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Introduction

Can prices convey information about product quality? Empirically, higher-quality prod-

ucts tend to be more expensive, and consumers often use prices as signals of quality.

Despite consumers’ apparent belief that prices communicate otherwise inaccessible qual-

ity information, this is difficult to justify intuitively. Price is a single decision variable,

yet it must serve multiple purposes—it must serve the price-setters profit incentives while

also, potentially, signaling quality. Informally, expecting price to play both roles is like

expecting a single variable to solve two unrelated equations.

In my work, I formalize this idea that price cannot “do two jobs at once.” Prices

are set by sellers who have a single overarching objective: to maximize profits. However,

profit maximization consists of two competing components: (a) maximizing profits given

buyers’ existing beliefs and (b) influencing those beliefs to induce highest willingness to

pay. Ideally, a seller would like to achieve both objectives simultaneously, but a single

pricing strategy cannot do so. A price that credibly signals high quality may not maximize

profits when the product is low quality.

Consider a seller who sometimes offers high-quality products and sometimes low-

quality ones. If they price high for good products and low for bad ones, they train buyers

to associate high prices with high quality, allowing them to maximize profits when selling

high-quality goods.1 However, once buyers form this belief, the seller has an incentive to

charge a high price even when selling low-quality products. If no external mechanisms

(such as certifications, reviews, or repeat business) prevent deception, the seller’s optimal

strategy is to exploit buyers’ trust—undermining the credibility of the price signal.

1This is not necessarily a process that happens over time, it is simply the result of an equilibrium
where beliefs are consistent.
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As a result, perfect information transmission through prices is generally impossible.

However, this does not mean that prices convey no information at all. Rather, the amount

of information that can be credibly conveyed is limited by the incentive-compatibility con-

straints that prevent sellers from finding deception too profitable. Across several models,

these constraints place an upper bound on how much information can be transmitted in

equilibrium.

All three essays relate to this core idea. In the first, I run experiments to see the

Grossman-Stiglitz Paradox in the lab. The upshot of the paradox is that prices can

be informative, but not too informative: “the impossibility of informationally efficient

markets”. Prices can be just informative enough that the return to arbitrage perfectly

offsets its cost. This same intuition applies to the buyer-seller version of the Grossman-

Stiglitz paradox that I implement (originally from Bester and Ritzberger): prices can be

just informative enough that the return to investigating product quality offsets its cost.

I find that subjects arrive at this “informative but not too informative” outcome. With

a few behavioral caveats, they are very close to what the G-S Paradox predicts.

But this idea is broader than the Grossman and Stiglitz (1980) model; it also applies

to models where arbitrage is not the mechanism for informativeness. The second essay

investigates a model in which buyers have no way to become informed. Prices can still

reflect quality information, however, since high-quality products are more costly for sellers

to produce. Again, prices can be informative, but not so informative that sellers always

try to cheat buyers. Subjects arrive at somewhat informative pricing in the lab, and I

examine how this varies as competition between sellers increases.

The third essay, analyzing jury voting games, is a different sort of model. But, the

intuition is similar: actions (in this case, voting choices rather than prices) convey some

information, but they cannot convey too much information. When votes are perfectly

informative, it’s because people vote according to their types. But this doesn’t play nicely

with, say, a unanimous voting rule. People have just one lever (their voting decision) both

to convey information to others, and to get the correct aggregate outcome. That one lever

cannot do both things. It is similar to how sellers have one lever (the price) and they
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want to use it both to convey their high quality to sellers but also to maximize their

payoff. If a buyer sees a high price, they know the seller’s need to maximize their payoff

could have pushed them to set a high price even if it doesn’t accurately signal their type.

In the same way, when you see a voter vote yes, you know their incentive to influence

the overall unanimous voting outcome could have pushed them to vote yes even if this

doesn’t accurately convey their private information.
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Chapter 1

Can Price Inform Quality when

Verification is Costly?
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Abstract

A product’s price will reflect its quality, if that quality is known to consumers.

But many experiments have shown that consumers believe high prices signal high

quality, even in situations where the quality is not generally known. It’s unclear if

consumers are right or wrong to expect this. I examine informational efficiency in the

lab, using a market where verifying product quality is costly. Theoretically, prices could

convey information according to Grossman and Stiglitz (1980), but might also convey

no information. I find that prices endogenously convey about as much information as

theoretically possible, even when information is quite costly. Behavioral bias, which I

examine using quantal response, can make prices slightly more or less informative than

theory predicts.

1 Introduction

Prices are often correlated with product quality. Ceteris parabus, a first-class airline ticket

is more expensive than economy class, a house with a beautiful view is more expensive than

one without, and an acclaimed bottle of French wine is more expensive than a boxed wine

grown in Houston. Does this mean if I encounter two otherwise indistinguishable wines, one

more expensive than the other, I can surmise that the more expensive wine will be better

than the cheaper wine? Not necessarily. It may be that prices reflect quality only because

quality information is already obvious to consumers, so that if quality is not apparent, there

is no reason for the better product to be more expensive.

In general, it is difficult to say whether prices are doing informational work: success-

fully conveying quality information to otherwise uninformed consumers. But in many cases,

consumers believe that prices can do informational work. In the lab, it has been shown

that buyers believe prices convey quality information even when the quality is not obvious

otherwise (Leavitt 1954, McConnell 1968, Olson 1977). These experiments are focused on

understanding the buyers’ beliefs, and involve experimenters varying the price of a product
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as a treatment. The experiments show that buyers believe prices are somewhat informative

of quality, but it’s unclear if buyers are correct to believe that prices would be informative

when quality is not obvious, or if their beliefs are an artifact from real-world markets in which

quality is generally known (or even a reflection of what situations they expect experimenters

to present them with).

This paper examines whether prices convey quality information endogenously in a lab-

oratory experiment where quality is not freely observable. There are two reasons why it

might be valuable to see informative pricing arise endogenously in the lab. The first is to

understand the mechanism by which prices become informative. Theoretically, there are

many models that lead to informative pricing and in real-world markets it is generally not

clear which channels, if any, are operative.

The other reason to examine endogenous price information in the lab is to see how be-

havioral biases may impact how much information prices convey. Noise in decision-making,

risk-aversion, and learning may make prices more or less informative than theoretical mod-

els predict. In the lab, behavioral biases can be seen clearly, while in real-world markets

their effects may be confounded with variation from other sources such as heterogeneity in

consumers’ values, producers’ costs, and product characteristics.

I examine the informational content of prices through the channel studied in Grossman

and Stiglitz (1980), and I follow Bester and Ritzberger (2001) in adapting this intuition

to a buyer-seller framework. Here, prices convey some information in equilibrium because

consumers can exert effort to verify product quality. I find that this channel is operative in

the lab. In every experimental session, subjects reach the separating equilibrium in which

prices are informative. I also find that the gradual responsiveness of subject behavior, relative

to the sharp discontinuities in theoretical best responses, can make prices either more or less

informative than theory predicts.

These results demonstrate the efficient markets hypothesis as stated by Grossman and

Stiglitz. The prices observed in the lab are about as informative as they can be theoretically.
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An individual subject will update their beliefs about quality after seeing the price and

will then be indifferent between either verifying the quality or buying the product without

verifying.

But there are also behavioral barriers to efficiency. Subjects are very responsive to the

cost of verifying product quality. When verification is cheap, buyers verify more frequently

than necessary; ignoring that, since others are also verifying, the price already reflects infor-

mation about quality. Instead, buyers do not trust the market enough. When information

is expensive, the opposite happens. Buyers get information rarely, and trust the market too

much, failing to realize that, since others are also getting less information, the price is a less

reliable guide to quality.

2 Background

Formulation of the efficient markets hypothesis by Samuelson (1965) and Fama (1970) gener-

ally assumed that information was freely available to investors who could then bid the price

up or down through buying or selling decisions, until no further arbitrage was profitable.

Grossman and Stiglitz (1980) pointed out that, if information is freely observable, then it

is immaterial whether prices convey information. Prices are doing meaningful informational

work only when they are conveying information to otherwise uninformed buyers. Grossman

and Stiglitz thus assumed arbitrage was costly and reformulated the efficient markets hy-

pothesis so that the return to arbitrage perfectly offset its cost. Markets were then “efficient”

if prices conveyed as much information as possible in equilibrium—just enough to make buy-

ers indifferent to arbitrage opportunities. Informative pricing is sustained by buyers who

incur costs in order to benefit from the deviation of current prices from expected returns.

Since Grossman and Stiglitz, many other models have appeared that sustain informative

pricing. Some involve quality entering demand (through, for instance, a proportion of in-

formed consumers, as in Bagwell and Riordan, 1991). Some involve quality entering through
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a firm’s cost (e.g. Tirole, 1988, pp. 107-108). In 2001, Bester and Ritzberger made the

Grossman and Stiglitz intuition more concordant with these models by adapting it for one

buyer and one single-product monopolist. This gives the model the same separating/pooling

dimension as Bagwell and Riordan but without a proportion of already informed consumers.

Instead, arbitrage is captured by buyers who can exert costly effort to learn the true quality

of the product.

I have chosen to use a discretized version of Bester and Ritzberger’s model to test price

informativeness in the lab. One reason for this is that the model is simple and easy for

subjects to understand. Furthermore, people in real-world markets do expend effort to learn

about the quality of products prior to buying. So, this is certainly one active informational

channel, though it may not be the only one.

3 The Model

A seller is endowed with a single product of quality v, known only to themselves, and chooses

a price p at which to sell the product. If the product is not sold, the seller gets no payoff—the

product is useless to the seller. If the product does sell, the seller gets the price they set.

Thus the seller’s payoff is

πseller = p1{B}

where 1{B} is an indicator for whether the buyer buys.

The buyer knows the prior distribution of v and observes the price set by the seller. The

buyer then chooses one of three options. The buyer can buy the product, in which case they

receive v–p, or they can walk away without buying, in which case they receive 0. The buyer

can alternatively incur an effort cost of c to observe v. The cost c is not a transfer to the

seller, it is simply a loss, representing the cost of time or other resources used. If the buyer

pays c to observe v, they can then decide to buy and receive v–p–c or walk away and receive
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−c. Overall, the buyer’s payoff is

πbuyer = 1{B}(v–p)− 1{I}c

where 1{B} is an indicator for whether the buyer buys and 1{I} is an indicator for whether

they pay for information.

To implement this game in the experiment, I restrict v to be either a high or low quality,

and restrict the seller to two possible price choices, a high price and a low price. The timing

of the game is as follows (the full extensive form is in the appendix). First, nature chooses

the seller’s quality:

v =





vl w.p. 1/2

vh w.p. 1/2

Then the seller chooses p ∈ {pl, ph} where

pl < vl <
vl + vh

2
< ph < vh

After observing p, the buyer chooses whether to buy (B), leave (L), or get information (I).

If the buyer chooses to get information, they observe v and then choose to buy or leave.

3.1 Equilibria

I will focus on the perfect Bayesian equilibria of the game. First, notice that once the buyer

gets information, the next choice is straightforward. Once the cost of information is sunk, the

buyer should buy whenever v > p. Next, note that the buyer should buy blindly whenever

p = pl. Since pl < vl < vh, regardless of the quality of the product, it is worthwhile to buy.

There is no benefit from acquiring information in this case. Taking these two things into

account, we can rewrite the game tree (fig 1). The only difficult question for the buyer is
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vl
w.p. 1/2

vh
w.p. 1/2

pl

ph

pl

ph
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(
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vl − pl

)

(
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vl − ph

) (
0
−c

) (
0
0

)

(
pl

vh − pl

)

(
ph

vh − ph

) (
ph

vh − ph − c

)(
0
0

)

Figure 1: Should Buyers Buy Expensive Products?

Notes: The first decision is a move by nature that determines if the seller has high- or low-quality
products. Then the seller chooses a price. If the seller chooses the low price, the buyer should buy. If the
seller chooses the high price, the buyer must choose either buy (B), get information (I), or leave (L),
depending on their posterior beliefs about the type of seller that would set a high price.

what to do when p = ph.

If a buyer observes the high price, should they buy blindly, hoping it is a high-quality

product? Should they walk away, assuming it isn’t worth the risk? Or should they incur

costly effort to check the quality? The answer depends on the buyer’s beliefs. Suppose the

buyer has updated beliefs µh ≡ P(v = vh|p = ph) after seeing the high price. Then if the

buyer buys blindly, they get

E[v|ph]–ph = µhvh + (1− µh)vl–ph = vl–ph + (vh − vl)µh

If the buyer gets information, they pay c but have a µh chance of getting vh–ph if the product

is high-quality, so their expected payoff is

µh(vh–ph)− c
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µh

E[π]

E[π(I)]

E[π(B)]

1ph−vl−c
ph−vl

c
vh−ph

L I B

0

−c

vl − ph

Figure 2: Optimal Buyer Choice for Different Beliefs

Notes: µh is the buyer’s belief that a seller setting the high price has a high-quality product. If the buyer
thinks high-priced products are very likely to be high-quality, they should buy (B). If they think
high-priced products are unlikely to be high-quality, they should leave (L). For intermediate beliefs, they
should choose to get information (I).

Figure 2 shows the optimal buyer best response to p = ph for different values of beliefs µh.

If it is very likely that a high price indicates a high quality product, the buyer should just

buy without checking. If it is more likely that the quality might be low, the buyer should

check before buying. If it is almost certain that the product is low-quality, then it is not

even worthwhile to check, and the buyer should just leave.

Suppose µ is low, so the buyer thinks a high price is quite likely to have come from a low-

type seller. Then the buyer will leave without buying or getting information when p = ph. If

this is the case, sellers will have to set p = pl to make a sale, and this equilibrium is sustained

by off-equilibrium-path beliefs: the buyer is justified in believing high prices may come from

low-quality sellers because high prices never occur.1 This is an uninformative equilibrium

because the buyer learns nothing from the price—it conveys no information about the quality

of the product.

1Note that this pooling equilibrium still satisfies the Cho-Kreps intuitive criterion because both high and
low-type sellers would benefit from deviating to the high price if the buyer were to buy.
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If instead µh is higher, so that the buyer thinks the high price is more likely to come

from a high-type seller, then they will buy blindly or get information. If they always bought

blindly, the low-type firm would have an incentive to fool the buyer by setting p = ph

as well, and prices would no longer be informative. This is not an equilibrium because

ph > (vl + vh)/2, so if both types are setting p = ph, it is not worthwhile to buy.

If the buyer always got information when seeing the high price, the low-type seller would

have to set p = pl while the high-type seller could set p = ph. But then the price would be

perfectly informative, and paying for information would be a waste—the product quality is

already obvious from the price. So perfect type dependence is also not an equilibrium.

Suppose µh is exactly at the threshold between buying blindly and getting information,

so that the buyer is indifferent between the two. Here there is a partially separating equilib-

rium. The buyer mixes between the two strategies and the low-type seller makes this mixing

plausible by occasionally trying to fool the buyer by setting p = ph. Prices are as informative

as possible in this equilibrium. The price conveys just enough information so that buyers

are indifferent between trusting the market and doing their own research. The return to

verification would just offset the cost, just as the return to arbitrage perfectly offsets its cost

in the Grossman and Stiglitz model.

Thus, there are two types of equilibria, one where prices convey information and one

where they do not.2 While both are theoretically valid, I can use the experimental data to

empirically test if subjects endogenously reach informative pricing or if they behave closer

to the pooling equilibrium.

3.2 Comparative Statics

As well as examining equilibrium selection, I vary the cost of verification, c, to see how

closely subjects track theoretical predictions. In the theory, as c decreases and information

2There is no equilibrium when µh is at the threshold where the buyer is indifferent between leaving and
getting information: in this case, only high-quality products would be sold at high-prices, so the buyer
would regret not buying them blindly. Nevertheless, there is not an even number of equilibria, since there is
a continuum of pooling equilibria (one for each value of buyer beliefs).
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is cheaper, prices become more and more informative until the price perfectly reflects quality

when c = 0. As c increases and information becomes more expensive, prices become less

informative until the informative equilibrium disappears.

However, this depends on sharp comparative statics characteristic of mixed Nash equi-

libria. As c increases (decreases), the low-type seller should try to fool the buyer more (less)

to keep the buyer indifferent between buying blindly and getting information. The buyer

should get information at the same rate regardless of the cost of information, since their

behavior needs to keep the low-type seller indifferent in equilibrium.

P(ph | vl)

P(I | ph)

0 c
ph−vl−c

1

0

pl
ph

1

Legend:

Buyer BR

Seller BR

Figure 3: Cheating and Verifying is a Game of Chicken

Notes: This is the slice of the strategy space where the low-quality seller decides whether to “cheat” the
buyer by setting the high price, and the buyer decided whether to verify the quality of a high-priced
product. This is essentially a game of chicken, or cat-and-mouse. If the low-quality seller is frequently
trying to cheat the buyer, the buyer should verify. But if the low-quality seller is being honest, the buyer
should trust them and not exert effort to verify the quality. Conversely, if the buyer is trusting, the
low-quality seller should cheat them, and if they are verifying, the low-quality seller should be honest. The
only Nash equilibrium is in mixed strategies: the seller cheats just enough that the buyer is indifferent to
getting information, and the buyer verifies just enough that the seller is indifferent. This equilibrium is
unstable in the sense that a small deviation from one player should lead to a larger deviation in response,
until players are far from the Nash equilibrium.

Figure 3 shows this result. This figure is just a slice of the actual action space: the slice

where the buyer always buys when observing the low price, always either buys or verifies
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when observing the high price, and where the high-quality seller always sets the high price.

These are the choices that should occur under the partially separating Nash equilibrium, and

players usually follow these actions. This slice represents, essentially, a game of chicken (or

cat-and-mouse) between the buyer and the low-quality seller. The buyer wants to buy given

ph if the low-quality seller sets pl, and wants to verify given ph if the low-quality seller sets

ph. The low-quality seller wants the opposite: they want to set pl if the buyer is verifying

and set ph when the buyer is buying blindly.

But mixed Nash equilibria can be difficult for subjects to understand, and can some-

times require very astute subjects to achieve. Insofar as these Nash comparative statics

are counterintuitive to subjects, empirical price informativeness may differ from theoretical

predictions.

4 Experimental Design

Experiments were run in-person at the University of Virginia, with a sample of 74 under-

graduate students. There were six sessions of 10-14 subjects each. In each session, subjects

were randomly chosen to be a buyer or a seller, and this designation persisted throughout

the session. Subjects then played the game for 16 rounds with one information cost, and

another 16 rounds with a different information cost. At the beginning of each round, buyers

were randomly rematched with sellers.3

For the experiment I chose the following parameters. The value of the product to the

buyers was

v =





vh = $2.60 w.p. 1/2

vl = $1.20 w.p. 1/2

3I ran fewer treatments than I at first expected, and failed to balance the order of treatments. In four
sessions, agents started with low verification cost before proceeding to high verification cost, and subjects
played the treatments in the opposite order in only two sessions. This means that differences in treatment
response could correspond slightly with differences in treatment order.
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And the sellers could set price

p ∈ {pl = $0.60, ph = $2.00}

In the low-cost treatment, the cost of information was c = $0.10, and in the high-cost

treatment it was c = $0.30. Subjects were paid for every choice in the experiment, but

sellers were only paid half of the face value of their earnings so that average earnings were

similar between buyers and sellers. Subjects were informed that this would be the case at

the beginning of the experiment.

5 Results: Equilibrium Selection

There are two main possibilities for what could happen theoretically. On the one hand,

buyers could refuse to buy any product at the high price. This would force sellers to always

set the low price. Consumers would win out, but prices would convey no information about

quality.

On the other hand, buyers may believe that expensive products are generally high-

quality. If this were true, it could make it worthwhile to buy or at least check the quality

of a high-price product. In this case, buyers’ beliefs can become self-fulfilling. High-quality

firms will know they can sell at a high price, while low-quality firms will not be so sure, and

will mix between the two prices. Since high-quality firms always set the high price while

low-quality firms mix, buyers turn out to be correct that prices convey information.

In the data, high-quality sellers are convinced that they can sell at a high price and they

are correct. Buyers almost never reject an expensive product without at least verifying the

quality first. As a result, high-quality sellers have a greater incentive to set the high price

than low-quality sellers. The difference in how likely it is for high-quality and low-quality

sellers to set the high price means that prices convey information to buyers.

Figure 4 shows how likely each type of seller is to set the high price in the various Nash
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P(ph | vl)

P(ph | vh)
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0

1
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Legend:

Pooling Nash

Separating Nash (c = 0.1)

Separating Nash (c = 0.3)

Data (c = 0.1)

Data (c = 0.3)

Figure 4: Pooling Nash is not Selected

Notes: Data is by-subject. Contrary to the pooling Nash equilibrium, almost all subjects are more likely to
set the high price when they have a high-quality product, demonstrating that information is conveyed
through the arbitrage channel in Grossman-Stiglitz (1980).

equilibria as well as in the data. The data overwhelmingly select the informative equilibrium

discussed by Grossman and Stiglitz. Not only do buyers expect prices to convey information,

but this expectation is self-fulfilling, and prices actually do convey information endogenously.

The diagonal line on figure 4 represents strategies where a firm will choose the same

pricing decision whether it has high- or low-quality products. If both types choose the same

prices, buyers cannot learn anything about quality from observing prices, so this diagonal

also represents seller strategies that are uninformative–conveying no information to buyers

about quality.

The data is firmly above this diagonal. High-quality products are consistently priced

higher, on average, than low-quality products. Buyers understand this and generally buy or

get information when facing a high price. If prices conveyed no information, buyers would

simply walk away until the firm offers a low price. So prices provide meaningful information,

inducing buyers to make choices they would not have made under their prior beliefs.
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6 Results: Behavioral Deviation from Theory

Informational efficiency, (insofar as it is possible in the Grossman-Stiglitz paradox), is a lot

to ask of buyers and sellers. The rational buyer must sometimes buy a product blindly,

without checking the quality. They need to be quite precise themselves, and have perfect

confidence in the precision of their fellow buyers, whose choices determine how trustworthy

the market prices will be.

c = 0.1 c = 0.3

Data Mixed Nash Data Mixed Nash

P(ph|vh) 0.99 1.00 0.96 1.00
P(ph|vl) 0.23 0.14 0.46 0.60

P(B|ph) 0.20 0.30 0.32 0.30
P(I|ph) 0.78 0.70 0.58 0.70
P(B|pl) 0.94 1.00 0.90 1.00
P(I|pl) 0.04 0.00 0.05 0.00

Figure 5: Mixed Nash Generally Fits the Data

Notes: Generally, data aligns with the Grossman-Stiglitz Paradox. The biggest deviations from theory are:
(1) Buyers get less information when it is more expensive, even though the Nash predicts no change in
verification, and (2) low-quality sellers respond less strongly to the change in verification cost than they
should according to the Nash theory. Both these facts are explored below, and predicted by quantal
response.

It is as if a $20 bill is left on the sidewalk. The well-trained economist just walks by,

because if it were a real $20 bill, someone else would already have taken it. Assuming the

others walking by are perfectly mixing between sometimes checking and sometimes ignoring

the potential $20, the economist is justified in being indifferent to checking or just walking

by. 4

But this rigid calculus may not be intuitive for actual consumers. If their faith in others’

rationality wavers, and the cost of bending down to check the $20 bill is low, they may

verify for themselves more often than is strictly necessary. Or, if checking the quality is

quite difficult, they may place too much weight on their fellows and fail to check even when

4I heard this example from Maxim Engers; I’ve since learned its origin is older, but could not find a
source for it.
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they should. These behavioral tendencies could skew market prices away from the efficient

markets prediction.

These behavioral tendencies can be seen from the choice probabilities in figure 5. When

the cost of verification is low (c = $0.10), buyers verify more than the Nash equilibrium

predicts, not placing enough trust in the market. When the cost of verification is high

(c = $0.30), buyers verify less than the Nash equilibrium predicts, placing too much faith in

the market. 5

In the theory, buyers verify just as much when verification is expensive as when it is

cheap. This is not intuitive for buyers in the lab. It happens in the theory because sellers

respond steeply to the change in verification cost, even though this cost does not affect the

seller payoff directly. When the verification cost increases, the low-quality seller tries to

cheat the buyer more, so the buyer has a greater incentive to verify. This increased incentive

to verify perfectly offsets the increased cost of verification, so that the buyer continues to

verify at the same rate as before.6

Figure 6 shows the best responses of a low-quality seller and a buyer, for both high

and low verification cost, along with session-level data.7 While the perfectly vertical and

horizontal best-response lines indicate that changes in information cost will lead to large

differences in seller behavior but no change in buyer behavior, actual data shows that agents

behave more smoothly. If the agent response functions were smoother, as would be the case

if their were some noise in the agents’ decisionmaking, we could rationalize (1) that buyers

5This should not be confused with buyers getting less, or more, information than is optimal given empirical
seller choices. Since mixed Nash equilibria are unstable, if sellers deviate slightly from the equilibrium choice
probabilities, buyers who optimally respond to those deviations will move further from Nash behavior, not
closer to it. Here, I examine differences between actual behavior and equilibrium behavior, but it is important
to remember that this is different from (in fact, opposite to) empirical optimality of subjects given opponents’
out-of-equilibrium behavior when mixed Nash equilibria are involved.

6This is the standard intuition of a mixed Nash equilibrium. It is similar to how, in a game of rock-paper-
scissors, if a third party offers an additional incentive to one player to play scissors (regardless of whether
they win or lose), that player will not adjust their choice probabilities at all. Instead, their opponent will
respond by playing rock more often. This increases the cost of playing scissors so that it is once again equal
to the benefit of playing scissors, and the player remains indifferent.

7Again, since this is just a slice of the action space, other choice probabilities are fixed at their levels in
the mixed Nash equilibrium.
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P(I | ph)
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Legend:

Seller BR

Buyer BR (c = 0.1)

Buyer BR (c = 0.3)

Data (c = 0.1)

Data (c = 0.3)

Figure 6: Subject Responses are Smoother than Theory

Notes: While data is fairly close to theoretical predictions, it is clear that the data for c = 0.1 (cyan) is
higher than the data for c = 0.3 (blue), indicating buyers get less information when it is more expensive.
Less obvious, but true, is that the data for the two treatments is closer together horizontally than the two
Nash equilibria, indicating that sellers do not respond as strongly to the change in information cost as
theory predicts.

respond to an increase in information cost by getting information less frequently, and (2)

that sellers do not respond as drastically to the information cost as they would in the Nash

equilibrium. Both of these facts are predicted by quantal response.

In a quantal response equilibrium, agents make small, mean-zero errors when evaluat-

ing which actions give them the highest expected payoffs. When two actions yield similar

expected payoffs, agents play them with similar likelihood. When one action yields a much

higher payoff than another, agents will play the better action much more frequently. Agents

understand that these errors occur (in themselves and others) and respond accordingly, lead-

ing to an equilibrium where beliefs remain consistent, although their behavior sometimes

deviates from their best responses.

Thus, if agents’ expected payoffs are smooth functions of their opponents’ choice prob-

abilities, their own choice probabilities will also be smooth functions of their opponents

behavior. Low-quality sellers will not suddenly decide to cheat buyers once buyers are ver-
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ifying less than a certain threshold. And buyers will not suddenly decide to always verify

when sellers begin cheating them more than a threshold amount.

When the cost of verification increases, buyers will respond gradually by buying less

information. In turn, sellers will respond to buyers by cheating them slightly more often.

Contrary to Nash, buyers will respond to changes in information cost, while sellers respond

to those changes less drastically. This can be seen from quantal response curves plotted in

figure 7. While quantal response does not always predict the levels correctly (in particular,

sellers in the data are more hesitant to cheat buyers than quantal response predicts), it does

predict the dynamics of how choice probabilities change as the cost of verification changes,

and how those dynamics differ from Nash theory.

P(ph | vl)

P(I | ph)

0 1

0

1 Legend:

Seller BR

Seller QR

Buyer BR (c = 0.1)

Buyer QR (c = 0.1)

Buyer BR (c = 0.3)

Buyer BR (c = 0.3)

Data (c = 0.1)

Data (c = 0.3)

Figure 7: QRE Explains Differences in Verification and Cheating

Notes: This is the best-fit QRE (precision = 22). The QRE is fit just to this slice of the strategy space.
The other decisions (seller’s pricing decision when high-quality, and buyers’ decision when facing a low
price, etc.) are simple enough that agents are quite close to Nash. Quantal response does not predict the
level of cheating well; sellers cheat less than predicted (perhaps due to an aversion to lying). However,
quantal response does predict the differences across the two treatments: buyers respond more to changes in
information cost and sellers respond less to those changes than Nash suggests.

The extent to which sellers are trying to cheat buyers determines the informativeness

of prices. If low-quality sellers are constantly trying to price similarly to high-quality sell-
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ers, then prices will not convey much information about quality. Since behavioral noise

smooths the relationship between seller choice probabilities and information cost, it ulti-

mately smoothes the relationship between information cost and the informational content

of prices. The Grossman-Stiglitz paradox asserts that prices will be more informative when

arbitrage is cheap and less informative when arbitrage is expensive, so that the return to

arbitrage always perfectly offsets its cost. That relationship still exists but is dampened by

behavioral noise, as seen in figure 8.

Verification
Cost

Price
Informativeness

0.1 0.3

50%

100%

Legend:

Nash

Data

Figure 8: Cost and Benefit of Verification

Notes: Informativeness is measured as the unconditional probability that the quality can be guessed from
the price. So 50% is completely uninformative: no better than random guessing. 100% means the quality is
known for certain after the price is observed. These lines are just interpolated from the identified
endpoints.

While quantal response can provide some intuition for the dynamics, we can test behav-

ioral tendencies using a permutation test. Under the null hypothesis, buyers follow the Nash

and do not adjust their behavior as the cost of verification changes. Since the verification

cost should not matter (under the null hypothesis), permuting the labels of the data–which

data points have come from which treatment–should not matter. If, instead, the observed

data involves treatment differences more severe than permuted versions of the data, we can

conclude that verification cost does affect buyers’ choice probabilities. In the same way, we

can test whether low-quality sellers do indeed change their behavior less than they should
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in the theory, and whether informativeness therefore adjusts less. The results are given in

figure 9.

Test p-value

Verification decreases with cost 2/64 = 0.031
Cheating increases less than Nash 3/64 = 0.047
Informativeness decreases with cost 1/64 = 0.016
Informativeness decreases less than Nash 6/64 = 0.094

Figure 9: Non-parametric Permutation Tests

Notes: With six paired observations, there are 64 possible permutations of the data. The p-value is the
fraction of these permutations that produce a test statistic at least as extreme as the one observed in the
actual (unpermuted) data. In each case, the test statistic is the average difference between the two
treatments.

We can conclude that behavioral noise leads buyers to respond too much to the cost of

verification, and leads sellers to respond too little. Thus, while prices are more informative

when information is cheap, the effect appears to be smaller than Nash. When information

is cheap, agents purchase more information than the Nash predicts, and when information

is expensive, agents buy less information than Nash predicts.

7 Conclusion

Overall, in the lab, markets are remarkably efficient in terms of how much information

prices convey, even with a relatively small number of untrained subjects. Agents’ choice

probabilities are very close to those predicted by Grossman and Stiglitz. This demonstrates

that agents do not simply believe that prices convey information in real-world markets and

take those beliefs into the lab, but that prices actually do convey information endogenously

in the lab. Specifically, prices can convey information via the Grossman-Stiglitz channel of

costly verification.

Nevertheless, there are still some behavioral deviations from theory, when subjects trust

the market too much or too little. These are intuitive because they would arise if subjects had

smooth best-response functions rather than the infinitely steep best-response functions of a
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rational agent. When verification is easy, subjects verify more than Nash, failing to realize

that everyone else can also verify more easily and the market adjusts. When verification is

hard, subjects verify less often than Nash, failing to realize that verification is also difficult

for everyone else, and they should trust the market prices less.
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Appendices

A Full extensive form
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Figure 10: Extensive Form of the Game
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B Derivation of equilibria

B.1 Pure strategy equilibrium

There is no perfectly separating equilibrium in this game. If the seller were to choose the high

price when quality is high and the low price when quality is low, consistent beliefs imply that

the buyer would know in equilibrium that a high price implies high quality. Thus, the buyer

would no longer need to pay the information cost because they can learn quality costlessly

from the price. But if the buyer is not paying the information cost, there is an incentive for

the seller to charge the high price even when the quality is low, since consumers will expect

quality to be high and will be fooled into buying the product. Thus, there is no separating

equilibrium where the seller prices according to their quality level. Consistent beliefs also

rule out reverse type dependence; it is not an equilibrium for the high quality seller to set

the low price and the low quality seller to set a high price.

It could be that the seller will set the same price whether their quality is high or low. In

this case, consumers will buy only if the expected quality is greater than the price. I have

chosen the possible prices so that

pl < vl <
1

2
(vh + vl) < ph (1)

and this ensures that buyers will not buy if the seller is always setting the high price, but

will buy if the seller sets the low price. So there is no equilibrium where the seller always

sets the high price, but there is an equilibrium where the seller always sets the low price.

For this to be an equilibrium, the seller must not prefer to deviate to the high price,

and thus we need the buyer to choose not to get information and not to buy if they were to

observe the high price. This can be ensured by buyer beliefs. Let µh denote the probability

that the seller is high quality given that they set the high price. Since the high price is off the

equilibrium path, µh is unconstrained. That is, if participants reach an equilibrium where the
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high price is never set, buyers can reasonably assume anything about the expected quality

a firm would have if they were to set the high price. If the payoff of not getting information

and not buying is higher than both getting information and buying without information, we

have:

E[u(L)|ph] ≥ E[u(B)|ph] E[u(L)|ph] ≥ E[u(I)|ph] (2)

0 ≥ µh(vh − ph) + (1− µh)(vl − ph) 0 ≥ µh(vh − ph)− c (3)

For this to hold, the buyer must believe that, conditional on setting the high price, the seller

is unlikely enough to be high quality that expected quality does not exceed the price, and

that the expected benefit of information does not exceed the information cost.

µh ≤ min

{
ph − vl
vh − vl

,
c

vh − ph

}
(4)

As long as the buyer believes a deviation to the high price is sufficiently likely to occur when

the seller is low-quality, pooling at the low price can be sustained as an equilibrium.

B.2 Mixed Equilibrium

In this equilibrium, the seller always chooses the high price when they have high quality.

When the seller has low quality, they mix between the two prices, choosing the high price

with probability P(ph|vl). Thus, if the buyer sees the high price, they believe the seller is

high-quality with probability µh = 1/(1+P(ph|vl)). In order for the seller to mix when they

have low quality, it must be that the expected profit from setting the low price is equal to

the expected profit from setting the high price. This implies that when the buyer observes

the high price, they only buy without getting information a fraction of the time:

πh(ph) = πl(ph) =⇒ pl = P(B|ph)ph =⇒ P(B|ph) =
pl
ph

(5)
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and thus the buyer chooses to get information with corresponding probability P(I|ph) =

ph−pl
ph

. Because the buyer’s choice probabilities must make the seller indifferent in the mixed

Nash, the buyer’s probability of getting information is independent of the cost of information.

Similarly, the seller’s choice probabilities must make the buyer indifferent. For the buyer to

want to mix between buying without information and getting information when observing

the high price, it must be that their expected payoffs are the same:

E[u(B)|ph] = E[u(I)|ph] =⇒ µhvh + (1− µh)vl − ph = µh(vh − ph)− c (6)

and this is true when the seller’s choice probability is

P(ph|vl) =
c

ph − vl − c
(7)

If the seller has low quality, they must set the high price more often when the effort cost rises

so that the buyer will have a stronger incentive to get information and remain indifferent

between getting information and buying without information. These comparative statics are

typical of mixed equilibria: if information becomes more expensive, the buyer (who pays the

higher information cost) still buys information at exactly the same frequency, and the seller

(who does not pay the cost) changes their behavior.

In order for this equilibrium to exist, it must be that the payoffs of buying without

information or getting information are no lower than the payoff of not getting information

and not buying. This is true when the effort cost is sufficiently low:

c

ph − vl − c
≤ vh − ph

ph − vl
=⇒ c ≤ (vh − ph)(ph − vl)

vh − vl
(8)
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Chapter 2

Competition and Price

Informativeness: An Experiment
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Abstract

Consumers often rely on price as a guide to the quality of a product. If consumers

are unable to observe quality directly, price might not perfectly communicate product

quality. In this context, competition might increase or decrease the informativeness of

prices. I study how competition impacts the informativeness of prices theoretically and

in a lab experiment. While theory leaves the question open, I find in the experiment

that competition leads both high- and low-quality firms to decrease prices, but the

price reduction is larger for high-quality firms who are more likely to price high in the

absence of competition. Thus, prices become a less reliable guide to quality when there

are more sellers in the market.

1 Introduction

Prices often contain information about the quality of products. Consumers are primed to

expect prices to carry information, and will use the price as a guide to quality when quality

is otherwise unknown (Leavitt 1954, McConnell 1968, review in Olson 1977). Nevertheless,

prices do not do this job perfectly. Consumers continue to occasionally experience ex-post

regret after buying a product of lower quality than expected. Or consumers may expend

time and effort to learn about product quality prior to purchase, implying that the price is

not, on its own, a fully reliable guide to quality.

Prices are fully informative of quality if consumers can predict the quality of a product

from its price, as would be possible if high-quality products always sold for high prices and

low-quality products always sold for low prices. But one main reason prices are not fully

informative is that, if consumers are willing to buy a high-quality product at a high price,

firms with low-quality products may be incentivized to ‘pretend’ to be high-quality by setting

a high price. If the consumer cannot observe quality directly and uses the price as a guide,

this mimicking strategy could be successful.

In this context, competition between firms becomes relevant. Competition generally
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lowers prices. But the effect of competition on price informativeness is theoretically unclear.

It could be that competition drives down the prices of the low-quality firms, and thus makes

price a more reliable guide to quality. But it might also be that competition drives down

the prices of the high-quality firms and thus price does a worse job distinguishing between

firms.

In this paper, I examine how competition between sellers affects how well prices func-

tion as signals of product quality. I use a simplified version of Janssen and Roy (2010),

and consider the perfect Bayesian equilibria. I show how different patterns of equilibrium

selection could lead to more or less informative pricing, and then implement the game in a

lab experiment.

In the experiment, I find that competition generally decreases price informativeness.

Competition drives down the prices set by both high- and low-quality firms, but the effect

is largest on high-quality firms, who are most likely to set high prices in the absence of

competition. Thus, the variance of prices decreases, and consumers are less able to deduce

the quality of a product from its price.

In a standard signalling model, there are two types, high and low, and the high-type

engages in some costly signalling behavior to prove their high type. Maybe this is a worker

getting an education to prove their high ability, or a firm getting a costly certification of

their product. The signalling behavior needs to be less costly for a high-type than for a

low-type; that way the high-type can credibly demonstrate that they are a high-type by

doing something the low-type would never want to do. The recipient of the signal believes

the message because they know that the signal would be so costly for a low-type that the

low-type would not want to mimic the signal, even if it meant they could masquerade as a

high-type.

In my simplified version of Janssen and Roy, one or more firms have either high or low

quality, and choose to set either a predetermined high price or a predetermined low price.

Buyers see the price, but not the quality of the firms. When signalling occurs through the
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sellers’ price choices, it is harder to sustain separation because the signalling behavior is more

suspect. If a firm tries to signal their high quality by setting a high price, it is more difficult

to convince buyers, since buyers know that any firm, high- or low-quality, would prefer to

sell at a high price. This is the additional wrinkle in a price signalling game compared to a

generic signalling game.

In order for signalling to be credible, it must be costly, and this means a firm must be less

likely to sell when setting a high price than setting a low price. One way this could happen

is if low-quality firms occasionally set the high price; then buyers would be suspicious of the

high price and sometimes not buy high-priced products.

If this is happening and then an increase in competition drives prices down, the relevant

question is: whose prices are driven down? The reason prices are not fully informative

is because low-quality firms sometimes set high prices, so if competition drives down low-

quality firms’ prices, prices become more informative. But if competition drives down the

prices of high-quality firms, it becomes harder to distinguish between firms based on prices,

so prices become less informative.

This work contributes to the literature in two ways. The model can be fully solved out

for the symmetric equilibria, and to my knowledge, the solution is new. This model provides

a simple environment in which to understand price signalling. This work contributes to the

experimental literature by examining how prices might convey information endogenously

and how that role is affected by competition. There is a large experimental literature that

examines how well prices function as guides to product quality, but none examine prices

conveying information endogenously. These are generally older papers where the rational

expectations of buyers are not considered. As yet, I know of no experiments that examine

endogenous price signalling.
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2 The Model

The model consists of n ex-ante-identical firms. Each firm is independently equally likely to

be high-quality or low-quality. After realizing its quality, each firm simultaneously chooses a

price p ∈ {pL, pH}. There is one buyer, who observes the price set by each firm but cannot

observe which firms are high-quality and which are low-quality. After seeing the vector of

prices, the buyer decides whether to buy one of the high-priced products, one of the low-

priced products, or none. If the buyer chooses not to buy, they receive a payoff of zero, as

do all the firms. If the buyer chooses to buy one of the products, they receive a payoff of

v−p where p is the price of the product they chose to buy, and v is the value of the product.

v = vH if the firm is high-quality and v = vL < vH if the firm is low-quality. The firm whose

product sold receives p− c where p is the price the firm set and c is the cost of production.

If the firm is high-quality, c = cH , but if the firm is low-quality, c = cL < cH . All other firms

receive a payoff of zero. The timing of the game is given in figure 1.

n firms pri-
vately realize
their qualities
v ∈ {vL, vH}.

Firms simul-
taneously

choose prices
p ∈ {pL, pH}.

Representative
consumer

decides which
product to
buy, if any.

Figure 1: Timing of the Game

The simplification of sellers’ pricing decision to a binary choice between an exogenously

set pL and pH vastly simplifies the model; this is my main simplification from the larger model

in Janssen and Roy (2010). This simplification is necessary to solve out for the symmetric

perfect Bayesian Nash equilibria, but also to make it easy for subjects to understand the

experiment, and to cleanly analyze the resulting choice data. Nevertheless, this is a huge

simplification, and I attempt to examine the robustness of the empirical results by also

running treatments where subjects choose from a price grid.1

1Without being able to fully solve the model with a continuous price choice, it’s difficult to see what may
be left out by this simplification. In the broader model where firms can choose any price, single-crossing
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A firm’s pure strategy involves a price to set if the firm is high-quality and a price to set

if the firm is low-quality. Each potential mixed strategy can be denoted by

s =





(pH , pH); w.p. P1

(pH , pL); w.p. P2

(pL, pH); w.p. P3

(pL, pL); w.p. P4

where (a, b) denotes the pure strategy of setting p = a when high-quality and p = b when

low-quality. A pure strategy for the buyer is a choice to buy either a high-priced product,

a low-priced product, or nothing, for each possible vector of prices that could be observed.

I further limit the analysis to fully symmetric equilibria, and the solution concept is the

perfect Bayesian Nash equilibrium.2

I consider parameter values in which a low-quality product is worth buying at the low

price and the high-quality product is worth buying at the high price, but a low-quality

product is not worth buying at the high price:

pL < vL < pH < vH

still holds, which means that there exists a p̂ such that all prices set in equilibrium by high-quality firms
are weakly higher than p̂, and all prices set in equilibrium by low-quality firms are weakly lower than p̂.
In a perfect Bayesian equilibrium, the buyer will know the quality exactly for any price besides p̂ (as long
as it is on the equilibrium path). Perhaps the most significant difference between the larger model and my
simplified version is that it is possible to achieve full separation in the larger model. Even with only a single
firm, full separation is possible if the low-quality firm chooses vL and the high-quality firm chooses vH . This
equilibrium involves the buyer playing a weakly dominated strategy, which I find very unlikely in the lab,
but with more firms, separation remains possible in more complicated ways.

2This means firms of the same type play the same strategy. It also means, since the buyer only observes
prices and has no other information about the firms, the buyer cannot distinguish between firms setting the
same price. If the buyer chooses to buy a low-priced product (for instance) and there are multiple firms
setting the low price, the buyer chooses uniformly randomly among them, so that each sell an equal fraction
in expectation.
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I preclude firms from pooling at the high price by assuming that

pH > E[v]

This means low-quality firms cannot always cheat the buyers without buyers eventually

deciding to stop buying the expensive products. I assume that consumers prefer high-quality

products at the high price to low-quality products at the low price.

vH − pH > vL − pL

If this were not true, at least with sufficient probability, then buyers would always prefer

cheap products to expensive products, regardless of quality, and consumers would never

regret their purchase. Lastly, I allow both firms to have positive profit margin when setting

the low price

cH < pL

This is because, in this model, the effect of competition on informativeness comes down

to whether high-quality or low-quality firms decrease their price the most in response to

competition. If this assumption were not true, high-quality firms would never consider a

price other than pH because it would lead to losses.

2.1 Equilibria

Consider the buyer’s problem after observing a vector of prices p⃗. Given the observed vector

of prices, the buyer has beliefs about the likelihood that each firm is high-quality versus

low-quality. I denote the buyer’s belief that firm j is high-quality after observing p⃗ by

µj(p⃗) ≡ P(vj = vH |p⃗)
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Since consumers cannot distinguish between firms setting the same price, and only choose

whether to buy a high-priced or low-priced product (or none), the relevant beliefs are

µH(p⃗) ≡ P(v = vH |p = pH , p⃗)

µL(p⃗) ≡ P(v = vH |p = pL, p⃗)

Further narrowing the problem by focusing on symmetric equilibria hugely simplifies beliefs

by reducing the dimensionality from 2n down to 2, everywhere along the equilibrium path.

Proposition 1. In any symmetric equilibrium where P1 ̸= 1, and P4 ̸= 1,

µH(p⃗) ≡ µH , µL(p⃗) ≡ µL

This is obvious since, for any firm setting the high price, µH = (P1+P2)/(2P1+P2+P3)

and for any firm setting the low price, µL = (P3 + P4)/(P2 + P3 + 2P4) by Bayes’ Rule. But

the requirement that the equilibrium be symmetric is necessary. Otherwise, there could be,

for instance, one firm that always sets the high price regardless of quality and another firm

that is type dependent, setting the high price when high-quality and the low price when

low-quality. In this case, if the buyer observes p⃗ = (pH , pL), they know the high price was

set by the firm that always sets the high price, and thus µH(p⃗) = 1/2. But if the buyer

observes p⃗ = (pH , pH), then one of the high prices comes from a surely high-quality firm

and one comes from a firm with 1/2 chance of high-quality, so µH(p⃗) = 3/4. So if firms are

not symmetric, the whole price vector can matter for buyer beliefs, and the buyer can have

different beliefs for different amounts of high and low prices in the price vector.

The caveat that P1 ̸= 1 and P4 ̸= 1 is also necessary. If one of the two prices is never

set, then most of the price vectors will never be reached. If the situation where the buyer

observes p⃗ is off the equilibrium path, then beliefs are not constrained by observed behavior,

so the buyer can have any beliefs µH(p⃗) and µL(p⃗), and thus µH(p⃗) will not necessarily be

the same as µH(p⃗′).
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Continuing with the assumptions of proposition 1, consider the buyer’s expected utility

from each of their possible strategies. If the buyer buys a high-priced product (strategy BH),

they receive an expected payoff of

EuB(BH) = µHvH + (1− µH)vL − pH

If they buy a low-priced product (strategy BL), they receive

EuB(BL) = µLvH + (1− µL)vL − pL

and they receive 0 if they buy nothing.

Notice that, because pL < vL < vH , the buyer always prefers buying a low-priced product

to buying nothing. The buyer will prefer buying a high-priced product to buying nothing if

high-priced products are sufficiently likely to be high-quality:

EuB(BH) ≥ 0 =⇒ µH ≥ pH − vL
vH − vL

and the buyer will prefer a high-priced product to a low-priced product if the high-priced

product is sufficiently more likely to be high-quality than the low-priced product:

EuB(BH) ≥ EuB(BL) =⇒ µH ≥ pH − pL
vH − vL

+ µL

We can partition the space of buyer beliefs into regions based on what strategy the buyer

will play, in figure 2.
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µL

µH

0

1

0 1

pH−vL
vH−vL

pH−pL
vH−vL

C : BH ≻ BL ≻ ∅

B : BL ≻ BH ≻ ∅

A : BL ≻ ∅ ≻ BH

Figure 2: Buyer Belief Space

Notes: This figure represents the space of buyer beliefs: µH is the buyer’s belief that a high-priced product
will be high-quality, and µL is the buyer’s belief that a low-priced product will be high-quality. Moving
from the bottom right to the top left of the figure increases the perceived value of high-priced products
relative to low-priced products.

Moving from the bottom right to the top left of figure 2, high-priced products become

increasingly more attractive to the buyer. In region A, the buyer will buy a low-priced

product if one exists, but if not, the buyer will buy nothing. In region B, the buyer prefers

to buy a low-priced product, but if none exists, the buyer will buy a high-priced product. In

region C, the buyer prefers a high-priced product and only buys a low-priced product if no

high-priced product exists.

In region A, the buyer does not believe the signal, and will only buy a low-priced product.

If this is true, it is in each firm’s best interests to set the low price, regardless of the quality

of its product. Thus, pooling at the low price can be sustained as an equilibrium as long as

µH (which is free, since high prices do not occur in equilibrium) is sufficiently low. In this

equilibrium, prices convey no information about the quality of the products.

In region C, the buyer believes the signal and strictly prefers to buy a high-priced
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product. But this means that a firm is always more likely to sell by setting a high price than

a low price. Signalling has no cost—it benefits sellers by making them more likely to sell and

yields higher profits when they do sell. All firms will want to set the high price, regardless

of quality, and the signalling cannot be credible in equilibrium.3

This feature is common to all equilibria, both in this model and in many similar models

where quality is unknown to buyers: In any equilibrium, the buyer must be sufficiently

unlikely to buy the high-priced product. In order to sustain price signalling, it must be that

setting the high price has a cost that counterbalances the obvious benefit of the increased

profit margin. If the buyer buys a high-priced product with large enough probability, then

low-quality firms will be better off setting the high price than the low price. This “cheating”

from the low-quality firms means that buyers were wrong to buy the high-priced product.

In region B and its boundary, the buyer may sometimes buy a high-priced product,

but is potentially less likely to buy a high-priced product than a low-priced product. Thus,

signalling quality by setting a high price is costly. But in order for signalling to convey

information in equilibrium, it must be that the signalling behavior is specifically more costly

for low-quality firms than high-quality firms.

This can happen because of the differences in the cost of production between high- and

low-quality firms. A low-quality firm makes pL − cL from selling a product at the low price,

and pH − cL from selling a product at the high price. Thus, for a low-quality firm to choose

to set the low price, they must be at least

pH − cL
pL − cL

3To see this, suppose a seller’s competitors are setting the high price with probability x, and the low price
with probability 1−x. If the seller sets the low price, they will sell only if all other sellers set the low price, in
which case they will share the expected surplus with the other n− 1 firms and receive (pL − c)/n. If instead
the seller sets the high price, the worst that can happen is if all the other firms set the high price and the
seller has to share the expected surplus, and receive (pH − c)/n. Since the worst-case scenario when setting
the high price is strictly better than the best-case scenario when setting the low price, all sellers should set
the high price. But if all sellers are setting the high price, regardless of quality, then a high-priced product
is just as likely to be low-quality as high-quality. This means its expected value, (vH + vL)/2, is lower than
the price, pH , and the buyer should not buy.
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times more likely to sell at the low price than the high price. A high-quality firm has higher

cost of production, and thus lower profit margins for a given price. For a high-quality firm

to set the low price, they would need to be at least

pH − cH
pL − cH

>
pH − cL
pL − cL

times more likely to sell at the low price than the high price. This intuition leads to a

single-crossing result.

Proposition 2 (Single Crossing). Given a strategy of the buyer consistent with some beliefs

µH and µL, and given a symmetric strategy for n−1 other firms, an individual firm’s expected

profit, conditional on a cost of production c, satisfies either

∀c ∈ [0, pL], E[π(pH |c)− π(pL|c)] > 0

or

∂

∂c
E[π(pH |c)− π(pL|c)] > 0

Stated another way, in situations where high- and low-quality firms differ in the prices

they set, a high-quality firm always has a greater incentive to set the high price than a low-

quality firm. Thus, if high-quality firms are mixing between the two prices (and therefore

indifferent between them) low-quality firms will prefer to set pL, and similarly, if low-quality

firms are indifferent between the two prices, high-quality firms will prefer to set pH . Figure

3 shows how this reduces the space of potential equilibrium seller strategies.

But we can immediately rule out pooling at pH and pure type dependence, based on the

reasoning from region C above. If both types set pH , the expected value of a high-priced

product is lower than it’s price, and the buyer will not buy. Then firms will regret their

strategy. If firms fully separate, then buyers will know in equilibrium that a high-priced

product is always high-quality and a low-priced product is always low-quality. Since buyers
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Figure 3: Seller Strategy Space

Notes: Each point (x, y) represents a seller strategy of setting ph with probability x when low-quality and
setting ph with probability y when high-quality. Single-crossing rules out all but the highlighted strategies.
Pooling at ph and perfect type dependence are ruled out by consistency of buyer beliefs. Ultimately, the
only possible equilibrium strategies are pooling at pl (uninformative) and one or two mixed equilibria
(partially informative).
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prefer high quality at a high price to low quality at a low price, they will always opt for the

high-priced product. But then the low-quality firms regret setting the low price.

So the potential equilibria involve pooling at the low price, or partially separating, either

because the the high-quality firm occasionally sets the low price or because the low-quality

firm occasionally sets the high price. All three of these types of equilibria turn out to be

possible. In the pooling equilibria, prices convey no information, but prices are somewhat

informative in the other equilibria. The next section looks at how the equilibria evolve as

the number of firms increases.

3 Competition, Price Level, and Informativeness

It might seem intuitive that an increase in the number of firms would always weakly drive

down prices, but this is not necessarily true. It is usually true that, given a strategy for

the buyer, an increase in n increases the basin of attraction of pL and shrinks the basin of

attraction for pH , but this is a result about sellers’ best-response functions and not about

equilibrium behavior. It can be that in a mixed equilibrium with increasing reaction functions

among the firms, an increase in n makes firms set pH more frequently in order to keep each

other indifferent in equilibrium.

Nevertheless, a firm is most incentivized to set pH when n = 1 and there are no com-

petitors who could set pL and undercut the firm. In this case, there is a unique informa-

tive equilibrium where a firm will certainly set the high price when high-quality, and will

sometimes set the high price when low-quality as well. This leads to the following weaker

statement about the relationship between competition and average price.

Proposition 3. When n = 1, there is a unique informative equilibrium, and the probability

that a firm will set the high price is at least as high in this equilibrium as in any equilibrium

for any n ∈ N.

Figure 4 shows the price level in various equilibria as n increases. If agents get to the
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informative equilibrium when n = 1, increasing competition cannot raise expected prices

relative to that benchmark. But a decrease in prices could mean an increase or a decrease in

price informativeness, depending on whether the decrease in prices comes from high-quality

or low-quality firms.
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pH

Number of firms
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Pooling at pL
Low-type mixes
High-type mixes

Figure 4: Average price as competition increases

Notes: This figure is based on the actual parameter values used in the experiment. Because firms are
symmetric, the average price is simply xpH + (1− x)pL where x is the unconditional probability of an
individual firm setting the high price. For clarity, this figure graphs the equilibria as n varies continuously,
even though, of course, only integer values of n make sense.

Suppose competition incentivizes low-quality firms to set the low price more often to

stay competitive, but that the pricing strategy of high-quality firms is relatively unchanged.

If this happens, buyer beliefs will update as a result. Since low-quality firms are setting the

low price more frequently, when the buyer does see the high price, they infer that it is more

likely to entail high quality. This makes a high-priced product more attractive to the buyer

and means that the high-quality firms can continue to set the high price.

Alternatively, it might be that an increase in competition causes high-quality firms to

set the low price more often as well, and this could decrease the informativeness of prices.

Figure 5 shows different ways that increasing n could change equilibrium seller strategies

and thus the informativeness of prices.

As n → ∞, the buyer has access to at least one low-priced product with probability
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Figure 5: Potential Seller Strategies as n Increases

Notes: If subjects reach the informative equilibrium when n = 1, moving to n = 2 could either increase or
decrease price informativeness, depending on equilibrium selection. This figure is based on actual
parameter values used in the experiment.
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approaching 1, since all equilibria involve each firm setting the low price with non-vanishing

probability. The buyer cannot strictly prefer to buy a high-priced product, or all firms would

set the high price (and that cannot be an equilibrium, as shown above). If the buyer always

buys a low-priced product when it exists, then as n → ∞, high-priced products will never

be sold and firms will have to pool at the low price. The only alternative is for firms to make

the buyer just indifferent between the two prices; any more information than that would lead

the buyer to prefer the high price and could not be an equilibrium. Proposition 4 formalizes

this, and figure 6 shows the informativeness of different equilibria as n increases.

Proposition 4. As n → ∞, equilibrium informativeness converges to either 1/2 (completely

uninformative pricing) or

3

2
− vH − vL

2(pH − pL)

which is the maximum informativeness that can be sustained in equilibrium.
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Figure 6: Price informativeness as competition increases

Notes: This figure is created with the parameters used in the experiment. There always exists an N ∈ N
such that informativeness has fully converged for all n ≥ N ; this N is always greater than 1, but can be
made arbitrarily large by the choice of parameters. For clarity, this figure graphs the equilibria as n varies
continuously, even though, of course, only integer values of n make sense.

If buyers were to believe that, in a pooling scenario, high-quality firms would be much

more likely to deviate to high prices than low-quality firms, then a pooling equilibrium could
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not be sustained. Instead, subjects would get to the informative equilibrium when n = 1

and prices would become more informative when n increases from 1 to 2 firms. On the other

hand, as n increases, the set of others’ potential strategies to which setting the low price is a

firm’s best response grows. So, in an environment with some strategic uncertainty or noise,

we might expect the low price to be set more frequently by both types of firms as competition

increases. The logit QRE, which generally selects from the set of sequential equilibria based

on a broad notion of risk-dominance, correspondingly selects the informative equilibrium

when n = 1, but then selects the pooling equilibrium when n > 1.

4 Experimental Design

Experiments were run in-person at the University of Virginia, with a sample of 156 under-

graduate students over 14 sessions. In each session, subjects played the game 10 times per

treatment. At the beginning of each treatment, subjects were chosen to be either buyers or

sellers, and then each buyer was randomly matched with either one or two sellers and the

game was played. In 7 sessions, there was only 1 seller per buyer, and in 7 sessions there

were 2 sellers per buyer.4

In the baseline specification, the value of the high-quality product was vH = 200 and

the value of the low-quality product was vL = 100. The firms were restricted to either a

high price of pH = 160 or a low price of pL = 80. The per-unit costs of production were

cH = 40 for a high-quality product and cL = 0 for a low-quality product. Subjects were paid

for every decision, and real-money payoffs were scaled down to target $30 per participant on

average. The payment scale factors were fixed and told to participants in advance.

After the baseline specification, subjects played a specification where sellers were no

longer restricted to two prices. In this specification, sellers were able to choose a price

4Initially, the design was within-subjects. Subjects played one treatment (n = 1 or n = 2) first, and then
played the other afterward. But after finding significant order effects, I dropped all but the first treatment
each session, to include only data where subjects do not have beliefs that are primed by earlier treatments.
The Wilcoxon test for order effects rejects that treatment order is not a determinant of average prices with
a p-value of 0.0052.
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between 20 and 200 in increments of 20. This treatment examines the robustness of the

results relative to a more general model where sellers can choose any price.

5 Results

Figure 7 plots the seller choice probabilities in each treatment. With a single seller, observa-

tions appear to be closer to the partially separating (informative) equilibrium, and further

from the pooling (uninformative) equilibrum. In contrast, observations with two sellers have

shifted closer to the uninformative pooling equilibrium. Buyer strategies and additional

figures are given in the appendix.
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(b) n = 2

Figure 7: Empirical Seller Strategies

Notes: With a single seller, data is closer to the partially informative equilibrium. With two sellers, data
moves towards the uninformative pooling equilibrium. Data is by-seller. The size of a datapoint represents
the number of sellers who empirically played that strategy.

Table 1 reports the mean-squared error between the empirical choice probabilities and the

choice probabilities in each Nash equilibrium. The partially separating equilibrium clearly

minimizes the MSE when there is only one seller, but for two sellers, MSE is similar across

all three Nash equilibria. Bootstrapping shows that, in every resampling of the n = 1 data,

MSE selects the partially informative Nash, while resampling the n = 2 data leads to MSE

selecting the pooling Nash about 47% of the time.
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n = 1 firm

Low-types mix Pooling

MSE 0.025 (0.006) 0.241 (0.030)
likelihood 1.000 0.000
P(pH |vH) 1.000 0.000
P(pH |vL) 0.667 0.000
informativeness 0.667 0.500

n = 2 firms

Low-types mix High-types mix Pooling

MSE 0.109 (0.015) 0.111 (0.014) 0.111 (0.024)
likelihood 0.484 0.050 0.466
P(pH |vH) 1.000 0.750 0.000
P(pH |vL) 0.250 0.000 0.000
informativeness 0.875 0.875 0.500

Table 1: Nash Equilibrium Selection using MSE

Notes: Standard errors are bootstrapped at the session level. The likelihood of an equilibrium is simply the
proportion of times the resampled data led to a mean-squared error that selected that equilibrium.

Behavior in the experiment appears quite noisy: in most sessions, both high- and low-

quality firms set both prices with significant probability. This contrasts with the Nash

equilibria, in which at least one seller is always playing a pure pricing strategy. So, fitting

the data to the Nash equilibria may not be realistic. Technically, no Nash is selected by the

data since the likelihood of the data coming from any Nash is zero.

I fit a more realistic model by including noise in subject behavior. I’ve chosen to include

noise using quantal response; an alternative parameterization using trembling hand (Selten

1975) is given in the appendix. While adding noise makes the model realistic, the intuition

for equilibrium selection can change; adding noise fundamentally changes the equilibria and

high levels of noise can lead to equilibria substantially different from any Nash.

5.1 Quantal Response

The quantal response model of agent behavior comes from McKelvey and Palfrey (1995,

1998). It is a generalization of the Nash equilibrium in which agents do not play their best
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responses with probability 1; instead, agents simply play “better responses” more frequently

than “worse responses”. This is achieved by assuming that agents experience some noise in

the perceptions of their payoffs. Since agents have consistent beliefs, they understand that

they and their fellow agents experience this noisy perception, and they respond to it.

The most common form of quantal response equilibrium is the logit quantal response

equilibrium, in which the noise is assumed to come from a type-I extreme value distribution

with precision λ.5 When precision is zero, the noise overwhelms the true payoffs and agents

choose uniformly randomly over their possible strategies. As precision tends to infinity,

agents play their best response with probability approaching 1, and the quantal response

equilibrium converges to a Nash equilibrium. I estimate the quantal response equilibria

using the path-following procedure developed by Turocy (2005, 2010).

Holt, Goeree, and Palfrey (2016) note that the quantal response model is useful in two

ways. The first is that adding noise can be necessary to create a non-degenerate likelihood

which can then be used to estimate other parameters, and the second is that the noise itself

may be an important feature of the data. I use QRE for both of these reasons. In the first

case, I use noise to create a likelihood function with which I can estimate a finite mixture

model to see how likely each equilibrium is to be selected. The noise allows me to decide

which Nash is closer to the data even when the data may not perfectly align with either

Nash.

But noise is also an important consideration in its own right. One big reason that prices

may become less informative when competition increases is that competition increases the

basin of attraction for setting the low price. That is, as competition increases, the space of

others’ strategies for which setting the low price is a best response gets larger. Of course,

this is not Nash intuition. If agents are not noisy, the amount of others’ strategies for which

setting the low price is a best response is irrelevant; all that matters is whether setting

the low price is a best response to others’ particular equilibrium strategy. But, in a more

5Sometimes the quantal response is parametrized instead by the scale parameter of the logit errors,
µ = 1/λ. For the proofs, I follow Turocy (2005) in parametrizing the QRE by ν = λ/(1 + λ).
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complex world where agents are unsure of their opponents’ actions because their opponents

are noisy, the size of the basin of attraction is a determinant of the equilibrium selection.

This intuition is also associated with the “main branch” of the QRE correspondence.

Out of potentially many quantal response equilibria, only one (almost always) constitutes

a continuous path from infinite noise to zero noise. Since this is a homotopy from uniform

randomization to a unique Nash equilibrium, it selects a Nash based on something like risk

dominance–which Nash would be selected if agents started by thinking that all strategies

would be played with equal probability and then updated smoothly from there.6 In keeping

with this intuition, Turocy (2005) has proved that the main branch of the QRE always selects

the risk-dominant equilibrium in 2x2 games.7 In this game, the main branch of the QRE

correspondence selects the informative equilibrium when there is only one seller, but selects

the pooling equilibrium where sellers always set the low price once there are two sellers.

Figure 8 shows the logit QRE correspondence for 1 and 2 sellers, as well as the equilibria

at the likelihood-maximizing level of noise. Note that the logit QRE makes a strong pre-

diction that the one-seller data always selects the branch that converges to the informative

equilibrium. This is because, in the logit QRE dynamics, agents play better responses more

often than worse responses. In a pooling equilibrium where sellers are almost always setting

the low price, high-quality sellers still have a much greater benefit from deviating to the high

price relative to low-quality sellers. Thus, in a logit QRE, high-quality sellers do deviate

much more than low-quality sellers. So even if a deviation to the high price is quite unlikely,

if it did occur, buyers would have to assume that it is most likely a high-quality product and

would choose to buy. Thus, firms would benefit from deviating.

The best-fit QRE mirrors the data in that behavior selects the more informative equi-

librium with one seller and the less informative equilibrium with two sellers. Also like the

data, logit QRE involves so much noise that, while differences in average prices are large

6This is true if the main branch is monotonic in λ. If instead the main branch bends back on itself before
ultimately converging to a Nash, then smoothly updating as λ increases is impossible, even though the main
branch still selects a unique Nash.

7The notion of risk-dominance is itself not defined for more general games.
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Figure 8: QRE Seller Strategies

Notes: With a single seller, there is a single QRE branch that converges to the informative equilibrium.
With two sellers, there are multiple branches, but the data selects the main branch, which converges to the
pooling equilibrium. The two-seller best-fit QRE is less informative than the one-seller best-fit QRE,
although the difference is very slight since both equilibria involve significant noise. Data is by-session:
session-level data must be used to fit the QRE since random matching means individual games in the same
session are not independent.

between the one-seller and two-seller treatments, differences in informativeness are small.

Prices are less informative with greater competition but the difference is very slight (about

one percentage point in the best-fit QRE).

5.2 Non-parametric Tests

Parametric models are valuable because they can tell a story about deviations of behavior

from theory, or pin down model parameters that underly the data. But the theory is also

sensitive to how noisiness in behavior is implemented, and fitting a model like quantal re-

sponse is a lot to ask of just a few observations. Thus, it is also valuable to see what can

be proved from the data without any assumptions on the underlying behavioral model that

subjects are following.

A non-parametric test cannot say anything about equilibrium selection (since it is agnos-

tic about what an equilibrium is) but it can test hypotheses that depend purely on the data.

Price informativeness itself is simply a feature of the data that can be calculated directly
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from the seller choice probabilities. Thus, the difference in informativeness between the two

treatments can be tested using a non-parametric permutation test without any assumptions

on the underlying data-generating process. Other differences, such as decreases in prices,

can also be tested non-parametrically.

The null hypothesis of each permutation test is that the distribution of the data does

not change with the number of sellers. Tests for price decreases are one-sided, since theory

predicts that prices should weakly decrease, and the test for changes in informativeness is

two-sided since theory is agnostic about the effect of treatment on informativeness. Each test

permutes which data points are assigned to each treatment, and for each permutation, cal-

culates the new difference in means across treatments. Under the null hypothesis, permuting

which data is assigned to which treatment changes nothing, and thus the true difference in

means from the actual data should not be too extreme relative to the differences in means

created from the permutations of the data. Table 3 displays the results.

Effect of
competition

Sample size
per treatment

Number of
permutations

More extreme
permutations p-value

High-quality
price decreases 7 3432 43 0.0125

Low-quality
price decreases 7 3432 31 0.0090

Average price
decreases 7 3432 27 0.0079

Informativeness
decreases 7 3432 352 0.1026

Figure 9: Permutation Tests

Notes: Each test calculates the average difference in the outcome variable between the two treatments (one
vs. two sellers) for every possible way to permute which session belongs to which treatment. The p-value is
simple the proportion of those permutations that yield differences more extreme than the actual data.
Under the null hypothesis that the treatment does not affect the outcome, an actual test statistic that is
quite extreme relative to the permutations is unlikely. The tests of price decreases are one-sided (since
Nash theory predicts them to weakly decrease for my experimental parameters) and the test for
informativeness is two-sided since theory is agnostic about the sign of the effect.
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6 Conclusion

This paper examines the effect of competition in situations where consumers are sufficiently

uninformed that they use prices as a guide to the quality of products; where prices convey

some, but not all information about product quality. The model presented here is a sim-

ple and straightforward way that this situation can come about. The experiment presents

suggestive evidence that the extent to which prices convey information about product qual-

ity decreases with competition. While competition clearly benefits consumers by lowering

prices, this benefit may be tempered by a decrease in the informational value of prices.

Although the informational role of prices is difficult to assess in real-world markets, it

could have serious welfare implications. Most obviously, more informative pricing may lead

those consumers who value quality most highly to discern which are the best products, while

less fastidious consumers settle for low-quality products at lower prices. Thus informative

pricing can benefit welfare through increased allocative efficiency. If new firms entering

a market cannot (or do not) credibly signal their quality, their entrance might decrease

allocative efficiency, potentially leading high-quality firms to exit the market, even when

the additional value to consumers of high-quality products exceeds their additional cost of

production.

This model is intended as a simple example to show how competition might affect infor-

mativeness; there are many other ways that prices might convey information. Some channels

(certifications, informed consumers, repeat customers, brand loyalty) quickly lead to perfect

separation between firms, where consumers perfectly learn the quality prior to buying, and

are never surprised. This may occur in many markets, but not the situations studied in this

paper where ex-post regret occasionally occurs.

Nevertheless, there are many other models that do account for partial informativeness

and occasional ex-post regret. One possibility is that consumers may be initially uninformed,

but can become informed after incurring a cost of time or effort. Another possibility is that

the space of product qualities is multi-dimensional, so that a (one-dimensional) price cannot
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possibly convey all the relevant quality information to consumers, who may differ in their

relative value for different features of the product. These more involved models are left for

future work.
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Appendices

A Derivation of equilibria

The single-crossing result is shown in the paper, which implies there are only three potential

types of equilibria: pooling at pL, low-types mixing while high-types set pH , and high-types

mixing while low-types set pL. All three turn out to be possible, although high-mixing

equilibria only appear once n is sufficiently high.

First, I will calculate the probabilities of sale explicitly. Let RH denote the probability

with which a buyer will buy a high-priced product when only high-priced products are

available, and let R denote the probability a buyer will buy a high-priced product when

both high- and low-priced products are available. Then let x denote the probability that a

seller sets the high price, unconditional on quality. Since each type of seller is equally likely,

this means

x =
1

2
(P(pH |vH) + P(pH |vL))

Then, the probability of an individual seller making a sale when setting the high price is
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P (sale|pH) = P (no others set pL)
RH

n
+

n−1∑

i=1

P (i others set pL)
R

n− i

= xn−1RH

n
+

n−1∑

i=1

(
n− 1

i

)
xn−i−1(1− x)i

R

n− i

= xn−1RH

n
+

(
R

nx

) n−1∑

i=1

(
n

i

)
xn−i(1− x)i

= xn−1RH

n
+

(
R

nx

)
(1− xn − (1− x)n)

=
1

n

[
RHx

n−1 +R

(
1− xn − (1− x)n

x

)]

or, in the edge case where x = 0, P(sale|pH) = R. An analagous derivation shows that

the probability of an individual seller making a sale when setting the low price is

P (sale|pL) = P (no others set pH)
1

n
+

n−1∑

i=1

P (i others set pH)
1−R

n− i

=
1

n

[
(1− x)n−1 + (1−R)

(
1− xn − (1− x)n

1− x

)]

or, in the edge case where x = 1, P(sale|pL) = 1−R.

Each equilibrium will involve seller optimality (which will be a constraint on seller profits,

and thus on P(sale|pH) and P(sale|pL)) as well as buyer optimality and consistent beliefs,

which will require that R and RH be the correct buyer choice probabilities given buyer

beliefs, which in equilibrium relate to seller choice probabilities. Buyer optimality requires

that
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RH =





1 ;P(vH |pH) > pH−vL
vH−vL

≡ µ

free ∈ [0, 1] ; P(vH |pH) = µ

0 ; P(vH |pH) < µ

R =





1 ;P(vH |pH)− P(vH |pL) > pH−pL
vH−vL

≡ µ̄

free ∈ [0, 1] ; P(vH |pH)− P(vH |pL) = µ̄

0 ; P(vH |pH)− P(vH |pL) < µ̄

and belief consistency requires that

P(vH |pH) =
P(pH |vH)

P(pH |vH) + P(pH |vL)

P(vH |pL) =
P(pL|vH)

P(pL|vH) + P(pL|vL)

A.1 Pooling at pL

A continuum of such equilibria always exist (for any n). Since pH is never set, buyer beliefs

about the expected quality of a high-priced product are free. All that is required is that

sellers do not prefer to deviate to the high price. Since the high-quality sellers have the

greatest incentive to set high prices, it suffices to show that high-quality sellers prefer setting

low prices.

We need that the high-quality seller gains weakly higher profits when setting pL than

when setting pH , as long as every other firm also sets pL. If n > 1, we need
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P (sale|pL) (pL − cH) ≥ P (sale|pH) (pH − cH)

P (sale|pH) ≤
pL − cH
pH − cH

P (sale|pL) ≡ kHP (sale|pL)

R ≤ kH
n

So this equilibrium can occur as long as R is sufficiently low, and R is always sufficiently

low because

P(vH |pH)− P(vH |pL) = P(vH |pH)−
1

2
≤ 1

2
< µ̄

If instead n = 1, the condition is thatRH ≤ kH , which can occur as long as P(vH |pH) < µ,

which is possible since pH is off the equilibrium path.

A.2 Low-type mixes, High-type sets pH

In this equilibrium we need the low-type seller to be indifferent between the two prices.

Single-crossing will then guarantee that the high-type seller prefers to set the high price.

P (sale|pL) (pL − cL) = P (sale|pH) (pH − cL)

P (sale|pH) =
pL − cL
pH − cL

P (sale|pL) ≡ kLP (sale|pL)

RHx
n−1 +R

(
1− xn − (1− x)n

x

)
= kL

[
(1− x)n−1 + (1−R)

(
1− xn − (1− x)n

1− x

)]

where x = 1
2
(1 + P(pH |vL)).

Now consider the regions of the buyer belief space in figure 2. In region A, the buyer

believes high-priced products are never worth buying. Since the buyer will not buy high-
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priced products, it is in sellers’ best interests to set the low price, so there is no informative

equilibrium here.

In region C, buyers always prefer high-priced products, and so all sellers want to set high

prices. This cannot be an equilibrium because consumers do not have consistent beliefs. If all

sellers are setting high prices, then high-priced products are just as likely to be low-quality

as high-quality, so buyers should not want to buy them.

Consider the boundary between regions A and B. In this case, the buyer always prefers

low-priced products (R = 0), but will occasionally buy a high-priced product (with probabil-

ity RH) when no low-priced products exist. To be at this boundary, we need P(vH |pH) = µ,

which implies that the low-type sets the high price with probability P(pH |vL) = 1/µ − 1.

Then the equation for low-type indifference pins down RH :

RH =
kL
xn−1

[
(1− x)n−1 +

1− xn − (1− x)n

1− x

]
=

kL(1− xn)

xn−1(1− x)

For this equilibrium to exist, we need RH ∈ [0, 1], which implies a condition on the

number of sellers. There is an informative equilibrium where the low-type mixes in the

boundary between regions A and B as long as

n ≤ 1 +
ln

(
kL

1−(1−kL)x

)

ln(x)

A similar derivation applies to the boundary between regions B and C. In this case, we

have RH = 1 and x = 1/µ̄−1. Again, low-type seller indifference pins down the buyer choice

probability:
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R =
kL

(
1−xn

1−x

)
− xn−1

1−(1−x)n−1

x
+ kL

1−xn−1

1−x

and for R ∈ [0, 1], we need

n ≥ 1 +
ln

(
kL

1−(1−kL)x

)

ln(x)

Lastly, there can be an equilibrium in the interior of region B. In this case, we have

RH = 1 and R = 0, so low-type seller indifference implies

xn−1(1− x) = kL(1− xn)

and this pins down a unique x ∈ [0, 1) whenever such a solution exists, and a solution

exists when n is intermediate between the cutoffs for the two boundaries of region B.

A.3 High-type mixes, Low-type sets pL

In this type of equilibrium, P(vH |pH) = 1 and

P(vH |pL) =
1− P(pH |vH)
2− P(pH |vH)

This type of equilibrium can exist in region B and in the boundary between regions B

and C. In the boundary, we have RH = 1 and
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P(vH |pH)− P(vH |pL) = µ̄ =⇒ P(pH |vH) =
2µ̄− 1

µ̄
, x =

2µ̄− 1

2µ̄

and high-type indifference pins down the buyer mixing probability R. This equilibrium

exists if

n ≥ 1 +
ln

(
kH

1−(1−kH)x

)

ln(x)

In region B, RH = 1 and R = 0, and then high-type indifference pins down a unique x:

xn−1(1− x) = kH(1− xn)

and this equilibrium exists as long as

2 ≤ n ≤ 1 +
ln

(
kH

1−(1−kH)x

)

ln(x)
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B Additional Figures

Figure 10 shows how the basin of attraction for setting the low price grows as competition

increases. While the size of the basin doesn’t matter to an agent who perfectly predicts

others’ actions in equilibrium, it may matter for actual players who may be noisy or face

strategic uncertainty. The basins for the low-quality seller look very similar, except that the

area in which pL is a best response is larger.

0

P(other firms set pH)
0

P(buyers buy at pH)
whenever
pH exists

when no
pL exists

1

Set pL

Set pH

(a) n = 1

0

P(other firms set pH)
0

P(buyers buy at pH)
whenever
pH exists

when no
pL exists

1

Set pL

Set pH

(b) n = 2

Figure 10: Basins of Attraction for High-quality Seller

Figure 11 gives the empirical buyer strategies. Movement from more separation when

n = 1 towards more pooling when n = 2 is less clear here, partly because there are a

continuum of pooling equilibria, which differ along one dimension of the buyer strategy.

Figure 12 shows the data aggregated by session. Aggregating by session is necessary for

statistical tests since random matching within sessions means games played within a session

are not statistically independent. Crosses show bootstrapped 90% confidence intervals.
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Figure 11: Empirical Buyer Strategies
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Figure 12: Empirical Seller Strategies by Session
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C Instructions and zTree Code

All zTree code is available on github, at dvkwiat/compinf. Each treatment began with

instructions which were shown on the screen and read aloud, followed by 10 rounds of decision

screens. After each decision, subjects were given feedback on all information (qualities,

prices, buying decisions, and payoffs). Then subjects were shown a history page to see the

outcome of each round. Figures 13 and 14 show the seller and buyer decision screens in the

1-seller treatment.

Figure 13: Seller Decision Screen
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Figure 14: Buyer Decision Screen
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D QRE Appendix

The quantal response equilibrium correspondence is found numerically using a path-following

procedure outlined in Turocy (2005, 2010). When there is only one seller, there is a single

QRE branch that converges to the unique informative equilibrium. Figures 15 and 16 show

how QRE choice probabilities evolve as precision increases.

There are also a continuum of pooling Nash equilibria, but none are approached by a

logit QRE. A proof of this follows: Consider a branch of the logit QRE correspondence

parameterized by precision, λ. Let πbhh and πbll denote the buyer’s probability of buying the

product when it is priced high and buying the product when it is priced low, respectively.

Let πshh and πshl denote the probability that a seller sets the high price when their product

is high-quality and low-quality, respectively. At every point along the QRE branch, the

following equations hold:

πbhh

1− πbhh

= eλ(vL−pH+µH(vH−vL))

πbll

1− πbll

= eλ(vL−pL+µL(vH−vL))

πshh

1− πshh

= eλ((pH−cH)πbhh−(pL−cH)πbll)

πshl

1− πshl

= eλ((pH−cL)πbhh−(pL−cL)πbll)

where

µH =
πshh

πshh + πshl

, µL =
1− πshh

2− πshh − πshl
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Figure 15: QRE correspondence for n = 1
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Figure 16: QRE Seller Strategies for n = 1

Taking logs and substituting ν = λ/(1 + λ) yields

(1− ν) (ln (πbhh)− ln (1− πbhh)) = ν (vL − pH + µH(vH − vL)) (1)

(1− ν) (ln (πbll)− ln (1− πbll)) = ν (vL − pL + µL(vH − vL)) (2)

(1− ν) (ln (πshh)− ln (1− πshh)) = ν ((pH − cH)πbhh − (pL − cH)πbll) (3)

(1− ν) (ln (πshl)− ln (1− πshl)) = ν ((pH − cL)πbhh − (pL − cL)πbll) (4)

Suppose, for a contradiction, that the QRE branch converges to a pooling Nash equilib-

rium as λ → ∞ (and thus ν → 1). This means that πshh → 0 and πshl → 0. First, notice

that µL → 1
2
. Then from 2, we have that

(1− ν) (ln (πbll)− ln (1− πbll)) →
vL + vH

2
− pL > 0

And since ν → 1, this implies that

ln (πbll)− ln (1− πbll) → ∞ =⇒ πbll → 1
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By assumption, choice probabilities converge as precision approaches infinity, so let π̄bhh be

the limit of πbhh. From 3, we have that

(1− ν) (ln (πshh)− ln (1− πshh)) → (pH − cH)π̄bhh − (pL − cH)

But note that the left-hand-side of this expression is eventually always less than or equal to

zero, since by assumption, πshh → 0. So it must be that

(pH − cH)π̄bhh − (pL − cH) ≤ 0 =⇒ π̄bhh ≤ pL − cH
pH − cH

(5)

Now, substituting 3 and 4 into µH , we have that

1

µH

− 1 =
1 + eH
1 + eL

=
1

1 + eL
+

1
1
eH

+ eL
eH

where

eH ≡ e
ν

1−ν
((pL−cH)πbll−(pH−cH)πbhh)

eL ≡ e
ν

1−ν
((pL−cL)πbll−(pH−cL)πbhh)

Since π̄bhh ≤ (pL − cH)/(pH − cH) and πbll → 1, we know that eL → ∞, eH ̸→ 0, and

eL
eH

= e(
ν

1−ν )(cH−cL)(πbll−πbhh) → ∞

Together, these imply that µH → 1. Then, from 1, we have that

(1− ν) (ln (πbhh)− ln (1− πbhh)) → vH − pH > 0
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which implies that

ln (πbhh)− ln (1− πbhh) → ∞ =⇒ πbhh → 1

and this is a contradiction with 5 above. Therefore, there are no QRE branches that converge

to pooling Nash equilibria.

Intuitively, the QRE is sidestepping the issue of off-equilibrium path beliefs. For every

finite precision, all players play all their possible strategies with some positive probability,

and thus beliefs are uniquely pinned down by rational expectations. As agents become

very precise, high-type sellers have a greater incentive than low-type sellers to set the high

price. For both sellers, that incentive must be vanishing, to sustain sellers never setting the

high price in the limit. But for any finite precision, high-type sellers will set the high price

relatively more than low-type sellers. As precision tends to infinity, both sellers set the high

price less and less, but the comparative difference increases; the high-type seller is more and

more likely to set the high price relative to the low-type seller. This means that consumers

know, with probability approaching 1, that a high price must have come from a high-type

seller. If consumers know this, they should converge to always buying when presented with

a high price product. But this makes sellers regret their decision to set the high price with

vanishing probability.

When there are two sellers, there are (for some levels of precision) three QREa. Two

converge to the two informative Nash equilibria, and one (the main branch) converges to

a pooling Nash equilibrium. Figures 17 and 18 show the choice probabilities in the QRE

correspondence as precision increases.

Again, there are a continuum of pooling Nash equilibria, and only one is approached

by a QRE. A proof of this follows. Consider a branch of the QRE correspondence that

converges to a pooling Nash equilibrium, and suppose there are two or more sellers. Let πbhh

be the probability with which the buyer buys a product when only high-priced products are
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Figure 17: QRE correspondence for n = 2
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Figure 18: QRE Seller Strategies for n = 2

available, and let πbll be the probability with which the buyer buys a product if all products

are low-priced. Let πbhb and πblb denote the probability that a buyer buys a high-priced

product or a low-priced product, respectively, when both are available. Define πshh and πshl

as above, and again let ν ≡ λ/(1+λ). Every point on the QRE branch satisfies the following

equations.

(1− ν) (ln (πbhh)− ln (1− πbhh)) = ν (vL − pH + µH(vH − vL)) (6)

(1− ν) (ln (πbll)− ln (1− πbll)) = ν (vL − pL + µL(vH − vL)) (7)

(1− ν) (ln (πbhb)− ln (1− πbhb − πblb)) = ν (vL − pH + µH(vH − vL)) (8)

(1− ν) (ln (πblb)− ln (1− πbhb − πblb)) = ν (vL − pL + µL(vH − vL)) (9)

(1− ν) (ln (πshh)− ln (1− πshh)) = ν ((pH − cH)PH − (pL − cH)PL) (10)

(1− ν) (ln (πshl)− ln (1− πshl)) = ν ((pH − cL)PH − (pL − cL)PL) (11)
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where

PH =
1

n

[
(πbhh − πbhb)x

n−1 + πbhb
1− (1− x)n

x

]

PL =
1

n

[
(πbll − πblb)(1− x)n−1 + πblb

1− xn

1− x

]

µH =
πshh

πshh + πshl

, µL =
1− πshh

2− πshh − πshl

, x =
πshh + πshl

2

Because, by assumption, this branch converges to a pooling Nash equilibrium as ν → 1, we

have that πshh → 0 and πshl → 0, as before. Thus, x → 0 and µL → 1/2. Because µL → 1/2,

we have (from 7 and 9) that

(1− ν) (ln (πbll)− ln (1− πbll)) →
vL + vH

2
− pL =⇒ πbll → 1

(1− ν) (ln (πbhb)− ln (1− πbhb − πblb)) →
vL + vH

2
− pL =⇒ πblb + πbhb → 1

Combining 8 and 9 yields

πbhb

πblb

= e(
ν

1−ν )(vH−vL)
(
µH−µL− pH−pL

vH−vL

)

Since (pH − pL)/(vH − vL) > 1/2 and µL → 1/2, the quantity

µH − µL − pH − pL
vH − vL

is eventually negative. Thus, as ν → 1, πbhb → 0 and thus πblb → 1. As in the proof for one

seller above, we can use 10 and 11 to write

1

µH

− 1 =
1 + eH
1 + eL

=
1

1 + eL
+

1
1
eH

+ eL
eH
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where

eH = e(
ν

1−ν )[(pL−cH)PL−(pH−cH)PH ]

eL = e(
ν

1−ν )[(pL−cL)PL−(pH−cL)PH ]

Since x → 0, πbhb → 0, and πblb → 1, we know that PL → 1/n and PH → 0, so

eH → ∞, eL → ∞,
eL
eH

= e(
ν

1−ν )(cH−cL)(PL−PH ) → ∞

So

1

µH

− 1 → 0 =⇒ µH → 1

Lastly, if µH → 1, then by 6,

(1− ν) (ln (πbhh)− ln (1− πbhh)) → vH − pH > 0 =⇒ πbhh → 1

Thus, only one pooling Nash equilibrium is approached by a QRE, specifically the Nash

equilibrium where

πbhh = 1, πbll = 1, πbhb = 0, πblb = 1

πshh = 0, πshl = 0, µH = 1, µL =
1

2
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E Trembling-Hand Appendix

Here I have added noise using the trembling-hand model (Selten 1975). This model is

paramaterized with a level of noise, ϵ. Agents play their best response with probability 1−ϵ,

and with probability ϵ, they uniformly randomize over their available actions. As ϵ → 1,

agent behavior is entirely random noise, and as ϵ → 0, the set of trembling-hand equilibria

converge to a subset of the sequential Nash equilibria without noise.

When noise is implemented using trembling-hand, it often turns out to not effect the

Nash equilibria in the limit as noise approaches zero. This holds true here as well. The logit

quantal response model ruled out one of the sequential equilibria since the off-equilibrium-

path beliefs were inconsistent with the logit dynamics, even before the QRE was fit to the

data. With trembling-hand, all types of sequential equilibria are represented as limits of the

trembling-hand equilibrium correspondence as noise approaches zero.

The trembling-hand choice probabilities are graphed in figures 19 and 20. The horizontal

axis is 1 − ϵ to be consistent with the QRE graphs above, where uniform randomization is

on the left side of the graphs and convergence to Nash occurs on the right side.

As with quantal response, I use maximum likelihood to estimate the noise parameter

of the trembling-hand model and the probabilities of each equilibrium being selected. The

trembling-hand correspondence, along with the data and the best-fit equilibrium is given in

figure 21.
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Figure 19: Trembling-hand correspondence for n = 1
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Figure 20: Trembling-hand correspondence for n = 2
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Figure 21: Trembling-Hand Seller Strategies
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Figure 22: Histogram of Low and High Quality Prices

F Price Grid

The robustness treatment with the price grid had similar results. More competition caused

lower prices and a slight decrease in informativeness, from 67.4% with a single seller to 66.1%

with two sellers. The histograms of prices under the two treatments are given in figure 22.
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Figure 23: Empirical Seller Strategies

Figure 23 shows the empirical seller strategies for the one-seller and two-seller treatments.

This graph includes sessions where the one seller treatment was following by the two-seller

treatment (within the same subjects), and sessions where the two-seller treatment was fol-

lowed by the one-seller treatment. As expected, beliefs are primed by whichever treatment

occurred first, so there is persistence in the type of equilibria selected throughout treatments

in a given session. This makes behavior appear more noisy, and can generally erode sig-

nificance. Despite strong order effects, qualitative differences between the two treatments

remain visible. Figure 24 shows the empirical buyer strategies including both treatment

orders. In figure 25, data is aggregated by session.

The p-value for a decrease in informativeness is smaller when treatments run second are

included (about 5.3 %); the beneficial effect of additional data outweighs the noisiness of

that data.
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Figure 24: Empirical Buyer Strategies
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Figure 25: Empirical Seller Strategies by Session
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Table 3: Permutation Tests

Outcome Sample size
Number of

permutations
More extreme
permutations p-value

High-quality
price decreases 14 16384 112 0.0068

Low-quality
price decreases 14 16384 1109 0.0677

Average price
decreases 14 16384 285 0.0174

Informativeness
decreases 14 16384 864 0.0527
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Chapter 3

Cursedness in Simultaneous and

Sequential Voting Games
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Abstract

Agents often fail to accurately infer others’ private information from their behavior,

formalized as “cursedness” (Eyster and Rabin, 2005). Inferring others’ types is even

more difficult when agents must condition on behavior that is not directly observable.

In a voting game, a voter should condition their behavior on the information set where

their vote is pivotal, even if they do not yet know whether they will turn out to be

pivotal. I examine voting game experiments conducted by Anderson et al. (2022) to

compare simultaneous and sequential voting outcomes. I find that agents are much

more cursed when they must infer others’ types based on the hypothetical event in

which they are pivotal, and less cursed when they see from others’ behavior that they

are in fact likely to be pivotal. This result suggests that the primary difficulty agents

face in voting games, common-value auctions, and adverse selection environments is

not misunderstanding the motives of other players, but rather failing to realize that

their own actions only matter in “pivotal” scenarios.

1 Introduction

People often fail to infer others’ private information from their behavior. This type of

inconsistent belief is formalized as cursedness in Eyster and Rabin (2005). Cursedness can

exist in any game of private information; Eyster and Rabin discuss its role in common-value

auctions, adverse selection, and voting games.

In each of these contexts, players need to estimate the value of something that depends

on other players’ private information. In a common-value auction, bidders estimate the value

of the prize, which depends on each bidder’s private signal. In an adverse selection situation,

a buyer must estimate the value of an object which is known privately to the seller. In a

voting game of information aggregation, voters estimate the value of passing a reform which

depends on each voter’s private information.

In each case, others’ behavior could reveal otherwise unknown information to players. So
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cursedness—a failure to infer from others’ behavior—is one way players might have trouble.

But in many cases, these games present an additional hurdle, related to cursedness but

distinct.

In a standard common-value auction, a player receives the object only if they win the

auction by outbidding the other participants. If they lose, they win nothing and pay nothing.

So players estimating the value of the object are interested in its expected value conditional on

winning the auction, which is to say, conditional on all the other players bidding below them.

Bidders in a common-value auction should appear to under-bid relative to the unconditional

value of the item because they receive the item only in a particular subset of the other

players’ behavior—specifically behavior that implies bad news about the value of the item.

Bidders must internalize what it would mean if they won before choosing their bid. They

need to know to condition their expectation of the value of the item on the information they

would infer from winning—before they even know whether they will win or not. They must

be able to infer from a particular subset of others’ behavior before that behavior even occurs.

This can also be true in a voting game. A voter’s vote matters only if they are pivotal,

and that implies a particular profile of votes from the other players. In some cases, the

situation where others vote so as to make your vote pivotal conveys information about other

voters’ signals and thus information about the value of passing the reform in the first place.

Because this situation involves an added hurdle, it may be that players who would

correctly infer information from others’ behavior if it were directly observed, might fail to

correctly infer when they must construct the behavior of others that they need to be focusing

on without seeing it directly. Eyster and Rabin note that if we were to measure cursedness

empirically, we might measure higher levels of cursedness if agents must infer based on

implied behavior rather than observed behavior.

The voting game experiments by Anderson et al. (2022) offer an opportunity to test

this. By comparing simultaneous and sequential voting outcomes, we can see if the game is

difficult because it is hard to infer from others’ behavior or whether it is difficult because it
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is hard to construct the subset of the strategy space to focus on.

2 Experimental Setup from Anderson et al. (2022)

The voting games are set up like a jury, although that language is not used to participants.

A hypothetical accused person is either guilty or innocent, with equal probability. Each of

twelve voters gets a private signal of the guilt or innocence of the accused. The signals are

generally, but not always correct. After observing their private signals, the participants each

vote to convict or acquit.

The vote is not carried by a simple majority. In some treatments, the accused is not

convicted unless all twelve voters vote to convict. In other treatments, a 10-2 majority

is required to convict. Anything less results in acquittal. Thus, a voter is pivotal in the

unanimous treatment only if all eleven other voters are voting to convict. The situation

where a voter is pivotal is then potentially very informative about other’s signals.

In the simultaneous treatment, voters cannot see what the others will do before casting

their own vote. So they must vote as if they are pivotal: imagining that information set

and inferring others’ types based on it. In the sequential treatment, voters vote in order,

so the kth voter sees the voting decisions of the k − 1 others who have already voted. In

this treatment, voters must still infer others’ signals from their behavior, but less is left to

the imagination. Instead of imagining that they may be pivotal, voters see more and more

clearly that they are pivotal as more and more votes are cast.

The voting process is purely about aggregating information, not preferences. All voters

get the same utility which depends only on the group decision. They each get $4 for a correct

verdict, they get $2 for acquitting when the true state is guilt, and they get $0 for convicting

when the true state is innocence. Conditional on the true state, the voters’ signals are i.i.d.

and are correct with 75% probability.
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3 Voting Game Theory

The theory of the voting games is a story about how the inability of voters to communicate

their signals, combined with a sub-optimal voting rule (unanimous or a 10-2 majority), makes

the first-best outcome impossible. All voters agree that the accused should be convicted if

the number of signals that indicate guilt relative to innocence outweigh the relative harm of

Type I error versus Type II error. So if voters could freely communicate their signals, they

would all cooperate on the best outcome (in this specific case, they could all vote to convict

if 7 or more of the signals indicated guilt).

But even when voters cannot communicate, the voting mechanism could potentially

aggregate their information perfectly and still reach the first-best outcome of conviction if

and only if 7 or more voters received a signal of guilt. To do this, the voting rule must

allow all voters to reveal their signal, since not all information can be aggregated if not all

information is revealed to the mechanism. And this is where the voting rules fail in this case.

Suppose unanimity is required to convict, and anything less results in acquittal. If every-

one votes according to the signal they received, then conviction will only occur if everyone

received signals of guilt. But this is too stringent a requirement—it is best if conviction

occurs if 7 or more voters receive signals of guilt. So if everyone reveals their signals to the

mechanism, the mechanism often will choose the wrong outcome. 1

An optimal voter will correct for this failure of the voting mechanism by not truthfully

revealing their signal. Sometimes, upon receiving a signal of innocence, the voter will still

vote to convict. This happens because optimal voters know that their vote matters only

if they are pivotal, and so they assume they will be pivotal when deciding how to vote

(Fedderson and Pesendorfer, 1998).

Suppose again that unanimity is required to convict, and suppose that voters are näıvely

1The optimal voting rule in this case is a simple majority, with ties resulting in acquittal. This allows
the correct outcome to be selected when all voters tell the truth about their signals to the mechanism. But
in general, the optimal voting rule will depend on the number of voters, the relative harm of type I vs. type
II error, and the strength of each signal.
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voting according to the signal they receive. A voter should realize that, unless all others vote

to convict, the accused will be acquitted regardless of how they themselves vote; their vote

matters only if everyone else is voting to convict. But if everyone else is voting to convict,

that means they all received signals of guilt. This is such overwhelming evidence of guilt

that the voter is better off voting to convict, even if they themselves received a signal of

innocence.

Thus, voters voting according to their signals is not a Nash equilibrium. An equilibrium

requires that the situation of being pivotal convey not so much information that it causes

voters to ignore their own signal completely. In a symmetric, informative Nash equilibrium,

voters will vote to convict upon receiving a signal of guilt and mix upon receiving a signal

of innocence.2

It might seem that switching from simultaneous to sequential voting would completely

change the Nash equilibria since it changes the information available to voters. In fact, Dekel

and Piccione (2000) show that the set of Nash equilibria is almost unchanged. In particular,

the simultaneous voting equilibria are all still equilibria under sequential voting. Under the

unanimous voting rule, the equilibria are exactly the same.

This happens because voters should vote as if they are pivotal. Even if they don’t turn

out to be pivotal, their vote won’t matter, so they should assume they will be pivotal when

deciding how to vote. Under sequential voting, voters are given information that indicates

they are more and more likely to be pivotal. If the path of votes serves only to update

voters’ beliefs that they will be pivotal, it will not affect their decision. They are already

conditioning on the state where they are pivotal.3

2The same intuition holds in non-symmetric equilibria: being pivotal cannot convey too much information.
A table of all informative equilibria for the unanimous voting rule is given in the appendix.

3Under the weighted majority voting rule, the path of votes can actually convey slightly more that just
how close to pivotal voters are becoming. It can reveal to voters how they are pivotal. Multiple different
strings of past votes will lead to a voter being pivotal and sequential voting allows voters to see which one
is occurring. This could lead to additional equilibria that exist in the sequential treatment.
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4 The Data (Anderson et al., 2022)

A total of 400 games were played, 200 with simultaneous voting and 200 with sequential

voting. In each case, 100 games used the unanimous voting rule and 100 used the 10-2

majority voting rule. In the simultaneous treatment, players generally voted their signal

but were noisy. Under both the unanimous and weighted majority rules, players voted their

signal about 80% of the time. They do not appear to correct at all for the flawed voting

mechanism. Even though the mechanism favors acquittal, players follow their signal with

about the same probability whether it is a signal of guilt or innocence. As a result, nearly

every game in the simultaneous treatment results in acquittal.

Table 1: Simultaneous Voters are not Strategic

Voting Rule P(vote convict|i) P(vote convict|g)
Unanimous: 0.19 0.78
Majority (10-2): 0.15 0.80

Notes: Table reports empirical choice probabilities in the simultaneous voting games. i represents a signal

of innocence and g represents a signal of guilt. Voters seem to completely ignore the skewed voting rule

and simply vote according to their signal about 80% of the time.

In the sequential treatment, people vote in order, and see the sequence of votes that

have already been cast. If a decision is reached before all twelve voters have voted, the game

ends. For instance, if the first voter votes to acquit under the unanimous voting rule, the

accused will be acquitted regardless of how the others vote, so the game ends and the others

do not vote.

Thus, if the game has not already ended, players who vote later in the sequence are more

likely to be pivotal and can see this from the path of votes. Since the voting rules are skewed

to make conviction more difficult, a voter who votes late in the sequence will see many votes

to convict and only one or two votes to acquit in the sequence of votes already cast.

Voters respond to this by generally voting according to their signal early in the sequence,

but leaning more and more towards conviction as they see more others voting to convict.

The eleventh and twelfth voters, if their votes still matter, almost always vote to convict
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regardless of their private signal. On average, individual voters in the sequential treatment

fight the skewed voting rules by voting to convict much more than to acquit.

Table 2: Sequential Voters are Increasingly Strategic

Unanimous Majority (10-2)

Voting Order P(c|i) P(c|g) P(c|i) P(c|g)
1 0.16 0.93 0.00 0.90
2 0.41 1.00 0.02 0.98
3 0.67 0.86 0.02 0.93
4 0.73 1.00 0.18 0.87
5 0.60 1.00 0.38 0.89
6 0.83 1.00 0.57 0.94
7 1.00 1.00 0.62 0.91
8 0.64 1.00 0.50 0.93
9 0.88 1.00 0.67 1.00
10 0.70 1.00 0.89 0.96
11 0.88 1.00 0.77 1.00
12 0.89 1.00 1.00 0.92

Notes: Table reports empirical choice probabilities in the sequential voting games, broken down by position

in the voting order. i represents a signal of innocence and g represents a signal of guilt. Voters seem to

vote to convict more and more the later they are in the voting order (and thus the more convict votes they

see already cast).

The sequential treatment makes the game easier for participants by explicitly showing

others’ behavior. In the following sections, I will try to show that the difference between

the sequential and simultaneous data is a result of differences in the consistency of voters’

beliefs, measured by cursedness.

5 Explaining the Data with Noise Alone

First, I’ll show what it looks like to try to explain the data with just noise. Here I assume

that voters have consistent beliefs, but their actions are not always optimal. I implement this

with the logit quantal response equilibrium (McKelvey and Palfrey, 1995). A QRE works

by adding noise to players’ perceptions of their payoffs. This means a player’s strategy will

be distributed around their best response. In the logit QRE, the payoff errors are Extreme
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Value Type I. The probability that a logit quantal response agent will choose action x from

strategy space X is

σ(x) =
eλu(x)∑
i∈X eλu(i)

(1)

Here λ is the inverse of the scale parameter for the logit errors. It represents the precision

of the agents. If λ is close to 0, the errors have high variance and the noise overwhelms the

underlying payoffs. In this case, an agent will choose actions from X uniformly randomly.

As λ → ∞, the variance of the errors goes to zero, and agents converge to choosing their best

response with probability 1. When this happens, the QRE converges to a Nash equilibrium.

In our case, an agent receives a signal s (either a signal of innocence or guilt). The

probability that a voter with signal s will vote to convict is

σs =
eλEu(vote convict)

eλEu(vote convict) + eλEu(vote acquit)
(2)

If λ = 0, agents will vote to convict with probability ½. As λ increases, they will approach

the Nash equilibrium of voting to convict with probability 1 if they received a signal of guilt

and some probability less than 1 if they received a signal of innocence. Figure 1 shows the

symmetric, informative QRE correspondence for the unanimous voting rule. There are two

things that are instructive here.
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Figure 1: Noise Cannot Rationalize Voting to Acquit

Notes: Figure shows the quantal response equilibrium correspondence under the unanimous voting rule. c

represents voting to convict, while i represents a signal of innocence and g represents a signal of guilt.

Importantly, at no precision does the predicted probability of voting to convict fall below about 48%, far

above the empirical probability of 19% with a signal of innocence.

First, the QRE correspondence does not converge to the Nash equilibrium until precision

is extremely high. In other words, the noise overwhelms the true payoff difference even when

the errors have low variance. The expected payoff of voting to convict is almost the same as

the expected payoff of voting to acquit. This is because it’s very unlikely that an individual

vote will matter. The chance of a voter being pivotal is about 17% at the Nash equilibrium

if the voter has a signal of innocence, but if precision is lower, the probability decreases

towards 0.0005.

A QRE close to the Nash equilibrium appears around λ = 56, but it does not become

unique until about λ = 1216. Empirically, the probability that a voter is pivotal is 0.0016 if

they have a signal of innocence. If the voter’s choice doesn’t matter over 99% of the time,
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the expected payoff difference between voting to convict and to acquit is very small. It comes

out to a difference of about 1 cent (if they have a signal of guilt) or 0.3 cents (if they have

a signal of innocence). When we see agents systematically choosing convict or acquit based

on their signal, the QRE would have to conclude that they are unrealistically precise. The

alternative is that voters’ mistakes are more than just noisy behavior. Perhaps voters do

not fully appreciate that for their vote to matter, all eleven other voters have to choose to

convict.

The second thing to notice about the graph is that, in any QRE at any precision,

voters do not vote to convict less than about 48% of the time when they have a signal

of innocence. This is because, roughly speaking, QRE agents are on a spectrum between

uniform randomization and Nash equilibrium. In the Nash equilibrium, agents correct for

the flawed voting rule by voting to convict sometimes, even when they have a private signal

of innocence. In the unanimous treatment, they should be voting to convict 72% of the time

when they have an innocent signal. On the other hand, if agents are imprecise, they will

uniformly randomize. In this case, they will vote to convict 50% of the time, regardless of

what signal they have.

The QRE says that the only way for agents to be suboptimal is for them to be noisy.

If I analyze the game with just noise as an explanation for suboptimal behavior, there will

be no way to explain persistent, specific suboptimal choices. But this is what we see in the

data. When voters vote simultaneously under the unanimous voting rule, those who receive

a signal of innocence vote to convict 19% of the time. This is far below the 50% probability

from uniform randomization and even farther from the 72% probability of the Nash. Voters

are being fairly precise in their inaccuracy. In this case, voter are behaving worse than

randomly. They are systematically choosing a strategy that gives them a lower payoff than

if they had just flipped a coin to decide what action to choose. This systematic homing in

on a particular suboptimal strategy cannot be explained by noise.4

4On the other hand, when a voter receives a signal of guilt in this treatment, they vote to convict 78%
of the time. The QRE can explain this. A totally imprecise voter would randomize and vote to convict
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Simultaneous voting under the weighted majority voting rule cannot be explained by

noise for the same reason, although it is less obvious simply because it is easier to be pivotal.

People behave differently under the sequential treatment, and it seems that QRE may be able

to explain these treatments without recourse to inconsistent beliefs. The biggest mistakes

are specific to simultaneous voting.

6 Adding Belief Inconsistency

The next step is to add inconsistency into beliefs and see how it affects simultaneous vs.

sequential voting. The difficult part of this game is realizing how unlikely it is to be piv-

otal—it only occurs in select information sets—and then leveraging that information into a

posterior probability of guilt. So it is natural to introduce inconsistency into beliefs using

cursedness. Cursedness is simply the failure to leverage the informational content of others’

behavior.

In fact, in this case I cannot use canonical cursedness exactly. Instead, I introduce the

failure of inference by assuming agents underestimate the number of other players in the

game. Consider again the case of simultaneous voting under the unanimous voting rule.

Under this rule, a voter is only pivotal if all others vote to convict. If (just for the sake of

argument) voters are voting according to their signals, a voter is only pivotal if all others

have received signals of guilt. This is much more conclusive evidence if there are 11 other

voters than if there are only 2 other voters.

Because this is not the exact formulation of cursedness used by Eyster and Rabin, I call it

strategic unawareness–but intuitively it is doing the exact same job as cursedness. Strategic

unawareness leads voters to ignore the weight of evidence conveyed by being pivotal, just like

cursedness. In fact, applying cursedness is generally mathematically identical to applying

strategic unawareness. But in a model which also includes noise from quantal response, the

with 50% probability, but very precise voter will vote to convict with probability 1. A probability of 78% is
rationalized by an intermediate precision.
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two approaches can yield slightly different results.

Under strategic unawareness, voters do not realize how unlikely it is to be pivotal. They

think their vote is likely to matter in lots of situations, and precisely because their vote mat-

ters in lots of situations, being pivotal does not convey much information. Under canonical

cursedness, voters realize that their chance of being pivotal is tiny, and yet they still discount

the informational content of that situation. This has the potential to interact perniciously

with the noise from quantal response.

If voters are quantal response agents who are also cursed, it will be hard to understand

their level of noisiness. On the one hand, it appears that they occasionally make mistakes

(such as failing to vote convict when receiving a signal of guilt), but generally do not. They

seem reasonably precise, but not incredibly so. On the other hand, cursed voters understand

that the probability of their vote mattering is tiny. So the expected payoff difference between

voting convict and voting acquit is similarly tiny, especially if they have a signal of innocence.

For voters to even care about their vote when it’s almost completely irrelevant demonstrates

massive precision. And this is hard to reconcile intuitively with how voters seem to act. I

tend to think that voters fail to realize in the first place that their vote won’t matter unless

others all vote to convict, and as a result they do not take into account the information

that such a situation would convey. Thus, I fit strategic unawareness rather than canonical

cursedness.

Both ways of implementing belief inconsistency push voters toward voting according to

their signal. As they discount the information from others, their own signal becomes more

and more important to their decision. Like cursedness, I have put strategic unawareness

on a scale from 0 to 1, where 0 is fully consistent beliefs and 1 is completely ignoring the

information from other players.

Figure 2 shows the choice probabilities under the unanimous voting rule as strategic

unawareness goes from 0 to 1. Agents start at the Nash probabilities and move to eventually

voting according to their signals once strategic unawareness is high. There are other equilibria
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besides this symmetric one, but they all involve players as a whole moving from the Nash

towards voting their signal.

Figure 2: Cursedness Explains Non-Strategic Voting

Notes: Figure shows the cursed equilibrium under the unanimous voting rule as the level of cursedness

varies. (Since this graph does not involve noise, cursedness and strategic unawareness are identical.) c

represents voting to convict, while i represents a signal of innocence and g represents a signal of guilt. As

individuals are more cursed, they ignore the informational weight of being pivotal, and thus are more and

more likely to vote according to their private signal.

Figure 2 ignores noise, which is why the probability to vote convict when receiving a

signal of guilt is always 1. Since people do not always vote to convict when they have a guilty

signal, the likelihood of the data is 0 given this model without noise. We need noise both

to explain the significant variance of behavior and also to have a well-behaved likelihood

function to allow maximum likelihood estimation of strategic unawareness.

Adding strategic unawareness into the QRE for simultaneous voting yields a strategic

unawareness of 0.89 and a precision of 13.65. The low value of precision indicates that

the game is complicated in general, and so players have a lot of variance around their best

response. But the high strategic unawareness indicates that players are specifically unable
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to infer information from being pivotal. They ignore about 90% of the weight of guilt that

would result from being pivotal.

Adding strategic unawareness into the QRE for sequential voting tells a very different

story. First of all, there are many paths of votes that never occur, and thus we do not know

how agents would have responded to them. This makes the construction of beliefs difficult,

so that not every node for which we have data can be used in the likelihood calculation.

But if we restrict our attention to those nodes where we can calculate the likelihood, we

measure a precision of 13.15 and a strategic unawareness of -0.04–not significantly different

from 0. Suddenly, while players are still equally noisy, their problems can no longer be traced

to inconsistency of beliefs, or at least not a failure to infer information from others’ behavior.

Table 3: Precision and Strategic Awareness Joint Estimates

Timing Precision λ Strategic Unawareness χ

Simultaneous: 13.65 0.89
Sequential: 13.15 -0.04

7 Conclusion

These voting games are difficult for players to think through. Players are both noisy in

general–unresponsive to small differences in expected payoffs–and also particularly bad at

responding to the weight of evidence implied by being pivotal to the group decision. However,

when voting is conducted sequentially, so that subjects can see the decisions of those who

have already voted, players do a much better job internalizing what it means to be pivotal.

In both simultaneous and sequential voting, players must infer others’ private information

from their behavior. The only difference is that, when voting is simultaneous, players must

realize that their vote will rarely sway the group decision, and yet their decision only matters

when they are in a position to swing the group decision. Thus, simultaneous voting requires

agents to imagine what behavior from other voters would lead to their own vote being pivotal,
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whereas sequential voting allows voters to see the string of others’ votes that make their own

vote pivotal.

The huge difference in estimated cursedness (technically strategic unawareness) between

simultaneous and sequential voting shows that inference from others’ behavior to others’

private information is not the problem. Subjects are fairly good at guessing others’ private

information from their behavior when they observe that behavior directly. Instead, strategic

voting is difficult because agents fail to understand that their vote only matters when they

are pivotal.
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Appendices

A Derivation of equilibria

The voting games are structured like a jury where a supermajority is required to convict,

and anything less results in acquittal. There is first of all a true state, innocent (I) or guilty

(G), unknown to the voters. Each state is equally likely (although it is easy to generalize

to arbitrary prior probabilities). Each of n voters then receives a private signal of innocence

(i) or guilt (g). The signals are i.i.d. conditional on the true state, and are correct with

probability p. The voters choose to vote to acquit (a) or convict (c), and if at least k voters

have voted to convict, the group decision will be conviction (C). If less than k vote to

convict, the group decision will be acquittal (A).

Each voter has the same preferences, so the voting is purely an information aggregation

mechanism. A good outcome (acquittal when the true state is innocent or conviction when

the true state is guilty) yields a payoff of zero. A type I error (conviction when innocent)

yields a payoff of −q and a type II error (acquittal when guilty) yields a payoff of −(1− q).

Consider an agent participating in the simultaneous voting mechanism. There are two

aspects of this game that make it difficult to reach the optimal strategy. First, the agent

must impute the behavior of others that would make his own vote matter. An individual

voter’s choice will only affect the group decision if k− 1 other voters are choosing to convict

and n − k others are choosing to acquit: otherwise, the outcome is already decided and

the agent’s choice does not matter. A rational agent will restrict their attention to this

information set when deciding how to vote.

Second, the agent must calculate the value of conviction versus acquittal conditional on

this information set. If exactly k − 1 others are voting to convict and n − k are voting

to acquit, and the voters are taking their private information into account in their voting

decision, the agent should be able to infer something about the others’ private information.
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A rational agent will realize that the fact of being pivotal is news about the guilt or innocence

of the accused and take that news into account in their individual voting decision.

Mathematically, an agent should choose to vote c whenever

E[u(c)–u(a)] > 0

Since the probability of being pivotal does not depend on the agent’s own vote, this expec-

tation can be decomposed into

P(not pivotal)E[u(c)− u(a)|not pivotal] + P(pivotal)E[u(c)− u(a)|pivotal]

In the first case, if the agent is not pivotal then their vote does not change the group

decision. Since their utility depends only on the group decision, u(c) = u(a) when the agent

is not pivotal. When the agent is pivotal, the group decision is determined by their vote, so

u(c) = u(C) and u(a) = u(A): the utility of voting convict is the utility of reaching a group

decision of conviction. As long as there is a nonzero chance that the agent’s vote will be

pivotal, they should vote to convict when

E[u(C)− u(A)|k − 1 voted c, n− k voted a] > 0

The agent should simply assume they are pivotal when deciding how to vote.

Here I am considering cases where k is large relative to n: a supermajority are required

to reach conviction. I am also looking at cases where q is small enough that a supermajority

of guilty signals would make conviction preferable. (If q is too large, even k − 1 out of n

guilty signals will not make conviction preferable since the harm of accidentally convicting

the innocent is so much worse than accidentally acquitting the guilty.)

The fact that rational agents take into account the information conveyed by being pivotal

will bound how much information can be aggregated in equilibrium. If players are generally
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voting to convict when they have a signal of guilt and voting to acquit when they have a

signal of innocence, then being pivotal conveys massive information. A voter is only pivotal

when k − 1 others are voting to convict. If voters are generally following their signals, this

means a supermajority must have received signals of guilt. In this case, a voter might be

better off ignoring their own signal since so many others would have to have received signals

of guilt if the voter were to be pivotal. So it cannot be an equilibrium for voters to generally

vote according to their signal.

In a symmetric equilibrium, found by Federson and Pesendorfer (1998), agents vote

to convict when they receive a signal of guilt, but randomize when they receive a signal

of innocence. The randomization probability makes the fact of being pivotal convey just

enough evidence of guilt so that agents are indifferent as to whether to follow their signal or

just vote to convict. The exact probability of voting to convict when observing a signal of

innocence, σ0, is given by

E[u(C)|i, pivotal] = E[u(A)|i, pivotal]

qpP(pivotal|I) = (1− q)(1− p)P(pivotal|G)

qpγk−1
0 (1− γ0)

n−k = (1− q)(1− p)γk−1
1 (1− γ1)

n−k

where γ0 = 1− p+ pσ0, γ1 = p+ (1− p)σ0

This is an equilibrium because being pivotal conveys roughly enough information to make

agents indifferent about whether to follow their signal. It does not matter whether that

information is conveyed by slightly informative decisions from every voter or very informative

decisions from just a few voters. So there are a host of asymmetric equilibria where some

agents are more likely to vote according to their signal than others.

In particular, there is a pure strategy asymmetric equilibrium where m agents vote

according to their signals and the rest always vote to convict. m is defined as the integer(s)
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satisfying
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ln
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1−q

)

ln
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q

1−q

)

ln
(
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1−p

)

Now it is clear why the sequential voting game does not change these equilibria. In the

simultaneous game, agents are already assuming they will be pivotal when casting their

vote. The difference in the sequential game is that agents can see directly that they are

more likely to turn out to be pivotal. Since they were assuming they would be pivotal

anyway, this information should not change their behavior.

When k < n, there are other equilibria that arise in the sequential game that are not

equilibria in the simultaneous game. In these equilibria, earlier voters vote differently because

they think later voters will care not just about how many convict and acquit votes have

occurred so far, but also about the specific order of the votes. This belief could become self-

fulfilling and lead to an equilibrium that is specific to sequential play. Dekel and Piccione

do not solve for these additional equilibria and for now I do not consider them, but I hope

to analyze them in the future.

B Optimal voting rule

For the parameters used by Anderson et. al, the first-best outcome is for conviction to occur

whenever there are 7 or more signals of guilt. This is because, if k of the n signals indicate

guilt, the probability of guilt is

P(G|k) = P(k|G)P(G)

P(k|G)P(G) + P(k|I)P(I)

=

(
n
k

)
pk(1− p)n−k

(
1
2

)
(
n
k

)
pk(1− p)n−k

(
1
2

)
+
(
n
k

)
pn−k(1− p)k

(
1
2

)

=
pk(1− p)n−k

pk(1− p)n−k + pn−k(1− p)k
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and similarly

P(I|k) = pn−k(1− p)k

pk(1− p)n−k + pn−k(1− p)k

All agents want conviction to occur when

u(C|k) > u(A|k)

=⇒ −qP(I|k) > −(1− q)P(G|k)

=⇒ −qpn−k(1− p)k > −(1− q)pk(1− p)n−k

=⇒
(

q

1− q

)(
p

1− p

)n−k

<

(
p

1− p

)k

=⇒
(

q

1− q

)
<

(
p

1− p

)2k−n

=⇒ ln

(
q

1− q

)
< (2k − n)ln

(
p

1− p

)

=⇒ k >
n

2
+

ln
(

q
1−q

)

2ln
(

p
1−p

)

Since q < p, the fraction on the right is smaller than 1, so conviction will be best for any

k > n/2, which in our case implies k ≥ 7 should lead to conviction.

C Additional Figures

Table 4 shows all the informative equilibria under the unanimous voting rule. Equilibria are

the same regardless of whether voting is simultaneous or sequential. In general, pivotality

cannot convey too much information in equilibrium, or individuals will choose to ignore their

private information and follow the weight of evidence implied by pivotality. Equilibria can

differ in how pivotality conveys information: whether through many voters who are slightly

informative or a few voters who are very informative.

The table shows that asymmetric equilibria are made up of some number of voters (mi)
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who vote according to their signal and are thus perfectly informative, some number of voters

(mσ) who vote to convict when observing a signal of guilt and mix when observing a signal

of innocence and are thus partially informative, and some number of voters (m1) who always

vote to convict regardless of their signal, and are thus uninformative.

The common thread is that there cannot be too much information conveyed. There

cannot be too many informative voters (mi can never be above two), and the more partially

informative voters there are (higher mσ) the less informative each one can be (lower σ).

Partially informative voters must be indifferent in order to mix when observing a signal of

innocence, so for those voters the posterior probability of guilt that comes through being

pivotal must be exactly equal to the relative harm of type I versus type II error. This is

why, in every equilibrium, P(G|pivotal, i) = 2/3 for these voters.

Mathematically, suppose a voter is pivotal when there are mi other informative voters

and mσ other partially informative voters, and suppose the voter has a signal of innocence.

The probability that the accused is guilty is then

P(G|pivotal, i) = P(pivotal|G, i)P(G|i)
P(pivotal|i)

=
P(pivotal|G)P(G|i)

P(pivotal|G)P(G|i) + P(pivotal|I)P(I|i)

=
P(pivotal|G)(1− p)

P(pivotal|G)(1− p) + P(pivotal|I)p

=
pmi(p+ (1− p)σ)mσ(1− p)

pmi(p+ (1− p)σ)mσ(1− p) + (1− p)mi(1− p+ pσ)mσp

Note that there are also uninformative equilibria, where the outcome is the same regard-

less of everyone’s signals. For instance, if k out of n votes are required to convict, then it is

an equilibrium for n− k + 2 or more voters to always vote acquit, regardless of their signal.

The outcome is that the accused will always be acquitted, and no one voter can unilaterally

change the outcome: there will still be at least n − k + 1 others voting to acquit. Since no

one’s vote matters, any behavior is privately optimal, so always voting to acquit is a best
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Table 4: Non-trivial Nash Equilibria:

Player Strategies P(G|pivotal, i)
mi mσ m1 σ informative mixed uninformative

0 3 9 0.09 0.67 0.83
0 4 8 0.27 0.67 0.78
0 5 7 0.39 0.67 0.76
0 6 6 0.48 0.67 0.74
0 7 5 0.54 0.67 0.73
0 8 4 0.59 0.67 0.72
0 9 3 0.64 0.67 0.71
0 10 2 0.67 0.67 0.71
0 11 1 0.70 0.67 0.71

0 12 0 0.72 0.67

1 2 9 0.20 0.57 0.67 0.80
1 3 8 0.49 0.49 0.67 0.74
1 4 7 0.63 0.46 0.67 0.72
1 5 6 0.71 0.44 0.67 0.70
1 6 5 0.76 0.43 0.67 0.70
1 7 4 0.79 0.43 0.67 0.69
1 8 3 0.82 0.42 0.67 0.69
1 9 2 0.84 0.42 0.67 0.69
1 10 1 0.86 0.42 0.67 0.68
1 11 0 0.87 0.42 0.67

2 0 10 0.50 0.75

Notes: This table shows the informative equilibria in the unanimous voting game (both simultaneous and

sequential have the same equilibria in this case). In each equilibrium, the twelve voters are made up of mi

voters who vote according to their signal, m1 voters who always vote to convict, and mσ voters who vote to

convict when they have a signal of guilt, and vote convict with probability σ when they have a signal of

innocence.
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response to at least n − k + 1 others always voting to acquit. The same situation is true

if there are more than k + 1 players who always vote to convict, regardless of their signal.

No one will be able to unilaterally change the outcome, so these situations will all be Nash

equilibria.

114



Conclusion

In each of the strategic situtations in this work, Nash agents could have reached an

uninformative equilibrium where private information does not influence actions. Instead,

agents almost always reached an equilibrium where they behave strategically, choosing

based on their private information but at the same time not being perfectly informative.

In the pricing games, perfect informativeness does not occur because above a certain

level, more informative pricing would not serve the overarching goal of maximizing seller

profits. In the voting games, informativeness above a certain level would not serve the

overarching goal of convicting those most likely to be guilty and acquitting those most

likely to be innocent.

At the same time, agents are plagued by different types of behavioral bias. The most

obvious of these is noisy decision-making. A small amount of noise can quickly erode

informativeness, since agents will occasionally make choices that do not correspond with

their private information. This can decrease informativeness, even if choice probabilities

unconditional on private information do not change much. This is especially true with

binary decisions, where every ‘mistake’ with one private signal looks like an intentional

choice based on a different private signal. Noise erodes informativeness directly, and also

makes it difficult for agents to deduce others’ private information.

But even in the absence of noise, agents have trouble deducing others’ information

from their behavior, through cursedness/strategic unawareness. Sometimes, as in the

case of the voting game outcomes, this failure of inference leads to suboptimal behavior

beyond what could ever result from noise. Other times, agents behave noisily even when

they are not required to infer anything from agent behavior.

115



Both behavioral biases can have complex equilibrium effects, as agents expect and

respond to their fellow players’ noise and failure of inference. But in general, noise erodes

informativeness, while cursedness can sometimes lead to increased informativeness. This

happens in both the pricing games and the voting games. In the pricing games, cursedness

among buyers means prices must be more informative before cursed buyers realize prices

are informative enough to make them indifferent to buying the product. In the voting

games, cursedness among voters makes them underestimate the amount of information

already conveyed by being pivotal, and thus allows them to act out their own private

information without realizing they are dooming the group decision.
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