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0.1 Introduction

A finite reflection group naturally acts on the unit sphere, which becomes a sim-

plicial complex when triangulated by the hyperplanes corresponding to the re-

flections. The distance between two maximal simplices, or chambers, is measured

by counting the number of hyperplanes separating them; this definition coincides

with their so-called gallery distance as defined in section 1.1. Thus the set of cham-

bers is a metric space. It has finite diameter: when two chambers are antipodal

on the sphere, their distance reaches a maximum value, which is the length of the

longest element w0 of the reflection group. Pairs of chambers at this distance are

called opposite.

A spherical building ∆ is a union of such spheres, its apartments. The distance

between two chambers in ∆ is measured in any apartment containing both. In

this way the chamber set of ∆ becomes a metric space with the same diameter as

its apartments, and again chambers are opposite if they attain the diameter. For

any chamber C ∈ ∆, we define ∆0(C) as the complex generated by the chambers

opposite C.

∆ itself has the homotopy type of a wedge of spheres, according to the Solomon–

Tits theorem. That is, if dim ∆ = n then ∆ is n-spherical, meaning (n−1)-connected.

As a “large” subcomplex of ∆, ∆0(C) too is expected to be n-spherical, but there are

exceptions.

Peter Abramenko was originally motivated to study ∆0(C) by the occurrence

of spherical buildings as links in Bruhat–Tits buildings associated to S-arithmetic

groups. Topological properties of ∆0(C) lead to topological properties of invariant

subcomplexes of the Bruhat–Tits building, and thence to homological finiteness

properties of the group [2].

A more elementary motivation to study ∆0(C) involves groups with BN-pair of

spherical type, i.e. finite Weyl group. Such a group always acts on an associated

spherical building, and the action restricts to an action of B on ∆0(C)with a chamber

as fundamental domain. Provided that ∆0(C) is simply connected, a theorem of
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Soulé [12] then expresses B as an amalgam of its subgroups B ∩ P, where P runs

through the maximal subgroups of G containing w0Bw0.

More generally, simple connectedness of ∆0(C) leads to amalgam presentations

of the subgroups B± in a group G with twin BN-pair, where this time ∆ is the

associated twin building, which is a pair of buildings having an opposition relation

between them. In this dissertation we show that B± are finitely presented if G =

G(Fq) is a Kac–Moody group with 5 ≤ q < ∞, under suitable conditions on G.

In [2], ∆0(C) was shown to be (n− 1)-spherical for all “sufficiently thick” build-

ings of types An, Cn, and Dn, excluding the exceptional C3 buildings arising from

so-called nonembeddable polar spaces. These spaces, first constructed by Tits

based on the classification of algebraic simple groups [13], lacked an explicit de-

scription suitable for computations, and thus this case remained open ever since.

In this dissertation, we prove as our main theorem that ∆0(C) is 2-spherical (=

simply connected), for any chamber C of an exceptional C3 building ∆, using the

recent coordinate description by De Bruyn and Van Maldeghem [7].

This dissertation is structured as follows. The first chapter collects necessary

background material on buildings. In chapter 2 we describe the coordinates for

the nonembeddable polar spaces and prove the main theorem. Chapter 3 presents

some group-theoretic applications of the theorem. The final chapter reports some

preliminary work in studying ∆0(C) in the case of the F4 building associated to a

field, itself depending on an E6 construction.
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Chapter 1

Background

The main reference for the material presented in this chapter is [3].

1.1 Simplicial complexes and chamber complexes

By an abstract simplicial complex ∆ with vertex setV we understand a nonempty

collection of finite subsets ofV (the simplices), which must include all singletons and

all subsets of each simplex. The dimension of a simplex is one less than its cardinality

as a set of vertices. There is a standard way of constructing a topological space |∆|

based on ∆, called its geometric realization; when we speak of topological properties

of ∆, for instance n-sphericity, we have in mind properties of |∆|.

Recall that a binary relation ≤ is a partial order if for all elements a, b, and c it

satisfies a ≤ a; if a ≤ b and b ≤ a then a = b; and if a ≤ b and b ≤ c then a ≤ c.

We call a set together with a partial order a poset. The relation of set containment

provides a partial order on a simplicial complex ∆, which we may write ≤ and

interpret as “is a face of.” With respect to ≤, any two simplices have a greatest

lower bound (their intersection), and the set of faces of any simplex has the form of

a finite power set. On the other hand, these properties in an arbitrary poset suffice

to define a simplicial complex, as Tits does in [13]. A simplicial complex in the

ordinary sense is recovered by defining a vertex as a poset element with exactly one

minimal nonzero face (namely, itself), and then associating to each poset element
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A the simplex {v ∈ V : v ≤ A}.

Any poset has a flag complex, which is the set of finite totally ordered subsets,

partially ordered by inclusion. It is a simplicial complex in the sense just defined.

Suppose that all maximal simplices in a simplicial complex ∆ have the same

dimension, which we call the dimension of ∆. Then a gallery in ∆ is a sequence

of maximal simplices with consecutive ones having 1-codimensional intersection.

If every pair of maximal simplices can be connected by a gallery then ∆ is a

chamber complex. In that case we call the maximal simplices chambers and their

1-codimensional faces panels. The gallery distance between two chambers is one less

than the minimum number of chambers among galleries connecting them. If every

panel is the face of exactly two chambers then we call ∆ thin.

A type function on a chamber complex is a function fromV into a (dim ∆ + 1)-

element set which is bijective on every chamber.

1.2 Coxeter complexes

The pair (W, S) is a Coxeter system if W is a group with presentation

W = 〈S | (sis j)
mi j = 1〉,

where mii = 1 and mi j ≥ 2 for i , j. mi j = ∞ is allowed, and means “no relation.”

The rank of the Coxeter system is |S|.

If (W, S) is a Coxeter system then the Coxeter complex Σ = Σ(W, S) associated

to (W, S) is the set {w〈J〉 : w ∈ W, J ⊆ S}, partially ordered by reverse inclusion.

So w1〈J〉 ≤ w2〈K〉 means w1〈J〉 ⊇ w2〈K〉; we say that w1〈J〉 is a face of w2〈K〉. This

poset is an abstract simplicial complex as defined in section 1.1; moreover, it is a

thin chamber complex [3, Theorem 3.5].

If W is finite, it is a finite reflection group and Σ triangulates a sphere, which

coincides with the complex mentioned in the introduction. In general, since the

chambers are the cosets with J = ∅, there is a one-to-one correspondence C(Σ) ↔
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W, whereC(Σ) denotes the set of chambers of Σ. Panels are of the form w〈s〉, which

is the face of precisely the chambers w and ws.

Additionally Σ possesses the type function τ(w〈J〉) B Sr J [3, Theorem 3.5] and

a Weyl distance function δ : C(Σ) ×C(Σ)→ W given by δ(w1, w2) = w−1
1 w2. It is the

case that d(w1, w2) = `(δ(w1, w2)), where ` is the word metric with respect to S [3,

Proposition 3.87].

W is finite if and only if Σ has finite diameter, or supremum of d. In this case,

the diameter of Σ is `(w0), and chambers at this gallery distance are called opposite.

Here w0 denotes the unique longest element with respect to `, which always satisfies

w2
0 = 1 and w0Sw−1

0 = S [3, Proposition 1.77(4)]. Simplices are opposite if they are

contained in opposite chambers and have w0-conjugate types.

1.3 Buildings

Definition (4.1 in [3]). A building is a simplicial complex ∆ that can be expressed as

the union of subcomplexes Σ (called apartments) satisfying the following axioms:

1. Each apartment is a Coxeter complex.

2. For any two simplices A, B ∈ ∆, there is an apartment containing both of

them.

3. If Σ and Σ′ are two apartments containing A and B, then there is an isomor-

phism Σ→ Σ′ fixing A and B pointwise.

There is a fixed Coxeter complex Σ(W, S) such that Σ � Σ(W, S) for every

apartment Σ [3, Corollary 4.8]. The notions of panel, chamber, gallery distance,

and (if W is finite) opposition extend from the apartments to the building in a well-

defined way, by choosing an apartment Σ � Σ(W, S) containing a given simplex

or pair of simplices. If an apartment Σ0 and isomorphism Σ0 � Σ(W, S) are fixed,

then the type function that Σ0 inherits from Σ(W, S) extends uniquely to a type

function on ∆ [3, Proposition 4.6].
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A building is thick if every panel is contained in at least 3 chambers. It is spherical

if W is finite.

Buildings originated as a means of giving a geometric interpretation to the

semisimple Lie groups. “Geometric” in this context refers to incidence geometry,

and indeed buildings serve to unify and generalize several classes of geometry,

including projective spaces (type An) and polar spaces (type Cn). More precisely,

an incidence geometry is a poset satisfying particular axioms, and the building

arises as the flag complex of this poset.

We will consider polar spaces in section 1.6. Projective spaces, though they may

be axiomatized directly as posets (in lattice-theoretic jargon, “projective space”

means “simple complemented modular lattice” [4, §70]), are perhaps more com-

monly encountered in the guise of point-line geometry. (For some relevant defini-

tions, see section 2.1.) We begin with the familiar axioms for a projective plane:

1. Any two points are incident to a unique line.

2. Any two lines are incident to a unique point.

3. There exist three noncollinear points.

A projective space, then, is defined by the following axioms [5, Definition 5.2.1]:

1. Any two points are incident to a unique line.

2. The subspace generated by any three noncollinear points is a projective plane.

3. There exist three noncollinear points.

We regard a projective space as a poset by forming the set of all points, lines, and

any higher-dimensional proper subspaces, ordered by inclusion. The flag complex

of an n-dimensional projective space is a building of type An, and conversely, every

building of type An is isomorphic to the flag complex of an n-dimensional projective

space, unique up to isomorphism [13, Theorem 6.3].

Most familiar are the Desarguesian projective spaces: if V is a vector space of

finite dimension n ≥ 2 over a skew field, then P(V) comprises the set of proper
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nonzero subspaces of V, ordered by inclusion. Its flag complex is a building of type

An−1. Every thick projective space of dimension greater than two is Desarguesian,

but there are non-Desarguesian projective planes.

1.4 The δ function and twin buildings

In a building ∆ of type (W, S) there is a Weyl distance function δ : C(∆)×C(∆)→W

between pairs of chambers. It can be defined by choosing an apartment Σ � Σ(W, S)

containing two chambers and using the δ function as previously defined for Σ(W, S)

[3, Definition 4.82]. This definition does not depend on the choice of apartment or

isomorphism [3, Proposition 4.81].

It can be shown that δ satisfies the following properties [3, Proposition 4.84].

Here C and D are arbitrary chambers of ∆.

1. δ(C, D) = 1 if and only if C = D.

2. If δ(C, D) = w and C′ ∈ C(∆) satisfies δ(C′, C) = s ∈ S, then δ(C′, D) ∈ {sw, w}.

If also `(sw) = `(w) + 1 then δ(C′, D) = sw.

3. If δ(C, D) = w, then for any s ∈ S there is a chamber C′ ∈ C(∆) such that

δ(C′, C) = s and δ(C′, D) = sw.

On the other hand, given a set C and a function δ : C×C → W satisfying these

properties, there exists a building, unique up to isomorphism, such that C = C(∆)

with δ as its Weyl distance function [3, Corollary 5.93]. The simplices in this

building correspond to the residues of C, which are certain distinguished sets of

chambers; for a precise description see [3, §5.6]. Thus it is possible to define a

building as a pair (C, δ) satisfying 1.–3. as axioms.

We adopt this point of view in defining twin buildings, which historically arose

from the study of Kac–Moody groups much as algebraic groups lead to buildings.

Definition (5.133 in [3]). A twin building of type (W, S) is a triple (C+,C−, δ∗)

consisting of two buildings (C+, δ+) and (C−, δ−) of type (W, S) together with a
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codistance function

δ∗ : (C+ ×C−)∪ (C− ×C+)→W

satisfying the following conditions for each ε ∈ {+,−}, any C ∈ Cε, and any D ∈ C−ε,

where w B δ∗(C, D):

1. δ∗(C, D) = δ∗(D, C)−1.

2. If C′ ∈ Cε satisfies δε(C′, C) = s with s ∈ S and `(sw) < `(w), then δ∗(C′, D) =

sw.

3. For any s ∈ S, there exists a chamber C′ ∈ Cε with δε(C′, C) = s and δ∗(C′, D) =

sw.

Notwithstanding this choice of definition, we will find it useful to think of the

buildings (C±, δ±) as simplicial complexes ∆±.

Twin buildings generalize spherical buildings. Given a spherical building (C, δ),

one obtains a twin building by defining C± to be disjoint copies of C, δ+ B δ,

δ− B w0δw0, δ∗(C+, D−) B δ(C, D)w0, and δ∗(D−, C+) B w0δ(D, C) [3, Example

5.136(a)]. And conversely, every twin building with W finite is of this form [3,

Exercise 5.163].

Like spherical buildings, twin buildings have a notion of opposition. Chambers

C± ∈ C± are opposite when they lie at codistance 1 ∈ W, and simplices of a twin

building are opposite if they are contained in opposite chambers and have the

same type. Opposite chambers are contained in a unique twin apartment, a pair of

apartments on which opposition is bijective [3, Proposition 5.179(1)].

In the twin building associated to a spherical building, the fact that δ− and δ+

are w0-conjugate, when interpreted from the simplicial point of view, implies that

“same type” for simplices in different halves of the twin building coincides with

“w0-conjugate type” in the spherical building. In particular, the two definitions of

“opposite” agree with each other.

Definition. Suppose ∆ is a spherical building or twin building and C is a chamber

of ∆. The complex ∆0(C) consists of all chambers opposite C and their faces.
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1.5 Buildings and groups

We assume that a group acting on a building acts by simplicial automorphisms that

preserve type; an action on a twin building is a pair of actions on ∆± preserving

codistance. An action on a building is strongly transitive with respect to a system of

apartments if transitive on the set of pairs (Σ, C), where Σ is an apartment and C

is a chamber of Σ [3, Definition 6.1]. If the building is spherical, this is equivalent

to being transitive on pairs of opposite chambers [3, Proposition 6.15], which we

may take as the definition of strongly transitive when describing a group action on

a twin building.

The study of groups acting on buildings has led to characterizations of these

actions internally, in terms of subgroups subject to axioms:

• A strongly transitive action on a thick building corresponds to a BN-pair;

the building is recovered from the BN-pair as the set ∆(G, B) of standard

parabolic cosets gBWJB (g ∈ G, J ⊆ S), ordered by reverse inclusion.

• A strongly transitive action on a thick spherical Moufang building corre-

sponds to an RGD system of spherical type.

• A strongly transitive action on a thick twin building corresponds to a twin

BN-pair; its two halves are buildings ∆(G, B±) as constructed above.

• A strongly transitive action on a thick Moufang twin building corresponds to

an RGD system (not necessarily spherical).

Let us define some of these terms.

Definition (6.55 in [3]). Subgroups B and N of a group G form a BN-pair if they

generate G, the intersection T B B∩N is normal in N, and the quotient W B N/T

(the Weyl group) admits a set of generators S such that the following hold:

1. For s ∈ S and w ∈W, sBw ⊆ BswB∪ BwB.

2. For s ∈ S, sBs−1 � B.
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In this case (G, B, N, S) is called a Tits system.

A standard example is G = GLn(k), with B the upper-triangular group and N

the monomial group, those matrices with exactly one nonzero entry in every row

and column. Here W is isomorphic to the group of permutation matrices, and S

can comprise the set of adjacent transpositions.

Definition (6.78 in [3]). Let B+, B−, and N be subgroups of a group G such that

B+∩N = B−∩N C T. Assume that TEN, and set W B N/T. The triple (B+, B−, N)

is called a twin BN-pair with Weyl group W if W admits a set S if generators such

that the following conditions hold for all w ∈W and s ∈ S and each ε ∈ {+,−}:

1. (G, Bε, N, S) is a Tits system.

2. If `(sw) < `(w), then BεsBεwB−ε = BεswB−ε.

3. B+s∩ B− = ∅.

The definition of Moufang is technical and will not be needed below; it gen-

eralizes the notion of Moufang plane from projective geometry. For definitions of

RGD systems, see [3, §7.8 and §8.6].

1.6 Embeddable and nonembeddable polar spaces

Like projective spaces, polar spaces may be defined by giving axioms either to

points and lines (as we do in section 2.1) or to the poset of subspaces [13, §7.1].

The most familiar example of a polar space arises as follows. Suppose V is a

vector space over a field of characteristic not 2, equipped with a nondegenerate

symmetric bilinear form (·, ·). We define M⊥ B {x ∈ V : (x, M) = 0} for any

subset M ⊆ V and call a subspace U ≤ V totally isotropic if U ⊆ U⊥. Assume

that the maximal dimension n of a totally isotropic subspace is finite. Then {0 <

U < V : U is totally isotropic} is a polar space of rank n. By construction, it comes

embedded in a Desarguesian projective space. In general, a polar space is called

embeddable if it can be embedded in a projective space, nonembeddable if not.
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The above example can be generalized to encompass vector spaces over skew

fields of arbitrary characteristic, by introducing hermitian and pseudoquadratic

forms. Every thick embeddable polar space of rank at least 3 can be constructed in

this way [13, Theorem 8.22]. The sphericity proof for ∆0(C) in case Cn in [2] relies

on this explicit description of the embeddable polar spaces.

Most polar spaces are embeddable. Among the thick polar spaces of rank at

least 3, every nonembeddable polar space has rank 3 and arises from a single

construction involving some Cayley–Dickson division algebra. We now turn to a

more detailed look at these nonembeddable polar spaces.
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Chapter 2

Simple connectivity in polar spaces

2.1 Point-line geometries

The following definitions are taken from [6, §1]. A space is a pair (P, L) where P is

a nonempty set whose elements are called points and L is a collection of subsets of

P of cardinality at least 2, called lines. Points x, y ∈ P are collinear, written x ⊥ y, if

there exists l ∈ L with x, y ∈ l. A set X ⊆ P is called a subspace of (P, L) if every line

l ∈ L meeting X in at least two points entirely belongs to X and is called singular

if any two of its points are collinear. We call a space nondegenerate if no point is

collinear with all other points. The spaces we will consider have the property that

any pair of distinct collinear points is contained in a unique line; these are the partial

linear spaces. The singular rank of a space is the maximal number n (possibly∞) for

which there exists a chain of distinct subspaces ∅ = X−1 ( X0 ( X1 · · · ( Xn such

that Xi is a singular subspace for each i (0 ≤ i ≤ n). For example, the singular rank

of a projective space is its dimension.

A morphism (P, L)→ (P′, L′) of spaces is a function P→ P′ for which the image

of every line in L is contained in a line in L′. Isomorphism is defined in the obvious

way.

The collinearity graph of a space (P, L) is the graph with vertex set P and having

an edge joining each pair of distinct collinear points.

A proper subspace X ⊆ P is a hyperplane if every line of X has at least one point
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in X. A (nondegenerate) polar space may then be defined as a space in which for

every point x, the set x⊥ of points collinear with x is a hyperplane. It is a fact that

every singular subspace of a polar space is a projective space [6, Theorem 3.1]; if the

maximal dimension of a singular subspace is n − 1 (i.e. the singular rank is n − 1)

then the polar space has rank n.

The collection of singular subspaces of a rank-n polar space, with two of them

declared incident if one contains the other, gives rise to a flag complex ∆ that is a

building of type Cn; conversely, every building of type Cn arises in this way [13,

§7.4].

We can describe the opposition relation in ∆ in terms of the underlying polar

space. Vertices A, B ∈ ∆ are opposite if, as subspaces, no point of one is collinear

with all points of the other. Two flags are opposite if every member of one flag is

opposite some member of the other flag. Let C be a chamber of ∆. Then ∆0(C) is

the subcomplex of ∆ generated by the chambers opposite C. More generally, if F is

a flag of ∆, then ∆0(F) is generated by the chambers containing a flag opposite F.

2.2 Nonembeddable polar spaces

Let K be a commutative field, and let O be a Cayley–Dickson division algebra with

center K. The Moufang projective plane over O is the projective plane PG(2, O)

with point set {(∞), (m), (x, y) : m, x, y ∈ O} and line set {[∞], [x], [m, k] : x, m, k ∈ O},

and with incidence relation ∗ defined by (x, y) ∗ [x] ∗ (∞) ∗ [∞] ∗ (m) ∗ [m, k] and

(x, y) ∗ [m, k] if and only if y = mx + k.

According to Tits [13], there exists a unique polar space ∆ of rank 3 with

planes isomorphic to the Moufang projective plane over O. As the planes are

non-Desarguesian, such a polar space cannot be embedded in a projective space,

i.e. is nonembeddable. Moreover, every thick nonembeddable polar space is of this

form [6, Theorem 3.34]. We give the coordinate description which can be found in
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[7].

Let∞ be a symbol not belonging to O. Then the point set of ∆ is the set

{(∞), (x1), (x1, x2), (x1, x2; k), (x1, x2, x3; k), (x1, x2, x3, x4; k) : x1, x2, x3, x4 ∈ O, k ∈ K}.

The point (∞) is called the point of type 0. If x1, x2, x3, x4 ∈ O and k ∈ K, then (x1) is

called a point of type 1, (x1, x2) is called a point of type 2, (x1, x2; k) is called a point of

type 3, (x1, x2, x3; k) is called a point of type 4 and (x1, x2, x3, x4; k) is called a point of

type 5. The planes of ∆ are the following subsets of points, subdivided into eight

types, where in each case a, b, s ∈ O. We use σ to denote the standard involution of

O.

Type I. The plane [∞] consists of the following points:

p[∞],1(a, b) B (a, b),

p[∞],2(s) B (s),

p[∞],3 B (∞).

Type II. For every k ∈ K, the plane [k] consists of the following points:

p[k],1(a, b) B (a, b; k),

p[k],2(s) B (s),

p[k],3 B (∞).

Type III. For every x ∈ O and every k ∈ K, the plane [x; k] consists of the following

points:

p[x;k],1(a, b) B (x, a, b; k),

p[x;k],2(s) B (−xσ, s),

p[x;k],3 B (∞).
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Type IV. For every x ∈ O and all k, l ∈ K, the plane α B [x; k, l] consists of the

following points:

pα,1(a, b) B (a, x + la, b; k + xσa + aσx + laσ+1),

pα,2(s) B (xσ, s; l),

pα,3 B (∞).

Type V. For all x1, x2 ∈ O and every k ∈ K, the plane α B [x1, x2; k] consists of the

following points:

pα,1(a, b) B (−xσ2 ,−xσ1 , a, b; k),

pα,2(s) B (s, x1 + x2s),

pα,3 B (x2).

Type VI. For all x1, x2 ∈ O and all k, l ∈ K, the plane α B [x1, x2; k, l] consists of

the following points:

pα,1(a, b) B (−xσ2 , a, xσ1 + ka, b; l + x1a + aσxσ1 + kaσ+1),

pα,2(s) B (s, x1 + x2s; k),

pα,3 B (x2).

Type VII. For all x1, x2, x3 ∈ O and all k, l ∈ K, the planeα B [x1, x2, x3; k, l] consists

of the following points:

pα,1(a, b) B (a,−xσ3 + x1a, b, xσ2 + ka− xσ1b; l + x2a + aσxσ2 + kaσ+1),

pα,2(s) B (x1, s, x2 + x3s; k),

pα,3 B (−xσ1 , x3).
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Type VIII. For all x1, x2, x3 ∈ O and all k, l, m ∈ K, the plane α B [x1, x2, x3; k, l, m]

consists of the following points:

pα,1(a, b) B (a, b, x3
σ + lb + x1a, x2

σ + ka + xσ1b;

m + x2a + aσxσ2 + x3b + bσx3
σ + kaσ+1 + lbσ+1 + (aσxσ1)b + bσ(x1a)),

pα,2(s) B (s, x1 + ls, x2 + x3s; k + xσ1s + sσx1 + lsσ+1),

pα,3 B (xσ1 , x3; l).

Each of the above point sets admits a natural bijection βα onto the point set

of the plane PG(2, O) by mapping the point pα,1(a, b) to the point (a, b), the point

pα,2(s) to the point (s), and the point pα,3 to (∞). Now, these planes determine

the collinearity relation in ∆, and collinearity determines the lines. It is proved in

[7] that one can explicitly describe all lines of ∆ as the inverse images of the point

sets of the lines in PG(2, O) under the bijections βα. Moreover, the collection of all

planes above is precisely the family of all maximal singular subspaces of ∆.

In particular, one can check that the intersection of two planes is either empty, a

single point, or a line of ∆. In [7], all lines are explicitly given independently of the

planes as sets of points, and the lines are subdivided into twelve types. Here, we

will only need two of those types. The lines of type L are the lines of the planes α of

type VIII not containing pα,3, and the lines of type K are the lines of the planes α of

type VIII containing pα,3 but not pα,2(0). Note that each line of type L also occurs

in a (unique) plane of type VII, and each line of type K occurs in a (unique) plane

of type VI. Two points will be called L-collinear if they are contained in a common

line of type L; similarly for K-collinearity.

We define the chamber C∞ as the chamber consisting of the point (∞), the line

through the points (∞) and (0), and the unique plane [∞] of type I.

If two points p and q are collinear, then we write p ⊥ q, and if two singular

subspaces V and W are contained in a common singular subspace, then we denote

by 〈V, W〉 the unique singular subspace of smallest dimension containing both V

and W.
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2.3 Proof of the main theorem

Theorem 1. Let ∆ be a thick polar space of rank 3, and let C be a chamber of ∆. Then

∆0(C) is simply connected if ∆ is isomorphic to a nonembeddable polar space.

Let ∆ be the nonembeddable thick polar space of rank 3 related to the Cayley–

Dickson division algebra O with center the commutative field K. We want to show

that ∆0(C∞) is simply connected. (Simple connectivity of ∆0(C) for an arbitrary

chamber C will follow, since ∆ has a chamber-transitive symmetry group.) We

follow the general strategy of Abramenko [2], namely, we define a filtration of

∆0(C∞) (i.e., a sequence of nested subgeometries whose union is ∆0(C∞)) that

begins with a “large” contractible subgeometry and preserves simple connectivity

at each step.

Note that it follows from the fact that the point (∞) belongs to all planes of type

I, II, III and IV that a point is opposite (∞) if and only if it has type 5. Likewise, it

is easy to see that a plane is disjoint from the plane [∞] (and hence opposite) if and

only if it has type VIII. Finally, it also follows that the lines opposite 〈(∞), (0)〉 are

precisely those of type L. Hence ∆0(C∞) is the geometry induced by the set

Y B {points of type 5} ∪ {lines of type L} ∪ {planes of type VIII}.

Before defining the filtration of Y we record a result to be used later.

Proposition 1. Suppose that Γ is a thick generalized quadrangle in which every point and

every line is incident with at least n2 + n + 2 elements, n ∈N, n ≥ 1. If Z is a nonempty

set of points and lines of Γ such that for any element z of Z at most n elements incident

with z in Γ do not belong to Z, then the geometry induced by Z is connected.

Proof. Let x, y be two elements of Z. Without loss of generality, we may assume

d(x, y) = 3. Indeed, if d(x, y) = 2, then consider any element of Z incident with y

not incident with x (since there is a unique element in Γ incident with both x and

y, and n ≥ 1, such element certainly exists). If d(x, y) = 4, then any element of Z

incident with y is at distance 3 from x.
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Since n2 + n + 2 − n ≥ n + 2, we can select n + 1 elements x0, x1, . . . , xn of Z

incident with x and at distance 4 from y. Since for each xi, i = 0, 1, . . . , n, there

are at most n elements incident with xi and not belonging to Z, and since for each

such element there is a unique element at distance 2 and incident with y, there

are at least (n2 + n + 1) − n(n + 1) ≥ 1 elements y0 incident with y such that the

unique elements zi at distance 2 from y0 incident with xi, i = 0, 1, . . . , n, belong to

Z. If ui denotes the unique element incident with both zi and y0, i = 0, 1, . . . , n,

then, by assumption, at least one of these, say u0, belongs to Z, and so the path

(x, x0, z0, u0, y0, y) belongs to Z. �

For our purposes, we will mostly need the previous result in the following

setting.

Corollary 1. Let Γ be a generalized quadrangle such that every element is incident with

infinitely many other elements. Let n ≥ 1 be an arbitrary natural number, and let

a1, a2, . . . , an be n elements of Γ. Then
⋂n

i=1 Γ0(ai) is connected.

Proof. Assume that x ∈
⋂n

i=1 Γ0(ai). Let i ∈ {1, 2, . . . , n}. If x is opposite ai, then Γx

is contained in Γ0(ai). If d(x, ai) = 3, then the only element of Γx not contained

in Γ0(ai) is the unique one at distance 2 from ai. If d(x, ai) ≤ 2, then obviously

x < Γ0(ai), a contradiction. Hence at most n elements incident with x are not

contained in
⋂n

i=1 Γ0(ai).

So the corollary will follow from Proposition 1 if we show that
⋂n

i=1 Γ0(ai) is

nonempty. Let ` be maximal with the property that there exists x ∈
⋂`

i=1 Γ0(ai).

Then ` ≥ 1. Suppose for a contradiction that ` < n. Then d(x, a`+1) ≤ 2. By

the previous paragraph applied to
⋂`

i=1 Γ0(ai), we know that there exists y ∈⋂`
i=1 Γ0(ai) with y incident with x and d(y, a`+1) = d(x, a`+1) + 1. Hence, after at

most three steps, we can find an element in
⋂`+1

i=1 Γ0(ai), contradicting the definition

of `. �

Proposition 2. Let q be a point of type 5. Then it is contained in a unique plane αq of type

V and in a unique line Lq intersecting 〈(∞), (0)〉 nontrivially. Moreover, in the generalized
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quadrangle ∆q, the chambers C opposite the chamber Cq B {Lq,αq} are precisely those for

which C∪ {q} is opposite C∞, i.e., ∆0
q(Cq) = ∆0(C∞)∩ ∆q.

Proof. The first assertions follow from the fact that q is opposite (∞). The last

assertion follows directly from Theorem 3.28 and Proposition 3.29 of [13]. �

We will define the filtration of Y step-by-step. We will have Y0 ⊆ Y1 ⊆ · · · ⊆

Y9 ⊆ Y10 = Y, and we start by defining Y0.

Throughout, put p B (0, 0, 0, 0; 0) ∈ Y and let Y0 ⊆ Y comprise the following

subspaces:

1. points of type 5 L-collinear with p;

2. lines of type L containing a point of type 5 L-collinear with p and whose point

of type 5 with first coordinate 0 is either

(a) not collinear with p, or

(b) K-collinear with p;

3. planes of type VIII containing a line as in 2(b) above.

The geometry Y0 can be contracted onto p since for any subspace U in Y0, the

subspace defined by the points in U collinear with p also belongs to Y0 (and we will

denote that subspace by U⊥p), and for any U in Y0 all of whose points are collinear

with p, the subspace 〈p, U〉 also belongs to Y0.

Concerning the points of Y0 it is appropriate the note that every point of Y0 r {p}

has nonzero first coordinate. Conversely, one easily checks that every point in ∆

of type 5 with nonzero first coordinate and collinear with p, is L-collinear with p.

This makes it rather easy to recognize points of Y0.

The planes in Y0 admit a simple characterization via coordinates.

Proposition 3. Let α = [x1, x2, x3; k, l, m]. Then α ∈ Y0 if and only if either (i) x2 =

x3 = m = 0 or (ii) x3 , 0 and m , 0. Moreover, p ∈ α in case (i) but not in case (ii).
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Proof. We have pα,1(0, 0) = (0, 0, xσ3 , xσ2 ; m), so p ∈ α (and hence α ∈ Y0) if and only

if x2 = x3 = m = 0. If p < α, then α⊥p is a line, and hence α ∈ Y0 if and only if

α⊥p
∈ Y0. But α⊥p has type L if and only if pα,3 is not collinear with p (by definition

of type L), and this happens if and only if x3 , 0 (indeed, if x3 = 0, then the

plane [x1, 0, 0; 0, l, 0] contains both p and pα,3; if x3 , 0, then any plane β of type

VIII through pα,3 has third coordinate nonzero, implying that the point pβ,1(0, 0)

has nonzero third coordinate). Noting that a point of type 5 with first coordinate

0 and collinear with p, is K-collinear with p if and only if its second coordinate is

distinct from 0, we see that, if x3 , 0, the point of type 5 with first coordinate 0

in α⊥p is K-collinear with p if and only if pα,1(0, 0) is not collinear with p, and this

happens if and only if m , 0 (indeed, the points of type 5 with first and second

coordinate 0 contained in a common plane of type V, VI or VII all have a common

last coordinate, as is easily checked; if m = 0, then (0, 0, xσ3 , xσ2 ; 0), x3 , 0, and

(0, 0, 0, 0; 0) are contained in the plane [0, 0; 0]). �

Now define Y1 as follows (where K× = Kr {0}; we will also use O× = Or {0}):

Y1 = Y0∪
⋃

m∈K×
{q ∈ Y : q is a point K-collinear with and distinct from (0, 0, 0, 0; m)}.

The points (0, 0, 0, 0; m) have special properties.

Lemma 1. For all m ∈ K we have (∞)⊥ ∩ (0, 0, 0, 0; m)⊥ = (∞)⊥ ∩ p⊥. In particular,

no point of type 5 collinear with (0, 0, 0, 0; 0) is collinear with (0, 0, 0, 0; m), m ∈ O×.

Proof. One easily calculates that

(∞)⊥ ∩ (0, 0, 0, 0; m)⊥ = {(0), (x1, 0), (x1, 0; k), (x1, x2, 0; k) : x1, x2 ∈ O, k ∈ K},

which is independent of m. �

Proposition 4. For any q ∈ Y1 rY0, the subgeometry Y0 ∩ ∆q is connected.

Proof. Let m ∈ K×. An arbitrary planeαof type VIII containing the point pα,1(0, 0) =

(0, 0, 0, 0; m) has coordinates [x1, 0, 0; k, l, m], x1 ∈ O, k, l ∈ K. An arbitrary point
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in that plane K-collinear with and distinct from (0, 0, 0, 0; m) is just an arbitrary

point in α with first coordinate equal to 0 and second distinct from 0, i.e., q =

(0, b, lb, xσ1b; m + lbσ+1), b , 0. Lemma 1 implies that q < Y0.

By Lemma 1, a point of type unequal to 5 is collinear with p if and only if it

is collinear with (0, 0, 0, 0; m). Hence lines in ∆q ∩ Y opposite 〈q, (0, 0, 0, 0; m)〉 are

exactly those whose point of type 4 is not collinear with p. As p is not collinear

with q, such a line’s unique point r collinear with p has type 5. Moreover, the first

coordinate of r is nonzero as r and q are L-collinear but not K-collinear. It follows

that p and r are L-collinear. Hence the lines of Y0 ∩ ∆q are precisely the lines of

∆q(Cq)∩ ∆q({〈q, (0, 0, 0, 0; m)〉, β}), where β is any plane through 〈q, (0, 0, 0, 0; m)〉.

It is straightforward to calculate that, if a plane β = [x′1, x′2, x′3; k′, l′, m′] contains

the point q, then x′3 = (l− l′)bσ and m′ = m− (l− l′)bσ+1. By Proposition 3, such a

plane belongs to Y0 if and only x′3 , 0 and m′ , 0.

Since b , 0, the equality x′3 = 0 is equivalent with l = l′. This is equivalent

with saying that the unique point r of type 3 of β can be written as (x′1
σ, 0; l). A

plane γ = [x′′1 , x′′2 ; k′′, l′′] of type VI contains q if and only if x′′1 = (l− k′′)bσ, x′′2 = 0

and l′′ = m + (k′′ − l)bσ+1. Such a plane contains r if and only if k′′ = l; indeed,

this is necessary as the last coordinate of r, which is l, must be equal to the third

coordinate of γ, which is k′′, but it is also sufficient since k′′ = l implies x1 = 0.

Hence, the unique plane of type VI through q and r has coordinates [0, 0; l, m], and

it follows that a plane [x′1, x′2, x′3; k′, l′, m′], x′1, x′2, x′3 ∈ O, k′, l′, m′ ∈ K, containing q

satisfies x′3 , 0 if and only if it intersects the plane [0, 0; l, m] only in q, hence if and

only if those two planes define opposite elements in the generalized quadrangle

∆q.

Likewise, with similar calculations, one shows that the condition m′ , 0 trans-

lates into [x′1, x′2, x′3; k′, l′, m′] being opposite γ′ = [mb−1, 0; l −mb−σ−1, 0] in ∆q. It is

now easy to see that

Y0 ∩ ∆q = ∆0
q(Cq)∩ ∆0

q({〈q, (0, 0, 0, 0; m)〉,γ})∩ ∆0
q({〈q, (0, 0, 0, 0; m)〉,γ′}).
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The result now follows from Corollary 1. �

Using the Seifert–Van Kampen theorem, we now see that Y1 is simply connected.

We now add some lines to Y1 and define

Y2 = Y1 ∪ {L : L is a line of type L containing a point of Y1 rY0}.

In order to show that ∆L ∩Y1 is connected for L ∈ Y2 rY1, we only need to show

that L is contained in some plane of Y0, as ∆L is complete bipartite.

Proposition 5. Each line L ∈ Y2 rY1 is contained in a plane of Y0, and hence Y2 is simply

connected.

Proof. Let the line L contain the point q = (0, b, lb, d; m + lbσ+1), with b ∈ O×, d ∈ O

and l, m ∈ K. Let the unique point of type 4 on L have coordinates (w1, w2, w3; i) ∈

O3
×K. As in the previous proof, one calculates that a plane β = [x′1, x′2, x′3; k′, l′, m′]

contains q if and only if 
x′2 = d− x′1

σbσ,

x′3 = (l− l′)bσ,

m′ = m− (l− l′)bσ+1.

If we choose l′ < {l, l−mb−σ−1
}, which is always possible as |K| > 2, then β contains

L and belongs to Y0. �

We now add some planes to Y2 and define

Y3 = Y2 ∪ {[x1, x2, x3; k, l, 0] : x3 ∈ O×, x1, x2 ∈ O, k, l ∈ K}

∪ {[x1, x2, 0; k, l, m] : x1 ∈ O, x2 ∈ O×, k, l ∈ K, m ∈ K×}.

Proposition 6. Let α ∈ Y3 r Y2. Then ∆α ∩ Y2 is connected, and hence Y3 is simply

connected.

Proof. Let A be the set of points in ∆α∩Y0, let B be the set of points in ∆α∩ (Y1rY0),

and let W be the set of lines in ∆α ∩Y2. Note that all points of A have a nonzero first
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coordinate (indeed, every such point is L-collinear with p and distinct from p since

either x2 , 0 or x3 , 0) and all points in B have as first coordinate 0. So A∩ B = ∅.

We first show that A , ∅ , B.

• α = [x1, x2, x3; k, l, 0], with x3 ∈ O×, x1, x2 ∈ O, k, l ∈ K. The point of type

3 in α is (xσ1 , x3; l), which is never collinear with p, since x3 , 0. Hence α⊥p

is a line of type L, and so A , ∅ in this case. Also, pα,1(0, xσ3) is K-collinear

with (0, 0, 0, 0; xσ3) since both points have 0 as first coordinate and lie in the

common plane [x−1
3 x2 + x1, 0, 0; 0, 1 + l, xσ+1

3 ]. So B , ∅.

• α = [x1, x2, 0; k, l, m], with x1 ∈ O, x2 ∈ O×, k, l ∈ K, m ∈ K×. The point of

type 3 in α is (xσ1 , 0; l), which is always collinear with p, and we also have that

neither pα,1(0, 0) = (0, 0, 0, xσ2 ; m) nor pα,2(0) = (0, x1, x2; k) is collinear with

p (all this because x2 , 0 and a plane of type VII or VIII containing p must

have second coordinate 0). Hence every point in α distinct from pα,3 collinear

with p has type 5 and has nonzero first coordinate, hence belongs to Y0 and to

A. Also, the point pα,1(0, b) = (0, b, lb, xσ2 + xσ1b; m + lbσ+1) is K-collinear with

and distinct from (0, 0, 0, 0; m), for every b ∈ O×, see the first paragraph of the

proof of Proposition 4. Hence B , ∅.

Now, if a line L in α belongs to Y0, then it contains a point of A. Likewise, if a line

L in α belongs to Y2 r Y0, then it contains a point of B. Moreover, every line of

type L through any point of B is contained in Y2. Noting that all lines connecting a

point of A with a point of B have type L, we immediately deduce that A∩ B∩W is

connected. �

Note that a plane [x1, x2, x3; k, l, m], x1, x2, x3 ∈ O, k, l, m ∈ K, belongs to Y rY3 if

and only if x3 = 0 and either x2 = 0 and m , 0, or x2 , 0 and m = 0. These will be

added in two distinct steps (Y5 and Y7, respectively).

Now we again add some points.

Y4 = Y0∪
⋃

m∈K×
{q ∈ Y : q is a point L-collinear with and distinct from (0, 0, 0, 0; m)}.
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We first establish the general form of a point in Y4 r Y1. Firstly, an arbitrary

plane α of type VIII containing the point pα,1(0, 0) = (0, 0, 0, 0; m) has coordinates

[x1, 0, 0; k, l, m], x1 ∈ O, k, l ∈ K. An arbitrary point in that plane L-collinear with

and distinct from (0, 0, 0, 0; m) is just an arbitrary point in α with first coordinate,

say a ∈ O, unequal 0, i.e.,

q = (a, b, lb + x1a, ka + xσ1b; m + kaσ+1 + lbσ+1 + (aσxσ1)b + bσ(x1a)), a , 0.

Proposition 7. Let q ∈ Y4 r Y3. Then ∆q ∩ Y3 is connected and hence Y4 is simply

connected.

Proof. Put q = (a, b, lb + x1a, ka + xσ1b; m + kaσ+1 + lbσ+1 + (aσxσ1)b + bσ(x1a)), as

above and put r = (0, 0, 0, ma−σ; 0). It is clear that every plane of type VIII incident

with r must have the third and last coordinate equal to 0. Let β = [x′1, x′2, 0; k′, l′, 0],

with x′1, x′2 ∈ O and k′, l′ ∈ K arbitrary, and suppose q ∈ β. The description of planes

of type VIII implies


lb + x1a = l′b + x′1a,

ka + xσ1b = x′2
σ+ k′a + x′1

σb,

m+kaσ+1+lbσ+1+(aσxσ1)b+bσ(x1a) = x′2a+aσx′2
σ+k′aσ+1+l′bσ+1+(aσx′1

σ)b+bσ(x′1a).

Putting L = l− l′, K = k− k′ and X1 = x1 − x′1, we can rewrite this as


Lb + X1a = 0,

Ka + Xσ
1b = x′2

σ,

m + Kaσ+1 + Lbσ+1 + (aσXσ
1)b + bσ(X1a) = x′2a + aσx′2

σ.

Remembering K, L ∈ K, we deduce from the first equation that X1 belongs to

the skew field generated by a and b; then the second equation says that also x′2
belongs to this skew field. Hence all elements in this system of equations belong

to a common skew field, and so we may remove the parentheses. It is now an

elementary exercise to eliminate L and K from the first two equations, and then
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also X1 disappears in the last equation, giving m = x′2a. Noting that (0, 0, 0, x′2
σ; 0)

always belongs to [x′1, x′2, 0; k′, l′, 0], we conclude that r ∈ β. Hence a plane of type

VIII containing q has the form [x′1, x′2, 0; k′, l′, 0], x′1, x′2 ∈ O, k′, l′ ∈ K, if and only if it

contains r.

Now put s = (0, 0, 0, 0; m). It is clear that every plane of type VIII incident

with s must have second and third coordinate equal to 0. Conversely, let γ be an

arbitrary plane with coordinates [x′′1 , 0, 0; k′′, l′′, m′′] and suppose q ∈ γ. Note that

(0, 0, 0, 0; m′′) ∈ γ. But then Lemma 1 implies m = m′′, yielding s ∈ γ. Hence a plane

of type VIII containing q has the form [x′′1 , 0, 0; k′′, l′′, m′′], x′′1 ∈ O, k′′, l′′, m′′ ∈ K, if

and only if it contains s. We conclude that the planes of Y3 in ∆q are precisely the

planes of ∆0
q(Cq)∩ ∆0

q(〈r, q〉)∩ ∆0
q(〈s, q〉).

Noting that p is not collinear with q, a line R of type 5 through q is not contained

in Y0 if and only if its unique point of type 4 is collinear with p, or its unique point

of type 5 with first coordinate 0 is collinear with p. Now, by Lemma 1, the point

of type 4 on R is collinear with p if and only if it is collinear with s if and only if

〈q, s〉 is collinear with R in ∆q. Now let u be a point of type 5 with first coordinate 0.

Suppose first that u is collinear with p. Since u is not L-collinear with p, one verifies

(see [7]) that the line 〈u, p〉 is contained in a unique plane of type either V or VI,

of the form [0, 0; 0] or [0, 0; k, 0], k ∈ K respectively. But such a plane automatically

contains r. Conversely, if u is collinear with r, then the same argument implies

that p is collinear with u. Hence we have shown that the lines of Y0 in ∆q are

precisely those of ∆0
q(Cq)∩ ∆0

q(〈r, q〉)∩ ∆0
q(〈s, q〉). By Corollary 1, this is connected.

Proposition 5 implies that ∆q ∩Y3 is connected. �

We now add half of the missing planes to Y4 and define

Y5 = Y4 ∪ {[x1, 0, 0; k, l, m] : x1 ∈ O, k, l ∈ K, m ∈ K×}.

Proposition 8. Let α ∈ Y5 r Y4. Then ∆α ∩ Y4 is connected and hence Y5 is simply

connected.

Proof. Let α = [x1, 0, 0; k, l, m], x1 ∈ O, k, l ∈ K, m ∈ K×. We note that (0, 0, 0, 0; m) ∈
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α, hence by the definition of Y1 and Y4, all other points of type 5 of α are contained

in Y4. By the definition of Y2, all lines in α of type L containing a point pα,1(0, b),

b ∈ O×, belong to Y4. This implies easily that ∆α∩Y4 is connected (in fact, it suffices

to find two lines through each point of α that belongs to Y4, but here we found

infinitely many). �

So far, Y5 contains all lines of type L all of whose points are collinear with p. It

also contains all lines of type L with a unique point q collinear with p such that q

has type 5 and is L-collinear with p, or such that q has type 4 and the line contains a

point K-collinear with some (0, 0, 0, 0; m), m ∈ K×. Since all lines of type L contain

some point collinear with (0, 0, 0, 0; m), for all m ∈ O, it is natural to first concentrate

on special cases of that collinearity.

Also, there are still lines in Y not incident with any point of Y5. We cannot

add those lines, as such a line M would give rise to non-connected ∆M ∩ Y5. For

instance, one checks that the line T of the plane α = [0, 1, 1; 0, 0, 0] containing the

points pα,2(−1) and pα,1(0, x), with x ∈ OrK, does not contain any point of type 5

collinear with any point (0, 0, 0, 0; m), m ∈ K.

Hence we now add some specific lines to Y5 and define Y6 as follows.

Y6 = Y5∪{〈q, q′〉 : q = (a, b, c, d; k) ∈ Y4, b , 0 and q ⊥ q′ = (a′, 0, c′, d′; k′), a′ < {0, a}}.

By definition, every line R ∈ Y6 r Y5 contains at least one point of Y4; so to

prove connectivity of ∆R ∩Y5, it suffices to prove that there is at least one plane of

Y5 incident with R.

Proposition 9. There is at least one plane of Y3 containing any line R of Y6 rY5. Conse-

quently, ∆R ∩Y5 is connected and hence Y6 is simply connected.

Proof. Every line of type L is incident with infinitely many planes of type VIII, and

exactly one of type VII. Suppose two planes α1,α2 of type VIII meet in R and let

αi = [xi, yi, 0; ki, li, 0], xi, yi ∈ O, yi , 0, ki, li ∈ K, i = 1, 2.

Let R = 〈q, q′〉 with q = (a, b, c, d; k) ∈ Y4, b , 0, q ⊥ q′ = (a′, 0, c′, d′; k′), a′ <

{0, a}. Let r = (w1, w2, w3; i) be the unique point of type 4 in R. Note that this implies,
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by the definition of lines in ∆, that b −w1a = 0 −w1a′, hence w1 = b(a − a′)−1 , 0.

Since r ∈ αi, i = 1, 2, we easily deduce

 x1 − x2 = −(l1 − l2)w1,

k1 − k2 = (l1 − l2)wσ+1
1 .

Since a′ , 0 and w1 , 0, R contains a point pαi,1(0, e), with e , 0, i = 1, 2. This

easily yields, by comparing the third coordinate of pα1,1(0, e) = pα2,1(0, e), l1b = l2b,

hence l1 = l2, and by the above equalities, x1 = x2 and k1 = k2. From the fourth

coordinate of pα1,1(0, e) = pα2,1(0, e) follows y1 = y2, hence α1 = α2. It follows that

there is at most one plane of type VIII not in Y5 that contains R. The proposition is

proved. �

Now we add all remaining planes to Y6.

Y7 = Y6 ∪ {[x1, x2, 0; k, l, 0] : x1 ∈ O, k, l ∈ K, x2 ∈ O×}.

Proposition 10. For any plane α ∈ Y7 rY6, we have that ∆α ∩Y6 is connected and hence

Y7 is simply connected.

Proof. Put α = [x1, x2, 0; k, l, 0] : x1 ∈ O, k, l ∈ K, x2 ∈ O×. Let us determine the

points of Y6 in α. Note first that pα,3 = (xσ1 , 0; l) = pβ,3, with β = [x1, 0, 0; 0, l, 0] 3 p.

Also, pα,1(0, 0) = (0, 0, 0, xσ2 ; 0) = pγ,1(0, xσ2) 3 p, where γ = [0, 0; 0]. Hence the line

α⊥p has type K and all of its points of type 5 have 0 as first coordinate and so are

not L-collinear with p. Consequently, there are no points of Y0 in α.

By Lemma 1, every point rm B (0, 0, 0, 0; m), m ∈ K, is collinear with pα,3. Hence

all points of type 5 collinear with rm have the same first coordinate (distinct from

0 by Lemma 1 again), and so there is one with second coordinate 0, say pα,1(a, 0).

Since a , 0, pα,1(a, 0) cannot be K-collinear with rm. So, no point of α belongs to Y1.

The calculation in the first part of the proof of Proposition 7 shows that pα,1(a, 0) is

L-collinear to rm if and only if m = x2a, hence a ranges over all K-multiples of x−1
2 .

Since every line of type L in α contains a point of type 5 with first coordinate x−1
2 ,
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it suffices to show that two arbitrary points of Y4 in α can be joined by a path of Y6

in α. By the definition of lines in Y6 r Y5, every point of Y4 in α is connected by a

single line to pα,1(x−1
2 , 0), except for the points pα,1(x−1

2 , b), b ∈ O×, and the points

pα,1(a, 0), a , x−1
2 . Every point pα,1(a, 0), a , x−1

2 is connected with every point

pα,1(x−1
2 , b), b ∈ O×, so we have at most two connected components. Now, picking

two distinct m, m′ ∈ Kr {0, 1}, we see these two sets are connected since the point

pα,1(mx−1
2 , 1) is connected with pα,1(m′x−1

2 , 0). �

We now add all the lines having a point in Y7 (and we know that there are still

others, see the example of the line T above).

Y8 = Y7 ∪ {M : M is a line of type L containing a point in Y4}.

Since every line in Y8 rY7 is by definition incident with a point of Y7, and since

Y7 contains all planes of type VIII, and every line of type L is inside a plane of type

VIII, we know that ∆M ∩Y7 is connected, for M ∈ Y8 rY7, and hence Y8 is simply

connected.

We now add all remaining points to Y8 and define

Y9 = Y8 ∪ {q : q is a point of type 5}.

Proposition 11. For any point q ∈ Y9 rY8, we have that ∆q ∩Y8 is connected and hence

Y9 is simply connected.

Proof. First note that Y8 contains all planes of Y, hence if we consider a line M 3 q

of Y8, then all but exactly one planes of ∆q incident with M belong to ∆q ∩Y8. Now

let α = [x1, x2, x3; k, l, m], x1, x2, x3 ∈ O, k, l, m ∈ K, be a plane through q. We show

that at most two lines of α through q do not belong to Y8. It will then follow from

Proposition 1 that ∆q ∩Y8 is connected.

Suppose first that x3 , 0. Then there is a unique point r = pα,2(−x−1
3 x2) of type

4 with third coordinate 0. Let M be a line in α through q distinct from (1) the line of

type K through q, and (2) the line 〈q, r〉. Then M has type L and the point rM on M
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of type 4 has third coordinate distinct from 0. It is easily seen that this implies that

rM is not collinear with p, hence, by Lemma 1, rM is not collinear with any point

(0, 0, 0, 0; m′), for any m′ ∈ K. Hence, again using Lemma 1, all points sm′ collinear

with (0, 0, 0, 0; m′), m′ ∈ K, and incident with M are distinct, and so at least one

has first coordinate nonzero, implying that it is L-collinear with the corresponding

point (0, 0, 0, 0; m′). This, in turn, implies that M belongs to Y8.

Hence we may assume that x3 = 0. If x2 , 0, then no point of type 4 in α has

third coordinate equal to 0, and so the argument of the previous paragraph implies

that only the line of type K through q in α does not belong to Y8, but all other lines

in α through q do.

Hence we may assume that x2 = x3 = 0. In this case (0, 0, 0, 0; m) ∈ α, and then

it follows from the definitions of Y1, Y2, Y4 and Y8 that all lines of type L through q

in α belong to Y8. �

Now that we have all points and planes of Y in Y9, we can add all remaining

lines and define Y10 = Y. Clearly, for any line M ∈ Y10, the geometry ∆M ∩ Y

is connected and, once again, the Seifert–Van Kampen theorem implies that Y is

simply connected. This completes the proof of Theorem 1 for the nonembeddable

thick polar spaces.

40



Chapter 3

Group-theoretic applications

3.1 First results

We will now apply our knowledge that ∆0(C) is simply connected when ∆ is a

nonembeddable polar space to express certain groups as amalgams. The following

result of Soulé [12] provides the basic tool.

Proposition 12. Suppose a group G acts on a simplicial complex T with simplicial fun-

damental domain T′. Denote by E′ the vertex set of T′ and by R(T), R(T′) the geometric

realizations of T and T′. If R(T′) is connected and R(T) is simply connected, then G is the

free product of the stabilizers Gv (v ∈ E′) amalgamated with respect to their intersections.

Already in [12], Proposition 12 is used to express a group G with BN-pair

(of rank at least 3 if spherical) as an amalgam of its maximal standard parabolic

subgroups, i.e. maximal subgroups containing B. The proof uses the full action of G

on the associated building—simply connected by the Solomon–Tits theorem—with

a chamber as fundamental domain.

Our recently submitted joint paper [9] contains sharp bounds, improving on

those of Abramenko [2], that characterize when ∆0(C) is simply connected for

finite polar spaces. The proof, due to Max Horn, is via computer calculations.

Combining this result with Theorem 1 and Abramenko’s original results about

∆0(C) in the rank-3 case, we obtain the following
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Theorem 2. Let G be a group with spherical BN-pair of irreducible rank 3. Assume that

every panel of the associated building ∆ = ∆(G, B) is contained in at least 6 chambers. Let

D be a chamber opposite C = B ∈ ∆(G, B). Then B is the free product of the stabilizers Bv,

where v ranges over the vertices of D, amalgamated with respect to their intersections.

Proof. If ∆ is associated to a nonembeddable polar space, then ∆0(C) is simply

connected by Theorem 1. Otherwise, ∆0(C) is simply connected according to [2,

Theorem B] in case ∆ has type A3, or [9, Corollary 2.3] in case ∆ has type C3. B acts

on ∆0(C) with the geometric simplex D as a simplicial fundamental domain, and

the result follows from Proposition 12. �

Remark. The theorem remains true for BN-pairs of rank greater than 3. This follows

from Corollary 2 below, viewing the spherical building as a twin building.

3.2 An application involving twin buildings

Let ∆ = (∆+, ∆−, δ∗) be a thick twin building of type (W, S) and rank at least 3.

Fix a pair of opposite chambers C+ ∈ ∆+, C− ∈ ∆−. As previously mentioned, we

denote by ∆0(C−) the subcomplex of ∆+ generated by the chambers opposite C−.

We now investigate the simple connectivity of ∆0(C−) by defining an appropriate

filtration.

The numerical codistance function d∗ = `◦δ∗ between pairs of chambers extends

to pairs of simplices via

d∗(a, b) = min{d∗(x, y) : x and y are chambers, a ≤ x, b ≤ y},

and therefore ∆0(C−) = {x+ ∈ ∆+ : d∗(C−, x+) = 0}. More generally we define for

every j ∈N0 the subcomplex

∆ j = {x+ ∈ ∆+ : d∗(C−, x+) ≤ j}

of ∆+.
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For a chamber D+ ∈ ∆+ we define its restriction with respect to C−, denoted

RC−(D+), as its face of cotype {s ∈ S : `(ws) > `(w)}, where w = δ∗(C−, D+).

Lemma 2. For any face b+ ≤ D+, d∗(C−, b+) = d∗(C−, D+) if and only if RC−(D+) ≤ b+.

Proof. Denote by C(b+) the set of chambers of ∆+ that contain b+. We have

δ∗({C−} × C(b+)) = wWK where K is the cotype of b+ [3, Lemma 5.148]. The

coset wWK contains a unique representative w0 of minimal length, characterized

by the property that `(w0s) = `(w0) + 1 for all s ∈ K [3, Proposition 2.20]. Thus

d∗(C−, b+) = d∗(C−, D+)⇔ w = w0 ⇔ K ⊆ {s ∈ S : `(ws) > `(w)}. �

We now make several definitions related to the filtration of ∆+. Here j ∈N0.

R j+1 B {RC−(D+) : D+ ∈ ∆ j+1 r ∆ j, D+ is a chamber}

b+ ∈ R j+1 { S(b+) B {γ+ ∈ ∆+ : γ+ ∪ b+ ∈ ∆ j+1} = st∆ j+1(b+)

T′(b+) B {γ+ ∈ S(b+) : γ+ ∩ b+ = ∅} = lk∆ j+1(b+)

T(b+) B S(b+)∩ ∆ j

Lemma 3.

1. ∆ j+1 = ∆ j ∪
⋃

b+∈R j+1
S(b+)

2. S(b+)∩ S(b′+) ⊆ ∆ j for all b+ , b′+ ∈ R j+1

3. T(b+) = ∂b+ ∗ T′(b+)

Proof.

1. The inclusion “⊇” is clear, since by definition S(b+) ⊆ ∆ j+1 for any b+ ∈ R j+1.
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As for “⊆”, we have

∆ j+1 r ∆ j = {x+ ∈ ∆+ : d∗(C−, x+) = j + 1}

= {x+ ∈ ∆+ : x+ ≤ D+ for some chamber D+ ∈ ∆ j+1 r ∆ j

with d∗(C−, x+) = d∗(C−, D+)}

=
⋃

D+∈∆ j+1
D+ chamber

{x+ ≤ D+ : RC−(D+) ≤ x+}

⊆

⋃
b+∈R j+1

S(b+)

according to Lemma 2.

2. Write b+ = RC−(D+) and b′+ = RC−(D
′

+). If D+ ∩D′+ < ∆ j then D+ ∩D′+
contains a smallest face not in ∆ j, namely RC−(D+) = RC−(D

′

+), according to

Lemma 2. This contradicts the assumption that b+ , b′+.

3. This follows from the fact that T(b+) = {γ+ ∈ S(b+) : γ+ � b+}, itself a

consequence of Lemma 2. �

Let b+ ∈ R j+1 and choose a twin apartment Σ = (Σ+, Σ−) such that C− ∈ Σ−

and b+ ∈ Σ+. Set b− = opΣ(b+) ∈ Σ− and P− = projb− C−. Then ∆′ = (∆b+ , ∆b− , δ∗|)

is a twin building of lower rank than ∆.

As explained in the proof of Lemma 2,

d∗(C−, x+) = d∗(C−, b+)⇔ δ∗(C−, x+) = w0 (3.1)

for any x+ ∈ C(b+). At the same time, there is a one-to-one correspondence

C(T′(b+))↔ {x+ ∈ C(b+) : d∗(C−, x+) = d∗(C−, b+)}. (3.2)

Lemma 4. T′(b+) is isomorphic to ∆′0, the first term of the filtration of ∆b+ with respect

to P− ∈ ∆b− .
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Proof. First let us give a characterization of P− = projb− C−. As C−, b−, b+ ∈ Σ, we

have δ−({C−} × C(b−)) = δ∗({C−} × C(b+)) = w0WK. So the chamber P− ∈ C(b−)

minimizing d({C−} × C(b−)) is the (unique) chamber of Σ− with δ−(C−, P−) = w0.

Now we prove the lemma. In light of (3.1) and (3.2), it suffices to establish the

following: for any chamber x+ ∈ C(b+),

δ∗(C−, x+) = w0 ⇔ d∗(P−, x+) = 0.

“⇒”: As δ∗(C−, x+) = δ−(C−, P−), x+ op P− by [3, Corollary 5.141].

“⇐”: According to [3, Corollary 5.140], δ∗(C−, x+) can be written as some

subword of a reduced decomposition of δ−(C−, P−) = w0. At the same time,

δ∗(C−, x+) ∈ w0WK, so d(C−, x+) ≥ `(w0). Together these facts imply that δ∗(C−, x+) =

w0. �

We are now ready to reduce the study of ∆0(C−) to criteria involving small links

in ∆. By 3-spherical we mean that every rank-3 link is spherical.

Proposition 13. Suppose that the twin building ∆ is 3-spherical and satisfies

1. for every rank-2 link θ in ∆ and any chamber x ∈ θ, θ0(x) is connected; and

2. for every rank-3 link θ in ∆ and any chamber x ∈ θ, θ0(x) is 1-connected.

Then ∆0(C−) is 1-connected.

Remark. An equivalent statement, proven using a combinatorial argument involv-

ing chamber systems, was given in [8, Theorem 1.1].

Proof. As a consequence of the first hypothesis, ∆0(C−) is connected, even gallery

connected [11, Theorem 1.5]. We now show that π1(∆0(C−)) is trivial, proceeding

by induction on the rank of ∆.

The base case rk ∆ = 3 is immediate from the second hypothesis. For higher

rank, we use Lemma 3. By 3., the cone over T(b+) is ∂b+ ∗ T′(b+) ∗ point, which

is homeomorphic to b+ ∗ T′(b+) = S(b+). So by 1. and 2. we deduce that ∆ j+1 is
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obtained from ∆ j by attaching cones over the subcomplexes T(b+) for b+ ∈ R j+1.

It will follow that π1(∆ j) → π1(∆ j+1) is an isomorphism for all j ∈ N0, by the

Seifert–van Kampen theorem, provided that the T(b+) are 1-connected.

To understand T(b+) we use Lemma 4. As T(b+) = ∂b+ ∗ T′(b+) � ∂b+ ∗ ∆′0, it

suffices to show either that ∆′0 is 1-connected, or that ∂b+ , ∅ and one of the pair

∂b+ and ∆′0 is connected. We consider several cases.

• rk ∆b+ > 3: ∆′ satisfies the assumptions of the proposition, so ∆′0 is 1-

connected by induction.

• rk ∆b+ = 3: Again ∆′0 is 1-connected, this time by hypothesis 2.

• rk ∆b+ = 2: Hypothesis 1. implies that ∆′0 is connected. But rk b+ + rk ∆b+ =

rk ∆ > 3, so rk b+ ≥ 2 and ∂b+ is nonempty.

• rk ∆b+ = 1: This time rk b+ > 2, so ∂b+ is not only nonempty but also

connected.

Finally, ∆+ is 1-connected by the Solomon–Tits theorem, so

{1} = π1(∆+) = lim
j→∞

π1(∆ j) = π1(∆0). �

Corollary 2. Suppose ∆ is an irreducible, 3-spherical twin building, and every panel is

contained in at least 6 chambers. Then ∆0(C−) is 1-connected.

Proof. The assumptions on ∆ imply that every rank-2 link is Moufang [3, Remark

5.212]. The fact that every panel is contained in at least 6 chambers then implies

hypothesis 1. of Proposition 13 [2, Proposition 7].

Hypothesis 2. of Proposition 13 holds whenever the rank-3 link θ is irreducible,

as explained in the proof of Theorem 2, once again using that every panel is

contained in at least 6 chambers. If instead θ is reducible then θ0(x) is a join

of complexes of the same form but lower rank [2, Lemma 16], and therefore 1-

connected. �
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Suppose (G, B+, B−, N, S) is a twin BN-pair of irreducible 3-spherical type (W, S).

In the associated twin building ∆ = (∆+, ∆−), suppose every panel is contained

in at least 6 chambers. Write B± = GC± for opposite chambers C± ∈ ∆±. As in

Theorem 2, we have an action of B− on ∆0(C−) with C+ (together with its faces) as

fundamental domain, and Corollary 2 paired with Proposition 12 yields

Corollary 3. Under the above assumptions on (G, B+, B−, N, S) and ∆ = (∆+, ∆−), B−

is an amalgam of vertex stabilizers with respect to edge stabilizers of C+.

We can phrase Corollary 3 in purely group-theoretic terms as follows.

Corollary 4. Let (G, B+, B−, N, S) be a twin BN-pair of irreducible 3-spherical type and

suppose that [B±{1, s}B± : B±] ≥ 6 for all s ∈ S. Then B− is the amalgam of its subgroups

B+(Sr {s})B+ ∩ B− (s ∈ S) along their intersections B+(Sr {s, t})B+ ∩ B− (s , t ∈ S).

Proof. The index [B±{1, s}B± : B±] counts the number of chambers in the panel of

cotype s of the fundamental chamber B± in the building ∆(G, B±), hence in any

panel of that cotype. We can therefore invoke Corollary 3. Its conclusion is the

conclusion of this corollary, with B+ ∈ ∆(G, B+) playing the role of C+. �

3.3 Finite presentability of B±

We continue to work under the assumptions of Corollary 3. Let us also make some

additional assumptions: that the action G
φ
→ Aut ∆ has finite kernel, and that ∆ is

locally finite in the sense that every panel is contained in finitely many chambers.

We will show in this case that B− is finitely presented.

let Σ be the twin apartment containing the chambers C±. Set H B FixG Σ =

B− ∩ B+. According to the rigidity theorem of Tits [3, Remark 5.208], any element

of H that fixes all chambers adjacent to C+ must lie in kerφ. As there are only

finitely many such chambers, and kerφ is finite, H is finite as well.

We now prove that B− is finitely presented by induction on rk ∆, beginning

with the case rk ∆ = 4. Each stabilizer (B−)v of a vertex of C+ acts on lk∆ v, a
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finite building since ∆ is 3-spherical and locally finite. The kernel of this action is

contained in H, thus is finite, making (B−)v finite as well. As an amalgam of finite

groups, then, B− is finitely presented.

Now comes the induction. If once more v is a vertex of C+, let v− be its opposite

in Σ, i.e. the vertex of C− of matching type. We obtain a new twin BN-pair in

G′ B Gv ∩ Gv− of the form (G′, B+ ∩ G′, B− ∩ G′) and associated twin building

(∆v, ∆v−); these satisfy the assumptions of Proposition 13 as well as the finiteness

assumptions of this section, so B− ∩G′ is finitely presented by induction. But B− ∩

G′ = B− ∩Gv ∩Gv− = B− ∩Gv = (B−)v. Likewise, if w is another vertex of C+ then

(B−)v∩ (B−)w = (B−){v,w} = B−∩G′′ belongs to the BN-pair (G′′, B+∩G′′, B−∩G′′)

in G′′ B G{v,w} ∩GopΣ{v,w} and is thus finitely presented by induction. We conclude

that B− is finitely presented, being an amalgam of finitely presented groups with

respect to finitely presented subgroups.

In view of the manifest symmetry of + and −, the same conclusion holds for

B+.

Let us specialize to the case of Kac–Moody groups, in the sense of Tits [14].

Theorem 3. Let G be a Kac–Moody group functor of irreducible, 3-spherical type. Then

the subgroups B± ≤ G(Fq) are finitely presented if 5 ≤ q < ∞.

Remark. A similar result (finite presentation of parabolic subgroups when 7 ≤ q <

∞) was announced in [1, Theorem 2], with a sketch of a proof along the lines of this

chapter. See also [8, Corollary 1.2].

Proof. It is well known that G(Fq) possesses an RGD system, and hence twin BN-

pair. We only need to verify the conditions in the preceding discussion. The root

groups in G(Fq) are isomorphic to the additive group of Fq, so in the associated

twin building, each panel is contained in q + 1 chambers, where 6 ≤ q + 1 < ∞.

Moreover, the kernel of the action on the twin building is finite, being a subgroup

of a finite torus T(Fq) [3, Proposition 8.82]. �
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Chapter 4

Some remarks on type F4

The simple connectivity or sphericity of ∆0(C) for buildings of exceptional types

F4, E6, E7, and E8 remains open. In this chapter we report a coordinate description

of the F4 geometry associated with a field. We manage to recognize opposition

within this description, as well as understand certain links.

4.1 The E6 and F4 geometries

Here we summarize the construction of projective embeddings of the E6 and F4

geometries given in [6, §§5.2–5.3] and described more thoroughly in [5, ch. 18], to

which named results in this section refer. Let k be a field and K = M3(k)⊕M3(k)⊕

M3(k). K carries the following structure:

• the cubic form (that is, homogeneous cubic polynomial function of the entries)

D : K→ k given by D(x1, x2, x3) = det x1 + det x2 + det x3 − tr x1x2x3

• the symmetric trilinear form (·, ·, ·) : K ×K ×K → k given by (x, y, z) =

D(x + y + z) −D(x) −D(y) −D(z) + D(x + y) + D(x + z) + D(y + z)

• the map ] : K→ K given by (x1, x2, x3)
] = (adj x1 − x2x3, adj x3 − x1x2, adj x2 −

x3x1), where adj is the “classical adjoint” (transpose of the cofactor matrix).

The entries of (x1, x2, x3)
] are homogeneous quadratic polynomials in the

entries of (x1, x2, x3).

49



• the symmetric bilinear product × : K ×K → K given by x × y = (x + y)] −

x] − y]

• the nondegenerate symmetric bilinear form (·, ·) : K×K→ k given by

((x1, x2, x3), (y1, y2, y3)) = tr(x1y1 + x2y3 + x3y2)

We record some identities relating these operations, taken from Proposition 18.1.8.

Proposition 14. The following identities hold for all x, y, z, u ∈ K.

1. (x× y, z) = (x, y, z)

2. (x× y) × (x× z) + x] × (y× z) = (x], y)z + (x], z)y + (x, y, z)x

3. if x] = 0 then x× (u× (x× z)) = (x, u)x× z

It is not obvious from the definitions that (·, ·, ·) and × are multilinear; rather,

these properties follow from (1). Since (·, ·) is bilinear, (1) implies that (·, ·, ·) is

linear in its third argument, hence in all three arguments by the visible symmetry

of (·, ·, ·). As for ×, we have

((ax + x′) × y, z) = (ax + x′, y, z)

= a(x, y, z) + (x′, y, z)

= a(x× y, z) + (x′ × y, z)

= (a(x× y) + (x′ × y), z)

for all x, x′, y, z ∈ K and a ∈ k. Since (·, ·) is nondegenerate it follows that (ax+ x′)×

y = a(x× y) + (x′ × y). Linearity in the second argument follows by symmetry.

We write P(K) for the projective space over K and use angle brackets 〈 〉 to

denote the span of a subset of K in P(K). We now define an incidence system

having six types of elements, beginning with

• P = {〈x〉 ∈ P(K) : x] = 0} (points)
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• L = {projective lines in P(K) consisting entirely of points in P} (lines)

The points 〈x〉, 〈y〉 ∈ P are collinear if and only if (x + ay)] = x× ay = a(x× y) = 0

for all a ∈ k, which happens if and only if x× y = 0. We define the next three types

of elements as singular subspaces of the space (P, L).

• V = {singular subspaces of dimension 2} (planes)

• M(4) = {maximal singular subspaces of dimension 4} (4-spaces)

• M(5) = {maximal singular subspaces of dimension 5} (5-spaces)

Here “maximal” is with respect to containment among singular subspaces of (P, L)

and “dimension” refers to dimension as a projective subspace of P(K). According

to Proposition 18.7.2(iv), every maximal singular subspace of (P, L) is either 4- or

5-dimensional. An example of an element of M(5) is



0 0 0

0 0 0

0 0 0

 ,


0 0 ∗

0 0 ∗

0 0 ∗

 ,


∗ ∗ ∗

0 0 0

0 0 0


 ;

an example of an element of M(4) is



0 0 0

0 0 0

0 0 0

 ,


0 0 ∗

0 0 ∗

0 0 ∗

 ,


∗ 0 0

∗ 0 0

0 0 0


 .

Here and elsewhere this notation indicates the set of all points in P which are

spanned by vectors of the form depicted. Part of the assertion in the above examples

is that every x , 0 of that form actually spans a point in P, i.e. has x] = 0.

Finally, for 〈x〉 ∈ P we define Sx = {〈x× y〉 ∈ P : y ∈ K} and

• S = {Sx : 〈x〉 ∈ P} (symps)

For any 〈x〉, 〈y〉 ∈ P, either x × y = 0 or 〈x × y〉 ∈ P. This follows from the fact

that (x× y)] = 0 whenever x] = 0 and y] = 0, which is for instance a consequence
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of Proposition 18.1.8(vi). In fact, more is true:

Proposition 15. Let 〈x〉, 〈y〉 ∈ P.

1. (Lemma 18.7.1) If 〈x〉 and 〈y〉 are noncollinear then they belong to the unique symp

Sx×y.

2. (Lemma 18.7.2(vi)) x× y , 0 if and only if Sx ∩ Sy is a single point, which is then

〈x× y〉.

Two elements are declared incident if one contains the other, except in two

cases. A 4-space and a 5-space are incident if their intersection is a 3-dimensional

singular subspace (e.g. the 4-space and 5-space above), and a symp and a 5-space

are incident if their intersection is a 4-dimensional singular subspace (which is

necessarily nonmaximal).

The flag complex of the incidence system just defined is the building of type E6

over k (Theorem 18.7.5).

P L V M(4) S

M(5)

The map σ : P → S given by 〈x〉 7→ Sx is bijective and extends to a duality

of the E6 geometry, which interchanges opposite types (Lemma 18.7.3). For Y ∈

P ∪ L ∪ V ∪M(4)
∪ S we define σ(Y) = ∩〈y〉∈YSy, and for Y ∈ M(5) we define

σ(Y) = ∪π∈V,π⊆Yσ(π). For example, the 4-space mentioned above is dual to the

line 〈e2;23, e2;33〉, and the 5-space is self-dual.

An element of the E6 geometry that is incident with its dual is called absolute.

Letting Pσ, Lσ, Vσ, and M(5)
σ denote the absolute points, lines, planes, and 5-spaces,

we obtain another incidence systemM B Pσ ∪ Lσ ∪Vσ ∪M(5)
σ , with two elements

incident if one contains the other. It is a metasymplectic space; ∆ B FlagM is the

building of type F4 over k (Theorem 18.8.4).

Pσ Lσ Vσ M(5)
σ

4
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Following [16] we will refer to absolute 5-spaces as hyperlines when considering

them as elements of the F4 geometry. Indeed they are not singular for this geometry

but are isomorphic to polar spaces of rank 3 (Remark 18.8.5).

K has a standard basis {ei; jk : 1 ≤ i, j, k ≤ 3} of matrix units, each of which spans

a point in P. The set {〈ei; jk〉 : 1 ≤ i, j, k ≤ 3} is called the standard frame of the E6

geometry and these points together with the elements they span [for symps, “span”

should be interpreted in the sense of Proposition 15(1)] comprise the vertices of an

apartment in the associated building. These points are all absolute except for 〈e1; j j〉

(1 ≤ j ≤ 3), and the absolute points constitute the standard frame of the F4 geometry

and again define an apartment. In general a frame in the E6 or F4 geometry is the

set of points in some apartment (its vertices of type “point”).

For any g ∈ GL(K) we may use the nondegeneracy of (·, ·) to define g] ∈ GL(K)

by the equation (gx, g]y) = (x, y) for all x, y ∈ K. Let G = {g ∈ GL(K) : D(g(x)) =

D(x) for all x ∈ K}. Here are some facts about ] and G.

Proposition 16 (Proposition 18.1.12). The map g 7→ g] determines an involutory auto-

morphism of G that satisfies the following equalities for all g, h ∈ G and x, y ∈ K.

1. g]] = g

2. (gh)] = g]h]

3. g](x]) = (gx)]

4. g](x× y) = (gx) × (gy)

By (3), x] = 0 if and only if (gx)] = 0, and by (4), x × y = 0 if and only

if (gx) × (gy) = 0. As a result, G acts on the space (P, L). If 〈x × y〉 ∈ P then

〈g(x× y)〉 ∈ P, and by (1) and (4) we have

g(x× y) = g]](x× y) = (g]x) × (g]y),

so 〈g(x × y)〉 ∈ Sg]x. Since g is invertible this actually shows that gSx = Sg]x. We

conclude that G acts on the E6 geometry, hence on its flag complex, and the latter
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action is strongly transitive (Exercise 18.9.24). Note that elements of G need not

preserve (·, ·), ×, or ]; for instance, if there exists 1 , ω ∈ k with ω3 = 1 then x 7→ ωx

preserves none of these.

Let e = e1;11 + e1;22 + e1;33 and consider the stabilizer Ge. This group acts on the

F4 geometry in light of

Proposition 17 (Lemma 18.8.6). For g ∈ G the following statements are equivalent.

1. ge = e

2. g] = g

3. gσ = σg

Furthermore, Ge acts strongly transitively on ∆ (Exercise 18.9.26). Note that

together with Proposition 16 and the equation (gx, g]y) = (x, y), condition (2)

above shows that Ge does preserve (·, ·), ×, and ]. The vector e also plays another

role:

Proposition 18 (cf. Lemma 18.8.1). The following are equivalent for a point 〈x〉 ∈ P.

1. 〈x〉 ∈ Pσ

2. (x, x) = 0

3. (x, e) = 0

4. x× e = −x

Proof. To start with let us record an identity valid for arbitrary x = (x1, x2, x3) ∈ K.

Using the definition of × we see that x × e = (adj(x1 + I) − adj x1 − I,−x2,−x3),

where I ∈ M3(k) is the identity matrix. After explicitly computing the first matrix

component, this equation becomes

x× e =



x1;22 + x1;33 −x1;12 −x1;13

−x1;21 x1;11 + x1;33 −x1;23

−x1;31 −x1;32 x1;11 + x1;22

 ,−x2,−x3

 ,
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which may be reformulated as

x = (x, e)e− x× e (♣)

since (x, e) = tr x1. We now proceed to the proof of the proposition.

(1)⇒(2): Write x = x × r for some r ∈ K. Then using Proposition 14(1) and the

symmetry of (·, ·, ·) we have (x, x) = (x× r, x) = (x, r, x) = (x, x, r) = (x× x, r) = 0

since x× x = 2x] = 0.

(2)⇒(3): We compute

(x, e)2 = (x, e)2
− (x× x, e)

= (x, e)2
− (x, x, e)

= (x, e)2
− (x, e, x)

= (x, e)(e, x) − (x× e, x)

= ((x, e)e− x× e, x)

= (x, x) by (♣)

= 0.

(3)⇔(4): Immediate from (♣).

(4)⇒(1): 〈x〉 = 〈−x〉 = 〈x× e〉 ∈ Sx. �

4.2 Opposition

Proposition 19 (Fact 3.2 of [16]). Given a point x and a symp Σ, then either x ∈ Σ, or

x is opposite Σ, which is equivalent with “no point of Σ is collinear with x”, or there is a

unique 5-space V incident with both x and Σ. In the latter case, the intersection of V with

Σ is precisely the set of points of Σ collinear with x, and we say Σ neighbors x.

Opposition between points and symps has a simple algebraic description.

Proposition 20. The following are equivalent for points 〈x〉, 〈u〉 ∈ P.
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1. Sx is opposite 〈u〉.

2. Su is opposite 〈x〉.

3. (x, u) , 0.

Proof. Duality implies the equivalence of (1) and (2). Equivalence with (3) will

follow from Proposition 14(3), which states

x× (u× (x× z)) = (x, u)x× z for all z ∈ K.

If (x, u) , 0 then for any 〈x× z〉 ∈ Sx we have x× (u× (x× z)) , 0, so u× (x× z) , 0

as well, meaning that 〈u〉 and 〈x × z〉 are noncollinear, and Sx is opposite 〈u〉 by

Proposition 19. Conversely, if (1) and (2) hold then x× (u× (x× z)) , 0 whenever

〈x× z〉 ∈ Sx (Proposition 19 applied twice) and thus (x, u) , 0. �

A model for the thin F4 geometry is the regular 4-polytope with Schläfli symbol

{3, 4, 3}, also known as the 24-cell. More precisely, considering its 24 vertices as a

set of points and declaring the pairs, triples, and 6-tuples of vertices of the edges,

faces, and cells to be lines, planes, and hyperlines, we obtain an incidence system

whose flag complex is the Coxeter complex of type F4 [13, p. 215]. We will have

in mind this structure (specifically its collinearity graph) when making arguments

involving apartments of ∆.

Proposition 21 ((M5) of [15]). Let x and y be two points in a metasymplectic space. Then

one of the following situations occurs:

0. x = y.

1. There is a unique line incident with both x and y. In this case we call x and y

collinear and we denote the unique line by xy.

2. There is a unique hyperline incident with both x and y. In this case there is no line

incident with both x and y, and we call x and y cohyperlinear. We denote the

unique hyperline by x♦y.
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3. There is a unique point z collinear with both x and y. In this case we call x and y

almost opposite and we denote z by x Z y.

4. There is no point collinear with both x and y. In this case we call x and y opposite.

By convention, per section 2.1, we will refer to x and y as collinear in case (0)

as well. Fortunately, the algebraic structure again furnishes simple descriptions of

these cases.

Proposition 22. Let 〈x〉 and 〈y〉 be distinct absolute points. Then, in the F4 geometry, 〈x〉

and 〈y〉 are

1. collinear if and only if 〈x〉 ∈ Sy, or equivalently 〈y〉 ∈ Sx;

2. cohyperlinear if and only if 〈x〉 < Sy (equivalently, 〈y〉 < Sx) and x× y = 0;

3. almost opposite if and only if x× y , 0 and (x, y) = 0, and in this case 〈x× y〉 is the

unique point collinear with both 〈x〉 and 〈y〉;

4. opposite if and only if (x, y) , 0.

Proof. Statement (1) is Lemma 18.8.2 in [5]. For the remaining statements, assume

〈x〉 and 〈y〉 are noncollinear and consider a frame containing them. Let n be the

number of points in the frame collinear with both 〈x〉 and 〈y〉; then n = 4 if 〈x〉

and 〈y〉 are cohyperlinear, n = 1 if almost opposite, and n = 0 if opposite. As the

criteria 〈x〉 ∈ Sy, 〈x〉 < Sy, x × y = 0, x × y , 0, (x, y) = 0, and (x, y) , 0 appearing

in (1)–(4) are all preserved by Ge, which acts strongly transitively, we may assume

that x = e2;33 and the chosen frame is the standard frame. On one hand, the criteria

can be readily checked in this case; in particular the symps have a simple shape,

for instance

Se2;33 =



0 0 0

0 0 0

∗ ∗ ∗

 ,


0 0 ∗

0 0 ∗

0 0 ∗

 ,


∗ ∗ 0

∗ ∗ 0

0 0 0


 .

On the other hand, using (1) we can compute n and thus verify (2)–(4). �
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Since two elements U, U′ ∈ M are opposite if and only if they have the same

type and every point of one has an opposite in the other, Proposition 22(4) has the

following generalization.

Corollary 5. The elements U and U′ ofM are opposite if and only if (·, ·) restricts to a

perfect pairing U ×U′ → k.

We will also need to understand the possible positions of lines, planes, and

hyperlines relative to points.

Proposition 23 ((M7) of [15]). Let x be a point and h a hyperline of a metasymplectic

space. Then one of the following situations occurs:

0. x ∈ h.

1. There is a unique line l in h such that x is collinear with all points of l. Every point

y of h which is collinear with all points of l is cohyperlinear with x and x♦y contains

l. Every other point z of h (i.e., every point z of h collinear with a unique point z′ of

l) is almost opposite x and x Z z = z′ ∈ l.

2. There is a unique point u of h cohyperlinear with x. We have h∩ (x♦u) = {u}. All

points v of h collinear with u are almost opposite x and x Z v < h. All points w of h

cohyperlinear with u are opposite x.

4.3 ViewingM>〈q〉 as a classical polar space

Let 〈q〉 ∈ Pσ. From diagram considerations we know that P B M>〈q〉 has the

structure of a polar space of rank 3. By this we mean that if we identify an element

in Pwith the set of hyperlines that contain it, we obtain a space (M(5)
σ ∩P, Vσ ∩P)

that is an abstract polar space of rank 3 as defined in section 2.1.

To make this concrete, fix some 〈p〉 ∈ Pσ opposite 〈q〉. According to Proposi-

tion 23, any hyperline h ∈ P contains a unique point 〈uh〉 that is cohyperlinear

with 〈p〉, and h = 〈q〉♦〈uh〉. In other words, there is a bijective correspondence

M(5)
σ ∩P ↔ W, where W is the set of absolute points cohyperlinear with both 〈p〉
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and 〈q〉. For 〈u〉, 〈u′〉 ∈W, we see from looking at an apartment (fig. 4-1) that 〈q〉♦〈u〉

and 〈q〉♦〈u′〉 are opposite in FlagP exactly when 〈u〉 and 〈u′〉 are opposite in ∆, i.e.

when (u, u′) , 0 by Proposition 22. Since points in a polar space are either opposite

or collinear, the collinearity relation on (M(5)
σ ∩P, Vσ ∩P) is therefore given by

h ⊥ h′ ⇔ (uh, uh′) = 0. (Co)

Let us recall some notions from linear algebra. Given a k-vector space equipped

with a reflexive bilinear form f : V ×V → k, we may define for any subset M ⊆ V

its orthogonal complement M⊥ B {x ∈ V : f (x, m) = 0 for all m ∈ M}. A subspace

U ≤ V is called totally isotropic if U ⊆ U⊥.

Having in mind Propositions 18 and 22, we are led to define V B {x ∈ K :

x × p = 0, x × q = 0, (x, e) = 0}, a linear subspace of K. Then W = {〈x〉 : x ∈

V r {0}, x] = 0}. (Note: we don’t need to specify 〈x〉 < Sp or 〈x〉 < Sq in defining

V. These conditions hold automatically since 〈p〉 and 〈q〉 are opposite. A point 〈x〉

collinear with 〈p〉 is opposite or almost opposite 〈q〉 and hence has x × q , 0, as

can be seen by considering an apartment containing 〈p〉 and 〈q〉. Likewise 〈x〉 ∈ Sq

implies x× p , 0.) We claim that for all x ∈ V, x] = 0 if and only if (x, x) = 0, and

hence W is the set of isotropic lines in V with respect to (·, ·).

Let us begin by assuming that q = e2;33 and p = e3;33, which satisfy (p, q) = 1

and p × q = −e1;33. So V = V0 B {x ∈ K : x × e3;33 = 0, x × e2;33 = 0, (x, e) = 0}.

After doing some computations using the definition of ×, one determines that V0

consists of all vectors of the form

x =



x1;11 x1;12 0

x1;21 −x1;11 0

0 0 0

 ,


0 0 0

0 0 0

x2;31 x2;32 0

 ,


0 0 x3;13

0 0 x3;23

0 0 0


 ,

making dim V0 = 7. The restriction of (·, ·) to V0 is given by

(x, y) = 2x1;11y1;11 + x1;21y1;12 + x1;12y1;21 + x3;13y2;31 + x2;31y3;13 + x3;23y2;32 + x2;32y3;23,
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which is visibly nondegenerate provided char k , 2, and we will assume this

from now on. Because of the nondegeneracy, the Witt index of (V, (·, ·)) is at most

b7/2c = 3 [10, Theorem 6.11] and in fact is 3 since {e1;21, e3;13, e3;23} spans a totally

isotropic subspace.

One can check that

x] =
1
2
(x, x)e3;33 × e2;33 for all x ∈ V0 (♠)

by a straightforward if tedious computation of both sides using the definitions of ]

and (·, ·), thus proving our claim in the special case V = V0.

Now let 〈p〉, 〈q〉 ∈ Pσ be an arbitrary pair of opposite points. Since Ge acts

strongly transitively, there exists g ∈ Ge with g〈e2;33〉 = 〈q〉 and g〈e3;33〉 = 〈p〉; by

scaling p and q appropriately, we may assume ge2;33 = q and ge3;33 = p. Recall that

Ge preserves (·, ·),×, and ]. Then clearly V = gV0, and the equation x] = 1
2(x, x)p× q

holds for all x ∈ gV0, by applying g to (♠). The claim is now established, and we

are ready to prove

Proposition 24. Assume char k , 2. Let 〈p〉 and 〈q〉 be opposite points of M. Let

V = {x ∈ K : x × p = 0, x × q = 0, (x, e) = 0} and X = {0 < U < V : U ⊆ U⊥}, where

“⊥” is with respect to the trace form (·, ·). Then V is 7-dimensional, (·, ·) is nondegenerate

on V of Witt index 3, and ∆>〈q〉 � Flag X.

Proof. The dimension, Witt index, and nondegeneracy claims were verified above

for (V0, (·, ·)) and hold for its Ge-images as well, since Ge acts by linear isomorphisms

that preserve (·, ·). In this situation, X—or in our formalism, (W, {U ∈ X : dim U =

2})—is a polar space of rank 3 [2, p. 81] in which 〈u〉, 〈u′〉 ∈W are collinear if and only

if their span is totally isotropic, i.e. (u, u′) = 0. The isomorphism ∆>〈q〉 � Flag X

will follow if we can show that this polar space is isomorphic to (M(5)
σ ∩P, Vσ ∩P).

We have seen that ψ : h 7→ 〈uh〉 provides a bijection M(5)
σ ∩ P → W. In view

of (Co), the collinearity relations in the polar spaces coincide under ψ, and this

is enough to conclude that ψ is an isomorphism of spaces, since the lines of a

nondegenerate polar space are determined by the collinearity relation [6, Theorem
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Figure 4-1: The solid lines form the collinearity graph of a point 〈q〉 (central dot)
and its eight neighboring points in an apartment. Also shown, dotted, are three of
the six hyperlines containing 〈q〉 in the apartment.

3.1(iii)]. �

Remark. The roles of 〈p〉 and 〈q〉 are of course symmetric in the above construction.

This is a manifestation of the general fact that links of opposite simplices in a

spherical building are isomorphic.

Let δ = Flag X. Subspaces U and W of V are called transversal, written U t W,

if U ∩W = 0 or U + W = V.

Proposition 25 (Lemma 29 of [2]). U, E ∈ X are opposite in δ if and only if V = U⊕E⊥.

U ∈ δ0(E) holds if and only if U t E⊥.

4.4 More results

Proposition 26. Suppose the points 〈p〉, 〈q〉, 〈α〉 ∈ Pσ are pairwise opposite. Then 〈q ×

(p× α)〉 ∈ P, and the following are equivalent.

1. 〈q〉 ∈ Sp×α

2. 〈q〉 = 〈q× (p× α)〉

3. 〈q× α〉 = 〈q× p〉

Proof. To prove the first claim it suffices to show that q × (p × α) , 0. By Propo-

sition 14(3), p × (q × (p × α)) = (p, q)p × α. As 〈p〉 is opposite both 〈q〉 and 〈α〉,
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(p, q) , 0 and p × α , 0 by Proposition 22, so p × (q × (p × α)) , 0 and thus

q× (p× α) , 0 as well. Now we prove the claimed equivalences.

(1)⇒(2): Since 〈q〉 is absolute we have 〈q〉 ∈ Sq ∩ Sp×α = {〈q× (p×α)〉} according

to Proposition 15(2).

(2)⇒(3): By Proposition 14(3), 〈q × α〉 = 〈α × (q × (p × α))〉 = 〈(α, q)p × α〉 =

〈p× α〉. A similar calculation shows that 〈q× p〉 = 〈p× α〉.

(3)⇒(1): Evidently 〈q×α〉 ∈ Sp, whence 〈p〉 ∈ Sq×α by duality. We can then apply

the preceding arguments, with the roles of p and q swapped, to obtain (1). �

Under the assumption x] = 0, (1) and (2) of Proposition 14 have the following

consequence.

Proposition 27. Let z ∈ K. Then for any symp Sx and any point 〈x× y〉 ∈ Sx, (x× y, z) =

0 if and only if (x× y) × (x× z) = 0.
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