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Statement of Work 
 

Hudson Burke: 

Hudson was primarily responsible for all of the mechanical design and integration. He 

researched actuation methods to determine the most practical and effective method to control the 

foosball player rods and put together a list of components to order to assemble the belt-driven 

actuators. To ensure that the motors could achieve adequate performance based on calculated 

metrics, he calculated the required speeds and torques to move the rods linearly and rotationally. 

Hudson designed all the 3D printed and metal parts and performed nearly all of the machining 

and other hand tool work needed. He designed the entire device in Fusion 360 to mock-up the 

layout for practical implementation.  

Hudson also consulted with other teammates to coordinate the integration of the mechanical 

components with the electrical hardware and embedded firmware. He worked closely with Jake 

and Coleman when they were designing the motor drivers and limit switch and encoder input 

circuitry to give specifications for all the switches, optical interrupters, motors, and encoders. He 

also worked with Coleman to write the script and record shots for the final video. With the rest 

of the team, he spent the last few weeks of the semester fully assembling, and debugging, the 

final system. 

Aidan Himley: 

Aidan designed and programmed the entirety of the image processing pipeline based on Video 

for Linux 2 (v4l2). He researched low-level methods for interfacing with the camera, learned 

how to control it using v4l2, and implemented all of the logic of the loss function, corner 

detection, ball center calculation, and relative position calculation that appears in the final 

version of the code, as well as a finite impulse response filter-based method for ball center 

calculation that was unused in the final version due to worse reliability and speed performance 

than the threshold and centroid-based method. In addition, he designed and programmed the 

tools for viewing the output of the image processing at runtime and calibrating its parameters. 

Among Aidan’s other contributions, he researched methods of achieving deterministic real-time 

performance on the Raspberry Pi and applied the real-time patch its Linux kernel. He also 

overhauled the player planning algorithm to use the region-based approach with Block, Shoot, 

and Ready regions. Towards the end of the semester, he pair programmed with Jake to 

implement much of the embedded code on the MSP432, including the encoder calibration 

routine, communication to and from the Raspberry Pi, the stall watchdog timer and stall 

recovery, and the motor control logic to implement rotational motor action states and linear 

motor positions. 

Coleman Jenkins: 

Coleman was responsible for the driver board layout, design of the power supply transient 

protection, and selection of components. He designed the encoder input protection for both linear 

and rotational motors and the 5V and 3.3V isolated supply. Coleman worked closely with Jake to 

design the power distribution for high power and signal level devices connected to both boards. 
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He worked on getting the boards ready for assembly with Jake and took the lead on 

communicating and working with WWW. With Jake, he worked on debugging the hardware 

issues and selecting new components. He implemented the initial version of the game play and 

planning algorithm which was later modified and used by Zach, then by Aidan and Jake on the 

Raspberry Pi. Coleman also modified the original UART embedded implementation to make it 

work with the planning. He worked with Jake to write embedded code to generate PWM for the 

rotational and linear motors. He wrote the script, recorded, planned, and edited the final video. 

Along with the rest of the team, he spent much of the last two weeks of the semester in the NI lab 

working on immediate needs for mechanical assembly and logistics, among other things.  

Jake Long: 

Jake was responsible for designing motor driver circuitry, switch input protection, and photo 

interrupter biasing. Working closely with Coleman, he selected components, interconnects, and 

appropriate design strategies for the high-power driver PCB. After researching the capabilities of 

the MSP432 and creating an optimized header pinout, he produced the layout for the header 

board, again working with Coleman to complete the manufacturing and assembly process for 

both PCBs. He worked on hardware debugging and redesign for elements of the boards that did 

not work as intended. Additionally, Jake worked on the embedded code responsible for PWM 

generation, encoder signal handling, stall protection and recovery, and gameplay logic. Much of 

this was pair programmed with Aidan. He also configured the serial communication interface of 

the MSP432 to transmit and receive data using UART and produced a python simulator to test 

the MSP432 UART functionality. The final weeks before the capstone fair were spent in the NI 

lab working on assembly and system testing, along with the rest of the team. 

Zach Yahn: 

Zach was also responsible for ball detection, and he worked on a separate method at the onset of 

the project. This involved using OpenCV’s C++ and Python libraries to apply out-of-the-box 

functions to ball detection, including contours, Hough Transforms, color segmentation, and 

more. Though Aidan’s v4l2 approached proved to be much faster than OpenCV, it was still 

worthwhile to try both approaches in parallel, especially since OpenCV is the established 

standard for computer vision applications. Zach also transferred and adapted the original path 

planning code to the Raspberry Pi and integrated it with the vision code. Once part orders began 

to arrive, Zach 3D printed all of Hudson’s models using the printers available in UVA’s 

Robertson Media Center. These models required fine-tuned extrusion, infill, print speed, wall 

fill, raft, and heat settings to adapt to the various available 3D printer models and desired 

properties of the prints. Across all iterations this amounted to over 20 parts, in total requiring 

over 60 hours of print time. Like the rest of Single Use Smoke Machine, he spent the last two 

weeks of the semester assembling the project and performing various small tasks to  
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Abstract  

The robotic foosball table is an autonomous system that operates one side of a foosball table to 

play against a human opponent. The system consists of a mechanical interface to control the 

foosball players, a camera and Raspberry Pi [1] to detect the ball and plan a response, and a 

microcontroller connected to custom-designed printed circuit boards (PCBs) to control the 

motors and collect sensor data. Each of these subsystems is physically connected to one another 

such that information regarding the state of the foosball game can be collected, processed, and 

converted into a desirable response like blocking an opponent shot or scoring a goal. This project 

is an example of robotic automation of a typically human task. While this application is for 

entertainment, demand for similar technologies is growing rapidly as costs fall [2]. 

Background  

As relevant technologies continue to improve at a rapid pace, the demand for robotic systems 

capable of sensing their environment, drawing conclusions, and acting accordingly increases 

along with them. Automation capable of approximating human capabilities is especially relevant 

in the United States due to labor shortages in sectors like leisure and manufacturing [3]. While 

our project does not tackle this issue directly, it represented an enjoyable way to develop the 

skills and experience necessary to engineer potential solutions in the future. Additionally, robotic 

systems that are novel and entertaining add some subjective value as perceived by the user. 

There are many successful examples of interactive robotic systems that only provide value 

through entertainment, and the popularity of these robots has increased in recent years due to 

isolation induced by the Coronavirus Disease (COVID-19) pandemic [3]. Our team selected 

foosball specifically because competition with robots is exciting and the fast and dynamic nature 

of the game makes for a fascinating and challenging project. 

Robotic foosball tables have been made before, often by students in formats like this capstone 

project. Representative examples include robots from École Polytechnique Fédérale de Lausanne 

(EPFL) in Switzerland [4], Brigham Young University (BYU) [5], Indiana University [6], and 

Western Sydney University [7]. The system created by the students at EPFL was the most 

powerful of these prior works; it tracked the ball using a camera with a frame rate of 300 fps, 

could hit the ball at 6 meters per second or more, and moved players with up to 9g of 

acceleration. The ball was tracked by placing the camera below the table and replacing the 

surface below the players with clear acrylic [5]. BYU has a similar system, however the surface 

below the players is unmodified and the ball position is tracked using computer vision searching 

for the ball’s color [5]. 

The projects from Indiana University and Western Sydney university were less about physically 

actuating the foosball table, and instead focused on algorithms relevant to playing the game. The 

Indiana University project did not create a robotic foosball table but instead researched tracking 

algorithms. The input to the final algorithm was the visual feed from the camera above the table, 

and the goal of the algorithm was to completely describe the game play in real time – it tracked 

the ball position, player position, and player rotation [6] Western Sydney University also focused 

on algorithms, along with building a physical robotic table. Rather than using traditional neural 
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networks for machine learning, because of the need for quick response, they used neuromorphic 

vision sensors and “brain-inspired algorithms” [7]. 

Our project differentiates itself from these prior works due to stricter constraints on time and 

budget. By necessity, the various systems that comprise our robotic foosball table were built 

from scratch and optimized to provide an acceptable level of gameplay with cheaper parts. Our 

project also automated a smaller table than previous designs, in keeping with the stricter 

constraints. 

Knowledge from throughout the Electrical and Computer Engineering (ECE) curriculum was 

essential to successfully design and produce a working autonomous foosball robot. In order to 

design the header board and driver boards, the project drew on circuit design and PCB layout 

skills learned in the Fundamentals of Electrical and Computer Engineering (FUN) series (ECE 

2630, 2660, 3750). Skills from the Embedded Computing and Robotics (ECR) classes (ECE 

3501 and 3502) were necessary for using the MSP432 microcontroller [9], writing embedded 

code, and handling Input/Output (I/O) for sensors and motors. Algorithm design utilized general 

concepts in Computer Science (CS) classes like algorithms and machine learning (CS 4102 and 

4774). In order to make the Raspberry Pi [1] deterministic, the project applied learning from 

operating systems, computer architecture, and ECR in order to modify Linux [10] and use 

interrupts (CS 4414, ECE 4435, ECE 3501 and 3502). For the mechanical designs, Hudson 

applied skills learned in mechatronics and advanced mechatronics (MAE 4710 and 4720). In 

addition to information from courses listed above, members of Single Use Smoke Machine made 

use of experience from internships and extracurricular activities related to the task. This includes 

experience with various computer science disciplines, embedded programming, sensor 

applications, and robotics. 

Physical Constraints 

Design Constraints 

The MSP432 [8] needs to control many hardware devices during their fast-paced movement. The 

clock speed is set to its maximum of 48 MHz. It needs to generate PWM signals and record the 

encoder counts for all four motors along with managing 4 limit switches and 2 optical 

interrupters. Optimization in the interrupt handling was required to achieve the desired 

performance with the speed limitations of the CPU. This represented a trade-off, where a faster 

processor would allow for more complexity in our gameplay algorithms. 

All programming that was used in the system was done in C which is an open-source language 

that does not require licensing. Some licensed CAD software tools were used in the project, but 

licenses were available through the university, so availability was not limited. Python and Matlab 

were used for design and analysis; Python is open source and Matlab licenses are provided by the 

university. 

The printed circuit board (PCB) manufacturing capabilities for this class did not include plated 

slots. Due to the relatively large amount of power needed for our application, this limited the 

selection of power interconnects and switches available rated for sufficient current and voltage. 
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Surface mount replacements were used where possible but resulted in durability concerns due to 

the frequency with which the interconnects were used. 

As expected, part shortages played a significant role during the hardware design process. If our 

capstone adviser had not been able to provide the motor driver integrated circuits (ICs) used in 

our project, finding replacements with similar specifications would have been challenging. The 

ideal components for less pivotal roles were also frequently out of stock – shrouded 

interconnects, high-force tolerant limit switches, and isolator ICs all required a degree of 

compromise in our design. 

Cost Constraints 

The class budget was $500, and the initial expected cost distribution can be seen in Table 1. 

Many parts were already owned, like the Raspberry Pi [9], MSP432 [10] and camera, and other 

additional parts were purchased separately. 

Table 1: Expected Costs 

Motors & Encoders $173.00  

Mechanical Assembly $131.00  

PCBs and Electrical $176.00  

Emergency $20.00  

  

Total $500.00  

 

The actual budget use can be seen in Table 2. PCBs were more expensive than anticipated, 

mostly because of assembly costs. The mechanical assembly was also more expensive than 

anticipated given the frame below the table was not initially accounted for. 

Table 2: Budget Use Overview 

Mechanical $74.40 

Motors $90.85 

PCBs $266.13 

  

Total $431.38 

 

In addition to the class budget, additional materials (mostly mechanical) were purchased and can 

be seen in Table 3. 

Table 3: Additional Costs 

Mechanical $291.35 

Motors $133.85 

Foosball Table $41.99 
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Other Electrical $57.35 

  

Total $524.54 

 

Tools Employed 

We made use of several tools and technologies throughout the development of the robotic 

foosball table. In this section, we list those tools, explain the role they played in our work, and 

expand upon how we improved our skills with them.  

Software 

1. C [11]. This is the primary programming language for our project. Nearly all systems, 

including image processing, path planning, and embedded were written in C. All group 

members were comfortable with C from prior coursework and projects. 

2. Linux [12]. Giving our image processing the highest priority on the Raspberry Pi’s CPU 

required an in-depth exploration of the Linux Kernel. Though we were all familiar with 

Linux beforehand, solving this problem pushed our skills further. 

3. PREEMPT_RT Linux Patch [13]. PREEMPT_RT is a modification to the Linux kernel 

source code that makes the entire kernel preemptible by user processes. We applied this 

patch to the Raspberry Pi’s Linux kernel to ensure deterministic real-time performance of 

the image processing and planning code. No group members had patched a kernel before, 

so we needed to learn how to apply the patch to the source code and configure and 

compile the kernel. 

4. Video for Linux 2 (v4l2) [14]. This is how images were retrieved from the camera file 

descriptor. No group members were familiar with it prior to this project, so implementing 

it required extensive research. 

5. Yet another YUV viewer (yay) [15]. This is a simple open-source tool for viewing images 

in the format that our camera outputs them. We used and extensively modified it to view 

the output of the image processing for debugging and calibration. No team members had 

used it, so we needed to learn it from scratch. 

6. Simple DirectMedia Layer (SDL) [16]. SDL is a software library for displaying images to 

a window and receiving user input from a keyboard and mouse. It is used in the 

implementation of yay, so using and modifying yay required use of SDL. No team 

members had used it before, so we needed to learn the basics of the interface from 

scratch. 

7. Python [17]. We created a UART simulator for testing communication between the 

Raspberry Pi and MSP432. All group members were very familiar with Python prior to 

beginning the project. 

8. Matlab [18]. Some image processing calculations were performed with Matlab scripts, 

including generating graphs from our early game trials. All group members were very 

familiar with Matlab prior to beginning the project. 

 

Embedded 
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1. Code Composer Studio [19]. All embedded code was written, debugged, and flashed via 

Code Composer Studio. All group members were familiar with the software from 

previous classes, especially the ECR series.  

Hardware 

1. KiCAD [20]. All hardware design was completed using KiCAD. Most group members 

were not familiar with KiCAD prior to this project, so it presented a significant learning 

opportunity.  

2. FreeDFM [21]. Hardware was prepared for circuit board manufacture by running it 

through the standard checks on FreeDFM.com. All group members used FreeDFM in 

multiple classes beforehand, notably the FUN series.  

Mechanical 

1. Fusion360 [22]. All 3D printed parts were designed with Fusion 360. This includes the 

rotational and linear motor mounts, shaft couplings, limit switch mounts, and other 

pieces. Some group members had extensive experience with this beforehand. 

2. Cura [23]. 3D parts were sliced and prepared for printing using Ultimaker Cura, which 

generates gcode that the printers can interpret. It also allows the user to select printer 

settings, which were essential for determining the quality and speed tradeoffs of the 

prints. 

3. Ultimaker Printers [24]. The UVA Robertson Media Center offered free 3D printing with 

Ultimaker S3, Ultimaker 3, and Ultimaker S3 Extended printers. Some group members 

had extensive experience with these printers beforehand, including having the necessary 

training to use them. 

4. MakerBot Printers [25]. The Robertson Media Center also offers 3D printing with 

MakerBot Replicator+ printers, which were used alongside the Ultimakers. Some group 

members had extensive experience with these printers beforehand.  

5. Waterjet [26]. Lacy Hall provides a waterjet that students can be trained on. We used this 

to cut steel brackets for fastening the foosball table to the aluminum frame. None of our 

group members had experience using this machinery before, presenting another learning 

experience. 

Societal Impact Constraints 

Environmental Impact 

Several of the components involved in the system would represent environmental concerns if the 

device was produced at scale. The microcontroller and Raspberry Pi [1] require various mined 

raw materials and substantial water consumption to produce [27]. The proposed motors and other 

components must also be produced and have a resulting environmental impact. 

Now that the project has concluded, the parts will eventually need to be disposed of. For the 

electronic parts, they will create e-waste which is an international problem because of the 

contaminants they contain (like lead and mercury) and the health effects that can have to those 

exposed [28]. The non-electronic parts will also have to be disposed of but carry a much less 

remarkable environmental cost than the parts described above.  
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Since our project makes use of so much 3D printed material, it is important to also consider how 

these plastics affect the environment. One study showed that the plastics used in 3D printing can 

become microplastics that pollute natural habitats and endanger wildlife. The same study also 

showed how the energy usage of 3D printing technology contributes to climate change [29]. 

Another study recommends using recyclable or biodegradable plastics and to optimize the printer 

to reduce idle time, however given our limited control of the 3D printing technology available 

for this project these efforts were not possible [30]. 

Sustainability 

Even though the project will be deconstructed at the end of the semester, it is important to 

consider how sustainable it might be if produced in another context. The robotic foosball table is 

constructed from a mixture of parts with varying longevities. The steel brackets and aluminum 

frame, for example, are highly durable and likely to last for decades [31]. 3D printed 

components, on the other hand, are liable to wear down much faster. The foosball table itself is 

also susceptible to wear and tear. Even in a single semester, parts of the wood chipped, and the 

metal rods bent. Users of this product might feel the need to purchase it every few years, driving 

up the environmental impact of the design.  

Health and Safety 

Foosball play typically involves close interaction with the table, meaning that this device must 

move at speeds that will not harm the users. The motors are controlled so that reaching into the 

table to pick up a dead ball within range of a motor-powered component does not pose a risk of 

injury. The lateral movement of the rods is also a concern, since it is possible for the device to 

jab a human player. To prevent this, limit switches were installed on the side of the table to 

prevent the rods from extending to a distance where they might injure a player or spectator. 

Furthermore, each limit switch mount includes a mechanical stop to prevent the motor from 

extending far enough to jab a player, keeping the motion safe even if the limit switches fail. See 

section below on safety standards for official standards. 

Ethical, Social, and Economic Concerns 

The major ethical issue with this device is the justification of the environmental cost and 

expended resources to produce a device used solely for entertainment. Various expensive 

components, both monetarily and environmentally, were consumed to accomplish the design. 

This concern was offset by the academic value of the project to the members of Single Use 

Smoke Machine, as well as the social value that entertaining devices provide. Were the device to 

be produced at a larger scale, the balance of this concern and justification would shift, and the 

ethics of the device would have to be revisited. 

We also consider whether this project is accessible for all potential users. Admittedly, the 

foosball table is not playable if one is not tall enough to reach the handles. This means that 

young children may not be able to enjoy it, nor will people who are not able to stand next to the 

table for extended periods of time. It is possible that a shorter project table might alleviate this 

problem, especially if it was low enough that one could sit while playing. 
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External Considerations 

External Standards 

The table contains a potential electrical hazard in the PCB header board and microcontrollers, 

and a potential mechanical hazard in the motors and belt system. To protect the device and its 

users, these parts were contained in an enclosure satisfying National Electrical Manufacturers 

Association (NEMA) Type 1, which specifies protection “against access to hazardous parts” and 

“ingress of solid foreign objects” [32]. The table is not meant to be operated outdoors or near 

liquids or other hazardous materials, so no higher NEMA type is required.  

During board design, standards from the Institute for Printed Circuits (IPC) were followed to 

ensure that the boards were safe, effective, and manufacturable. These standards are outlined in 

IPC-2221[33]. 

While not meant for industrial applications, this product makes use of several motors and 

moving parts that could cause harm to the user if not properly guarded. This guarding will be 

pursuant to OSHA in 1910.212 which requires machine guarding from hazards that may occur 

due to rotating parts, points of operation, etc. [34]. In this case, the user is guarded from the 

actuation of the motors moving the rods linearly and rotationally. 

The table also complies with several sections of the National Fire Protection Association (NFPA) 

National Electrical Code (NEC) [35]. The wiring connecting the motors and sensors to the 

header board are protected by overcurrent as specified by Article 240.5 and Table 400.5(A)(1). 

Given our use of 14 American Wire Gauge (AWG) wire, the system can support a maximum of 

18.75 amps of current [33]. These wires are mounted to the system such that no pull is 

transmitted to the wire joints as required by Article 400.14, and they are protected from damage 

by contact with the system as required by Article 400.17. The insulation of the wires connected 

to ground show a white or gray tracer or solid color as required by Article 400.22. The motors 

were also considered when designing the wiring and overcurrent protection. Table 430.247 

provides full-load current ratings for DC motors, and Article 430.22 specifies requirements for 

the wiring size, depending on the motors’ current ratings. 

Finally, the Barr Embedded C Coding Standard was followed when developing embedded 

software [36]. This standard ensures that code is readable, maintainable, and less error prone. It 

also outlines some best practice naming conventions and debugging techniques which were 

referenced throughout the software development process. 

Intellectual Property Issues 

Several existing patents cover parts of this project. For example, a patent for a Broadcast-ready 

Table Sports System has claims to “a plurality of cameras spaced apart from one another about a 

detection region” where the detection region is “a table having a tabletop defining a playing 

surface for supporting a movable object” [37]. These claims are independent, because they do 

not reference prior work that they further limit. These claims also encompass the broad scope of 

our project, where a movable object can be interpreted as a ball. Though our project only uses 

one camera, we expect that this is not novel enough to make a distinction.  
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Other patents also claim inventions that overlap with this project, notably Camera-based 

Tracking and Position Determination for Sporting Events using Event Information and 

Intelligence Data Extracted in Real-time from Position Information. This patent specifically 

mentions “image processing . . . as an object localization technique.” It is applicable to “gaming 

practices, filming movies, or other live events that wish to be captured with sophisticated 

comprehensive coverage” [38]. It is worth noting that these independent claims largely pertain to 

large sporting events, for example soccer or basketball, that require multiple camera angles. 

However, it is possible that foosball, an official sport, could count.  

In terms of our object tracking software, a patent concerning a Probabilistic Object Tracking and 

Prediction Framework might be relevant. This patent applies to dynamic object tracking for 

autonomous vehicles, though the claims extend to probabilistic path planning for dynamic 

objects in general [39]. This patent illustrates how our project might differentiate itself from 

prior art. Our project does not use probabilistic planning, but rather computes a single expected 

location based on the current state. Given the emphasis on generating a distribution over possible 

future states in this patent, we believe that our prediction method is novel enough.  

Considering these three relevant patents, we do not believe that our robotic foosball table 

presents enough novelty for its own patent. The systems presented in the first two patents have 

too much in common with our own, especially claiming cameras for tracking balls in a sports 

setting [37] [38]. Though it may have some distinct characteristics from these works, especially 

compared to the third patent, it is most likely insufficient for a claim to a new filing. 

 

Detailed Technical Description of Project 

We break the robotic foosball table project down into five subsystems: ball sensing, path 

planning, embedded code, hardware, and mechanical assembly. Each of these subsystems is 

further dichotomized into detailed processes and operations. An overarching diagram of how 

these systems connect is found in Figure 1. 



   

 

Page 15 of 75 

 

 

Figure 1: System Diagram 

Ball Sensing 

Dataflow through the system begins with ball detection on the Raspberry Pi [9]. The Pi receives 

image frames via USB (Universal Serial Bus) from the camera. The camera captures 640x480 

pixel images at 30Hz with a YUV (Luminance, Chrominance blue, Chrominance red) color 

format [40]. These frames are read into memory with v4l2 (Video for Linux 2) [14]. Processing 

uses two memory buffers: while one reads in the next frame, the other is used for processing the 

current frame, with the two switching roles each time a new frame is read. Each frame passes 

through a pipeline of functions that extract useful data. 

First, the image passes through a loss function that examines each pixel independently. For each 

pixel, the loss function computes the absolute value of the difference between the pixel’s Y, U, 

and V values and corresponding target Y, U, and V values, set by the color of the ball. The 

differences are summed to produce a single loss value that represents how similar the pixel is to 

the ball color, where low loss values represent pixels similar to the ball and vice versa. These 

loss values can be interpreted as pixels in a greyscale image and viewed at runtime; Figure 2 

shows a typical image of the table before any image processing and Figure 3 shows the same 

image after application of the loss function. To make the behavior of the loss function easier to 

see, a contrast booster can be applied to the loss function at runtime, which inverts the loss 

values such that similar pixels to the ball are bright instead of dark and increases the difference 
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in brightness between loss values. Figure 4 shows the same image of the table after application 

of the contrast booster. 

 

 

Figure 2: Image of the Table Before Processing 
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Figure 3: Image of the Table After Loss Function 

 

 

Figure 4: Image of the Table After Loss Function and Contrast Booster 
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Second, the original image is also passed through a function that finds the bottom-left and 

bottom-right corners of the playing field, in order to find the position of the ball relative to the 

table in a later processing step. This function starts with a user-defined estimate of where in the 

image the corners of the field are, then searches a square of a set size (in number of pixels) 

around each estimate. For each pixel in the search region, the function performs a computation 

analogous to the loss function, comparing the pixel’s YUV values to a set of target values tuned 

to the color of the playing field. The function compares the loss to a threshold that can be 

adjusted at runtime, and considers all pixels with loss under the threshold to match the color of 

the playing field. Finally, the function finds the bottom-leftmost matching pixel in the bottom-

left search region and the bottom-rightmost matching pixel in the bottom-right search function 

and sets the position of the corners of the playing field to the coordinates of those pixels. For 

debugging and calibration, the function also sets the loss value at the corners to the maximum 

value, so that the corners appear as white dots in the loss image. These white dots can be seen at 

the bottom-left and bottom-right of the playing field in Figure 3. 

Third, the loss image is passed through a function that simultaneously decides whether or not a 

ball exists in the image and finds the center of the ball if it exists. This function also takes in the 

results from the corner-finding function and uses them to first calculate the region of the image 

that corresponds to the playing field, so that objects outside the playing field that match the color 

of the ball do not interfere with the calculation. Then the function iterates through each pixel in 

the region, comparing the loss value of each to a threshold value adjustable at runtime, where 

pixels with losses under the threshold are considered part of the ball. The function keeps a 

running count of matching pixels, and a running sum of the x and y coordinates of matching 

pixels. After checking all pixels, the function compares the total count of matching pixels to a 

pre-set threshold. If there are less pixels than the threshold, it indicates there is no ball in the 

image. Otherwise, it indicates there is a ball and sets the ball coordinates to the mean x and y 

coordinates of all matching pixels. For debugging and calibration, the function also sets values of 

another greyscale image: black for pixels outside the playing field, dark grey for pixels inside the 

playing field, light grey for ball pixels, and white for the center of the ball. Figure 5 shows the 

resulting image, again corresponding to the original image in Figure 2. 
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Figure 5: Image of the Table After Ball-Finding Function 

Fourth, the results of the ball-finding and corner-finding are used to calculate the position of the 

ball relative to the table. The program also records the position of the ball on the previous frame 

and uses it to calculate the ball’s velocity. In the event that the ball is not found in the image, the 

ball’s previous position and velocity are used to estimate its position on the current frame. This 

extrapolation is performed for a maximum of 3 consecutive frames, after which the ball-

detection program decides that it does not know where the ball is. Finally, the position of the ball 

relative to the table and a flag indicating whether or not the ball is found are passed to the path 

planning subsystem. 

Many of the parameters to the ball-detection algorithm are configurable at runtime by a mouse 

and keyboard interface and the screens shown in Figure 2 through Figure 5. The full controls to 

the interface are enumerated in Table 4. The program saves these settings to a file when exiting 

and reads them back in on startup.  

 

Table 4: Controls to Image Processing Interface 

Input Function 

Left Click 
Set the target color of the ball, the bottom-left corner, or the bottom-right 

corner, depending on the mode set by the B, R, and L keys. 

Right Click 
Print out debug about the clicked pixel including the x and y coordinates, 

YUV color values, and loss value.  
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Left / Right 

Arrow Keys 

Switch between viewing the original unprocessed image, the loss image, 

and the post-threshold ball-detection image. 

Up / Down 

Arrow Keys 

Adjust the value of the corner loss threshold or ball loss threshold up and 

down, depending on the mode set by the T and E keys. 

Q Terminate the program and send a shutdown signal to the MSP. 

B Set the left click mouse button to set the ball target color. 

R 
Set the left click mouse button to set the bottom-right corner target color 

and position estimate. 

L 
Set the left click mouse button to set the bottom-left corner target color and 

position estimate. 

T Set the up and down arrow keys to adjust the corner loss threshold. 

E Set the up and down arrow keys to adjust the ball loss threshold. 

0 Disable the loss contrast booster. 

Number Keys 

1-5 
Enable the loss contrast booster, with increasing strength from 1 to 5. 

Space 

Disable the image output to the screen. This control exists because 

outputting to the screen is a costly operation that slows down the image 

processing, so it is disabled during gameplay. 

Enter Send a command to the MSP to exit the waiting state and start gameplay. 

W Send a command to the MSP to exit gameplay and enter the waiting state. 

 

Path Planning 

The input to the path planning algorithm is the output of the ball detection: ball position, ball 

velocity, and a flag that indicates whether a ball was found in the image. First, the planning code 

checks whether the ball position is within the physical bounds of the table to ensure the image 

processing did not mistakenly identify an object outside the table as a ball. If the ball is out of 

bounds, or if there was no ball detected, the planning code instructs both the offense and defense 

rods to return to a default position in the middle of the table in a blocking position. 

If the planning receives a valid ball position, the first step is to decide which general region of 

the table the ball is in relative to each rod by comparing the ball’s x position to the known x 

position of the rod. Figure 6 shows the regions relative to the offense rod. If the ball is behind the 

rod by farther than the players can reach, it is in the Ready (green) region, and the players must 

be rotated horizontally so a shot from the defense rod will not be blocked by the offense rod. If 

the ball is ahead of the rod by farther than the players can reach, it is in the Block (blue) region, 

and the players must be rotated straight down to block a shot from the opposing team. If the ball 

is within reach of the players, it is in the Shoot (red) region, and the players must kick the ball 
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towards the opposing team’s goal. An exception is made if the ball is in the Shoot region, but 

moving quickly towards the rod, in which case the rod must block instead of attempting to shoot. 

The logic is identical for the defense rod, but with the regions being defined in relation to the 

defense x position instead. The planning algorithm is capable of differentiating between a ball in 

the Shoot region that is in front of the players versus behind them, so that the players can avoid 

kicking a ball backwards while winding up. However, due to time restrictions, this was not 

implemented in the control algorithm, so functionally, there is only one Shoot region. 

 

Figure 6: General Regions of the Table Relative to the Offense Rod 

After deciding the general region, the planning algorithm calculates the y position to move the 

players to. In the Shoot region, the players aim at the current y position of the ball. In the Block 

and Ready regions, the target y position depends on the ball’s velocity. If the ball is moving 

quickly towards the rod, the planning algorithm uses the ball’s current position and velocity to 

extrapolate the ball’s path and calculate the y position at which the ball will reach the rod, 

assuming the velocity remains constant. Otherwise, the target y position is simply the current y 

position of the ball. 

To move the players to a target y position, the planning code must first decide which player on 

the rod to use. The program uses the physical distance between each player on a rod and the 

physical distance the rod can move to calculate a range of y values that each player can reach. 

The planning code records the last player used for each rod, and first checks whether the target y 

value falls within that player’s range and selects that player if it does. If not, it checks the 

remaining player ranges to find one that can reach the target y value, favoring the center player. 

Ready Block Shoot 
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Once a player has been selected, the code calculates the distance the rod must move from its 

home position by subtracting the target y position from the selected player’s base y position. 

Finally, the planning code must send a message over USB to the MSP432 containing the desired 

y position and rotational action state (block, ready, or shoot) for each rod. To do so, it needs to 

convert the desired y values from millimeters to motor encoder counts. In the initialization of the 

planning code, it waits for the MSP432 to finish its encoder calibration routine and reads in the 

maximum encoder counts returned from the MSP432. Then, in the planning loop, it creates a 

conversion ratio from the maximum encoder counts and the maximum physical travel of the rod 

in millimeters, which it applies to the desired y positions to calculate desired encoder counts. For 

each rod, it transmits the desired encoder count over 3 bytes and the rotational state over 1 byte, 

as explained in further detail in the next section. 

Embedded Code 

By necessity, a standard naming convention was established to represent the table and game, 

both conceptually and in software. An overview of this naming system is shown in Figure 7. 

These names will appear throughout the embedded, hardware, and mechanical sections. 

 

Figure 7: Foosball Naming Convention 

The embedded code structure consists of a main gameplay super-loop and interrupt handling for 

external signals and timers. The MSP header pins and corresponding IO signals are shown in  

Table 5. 
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Table 5: Embedded Pinout for MSP 

*IO suffix omitted from pin names for readability 

Interrupts are generated by UART transmit (Tx) and receive (Rx) signals, rising and falling 

edges on the encoder signals, the stall watchdog timer, and the PWM generation timer.  

UART 

The enhanced universal serial communication interface 0 (eUSCI0) on the MSP is configured in 

UART mode with a baud rate of 9600. The interrupt register of the eUSCI is configured to 

trigger interrupts when new data is loaded into the Rx register, and the flag is manually set when 

loading data into the Tx register. Subsequent outgoing data in the Tx register will reset the flag 

until no data is left to send. Upon entering the shared Tx and Rx interrupt service routine (ISR), 

the interrupt flag is first checked to determine whether Tx or Rx should be serviced. The MSP 

transmits data to the Pi infrequently, sending the max linear encoder count ranges following a 

calibration sequence. The ISR Tx handling sends the calibration data from a buffer one byte a 

time, sending first the linear defense max encoder range then offense. During gameplay, the Pi 

constantly sends the desired game state data in frames, shown in Figure 8. This information is 

processed and stored by the ISR Rx handling. 

 

Figure 8: Structure of UART Protocol from Pi to MSP 

PORT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 

1 X x x x x o RDef_ENC_A RDef_ENC_B 

2 X x x o o o ROff_ENC_A ROff_ENC_B 

3 O x o o x o LDef_ENC_A LDef_ENC_B 

4 RDef_IN1 RDef_IN2 ROff_IN1 ROff_IN2 R_SLP T_OFF LOff_ENC_A LOff_ENC_B 

5 RLSDef RLSOff o x LLSDef1 LLSDef2 LLSOff1 LLSOff2 

6 LDef_IN1 LDef_IN2 x x LOff_IN1 LOff_IN2 LDef_INH LOff_INH 
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Each byte in the frame has a three-bit index which indicates what information is contained in its 

five data bits. Three bytes of the frame are allocated for each desired linear motor position, 

measured in encoder counts. The new position will only be stored if all three bytes for that 

position are received in order, and the final calculation for the new position is shown in Figure 8. 

The desired states for the rotational motors are each sent in a single byte, where the data bits map 

to a rotational state enumerated type (enum). ROff_State, byte position seven of the frame 

indexed from zero, can also be used to send magic number sequences to the MSP. These are 

checked separately by the Rx ISR and set the main state of the MSP manually, Figure 11. A full, 

successfully transmitted data frame provides all the information needed in the main gameplay 

loop to achieve the desired game state calculated by the planning algorithm. 

PWM Generation 

Interrupts from Timer A0 of the MSP are used to generate four simultaneous PWM signals for 

motor control. Each of these four signals must also be capable of switching between two pins, to 

run the motors in both forward and reverse. Timer A0 is configured in up mode, set to compare 

mode, and uses the sub main clock (SMCLK) which runs at 12 MHz. The timer interrupt 

registers are configured such that two unique interrupts occur – one when the timer counts to 

capture control register 0 (CCR0) and one when the timer count reaches a value in CCR one to 

four (CCRn). This results in the desired PWM period of 1ms.  

A value proportional to the desired duty cycle (from 0-11,998) for each motor is loaded into a 

corresponding CCRn register of the timer. When the CCR0 interrupt is triggered, the current 

PWM output pins for the motor are set high. When the CCRn interrupt is triggered, the ISR 

checks which register caused the interrupt and sets the output corresponding to that motor low. A 

special case checks if the duty cycle is zero and never sets the output for that motor high. Figure 

9 shows a simplified PWM generation with one signal highlighted. Output pin switching to 

support direction is handled by bitwise logic using variables defined outside the ISRs – this 

minimizes the computation occurring within the ISRs. Table 6 outlines which CCRs and pins 

correspond to each motor and direction.  

Table 6: PWM CCR and Output Pins 

Motor CCR Index Forward MSP Pin Reverse MSP Pin 

LDef 1 6.0 6.1 

LOff 2 6.4 6.5 

RDef 3 4.0 4.1 

ROff 4 4.2 4.3 
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Figure 9: PWM Signal Generation 

Encoder Signals 

After processing, pairs of logic level encoder signals for each motor connect to pins 6 and 7 of 

ports 1-2 (rotational motors) and 3-4 (linear motors) of the MSP. An interrupt is triggered on 

each port for both rising and falling edges, and the encoder count for the motor at the respective 

port is incremented or decremented. Figure 10 shows the stateful logic used to determine the 

encoder count operation. 
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Figure 10: Encoder States 

For the particular MSP model used in the project, general purpose input output (GPIO) interrupts 

triggered by a given pin are supported for either rising or falling edges but not both. The encoder 

state logic requires that each edge on both signals is counted – to overcome this, bitwise toggling 

of the interrupt edge select (IES) register was performed using the XOR of the previous and new 

encoder states. For example, upon receiving a rising edge on signal A, this operation will toggle 

IES such that a falling edge on signal A will now be caught, but the behavior for B is unchanged.  

Because these encoder signals can occur at up to 10 kHz at max motor speed, the encoder ISR 

was optimized and tested for speed. On average, the ISR runs in approximately 2.9 µs. With all 

four motors running at max speed, encoder ISR handling will require approximately 11.6% of 

the MSP processing time, which is acceptable as a worst-case condition.  

Stall Watchdog Timer 

Timer A1 was configured in up mode using the SMCLK with a divider of 8. CCR0 was loaded 

with the value 30,000 such that the timer produces interrupts every 200 ms. Within the CCR0 

ISR, if a motor has a positive duty cycle the current encoder count is compared to the previous 

encoder count (at the time of the last stall watchdog ISR execution). If the current and previous 

counts are within some tolerance, a stall count variable is incremented. If the stall count variable 

reaches 10, the motor is stopped and the main state of the MSP transitions to stall recovery. If the 

current and previous encoder counts are more than the tolerance apart, the stall count is reset. 

The current encoder count for each motor is then saved to be used in the next check of the 

watchdog timer. This system essentially checks if a motor is being supplied power but is not 
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moving, stopping the motor before damage occurs. Because motors regularly get stuck on the 

ball during gameplay, having a system that stops stalled motors and sets a flag for a recover 

routine is essential. 

Main State Super-loop 

While not servicing interrupts, the MSP is executing within a main super-loop. The behavior of 

this super-loop depends on a main state, depicted in Figure 11. Simple, tunable positional control 

functions were implemented to move motors to desired positions. 

 

Figure 11: Main State Embedded Code Structure 

While in the wait state, all motors are turned off and the MSP awaits a signal from the Pi 

indicating which state to transition into. In the calibrate state, all motors move in reverse until 

activating their corresponding zero position switch. The encoder counts are set to zero upon 

reaching this position, and the motors are run in reverse. Upon hitting the max position switches, 

the current encoder values are saved as the max ranges. The motors then return to a default state 

and the MSP transmits the linear max encoder counts to the Pi over UART. While in the play 

state, desired state information transmitted by the Pi is used to inform motor control. An 

expanded view of the play state is shown in Figure 12. 
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Figure 12: Embedded Code Play State Structure 

While in play state, each iteration of the super-loop polls the limit switches and resets encoder 

counts if pressed. The linear motor control is called with the desired positions sent by the Pi – the 

linear motors move directly to those positions with no additional stateful logic. The control of the 

rotational motors is determined by a state sent by a Pi rather than a position. If sent the shoot 

state, the rotational motor will “wind up” until at a 45-degree angle. Once at a 45-degree angle, 

the motor will “kick”, turning forwards until reaching a certain threshold. If the motor is still in 

shoot state after kicking, it will return to “wind up” and try again. If sent the block state, the 

rotational motors will move to a vertical position in order to block the ball. If sent the ready state, 

the rotational, motors will move to a 90-degree position such that the ball can pass underneath 
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them when moving in the desired direction. A final spin state exists for the rotational motors that 

can only be entered with manual keyboard input to the Pi. In this state, the motors spin in reverse 

constantly. 

At any time during the main super-loop, the stall watchdog timer can trigger a transition to the 

stall recovery state. In order to prevent damage to motors, a stalled motor is never moved in this 

state; rather, the other motor on the same assembly (offense or defense) is moved. Motors 

usually stall when caught on the ball – this routine attempts to dislodge the ball. For example, if 

the rotational defense motor is stalled, the linear defense motor will move a set distance. At this 

point, the main state will transition back to play. If the stall was not resolved, the watchdog timer 

will detect sequential stalls of one motor (or an edge case where multiple motors stall at the same 

time). This will transition to the main state to wait and requires manual resolution. In several 

hours of testing, the stall recovery never failed to resolve a stall before a double stall was 

detected. 

Combined, these embedded structures move the motors to the desired game state sent by the Pi 

over the UART connection. 

Hardware 

The system uses two PCBs to drive motors and connect peripherals: one signal level header 

board, and one high current driver board. The header board sits on top of the MSP and contains 

only logic level signals. The header board is connected to the driver board using a ribbon cable. 

The driver board handles power distribution and includes the motor driver circuitry. 

Header Board Design  

All input and output signals for the embedded code travel through the header board. The signal 

to pin interconnect header is shown in Figure 13. Motor driver circuit control signals from the 

MSP are needed on the driver board, and motor encoder signals and power from the driver board 

are needed on the MSP. The ribbon cable between these two boards carries these signals.  

 

Figure 13: Header Board Interconnects to MSP (left) and Driver Board (right) 
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The header board has shrouded interconnects for four external physical limit switches. The 

circuitry for each switch includes a pull-up resistor, a current limiting resistor in series with the 

MSP pin, and a simple resistor capacitor (RC) low pass filter to protect from electrostatic 

discharge (ESD).  

The header board has interconnects for two external slotted optical switches, which are a 

packaged combination of OPB830 and OPB840 photodiode and phototransistor devices [41]. 

The RC input protection and biasing resistors are shown in Figure 14. The 3.3kOhm resistor at 

the phototransistor emitter provides a 3.3V drop at the MSP pin given a fully on transistor state. 

The forward voltage across the photodiode is configured using a resistor divider to be 

approximately 1.7V, and the current through the diode is approximately 20mA. This results in 

the device behaving like a logic level switch. 

 

Figure 14: Photodiode Biasing and Input Protection 

Any off-board signals also have simple ESD input protection before connection to the MSP pin. 

It was verified that the corner frequency of the RC low pass input protection circuits for the 

encoder signals had a sufficiently high cutoff frequency, such that the square wave encoder 

signals were not clipped. 

Header Board Layout 

Because everything on the header board is signal level, the routing of signals to the MSP header 

interconnects was determined by what would be most convenient for interrupt handling in the 

embedded software. Similarly, the ribbon layout was selected to optimize the driver board 

layout.  

The ribbon cable header is located directly between the MSP headers to minimize the distance 

between the input protection circuitry and the MSP pins for off-board signals. As a result of this, 

the switch interconnects were placed around the remaining perimeter of the board to allow space 

for convenient wiring. In this configuration, the protection circuitry was grouped with the switch 
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interconnects rather than close to the MSP pins which would have been preferable. The final 

layout for the header board is shown in Figure 15.  

 

Figure 15: Header Board Layout 
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Driver Board Design 

The driver board supplies power to the other boards and contains the motor driver circuitry. The 

board connects to an external DC 12V 16.5A switching power supply, which in turn connects to 

120V AC wall power [42]. The hot AC power line of this supply was appropriately fused. A 

robust rocker switch with an internal LED allows power to the board to be turned on and off, and 

a surface mounted fuse holder and transient voltage suppression (TVS) diode protects against 

overcurrent or transient voltage spikes from the supply. The supply interconnect and circuitry is 

shown in Figure 16. 

 

Figure 16: Driver Board Power Supply and Protection 

The driver circuit for the linear motors uses four BTN8962TA half-bridge high-current driver 

chips, while the rotational motors driver design uses a single quad half-bridge DRV8935 chip 

[43], [44]. The datasheet recommended passive elements are used. For the rotational driver, a 

resistor divider at the VREF pins configures a trip current of 1.6 amps. This is slightly higher 

than the stall current of the motor and provides an additional overcurrent protection. Both the 

rotational and linear driver circuits take in four PWM input signals (two for each motor, a 

forward and a reverse) and produce four scaled power level 12V PWM output signals. 

Additionally, each driver circuit requires a logic high enable signal to enable the devices. Under 

normal operating conditions, each linear driver circuit can drive 5.5A of current and each 

rotational driver circuit can drive up to 1.5A of current. To account for dips in the voltage level 

of the power supply, bulk capacitance was added to each driver circuit. 100uF was selected for 

the rotational driver circuit, and 470uF was selected for the linear drivers—these values were 

upsized from the datasheet recommendations, because a relatively inexpensive power supply is 

used. The driver circuit layouts are shown in Figure 17 and Figure 18. 
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Figure 17: Rotational Motor Driver Circuit (both motors) 

 

Figure 18: Linear Motor Driver Circuit (single motor) 

The driver board also supplies 5V power to the linear motor encoders and 3.3V power to the 

MSP. A CRE1S1205SC DC-DC converter is used to produce 1W of power at 5V [44]. Because 

the device requires a minimum amount of power consumption, a small 249 Ohm resistor is used 
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to provide the required minimum of ~0.1W. The power ground is also shorted to logic ground at 

this point, such that the inductance of large high current traces has minimal impact on logic level 

signals. The 5V output is stepped down to 3.3V by the AP2125N-3.3TRG1[46]. This 3.3V 

output is run over the ribbon cable to power the MSP. Indicator lights show whether each voltage 

level is being successfully produced. These subcircuits are shown in Figure 19. 

 

Figure 19: 12V to 5V DC Converter (top) and 5V to 3V (bottom) 

Driver Board Layout 

The primary consideration when laying out the driver board was 14.5A maximum current needed 

if all motors were running simultaneously. To support this amount of current, large power planes 

on the copper top layer connect 12V signals whenever possible. Notably, the large planes are 

used between the power supply and driver circuit 12V input as well as the driver circuit outputs 

and the motor interconnects. The driver IC datasheet recommendations are closely followed with 

regard to positioning of passive elements. The overall layout of the driver board is shown in 

Figure 20.   
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Figure 20: Driver Board Layout 
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Figure 21 shows a zoomed view of a single BTN chip. To aid in heat dissipation, an array of 

thermal vias connects the large output pad to an exposed plate (electrically unconnected) of 

copper on the back of the chip. It can also be seen that surface area of the V12 pin is maximized 

with the power plane.  

 

Figure 21: Zoomed View of High Current Area (Linear Driver H-Bridge) 
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Mechanical Assembly 

The mechanical assembly can be broken up into three main components: linear actuation, 

rotational actuation, and the frame. A rendered 3D model of the full assembly can be seen in 

Figure 22. 

 

  
Figure 22: Full Assembly Model Render 
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Linear Actuation 

  
Figure 23: Linear Actuation Assembly Model 

To allow for linear actuation a DC brushed motor with an encoder is mounted to 20x60mm 

aluminum extrusion with a custom 3D printed plate shown in Figure 24. This motor drives a belt 

and pulley system comprised of a pulley on the motor shaft, an idler pulley at the end of the rail, 

and a belt attached to an OpenBuilds Mini V Gantry Kit [47]. On the side of the rail, two limit 

switches [48] are attached with another 3D printed plate as shown in Figure 25. This plate 

extends past the edge of the limit switch to serve as a mechanical stop to prevent the gantry from 

slamming into the switch and exceeding the overtravel limit. These switches are used to set the 

minimum and maximum encoder counts to home and calibrate the motor and planning algorithm. 

 
Figure 24: Linear Actuation Motor Mount 
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Figure 25: Limit Switch Mount 

 

The specifications of this assembly were chosen to theoretically be able to react to a maximum 

ball speed of 1.3 m/s, which was measured from a normal game of foosball. Assuming that the 

system would need to respond to this speed of shot being shot from the opposing back row, 

travel its maximum linear distance of 78 mm from one edge of the field to the other, and react 

with a worst case command delay of 100 ms to take into account camera frame capture, image 

processing, UART, and microcontroller computation, the maximum linear speed was calculated 

using the script in Figure 26: 

 

 

Figure 26: Linear Speed Calculations 

From these calculations, the system must be capable of achieving a maximum linear speed of 

approximately 1408.33 mm/s with a triangular speed profile. Using the distance per revolution 

for each pulley available from OpenBuilds [49] the rotations per minute (RPM) specification that 

the motor would need to achieve was calculated using the script in Figure 27. 
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Figure 27: Pulley RPM Calculations 

Because this application requires high torque to accommodate rapid acceleration, the 3 mm pitch 

pulley with 20 teeth and corresponding 3mm pitch belt were selected as they require a lower 

RPM, reducing the required tradeoff between RPM and torque. The 2 mm pitch pulley with 30 

teeth would require the same RPM, but a more aggressive pitch is more suitable for high torque 

applications, and the slight decrease in precision is negligible given that the radius of a foosball 

player’s foot is approximately 6.5 mm.  

 

To reach the maximum speed within the desired reaction time, the required torque was calculated 

using the method outlined in [50]. It is assumed that the rod starts at rest, the motor provides 

constant acceleration, the motion follows a symmetric triangular speed profile, the belt and 

pulleys have negligible mass and inertia (primarily because this data is not listed by the supplier 

and the parts had not been ordered at the time of these calculations), and the efficiency of the 

system is 75%. The script used to calculate the torque with the specific values can be seen in 

Figure 44 which utilizes the following equations to find the root mean square (RMS) torque: 

𝑇𝑐 =
𝐹𝑎 ∗ 𝑟1

1000 ∗ 𝜂
 

Tc = torque required during constant velocity (Nm) 

Fa = total axial force (N) 

r1 = radius of drive pulley (mm) 

η = efficiency of belt drive system 

 

𝐹𝑎 = 𝑚 ∗ 𝑔 ∗ 𝜇 

m = mass of moved load (external load plus belt) (kg) 

g = gravity (m/s2) 

µ = coefficient of friction of guide  

 

𝑇𝑎 = 𝑇𝑐 + 𝑇𝑎𝑐𝑐  

Ta = total torque required during acceleration (Nm) 

Tacc = torque required due to acceleration (Nm) 

 

𝑇𝑎𝑐𝑐 = 𝐽𝑡 ∗ 𝛼 

Jt = total inertia of the system (kgm2) 

α = angular acceleration (rad/s2) 



   

 

Page 41 of 75 

 

𝐽𝑡 = 𝐽𝑚 + 𝐽𝑐 + 𝐽𝑝1 + 𝐽𝑝2 + 𝐽𝑙  

Jm = inertia of motor (provided by manufacturer) (kgm2) 

Jc = inertia of coupling (provided by manufacturer) (kgm2) 

Jp1 = inertia of drive pulley (provided by manufacturer, or calculate) (kgm2) 

Jp2 = inertia of idler pulley (provide by manufacturer, or calculate) (kgm2) 

Jl = inertia of load (kgm2) 

 

Jl = (ml + mb) ∗ r1
2 ∗ 10−6 

ml = mass of external load (kg) 

mb = mass of belt (kg) 

r1 = radius of drive pulley (mm) 

 

𝛼 =
2𝜋 ∗ 𝑁

60 ∗ 𝑡
 

N = maximum angular velocity (rpm) 

t = time for acceleration (s) 

 

𝑇𝑑 = 𝑇𝑐 − 𝑇𝑎𝑐𝑐  

Td = torque required during deceleration (Nm) 

 

𝑇𝑅𝑀𝑆 =
√𝑇𝑎

2 ∗ 𝑡𝑎 + 𝑇𝑐
2 ∗ 𝑡𝑐 + 𝑇𝑑

2 ∗ 𝑡𝑑   

𝑡𝑡𝑜𝑡𝑎𝑙
 

TRMS = root mean square (continuous) torque (Nm) 

ta = time for acceleration (s) 

tc = time for constant velocity (s) 

td = time for deceleration (s) 

ttotal = total time for move (including any idle time between moves) (s) 

 

Using these equations, the RMS torque was found to be 0.146 Nm or 1.493 kg*cm. Based on 

these calculated specifications of 1408.33 RPM and 1.493 kg*cm, the Pololu 6.3:1 Metal 

Gearmotor [47] was selected with a no-load performance of 1600 RPM and a stall extrapolation 

torque of 3.0 kg*cm. 
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Rotational Actuation 

  
Figure 28: Rotational Actuation Assembly Model 

Mounted to the gantry plate of the linear actuation assembly is a two-piece 3D printed holder that 

clamps to hold a small DC brushed motor with an encoder. The top piece also serves as a mount 

for an optical interrupter [41]. A 3D printed shaft coupling is attached to the motor shaft with a 

metal shaft collar. This attaches the motor’s shaft to a foosball player rod like the one shown in 

Figure 29 using a screw that was previously used to attach a handle to the rod. It also serves as a 

homing mechanism by passing a disk with a notch in it through the optical interrupter. When the 

notch passes through the slot in the optical interrupter, light from the light emitting diode (LED) 

can pass into the phototransistor which allows current to flow, outputting a logic level signal to 

the microcontroller which is used to reset the encoder count for relative positioning.  
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Figure 29: Foosball Player Rod 

To select the DC brushed motor, the RPM and torque were calculated to achieve a ball speed of 

1.3 m/s, the maximum speed achieved by a human player measured in the initial baseline games, 

from a 90-degree position, which is the maximum position allowed under the official rules of 

foosball. It was assumed that the rod starts at rest, that the motor provides constant angular 

acceleration, and that the player’s foot contacts the ball instantaneously at the end of its swing. 

The players were treated as one rod rotating about its end for the purposes of moment of inertia 

calculations. The script used to calculate the torque with the specific values can be seen inFigure 

44 Figure 44 which utilizes the following equations to find the RPM and torque: 

 

𝑣 = 𝑤 ∗ 𝑟𝑓𝑜𝑜𝑠𝑚𝑎𝑛  

v = linear speed 

w = angular/rotational speed (rad/s) 

rfoosman = radius of foosball player measured from rod to bottom of foot 

 

𝐼𝑟𝑜𝑑 =
1

12
𝑚𝑟𝑜𝑑 ∗ 𝑙𝑟𝑜𝑑

2  

Irod = moment of inertia of the rod (kgm2) 

mrod = mass of the rod (kg) 

lrod = length of the rod (m) 

 

𝐼𝑝𝑙𝑎𝑦𝑒𝑟 =
1

3
𝑚𝑝𝑙𝑎𝑦𝑒𝑟 ∗ 𝑙𝑝𝑙𝑎𝑦𝑒𝑟

2  

Iplayer = moment of inertia of the player (kgm2) 

mplayer = mass of the player (kg) 

lplayer = length of the player (m) 

 

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑟𝑜𝑑 + 3 ∗ 𝐼𝑝𝑙𝑎𝑦𝑒𝑟  

Itotal = total moment of inertia (kgm2) 

 

∆𝑤= 𝑤𝑓 − 𝑤𝑖  

Δw = change in angular speed from start to end of kick (rad/s) 

wf = final angular speed (rad/s) 
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wi = initial angular speed (rad/s) 

 

𝑤𝑎𝑣𝑔 =
∆𝑤

2
 

wavg = average angular speed (rad/s) 

 

∆𝑡=
𝜃

𝑤𝑎𝑣𝑔
 

Δt = change in time from start to end of kick (s) 

θ = starting kick angle (rad) 

 

𝛼 =
∆𝑤

∆𝑡
 

α = angular acceleration (rad/s2) 

 

𝑇 = 𝐼𝑡𝑜𝑡𝑎𝑙 ∗ 𝛼 

T = required to produce the required angular acceleration 

 

 
Figure 30: Rotational RPM and Torque Calculations 

As shown in Figure 30, the required speed is approximately 292.096 RPM and the torque 

required to achieve a 1.3 m/s ball speed from 45 degrees is 3.249 kg*cm and from 90 degrees is 

1.624kg*cm. With these numbers, the Pololu 31:1 Metal Gearmotor 20D [52] was selected with 

a no-load performance of 450 RPM and a stall extrapolation of 2.4 kg*cm. 
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Frame 

 

Figure 31: Frame Assembly Model 

The frame of the device, shown in Figure 31: Frame Assembly Model was constructed out of 

20x60mm aluminum extrusion with a 5mm slot width. The walls were connected with internal 

L-brackets and external corner brackets using M5 bolts and t-nuts. To mount the foosball table to 

the frame, custom steel brackets were cut on a waterjet and connected to the bolts on the side of 

the foosball table and to the frame with more M5 bolts and t-nuts. The camera was mounted to 

the frame with 20x20mm aluminum extrusion and L-brackets. 
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The Raspberry Pi [9] and circuit boards were mounted inside the frame with 10mm plastic hex 

standoffs and M3 bolts on a polycarbonate sheet slid into the slots of the aluminum extrusion and 

held in place with 3D printed brackets.  

 

To comply with standards, the power supply needed to be enclosed in a NEMA 1 enclosure. One 

such enclosure was purchased from Amazon but was too large to fit inside the frame [53]. 

Subsequently it was cut and put back together using epoxy. Then it was mounted to the 

polycarbonate with hex standoffs similarly to the circuit boards. 

Project Time Line 

As evident in our original Gantt Chart in Figure 32, the core tasks of each subsystem were highly 

parallelizable. Individuals planned to work on lighting, ball sensing, path planning, detection, 

PCB, and assembly in parallel. A few tasks remained serializable, notably the parts of the 

mechanical assembly and full system assembly. Of course, within each category tasks became 

serializable. For example, ball detection required a working camera rig for proper development. 

See the Statement of Work section for a detailed description of which teammates were 

responsible for these tasks. Also depicted in this chart is how our timeline was informed by 

several key dates as discussed on the first day of class. These include the proposal deadline, the 

poster session, and of course the final demonstration.  
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Figure 32: Original Gantt Chart 

As the project developed throughout the semester, the timelines of various subtasks changed in 

response to shipping delays, bug fixes, difficulty underestimation, and other roadblocks. Our 

final Gantt chart, which reflects the actual timeline of the project, can be found in Figure 33. In 

comparing these two figures, one might notice a few substantial differences. These include 

dedicating much more time to perfecting ball detection and assembling the full project later than 

expected. Neither of these changes to our schedule presented major problems; our original 

timeline had enough built-in flexibility that these adjustments still kept us on schedule for the 

final demonstration.  
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Figure 33: Final Gantt Chart 

Test Plan 

The test plan for this project was divided into three groups along subsystem lines to reduce 

debugging time needed for the combined system. These three groups were hardware and 

firmware, UART communication, and image processing. Figure 34 shows the hardware and 

firmware test plan. 
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Figure 34: Hardware and Embedded Test Plan 

For hardware and firmware verification, tests were structured such that all dependent signals 

were verified before continuing to the next test. Using this structure, a failed test indicated that 

the current component under test was responsible for failure. First, the logic level outputs of the 

MSP432 were tested with the MSP isolated. It was verified that a pulse width modulation 

(PWM) signal could be produced at each of the pins connected to the motor driver circuitry. It 

was verified using a multimeter that the software defined duty cycle and logic-level amplitudes 

of each PWM signal matched the expected values. The header board was then added to the MSP 

with the CCS debugger open to verify that communication between the laptop running CCS and 

the MSP was not lost. Each of the six switches (four physical limit switches and two optical 

interrupters) were then connected to the header board and tested to confirm that the switches 

were active low and logic level otherwise. With the functionality of the header board and the 

MSP confirmed, the driver board and 12V power supply were connected to the MSP and header 

board. The power indicator light emitting diodes (LEDs) were checked for each voltage level, 

and it was verified that the MSP could run using power from the driver board. The outputs of the 

motor driver ICs were tested to verify that they had the expected 12V amplitude and matched the 

duty cycle of their logic level inputs. Motors were connected, and it was confirmed that their 

speed, direction, and encoder signal outputs matched the design. Passing these tests in sequence 

indicated that the designed printed circuit boards (PCBs) and low-level embedded abstractions 

were working as intended. 
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During this process, several hardware design flaws were revealed. While testing the limit switch 

outputs, the inactive voltage at the switch output was found to be lower than logic level. It was 

identified that this problem resulted from the Zener diodes used in the input protection circuit 

conducting more current than anticipated. The diodes were removed. During the switch tests, it 

was also revealed that the initial design for the optical interrupter biasing network did not allow 

sufficient current through the internal photodiode. This was corrected by replacing the biasing 

network with smaller resistor values and shorting one of the surface mount pads with a 0 Ohm 

surface mount device (SMD). While testing the supply voltages on the driver board, it was found 

that the isolated grounds on the 12V and 5V sides of the DC-to-DC converter circuit had 

different values. A wire was soldered between the two grounds, minimizing contact forcing the 

grounds to have equivalent values. Finally, while testing the linear motor encoder signals, the 

processed encoder signal was found to be below logic level. The values in the resistor divider 

were originally too low for the encoder to drive sufficient current. These resistors were swapped 

for higher values. 

The test plan for the UART communication between the MSP and Raspberry Pi is shown in 

Figure 35.  

 
Figure 35: UART Communication Test Plan 

Generally, the communication test plan uses the simple and easily verifiable behavior of the 

python simulator to test the transmit and receive UART configuration on the MSP before 

combining with the more complex Raspberry Pi implementation. The python simulator was run 

on a laptop connected to the MSP, using the CCS debugger to verify the contents of the data 

being sent and received. The MSP was then configured to toggle an LED when receiving valid 

data and tested with the Raspberry Pi. It was confirmed that the transmission from the Pi toggled 

the LED as expected. This testing process was repeated several times when initially configuring 

the UART communication protocol. Some minor software adjustments were required to allow 

the communication (COM) port to open before transmitting.  

The test plan for the image processing code is shown in Figure 36. Because the image processing 

operates at a higher level of abstraction than the rest of the system, testing consisted mostly of 

viewing debug output and iterating.  

 
Figure 36: Image Processing Test Plan 
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To test an iteration of the image processing program, the program was run with the camera 

positioned above the board. The program was then calibrated to identify the corners of the board 

and the color of the ball. Debug output was used to verify that the ball position and center was 

being correctly identified, the size of the table was being correctly extrapolated, and the corners 

of the table were found correctly. The ball was moved to various positions on the table to 

observe the state output of the planning algorithm and the tracked position of the ball. Executing 

each of these individual test plans independently allowed for relatively high confidence moving 

into the full system level tests. Once combined, the remaining testing mostly pertained to 

gameplay algorithm tuning – this tuning would have been difficult to reduce into a consistent test 

plan. Overall, the subsystem level testing was effective at finding and eliminating bugs in the 

system. 

Final Results 

Our project resulted in a functioning, playable robotic foosball table that entertained dozens of 

visitors at the Capstone Fair. A picture of the entire system is provided in Figure 37. 

 

Figure 37: Final Assembly 
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We also provide a picture of the table’s insides, which contains the power supply, PCBs, 

Raspberry Pi, and MSP432, in Figure 38. 

 

Figure 38: Final Internal Circuitry 

In our proposal, we outlined eight goal criteria for our robotic foosball table. For each of these, 

we honestly assess whether these were met and provide specific examples of performance. 

 

1. Raspberry Pi collects video frames and processes them at 30Hz.  

Our table uses a camera that collects video frames at 30Hz. The Raspberry Pi reads these 

frames, processing each one in series. At 30Hz, each frame needs to be processed in 

33ms or less to prevent lost data. The processing time encompasses everything from the 

moment after a frame buffer is dequeued to the moment before that buffer is re-enqueued, 

including the ball detection, player planning, and transmission to the MSP432. We 

modified our Raspberry Pi code to measure and output this elapsed time on every frame, 

then played several minutes of foosball against the table. We gathered processing time 

data for 15,694 frames, a histogram of which is shown in Figure 39. The mean processing 

time was 2.9 ms, 99.7% of frames took 6 ms or less, and the very longest any frame took 

to process was 8.5 ms. Since every frame in a large sample size comfortably beat the 33 
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ms deadline, we consider the deterministic 30 Hz image processing requirement to be 

soundly met. 

 
Figure 39: Image Processing Time Distribution 

2. System stops playing after a goal or when the ball is otherwise not on the field. 

Whenever the camera cannot detect the ball, the system automatically positions the 

players to a default ready state. In this state, the players are centered on the goal line and 

in the vertical position. Scoring the ball or removing it from the table in any way triggers 

this behavior. If the ball becomes visible again, the system once again begins playing 

without human intervention. In all our play testing, this specification is consistently met. 

3. Players return to a lateral default blocking state after moving to block the ball. 

When a player blocks the ball, two behaviors can happen. First, if the ball is not 

obstructed (for example, by a horizontal player), then the system continues predicting its 

trajectory and position its players accordingly. Alternatively, if the ball is obstructed, the 

system returns to a default state as described in the second specification. In our proposal, 

we anticipated having enough time between processed frames to return the blockers to a 

home position each time. However, because we were able to process information so 

quickly, it is more efficient to have the players perpetually ready to block a perceived 

ball. This means that, while we do not meet the original specification outlined in our 

proposal, it is only because our actual implementation uses a more effective strategy.  

4. Players return to a vertical default blocking state after hitting the ball. 
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After completing the shooting routine consisting of a backwards windup and a forward 

kicking swing, if the image processing sees that the ball is still within range to kick (i.e., 

the robot missed or hit the ball weakly), the robot continues repeating the shooting 

routine to attempt to kick the ball again. If the robot successfully hits the ball, the image 

processing will detect that the ball is ahead of the players, so they will return to the 

default vertical blocking position. In our playtesting, the players always returned to this 

vertical default position after successfully hitting the ball downfield, so this requirement 

was met. 

5. System is capable of deliberately hitting the ball towards the goal to score. 

When the ball is close enough to the players to kick it, the robot performs a back-and-

forth motion with the rotational motors in order to strike the ball downfield towards the 

opposing goal. Although the simple back-and-forth logic means that the robot is also 

capable of hitting the ball towards its own goal, for most shots this does not happen 

because the ball started in front of the players (i.e., it just blocked a shot by the opposing 

team) or the ball came from far enough behind the players that they transitioned straight 

from the ready position to the shooting routine, so no initial windup was necessary. In our 

playtesting, the robot consistently attempted to shoot the ball when it was in range, it 

usually kicked the ball in the correct direction, and many of its shots successfully went 

into the opponent’s goal, so this requirement was successfully met. 

6. System does not block itself when its back row of players is hitting. 

Whenever the ball is too far behind a row of players to hit, that row moves the players to 

a horizontal position (parallel to the table) so that the ball can pass under them. 

Therefore, if the back row of players kicks the ball, the front row will already be in 

position to allow the shot past. In our playtesting, we confirmed that the front row always 

allowed a shot by the back row past, so this condition was met. 

7. System hits the ball hard enough that it is reasonably challenging for a human to block it. 

 

To assess how difficult it is for a human to block the ball, we perform an analysis on 120 

shots from gameplay with three different group members. In total, this data is obtained 

from a collection of approximately 5,400 frames in aggregate, each of which was 

manually tabulated for data collection. Of these 120 shots, 70 were the robot shooting 

against the human. Figure 40 shows the histogram of these shots that were successfully 

blocked by a human. In total, 31 of the robot’s shots were blocked.  
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Figure 40: Histogram of Robot Shots Blocked by Human 

We compare this with Figure 41, which shows the histogram of shots that were not 

blocked by a human. Note that 39 shots were not blocked, meaning the robot performed a 

shot that the human could not block 56% of the time. Furthermore, the robot shot the ball 

at a max speed of 2.1 m/s, which is significantly faster than the top human speed of 1.3 

m/s we determined in our proposal. As a result, we conclude that the robot is capable of 

hitting the ball hard enough that it is reasonably challenging for a human to block it. 

 

 
Figure 41: Histogram of Robot Shots Not Blocked by Human 
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8. System blocks a ball that is hit with reasonable power from a player of medium skill 

level. 

From the onset of our project, the cornerstone of our strategy has been defense. We 

reasoned that a sophisticated defense would give us the time needed to score goals, and 

that if the human could never score on the system then eventually they would make a 

mistake and the system would score on them. Furthermore, we understood that predicting 

the ball’s trajectory and blocking it was an easier task than aiming it, leading us to rely on 

defense instead of offense.  

Because of this emphasis on defense, the system’s blocking mechanism performs well 

against human opponents. In our proposal we mention “reasonable power” from players 

of “medium skill.” While these terms are poorly defined, our working project can block 

most shots regardless of power. In our extensive testing early on, we determined that the 

maximum speed a human could hit the ball on our table was 1.3m/s. Given the time it 

takes to process frames, our system is easily capable of reacting to speeds much higher 

than that.  

The data collected from the study mentioned in specification seven, above, support this 

claim. Figure 42 shows the histogram of shots from the human that the robot does not 

block. 

 

 
Figure 42: Histogram of Human Shots Not Blocked by Robot 

We compare this data with that from Figure 43, which shows the histogram of human 

shots the robot did block. Notably, the robot successfully blocks 70% of human shots. 

We contrast this with the data from the human blocking the robot’s shots, where the 

human blocks only 44% of the robot’s shots.  
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Figure 43: Histogram of Human Shots Blocked by Robot 

Additionally, the robot’s shots have an average speed of 0.89 m/s, whereas the humans’ 

shots have an average speed of 0.76 m/s. This means on average the robot shoots 17% 

faster than the human. 

There does not appear to be a relationship between the situations when the robot does not 

block a shot; no common speed, angle, wait time, or other factors we could think of. 

Despite our best efforts, there are still slight inaccuracies in how the system estimates the 

future position of the ball and moves to intercept it. These likely arise from the table 

shaking during play, distortion from the camera lens, and noisy image processing. 

However, we believe that the data still show that the robot is capable of blocking a shot 

hit with reasonable power from a player of medium skill.  

To conclude, the system successfully meets (and in some cases, far exceeds) the specifications 

laid out in our original proposal. Perhaps the best metric of success, however, is the robot’s 

performance at the Capstone Fair. At the Fair, we recorded over thirty matches with a wide 

variety of human opponents. The scores are recorded in Table 12; the robot beat the humans 208-

94 and only lost to 3 people. For these reasons, we propose that this project succeeded.  

Costs 

The cost overviews can be seen in Table 2 and Table 3 in the Cost Constraints section. $431.38 

of the $500 class budget was used and $524.54 was spent external to the class budget. Table 9 in 

the Appendix shows the detailed list of all components purchased through the class budget. 

Table 10 shows the estimated value of all parts external to the class budget used for the project, 

which total to $732.46. This includes the estimated value of everything that was already owned 

and items that were purchased specifically for the project. Thus, the total estimated value of 

everything that was used in the project is $1,163.84. This is broken down by category in Table 7. 
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Table 7: Total Estimated Value by Category 

Mechanical $444.73 

PCBs $266.13 

Motors $224.70 

Processing & Control $128.94 

Other Electrical $57.35 

Foosball Table $41.99 

  

Total $1,163.84 

 

The amounts spent specifically for the project, which excludes anything that was already owned, 

can be seen in Table 8. 

 

Table 8: All Costs Incurred for Project 

Mechanical $365.75 

PCBs $266.13 

Motors $224.70 

Processing & Control $0.00 

Other Electrical $57.35 

Foosball Table $41.99 

  

Total $955.92 

 

If this were to be manufactured as a product, there would be many ways to save cost in mass 

production. The cost to manufacture 10,000 units of the current design is estimated in Table 11 at 

$812.50 per unit. The main savings included here are from the decreased component and 

assembly costs at scale. This price could be decreased further by ordering similar mechanical 

parts that are less niche and not from specialized suppliers. Instead of using an MSP432 [8] 

development board, the processer Integrated Circuit (IC) alone could be purchased and 

integrated onto one of the boards. The 3D printed parts could be recreated with plastic molds 

which would be cheaper and much faster. All of these would contribute to making production 

cheaper per unit and faster. 

Future Work 

Though the table is complete and generally meets all the specifications we originally outlined, 

there are several ways we would improve the project if we had more time. Perhaps most obvious 

are additional safety features. Given more time, we would build a transparent enclosure around 

the motors to prevent anyone from touching them. We would also add permanent markings 

warning of potential danger, for example a sign that indicates people should not reach inside the 

table. A better on switch that was attached to the table would also be safer (and more 

presentable). 
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When it comes to the mechanical assembly, many of our parts were 3D printed. This means they 

are different colors (reducing presentability) and weaker than manufactured metal parts. While 

3D printing was a viable strategy for a semester-long project, and we thoroughly vetted the 

designs and parts for potential failures, professionally designed parts would still improve the 

durability and professionalism of the project.  

If we had more time, the most effective way we could improve the project would be with better 

gameplay algorithms. Though the system plays decently well, the underlying gameplay logic is 

rudimentary and has a few glaring flaws. First, the robot behaves exactly the same when trying to 

kick a ball that is behind its players as it does for a ball in front of them. This causes it to have a 

chance of accidentally kicking the ball backwards while winding up to kick a ball behind it, so it 

occasionally scores on itself. While the image recognition and planning algorithms are capable of 

identifying a ball behind the robot’s players, we would still need to implement embedded motor 

control logic to avoid hitting the ball backwards when that is the case. Second, while the robot 

intentionally kicks the ball downfield, it does not currently adjust its angle to aim for the goal 

laterally, so many shots miss the goal and bounce off the far wall. Further work could improve 

on this by deliberately striking the ball off-center to angle the shot towards the goal, requiring 

less attempts to score. 

Other potential improvements could include the use of more advanced algorithms for trajectory 

planning or predicting opponent actions, potentially even incorporating machine learning. We 

could also upgrade the camera to a higher frame rate to be able to track the ball’s position more 

precisely and quickly. To implement a more sophisticated aiming capability, the system could be 

upgraded to track the locations of the human-controlled players, either with a camera or some 

form of encoder, so that the system could aim around them.  

Throughout the course of this project, we have also encountered several roadblocks that might 

have been avoided. For one, we quickly realized that supplying power to a stalled motor will 

quickly ruin it. We were also reminded of the importance of precise measurements, especially 

when some parts had to be printed multiple times to correct for sub-millimeter differences. At the 

beginning, we underestimated how complicated even simple gameplay would become, and we 

also allotted less time than necessary for assembly, testing, and generally fixing last-minute 

problems we did not anticipate.  
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Appendix 
Table 9: Class Budget Detailed Usage 

Order 
# Item Supplier Unit Cost Quantity 

Total 
Cost 

1 296-DRV8935PPWPRCT-ND Digikey $4.56 1 $4.56 

1 BTN8962TAAUMA1INCT-ND* Digikey $0.00 4 $0.00 

    Order #1 $4.56 

2 4757 - 6.25:1 Metal Gearmotor Pololu $51.95 1 $51.95 

2 3487 - 31.25:1 Metal Gearmotor Pololu $29.95 1 $29.95 

2 3499 - Magnetic Encoder Pair Pololu $8.95 1 $8.95 

2 550 - Smooth Idler Pulley Kit OpenBuilds $5.99 1 $5.99 

2 570 - Idler Pulley Plate OpenBuilds $6.99 1 $6.99 

2 285-LP - V-Slot 20x40 Linear Rail OpenBuilds $3.99 1 $3.99 

2 1185-Set - Mini V Gantry Kit OpenBuilds $34.99 1 $34.99 

2 712 - Timing Pulley OpenBuilds $7.99 1 $7.99 

2 626-By-the-Foot - Timing Belt OpenBuilds $3.49 4 $13.96 

    Order #2 $164.76 

3 P8062S-ND Digikey $0.49 1 $0.49 

    Order #3 $0.49 

4 365-1729-ND Digikey $4.66 2 $9.32 

4 2449-SM3CQF3502L00-ND Digikey $1.12 4 $4.48 

4 1276-6720-1-ND Digikey $0.10 8 $0.80 

4 1276-1018-1-ND Digikey $0.10 4 $0.40 

4 1276-1176-1-ND Digikey $0.10 8 $0.80 

4 732-8604-1-ND Digikey $0.28 2 $0.56 

4 1276-1051-1-ND Digikey $0.10 2 $0.20 

4 732-8598-1-ND Digikey $0.11 1 $0.11 

4 1276-1176-1-ND Digikey $0.10 1 $0.10 

4 1276-1537-1-ND Digikey $0.10 1 $0.10 

4 1276-1247-1-ND Digikey $0.10 1 $0.10 

4 490-10675-1-ND Digikey $0.32 1 $0.32 

4 1276-1942-1-ND Digikey $0.10 2 $0.20 

4 1276-1096-1-ND Digikey $0.10 1 $0.10 

4 SMAJ12CALFCT-ND Digikey $0.43 1 $0.43 

4 754-1870-ND  Digikey $0.42 2 $0.84 

4 277-1667-ND Digikey $0.54 1 $0.54 

4 A34825-ND Digikey $0.64 4 $2.56 

4 A19433-ND Digikey $0.45 4 $1.80 

4 732-11376-ND  Digikey $0.68 1 $0.68 
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4 F1728-ND Digikey $0.42 3 $1.26 

4 811-2473-1-ND Digikey $0.80 1 $0.80 

4 P10.0KHCT-ND Digikey $0.05 10 $0.48 

4 P5.10KHCT-ND Digikey $0.10 4 $0.40 

4 P1.02KHCT-ND Digikey $0.10 4 $0.40 

4 P8.06KHCT-ND Digikey $0.10 1 $0.10 

4 RNCP0805FTD249RCT-ND Digikey $0.10 1 $0.10 

4 P510HCT-ND Digikey $0.10 1 $0.10 

4 P330HCT-ND Digikey $0.10 1 $0.10 

4 CW103-ND Digikey $4.25 1 $4.25 

4 36-5010-ND Digikey $0.42 3 $1.26 

4 36-5011-ND  Digikey $0.42 3 $1.26 

4 36-5014-ND  Digikey $0.42 4 $1.68 

4 36-5012-ND  Digikey $0.42 8 $3.36 

4 AP2125N-3.3TRG1DICT-ND Digikey $0.39 1 $0.39 

4 811-3198-ND  Digikey $2.98 1 $2.98 

4 478-1239-1-ND Digikey $0.10 6 $0.60 

4 399-C0603C102K5RAC7867CT-ND Digikey $0.10 4 $0.40 

4 311-3971-1-ND Digikey $0.11 4 $0.44 

4 3757-PZ1AL3V6B_R1_00001CT-ND Digikey $0.50 6 $3.00 

4 MHS30N-ND Digikey $5.06 2 $10.12 

4 A1922-ND Digikey $0.28 2 $0.56 

4 S6106-ND Digikey $1.26 2 $2.52 

4 A113510-ND Digikey $0.74 4 $2.96 

4 A129543CT-ND Digikey $0.10 2 $0.20 

4 RNCP0603FTD10K0CT-ND Digikey $0.06 12 $0.73 

4 2019-RK73H2ATTD44R2FCT-ND Digikey $0.10 2 $0.20 

4 RMCF0603FT4K53CT-ND Digikey $0.10 2 $0.20 

4 541-CRCW0603100KJNEBCT-ND Digikey $0.10 4 $0.40 

4 RMCF0603JJ1K00CT-ND Digikey $0.10 4 $0.40 

4 RNCP0603FTD180RCT-ND Digikey $0.10 4 $0.40 

4 RMCF0603FT100RCT-ND Digikey $0.10 4 $0.40 

4 36-5005-ND Digikey $0.42 2 $0.84 

4 36-5001-ND Digikey $0.42 2 $0.84 

4 36-5004-ND Digikey $0.42 4 $1.68 

4 36-5002-ND Digikey $0.42 4 $1.68 

4 A30978-ND Digikey $0.23 4 $0.92 

4 A30980-ND Digikey $0.29 2 $0.58 

    Order #4 $73.43 

5 Custom PCB  $33.00 2 $66.00 
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    Order #5 $66.00 

6 Driver Board Parts WWW $0.50 73 $36.50 

6 Driver Board Fixed Cost WWW $10.00 1 $10.00 

6 Header Board Parts WWW $0.50 63 $31.50 

6 Header Board Fixed Cost WWW $10.00 1 $10.00 

    Order #6 $88.00 

7 P10KGCT-ND Digikey 0.1 6 $0.60 

7 311-18.0KHRCT-ND Digikey 0.1 6 $0.60 

7 RMCF0603FG1K00CT-ND Digikey 0.1 6 $0.60 

7 3757-PZ1AL3V6B_R1_00001CT-ND Digikey 0.5 2 $1.00 

7 2019-RK73Z1JTTDCT-ND Digikey 0.1 4 $0.40 

7 A130402CT-ND Digikey 0.14 6 $0.84 

7 311-22KGRCT-ND Digikey 0.1 6 $0.60 

    Order #7 $4.64 

8 Parts to desolder WWW $0.50 20 $10.00 

8 Parts to solder WWW $0.50 19 $9.50 

8 Board fixed cost WWW $10.00 1 $10.00 

    Order #8 $29.50 

      

 *purchased by ECE department   Final Total $431.38 

 

 

Table 10: Estimated Values External to Budget 

Item Est. Unit Cost Quantity Total value 

Raspberry Pi 4B (2 GB) $45.00 1 $45.00 

MSP432P401R $43.95 1 $43.95 

Ring Light $14.99 1 $14.99 

Aluminum 80/20 to hold camera $11.99 1 $11.99 

Microsoft LifeCam Webcam $39.99 1 $39.99 

WIN.MAX Mini Foosball Table $41.99 1 $41.99 

DC 12V 16.5A Power Supply $31.99 1 $31.99 

Power Supply Enclosure $19.49 1 $19.49 

Fuse Holder $3.82 1 $3.82 

Fuses $3.90 1 $3.90 

Limit Switches $5.99 1 $5.99 

6.25:1 Metal Gearmotor $51.95 2 $103.90 

31.25:1 Metal Gearmotor $29.95 1 $29.95 

Aluminum Mounting Hub for Shaft (2) $8.49 1 $8.49 

Black 14 AWG Wire $6.63 1 $6.63 
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Red 14 AWG Wire $6.63 1 $6.63 

Clear Epoxy $15.16 1 $15.16 

Rocker Switch $4.38 1 $4.38 

Steel bracket material $2.00 1 $2.00 

3d print material $50.00 1 $50.00 

Nylon Inert Hex Locknut - M5 (10 Pack) $0.99 1 $0.99 

L Bracket Triple $1.99 8 $15.92 

L Bracket Single $1.29 6 $7.74 

M5 x 8mm Screws (10 Pack) $0.99 11 $10.89 

M5 Tee Nuts (10 Pack) $2.99 11 $32.89 

Double Tee Nut $0.69 2 $1.38 

Cube Corner Connector $3.49 4 $13.96 

Nylon Inert Hex Locknut - M3 (10 Pack) $0.99 4 $3.96 

V Slot 20x60 Linear Rail 500mm $9.99 4 $39.96 

M3 x 6mm Screws (10 pack) $0.99 5 $4.95 

M3 hex standoffs (4 pack) Female $0.29 3 $0.87 
M3 hex standoffs (4 pack) Female 
Male $0.29 1 $0.29 

Rubber Feet Set (4 pack) $7.99 2 $15.98 

Inside Outside Corner Bracket 60mm $2.99 4 $11.96 

Nylon Spacers $2.09 1 $2.09 

Aluminum Spacers $2.49 1 $2.49 

M5 x 10mm screws (10 pack) $1.09 1 $1.09 

M5 x 8mm screws (10 pack) $0.99 2 $1.98 

M5 x 6mm screws (10 pack) $0.89 2 $1.78 

M5 x 25mm screws (10 pack) $1.39 1 $1.39 

M5 Tee Nuts (10 pack) $2.99 1 $2.99 

Idler Pulley Plate $6.99 1 $6.99 

Double Tee Nut $0.69 4 $2.76 

Smooth Idler Pulley Kit $5.99 1 $5.99 

Mini V Gantry Kit $34.99 1 $34.99 

3GT Timing Pulley $7.99 1 $7.99 

V-Slot 20x40 Linear Rail 250mm $3.99 1 $3.99 

M3 x 6mm screws (10 pack) $0.99 1 $0.99 

M3 x 10mm screws (10 pack) $0.99 3 $2.97 

    

 Total Estimated Value $732.46 
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Table 11: 10,000 Unit Cost 

Item Supplier Unit Cost Quantity Total Cost 

296-DRV8935PPWPRCT-ND Digikey 2.43600 1 $2.44 

BTN8962TAAUMA1INCT-ND Digikey 3.60762 4 $14.43 

365-1729-ND Digikey 4.15250 2 $8.31 

2449-SM3CQF3502L00-ND Digikey 0.59122 4 $2.36 

1276-6720-1-ND Digikey 0.00271 8 $0.02 

1276-1018-1-ND Digikey 0.00497 4 $0.02 

1276-1176-1-ND Digikey 0.00464 8 $0.04 

732-8604-1-ND Digikey 0.16100 2 $0.32 

1276-1051-1-ND Digikey 0.00273 2 $0.01 

732-8598-1-ND Digikey 0.06000 1 $0.06 

1276-1176-1-ND Digikey 0.00573 1 $0.01 

1276-1537-1-ND Digikey 0.00428 1 $0.00 

1276-1247-1-ND Digikey 0.01247 1 $0.01 

490-10675-1-ND Digikey 0.06328 1 $0.06 

1276-1942-1-ND Digikey 0.00780 2 $0.02 

1276-1096-1-ND Digikey 0.01413 1 $0.01 

SMAJ12CALFCT-ND Digikey 0.08138 1 $0.08 

754-1870-ND  Digikey 0.08302 2 $0.17 

277-1667-ND Digikey 0.36550 1 $0.37 

A34825-ND Digikey 0.29864 2 $0.60 

A19433-ND Digikey 0.16859 4 $0.67 

732-11376-ND  Digikey 0.39300 1 $0.39 

F1728-ND Digikey 0.17044 1 $0.17 

811-2473-1-ND Digikey 0.30922 1 $0.31 

P10.0KHCT-ND Digikey 0.00436 10 $0.04 

P5.10KHCT-ND Digikey 0.00475 4 $0.02 

P1.02KHCT-ND Digikey 0.00475 4 $0.02 

P8.06KHCT-ND Digikey 0.00541 1 $0.01 

RNCP0805FTD249RCT-ND Digikey 0.00832 1 $0.01 

P510HCT-ND Digikey 0.00541 1 $0.01 

P330HCT-ND Digikey 0.00541 1 $0.01 

CW103-ND Digikey 2.76336 1 $2.76 

AP2125N-3.3TRG1DICT-ND Digikey 0.08181 1 $0.08 

811-3198-ND  Digikey 2.21001 1 $2.21 

478-1239-1-ND Digikey 0.00731 6 $0.04 

399-C0603C102K5RAC7867CT-ND Digikey 0.00921 4 $0.04 

311-3971-1-ND Digikey 0.01571 4 $0.06 

MHS30N-ND Digikey 2.93574 2 $5.87 
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A1922-ND Digikey 0.10233 2 $0.20 

S6106-ND Digikey 0.67470 2 $1.35 

A113510-ND Digikey 0.31044 4 $1.24 

A129543CT-ND Digikey 0.00778 2 $0.02 

RNCP0603FTD10K0CT-ND Digikey 0.00559 12 $0.07 

2019-RK73H2ATTD44R2FCT-ND Digikey 0.00428 2 $0.01 

RMCF0603FT4K53CT-ND Digikey 0.00170 2 $0.00 

541-CRCW0603100KJNEBCT-ND Digikey 0.00319 4 $0.01 

RMCF0603JJ1K00CT-ND Digikey 0.00134 4 $0.01 

RNCP0603FTD180RCT-ND Digikey 0.00609 4 $0.02 

RMCF0603FT100RCT-ND Digikey 0.00149 4 $0.01 

A30978-ND Digikey 0.09636 4 $0.39 

A30980-ND Digikey 0.11392 2 $0.23 

P10KGCT-ND Digikey 0.00426 4 $0.02 

RMCF0603FG1K00CT-ND Digikey 0.00149 4 $0.01 

2019-RK73Z1JTTDCT-ND Digikey 0.00185 2 $0.00 

A130402CT-ND Digikey 0.01447 4 $0.06 

311-22KGRCT-ND Digikey 0.00173 4 $0.01 

  PCB Components $45.70 

Driver Board PCB 
Pcbcart 
est. 1.25000 1 $1.25 

Header Board PCB 
Pcbcart 
est. 0.65000 1 $0.65 

Driver Board Assembly Est for size 0.83000 1 $0.83 

Header Board Assembly Est for size 0.40000 1 $0.40 

  PCB & Assembly $3.13 

4757 - 6.25:1 Metal Gearmotor Pololu 47.79000 2 $95.58 

3487 - 31.25:1 Metal Gearmotor Pololu 27.55000 2 $55.10 

3499 - Magnetic Encoder Pair Pololu 8.23000 2 $16.46 

  Motors and Encoders $167.14 

550 - Smooth Idler Pulley Kit OpenBuilds 5.99000 2 $11.98 

570 - Idler Pulley Plate OpenBuilds 6.99000 2 $13.98 

285-LP - V-Slot 20x40 Linear Rail OpenBuilds 3.99000 2 $7.98 

1185-Set - Mini V Gantry Kit OpenBuilds 34.99000 2 $69.98 

712 - 3GT Timing Pulley OpenBuilds 7.99000 2 $15.98 

626-By-the-Foot - Timing Belt OpenBuilds 3.49000 4 $13.96 

  Extending Gantries $133.86 

Limit Switches  $5.99 1 $5.99 

Aluminum Mounting Hub for Shaft (2) $8.49 1 $8.49 

Black 14 AWG Wire  $0.27 1 $0.27 
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Red 14 AWG Wire  $0.27 1 $0.27 

Clear Epoxy  $4.00 1 $4.00 

Rocker Switch  $4.38 1 $4.38 

Steel bracket material  $2.00 1 $2.00 

Plastic mold material  $5.00 1 $5.00 

Nylon Inert Hex Locknut - M5 (10 Pack) $0.99 1 $0.99 

L Bracket Triple  $1.99 8 $15.92 

L Bracket Single  $1.29 6 $7.74 

M5 x 8mm Screws (10 Pack)  $0.99 10 $9.90 

M5 Tee Nuts (10 Pack)  $2.99 10 $29.90 

Double Tee Nut  $0.69 2 $1.38 

Cube Corner Connector  $3.49 4 $13.96 

Nylon Inert Hex Locknut - M3 (10 Pack) $0.99 4 $3.96 

V Slot 20x60 Linear Rail 500mm  $9.99 4 $39.96 

M3 x 6mm Screws (10 pack)  $0.99 5 $4.95 

M3 hex standoffs (4 pack) Female  $0.29 3 $0.87 

M3 hex standoffs (4 pack) Female Male $0.29 1 $0.29 

Rubber Feet Set (4 pack)  $7.99 2 $15.98 
Inside Outside Corner Bracket 
60mm  $2.99 4 $11.96 

Nylon Spacers  $2.09 1 $2.09 

Aluminum Spacers  $2.49 1 $2.49 

M5 x 10mm screws (10 pack)  $1.09 1 $1.09 

M5 x 8mm screws (10 pack)  $0.99 2 $1.98 

M5 x 6mm screws (10 pack)  $0.89 2 $1.78 

M5 x 25mm screws (10 pack)  $1.39 1 $1.39 

M5 Tee Nuts (10 pack)  $2.99 1 $2.99 

Double Tee Nut  $0.69 4 $2.76 

M3 x 6mm screws (10 pack)  $0.99 1 $0.99 

M3 x 10mm screws (10 pack)  $0.99 3 $2.97 

 Frame and other Mechanical $208.68 

Raspberry Pi 4B (2 GB)  $45.00 1 $45.00 

MSP432P401R  $43.95 1 $43.95 

Ring Light  $14.99 1 $14.99 

Aluminum 80/20 to hold camera  $11.99 1 $11.99 

Microsoft LifeCam Webcam  $39.99 1 $39.99 

WIN.MAX Mini Foosball Table  $41.99 1 $41.99 

DC 12V 16.5A Power Supply  $31.99 1 $31.99 

Power Supply Enclosure  $19.49 1 $19.49 

Fuse Holder  $3.82 1 $3.82 
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Fuses  $0.78 1 $0.78 

   Misc $253.99 

     

   Total $812.50 
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Figure 44: Motor Calculation Code 

 



   

 

Page 72 of 75 

 

 



   

 

Page 73 of 75 

 

 



   

 

Page 74 of 75 

 

 
 

Table 12: Capstone Fair Game Play Scores 

Robot Humans 

1 0 

9 1 

2 3 

9 0 

4 3 

2 0 

3 0 

1 0 

1 0 

9 4 

9 1 

9 3 

2 0 

9 5 

5 0 

6 9 

9 3 

9 3 

7 7 

3 0 

9 4 

9 2 

6 0 

9 8 

5 9 
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9 7 

4 1 

9 5 

9 3 

3 2 

9 3 

9 4 

9 4 

  

208 94 
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