affect cancer cell viability within the 

tumor stoma transition region. Interestingly, we see that it is the cells nearest the modeled invading stroma 

that are more susceptible to therapy than those in the tumor bulk. There is a great deal of research focused 

on targeting or preventing development of invading cells within these stromal zones55,107–109 as a means for 

preventing metastasis. Examination of tumor cells live in vivo indicates heterogeneity in the subsets of cells 

that invade through tissues110. Though it is intuitive to think that invaded cancer cells will not be accessed 

by therapies and thus will continue to invade and lead to systemic metastases, our data here may indicate 

that cells closer to the bulk may resist treatment better and potentially become invading cells post-

therapeutic administration. Further, our results are limited by only examining one breast cancer cell line, 

MDA-MB-231 and one fibroblast type. Due to the ubiquitous presence of fibroblasts in carcinoma develop 

in multiple organs, our findings may translate in part, though broader interpretation requires further 

investigation to understand the interaction of intercellular tumor-stroma signaling and transport. This is 
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particularly true for highly desmoplastic cancers, such as pancreatic carcinoma, which are known to be 

highly transport limited with extreme ratios of stroma to cancer compared to other solid tumors111,112. 

 

4.4.4 Conclusion  

Here we find that there is a distinctive interaction between the contributions of fibroblasts and 

transport to the activity of a common chemotherapeutic, doxorubicin, in a simulated breast cancer 

microenvironment. Our findings indicate that specific ratios of tumor cells to fibroblasts result in increased 

drug resistance and that these forces are dominant over transport limitations within our particularly in vitro 

and in silico models. These results indicate that it is important to study transport and cellular interactions 

simultaneously when examining cancer-related therapy as both factors play an important role in the in vivo 

response.   
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CHAPTER 5: Conclusion 
 

The current work describes in vitro and in silico models utilized to probe the effects of the TME 

on cancer progression and metastasis. Together, these models characterize TME-specific effectors of 

cancer cell response and motivate further explorative research. Two distinct agent-based models were 

developed to analyze and predict the factors that correlate with cancer development and progression. The 

first model provides evidence for two major mechanisms of increased invasion in the brain, in the 

presence of interstitial flow. The second model predicts a specific cellular population that could be 

resistant to chemotherapy at the tumor border due to unique TME factors.  

 Additionally, in vitro 2D and 3D models elucidate the effects of fibroblast on cancer cell 

resistance to doxorubicin therapy. Novel in vitro layered transition hydrogel models were utilized to 

probe the region specific effects of fibroblast resistance. Due to therapeutic transport factors and the 

protective effect, regional variations in viability in response to flow-delivered therapy were observed, as 

predicted by agent-based models. Together these data indicate the importance of TME factors in altering 

cancer cell behavior, and predictive models further confirm these effects in a replicable manner. 

Our in vitro layered model replicates the morphology of the tumor border transition and could be 

utilized for further probing of the population specific phenomenon observed through interactions with 

fibroblast. The specific model could be tuned to incorporate varied cell densities, cancer subtypes, and 

chemotherapy drugs. The layered hydrogel model can further be utilized to probe the effects of transport 

on therapeutic efficacy by modulating local ECM composition.  

Most importantly, characterization of two separate in silico models with distinct cancer types 

indicates the transferability and utility for agent-based model use in multiple tumor microenvironments. 

Components of these model can now be utilized to predict cancer response in more complex contexts. 

While migration was not incorporated into the ABM of the breast cancer TME due to the minimal cancer 

cell velocity observed with live imaging53, research has shown that overall cancer cell migration is 

increased with fibroblast coculture113. This indicates a potential for probing the mechanism of increased 
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invasion within breast cancer coculture conditions using the methodologies established for brain cancer 

migration. Further probing these migration characteristics in the presence of interstitial flow delivered 

chemotherapy will provide a broader understanding of invasive subpopulations within the breast cancer 

microenvironment. 

Alternatively, little is known about the effects of chemotherapy on the invasive characteristics of 

glioma cells. Standard of care treatment for glioma patients includes adjuvant temozolomide treatment114, 

therefore, interstitial flow delivered chemotherapy is also of importance in the brain. Incorporating 

chemotherapy treatment into the established agent-based model of invasion mechanisms could provide 

insight into resistant subpopulations within the diffuse invasive edge, characteristic of brain cancers 

following surgical resection. Furthermore, it has been established that tumor associated cells in brain 

cancer alter the migration characteristics of glioma cells, and the presence of astrocytes within the brain 

TME limits patient survival in vivo64. Thus, it is possible that a similar cancer protective effect could be 

observed in brain tumors as in breast tumors, and the tumor border transition area could, likewise, be an 

important niche for protected cancer subpopulations. 

Altogether, our research provides support for the pertinence of agent-based models for TME 

applications. Results obtained from in silico models demonstrate the usefulness of agent-based models for 

predicting the behavior of cancer cells in the TME, meditated by complex environmental factors. The 

versatility of this modeling strategy is confirmed through the predictive simulations that represent in vitro 

findings in two varied TME contexts. Thus, agent-based models are an optimal modeling platform for 

synthesizing complex interactions into tunable, robust representations of physical processes, and the 

techniques developed in this work could be utilized to predict similar effects in comparable settings.  
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Appendix  
Supplemental Figures 

 

 

Figure S1| Fibroblast viability is lessened in the presence of cancer cells within hanging-well 2D 

culture. 

MDA-MB-231 cells and HDFs are cocultured independent of contact for 24 hours prior to 10uM 

doxorubicin treatment. In the conditioned experimental group, the 231s are removed prior to dosing 

chemotherapy. (A) Percentage of live HDFs after 6 hours of doxorubicin chemotherapy treatment (n=5). 

(B) Uptake of doxorubicin following 6 hours of treatment, here the total mass of uptake accounts for 

~10% of the total available extracellular doxorubicin (n=6).  Data are represented as mean ±SEM.  ** 

p<0.01,  by post-hoc paired t-test following two-way ANOVA. 
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Figure S2| Sample panel for image analysis in 2D coculture experiments. 

Sample images for live/dead analysis within 2D coculture systems (See Figure 12a). Here the 

experimental conditions are portrayed. The first column indicates the total cancer cells stained with 

deep red cell tracker. The second column indicates the total nuclei of all cells stained with a nucBlue 

indicator. The third column indicates dead cells labelled with nucGreen. The fourth column shows the 

composite image. Dead cancer cells were determined by localization of all three channels (C). (B) 

Indicates a fibroblast cell, and (A) indicates a cancer cell. 
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Figure S3| Sample panel for image analysis in 3D coculture experiments. 

Sample images for live/dead analysis within 3D homogenous hydrogels. Here the 4:1 and single culture 

control condition are shown. The first column indicates the total cancer cells stained with deep red cell 

tracker. The second panel indicates the total nuclei of all cells stained with a nucBlue indicator. The third 

column indicates dead cells labelled with nucGreen. The fourth column shows the composite image. Dead 

cancer cells were determined by localization of all three channels.  

 

 

Figure S4| 2D doxorubicin EC50 curves for HDFs and MDA-MB-231 incorporated into the agent-

based models. 

(A) MDA-MB-231 EC50 curve following 24 hours of treatment at varied concentrations of doxorubicin 

(n=3). (B) HDF EC50 curve following 24 hours of treatment at varied concentrations of doxorubicin 

(n=3). Data are represented as the mean of 3 independent trials. Curve fits were determined using an 

EC50 curve fitting Matlab algorithm.    
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