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Abstract

The terahertz spectrum, often defined as the 300GHz-3THz frequency band, is a

relatively unexplored segment of the electromagnetic spectrum, lying between the

microwave and far infrared regions. Although measurement capabilities at these

frequencies are just now being realized, there are already numerous applications such

as imaging, spectroscopy, radio astronomy, and medical diagnostics[1]. To support

this growing industry, a proper measurement infrastructure is needed, similar to

what is currently available at 100 GHz and below. Efforts to develop the hardware[2,

3] and components[4, 5] needed to realize this measurement infrastructure are being

made. Complementary to these advances in new hardware, specialized measurement

procedures and improved calibration algorithms are being created[6, 7]. This work

presents contributions to the field of terahertz metrology, specifically to the area of

calibration and uncertainty analysis.
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1. Introduction

1.1. Motivation

1.1.1. Why THz Metrology?

Numerous applications are beginning to emerge in the terahertz fre-

quency region, creating a demand for a measurement infrastructure sim-

ilar to what is currently available at 100GHz and below.

The terahertz spectrum, often defined as 300GHz-3THz frequency band, is a rel-

atively unexplored segment of the electromagnetic spectrum, lying between the

microwave and far infrared regions. Although measurement capabilities at these

frequencies are just now being realized, there are already numerous applications

such as imaging, spectroscopy, radio astronomy, and medical diagnostics[1]. The

rising level of interest is reflected in the recent creation of a new journal focusing

on the subject, the IEEE Transactions on Terahertz Science and Technology. To

support this growing industry, a proper measurement infrastructure is needed. This

infrastructure consists of measurement instruments, components, and specialized

procedures.
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Chapter 1 Introduction

The essential piece of hardware needed to characterize devices at microwave fre-

quencies is the Vector Network Analyzer (VNA). Recently, vector measurements

have been extended to 1.1 THz by Virginia Diodes[8]. A picture of the VDI fre-

quency extender system in conjunction with an Aglient VNA, is shown in Fig. 1.1.

This new capability has created a demand for other measurement hardware that

can operate at terahertz frequencies. One such component is the on-wafer probe,

which allows micro-fabricated devices to be characterized without manual assembly

into a waveguide test block. Terahertz on-wafer probes operating at frequencies up

to 750GHz have recently been developed here at the University of Virginia [4, 5],

broadening measurement capabilities to an entire new medium of devices.

Extension Heads

VNA

Figure 1.1.: VNA and frequency extension heads from VDI.

Another area of focus is the design and specification of waveguide flanges used to

connect rectangular waveguide components [9]. As the operating frequencies in-

crease, waveguide misalignment caused by mechanical tolerances becomes a severe

problem. Not only does misalignment produce reflections at each flange connection,

but it creates measurement inaccuracies by inducing calibration error[10]. This

2



1.1 Motivation

problem is being addressed by the IEEE P1875 working group[2, 3, 11]. Other im-

provements to the terahertz measurement infrastructure are being made in the form

of specialized measurement procedures and improved calibration algorithms[6, 7].

Along with these new algorithms, new calibration standards are being explored[12],

and design variations of traditional standards are being evaluated[10].

The demand for higher frequency systems continues to produce new challenges for

metrologists. In order to solve many of these measurement challenges, the funda-

mentals of calibration must be understood.

1.1.2. Why Calibration?

Due to the complexity and subtitles of microwave systems, achieving ac-

curate measurements in novel environments requires in depth knowledge

of calibration theory.

Scattering parameter measurements are typically made with a Vector Network An-

alyzer (VNA). As its name suggests, this instrument provides vector measurements,

meaning both amplitude and phase information of the transmitted and reflected

electromagnetic waves is available. Before useful measurements can be made with a

VNA, the system must be calibrated by measuring a set of characterized standards.

The purpose of calibration is to remove the unwanted systematic electrical effects of

intermediary circuitry existing between the internals of the VNA and the test ports.

Because the system is vectorial in nature, the theory of calibration is significantly

more involved than with scalar power-detection systems.

A calibration will always be imperfect due to the numerous sources of error and un-

certainties. These imperfections will create inaccuracy in corrected measurements,

that may or may not be perceivable. At lower frequencies, or in conventional mea-
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surement environments, well known calibration procedures and accurately charac-

terized calibration standards exist, so that achieving and verifying a high quality cal-

ibration is relatively straightforward. At terahertz frequencies, however, well-tested

calibration procedures and standards are generally unavailable. This makes creating

a good calibration much more challenging. Consequently, knowledge of calibration

theory becomes essential for the experimentalist working at these frequencies.

Although the main application of this work is terahertz metrology, similar chal-

lenges exist in non-conventional measurements at lower frequencies. Research envi-

ronments frequently require custom experimental setups to make specific, and some-

times single-use measurements. Examples of two scenarios are given in sec. 4.4.3 and

sec.A.5. In such cases, new measurement procedures are created instead of followed,

making calibration as difficult as it is in the terahertz region.

1.1.3. The Audience

This thesis is written for an audience with a background in microwave engineering,

but not necessarily metrology. To make the content accessible, chapter 2 provides

the necessary fundamentals of calibration theory. The most direct audience for this

work is the academic community, RF industry, and research laboratories that are

working to build the terahertz measurement infrastructure, or use terahertz mea-

surements for material and device characterization. A partial list of who the author

identifies as the immediate audience for this work is given in Tab. 1.1 below. This

work is also of interest to the more general audience of microwave experimentalists

who deal with non-conventional, research type measurement setups.
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1.2 Outline of Content

National Laboratories Companies
NASA Jet Propulsion Laboratory (JPL) Virginia Diodes
National Institute of Standards and Technology (NIST) Northrup Grumman
National Physical Laboratory (NPL) Agilent
Fraunhofer Institute Cascade microtech
National Radio Astronomy Observatory (NRAO) GGB Industries

Dominion Mircoprobes
Table 1.1.: Companies and research laboratories that are involved with terahertz
metrology.

1.2. Outline of Content

Each chapter of this thesis is intended to be a self-contained entity. To accomplish

this, a small amount of theory is repeated at the beginning of a few chapters. I

believe the modularity is worth the redundancy. The content begins with chapter 2,

which provides the necessary foundations of calibration theory so that the subse-

quent content may be appreciated. The delivery is somewhat unique, with emphasis

on basic concepts as opposed to specific calibration algorithms. A detailed descrip-

tion of the calibration processing chain is given, identifying specific errors effecting

corrected measurements. Discussion of these errors introduces the topic of uncer-

tainty analysis and error metrics. The chapter closes with an optional section on

the Mobius Transformation, which provides a slightly more abstract mathematical

perspective.

The next two chapters contain specific contributions to the field of terahertz metrol-

ogy. In chapter 3, a general calibration technique is presented that utilizes partially

known calibrations standards. It is emphasized that although this technique was

motivated by the lack of well characterized standards at terahertz frequencies, it

can be used in other non-conventional measurement environments as well.

The following chapter, chapter 4, presents an experimentally based method of cali-
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bration uncertainty analysis. Demonstrated by numerous examples, the procedure

is conceptually simple and produces intuitive results. Although formulated for s-

parameter measurements, the basic method can be extended to any measurement

system.

The appendices contain a mixture of different work. Some of the sections contain

practical applications of the two calibration concepts just described, such as sec. A.6

and sec. A.5. Others are tangentially related applications, such as those in sec. E.1

and sec. A.1. The content in the Appendix is less refined than that in the main

body, but has been included for documentation purposes, and as a foundation for

potential new areas of work.

1.3. Reflection on Work

Most, if not all of the techniques developed in this thesis were born out of the

specific needs of our research group. This accounts for the sporadic nature of the

appendices. Once a technique was deployed in the laboratory and proven to be

useful, it was revisited more formally and generalized to suit a broader scope of

problems. In general, the University of Virginia millimeter wave research lab has

proved to be a very prolific generator of interesting problems, and I am thankful for

the opportunity to be a part of it.

A note on nomenclature.

With the design of mathematical notation there is a compromise between brevity

of presentation and unambiguity of meaning. The problem is further complicated

by conventions used in the literature, which are frequently unclear and inconsistent.

Although the notation in this document doesn’t follow any strict convention, I have
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tried to emphasize quantities of importance with bold highlighting, and given dif-

ferent objects different kinds of symbols; vectors are lowercase, matrices are upper

case, etc.

One source of confusion is matrix indices. A common convention when dealing

with a series of networks is to let the indices denote the port numbers. So a 2x2

s-parameter matrix could have entries s11, s12, ... , or s00, s01, ..., depending on the

number given to either port. Frequently, the matrices are pulled out of the original

context, and the indexing scheme can appear arbitrary and confusing. In either

case, it is not a substantial issue as long as one is aware of it.
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2. Calibration Theory

2.1. Introduction

2.1.1. Outline

This chapter provides the theoretical foundations of calibration theory necessary to

appreciate the work presented in this thesis. It should be accessible to those with

basic knowledge of microwave network theory. Following a very brief history, the

theory begins in sec. 2.2. This section contains a basic explanation of unterminating

and de-embedding, scattering transfer parameters, tiered calibration, and details of

the calibration processing chain. The following section, sec. 2.3, discusses calibration

uncertainty, residual error analysis, and biased and unbiased error metrics. The

final section, sec. 2.4, gives a more abstract mathematical perspective of calibration,

focusing on properties of the Mobius transformation. Although the author believes

such a perspective is of great value, it is somewhat unconventional, and therefore

the final section is included for those interested in the topic.
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Chapter 2 Calibration Theory

2.1.2. A (very) Brief History of Calibration

Before delving into calibration theory, a short history of microwave measurements

is in order. Much of the history presented here is summarized in Section II of [13].

One of the first instruments used to make reflection coefficient measurements was

the slotted line. This instrument, shown in Fig. 2.1, allows a probe to slide along

a section of uniform transmission line or waveguide, sampling the power at the

different electrical delays from the test port. Assuming that the effect of the probe

is negligible, the measured power is a linear combination of incident and reflected

waves. Given a sufficient number of measurements at the appropriate delays, the

reflection coefficient magnitude and phase can be determined.

Figure 2.1.: Picture of a slotted line ( from Google)

The drawback to the slotted line, and other similar instruments, is the measurement

accuracy depends on manufacturing precision, such as the geometry of probe, sliding

mechanism, etc. As a partial solution to this problem, the tuned reflectometer was

introduced. As it’s name suggests, the tuned reflectometer could be tuned by the

metrologist to compensate for manufacturing imperfections. This was, however, a

very time-consuming and laborious task, which required a skilled operator to produce

accurate measurements[13].
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2.2 Calibration

With the advent of the Automatic Network Analyzer (ANA), which we refer to to-

day as the Vector Network Analyzer (VNA), a major paradigm shift in measurement

strategy occurred. Instead of attempting to remove imperfections by using more

sophisticated manufacturing techniques, the imperfections were explicitly acknowl-

edged and removed through mathematical means. This technique is now known as

calibration.

In other words,

attempts to produce perfect hardware were replaced by the intelligent use

of imperfect hardware [13].

2.2. Calibration

2.2.1. Unterminating and De-embedding

Calibration is best understood as a specific case of the more general procedure

known as unterminating and de-embedding. This chapter gives a description of the

procedure, following closely the perspective of Bauer and Penfield[14].

At microwave frequencies it is generally not possible to measure quantities of interest,

such as reflection coefficient, at the location of interest. Instead, it is usually possible

to measure the quantity of interest, or a related quantity, at some other location.

For example, one may wish to measure the reflection coefficient of a device, but that

device is electrically far away from the measurement instrument. This scenario is

illustrated below in Fig. 2.2. In the figure, the actual reflection coefficient (a) of the

device under test (DUT) is said to be embedded behind the intervening two port

network, producing a measurable reflection coefficient (m). The goal is to remove

the effects of the embedding network from the measurement of (m) so that the DUT
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can be characterized.

The procedure to accomplish this is broken up into two parts, referred to as unter-

minating and de-embedding. The determination of the embedding network is known

as unterminating. The subsequent removal of the electrical effects of the embedding

network on a device is known as de-embedding. In this context, calibration can be

described as unterminating the effects of a measurement system by measuring a set

of known devices, and then de-embedding those effects from future measurements.

Embedding
Network DUT

am
E

Figure 2.2.: Diagram of an embedded device.

Assuming all the intervening circuitry between the measurement reference plane

and the device is linear, then it can be represented as a single two-port network, a

result of linear network theory[15]. Another well known result from network theory

is the relationship between the actual (true) reflection coefficient of a device (a),

the measured reflection coefficient (m), and the embedding network (E), given by

the Möbius transformation.

m = f (a) = e00 + e01e10 · a
1− e11 · a

(2.1)

where
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2.2 Calibration

m =measured response

a =actual response

E =

 e00 e01

e10 e11

 =embedding network S-parameters

This algebraic relationship can be expressed pictorially using a signal flow graph[16],

as shown in Fig. 2.3.

a

Figure 2.3.: Signal Flow Graph for a Terminated Two-Port Network

This relationship defines a unique, non-linear map between two planes; the a-plane

and the m-plane, meaning there is one-to-one correspondence between measured

reflection coefficient and the actual reflection coefficient of the device. Building

upon Fig. 2.2, the reference planes are illustrated at their location within the circuit

in Fig. 2.4. In the context of calibration, the a-plane is usually the test-port of

the measurement system and the m-plane is the raw measurement produced by the

VNA. The goal is to determine the parameters of the transform, so that it may be

inverted, thereby producing corrected measurements.
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DUT

m a

m-plane
a-plane

E

Embedding
Network

E

Figure 2.4.: Diagram of an embedded device illustrating the two reference planes
of interest.

It is of practical importance to recognize that the term (e10e01) cannot be seperated,

therefore the terms (e10) and (e01) cannot be found individually. This can be seen

from equation (2.1), and makes physical sense. However, if the determined parame-

ters are used solely for de-embedding, this is not of concern because the two terms

never appear in isolation. Otherwise, if the values of (E) are of interest, then (E)

can be completely solved for only if it is a reciprocal network (e10 = e01) and the

transmission phase is known within a factor of π 1.

Unterminating The electrical properties of the embedding network are deter-

mined by measuring a set of known devices at the test port. Such devices are

called calibration standards. Mathematically, this means that the parameters of the

transform are determined by observing how a set of known points in the a-plane is

transformed on the m-plane. These parameters can be uniquely determined given

three measurements. Because (2.1) defines a non-linear relationship between (m)

and (a), an iterative algorithm must be used to determine the parameters of interest.

Alternatively, (2.1) can be converted into a linear equation by treating the deter-

minant of the embedding network’s s-parameter matrix as a single variable (∆e =
1a sign ambiguity still exists because

√
e102 = ±e10
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e00e11− e01e10) and mixing the independent and dependent variables to produce the

following,

e11ma −∆e a + e00 = m (2.2)

Given three raw measurements (m1...3) of calibration standards with known re-

sponses (a1...3), the unknowns (e00, e11,∆e) can be directly found using matrix in-

version.


m1 · a1 −a1 1

m2 · a2 −a2 1

m3 · a3 −a3 1


︸ ︷︷ ︸

A

·


e11

∆e

e00


︸ ︷︷ ︸

x

=


m1

m2

m3


︸ ︷︷ ︸

b

(2.3)

A · x = b

x = A−1 · b (2.4)

Given additional measurements, (2.3) becomes overdetermined. The least squares

solution to such a system is found by calculating the pseudo-inverse of A, given

by A+ = (A∗A)−1A∗ [17]. Where the asterisk (∗) represents conjugate transpose.

Thus, (2.4) becomes,
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x = (A∗A)−1A∗ · b (2.5)

= A+ · b (2.6)

Over-determining the system allows for residual analysis, which is discussed in

sec. 2.3. Other improvements, such as optimally weighted least squares have been

discussed in the literature [18, 19].

De-embedding Once the embedding network is characterized its effects can be

removed from future measurements. This is done by inverting (2.1) ,

a = m− e00

e11 ·m−∆e

A convenient way to both conceptualize and implement unterminating and de-

embedding is through scattering transfer parameters.

Scattering Transfer Parameters It is well known that cascading two-port

networks can be implemented with matrix multiplication by using what are known

as scattering transfer parameters, or T-parameters[20]. These parameters are defined

by linearly relating incoming and outgoing waves at each port. Given that the S-

parameters are defined by
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 b0

b1

 =

 s00 s01

s10 s11


 a0

a1



The T-parameters are defined

 a0

b0

 =

 t00 t01

t10 t11


 b1

a1



The relationship between S-parameters and T-parameters for a two-port network is,

 s00 s01

s10 s11


m

=⇒

 −∆s s00

−s11 1


m

1
t11

 t01 ∆t

1 −t10


︸ ︷︷ ︸
S-parameters

⇐=

 t00 t01

t10 t11


︸ ︷︷ ︸
T-parameters

Using T-parameters, cascading two networks (X) and (Y) together is calculated

using matrix multiplication,

X ·Y =

 −∆x x00

−x11 1

 ·
 −∆y y00

−y11 1


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De-embedding can be achieved by multiplying the matrix inverse of the T-parameters.

This provides both a conceptually useful model of de-embedding, as well as a compu-

tationally efficient implementation. For example, to retrieve (Y) from the cascaded

connection of (X ·Y),

Y = X−1 · (X ·Y)

This is illustrated by Fig. 2.5.

Figure 2.5.: Diagram illustrating cascading an inverse network

In general, the relationship between two-port networks can best be represented by

a non-commutative algebra. Thus, matrix algebra is usually employed. However,

a more powerful non-commutative algebra such as Geometric Algebra[21] could be

used which may provide substantial benefits. A brief discussion about this is given

in sec. 6.1.3.

Comments The derivation of unterminating and de-embedding given here is in

terms of reflection coefficient, but it can be equivalently formulated in terms of

impedance or admittance. Penfield and Baurer’s derivations in [14], for example,

were made entirely in the context of impedance. Other than the different physical

interpretations, this change amounts to a change of basis.

Although algebraically convenient, the mathematical implications of mixing inde-

pendent and dependent variables in (2.2) are involved. One impact of this is to
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complicate the statistical analysis of the residual errors. A comparison between a

non-linear estimator and a linear one would make an interesting study.

2.2.2. Tiered Calibration

It is sometimes desirable to characterize an embedding network between some ar-

bitrarily chosen pair of reference planes. This is accomplished by making enough

measurements to unterminate at each plane, a technique referred to as a tiered

calibration. A common reason for using a tiered calibration is to characterize a

reciprocal, two-port device with a one-port system (see sec. 4.4.2 for a practical

example).

A diagram illustrating a two-tiered calibration setup is shown in Fig. 2.6. In this

example a pair of two-port networks, (X) and (Y) are connected in cascade, and

network (Y) is to be characterized. Assume that (Y) cannot be measured in isola-

tion, due to practical reasons. The procedure is to determine (Y) from knowledge of

(X) and (X ·Y). This is accomplished by performing two calibrations at different

tiers.

X Y

Figure 2.6.: Diagram of tiered embedding networks.

First Tier The first tier is created by removing (Y), producing the circuit shown

in Fig. 2.7 ( this is the same scenario presented in Fig. 2.2). A sufficient number of

calibration standards are attached at the y-pane, allowing (X) to be determined.
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yx

X

y-planex-plane

Calibration
Standards

Figure 2.7.: Diagram of tiered embedding networks, illustrating the first tier.

Second Tier Next, (Y) is reconnected as in Fig. 2.8, and calibration standards

are attached at the z-plane. This allows for the product of the two networks (X ·Y)

to be determined. Combining the results from the first and second tiers, (Y) can

be found, by

Y = X−1 · (X ·Y)

y zx

X Y

z-planey-planex-plane

Calibration
Standards

Figure 2.8.: Diagram of tiered embedding networks.

2.2.3. Extension to 2N-port VNA

Although the theory presented in the previous section was formulated in terms of

one-port measurements, extension to two or more ports is fairly straight forward.

This can be done most seamlessly by replacing the bilinear transform with the

matrical bilinear transform, as described in [22]. Alternatively, the more popular

formulation presented in [23] can be utilized.

Mathematically, the effect of increasing the number of ports is equivalent to increas-
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ing the dimensionality of the vector space. An important subtlety of extending this

analysis to two-port calibration is the inaccuracy of the error-box model, which has

be presented here. This inaccuracy is due to the properties of an internal switch

inside the VNA, and can be circumvented by accounting for the switch imperfections

using what the community calls switch-terms[24]. Six port reflectometers, on the

other hand, don’t suffer from this discontinuity of representation.

2.2.4. The Calibration Processing Chain

As described above, the goal of calibration is to determine as accurately as possible

the unknown parameters of the transformation, (E). There are two possible reasons

for this:

1. We want to remove the effects of (E) from future measurements

2. We are interested in (E) itself

Define the following:

a actual (true) reflection coefficient

m measured reflection coefficient

i ideal reflection coefficient of calibration standards

c corrected reflection coefficient

E true scattering parameters of embedding network

E′ estimated scattering parameters of embedding network

The diagram shown in Fig. 2.9 illustrates the process of calibration. The actual

reflection coefficient of a device (a), is transformed by the embedding network (E)

to produce a measurement (m). The known calibration standards, having ideal

responses (i), are measured in order to estimate the embedding parameters (E′).
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This is referred to as unterminating. It is necessary to differentiate the (i’s) from

the (a’s) because the ideal response and actual response of a calibration standard

are not identical. This difference is one cause of calibration error.

a

m

E

i

E'

Figure 2.9.: The calibration processing chain illustrating the relationships between
actual (a), measured(m), and ideal(i) responses.

A corrected response (c) is calculated by applying the inverse transform of the

estimated parameters (E′) to a measurement (m), this is de-embedding.

c = f−1
(
f (a; E) ; E′)

The relation between the actual (a), measured(m), ideals(i), and corrected (c) re-

sponses is illustrated in Fig. 2.10. The calibrated response will, in practice, never be

the identical to their actual responses because of unavoidable error in the estimation

of the embedding network (E′ 6= E).
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a

m

E

i

E'

c

Figure 2.10.: The calibration processing chain illustrating the relationships be-
tween actual (a), measured(m), ideal(i), and corrected(c) responses.

It should be noted that the corrected measurements are shown to exist in a dif-

ferent space from both (a) and (i). This is done to represent the general case of

an overdetermined calibration. In an overdetermined calibration, de-embedding the

measurements of the calibration standards will not map them back to their defini-

tions identically.

i 6= f−1
(
f (i; E) ; E′)

These differences are the residuals produced by the least squares estimator. The

analysis of the residual errors is described in sec. 2.3.3.

Errors To make things clear, various errors can be identified. There will always

be some error in the calibration standard ideal definitions due to the inability to

characterize the standards perfectly. At millimeter-wave and terahertz frequencies

this error is significantly larger than at lower frequencies. This is mainly due to the

machining precision and tolerances becoming significant compared to a wavelength.

The difference between the ideal response of a standard and the actual response of

that standard is represented by (∆ai). This difference will cause create a difference
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between the estimated embedding parameters (E′) and the true embedding param-

eters (E), written (∆EE′ ), which in turn causes an error in the corrected response,

(∆ac). Furthermore, all measurement errors are compounded by system noise, con-

nector uncertainty, and other non-systematic errors, labeled (n). All of these errors,

and how they relate to the calibration flow are illustrated in (Fig. 2.11).

While all of these errors exist, they are not available to the experimentalist. The

only error that is perceivable is the lack-of-fit to the measurement model produced

by an overdetermined calibration. This lack-of-fit is measured by the difference

between the ideal responses and the corrected ideal responses (∆ci). These errors

are the residuals from the least square estimator.

a

m

En

i

E'
Δ

EE'

Δ
ac

Δ ai

Δ
ci

+

c

Figure 2.11.: The calibration processing chain with illustration of errors.

Variable Difference between ... Interpretation
∆ai actual (true) reflection coefficient error in assumed response

and ideal definition of calibration standards
∆ac actual (true) reflection coefficient corrected measurement error

and corrected response
∆ci corrected reflection coefficient residual error from

and ideal definition least squares estimator
∆EE′ actual (true) embedding network error in embedding

and estimated embedding network network estimation
Table 2.1.: Errors in calibration processing chain
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2.2.5. Monte Carlo Simulation of Calibration

Due to the complexity of the calibration processing chain, the effects that different

errors will have on the measurements of interest is not easily predicted. For exam-

ple, having a phase error in a calibration standard definition will, in general, cause

both phase and magnitude error in the corrected measurements. The way in which

errors affect the measurements depends upon the embedding networks, which are

different for each experiment. This makes diagnosing measurement problems or rec-

ommending appropriate tolerances difficult. To properly model errors in calibration,

Monte-Carlo Simulations (MCS) must be used.

A MCS refers to a simulation in which all components of the calibration processing

chain exist on a computer. Fictitious measurements, embedding networks, and error

sources are all generated, allowing their effects on calibration error and measurement

error to be analyzed. The basic flow of a MCS follows the diagram developed in

Fig. 2.11, and is outlined below,

1. Create ideal definitions (i) and actual responses (a) of the calibration stan-

dards. Thus, error in the calibration standards (∆ai) is an input parameter.

2. Embed the actual responses in a realistic approximation of the embedding

network (E), producing fictitious measurements (m). This embedding network

is usually taken from an experiment, i.e. a previous calibration made on the

system of interest.

3. Optionally, add noise and other errors sources to the measurement (electronic

drift, connection error, etc.), either before or after (E) as appropriate. For

example, connector misalignment effects (a), while electronic noise is added

to (m).

4. Using the ideal definitions (i) and their measurements (m), run a calibration,
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which produces an estimate of the embedding network (E′). At this point the

residual error (∆ci) and estimated embedding network error (∆EE′ ) are both

available.

5. Create fictitious measurements of DUT’s following steps 2-3 and calculate

corrected measurements by de-embedding the estimated embedding network

(E′). This provides the measurement error (∆ac).

Once the MCS has completed, all of the errors in Tab. 2.1 may be calculated. Nu-

merous trials can be run and the resultant errors can be statistically analyzed to

produce confidence bounds on the quantities of interest. Examples of synthetic

experiments are given in sec. 3.5.2, sec. A.2, and sec. E.3.

2.3. Calibration Uncertainty

The experimentalist must have a technique to estimate uncertainty in their mea-

surements so that results can be asserted as true with some amount of confidence.

Quantitative uncertainty estimation prevents unwarranted conclusions being drawn

from experimental data, and precludes the unnecessary modeling of measurement

artifacts. This section introduces some known causes of uncertainty in VNA mea-

surements at terahertz frequencies, followed by a description of the mathematical

effects of such uncertainties on calibration.

2.3.1. Sources of Uncertainty

VNA noise

Any microwave source or detector system produces noise. The VNA frequency ex-

tension heads increase the frequency of the internal VNA source by using a series of
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2.3 Calibration Uncertainty

multiplier chains that amplify existing, and add additional, noise. The VNA elec-

tronic noise sets the noise floor, below which, nothing meaningful can be measured.

Thus, it is an important quantity to measure before attempts to estimate other

amounts of uncertainty, such as connector repeatability, are made.

To qualitatively illustrate typical VNA noise at 500-750GHz (WR-1.5/WM-380), a

plot of the complex drift of uncalibrated data is shown in Figure Fig. 2.12. This is

a plot of the uncalibrated complex reflection coefficient for three different standards

measured continuously over 3hrs, producing 180 sweeps. Each swirled data cluster

is the reflection coefficient at a single frequency, over the 180 sweeps.

Figure 2.12.: Visualization of Drift: Uncalibrated Reflection Measurements Taken
Over Time

This qualitative illustration is a useful starting point for the analysis. Firstly. it

provides a coarse estimate for the precision of the system, but more importantly,

it indicates that the noise is most accurately described as curling. This allows two

important conclusions to be drawn: 1) the noise is more naturally decomposed in
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polar components as opposed to cartesian and 2) the uncertainty in the phase com-

ponent is much larger than in the magnitude component. In other words, the phase

noise is dominant. Effectively, these casual observations form a principle compo-

nent analysis of the random vector noise signal, achieved solely through qualitative

methods.

Connector Repeatability

Another important source of error in VNA calibrations is the random effects caused

by connector repeatability[25]. In this context connector repeatability is interpreted

in an abstract sense, and has different interpretations in different media. In rect-

angular waveguide it represents the flange connection, while in quasi-optical mea-

surements it may be the replacement of a device in a fixture. Recently, a method

was presented that can be used to determine a model for the physical sources of

coaxial connector uncertainty [26]. This approach uses the frequency dependence of

calibration standards’ variance that may be estimated by redundant measurements.

This method can be extended to different media, provided a reasonably accurate

model of the physical cause of uncertainty is available.

Cable Drift

Cable drift (which is a misleading term) is error induced by the change in the

electrical properties of the cabling that connects the frequency extenders to the

VNA. It is one of the dominant sources of uncertainty in two-port measurements due

to the fact that the reference and measurement signals are disturbed independently.

Because most of the work in this thesis concentrates on one port measurements, this

source of uncertainty was not investigated in detail. It is mentioned here because it is
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an important, and perhaps dominant, source of uncertainty for two-port applications

at terahertz frequencies.

2.3.2. Biased vs. Unbiased Errors

Some sources of measurement uncertainty have been discussed, and now the effects

of such uncertainties from a mathematical perspective will be explored. Generally

speaking, when measurements are fit to a model there will be discrepancies. These

descrepencies are usually called errors (or residual errors ) and are classified into

two categories: biased and unbiased. Biased errors effect measurement accuracy,

while unbiased errors effect measurement precision. The amount of unbiased error

(precision) can be estimated by redundant measurements. Biased errors (accuracy)

can, in some cases, be estimated through over-determined measurements. A ta-

ble summarizing these relationships is shown in Table Tab. 2.2, accompanied by a

illustration in Fig. 2.13.

Error Type Effects Measurement ... Estimated by ...
Biased Accuracy Overdetermined Measurements
Unbiased Precision Redundant Measurements
Table 2.2.: Errors: Their Effects and Estimation Techniques
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Figure 2.13.: Illustration of precision and accuracy (taken from noaa.gov)

Given an overdetermined, redundantly measured set of calibration standards, the

residuals can be analyzed to estimate of the amount of biased and unbiased errors.

Most discussions of complex residual analysis approach the problem from a analyti-

cal perspective[27, 28, 29], drawing on concepts from statistics. In contrast to these

approaches, the following residual analysis is based solely on geometrical arguments.

This geometrical arguments are then used to create quantitative metrics of estimate

biased and unbiased errors. Although lacking in mathematical rigor, the error met-

rics presented here have been used thoroughly in practice and proven to be useful.

Examples are presented in sec. A.5.

2.3.3. Residual Analysis

Given a set of n measurement/ideal pairs (m1...n, i1...n), we can calculate an estimate

for the embedding network (E′). This embedding network estimate can be used to
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calculate corrected responses for those same measurements (i′),

i′ = e00 −m
∆e + me11

= E′−1 ◦m

Where the inverse (E′−1) represents inverse T-parameters, and open dot (◦) im-

plies the cascading operation. If the set is overdetermined, meaning more than 3

measurement-ideal pairs are available for a one-port calibration, then there will be

a general lack of fit between the given i’s and the corrected i′ ’s. A plot of a typical

set of calibration standard ideals, and the corrected measurements of the ideals is

shown below in Fig. 2.14.
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Figure 2.14.: Corrected calibration standards and their ideal response for an
overdetermined calibration.
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For each measurement, this lack of fit produces a residual which is the complex

difference between the de-embedded measurement and ideal response,

δ = i− i′

= i− E′−1 ◦m (2.7)

It is noted that the analysis could take place in the m-plane, by calculating the

residuals using,

δ = m−m′

= m− E′ ◦ i

However, there are many disadvantages in doing this. The largest problem is that

the units of the residuals are determined by the properties of the embedding network

(E), which makes interpretation less valuable. All of the residuals calculated in this

work are done using (2.7).

By constructing a redundantly measured, over-determined calibration a set of com-

plex residuals, defined by (2.7), is produced. A typical plot of complex residuals is

shown in Fig. 2.15. These residuals were generated from a one-port calibration con-

sisting of four standards, each measured eight times. The sets of identical markers

correspond to measurements of a single standard.
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Figure 2.15.: Complex residual errors for an overdetermined, redundantly mea-
sured set of standards.

Using a linear least-squares estimator in the presence of random, white Gaussian

noise produces residuals that form a zero-mean normal distribution [30]. From the

plot in Fig. 2.15, it can be seen the groups of errors from each standard do not have

a zero mean. A non-zero mean indicates that there is a lack-of-fit between the ideal

responses and their de-embedded measurements. It is this observation which forms

the basis for the biased vs unbiased error metrics in the next section.

2.3.4. Biased and Unbiased Error Metrics

In this section metrics are formulated to estimate biased and unbiased errors from

the complex residuals produced by a least squares estimator. These quantities are

defined heuristically, lacking a rigorous mathematical basis, but have been used in

practice and proven to be a valuable tool. Shown in figure Fig. 2.16 is an illustration

of a typical set of residuals.
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Figure 2.16.: Illustration of the distribution of residuals in the presence of biased
and unbiased error.

For each measurement there is a corresponding complex residual (δ), represented

by a small square marker in Fig. 2.17. All of the residuals for a single calibration

standard form a complex set or cloud, having a mean (µ) and a standard deviation

(σ). Given by the familiar formulas,

µ = 1
N

N∑
n

δn

σ =

√√√√ 1
N

N∑
n

|δn − µ|2 (2.8)

Where N is the number of measurements per standard. The diagram in figure

Fig. 2.17 is re-drawn in Fig. 2.17 with labels indicating the these quantities.
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.

Figure 2.17.: Illustration of distribution of residuals in the presence of biased and
unbiased error with statistical quantities labeled.

From Fig. 2.17, it is possible to create metrics to measure both biased and unbiased

errors, independently. The biased error manifests itself by displacing the mean of a

single standard’s residual cloud. The unbiased error produces a larger spread in the

residual cloud. Defining the following metrics:

• unbiased error: Average spread of each residual cloud.

1
M

M∑
m

(σm (δn))

where (M) is the number of standards, and (N) is the number of measuar-

ments.

• biased error: Average distance of each cloud’s center of mass from the origin.

1
M

M∑
m

|µm (δn)|
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• total error: Average magnitude of all residuals.

1
N

N∑
n

|δn|

A plot of these metrics vs. frequency for a calibration made at 325-500GHz rect-

angular waveguide (WR-2.2) is shown below in Fig. 2.18. Plotting these metrics

on a log scale is convenient because, it allows the metrics to be interpreted as the

smallest measurable return loss of the system. For example, Fig. 2.18 is indicates

that the calibration accuracy is limited by biased error to at least -30 and -20dB.

This is most likely due to improperly defined calibration standards. The system

precision, however, is approximately -40dB, which indicates there is a potential for

improvement if the cause of the systematic error can be identified and removed.

This plot was taken from the measurement study presented in sec. A.5.
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Figure 2.18.: Example application of the residual error metrics for an overdeter-
mined redundant calibration at 325-500GHz
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Multi-frequency Residuals In practice, redundant measurements are not al-

ways made by the experimenter, so the above analysis is not directly applicable.

However, because measurements are available at a number of frequencies, the bi-

ased error can still be estimated. Shown in Fig. 2.19 are the complex residuals taken

from an overdetermined calibration having systematic errors in the delay short stan-

dard lengths. The systematic error manifests itself as correlation between residuals

at different frequencies. To apply the metrics defined above, the statistical functions

defined in (2.8) are calculated over frequency, as apposed to over redundant mea-

surements. This will create a single number for each of the metrics defined above,

as opposed to traces across frequency. Regardless, the metrics are interpreted iden-

tically.
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Figure 2.19.: Complex residual errors for single re-connection of calibration stan-
dards, but for many frequencies

Measuring more than the minimal number of standards provides a wealth of infor-

mation about the calibration. This information can be used to estimate the accuracy
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of a calibration and aid in the diagnosis of any errors that are present. Such capa-

bilities are extremely useful for non-conventional and experimental measurements,

in which systematic errors are common.

The next section presents a brief discussion of the Möbius transformation, a general

class of transformations that encompasses the embedding relationship of 2.1. Some

well known properties of the Möbius transformation are interpreted in the context of

unterminating and de-embedding, which may be of use to the microwave engineer.

None of the following chapters directly depend on the contents of this section, and

therefore it may be skipped without consequence.

2.4. *Möbius Transformation

2.4.1. Introduction

It is worthwhile studying the Möbius transformation (also known as the bi-linear

transformation or fractional linear transformation) because it occurs frequently in

the art of microwave engineering. For example, the relationship between impedance

and reflection coefficient, as well as the action of cascading networks are both Möbius

transformations. This transform appears in other interesting fields as well such as

the theory of relativity [31, 32] and computer graphics[33]. The study of Möbius

transformation is not merely a pedagogical exercise. Rather, it integrates and unifies

developments in seemingly dissimilar fields.

The Möbius transformation is defined as a rational function of the form[32],

w = f (z; a, b, c, d) = a z + b

c z + d
(2.9)
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ad− bc 6= 0

Where, w and z are the complex variables being transformed, and a, b, c, and d, are

complex constants which are the parameters of the transform. Its inverse exists and

is defined,

z = f (w; a, b, c, d) = dw− b
−cw + a

(2.10)

ad− bc 6= 0

The cascading relationship can be put into this standard form which allows the prop-

erties of the Möbius transformation to be interpreted in the context of calibration.

Starting from the measurement equation relating the measured reflection coefficient

(m), to the actual reflection coefficient (a) and embedded network (E),

m = f (a;E) = e00 + e01e10 a
1− e11 a

(2.11)

Treating the determinant of the embedding network’s s-parameter matrix as a single

variable (∆e), then (2.11) can be manipulated into the standard form.

m =−∆e a + e00

−e11 a + 1 (2.12)

Applying the result that the inverse of the Möbius is given by (2.10), we can imme-

diately write down the formula for the actual reflection coefficient in terms of the
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measured reflection coefficient and embedding s-parameters.

a = m− e00

e11 m−∆e

This is the formula used for de-embedding.

2.4.2. Decomposition Into Simpler Functions

The cascading relationship can be decomposed into a series of simpler functions, each

dependent upon one parameter of the embedding network. This decomposition al-

lows one to gain some intuition about how the parameters of the embedding network

transform the reflection coefficient space, which proves to be useful in calibration

problems.

Starting from the measurement equation ,

m = f (a) = e00 + e01e10 · a
1− e11 · a

(2.13)

Dividing the second term by a, we have

m = e00 + e01e10 ·
1

1
a − e11

(2.14)

In this form, (2.14) can clearly be decomposed into a a series of simpler functions,
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m = f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1(a)

f1(z) = 1/z inversion

f2(z) = z − e11 translation

f3(z) = 1/z inversion

f4(z) = e10e01 · z dilation/rotation

f5(z) = z + e00 translation (2.15)

The result of the individual functions acting successively on a passive polar grid

(|z| ≤ 1) is illustrated in Figure (Fig. 2.20). This can be thought of as demonstration

of an embedding network on the region of passive devices.
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Chapter 2 Calibration Theory

Figure 2.20.: Illustration of the embedding equation broken down into individ-
ual sub-transforms, each dependent upon a single s-parameter of the embedding
network.

From this figure some specific effects can be attributed to circuit embedding pa-

rameters. The first three sub-functions (f1 · · · f3) invert the plane in the unit circle,

translate by e11, and then invert again. This specific combination of transforms is
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2.4 *Möbius Transformation

known as a special conformal transformation[32]. It is the feedback created by the

e11 parameter that is responsible for the conformal warping of the space. In such a

warping, circles are preserved, although their centers are not.

The remaining sub-functions make up an affine transformation. The effect of the

combined e01e10 term is a simple linear rotation/dilation, followed by a translation

by e00.

2.4.3. Projective Geometry

The fact that the Möbius transformation can be implemented by matrix multiplica-

tion is a result of projective geometry[34, 35, 32]. While a full account of projective

geometry is beyond the scope of this dissertation, the general concept can be ex-

plained, and the results are simple to follow.

The underlying idea is to represent a vector in some original space, by a vector

in a higher dimension space, and relate the two spaces by a projection operation.

An abstract example of this relationship is illustrated in Fig. 2.21. In this figure, a

vector in three dimensions is related to vector in two by where it intersects some

some projection plane. Given this construction, a linear transformation acting on

the higher dimensional space turns out to be a Möbius transformation in the lower

dimensional one. Thus, one exchanges a complicated transformation in a simple

space, for a simple transformation in a more complicated space. This is analogous

to using the Fourier transformation to linearize convolution.
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Chapter 2 Calibration Theory

Figure 2.21.: Illustration of projective geometry. The three dimensional vector
(A) is projectively related to the two dimensional vector (a). Taken from [33]

Projective Coordinates Through the use of projective ( homogeneous) coordinates[36,

32] the Möbius transformation can be realized as matrix multiplication. A projec-

tive coordinate is simply representing a single number by the division of a pair of

numbers.

z = z1

z2
=

 z1

z2

 (2.16)

If one thinks of z1 and z2 as being cartesian components of a two dimensional vector,

then z represents the direction of the vector. Using soft brackets for projective

coordinates to imply division of the first and second rows. Given this representation,

the Möbius transformation can be written as a 2x2 matrix,
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2.4 *Möbius Transformation

w = a z + b

c z + d w

1

 =

 a b

c d


 z

1

nd (2.17)

Thus the Möbius transform is a linear transform of the projective coordinates, and

can now be implemented by matrix multiplication. The subsequent operation of two

Möbius transformations (f1) and (f2), is

w = f2(f1 (z))

f2 ◦ f1 ◦ z = F2 · F1 · z

a2
(
a1 z+b1
c1 z+d1

)
+ b2

c2
(
a1 z+b1
c1 z+d1

)
+ d2

=

 a2 b2

c2 d2


 a1 b1

c1 d1


 z

1


(a2a1 + b2c1) z + (a2b1 + b2d1)
(c2a1 + c1d2) z + (c2b1 + d2d1) =

 a2a1 + b2c1 a2b1 + b2d1

c2a1 + c1d2 c2b1 + d2d1


 z

1



Stringing together a series of Möbius transformations is reduced to a series of matrix

multiplications. This provides both conceptual and computational advantages. For

example, applying the simple result from linear algebra that the inverse of a square

matrix exists provided the determinant is not zero, allows us to calculate the inverse

Möbius transform.
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Chapter 2 Calibration Theory

 w

1

 =

 a b

c d


 z

1

 (2.18)

 z

1

 =

 d −b

−c a


 w

1

 (2.19)

z = dw +−b
−cw + a

(2.20)

Cascading Networks Applying these ideas to the cascading relation:

m = −∆e·a + e00

−e11 · a + 1 m

1

 =

 −∆e e00

−e11 1


 a

1

 (2.21)

From (2.18), the inverse can be immediately written down,

 a

1

 =

 1 −e00

e11 −∆e


 m

1

 (2.22)

This is the formula used for de-embedding. This projective matrix representation

of a two-port networks is known by the microwave community as scattering trans-

fer parameters, or T-parameters[20]. As stated above, this allows many two-port

networks can be cascaded together using matrix multiplication. For example, the

network depicted in Fig. 2.8 has the matrix representation.
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2.4 *Möbius Transformation

 m

1

 = X ·Y·

 a

1



=

 −∆x x00

−x11 1


 −∆y y00

−y11 1


 a

1



The decomposition of the transformation as discussed in sec. 2.4.2, (2.21) can be

broken apart according to (2.15) like so

m = f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1 (a)

 m

1

 =

translation 1 e00

0 1


︸ ︷︷ ︸

f5

rot/scale e10e01 0

0 1


︸ ︷︷ ︸

f4

inversion 0 1

1 0


︸ ︷︷ ︸

f3

translation 1 −e11

0 1


︸ ︷︷ ︸

f2

inversion 0 1

1 0


︸ ︷︷ ︸

f1

 a

1



Impedance Reflection Coefficient Applying the matrix representation to the

impedance reflection coefficient relation.

Γ = Zl − Z0

Zl + Z0

If one normalizes the impedance ( z = Zl
Z0

) and replaces (Γ) with (s) for consistency

of notation, this becomes,
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s = z− 1
z + 1 s

1

 =

 1 −1

1 1


 z

1



Which has inverse,

 z

1

 =

 1 1

−1 1


 s

1



The relation between normalized impedance (z) and normalized admittance (y) can

is expressed,

z = 1
y z

1

 =

 0 1

1 0


 y

1



From these results all relations between z,y, and s can be derived quickly.

48



2.5 Conclusion

2.5. Conclusion

The fundamentals of calibration have been presented in the more general context

of unterminating and de-embedding. The calibration processing chain has been

described in detail, and various errors within it have been identified. These errors

led to a geometrically-based complex residual error analysis, which has been used

to create practical metrics of biased and unbiased errors. The following chapters

apply the ideas and techniques developed in this chapter to practical calibration

and measurement problems in the field of terahertz metrology.
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3. Multi-Frequency One-Port

Self-Calibration using Parametric

Standards

This chapter presents a general approach to multi-frequency one-port self-calibration

using parametric standards. The approach given here determines optimal parame-

ters for partially defined calibration standards through the minimization of residual

error. As a demonstration of the method, an algorithm is developed which uses an

iterative least squares solution for parameter estimation. The algorithm is applied

to a calibration set containing delay shorts of unknown physical length, and then

refined to model a delayed load of unknown length and reflection coefficient mag-

nitude. Measurements are performed at 500-750GHz (WR-1.5, WM-380) and show

that the self-calibration provides improved measurement accuracy.
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3.1. Introduction

As waveguide and on-chip metrology continues to be pushed toward the Terahertz

spectrum accurate characterization of calibration standards becomes increasingly

difficult. This difficulty is due to two main reasons: dimensional uncertainty, and

connection repeatability. Although efforts to solve these problems through improved

manufacturing accuracy and better hardware design are justified[9, 2], much can be

done to address the problem analytically[37].

As a solution to this problem, the application of multi-frequency, one-port self-

calibration using parametric standards is investigated. We present a general theo-

retical foundation (Section sec. 3.3 ), followed by a specific implementation utilizing

an iterative least squares approach (Section sec. 3.4). This implementation is then

applied to practical examples of rectangular waveguide calibration at 500-750GHz

using delayed shorts and delayed loads of unknown lengths (Section sec. 3.5.). The

multi-frequency self-calibration technique shows improvement over conventional one-

port calibration, given the same initial standard definitions.

All algorithms and calculations presented in this work have been made with the

open-source python module scikit-rf[38].

3.2. Previous Work

The general idea of improving the accuracy of de-embedding and unterminating by

using redundant measurements was first presented in [14]. Elaborating upon this

concept, modern calibration procedures make precise use of additional measurement

information to solve for specific unknowns in the calibration set itself, a technique

known as self-calibration [39]. Such self-calibration algorithms can be categorized
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3.2 Previous Work

as closed-form [23, 40, 41, 22] or iterative[28, 42, 29]. While elegant and fast, closed-

form self-calibration methods are only applicable to the specific calibration kit for

which they were designed. Iterative methods, on the other hand, provide the ben-

efits of self-calibration without the limitation of a single, preconceived calibration

set. Thus, a single algorithm can handle a variety of calibration sets, allowing for

additional and redundant measurements to be added easily. The drawback of iter-

ative methods is that the existence of a unique solution is not guaranteed, and the

computation speed is slower.

While much focus has been spent on two-port self-calibration schemes, related de-

velopments for one-port calibrations are still of interest. Attempts to make accurate

measurements at millimeter wave and sub-millimeter wave frequencies, where pre-

cise line and load standards are difficult to realize, has produced a need for more

elaborate one-port algorithms [37]. In response, several closed-form one-port self-

calibration algorithms have been developed which utilize partially known standards.

One such solution uses two reflective standards of unknown phase [43]. This solu-

tion was further extended in [7] by replacing the matched load standard with an

arbitrary load. The use of radiating open[12] as a load standard was then used to

produce a calibration procedure resistant to flange misalignment.

Because there is less information provided by a one-port measurement, the poten-

tial applications of closed-form self-calibration methods are limited. One solution

to this problem, originally presented in [44], is to exploit the inter-frequency rela-

tionship of the calibration standards in order to reduce the number of unknowns in

the calibration kit itself. The concept originates from the observation that the un-

known parameters in a calibration kit may be physical quantities not changing with

frequency. For example, one may know the propagation constant of the medium

precisely, but not the physical length of the delay lines. Or perhaps one may have a
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Chapter 3 Multi-Frequency One-Port Self-Calibration using Parametric Standards

closed form expression for a connector discontinuity as a function of some unknown

dimensional quantity. This technique, referred to as multi-frequency calibration

(MFC), has been applied in recent years to both one-port and two-port calibration

[45, 37, 44, 46] .

The work presented here provides a simple approach to iterative self-calibration

based on the minimization of residual error. In contrast to the work in [37, 44, 46],

our theoretical foundation is sufficiently general to allow for application to any

calibration kit. An equivalently general approach to MFC has been independently

developed in [45]. While the work in [45] is clearly written and conceptually useful,

the details provided are insufficient for implementation, and in-depth measurement

results are absent. The work here is unique in its simplicity and transparency,

thereby lowering the barrier for others to make use of the technique. Furthermore,

we present practical application to a relevant measurement challenge that indicates

the effectiveness of the procedure. .

3.3. Theory

A raw measurement (m) is a function of the device’s actual response at the reference

plane (a) as well as the effects of the embedding circuitry of the measurement system

(E).

m = f (a;E) (3.1)

Where E is some set of complex parameters, such as E = {e00, e11, e01e10} in the

case of one-port calibration. The goal of calibration is to measure a sufficient set
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of known responses (a1...i), so that the effects of the embedding circuitry can be

removed from future measurements. Given that the embedding circuitry can be

solved for, (3.1) can be inverted to calculate a corrected response (c) from the raw

measurement (m) of a device under test.

c = f−1 (m;E) (3.2)

Iterative approaches to calibration determine the unknown embedding parameters

by minimizing the mean square difference between the ideal responses of the cali-

bration standards, and their de-embedded responses.

ε2 =
I∑
i=1

∣∣∣ai − f−1 (mi;E)
∣∣∣2 (3.3)

min(ε2;E) (3.4)

Where ε is the residual error, and I is the number of calibration standards. Self-

calibration methods allow for parameters of the calibration standards (a1...i) to be

solved for during the determination of the embedding circuitry (E). Thus, a single

response (ai) is a function of some unknown, to-be-determined set of p-parameters

(ϕ1...p).

ai (ϕ) = f (ϕ0, ϕ1, . . . ϕp) (3.5)
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The residual error then becomes,

ε2 =
I∑
i=1

∣∣∣ai (ϕ)− f−1 (mi;E)
∣∣∣2 (3.6)

The adjustable parameters of the minimization is extended to all parameters, ϕ .

min(ε2;E,ϕ) (3.7)

Multi-frequency calibration methods allow for a single unknown parameter to be

shared across the entire frequency band. A partially known calibration standard is

then a function of frequency (ω), as well as the unknown parameters (ϕ).

ai (ω, ϕ) = f (ω, ϕ0, ϕ1, . . . ϕp) (3.8)

Consequently, the residual error to be minimized is summed across all standards

and frequencies simultaneously.

ε2 =
W∑
ω

I∑
i

∣∣∣ai (ω, ϕ)− f−1 (mi (ω) ;E (ω))
∣∣∣2 (3.9)

Where I is the number of standards and W is the number of frequency points
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3.4. Implementation

To illustrate the theory given above, an application to one-port calibration is given

below. For computational reasons, the implementation contains a mixture of lin-

ear and non-linear methods. The parameters of the embedding circuitry are found

through direct matrix inversion at each frequency (linear), while the unknown pa-

rameters of the calibration standards are found through an iterative method (non-

linear). The mixture of linear and non-linear methods is not essential to the concept,

but was used for algorithmic simplicity.

3.4.1. Conventional One-port Calibration

The measured reflection coefficient of a one-port network embedded behind some

unknown two-port is

m = e00 + e01e01 · a
1− e11 · a

(3.10)

Where

m =measured reflection coefficient

a =actual reflection coefficient e00 e01

e10 e11

 =embedding network s-parameters

The conventional approach to one port calibration is to convert the nonlinear func-
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tion (2.1) into a linear one. This is done by treating the determinant of the em-

bedding network s-parameter matrix as a single variable (∆e = e00e11 − e01e10) and

mixing the independent and dependent variables to produce the following,

e11ma −∆e a + e00 = m (3.11)

Given three raw measurements (m1...3) of calibration standards with known re-

sponses (a1...3), the unknowns (e00, e11,∆e) can be directly found using matrix in-

version.


m1 · a1 −a1 1

m2 · a2 −a2 1

m3 · a3 −a3 1


︸ ︷︷ ︸

A

·


e11

∆e

e00


︸ ︷︷ ︸

x

=


m1

m2

m3


︸ ︷︷ ︸

b

(3.12)

A · x = b

x = A−1 · b (3.13)

To employ partially known calibration standards, additional measurement informa-

tion is required, meaning more than three calibration standards must be measured.

This creates an overdetermined system of equations, from which a residual error

may be calculated. The unknown parameters of the partially known calibration

standards are then found by minimizing this residual error.
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Given additional measurements, (3.12) becomes overdetermined. The least squares

solution to such a system is found by calculating the pseudo-inverse of A, given

by A+ = (A∗A)−1A∗ [17]. Where the asterisk (∗) represents conjugate transpose.

Thus, (3.12) becomes,

x = (A∗A)−1A∗ · b (3.14)

= A+ · b (3.15)

The residual error vector is given by ,

e = b−A ·A+ · b (3.16)

The residual error summed over all standards is calculated by,

ε = |e|2 (3.17)

Thus, the residual error of a overdetermined calibration provides the feedback mech-

anism needed to determine the unknown parameters of the calibration standards.

Multi-frequency calibration is implemented by calculating the sum of the residual

error magnitude across the entire frequency band. Because the unknown parame-

ters are generally characteristics of the calibration standards, it is natural to first

introduce the concept of parametric standards.
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3.4.2. Parametric Standards

A parametric calibration standard has a response defined across a range of frequen-

cies that can be modeled as a function of p adjustable parameters, ϕ1...p.

ai (ω, ϕ) = f (ω, ϕ0, ϕ1, . . . ϕp) (3.18)

Thus, the system is constrained by assuming the calibration standard can be accu-

rately represented by some electrical model. The model parameters (ϕ1...p) generally

correspond to some meaningful physical or electrical quantities that may be of inter-

est. An example of a parametric standard would be a delayed termination of known

reflection coefficient (Γ0) and propagation constant (γ (ω)) but unknown physical

length, ϕ1.

a (ω, ϕ) = Γ0e
−2jγ(ω)ϕ1 (3.19)

In this example, the response of the standard at all frequencies is determined by

a single scalar parameter, ϕ1. Replacing the fully known calibration standards in

(3.12) with one or more parametric calibration standards will, in general, make

(3.12) a non-linear system with respect to the parameters (ϕ). This system may

be solved using various nonlinear least squares algorithms [47]. The quantity to be

minimized is the squared magnitude of the residual error as given by (3.16), summed
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across all calibration standards and frequencies.

min(
∑
ω

|ε (ω)|2 ;ϕ) (3.20)

3.4.3. Convergence

It is important to recognize that the convergence of this technique is dependent upon

the nature of the residual error function, which must be well-behaved and possess

a unique minimum within a reasonable parameter space about the true parameter

values. In general, it is not be possible to analytically prove the existence of such

a minimum. A numerical simulation of the residual error function, demonstrated

in Section sec. 3.5.2, is a convenient alternative when the parameter space is small.

As the parameter space gets larger, Monte-Carlo simulations must be performed to

determine the solvability a given parameter space[28, 19].

3.5. Application

3.5.1. Delay Shorts of Unknown Length

A common set of calibration standards used in waveguide measurements is a flush

short, one or more delay shorts, and a load. At THz frequencies, these standards be-

come increasingly difficult to accurately fabricate and characterize. This, along with

waveguide misalignment, severely limits measurement accuracy in this medium[6].

Currently, there are efforts to evaluate competing design variations of traditional

standards[10], introduce novel standards[12], and improve alignment precision by

creation of new flange specifications[11].
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While these efforts toward higher precision and lower tolerances on calibration stan-

dards are justified, imperfect hardware will always exist at the forefront of high

frequency technologies. The solution is to replace the requirement for perfect hard-

ware with the intelligent use of imperfect hardware. Multi-frequency self-calibration

is a ideally suited for this task. For example, a common problem with delay short

shims at WR-1.5(WM-380) is that their nominal delay lengths are in error. This

may be due to incorrect characterization, machining tolerances, or possibly an im-

perfect test-port. To address this problem, a self-calibration utilizing parametric

standards for delayed shorts with unknown lengths may be utilized.

Let a1 and a2 be parametric offset shorts of unknown lengths ϕ1 and ϕ2, but known

propagation constant, γ (ω) = jα (ω) + β (ω). Their complex reflection coefficients

are thus,

a1(ω, ϕ1) = −e−2jγ(ω)ϕ1

a2(ω, ϕ2) = −e−2jγ(ω)ϕ2

Let a3 be a waveguide short,

a3(ω) = −1

And, Let a4 be some known load standard.

a4(ω) = Γl(ω)
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Following equations (3.12) - (3.20) for the above calibration set, the system of equa-

tions is



−m1a1(ω, ϕ1) −a1(ω, ϕ1) 1

−m2a2(ω, ϕ2) −a2(ω, ϕ2) 1

−m3 1 1

m4·Γl −Γl 1


︸ ︷︷ ︸

A

·


e11

∆e

e00


︸ ︷︷ ︸

x

=



m1

m2

m3

m4


︸ ︷︷ ︸

b

(3.21)

The residual error is calculated by (3.16) and (3.17). The lengths of the delay lines

are found by minimizing this residual error across all frequencies,

min(
∑
ω

|ε (ω)|2 ;ϕ) (3.22)

Once the calibration standard’s unknown parameters are found, the scattering pa-

rameters of the embedding circuit are found from (3.14).

3.5.2. Numerical Simulation of Residual Error Function

As stated in sec. 3.5.2, a numerical simulation should be constructed to verify the

existence of a unique minimum in the residual error function within a reasonable

parameter space. The calibration kit defined in the previous section was simulated

in the 500-750GHz (WR-1.5, WM-380) band and contained the following standards:

• flush short,

• λ
4 delay short

• λ
8 delay short
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• load ( waveguide radiating open)

The true responses of the standards were embedded in a realistic two-port error

network, producing simulated measurements. This realistic error network was taken

from a previous conventional one-port calibration made in the laboratory. The ac-

tual lengths of the two offset shorts were then perturbed independently by known

amounts from their nominal values. For each perturbation of the standards, the least

squares estimate of embedding network’s s-parameters was computed from (3.14)

and the residual error was calculated according to (3.22). Because the parameter

space is two dimensional it can be easily visualized as a surface. Although not a

rigorous proof of solvability, the visualization of the residual error surface is concep-

tually useful. A surface with height proportional to the magnitude of the residual

error function about a parameter space of ±15µm, [±7◦] from the true values of ϕ1

and ϕ2, is shown below in Figure (Fig. 3.1). The boundaries of the parameter space

( ±15µm, [±7◦]) are chosen to be larger than typical machining tolerances.

The fact that this surface is smooth and well behaved, indicates that convergence of

the minimization is reasonable. Because no addition sources of error were included

in this simulation, the error function exhibits a minimum value of 0 about the true

values of the delay lengths, as expected.

3.5.3. Measurement Results

As a demonstration of the multi-frequency self-calibration routine described above,

one-port measurements at 500-750GHz were made at the University of Virginia using

a frequency extension unit from Virginia Diodes Inc. (VDI WR1.5 VNAXTXRX)

with a Rhode and Schwarz ZVA 40 network analyzer as the backend. A calibration

kit was obtained from VDI consisting of a flush short, four delay shims of two

different nominal lengths, and a matched load. Initially, corrected measurements
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Figure 3.1.: Residual error function about true parameter values.

exhibited standing waves in their return loss, which is an indication that the load

is not sufficiently matched to determine the system impedance. To circumvent this

problem, the matched load was replaced by a radiating open waveguide flange. As

explained in [7], this standard is also attractive because it is resistant to waveguide

flange misalignment. The modeled response of the open waveguide was generated

with HFSS simulations, and has since been studied in greater detail[12].

The results of the parametric self-calibration using delayed shorts of unknown length

are compared to the conventional, least-squares calibration using the delay short’s

nominal lengths. Shown in Figure Fig. 3.2 is the evolution the self-calibration’s resid-

ual error as a function of iteration index of the minimization routine. The minimiza-

tion was accomplished using the fmin function of Python module scipy.optimize[48],

which is an implementation of the Nelder-Mead simplex algorithm[49]. A compari-

son of the corrected delay short measurements calibrated using the nominal lengths

vs those calibrated with the corrected lengths found by optimization is shown in

Figure Fig. 3.3. The results suggest that the true delay lengths are significantly dif-
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ferent from their nominal values, and the self-calibration routine provides improved

corrected measurement accuracy.

Figure 3.2.: Residual error vs iteration of minimization algorithm.

Corrected measurements of the load standard were then calculated with the opti-

mal calibration set. It was observed that the load exhibited a significant reflection

electrically far from the flange. It is known that load standard is constructed by

inserting a piece of absorber in a section of waveguide, and therefore, this result is

consistent with the physical model. It was hypothesized that the match could be

modeled as a flat-band reflection, located at some fixed distance from the reference

plane.

ai (ω, ϕ0, ϕ1) = ϕ0 · e−2jγ(ω)·ϕ1

Where ϕ0 is the magnitude of the reflection coefficient, and ϕ1 is the physical dis-

tance to the absorber. Thus, the fully characterized match standard was replaced
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Figure 3.3.: Comparison of delay-shorts reflection coefficient magnitude, as cor-
rected with conventional and self-calibration algorithms.

by a partially known standard, parameterized by delay length and reflection coef-

ficient magnitude. Using the previous calibration, initial parameter estimates for

the delayed-load were determined. The results of the self-calibration which used the

parametric load standard were then compared to a calibration that used the optimal

delay-short lengths, but an ideal match for a load. As a performance metric, the

corrected measurements of the short and two delay shorts are shown in Fig. 3.4, and

similarly for the load in Fig. 3.5.

The return loss of the delayed shorts calibrated with the refined self-calibration are

below ±.1dB deviation for most of the band, while the initial self-calibration pro-

duces results around ±.5dB. The self-calibration finds that the absorbing load has

a −37dB return loss, at 1.9cm (.75 in) from the reference plane, so Figure Fig. 3.5

should be interpreted accordingly. An iterative approach to self-calibration is use-

ful in that it provides a practical way to deal with poorly characterized standards,

a current problem for accurate millimeter-wave and sub-millimeter-wave measure-
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Figure 3.4.: Comparison of delay-shorts reflection coefficient magnitude, as cor-
rected with initial and refined self-calibration algorithms.

ments.

3.6. Conclusions

A general approach to multi-frequency, one-port self-calibration using parametric

standards has been presented. A specific algorithm, utilizing an iterative least

squares approach is described and demonstrated through practical examples of

waveguide calibration using delay shorts and delayed loads of unknown lengths.

The self-calibration technique shows improvement over conventional one-port cal-

ibration, given the same initial standard definitions. This specific application is

of importance to the emerging THz measurement infrastructure, where rectangular

waveguide calibration limits measurement accuracy. More sophisticated parametric

standards could be developed to further improve accuracy. For example, to circum-

vent the waveguide misalignment at the test-port caused by machining tolerances,
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Figure 3.5.: Comparison of the matched load standard’s reflection coefficient mag-
nitude, as corrected with initial and refined self-calibration algorithms.

one could account for the electrical effects of the misalignment by parameterizing the

offset of the waveguide junction. Extending this technique to two-port calibration,

or 2n-port calibration, could be accomplished in a variety of ways. The implemen-

tation of the formulation described in [22], which relies on the ’matricial bilinear

transform’, is underway.
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4. An Experimental Technique for

Calibration Uncertainty Analysis

This chapter presents an experimentally-based technique for characterizing calibra-

tion uncertainty. The approach described calculates uncertainty metrics at the out-

put of the calibration processing chain as opposed to the input. In doing so, this

method replaces the complexities of error propagation with the computational ef-

fort associated with performing numerous calibrations. Practical applications are

demonstrated for a variety of scenarios focused on one-port calibration, illustrating

the versatility of the technique. An Open-Source implementation has been made

publicly available as part of the Python module scikit-rf.

4.1. Introduction

Uncertainty estimation of vector measurements at microwave frequencies is an im-

portant and well developed subject [50, 27, 51, 19]. Statistical methods are reg-

ularly used to propagate uncertainties in calibration standards to uncertainties in

measured quantities. Software tools exist, and more are under development [52]
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that can be used to aid the experimentalist in uncertainty estimation. These tech-

niques and tools, although powerful, are sometimes prohibitively complex for the

average experimentalist. A simple, transparent, and easy-to-implement procedure

for estimating uncertainty in S-parameter measurements is desirable.

The typical approach to estimating calibration uncertainty is to calculate uncertainty

metrics on measurements of calibration standards, and then to propagate those

metrics through the calibration processing chain. Modern approaches accomplish

this through the use of variance-covariance and Jacobian matrices [27, 29]. There

are several drawbacks of this approach to uncertainty estimation, as are described

in [50].

First, in the context of calibration, error propagation relies on a linear approxima-

tion to a non-linear function. The magnitude of the non-linearity is a function of

the embedding network, and may be quite large. Second, implementation requires

the evaluation of partial derivatives, which is a non-trivial task. Finally, error prop-

agation is incapable of accurately representing certain types of unbiased errors ( see

Section sec. 4.4.3 for an example).

The approach described here is different in that the uncertainty metrics are calcu-

lated at the output of the calibration processing chain instead of the input. Thus, the

complexity of error propagation is replaced by the computational effort required to

perform numerous calibrations. In a sense, this is a step backward in mathematical

sophistication, but provides a useful procedure that produces intuitive results.

The replacement of error propagation with Monte-Carlo analysis was presented in

[50] as a general way to estimate uncertainty in quantities related to S-parameters.

The method presented here is essentially the application of Monte-Carlo analysis

to experimentally measured data. Measurement-based methods have the advan-

tages that no assumptions are made about the error distribution and all unbiased
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uncertainties are automatically taken into account, as opposed to only predicted

ones.

It should be observed that this type of uncertainty estimation quantifies the effects

of unbiased errors only, and not biased errors. In other words, it is an estimation of

measurement precision, not measurement accuracy.

4.2. Theory

This section follows the introduction to error propagation as presented in [53], and

draws from the language and concepts as described in [54]. Assume there is some

measurand x, that is calculated from measurements (u, v, ...), by way of a measure-

ment equation, f .

x = f (u, v, . . .) (4.1)

Provided that redundant measurements are made, multiple values for ui, vi, ... are

available. By combining individual measurements of ui, vi, ..., a set of measurands

{xi}, can be generated.

{xi} = f
(
{ui} , {vi} , ...

)
(4.2)

The uncertainty in the value of x can then be calculated directly from the set

{xi}. This eliminates the need for error propagation, and replaces it with redundant

evaluations of the function f .

73



Chapter 4 An Experimental Technique for Calibration Uncertainty Analysis

Applying this concept to the problem of calibration is straightforward, but will be

explicitly expressed for clarity. Given redundant measurements of the calibration

standards, numerous calibrations may be performed that generate a set of error

networks {Ei}, or similar set of error correction information1. This set of error

networks is a function of the assumed response for calibration standards a, and the

set of redundant measurements of the calibration standards {si}.

{Ei} = f (a, {si}) (4.3)

A set of corrected responses, {ci}, can be produced by de-embedding the set of error

networks from a single measurement, m. Thus, the set of corrected responses is a

function of a single measured response and a set of error networks.

{ci} = f (m, {Ei}) (4.4)

DUT
Embedding

De-Embedding
a

c1
c2
c3

cn

...

m1 m3

m2

i1 i3

i2Cal1
... m1 m3

m2

i1 i3

i2Caln

m1 m3

m2

i1 i3

i2Cal2
m

E

σcμc

...

Figure 4.1.: Illustration of of calibration uncertainty algorithm

1The form of the error-terms will vary depending on what error model is used.

74



4.3 Implementation

An illustration of the algorithm is shown in Fig. 4.1. The uncertainty of the corrected

responses, or the error networks themselves, can be found directly from the sets

{ci} and {Ei}, respectively. If the uncertainty in some other related quantity is

desired, then the functional relationship can be incorporated into the processing

chain in a similar manner. Although previously stated, it should be emphasized

that uncertainties estimated in this way will capture the effects of unbiased errors

only.

The subscripts on set variables have been kept the same for simplicity of presenta-

tion, ie f
(
{ui} , {vi} , ...

)
, but it is not necessary that the indicies of the measurand

and input variables be identical. In fact, the freedom to choose which combinatoric

function is used to assemble the elements of each set contributes to the versatility

of the method (this is demonstrated in Section sec. 4.4.3).

To illustrate the theory, an application to a conventional one-port calibration algo-

rithm is given in the following section.

4.3. Implementation

The measured reflection coefficient of a one-port device embedded in a two-port

error network is given by the familiar formula,

s = e00 + e01e01 · a
1− e11 · a

(4.5)

where
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s =measured reflection coefficient

a =actual reflection coefficient e00 e01

e10 e11

 =embeding network S-parameters

A common approach to one port calibration is to convert the nonlinear function

(2.1) into a linear least squares problem. This is done by treating the determinant

of the embedding network as a single variable, ∆e, and mixing the independent and

dependent variables to produce the following,

e11sa −∆e a + e00 = s (4.6)

If one measures three calibration standards, each having a known response, the

unknowns (e11,∆e, e00) can be uniquely found through matrix inversion.


s1a1 a1 1

s2a2 a2 1

s3a3 a3 1


︸ ︷︷ ︸

A

·


e11

−∆e

e00


︸ ︷︷ ︸

E

=


s1

s2

s3


︸ ︷︷ ︸

S

(4.7)

A · E = S

E = A−1 · S (4.8)
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This inversion yields an estimate for the embedding network s-parameters, allowing

one to remove the effects of the embedding network on future measurements. The

corrected response c of a future measurement m is calculated by inverting (2.1), and

inserting values of (e11,∆e, e00) as found by (4.8)

c = m− e00

e11m + ∆e (4.9)

Thus, the corrected response c is a function of it’s measurement m, as well as the

estimated parameters of the embedding network E. The estimated parameters of

the embedding network are dependent upon the calibration standards’ assumed and

measured responses through (4.8). This relationship may be expressed by,

c = f (m; E) = f (m; a, {s}) (4.10)

The uncertainty in the corrected response due to variance in the calibration standard

measurements can be estimated by evaluating equations (4.8) and (4.9) repeatedly

with redundant measurements of the calibration standards {s}. This produces a set

of corrected responses {c} , on which uncertainty bounds may be calculated.

Although not demonstrated in this study, the effects of other uncertainties can be

calculated just as easily. For example, the uncertianty in the calibrated response

due to the variance in the assumed responses of the calibration standards could

be estimated. This may be used to estimate the effects of calibration standard

tolerances on corrected measurements. The technique described above has been

implemented as part of the Object-Oriented, Open-Source Python Module scikit-
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rf[38]. The measured and ideal network data is taken in the form of Touchstone

files, the standard file format for representing microwave networks and supported

by all modern Vector Network Analyzers[55]. For more details on using scikit-rf for

uncertainty estimation, see the on-line documentation [38].

4.4. Applications

This section presents examples of calculating measurement uncertainties in three

different calibration media, each with a different source of uncertainty.

4.4.1. Rectangular Waveguide

The uncertainty analysis method described has been used to assess different waveg-

uide calibration standard designs for the 500-750GHz band (WM-380 or WR-1.5).

Measurements were made using a one-port WR-1.5 frequency extension unit from

Virginia Diodes Inc. (VDI WR1.5 VNAXTXRX) with a Rhode and Schwarz ZVA-

40 network analyzer as the back-end. A full account of the dominant error sources

and measurement challenges of this medium are not trivial and are the subject of on-

going research[6]. The largest limitation of measurement accuracy at this frequency

band is flange misalignment of the calibration standards.

Waveguide delay shorts are common calibration standards in this medium, and can

be realized as a recess milled into a flanged short or as a thin shim backed by

a flush short. The two different designs are illustrated in Figure Fig. 4.2. Shim-

based standards are attractive because they have dual use as delay lines and delay

shorts, but they have larger misalignment uncertainty than the milled design[56].

To quantify the difference between the two standards, the calibration uncertainty

was estimated for calibrations containing each.
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(a) (b)

Figure 4.2.: Photographs of the two delay short designs; a) Milled design, and b)
shim design (with accompanying flush short)

Two calibration sets were made, both containing a short, radiating open, and a

quarter-wave delay short. One calibration set used the milled delay short, while

the other used the shimmed delay short. The use of the radiating open as a load

standard is discussed in [6, 7]. Six measurements were made of each standard.

Between each individual measurement, the standard was removed and replaced on

the test port. Thus, the variance of each standard reflects the uncertainty associated

with the flange connection.

The measurement of a verification standard, an eighth-wave delay short, was cor-

rected using both calibration sets. A direct comparison of the uncertainty produced

by each calibration set is made by calculating the complex standard deviationof an

eighth-wave delay short, as corrected by each set. The complex standard deviation

of a set of points is the average distance of each point from the set’s mean, expressed

by,

σ {x} =

√√√√ 1
n

n∑
i=1

∣∣∣∣∣xi − 1
n

n∑
i=1

(xi)
∣∣∣∣∣
2

(4.11)
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This is shown in Figure Fig. 4.3. The standard deviation of the shim set varies from

.03 to .14 across the band, while the milled set is below .02 for the entire band, with

a mean value of .004.
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Figure 4.3.: Complex Standard Deviation of Eighth-wave Verification Standard
For Calibration Sets Using Shimmed Delays vs. Milled Delays

Although the metric illustrated in Figure Fig. 4.3 provides a direct comparison of

the uncertainty produced by each calibration set, a plot of the magnitude and phase

components of the verification standard with confidence bounds is desirable. Because

the entire set of corrected measurements is available, statistics on the magnitude and

phase components can be calculated directly.

When calculating the uncertainty in the magnitude component to be displayed on

a log scale, the bounds must be calculated in linear units, and then converted to

log units. The order is important. For example, to calculate the ±3σ uncertainty

bounds in the magnitude in dB from a complex set {x},
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|x|upper (dB) = 20 log (µ {|x|}+ 3σ {|x|})

|x|lower (dB) = 20 log (µ {|x|} − 3σ {|x|}) (4.12)

Where µ is the mean of the set, and the absolute value operates on each element of

the set. The magnitude and phase components, along with ±3σ confidence bounds

for each calibration set, are shown in Figures Fig. 4.4 and Fig. 4.5. The mean re-

sponse and confidence bounds for the shim delay short calibration set are indicated

by square markers and light shading, while the mean response and confidence bounds

for the milled set are indicated by diamond markers and dark shading, respectively.

Although the mean responses are very similar, measurement uncertainty for the

milled set is significantly smaller than the shim set. The insets of Figures Fig. 4.4

and Fig. 4.5 better illustrate the confidence bounds produced by the milled calibra-

tion sets. The ±3σ confidence region for the milled set is less than .4dB across

the band, while the ±3σ confidence region for the shim set varies from ±.5dB to

±3dB. The difference between theory and measurement for the return loss phase as

shown in Figure Fig. 4.5, is attributed to flange misalignment at the test port due

to mechanical tolerances.

As pointed out in [6], the quadratic nature of the junction admittance created from

flange misalignment in single direction, may produce biased errors in the calibration.

Errors of this nature are not accounted for with this type of uncertainty estimation.
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Figure 4.4.: Reflection Coefficient Magnitude of the Eighth-wave verification Stan-
dard with ±3σ Confidence Bounds, Calibrated Using Shimmed Delays vs. Milled
Delays. (The inset shows an enlargement to better illustrate confidence region of
the Milled Set)

4.4.2. Two-Tier Coplanar Waveguide On-wafer Probe

As a second application, the S-parameters of a WR-1.5/WM-380 rectangular waveg-

uide to coplanar waveguide probe were measured and evaluated using the experi-

mentally based uncertainty analysis[5]. Because the probe is a reciprocal, two-port

network it can be measured using a one-port, two-tier calibration, as described in

[5]. The reference plane of the first calibration tier is the waveguide test port of the

VNA. The second tier’s reference plane is on the CPW side of the probe (100µm

past the probe’s contact point on-wafer). A diagram illustrating the calibration

tiers and positions with respect to the probe is shown in Figure Fig.A.10. A realis-

tic rendering of the waveguide test-port, probe, and calibration substrate is shown

in Figure Fig. 4.7.

The first-tier calibration was made at the waveguide test-port and employed a flush
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Figure 4.5.: Reflection Coefficient Phase of the Eighth-wave verification Standard
with ±3σ Confidence Bounds, Calibrated Using Shimmed Delays vs. Milled De-
lays. (The inset shows an enlargement to better illustrate confidence region of the
Milled Set)

short, quarter-wave delay short, and radiating open as calibration standards. The

second-tier calibration was made on the substrate and contained a CPW short and a

set of four delayed shorts. The electrical lengths of the delays were evenly distributed

from 0− 180◦ at band-center, excluding the end-points. An illustration of the CPW

calibration set and it’s relevant geometry is shown in Figure Fig. 4.8. Using the error

networks produced by both tiers, the S-parameters of the probe can be determined.

In this scenario, the quantity of interest is the error network of the second tier

calibration, after the VNA has been de-embedded from port 1.

An uncertainty analysis was made on the second tier calibration only. Each stan-

dard was measured 30 times. These measurements were combined to produce a set

of 30 estimates for the S-parameters of the probe. Uncertainty estimates of the

probe’s insertion loss were made in two different ways. One uncertainty estimate
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ProbeWaveguide

Substrate

Tier 1 Tier 2

Figure 4.6.: Image of the Experimental Setup With the Calibration Tiers Labeled

Figure 4.7.: Rendering of the Waveguide Test-port, Probe, and Calibration Sub-
strate

was made by taking the standard deviation on the complex insertion loss |σ (S21) |.

The other estimate was made by taking the standard deviating of the magnitude of

the insertion loss σ (|S21|). The difference between the two uncertainty estimators is

due to the non-commutativity of statistical and projection operators, expressed by,

|σ (S21)| 6= σ (|S21|) (4.13)

Both methods have unique interpretations; one is the uncertainty in the magnitude

σ (|S21|) and the other is the magnitude of the complex uncertainty |σ (S21)|.
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Figure 4.8.: Geometry of the second-tier CPW calibration lines Labeled

The mean insertion loss of the probe with ±3σ uncertainty bounds are shown in

Figure Fig. 4.9 for both uncertainty estimators. The mean responses are nearly

identical, and their difference cannot be perceived from Figure Fig. 4.9. The bounds

for the magnitude of the complex uncertainty |σ (S21)|, is shown by dotted lines

and light shading, while the uncertainty in the magnitude σ (|S21|) is shown by

dark shading. The difference in the two uncertainty estimators is significant, and

interpretation is clear; the uncertainty in the insertion loss magnitude is very low,

while the uncertainty in the magnitude of the complex uncertainty is much larger.

The dominance of phase uncertainty in the transmission coefficient is attributed

to the irregularity in probe landing possition. The ’spikes’ seen in Figure Fig. 4.9

are numerical artifacts due to evaluation of insertion loss by way of the reciprocity

assumption, which requires the square root of a complex number to be taken. These

artifacts are only present for the uncertainty estimate that takes the magnitude

component after evaluation of the standard deviation, i.e. |σ (S21)|.

4.4.3. Quasi-Optical Array

As a final application of this approach, the reflection coefficient of a quasi-optical

annular ring-slot antenna array was measured in the 75-110GHz band ( WM-2540
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Figure 4.9.: Insertion Loss of Error Network With Uncertainty Estimation

or WR-10). The array was made up of a 16x16 square grid of 1.1x1.1mm unit

cells. Each cell contained a ring slot of mean radius 400µm and slot width of 40µm,

fabricated on 100µm thick fused quartz wafer substrate (εr = 3.8). An image of the

array is shown in Figure Fig. 4.10.

A one-port calibration was performed using a series of delayed reflect standards,

realized with a mirror and a mechanically adjustable optical path length. An illus-

tration of the experimental setup is shown in Figure Fig. 4.11. The delay distance

was controlled by an electronic translation stage, so that positioning accuracy and

repeatability was excellent (~1µm). The replacement of a device in the fixture, how-

ever, showed poor repeatability. Therefore, when the ’short’ standard is replaced by

the DUT, an uncertainty in location of the DUT with respect to the reference plane

is introduced.

An analogous scenario is a coaxial or waveguide calibration that employs a sliding

short only. In this case, the uncertainty due to the connector repeatability is present
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Figure 4.10.: Photograph of the Annular Ring-slot Array

when the calibration standard is replaced by the DUT, but not between the mea-

surement of each calibration standard. Intuitively, one understands that the effect

of this will be an uncertainty in the phase response of the DUT. However, accurately

representing this type of uncertainty in the calibration is surprisingly subtle. For

example, one way to estimate measurement uncertainty is to remove and replace

the mirror from the fixture in between each measurement of a calibration standard.

This will introduce a relative phase error in between the calibration standards them-

selves, and thus cause more significant calibration errors. Therefore, it may be said

that the uncertainty estimate produced by this method would be pessimistic.

An alternative approach to calculate the uncertainty is to replace the mirror in the

fixture only after each repetition of an entire set of calibration standard measure-

ments, in which the mirror is translated but not re-mounted in the fixture. Repre-

senting this type of uncertainty is not possible with matrix-based error propagation

techniques because such techniques require that uncertainty is formulated in terms

of per-standard uncertainty.

The two uncertainty estimates described above were compared. One estimate was

made from measurements that had the mirror replaced after the measurement of
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Figure 4.11.: Illustration of Quasi-optical Experimental Setup.

each standard, referred to as a permuted method, or perm for short. The other

estimate has the mirror replaced after each set of standards is measured, referred

to as the dot method. The names given to the uncertainty estimates are derived

from the Python functions used to generate each set of corrected measurements.

Both uncertainty estimates, as well as a simulated response of the array, are plotted

in Figures Fig. 4.12-Fig. 4.14, for various components. The simulated response was

created using Ansoft’s High-Frequency Structure Simulator (HFSS).

As predicted, the permuted uncertainty estimate is more pessimistic than the dot

estimate. Although the true response is never available to the experimentalist, the

confidence bounds produced by the dot estimator very closely track the deviation

of the measurement from simulation, allowing more confidence to be placed in the

simulation model. The uncertainty in the phase component is not shown due to

the numerical difficulties associated with calculating the variance of the phase com-

ponent. Near resonance the array’s phase component exhibits sharp jumps. These
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sudden jumps produce difficulties in the unwrapping of the phase, a necessary step

to express phase response uncertainty.
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Figure 4.12.: Magnitude of Array Response Comparing Two Types of Uncertainty
Estimates

4.5. Conclusion

We have presented an experimentally-based method of uncertainty estimation in

which the uncertainty metrics are calculated at the output of the calibration pro-

cessing chain as opposed to the input. This creates a conceptually simple and

versatile procedure with results that are easy to interpret. The method has been

implemented in the Object-Oriented, Open-Source Python module scikit-rf[38], and

is made available on the Internet.

Examples of practical usage have been given for a variety of scenarios associated

with one-port calibration. The extension of this technique to two-port calibration

or any other measurement model is straightforward.
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5. scikit-rf: an Open Source

Object Oriented approach to

RF/Microwave Engineering

This chapter outlines some shortcomings in the current software available to the

microwave research scientist. This provides the motivation for scikit-rf, an Open-

Source, Object-Oriented Python module developed, in part, to support for the work

in this thesis. Example scripts are provided that demonstrate how scikit-rf can

be used to implement the applications described in chapter 3 and chapter 4.

5.1. The Problem

As computer software continues to play an increasing role in the field of engineer-

ing design and analysis, it’s architecture becomes more critical. To a degree, it is

the software’s design that determines which solutions are chosen. The more refined

and specialized the tool, the more pronounced it’s effect becomes. This can cre-

ate a problem for research-type environments, which constantly require new and
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innovative solutions. This chapter reflects upon existing software tools from the

perspective of a researcher, and attempts to identify their shortcomings so that they

may be rectified.

Currently, numerous professional grade software packages exist to aid the microwave

engineer in specific tasks. Shown in Tab. 5.1 is a partial list of some of the more

popular software packages, sorted categorically. For those who are interested, a

historical account of the evolution of circuit simulators written by Steve Maas can

be found in [57].

EM Simulation Circuitl Design Calibration Analysis
HFSS ADS MultiCal, Statistical Matlab + RF Toolbox

Quickwave Microwave Office WinCal
Ansoft Designer

QUCS
Table 5.1.: Common RF/Microwave Engineering Software sorted Categorically

Almost all of these products are highly refined, professional-grade projects that

are extremely sophisticated and powerful. They are also designed for engineers in

industry, and embrace a specific work flow. One common trait shared among most

of the software packages listed in Tab. 5.1 (Matlab excluded), is an interface-driven

design. Because the majority of users interact with software from a graphical user

interface (GUI), the accessibility to the core functionalities from a programming

interface is generally neglected. While most of the products provide a scripting

ability as well as some application programming interface (API), they are mostly

clunky and awkward. These characteristics produce software that is very good

at accomplishing a specific task, but not good for inventing new applications or

interconnecting existing functionality quickly. This severely limits the capabilities

of the research scientist.

Another problem, especially relevant for research applications, is the closed-source
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nature of products in Tab. 5.1. The academic environment is a principle example

of the power and effectiveness of the open-source model, yet many of the fruits

of the academic environment, namely the algorithms and analysis techniques, are

implemented in a closed-source manner. This impedes scientific progress, and is

itself a genuine problem which justifies future study.

Similar drawbacks were recognized nearly 20 years ago at Caltech by David Rut-

ledge and his students. Their solution was to build their own simple, easy-to-use

microwave circuit design program called Puff[58]. In the authors own words;

.. one of the main advantages of Puff over existing CAD programs is its

openness. The models used by Puff and the analysis methods are thor-

oughly documented, and users are invited to contribute to the programs

development.

Although antiquated in its interface and software design, Puff has many features,

such as it’s subnetwork growth algorithm[59] that are worthy incorporation in the

next generation of microwave software.

5.2. Current Solutions

There are a few solutions that currently exist which address some of the prob-

lems outlined above. The Quiet Universal Circuit Simulator (QUCS)1 is a modern,

open-source RF/microwave circuit simulator written in C++, with impressive func-

tionality and good documentation. However, the architecture of QUCS follows the

interface-driven design paradigm, making it an effective tool for the specific pur-

pose that the authors envisioned, but not much else. Since QUCS is open-source,

its useful capabilities can be either incorporated into other projects with minimal
1http://qucs.sourceforge.net/
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effort.

Matlab’s RF toolbox, on the other hand, provides much of the necessary framework

for microwave analysis, such as a n-port network class and cascading/de-embedding

operations. Unfortunately, Matlab is not an object-oriented programming language,

which limits its scalability, it is closed source, and it is expensive.

In summary, some key problems identified with existing software are interface-driven

design, lack of modularity, deficiency of integration, and closed-source philosophy. A

flexible, object-oriented, open-source framework for microwave and RF engineering

is needed. With community support, such a framework could provide a common

foundation for numerous specialized applications such as circuit design, calibration,

and network analysis. Many different aspects of microwave engineering could be

integrated, providing more creative and powerful solutions than will ever be possible

with a set of isolated, specialized tools.

5.3. About scikit-rf

scikit-rf is a Open-Source, Object-Oriented software package written in the Python

programming language[60]. Python was chosen because it is a modern, high-level,

cross-platform language with excellent numerical and scientific computing support

through the matplotlib, scipy, and numpy modules[48, 61, 62]. Thanks to these

foundational libraries, there has recently been an explosion of specialized mod-

ules for applications such as statistical analysis[63], machine learning[64], image

processing[65], and many others[66].

scikit-rf has been made available on-line since August 11, 2009, hosted on Google

Code[67] originally, and now on Github[68]. At the time of this writing, the scikit-rf

homepage has received over 1,200 visitors from 71 different countries. It has been
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designed to provide a general set of objects without constraints, so that the user can

build new applications quickly. A brief list of the current capabilities is given below,

• provides n-port network class

• read/write touchstone (.sNp) files

• convert between s, t, y, and z-parameters

• connect n-port networks, and de-embed 2-port networks

• provides basic algebraic operations on networks’ scattering parameters

• plot relevant data (dB, Phase, Smith chart)

• 1-port calibration, given any number of standards (least squares)

• 2-port calibration with support for switch-terms.

• provides network set class, used for automating with uncertainty analysis

• can be used with pyvisa for instrument control of some VNA’s ( partial support

for HP8510, HP8720, and R&S ZVA40 )

• provides some basic transmission line models (rectangular waveguide, cpw,

freespace)

The functionality listed above is throughly documented within a 100+ page user

manual, which can be accessed on-line, or downloaded from the project’s website,

www.scikit-rf.org. Like all Python modules, scikit-rf can be used interactively

from the command line, used in scripts, or integrated into larger software applica-

tions all equally well. The following section demonstrates the unique abilities of

scikit-rf, by illustrating how to implement the concepts presented in this thesis.
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5.4. scikit-rf in this thesis

This section illustrates how scikit-rf (called skrf from within python) was used

to implement some of the techniques presented in this thesis. It does not describe

the internals of scikit-rf, which can be found in the reference section of the

user manual or in the source code itself. The first example (sec. 5.4.1) shows how to

create a simple one-port calibration, and correct a raw measurement. Building upon

this, the second example (sec. 5.4.2) implements the multi-frequency self-calibration

technique described in chapter 3, for a SDDL calibration routine. This script also

demonstrates a way to visualize the parameter space of the self calibration, as was

shown in Fig. 3.1. The final example demonstrates usage the experimentally-based

calibration uncertainty estimation presented in chapter 4, for 750-1100GHz (WR-

1.0) rectangular waveguide. The uncertainty in the radiating open is measured and

compared with theory.

5.4.1. Calibration

Calibrations are performed through the Calibration object, which requires at least

two pieces of information:

• a list of measured Networks

• a list of ideal Networks

Optionally, other information can be provided when necessary, such as the type of

calibration algorithm, whether the error network should be made reciprocal, etc.

When this information is not provided skrf will try to determine it through in-

spection, or use a default value. The default one-port and two-port calibration

algorithms are generic in that it will work with any set of standards. If more than
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the minimal number of standards is provided, skrf will implement a least-squares

solution.

import skrf as rf
from pylab import *

# create a Calibration object. This takes as arguments a list of ideal
# and measured Networks. These can be loaded from touchstone files
cal = rf.Calibration(\

measured = [\
rf.Network(’measured/short.s1p’),
rf.Network(’measured/delay short 132um.s1p’),
rf.Network(’measured/delay short 85um.s1p’),
rf.Network(’measured/load.s1p’),
],

ideals =[\
rf.Network(’ideals/short.s1p’),
rf.Network(’ideals/delay short 132um.s1p’),
rf.Network(’ideals/delay short 85um.s1p’),
rf.Network(’ideals/load.s1p’),
],

)

# load the raw measurment of a dut from file
dut_meas = rf.Network(’dut/radiating open.s1p’)
# correct the dut, by applying the calibration
dut_cal = cal.apply_cal(dut_meas)
# load a simulated response for comparison with corrected measurement
dut_sim = rf.Network(’simulation/radiating open.s1p’)

# plot restults in log magnitude
figure()
title(’Return loss of Radiating Open’)
dut_cal.plot_s_db(label=’Experiment’)
dut_sim.plot_s_db(label=’Simulated’)
draw();show();
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Figure 5.1.: Simulated vs. measured response for a one-port device, calibrated
with skrf.

5.4.2. Multi-frequency Self-Calibration

Because of skrf’s object-oriented approach to calibration, the multi-frequency self-

calibration technique described in chapter 3 can be implemented easily. The basic

requirements are the ability to modify the parameters of the ideal calibration stan-

dards, generate their responses, re-calculate the calibration, and then measure the

residual error.

The script below implements a one-port calibration containing a short, two delays

of unknown length, and a known load,a calibration set known as SDDL. The self-

calibration is accomplished by creating a function, cal_func, which takes the delay

lengths as an input, runs a calibration, and then returns the mean residual error

magnitude. The optimal delay lengths are then found by minimizing the residual

error of the calibration. The minimization is accomplished using the fmin function

of Python module scipy.optimize[48], which is an implementation of the Nelder-
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Mead simplex algorithm[49].

An exploration of the parameter space is made by sweeping through a grid of different

delay short lengths, and calculating the residual error. This two-dimensional space

is visualized by a contour plot of the residual error on a log-scale, as shown in

Fig. 5.2. From this plot it can be seen that the space appears to be smooth and

well-behaved, making minimization plausible.

Figure 5.2.: Residual Parameter Space for SDDL Calibration
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import skrf as rf
from pylab import *

# measurements
my_measured = [

rf.Network(’measured/short.s1p’),
rf.Network(’measured/delay short 85um.s1p’),
rf.Network(’measured/delay short 132um.s1p’),
rf.Network(’measured/load.s1p’),
]

# create a media object for wr-1.5 rectangular waveguide
wg = rf.RectangularWaveguide(

frequency = my_measured[0].frequency,
a = 15*rf.mil )

# create a function, which takes the delay short lengths as a tuple,
# runs a calibration, and returns the mean residual error magnitude
def cal_func(d):

cal = rf.Calibration(\
ideals = [\

wg.short(),
wg.delay_short(d[0]*1e-6),
wg.delay_short(d[1]*1e-6),
wg.match(),
],

measured = my_measured,
)

cal.run()
return mean(abs(cal.residuals))

# import fmin from scipy.optimize, a general purpose minimizer
from scipy.optimize import fmin
# calculate the optimal delay lengths, by minimizing the mean residual
# error of the overdetermined calibration
d_opt = fmin (cal_func, x0 = [80,130])

# create a 2D parameter space for the two delay short lengths and
# calculate the mean residual error at each point.
n = 7 # density of space, nxn
d0_vector =linspace(70,110,n)
d1_vector =linspace(120,160,n)
d_space = array([cal_func([d0,d1]) \

for d0 in d0_vector \
for d1 in d1_vector]).reshape(n,n)

# show space as a contour plot
title(’Residual Parameter Space for SDDL Calibration’)
contourf(log10(d_space))
cb= colorbar()
cb.set_label(’Log of Mean Residual Error Magnitude’)
grid(0)
yticks(range(n), int_(d0_vector))
xticks(range(n), int_(d1_vector))
ylabel(’delay length 0 (um)’)
xlabel(’delay length 1 (um)’)
draw()

show()
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5.4.3. Calibration Uncertainty Estimation

The experimentally-based technique for calibration uncertainty estimation presented

in chapter 4 can be implemented with skrf easily. The requirements are an abil-

ity to produce a set of Calibration objects by combining the different calibration

standard measurements, and then use this set correct a single measurement, thereby

producing a set of corrected responses. The script below accomplishes this by creat-

ing a function, which takes an index parameter and loads measurements that have

filenames corresponding to this parameter.

In skrf, sets of networks can be represented by a NetworkSet object. This ob-

ject has built-in methods for calculating and plotting common statistical measures

on a set of networks. This object is used in the script below to hold the cor-

rected responses of the DUT and plot the results with uncertainty bounds. This

experimentally-based calibration uncertainty method has been streamlined in skrf

with the CalibrationSet object, making application and extension of the method

very easy. This object was not used in this example in order to more clearly illustrate

the concept.
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from pylab import *
import skrf as rf
from scipy.constants import *

um = 1e-6

# pull frequency information from a measurement
frequency = rf.Network(’raw/short,0.s1p’).frequency
# create a media object for wr-1.0 rectangular waveguide
wg = rf.RectangularWaveguide(frequency, a=10*mil, z0=50)

# function used to generate a Calibration objects
# for a given indecie (k), return a Calibration object for the (kth) of
# set of calibration standard measuremnts. Note this relies on using a
# consistent naming convention on the touchstone files
def cal_func(k):

cal = rf.Calibration(
ideals = [

wg.short(name=’short’),
wg.delay_short(106*um, name=’qw’),
wg.match(name=’load’),
],

measured = [
rf.Network(’raw/short,%i.s1p’%k),
rf.Network(’raw/qw,%i.s1p’%k),
rf.Network(’raw/load,%i.s1p’%k),
],

)
return cal

# create a list of Calibration objects for all measurement sets
cal_list = [cal_func(k) for k in range(3)]

# load the measured dut
dut_meas = rf.Network(’dut/ro,0.s1p’)
# create a set of corrected dut’s by applying the each calibration in cal_list
dut_set = rf.NetworkSet([k.apply_cal(dut_meas) for k in cal_list])
# load the simulated response of dut
dut_sim = rf.Network(’sim/ro_hfss.s1p’, name = ’ro, HFSS’)

# plot simulated vs. measured results with calibraiton uncertainty bounds
figure()
title(’WR-1.0 Radiating Open, Magnitude’)
dut_set.plot_uncertainty_bounds_s_db(

n_deviations = 3,
label = ’Measured $\pm 3\sigma$’)

dut_sim.plot_s_db(label=’HFSS’)
ylim((-20,-10))

figure()
title(’WR-1.0 Radiating Open, Phase’)
dut_set.plot_uncertainty_bounds_s_deg(

n_deviations = 3,
label = ’Measured $\pm 3\sigma$’)

dut_sim.plot_s_deg(label=’HFSS’)
ylim((-120,-60))
draw()
show()
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Figure 5.3.: Simulated vs measured return loss phase one-port device with uncer-
tainty bounds, as calculated from experimentally based calibration uncertainty.

Figure 5.4.: Simulated vs measured return loss magnitude for a one-port device
with uncertainty bounds, as calculated from experimentally based calibration un-
certainty.

103



Chapter 5
scikit-rf: an Open Source Object Oriented approach to RF/Microwave

Engineering

5.5. Conclusion

A series of deficiencies in the existing software tools available to the microwave re-

search scientist have been identified. This motivates the creation of scikit-rf, an

open-source, object-oriented python module for microwave engineering. scikit-rf’s

unique abilities have been demonstrated by implementing the major concepts devel-

oped in this thesis. More thorough documentation on scikit-rf’s capabilities and

usage examples can be found on the project’s website www.scikit-rf.org.
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The field of terahertz science and technology is rapidly expanding, making the

need for a proper measurement infrastructure essential. Building this infrastruc-

ture is a multi-faceted, community-wide effort. Given its history of millimeter-

wave and terahertz technology, the University of Virginia is in a unique position

to make vital contributions to this effort. This ability is further strengthened by

our proximity to Virginia Diodes and the National Radio Astronomy Observatory,

both well-known pioneers in the field. In recent years, UVa has made consid-

erable advances to the measurement infrastructure through the creation of novel

components[4, 5, 69], evaluation of standards and connection hardware [2, 3, 12],

and measurement techniques[70, 71].

The work presented in this thesis contributes new methods of calibration (chapter 3)

and uncertainty analysis (chapter 4), subjects which are generally applicable to all

microwave research laboratories. Several practical applications of these techniques

are given both in body as well as the appendices. The practical use of these tech-

niques was made possible because of software project scikit-rf, which has been de-

scribed in chapter 5. Areas of future work are given below.
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6.1. Future Work

Because each chapter is intended to be modular, they contain specific suggestions for

future work within themselves. Both the multi-frequency self-calibration chapter 3,

and the experimentally based uncertainty estimation method of chapter 4 can be

extended to a variety of different measurement scenarios, depending upon the com-

munity’s needs. Given the inability to predict which specific applications will attract

the most attention, a more useful endevour is to increase awareness of such tech-

niques, making the software more accessible so that other can use it more easily.

The following sections identify general areas of future work which the author plans

to pursue, all things willing.

6.1.1. Coherent Approach to Identifying Measurement

Limitations

One major problem for the terahertz metrology community is the lack of a coher-

ent and consistent approach in characterizing measurement uncertainty. Such an

approach is needed so that the dominant sources of uncertainty can be identified

and dealt with. Furthermore, each group has their own measurement and analysis

techniques, making it very difficult to draw definitive conclusions. It is therefore rec-

ommended that guidelines for uncertainty estimation measurement procedures be

explicitly written out, and that raw data be shared openly amongst everyone. This

will allow for everyone to share on another’s measurement efforts, and all analysis

techniques can be applied to the same pool of data.
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6.1.2. Scikit-rf

The unique abilities provided by scikit-rf have been demonstrated through the

applications in this thesis. The level of on-line interest in the project indicates that

there is a demand for such functionality. At this point, the major requirement for

scikit-rf is a developer community. While there are a small number of users that

have contributed valuable functionality and bug reports to scikit-rf, a dedicated

team with sufficient knowledge of the module is needed. Creating a website, moving

the code-base to Github, and re-branding the project a scikit were all intentional

efforts to attract developers, and lower the barrier of contributing code. These efforts

have been moderately successful.

It appears that one major limitation to the development of scikit-rf is the rarity

of the skill-set needed to contribute. There are many python programmers and

many microwave engineers, but few python programming microwave engineers. At

this point it is unclear whether scikit-rf will gain traction and grow, or remain a

small project used for a select few.

6.1.3. Geometric Algebra

While studying the Möbius Transformation and non-euclidean geometry, it became

clear that the mathematical foundations of electrical engineering, and all of engi-

neering for that matter, could be much improved. This observation is due mainly

to the insightful writings of David Hestenes[72], the chief architect and proponent

of the modern Geometric Algebra (GA). From an engineers perspective, Geometric

Algebra can be most quickly described as the generalization of complex numbers

to arbitrary dimension, but it is much more fundamental than that. It is a revolu-

tionary approach to mathematics originally developed in 1800’s. Since then, specific
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instances of Geometric Algebras have been re-discovered several times, due to the

scientific community’s lack of awareness. Two examples of such Geometric Algebras

are the Pauli and Dirac matrices, invented by the physicists Wolfgang Pauli and

Paul Dirac.

In his doctoral thesis, Hestenes showed how to replace the Pauli and Dirac matrices

with geometrically interpretable vectors and Spinors, uniting both algebras under a

single Space-time Algebra[31]. This example can serve as a model for the moderniza-

tion of electrical network theory. Network theory is the study of networks based on

their electrical properties, and is traditionally expressed in terms of complex vector

spaces. Measured quantities, such as voltages and currents, are represented by com-

plex vectors, while the networks are represented as complex matrices. Physically

meaningful characteristics such as passivity, reciprocity, and symmetry are realized

as special conditions of the complex matrices.

The major drawback to this representation is the lack of geometrical interpretation;

complex matrices can not be visualized. This leads to difficulties in building an

intuitive understanding of what special conditions imply mathematically. Relation-

ships between different basis sets, such as scattering and impedance parameters, are

related algebraically but the corresponding geometrical relation is usually not men-

tioned. Other important quantities, such as complex power are also geometrically

intractable.

Another problem is the inefficiency of the algebra. Using complex number inherently

singles out a series of two dimensional planes without an easy way to relate other

spaces of different dimensions. These are not merely a pedagogical issues, they are

severe functional problems, symptomatic of an improper mathematical design[72].

In contrast with the traditional mathematical framework, an alternative approach

may be taken by representing the measured quantities, such as voltage, current,
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etc, as real vectors. With this construction, the network representations become

geometrically interpretable transformations, known as Spinors, which act on the

vectors. Special conditions can then be realized as geometrical transformations,

such as euclidean and non-euclidean rotations. Such a formulation would allow for

the seamless application of projective and non-euclidean geometry to microwave

theory, the beginning of which is described in Appendix B.

The key concept to this theory is that the dual role of numbers, the operational

and the quantitative, is perfectly mirrored by the physical reality of network theory.

For example, a DUT is an entity which we are trying to measure quantitatively,

while an embedding network is thought of as performing an operation. In both

cases, the physical entities are the same and their interpretation is created by us,

and for our own benefit. The importance of this dichotomy is somewhat subtle, but

becomes clear through the use GA. GA not only supports this duality, but provides

mechanisms for translation between the two interpretations.

Creating a Geometric Network Theory is only one piece of the much larger project

of reformulating the entire electrical engineering curriculum in the modern language

of Geometric Algebra. This is no doubt a monumentus task, but it is a necessary

one. I realize that this is not a commonly held perspective, and may be perceived

as extreme or naive, but I submit that anyone who learns what Geometric Algebra

is will become equally zealous about its proliferation.
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A.1 Multi-Reflect One-port Calibration Individual Studies

A.1. Multi-Reflect One-port Calibration

A.1.1. Introduction

Recently there has been a renewed interest in one-port calibration techniques for

mm-wave applications. Achieving high quality measurements using industry trusted

two port calibration algorithms such as TRL is proving difficult due to the large

amounts of two-port phase drift, and inability to realize line standards in the waveg-

uide medium.

One of the main advantages of TRL is its ability to solve for relevant unknowns of

the calibration standards themselves during calibration. Extending this ability to

one-port calibrations is desirable, as it will provide the same abilities of TRL for

mm-wave measurements in which high quality two-port calibrations are becoming

impractical. This concept has been presented before in [?]. The treatment given

here is slightly different in derivation, making it more consistent with the rest of

this thesis, and suggestions toward a closed form solution are given.

A.1.2. Theory

A one-port VNA is to be calibrated using a multiple delayed terminations. Assuming

that the termination is unchanging, the only parameter changing from measurement

to measurement is the length of the delay line. If enough measurements are made

then both the propagation constant of the delay line and reflection coefficient of the

termination can be found, along with the parameters of the error network.

Given a linear two-port error network, the measured and actual reflection coefficient
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A.1 Multi-Reflect One-port Calibration

are related by the familiar transforms,

a = m− e00

e11m−∆e m =∆e a − e00

e11a − 1 (A.1)

The idea is to start with the known reflection coefficient, and remove dependence on

all the unknown parameters. The actual complex reflection coefficient of a delayed

termination is given by,

a = Γ0e
−2jγl (A.2)

Where (Γ0) is the reflection coefficient at the termination, (γ) is the complex prop-

agation constant and l is the length to the line. To remove the dependence on (Γ0),

take the ratio of (A.9) for two different delay lengths,

ai

aj
= e−2jγ(li−lj) (A.3)

To remove the dependence on (γ) , take the natural log of (A.3) and then ratio two

different pairs of measurements,

ln
(

ai

aj

)
= −2jγ (li − lj) (A.4)

ln
(

ai
aj

)
ln
( aj

ak

) = li − lj
lj − lk

(A.5)
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Alternatively, this can be written as,

ln (ai)− ln (aj)
ln (aj)− ln (ak) = li − lj

lj − lk
(A.6)

Which provides a nice geometric interpretation that the ratio of distances is equal

for delay lengths and log-reflection space.

Note that the actual complex reflection coefficient in (A.6) is related to the measured

reflection coefficient by a non-linear function (eq (A.1)), parameterized by the error

network scattering parameter matrix (E). Thus, eq (A.6) is non-linear in terms of

the desired parameters (eij), and will therefore require a non-linear least squares

solution. Something similar to this is done in [?].

Given that a solution can be found, the propagation constant and the reflection

coefficient of the termination are directly calculated by

γ = ln (ai)− ln (aj)
2j (lj − li)

(A.7)

Γ0 = ai

e−2jγli
(A.8)

Now, to count the unknowns. Three complex measurements provide one complex

restraint equation given by (A.6). Any additional measurement will provide another

equation, so the total number of equations is N − 2, where N is the number of

measurements. Therefore, given that there are three complex unknowns representing

the embedding network, we require five total measurements. This is sensible because
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A.1 Multi-Reflect One-port Calibration

we are solving for three complex unknowns of the error network, the propagation

constant, and the reflection coefficient, which totals five complex unknowns.

A.1.3. Criticisms

One justified criticism of the technique presented above may be that, in the end, a

non-linear least square solution is used, so why not simply employ it from the start,

by way of the following measurement equation:

mi =∆eΓ0e
−2jγli − e00

e11Γ0e−2jγli − 1 (A.9)

Thus, the advantage of this method are more conceptual than otherwise. However,

if the above formulation yielded a closed form solution this would be very advanta-

geous. The following sections document attempts at this.

A.1.4. Unfinished Attempts at Closed Form Solution

A.1.4.1. Polynomial

To arrive at a closed from solution, or at least an easily invertible matrix, we would

like to construct a polynomial in terms of the unknowns. Starting with A.5, and

labeling the ratio on the right hand side, (lijk)
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ln
(

ai
aj

)
ln
( aj

ak

) = li − lj
lj − lk︸ ︷︷ ︸
lijk

(A.10)

ln
(

ai

aj

)
= ln

( aj

ak

)
lijk (A.11)

Taking the exponential of both sides and cross multiplying,

ai

aj
=

( aj

ak

)lijk
(A.12)

aia
lijk
k = a(1+lijk)

j (A.13)

Now plugging in eq A.1,

(mi − e00) (mk − e00)lijk (mje11 −∆e)(1+lijk) = (mj − e00)(1+lijk) (mie11 −∆e) (mke11 −∆e)lijk

(A.14)

I’m not sure what to do with this. In the special case that all the line length intervals

are identical, lijk = 1 , and eq A.14 becomes,

(mi − e00) (mk − e00) (mje11 −∆e)2 = (mj − e00)2 (mie11 −∆e) (mke11 −∆e)

(A.15)
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This could possibly be expanded and solved for the parameters eij, or unique rela-

tions to them.

A.1.4.2. Matrical

In order to make use of the same linear algebraic methods used for TSD[?], and

TRL [?], one can represent one-port networks as being terminated with a matched

through on the far port. Thus it’s two-port s-matrix is,

S =

 s11 1

1 0

 (A.16)

The scattering transfer parameters for a one-port is,

T =

 1 s11

0 1

 (A.17)

The measurement equation for a delayed termination written in terms of wave cas-

cading matrices is thus

M = E · L ·G (A.18)

For the ith delay line this becomes,
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Mi = E · Li ·G (A.19) 1 mi

0 1

 = 1
e21

 −∆e e11

−e22 1

 ·
 e−jγli 0

0 ejγli

 ·
 1 Γ0

0 1

 (A.20)

Where M is the measurement, E is the error network, L is the delay line, and G is

the termination. The fact that neither E or G are changing from measurement to

measurement, can probably be used to create a closed form expression for E.
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A.2. Artifacts in Two-tier Calibration

While measuring some two-port devices using the tiered calibration scheme described

in sec. 2.2.2, a curious artifact was noticed. The artifact was that the de-embedded

two-port DUT’s look more asymmetrical than expected. Specifically, the DUT’s

reflection on the test-port side, consistently showed much smaller reflection magni-

tude. A plot of calibrated s-parameters for two straight sections of waveguide are

shown in Fig.A.1, illustrating the effect. In this plot, port 1 is the VNA test-port

and port 2 is the far port.
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Figure A.1.: Corrected responses of straight sections of rectangular waveguides,
illustrating the two-tier asymmetry artifact.

From this plot, it can be seen that not only are the DUT’s asymmetrical, but they

are reproducibly asymmetrical in a consistent way. To confirm that this is indeed

an artifact and not a coincidence, we took a single DUT (2" section of waveguide)

and calibrated it in both possible orientations, meaning we swapped ports 1 and 2.

The results were that the test-port side of the corrected DUT exhibited a smaller

reflection magnitude than the far side, regardless of the DUT’s orientation.
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A.2 Artifacts in Two-tier Calibration Individual Studies

After much fruitless reasoning, a synthetic calibration was created to simulate the

entire experiment. It was then discovered, that by inducing error in the calibration

standard definitions at each tier, the artifact could be re-created. Specifically, if the

delay length of the delay shorts are off by 5-10µm then an amount of asymmetry is

produced that is consistent with the measurements.

The results of the synthetic experiment is shown below in Fig.A.2. This plot shows

the ideal response of a waveguide section on left, the result from the synthetic ex-

periment in the middle, and the real measurement on the right. The ideal response’s

transmission coefficient was taken from measurements, so as to most resemble the

real measurement, but the reflection at each port was set to 0.
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Figure A.2.: Results from the synthetic experiment, illustrating simulated true
response, the simulated calibrated response, and the actual measurements.

In conclusion, this artifact does not appear to be inherent limitation of the technique,

but rather a manifestation of calibration error. In fact, this effect may be more

a blessing than a curse, for it may be possible to use this artifact as a way to

estimate the measurement accuracy for this type of calibration. Alternatively, if the

DUT of the second tier is known to be symmetric, as is the case here, then only

two calibration standards are required to fully determine its s-parameters. This

constraint on the embedding network will convert biased errors, such as those created
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this artifact, into unbiased errors. This way the unbiased errors can be measured and

used incorporated into the uncertainty estimates. This solution has been presented

[14], and is discussed below.

A.3. Calibration of a Reciprocal, Symmetric

Error Network

In the special-case that the embedding network of a one-port calibration is recip-

rocal and symmetric, the error network can be determined by measuring only two

calibration standards[14]. This is reasonable, and possibly obvious, being that the

scattering matrix for this special case only contains two independent quantities. Pre-

viously it has been shown that systematic error in the calibration procedure, such

as incorrectly defined calibration standards, can produce artifacts of asymmetry in

a symmetric DUT. Therefore, a calibration procedure that enforces the symmetry

condition would convert these artifacts to measurable residual error, given that the

same number of standards are used.

The measured reflection of a two-port error network terminated with a one-port

standard is given by:

m = e00 + e10e01 · a
1− e11a

(A.21)

This is linearized by,

e11ma −∆e a + e00 = m (A.22)

123



A.4 Alternative One-port Calibration Formulation Station Individual Studies

Imposing the symmetry condition on the error network, (e00 = e11),

e11(ma + 1)−∆e a = m (A.23)

Given two measurements (m1...2) of calibration standards with known responses

(a1...2), the unknowns (e00,∆e) can be directly found using matrix inversion.

 (m1 · a1 + 1) −a1

(m2 · a2 + 1) −a2


︸ ︷︷ ︸

A

·

 e11

∆e


︸ ︷︷ ︸

x

=

 m1

m2


︸ ︷︷ ︸

b

(A.24)

A · x = b

x = A−1 · b (A.25)

Given additional measurements, (A.24) becomes overdetermined, and the standard

linear least squares method can be applied.

A.4. Alternative One-port Calibration

Formulation Station

The following is an alternative closed form solution to one port calibration, providing

no major benefits that the author knows of. It was derived without an application

124



A.4 Alternative One-port Calibration Formulation Station

in mind, but in hind-site, the following observations can be made. The solution

produces a pair of equations linear in (e00) and (e11) only, as opposed to (e00),(e11),

and (∆e). Therefore the vector to be solved for has consistent units for each compo-

nents. Another minor advantage is that the special case of a reciprocal symmetric

error network is reduced to division.

The measured reflection of a two-port error network terminated with a one-port

standard is given by:

m = e00 + e10e01 · a
1− e11a

(A.26)

Looking at the complex ratio between actual and measured reflection of a given

standard, and separating terms which do and don’t have a dependence on the ter-

minating standard itself.

m−mae11 = e00 − e00e11a + e10e01a (A.27)

m
a

= e10e01 − e00e11︸ ︷︷ ︸
constant across standards

+ me11 + e00

a︸ ︷︷ ︸
changing ccross standards

(A.28)

It then seems intuitive to difference this complex ratio for two different measured-

actual standard pairs, to remove the quantities without dependence on the termi-
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nating standards. If this is done for two pairs indexed , i and j,

mi

ai
− mj

aj
= e11 · (mi −mj) + e00 ·

(
1
ai
− 1

aj

)
(A.29)

There are only two unknowns in this equation, e11 and e00. These may be solved for

if you have two equations, which would require three standards. This makes sense.

Making some notation changes to improve readability.

mi

ai
− mj

aj︸ ︷︷ ︸
Pij

= e11 · (mi −mj)︸ ︷︷ ︸
Qij

+e00 ·
(

1
ai
− 1

aj

)
︸ ︷︷ ︸

Rij

Pij = e11 ·Qij + e00 ·Rij

Given three standards this system of equations may be solved,

 P12

P23

 =

 Q12 R12

Q23 R23


 e11

e00



The error coefficients are found by

 e11

e00

 =

 Q12 R12

Q23 R23


−1  P12

P23


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The reflection tracking term (e10e01) can be solved by evaluating equation A.28,

given e00, and e11.

Special Case: Symmetric Error Network

Examining the special case of a symmetric error network, by taking eq A.29, and

enforcing the symmetry condition; e00 = e11, yields

e00 = e11 =
mi

ai −
mj

aj(
mi −mj + 1

ai −
1
aj

)

Using eq A.28, the reflection tracking term can be found by,

e10e01 = e2
00 − e11

(
m + 1

a

)
+ m

a

This formulation is convenient because the calibration calculation is reduced to

division.
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A.5. Uncertainty in Multiple Tiered Calibrations

A.5.1. Summary

In this section, WR-1.5 waveguide twists are measured using a one-port two tier

calibration and confidence bounds are estimated. The confidence bounds are cre-

ated using a multi-tiered application of the experimental uncertainty estimation

technique described in (chapter 4). As a diagnosis tool, the error metrics described

in (sec. 2.3.3), are employed and successfully detect a systematic calibration error

caused by the experimenter.

A.5.2. Introduction

A measurement needed to characterize a WR-1.5 waveguide twist as described in

[69]. Using a standard two-port setup is undesirable for two reasons. First, one

of the extension heads must be rotated in between calibration and measurement

of the twist. This induces calibration error, due to the movement of the cables.

The second problem is that when one head is rotated, the alignment pins on the

waveguide flanges interfere with on another. To circumvent these problems a one-

port two-tiered measurement was made instead. To ensure that higher order modes

were not present at the second tier reference plane, a .8” waveguide section was

placed on the far port of the twist. Such a setup requires that the .8” waveguide

section be characterized as well. This meant that an addition tier was needed.

Because two twists were to be measured, the second tier was calibrated twice, upon

replacement of the twist. All tiers are labeled and illustrated in the block diagram

shown in Figure Fig.A.3.
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VNA
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waveguide
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Twist 1

Twist 2

Tier A

Tier B

Tier C
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Figure A.3.: Block diagram of calibration tiers

At each tier the following four standards were measured,

1. Flush Short

2. Radiating Open

3. λ
4 -Delay Short (milled type)

4. λ
8 - Delay Short (shim type)

Each standard was measured three times. Between each measurements a given stan-

dard was disconnected and re-connected. This was done to capture the uncertainties

associated with the flange. Despite evidence suggesting that the shim style delay-

short standards are inferior to the milled design[10], the λ
8 -delay short shim was used

due to lack of other standards.

A.5.3. Initial Problems

After some insensible results, the error metrics described in (sec. 2.3.3), were em-

ployed to measure calibration quality at each tier. The results are shown in Fig.A.4-

Fig.A.7. It can be seen that the biased error for calibration tiers ’C’ and ’D’ are
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significantly larger than that for ’A’ and ’B’. From experience, it was known that a

typical cause for such an error is incorrectly defined calibration standards. It was

hypothesized that the λ
8 -delay short shim was not correctly oriented on these tiers,

which has been a common problem in the past.

HFSS simulation of a 90deg rotated λ
8 delay short shim, and talks with Qaing,

suggested that this was the case. The measurements of these standards where then

removed from the calibration tiers ’C’ and ’D’, and reasonable results where attained.
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Figure A.4.: Error Metrics for Tier A
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Figure A.5.: Error Metrics for Tier B
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Figure A.6.: Error Metrics for Tier C
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Figure A.7.: Error Metrics for Tier D

A.5.4. Results

The magnitude of the twists’s insertions loss with ±3σ confidence bounds is shown

below in Figure Fig.A.8. Plots of real and imaginary or phase are difficult to view

due to numerical artifacts from the sign ambiguity caused by de-embedding a recip-

rocal network.
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Figure A.8.: Twist’s Insertion Loss with Confidence Bounds

The passivity for each port of both twist’s are shown in Fig.A.9 (the legend entries

are incorrect). Passivity is defined as total power received, from excitation at a

single port, given by

passivity port 1 = |S11|2 + |S21|2

passivity port 2 = |S22|2 + |S12|2

This indicates that a major cause of the low insertion loss is due to power dissipation

of some sort, perhaps because of non-planarity of the shims.
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Figure A.9.: Twist’s Passivity Metrics

A.5.5. Details of the Multi-tiered Uncertainty Calculation

The uncertainty in the de-embedded DUT’s were calculated using the technique de-

scribed in chapter 4. Because the calibration was multi-tiered, the uncertainty calcu-

lations are non-trivial and require explanation. Refer to sec. 2.2.2 for an explanation

of tiered calibration. A diagram illustrating the calibration tiers is re-illustrated be-

low in Fig.A.3 with concise notation to make the following mathematics are more

readable.
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Figure A.10.: Block diagram of calibration tiers

In the digram shown in Fig.A.10, network Z represents the DUT to be characterized.

These relations can be written mathematically by,

Tier A: X

Tier B: XY

Tier C: XZY

Once X is determined, the estimate of the network Z can then be calculated in two

steps,

Y = X−1 · (XY)

Z = X−1 · (XZY) ·Y−1

Given that there are i-measurement sets made at tier A, a set of networks, Xi, can
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be calculated. Likewise, if there are j-measurement sets made at tier B and k at

tier C, sets of estimate networks, (XY)j and (XZY)k, can be calculated similarly.

Tier A: Xi

Tier B: (XY)j

Tier C: (XZY)k

For the purposes of uncertainty estimation it is most straight-forward to calculate

the network Z in a single step so that the size of the the resultant set is clear. The

set of Z’s estimated from the sets of each calibration tier is written,

Zijk = X−1
i · (XZY)k ·

(
X−1

i (XY)j

)−1

The uncertainty in the network Z can be estimated directly from the set Zijk. As

mentioned in chapter 4, the combinatorial function is chosen to generate the sets is

left up to experimenter. For computational speed purposes, I have chosen to generate

the individual error networks for each tier using a dot product, and generated the

resultant estimate of the Z, by the cartesian product. The sets Xi, (XY)j and

(XZY)k are each of length 3, and the resultant set Zijk is of length 27 (3 · 3 · 3).

A.5.6. Conclusion

Two WR-1.5 rectangular waveguide twists were measured and confidence bounds

where estimated, using a multi-tiered experimentally based uncertainty estimation
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technique presented in (chapter 4). The error metrics described in sec. 2.3.3 were

employed as a way to measure calibration quality at each tier, and successfully re-

flected that a systematic calibration error was present in two of the four calibrations.

It was deduced that this error was produced by the experimenter, and the erroneous

data was removed, thereby producing reasonable meaningful results.
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A.6. Comparison of Ideal Standard Models on

Two-tier Calibration of a

Waveguide-to-Coplanar waveguide Probe

A.6.1. Intro

Until now, the second-tier CPW calibrations used to characterize the THz on-wafer

probe have been made using simple analytical models for the ideal responses of the

delay short lines1. The accuracy of these models was challenged by a Matt Bauwens.

Therefore, a study was made to determine if using more sophisticated finite-element

model for the ideal standards could provide an improvement in calibration accuracy.

Improvement in calibration accuracy is quantified by overall reduction in the av-

erage magnitude of residuals, the same measure used the self-calibration routine

described in (chapter 3). Corrected measurements of the standards themselves are

also presented because they yield more interpretable results. Once the improvement

in the calibration accuracy is quantified, the effect of the different ideal definitions

on the de-embedded probes s-parameters is calculated.

A.6.2. Explanation of Simple Analytical Models

The analytical models are based on simple TEM transmission line theory. The rel-

ative permativity was chosen to produce a propagation constant which agreed with

port specifications as found from a HFSS simulation. Only the component respon-

sible for propagation was used (either real of imaginary depending on convention).
1It should be noted that Theodore Reck was conducting similar calibrations at this time,using
more sophisticated analytic models that included conductor loss. Therefore, this comparison
should not be applied to his results.

138



A.6 Comparison of Ideal Standard Models on Two-tier Calibration of a
Waveguide-to-Coplanar waveguide Probe

This model neglects both radiative and conductor loss, and assumes a non-changing

propagation constant across the entire band.

A.6.3. Explanation of HFSS Model

The geometry of the model created in HFSS is shown below in (Fig.A.11).

The simulated reflection coefficients of the delay short standards in shown in (Fig. A.12).

L1 is a flush CPW short, generated by de-embedding the model shown in (Fig.A.11)

up to the termination. The other lines (L2-L5) are identical terminations at progres-

sively longer delays, evenly distributed between 0 and 180◦ , the endpoints excluded.

The effect of the short termination can be seen in the response of L1. The radiation

and conductor loss are shown by the spiraling inwardness of the successively longer

delays.

Figure A.11.: HFSS model of CPW delayed short.
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Figure A.12.: Simulated responses of the CPW delay shorts, generated using
HFSS.

A.6.4. Mean Residual Error

Two calibrations were run using the same measurement. One calibration used the

HFSS full-wave models for the ideal standards, and the other used simple analytical

models as described above. The average residual magnitudes for each calibration vs

frequency are shown in (Fig.A.13). From this figure it can be seen that the HFSS

models reduce the mean residual error by about an order of magnitude across most

of the band.
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Figure A.13.: Comparison of average residual magnitudes for two different cali-
brations.

A.6.5. Effect on De-embed Probe’s S-parameters

Although improving calibration accuracy is a good thing in and of itself, the more

interesting measurement at the time of this study was the change in the de-embedded

probe’s s-parameters. Two different estimates for the probe’s s-parameters are shown

in (Fig.A.14) and (Fig.A.15). These estimates were calculated using the same first

tier calibration, but different second tier calibrations. The second tier calibration

differed by their ideal standard definitions, as described in the previous section.

The difference in the insertion loss is approximately 1dB over the upper 2/3 of the

band, with the HFSS models estimating a less loss in the probe itself. The estimated

return losses are significantly different on the CPW side of probe only. The difference

appears that the HFSS models have a lower return loss in the upper half of the band

by 2dB or so.
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Figure A.14.: De-embedded probes insertion loss, as determined from two different
ideal standard definitions on the second tier calibration.
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Figure A.15.: De-embedded probes return loss, as determined from two different
ideal standard definitions on the second tier calibration.
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A.6.6. Conclusion

The HFSS models produce the following improvements over the simple analytical

models:

• improvement in the magnitude of the mean residual error by approximately

and order of magnitude for the entire band.

• triple the de-trended phase accuracy on verification delay shorts.

• approximately 1dB difference in probe response for about 2/3 of the band.

Verification measurements of the CPW calibration standards are shown below.

These are provided for those who have experience with similar measurements, but

find the mean residual error a hard quantity to interpret (myself included!).

A.6.7. Verification Measurements
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A.6.7.1. Delay Short Magnitude
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Figure A.16.: (Ideals Response = 0 (duh))
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Figure A.17.: (Ideal Responses Shown on graph)
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A.6.7.2. Delay Short Phase
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Figure A.18.:
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Figure A.19.:
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A.6.7.3. De-trended Delay Short Phase

A more quantitative way to view the phase response of verification standards is

through ’de-trended’ phase. This is the phase difference between the ideal response,

and the calibrated response.
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Figure A.20.:
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B. The Smith Sphere

B.1. Foundation

B.1.1. Introduction

The Smith Chart

A ubiquitous tool in microwave engineering is the Smith Chart. This chart is simply

a plot of rectangular impedance contours on the reflection coefficient plane, as shown

in Figure Fig. B.1. Despite the field’s widespread adoption of computer aided design

(CAD) techniques, the chart is still omnipresent in all design and measurement

systems. This begs the question; what is so special about this chart? I attribute

the success of the Smith Chart to two characteristics.

• ability to provide the user with a geometrical intuition for otherwise elusive

problems

• practical tool for calculations
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B.1 Foundation The Smith Sphere

Figure B.1.: A Smith Chart

Since the creation of the smith charts in 1940’s it has been recognized that the

impedance and reflection coefficient can be projected onto the Riemann sphere[73].

This was also noted in the ’geometric-analytic network theory’ put forth by Bolinder[74].

In both cases, however, a full exploration in to the uses of the sphere directly were

never made. The major advantage of such a representation is that the entire space

of passive and active devices exists within a closed space.

More recently, others have begun to recognize the possibilities of using the Riemann

sphere for microwave analysis. However, practical application of higher dimensional

topologies such as the Riemann sphere will remain out of reach until the proper

algebraic language is used. This language is Geometric Algebra[75].

The Smith Sphere

In this paper, we map the complex impedance and reflection coefficient planes onto

a Riemann sphere using stereographic projection and explore some of the conse-

quences. For lack of a better description, we term the this model the Smith Sphere.
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The model is supported by a three dimensional geometric algebra (GA)[75]. [Say

more]

The Smith Sphere has many advantages, both intuitively and computationally, over

existing 2D charts. Some benefits of such a construction are

1. a single point can be simultaneously interpreted as an impedance or reflection

coefficient

2. the relationship between reflection coefficient and impedance is linearized

3. effects of all common network elements can be represented as circular paths

on sphere

4. numerous 2D charts relating network quantities can be generated to suit the

problems at hand.

In summary, the Smith Sphere provides a natural space for understanding transmis-

sion line phenomenon and provides a flexible model for visualizing circuit behavior.

The main draw-back is the algebraic complexity needed for dealing with 3D space.

This is unavoidable, as the complexity is what provides the computational power

needed to make usage tractable.

The Conformal Smith Surface*

The Smith Sphere is a projective geometry model constructed for a space supporting

a one-port network. We shall call this One-Port Projective Space (1PS). While such

a projective space provides many benefits to living in flatland, even more convinces

are gained by moving to a conformal geometric algebra of one dimension higher.

Such a space will be of four dimensions and of mixed signature. The Smith Sphere

then becomes a surface existing in 4-dimensions, which is impossible to visualize.
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Because of this visualization difficulty, the Conformal Smith Surface will be intro-

duced after the Projective Smith Sphere, once some geometrical intuition is formed

and the algebra is made familiar. It just so happens that the appropriate conformal

GA for a one-port network is the same algebra used for Space-Time, commonly

referred to as Space-Time-Algebra (STA)[31]. This is pointed out in[34]. For clas-

sification in Geometric Network Theory, this will be called a One-Port Conformal

Space (1CS). The Conformal Smith Surface will be worked out in a future paper.

Another problem yet to be dealt with is extension of the Smith Sphere to two-port

networks and above. The lack of vector-spinor isomorphism (expressed G+
2 = G−2 )

is higher dimensional GA’s may force some concepts to be altered, or a different

conformal split to be used.
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B.1.2. Stereographic Projection

Note to the reader

The mathematics in this paper are expressed in the language of Geometric Algebra

(GA). Although GA is essential in making this a usable model, I have tried through

the use of graphics and language, to make the concepts in this paper available to

the casual reader, especially those not fluent in this subject of GA. In fact, most of

this paper could probably be read by a microwave engineer by the pictures alone.

This section presents the mathematical foundations for the rest of the model. But, if

the reader is interested to see the why before they put forth the effort to understand

the how, then this section (sec. B.1.2) can be skipped, and returned to later.

General Concept

The mathematical idea behind projective geometry is that a 2 dimensional quantity

can be represented by a vector in 3 dimensional space. The purpose of such a

representation is that certain relationships and transformations become simpler.

Think of working with a globe as opposed to a flat map of the earth. The basic

steps are as follows

1. Start with the original 2D vector space.

2. Add an extra dimension, orthogonal to the first two.

3. Using a projective relationship, map the 2D plane to a desired surface (in this

case a sphere).

The fact that the point in the new 3D space is forced to lie on the prescibed surface

eliminates the extra degree of freedom introduced by the additional dimension. From

153



B.1 Foundation The Smith Sphere

a mathematical point of view, the Riemann sphere is attractive because the point

at infinity becomes an ordinary point on the sphere. Also, the surface is closed.

In this section the impedance plane is mapped onto the sphere, but there is nothing

specific in the derivation to the concept of impedance, other than the notation.

Vector Dual of Impedance Spinor

Before we can construct the stereographic projection, we must convert one-port

impedance spinor into its vector dual.

As described in Geometric Network Theory1, the electrical phenomena relevant to

a one-port network can be represented in the 2 dimensional GA, G2. The algebra

is generated by two orthonormal vectors, er and ex with positive signature. The

entire algebra is given by,

e2
r = e2

x = 1, erex = I

{α, er, ex, I}

Where I is the psuedo-scalar for the port-plane, or Z-plane, of G2. Within this

algebra, a network can be represented by a Impedance Spinor,

Z = α + βI

1This document is a work in progress
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In G2, the every spinor can be represented by a vector dual ( G+
2 = G−2 ). This

relation is fixed by choosing an reference vector, which is interpreted as the resistance

axis, and pre-multiplying. [Figure out if this should be Z^2 or Z]. Thus the vector

dual of the Impedance Spinor, denoted z, is given by

z = erZ

= erα + βererex

= αer + βex

z lies within the Z-plane, expressed by,

z ∧ I = 0

So we have a two dimensional real vector space which represents a one-port network.

Normalization

To make what follows align with conventional theory I will assume that the impedance

vector, z, can be normalized to some real impedance value. It is mathematically

convenient to choose the characteristic impedance of the transmission line as the nor-

malizing impedance, which is traditionally a real value. However, for wave-guiding

transmission lines this is not the case. The effect of arbitrary normalization (division

by a vector) will be dealt with later. [Give better argument].
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Projection onto Sphere

Next, the Z-plane is expanded to a three dimensional space by the addition of a

vector, labeled es, that is orthogonal to the first two and has positive signature.

The resultant space is G3, and its vector basis is illustrated below.

Z-plane

Figure B.2.: Vector Basis Set for the Smith Sphere

To eliminate the extra degree of freedom, the entire Z-plane is mapped to the surface

of a unit sphere through stereographic projection, defined as follows;

Let ’z’ be a point in the Z-plane, then ’p’ will be the corresponding point lying

on the surface of the sphere. The point is determined by drawing a ’ray’ connectg

the projection point, which is es, to a point in the Z-plane, z. The intersection of

such a ’ray’ with the surface of the sphere yields p . The geometrical relationship is

illustrated below. When |z| < 1, the ray is be projected through the Z-plane, onto

the interior of the sphere.
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Z-plane

Figure B.3.: Stereographic Projection of Impedance plane onto Sphere

In order to transform operations onto the sphere, an explicit relationship between

the points z and p must be found2. From Figure Fig. B.3 It is geometrically obvious

that,

p = es + λ (z− es) (B.1)

where λ is some scalar. The conditions that p lie on a unit sphere as well as ortho-

normalized condition on es provides the following constraints,

p2 = 1 e2
s = 1 es · z = 0

enforcing the first condition, sets up the needed constraints as follows,

2This proof was found in [76], and in a slightly different way in [35].
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p · p = (es + λ (z− es)) · (es + λ (z− es))

1 = e2
s + λ2 (z− es) · (z− es) + 2λ

(
es · z− e2

s

)
1 = e2

s + λ2
(
z2 − e2

s − 2es · z
)

+ 2λes · z− 2λe2
s

1 = 1 + λ2
(
z2 − e2

s

)
− 2λ

λ = 2
z2 + 1

putting this into equation B.1 provides the functional relationship for a point on the

sphere in terms of a point on the Z-plane.

p = Pz (z) = es + 2
z2 + 1 (z− es) (B.2)

Where the ’Pz’ is understood as projection function from Z-plane. Although the

proof was based on geometry of mapping a plane to a sphere, the result holds true

for any dimension of z[35].

Projection onto Plane

It will also be necessary to map a point on the sphere to a point on the plane. This

can be solved with the following. 3 The fact that the points es,p, and z all lie in a

3[Im actually not sure how this works entirely, how am i enforcing p to lie on a the sphere?]
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straight line enforces the following equality of their outer products.

es ∧ p + p ∧ z = es ∧ z (B.3)

An illustration is shown Figure Fig. B.4. Note that this equality holds true despite

the order of z and p along the line. Sketching the specific cases; |z| < 1, |z| > 1 is

useful.

From this, p can be broken up into components parrallell with perpendicular to the

vector es.

p = es (es · p)︸ ︷︷ ︸
p‖

+ es (es ∧ p)︸ ︷︷ ︸
p⊥

Using this in (B.3),

es ∧
(
p‖ + p⊥

)
+
(
p‖ + p⊥

)
∧ z = es ∧ z

es ∧ p⊥ + p‖ ∧ z = es ∧ z

esp⊥ + p‖z = esz

esz− p‖z = esp⊥

Multiplying both sides by es and solving for z ,
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z− esp‖z = p⊥

(1− es · p) z = −p⊥

Thus,

z = P−1
z (p) =

(
1

1− es · p

)
p⊥ (B.4)

Z-plane

Figure B.4.: Stereographic Projection of Sphere onto Impedance Plane

Formula (B.2) and (B.4) are sufficient to start making some quantitative calcula-

tions, but first, a guided tour of the Smith Sphere is given.
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B.1.3. The Smith Sphere

An illustration the Smith Sphere, with impedance elements labeled, is shown in

Figure Fig. B.6. The labels will be explained in what follows, although someone

familiar with the smith chart will probably understand all parts of the figure by

staring at it.

Z-plane

passiveactive

capacitive

inductive

Figure B.5.: The Smith Sphere with Impedance labels

Hemispheres

It is useful to categorize the impedance plane in half-spaces, because this division

corresponds to important physical distinctions. Through the projection described

above and illustrated in figure Fig. B.6, it can be seen that these half-spaces map to

hemispheres on the Sphere.

The right hand side of the Impedance plane corresponds to an impedance with

positive resistance, which indicates a passive network. Likewise, the left-hand side

corresponds to active networks. These two half-planes map to the east and western

hemisphere of the smith sphere.
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Assuming the normalizing impedance is real, then the top and bottom half-spaces

of the impedance plane represent inductive and capacitive networks, respectively.

These map to the back and frontal hemispheres of the Smith Sphere, as seen from

the viewpoint shown in Figure Fig. B.6.

Poles

The poles of the Smith Sphere can be labeled for general usage because we are

working with normalized impedance values.

• The North pole, which is also the projection pole, represents an infinite impedance,

or ’open’ circuit.

• The South pole represents a zero impedance, or ’short’ circuit.

• The Eastern pole represents a normalized impedance of ’1’, which is a ’match’.

• TheWestern pole represents an anti-match, which I dont know how to interpret

yet.

Although not explicitly labeled, the back-facing pole is an inductance of normalized

value 1, and the front facing pole is a capacitance of normalized value 1.

B.2. Transformations

B.2.1. Impedance and Reflection Coefficient

Determination from fixed points (the poles)

One way to study transformations is through their effect on specific points. Exam-

ining the value of the for impedance and reflection coefficient at the poles reveals

the relationship between them. The functional relationship is given by
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s = z− 1
z + 1

From this we can evaluate the values for both z and s at the poles.

pole z s name
north ∞ 1 open
eastern 1 0 match
south 0 −1 short
western −1 ∞ anti-match

Table B.1.: pole table

The relationship between the ordering of the poles for z and s indicates that the

impedance is related to the reflection coefficient by a 90deg rotation of the sphere,

about the ex axis. This transform is part of the orthogonal group in G3, and can

be written.

Rzs = e−
π
4 eres (B.5)

This transform can be used in a few ways. If the projection point remains fixed at

the north pole, then the smith sphere must rotate. This is achieved by applying

the ’zs’-Rotor, given in equation B.5, to a point on the Sphere p. This can be

unambiguously expressed, by subscripting the ’p’-points on the sphere to indicate

their interpretation.

ps = RzspsR
†
zs
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Alternatively, you can think of the Sphere remaining fixed and the projection point

rotating towards the western hemisphere. This is achieved by creating an appropri-

ate projection function similar to equation B.2. Written loosely as,

Ps = RzsPzR
†
zs

= −er + 2
s2 + 1 (s + es)

From this projection point the reflection coefficient plane, labeled the S-plane, can

be drawn as shown in figure Fig. B.6. The advantage of the later concept is that for

each point on the sphere, p, there simultaneously exists a value in the S-plane and

Z-plane. In other words,

p = Ps (s) = Pz (z)
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Z-plane

active

capacitive

inductive

Figure B.6.: The Smith Sphere
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C. Variational Expressions for

Waveguide Junction Admittance

C.0.2. Warning and Disclaimer

This chapter contains useful developments but has not been throughly reviewed.

Although the variational method discussed has been tested by comparison with

experiment, the theory may still contain serious errors. Please do not reference or

rely upon it.

C.0.3. Background

The problem of determining the reflection off a generic cylindrical waveguide junc-

tion can be solved using the Generalized Scattering Matrix (GSM) (aka Modal

Analysis, Eigen-mode Analysis). This approach is described in various forms by

Jaimeson and Whinnery, wexler, claricoats and slin, and others. The method makes

no assumptions about the field in the junction, and therefore produces a highly ac-

curate solution. The drawback is that in general, there is no closed form solution,
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so every junction must be solved individually, and relies on a computer’s ability to

invert large matrices.

An alternative approach is to use older variational methods, as described by marcu-

vitz, collins, and harrington. These have the advantage of being reasonably accurate,

fast to evaluate, and intuitive. The simplicity of the variational methods results from

their precision: they solve only for what information is desired (much like mason’s

rule in signal flow graph analysis). The drawback is that variational expressions

produce approximate solutions. However a bound on the in-acuracy can be deter-

mined. and additional discontinuities (not simple terminations) are far away. Both

these conditions are met by the case of a terminated waveguide junction.

The exact solution produced by GSM is found by enforcing all possible reactions to

be conserved, given by the following,

〈
EI , hI

〉 ∣∣∣∣
z=0

=
〈
EII , hI

〉 ∣∣∣∣
z=0〈

eII ,HI
〉 ∣∣∣∣

z=0
=

〈
eII ,HII

〉 ∣∣∣∣
z=0

This formulation produces enough equations to solve for all unknown mode ampli-

tudes, and thus the entire scattering matrix for the junction.

The variational approach yields an approximate solution by assuming and aperture

field, and then enforcing the conservation of reaction across the junction between

the two waveguides for that field.

〈I∼, I∼〉
∣∣∣∣
z=0

= 〈II∼, II∼〉
∣∣∣∣
z=0
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As long as the assumed aperture field is reasonable, the calculated value for the

admittance will be close to the correct value due of the stationary nature of the

reaction. Furthermore, the problem may be formulated in two different ways: the

aperture-field form or the obstacle-current form. The two cases provide upper and

lower bounds on the value of the input admittance, thus providing a metric of

accuracy for the approximate solution obtained.

Furthermore, more accurate solutions can be found by representing the aperture

feild itself as a weighted sum of basis functions, and exploited the stationary nature

of the solution to solve determine the values of the weights. This is refered to as the

Raliegh-Ritz method, which frequenty coencides with the Galerkin method, when

the basis set is the eigen space of the aperture.
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C.1. Aperture-Field Formulation

C.1.1. Intro

Imagine two cylindrical waveguides which are butt together, forming a junction as

shown in figure (Fig. C.1) . We want to determine the reflection coefficient off such

a junction looking for the dominant mode of one of the guides. Due to the parallel

transmission-line nature of waveguides, the easiest way to formulate the effects of

such discontinuity is through admittances.

The reflection coefficient for the single mode p as seen looking in from region I is

given in terms of the normalized input admittance for mode p by,

Γp =
1− Y I′

in,p

1 + Y I′
in,p

Therefore,

We seek an expression for the normalized input admittance for a single mode

looking in from one side of the junction.

aI

b I
b II

aII

s

Figure C.1.: Illustration of waveguide junction.
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The basic physical law on which our analysis is based upon is the conservation

of reaction across the junction. Frequently this is written with the inner-product

notation used by Rumsey and Harrington which is,

〈I, I〉 = 〈II, II〉

Take the ′z’-axis to be the longitudinal axis along which energy propagates, and

transverse to the junction interface. The reaction accross the interface, evalutated

in the aperture at z = 0 is then

¨
I

E · J−H ·M
∣∣∣∣
z=0

=
¨

II

E · J−H ·M
∣∣∣∣
z=0

(C.1)

The variational technique, relies on the author to guess at the aperture field. The

assumed aperture field is then decomposed into a sum of weighted wave-modes in

both regions, and the conservation of reaction is then enforced.

1. Assume a field in the aperture, this is the steady-state system behavior at the

junction.

2. The conservation of power (or reaction) accross the aperture, combined with

the boundary conditions of each region, provides enough constraints to calcu-

late how much power must exist in each mode, in each region.

3. tbd.

There are two ways to forumulate a variational formula for normalized input ad-

mittance; the aperture-field formulation, and the obstacle-current formulation. The
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difference between the two is that ’the former assumes a knowledge of tangential

electric field, and the latter assumes knowledge of the discontinuity of magnetic

field.’1 As stated earlier, one will provide a lower bound and the other an upper

bound on the value for admittance.

The combination of both of these formulations allong with the crucial fact that in

a given region (read set of boundary conditions) equalities can be enforced on a

per-mode basis (due to linearity of the system), may lead to exact results. I believe

this is how Eisenhart and Khan’s method works, but I havent explicitly convinced

myself.

C.1.1.1. Outline

An outline of the analysis is as follows.

ust be made from a sum of modes which are subject to the boundary conditions of

each regions.

1. Represent the transverse fields as a sum of weighted basis functions (functional

decomposition ).

Et =
∑
i

ciei ci =
¨

Et · ei

Ht =
∑
i

cihi ci =
¨

Ht · hi (C.2)

2. Assume a reasonable guess for the aperture field, and enforce conservation of

reaction in the aperture.

¨
I

E×H
∣∣∣∣
z=0

=
¨

II

E×H
∣∣∣∣
z=0

1Roger F. Harington - Time Harmonic Electromagnetic Fields: section 4-10
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C.1 Aperture-Field Formulation

3. Using per-mode relationship between fields and admittance, serperate and

solve for normalzied input admittance for the mode of interest.

C.1.2. Analysis

C.1.2.1. Waveguide Modes as Parrallel Transmission Lines

E = −→
E (x, y, z)

= x̂ · Ex (x, y, z) + ŷ · Ey (x, y, z) + ẑ · Ez (x, y, z)

= x̂ · Ex (x)Ex (y)Ex (z) +

E (x, y, z) = Et (x, y, z)︸ ︷︷ ︸
transverse

+ Ez (x, y, z)︸ ︷︷ ︸
longitudinal

Et (x, y, z) = V (z) · e(x, y)

Ht (x, y, z) = I(z) · h(x, y) (C.3)

The motivation to seperate the transverse and longitudinal functional dependence

is that the two boundary conditions are characteristically different. The boundary

conditions in the transverse direction lead to a discrete set of transverse eigen-values

and the to-be-determined boundary conditions in the longitudinal conditions, are

enforced later through the input admittance terms.
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C.1.2.2. Functional decomposition

There are two main mathematical models for the study of wave propagation; the

fourier optics model and the Huygens-Fresnel principle. The interpretations pro-

duced by each, and their relationship is described by an unkown author on wikipedia,

Fourier optics is the study of classical optics using Fourier transforms

and can be seen as the dual of the Huygens-Fresnel principle. In the

latter case, the wave is regarded as a superposition of expanding spher-

ical waves which radiate outward from actual (physically identifiable)

current sources via a Green’s function relationship. In Fourier optics, by

contrast, the wave is regarded as a superposition of plane waves which

are not related to any identifiable sources; instead they are the natural

modes of the propagation medium itself. 2

In this paper we will use the fouier optics approach, usually refered to as modal

analysis when applied to guided wave. An arbitrary transverse field can be equiv-

alently represented as a sum of modes. The general name for such a technique is

functional decomposition.

Et =
∑
i

ciei ci =
¨

Et · ei

Ht =
∑
i

cihi ci =
¨

Ht · hi (C.4)

Whereci is the constant weighting coefficient for the ith mode. Mathematically, the

ci’s are the amplitudes of the transverse mode functions ei, hi, and the transverse

mode functions are the eigen-functions of Maxwell’s wave equation subject to the
2http://en.wikipedia.org/wiki/Fourier_optics
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C.1 Aperture-Field Formulation

boundary conditions of the waveguides.

This ’sum of modes’ representation is much like the way an apritrary band-limited

time signal can be fully represented by a Continuous Time Fourier Transform.

The electric and magnetic eigen-functions are related by,

ei = hi × ẑ (C.5)

C.1.2.3. Mode-Voltages and Currants

In general, the total field in either region is a summation of forward and reflected

traveling waves.

Et =
∑
i

(
aie

jγz + bie
−jγz

)
ei

Ht =
∑
i

(
Yiaie

jγz − Yibie−jγz
)
hi

Where ai’s are the electric field mode-amplitudes for forward traveling waves, bi’s

are the electric field mode amplitudes for reverse traveling waves, and Yi’s are the

characteristic admittance for mode ′i′. At the junction, z = 0, the above expression

simplifies to just the transverse field components,
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Et =
∑
i

(ai + bi) ei (C.6)

Ht =
∑
i

Yi (ai − bi)hi

Using Kurakowa’s definition of scattering waves, provides a useful relation between

the traveling wave mode-amplitudes and total wave mode-amplitudes.

ai = 1
2ki (Vi + ZiIi)

bj = 1
2kj (Vj − ZjIj)

then equation C.6 becomes,

(ai + bi) = ki Vi

Yi (ai − bi) = ki Ii

Vi is the the ith mode-voltage, and Ii is the ith mode-current. These quantities

are proportional to the total fields for a given mode. Comparing the above with

functional decomposition given in equation C.4, and setting the scaling factor of

ki = 1 ,
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C.1 Aperture-Field Formulation

Et =
∑
i

(ai + bi)︸ ︷︷ ︸
Vi

ei (C.7)

Ht =
∑
i

Yi (ai − bi)︸ ︷︷ ︸
Ii

hi

Vi =
¨

Et · ei

Ii =
¨

Ht · hi

The relation of total fields and scattering parameters will connect reflection coeffi-

cient with aperture admittance.

C.1.2.4. Enforcing Conservation of Reaction

The self-reaction of a field with itself just to one side of the junction is,

〈I, I〉 =
¨

I

E · J−H ·M
∣∣∣∣
z=0

= −
¨

I

E×H∗
∣∣∣∣
z=0
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Substituting in the waveguide mode basis function expansion,

¨
ap

E×Hds =
¨
ap

∑
i

Viei ×
∑
j

Ijhj


=

∑
i

∑
j

ViIj

¨
ap

ei × hj

=
∑
j

∑
i

ViIj

¨
ap

ei · ejds

Where the relation given by equation C.5 has been used in the last step. The

integral is evaluated over the cross-section of the region of interest at z = 0. If the

waveguide modes where carefully crafted such that they form an orthonormal set,

the last expression simplifies to a single sum.

=
∑
j

∑
i

ViIj

¨
ap

ei · ejds︸ ︷︷ ︸
δij

=
∑
j

∑
i

ViIjδij

=
∑
i

ViIi

Enforcing the conservation of reaction over the aperture, and using the ortho-normal

basis set property given above,
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〈I, I〉 = 〈II, II〉¨
I

E×H
∣∣∣∣
z=0

=
¨

II

E×H
∣∣∣∣
z=0

(C.8)

∑
i

I

ViIi =
∑
j

II

VjIj (C.9)

The mode voltage and currents for the assumed field at either side of the junction

are found by,

Vi =
¨

Eap · ei

Ii =
¨

Hap · hi (C.10)

The boundary conditions are enforced both by the bounds of the integral, and the

forms of the basis function.

C.1.2.5. Reformulating in Terms of Input Admittance

The relation between the normalized input admittance for mode i (normalized con-

veyed by the apostrophe) and the mode-voltage and mode-currents is found through

application of transmissionline theory.

Y
′

in,i = 1− Sii
1 + Sii

=
1− bi

ai

1 + bi
ai

= (ai − bi)
(ai + bi)

= 1
Yi

Ii
Vi

(C.11)

179



C.1 Aperture-Field FormulationVariational Expressions for Waveguide Junction Admittance

Looking back at equation C.9, it can be seen that there is a choice now to substitude

for Ii or Vi. This results of this choice is that one will yield and expression in terms

of Electric field (known as aperture-field formulation), and the other in terms of the

Magnetic field (known as obstacle-current).

Initially we will use the aperture-field formulation. Re-writing equation C.11,

Ii = ViYiY
′

in,i

Substituting this in for the mode-currents in equation (C.9), and seperating the

term containing mode of interested, mode ’p’ of region I.

∑
i

I

ViIi =
∑
j

II

VjIj

I

V 2
p YpY

′

in,p +
∑
i 6=p

I

V 2
i YiY

′

in,i =
∑
j

II

V 2
j YjY

′

in,j

Solving for the normalized input admittance for mode ’p’, as seen looking in from

region I,

I

Y
′

in,p =
∑
j

II

V 2
j YjY

′
in,j −

∑
i 6=p

I

V 2
i YiY

′
in,i

I

V 2
p Yp

(C.12)

This expression is in terms of mode-voltage, which is a quantity related to the

electric field, as given in equation C.10. Thus, this approach for junction admitance
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C.1 Aperture-Field Formulation

is commonly reffered to as the ’aperture-field’ formulation. Written out explicitly

in terms of the aperture electric field,

I

Y
′

in,p =
∑
j

II(˜
Eap · ej

)2
YjY

′
in,j −

∑
i 6=p

I(˜
Eap · ei

)2
YiY

′
in,i

I(˜
Eap · ep

)2
Yp

The normalized input admittances in the above equations are referenced looking into

each region. Thus, the above expression makes it is possible to include the effects of

a simple terminations attached to either waveguide, through these normalized input

admittance terms. The term simple meaning a termination which can be accurately

captured in a per-mode fashion. Examples would be a short, open, or simple load.

C.1.3. Equivalent Circuit

It is worthwhile at this point to pause for a second and draw an equiavlent circuit

for for out expression. From equation C.12, one possible equivalent circuit for the

is illustated in Figure Fig. C.2 . Its a sum of admittances, one for modes region

I and one for modes in region II. The coupling to each mode, represented by a

transformer, is determined by the values of the to-be-determined total mode voltages

in each region. The admittances are the un-normalized input impedance looking

into each guide, for each mode. Depending on the discontinuity, diferent modes will

be excited in different amounts, and this will control whether the junction apears

capacitive, inductive, resistive, or lossless.
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Y
I

in,p

Figure C.2.: Equivalent circuit for waveguide junction.

C.1.4. Special [reasonable] Cases

C.1.4.1. Matched Input

Think practically. We want the reflection off the junction for a single mode. If the

junction is excited from region I with a single mode, then it is usually the case that

waveguide represented by region I is matched. Meaning there is only one incident

mode from region I, our excitation,

aIi =


aIp i = p

0 i 6= p

This condition will effect the sign of the second sum in the numerator of equation,

(C.12).
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I

Y
′

in,i 6=p =
I

(ai − bi)
(ai + bi)

∣∣∣∣∣∣
i 6=p

= −1

Thus the normalized input admittance for a mode ′p′ given the input waveguide is

matched,

I

Y
′

in,p =
∑
j

II

V 2
j YjY

′
in,j +∑

i 6=p

I

V 2
i Yi

I

V 2
p Yp

(C.13)

C.1.4.2. Matched Input and Output

Having a matched output imposes the condition,

II
aj = 0

Recall figure Fig. C.1, and note the direction of the wave amplitudes. Due to fact

that the current must be oriented in the same direction in both regions.

I

Ii =
I

(ai − bi)
II

Ij =
II

(bj − aj)

For matched conditions in region II,
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II

Y
′

in,j =
II

(bj − aj)
(bj + aj)

= 1 given aIIj = 0

and thus for matched input and ouput,

I

Y
′

in,p =
∑
j

II

V 2
j Yj +∑

i 6=p

I

V 2
i Yi

I

V 2
p Yp

(C.14)

C.1.5. Details of Evaluating the Field

The original expression for the mode amplitudes given by equation (C.6).

E =
∑
i

(ai + bi) ei =
∑
i

(Vi) ei

The quantity Vi is given by,

Vi =
¨

E · ei ds

All at once this is,

E =
∑
i

(¨
E · ei ds

)
· ei
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This is an integral transform of the field E into eigen-space. The bounds on the

integral are given by common cross-section of the two guides.

Actually calculating the eigen-space transform is lengthy due to the vectorial nature

of the wave equation in 3D space. E must be decomposed into all permutations

of mode-types and transverse eigen-values. Also, unless the summation is a special

series which converges to a closed form expression, the number of modes taken into

account must be truncated,

E =
tm,te∑
r

∞∑
m

∞∑
n

(Vr,m,n) e ≈
tm,te∑
r

M∑
m

M∑
n

(Vr,m,n) e

Where the total mode voltage is given by

Vr,m,n =
¨

E · er,m,n ds

The eigen-functions er,m,n are in general different in each region. Known expressions

for normalized eigen functions are given by marcuvitz for a variety of common wave-

guiding geometries.

C.2. Obstacle-Current Formulation

The obstacle-current formulation is the dual of the aperture-field formulation. Be-

cause of this the two analysis are practically identical, and so will be presented

consisely without detailed explanaition. The difference in the result, is that the

value for junction admittance will be a negative definite.
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C.2.1. Analysis

The analysis is formulated by assuming a surface current on the obstacle face instead

of the fields in the aperture. By Maxwells equations this surface current must

supported by a discontinuity in magnetic field, evaluted over the obstacle. Starting

from the conservation of reaction,

〈I, I〉 = 〈II, II〉¨
I

E · J−H ·M
∣∣∣∣
z=0

=
¨

II

E · J−H ·M
∣∣∣∣
z=0

Evaluating this accross the obstacle face, where the discontinuity of the tangential

magnetic field must be supported by a surface current on the obstacle,

I

Jobs = ẑ×
(
HI −H0

)
II

Jobs = ẑ×
(
HII −H0

)

Where the superscipt 0, refers to the plane seperating the two regions. For an

obstacle which is a perfect conductor, the magnetic field in the obstacle face will be

zero, (H0 = 0), in which case,

I

Jobs = ẑ×HI

II

Jobs = ẑ×HII
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Assuming M = 0, and substituting into the above,

¨
obs

EI · ẑ×HI =
¨
obs

EII · ẑ×HI

From this expression it is clear that this formulation can only be used when there

is a obstacle in both regions. Because the formulation relies the magnetic field, we

will solve for the impedance in terms of mode-current instead of mode-voltage. The

mode voltage in terms of mode current is given by equation C.11.

Vi = Z
′

in,iZiIi

Starting from equation C.9, substituting the above for the mode-voltange, and solv-

ing for normalized input impedance for mode ′p′ of region I.

∑
i

I

ViIi =
∑
j

II

ViIi

I

I2
pZpZ

′

in,p +
∑
i 6=p

I

I2
i ZiZ

′

in,i =
∑
j

II

I2
jZjZ

′

in,j

I

Z
′

in,p =
∑
j

II

I2
jZjZ

′
in,j −

∑
i 6=p

I

I2
i ZiZ

′
in,i

I

I2
pZp

A key difference for the obstacle-current formulation is that the boundary condi-

tions are enforced over different regions than the aperture-field formulation. The
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aperture-field formulation enforces continuity of Electric field in the aperture and

zero tangential electric field at perfect conductors. These are enforced by placing

correct bounds mode-voltage integrals.

The obstacle-current formulation, on the other hand, is in terms of mode-currents

which are proportional to the total tangential magnetic field. As stated earlier,

’The [aperture-field form] assumes a knowledge of tangential electric field, and the

[obstacle-current form] assumes knowledge of the discontinuity of magnetic

field.’-R.F.H.

The total magnetic field is not neccesarily zero at the surface of electrical conductors.

Therefore in the obstacle-current case the author assumes a current, which exists on

the obstructing face of the junction to support a reasonable magnetic field in each

guide.

In short,

• Mode-voltage integrals evaluated in aperture-field formulations are taken over

the common cross-section between the two guides.

• Mode-current integrals in obstacle-current formulation are taken over the un-

common cross section in each guide.

C.2.2. Special [reasonable] Cases

C.2.2.1. Matched Input

I

Z
′

in,p =
∑
j

II

I2
jZjZ

′
in,j +∑

i 6=p

I

I2
i Zi

I

I2
pZp
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C.2.2.2. Matched Output

For Matched input and matched output this becomes

I

Z
′

in,p =
∑
j

II

I2
jZj +∑

i 6=p

I

I2
i Zi

I

I2
pZp

C.3. Junction Classification

It is advantagous to classify waveguide junctions into two types: Intersection, and

Subset. An illustration of the cross-section of junction for each type is shown below.

The reason to make this distinction is because different junction types lead to dif-

ferent mathematical simplifications and thus different equivalent circuits. It is also

convinient to classify the bounds on the mode voltage and mode-current integrals

for both types of formulations. This is given below in table Tab.C.1.

Intersection Subset

I II
I

II

Figure C.3.: Illustration of the two Junction Types
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Aperture-Field Obstacle-Current
Region I Region II Region I Region II

Intersection I
⋃
II I

⋃
II I

⋂ (I ⋃ II) II
⋂ (I ⋃ II)

Subset I I na II
⋂
I

Table C.1.: Integral Bounds Table

C.3.1. Subset Junction

The Subset type of waveguide junction is characterized by the aperture cross-section

being identical as one of the waveguide’s cross-section. For an aperture-field formu-

lation, it may be reasonable to assume that the aperture field is identical to the

dominant mode of the exciting waveguide. This simplifies the aperture addmitance

expression considerably.

For example, assume the aperture field has the same functional form as mode ’p’

of region I. If the modes form an ortho-normal set, the mode voltage for all other

modes is zero

Vi =
¨

Eap · ei ds =
¨

ep · ei ds = δp

and thus the second sum in the equation C.13 vanishes,

∑
i 6=p

I

(Vi)2 YiY
′

in,i = 0

and the expression becomes,
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Y I′

in,p =
∑
j

II

(Vj)2 YjY
′
in,j

I

(Vp)2 Yp

This is the method used in Harrington throughout chapter 4.

C.3.2. Intersection Junction

The general case of the intersection junction is handled using the full expression, as

given by equation C.13.

C.3.3. Intersection Special Case: Symetric Waveguide

Junctions

If the two waveguides have identical cross-sections, then the eigenfunctions and

characteristic admittances of each region will be the same.

eIi = eIIi

Y I
i = Y II

i

Furthermore, if the junction is symetrical, the common cross-section apears the same

looking in from each waveguide, then the mode-voltages squared for each region are

the same,
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(
V I
i

)2
=
(
V II
i

)2

and the following simplifications can be made.

I

Y
′

in,p =
∑
j

II

V 2
j YjY

′
in,j −

∑
i 6=p

I

V 2
i YiY

′
in,i

I

V 2
p Yp

=

II

V 2
p YpY

′
in,p

I

V 2
p Yp

+
∑
j 6=p

II

V 2
j YjY

′
in,j −

∑
i 6=p

I

V 2
i YiY

′
in,i

I

V 2
p Yp

=
II

Y
′

in,p +
∑
j 6=p V

2
j

II

YjY
′
in,j −

∑
i 6=p

I

V 2
i YiY

′
in,i

V 2
p Yp

If both waveguides are matched, the expression simplifies even further,

Y II
in,j = 1

Y
′I
in,j = −1

Y I′

in,p = 1 +
∑
j 6=p V

2
j

II

Yj +∑
i 6=p

I

V 2
i Yi

V 2
p Yp

= 1 + 2
∑
j 6=p V

2
j Yj

V 2
p Yp
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C.4. Systematically Improving Assumed Field:

Raleigh-Ritz, Galerkin

The raleigh-ritz method is a systematic way of improving the aperture field, and

may lead to exact results in some cases. The idea is the represent the aperture field

as a set of basis functions, much like the fields in either region. The weights of each

of the basis functions are then deteremined by exploiting the stationary nature of

the admittance expression.

C.4.1. Special Case: symetric junction

Because of the symplicity of the aperture admittance for symetric junctions it is a

good place to illustrate the usage of teh Raleigh-Ritz method. As shown above, the

symetric waveguide junction has an aperture admittance of,

Y I′

in,p = 1 + 2 ·
∑
j 6=p V

2
j Yj

V 2
p Yp

Explicitly writing out the evaltuation for the mode-voltages, so that we can introduce

the basis set expansion,

Y I′

in,p = 1 + 2 ·
∑
j 6=p

(˜
Eap · ej ds

)2
Yj(˜

Eap · ep ds
)2
Yp

Expressing the aperture field as a sum of weighted basis functions, where the weights

are yet to be determined,
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Eap =
∑
k

cke
ap
k

Substituting this into the previous expression,

Y I′

in,p = 1 + 2 ·
∑
j 6=p

(∑
k ck
˜
eapk · ej ds

)2
Yj(∑

k ck
˜
eapk · ep ds

)2
Yp

The stationary nature of the expression is used to determine the weighting coef-

ficients. Specfiically, the admittance is a maximum or minimum around the true

value, for small variations in the aperture field function. Given that we are consid-

ering ′k′ terms in the aperture field expansion, the stationary constraints leads to
′k′ equations, each expressed by

∂

∂cl
Y I′

in,p = 0 l = 0, 1, 2, ...k

∂

∂cl

1 + 2 ·
∑
j 6=p

(∑
k ck
˜
eapk · ej ds

)2
Yj(∑

k ck
˜
eapk · ep ds

)2
Yp

 = 0 l = 0, 1, 2, ...k

Re-introducing the notation of mode-voltage, with an additional indexing variable

for the aperture field basis index, makes this more readable. There is a mode-voltage

associated with each combination of aperture field basis functions, and the region’s
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basis functions.

Vk,,j =
¨

eapk · ej ds

And the is then written,

0 = ∂
∂cl

[
1 + 2 ·

∑
j 6=p(

∑
k
ckVk,,j)2

Yj

(∑k
ckVk,,p)2

Yp

]
l = 0, 1, 2, ...k

This quantity is zero, when the numerator vanishes,

0 = ∂

∂cl

∑
j 6=p

(∑
k

ckVk,,j

)2

Yj


=

∑
j 6=p

2
(∑

k

ckVk,,j

)
· Vl,jYj

= 2
∑
j 6=p

∑
k

ckVl,jVk,,jYj

=
∑
k

ck
∑
j 6=p

Vl,jVk,,jYj for all lin k

These constraints can be represented as a homogeneous system of equations, con-

taining a known k × k matrix, and unknown vector c.


∑
j 6=p V0,jV0,,jYj . . .

∑
j 6=p V0,jVk,,jYj

... . . .∑
j 6=p Vl,jV0,,jYj

∑
j 6=p Vl,jVk,,jYj

 ·



c0

c1

...

ck


= 0
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Such a system has 2 possible solutions; the trivial solution of c = 0, and the infinite

set of solutions. Obviously we are interested in the infinite set of solutions, which

is called the null space of the matrix. The reason it is an infinite set is that the

magnitude of the c-vector is not important, only the direction. Therefore there are

infinite many c’s which can solve the constraints, but all are scalar multples of each

other, and will yield the same results in our expression because it is insensitive to

aperture field amplitude.

To make this matrix more concise we can introduce the idea of sum reaction. Which

is interpreted as the sum of the reactions between a single element of the aperture

field basis set, and the entire set of a region’s basis set.

Rl,k ≡
∑
j 6=p

Vl,jVk,,jYj

≡
∑
j 6=p

¨
eapl · ej ds ·

¨
eapk · ej ds · Yj (C.15)

The above matrix equation is thus


R0,0 . . . R0,k

... . . .

Rl,0 Rl,k

 ·



1

c
′
1
...

c
′
k


= 0

If we set normalize the c-vector to c0, then we can make re-arrange things to be a

standard non-homogeneous equation (bauwen’s idea).
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
R0,0

...

Rl,0

+


R0,1 . . . R0,k

... . . .

Rl,1 Rl,k

 ·



1

c
′
1
...

c
′
k


= 0



1

c
′
1
...

c
′
k


=


R0,1 . . . R0,k

... . . .

Rl,1 Rl,k



−1

·


R0,0

...

Rl,0

 (C.16)

Alternatively, we can seperate the dependence on l and k .


∑
j 6=p V0,jV0,jYj . . .

∑
j 6=p V0,jVk,jYj

... . . .∑
j 6=p Vl,jV0,jYj

∑
j 6=p Vl,jVk,jYj

 =


∑
j 6=p V0,j

√
Yj

...∑
j 6=p Vl,j

√
Yj


[ ∑

j 6=p V0,j
√
Yj · · ·

∑
j 6=p Vk,j

√
Yj

]

C.4.2. Caution on Re-evaluating Mode Voltages

It is useful to note that integral in C.15 has, in general, three components.

ej
ap = x̂ · eapj + ŷ · eapj + ẑ · eapj
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¨
ap

ej
ap · ej =

¨
ap

x̂ ·
(
eapj · ej

)
+
¨
ap

ŷ ·
(
eapj · ej

)
+
¨
ap

ẑ ·
(
eapj · ej

)

I point this out because commonly the initial aperture field is simple, and has only

one component, eap = ŷ · eap. This simplifies the evaluation of the mode-voltages.

If one wish’s to apply the Raleigh-Ritz to improve upon the trial field, then basis

set chosen must be consistent with the condition eap = ŷ · eap. Or the mode-voltage

integral must be re-evaluated.

C.4.3. General Junction

The

Y I′

in,p =
∑
j

(˜
Eap · eIIj ds

)2
Y II
in,j +∑

i 6=p

(˜
Eap · eIi ds

)2
Y I
i(˜

Eap · ep ds
)2
Yp

Expressing the aperture field as a sum of weighted basis functions, where the weights

are yet to be determined,

Eap =
∑
k

cke
ap
k

substituting this into the earlier expression,
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Y I′

in,p =
∑
j

(∑
k

˜
cke

ap
k · eIIj ds

)2
Y II
in,j(∑

k

˜
cke

ap
k · ep ds

)2
Yp

+
∑
i 6=p

(∑
k

˜
cke

ap
k · eIi ds

)2
Y I
i(∑

k

˜
cke

ap
k · ep ds

)2
Yp
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D. Verification of Variational

Method

D.1. Introduction

The following is an application of the variation expression for junction admittance for

the purpose of calculating the dominant mode scattering parameters off a translation

offset between two rectangular waveguides. The geometry of the cross section of

junction is shown below. The model used to calculate the admittance is based on the

variational expression originally formulated by Harrington, Collins, and Marcuvitz,

which is re-derived in the previous chapter. This expression relies on an assumed

field and thus, is only an approximation. The model also has the benefit that it

provides good intuition of the physics involved.

b I
I

aI
I

aI

b I

Figure D.1.: Geometry of Cross section
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Δb

Δaa

b

Figure D.2.: Geometry of Cross section

D.2. Outline

As described in the previous chapter, the junction admittance can be analyzed

either by assuming knowledge of the tangential field, or the tangential currents.

This section is based on assumed knowledge of the electric field, so we want to

evaluate this expression,

I

Y
′

in,p =
∑
j

II

V 2
j YjY

′
in,j −

∑
i 6=p

I

V 2
i YiY

′
in,i

I

V 2
p Yp

The outline for the analysis is as follows:

1. Make educated guess at the functional form of aperture field; Eap

2. Given Eap from step 1, determine mode-voltages (aka coupling coefficients)

for each waveguide; V I , V II .
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D.2 Outline

3. Account for terminations, by calculating the waveguide input admittances, as

seen from junction.

4. Evaluate variational expression, to get normalized junction admittance, Y ′
in ,

for dominant mode.

5. Calculate reflection coefficient for dominant mode, S11 = 1−Y ′
in

1+Y ′
in

The only part of the analysis which changes with different junction geometries is the

evaluation of mode voltages. The first junction will be worked out in detail, while

the following calculations will just be evaluation of the mode voltages.

D.2.1. Capacitive Junction

First we will examine the special case, of ∆a = 0, so there is only a step in the ′b′

dimension. Due to the modes this kind of offset excites, it produces an admittance

which is capacitive. The cross section of the junction as seen by an input waveguide

is shown below.

Δb

a

b

Figure D.3.: Cross section as seen from input waveguide
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D.2.1.1. Assumed Field

The assumed aperture field is the dominant mode of the common cross-section be-

tween the two guides.

Eap =


ŷ · sin

(
π
a
x
)

0 < y < b−∆b

0 else

D.2.1.2. Mode Voltages

Due to the symmetry of this problem, both the eigen-functions and mode-voltages-

squared for each guide are the same.

(
V I
)2

=
(
V II

)2

Because we are assuming only a ŷ-component for the aperture field, it will only

couple to the ŷ-component of the normalized eigen-functions in either guide. There

freedom in which set of eigenfunctions we choose. T-to-x ,T-to-y, and T-to-z will

all produce the same end results. The advantage of one set over the other is some

cases the integrals may be more tractable. I will choose T-to-z.

The normalized TE-z and TM-z eigenfunctions for rectangular waveguide are given

in the appendix. Their y-components are,
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e(m,n,l) ·ŷ =


−√εmεn

a
· m√

m2 b
a

+n2 a
b

· sin
(
mπ
a
x
)
cos

(
nπ
b
y
)

l =′ te′; (m,n) 6= (0, 0)

−2
b
· n√

m2 b
a

+n2 a
b

· sin
(
mπ
a
x
)
cos

(
nπ
b
y
)

l =′ tm′; m 6= 0, n 6= 0

Where εi is called neuman’s number, and is given by; εi ≡ 2− δ (i).

It is interesting to note that the functional forms for each mode are identical, and

that they only differ by a scaling factor in front. This scaling factor is not a function

of the independent variables of the cross-section (x and y), so it wont effect the

integrals. Furthermore, its the same expression for all rectangular waveguides, so to

make the expressions more readable I will represent this scaling factor with f(..).

e(m,n,l) = f (a, b,m, n, l)︸ ︷︷ ︸
independent on x,y

· sin
(
mπ

a
x
)
cos

(
nπ

b
y
)

︸ ︷︷ ︸
dependent on x,y

The evaluation of the mode voltages, which represent the coupling of the assumed

field to a given waveguide mode. Introducing the variable, d = b−∆b, for concision,

the mode voltage is found by,
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V(m,n,l) =
dˆ

0

dy

aˆ

0

dx, Eap · em,n,l

= f(..)

dˆ

0

dy

aˆ

0

dx, sin
(
π

a
x
)
· sin

(
mπ

a
x
)
cos

(
nπ

b
y
)

= f(..)

dˆ

0

dy

aˆ

0

dx, δ (m− 1) sin2
(
π

a
x
)
cos

(
nπ

b
y
)

= f(..)
a

2δ (m− 1) ·
dˆ

0

dy, cos
(
nπ

b
y
)

= f(..)
a

2δ (m− 1) · b
nπ

sin
(
nπ

b
d
)

This is correct, but notice that the evaluation at n = 0 requires the use of l’ hopital’s

rule. Also, if you wanted to program this function, it would require an extra if/else

block. This problem can be avoided by recognizing we re-write the expression in

terms of the sinc function1.

sinc (x) ≡ sin (πx)
πx

Re-writing the final expression for the coupling.

1note: This is the normalized sinc function. Make sure you know if you are using a normalized
or un-normalized sinc function.
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V(m,n,l) = f(..)
a

2δ (m− 1) · b
nπ

sin
(
nπ

b
d
)

= f(..)
a

2δ (m− 1) · d
sin

(
nπ
b
d
)

nπ
b
d

= f(..)
a

2δ (m− 1) · d sinc
(
d

b
n

)

The subtle removal of the π was because I have defined sinc as the normalized sinc

function. Re-inserting the scaling factor, yields the complete expression for the

mode-voltage

V(m,n,l) =


f(..) · δ (m− 1) · d sinc

(
d
b
n
)

l =′ te′; (m,n) 6= (0, 0)

f(..) · δ (m− 1) · d sinc
(
d
b
n
)

l =′ tm′; m 6= 0, n 6= 0

A plot of the mode-voltages squared, for m = 1, is shown below. This gives an

idea of how many modes need to be included in summation before convergence is

reached. I have plotted the function vs a continuous variable ’n’ solely to illustrate

its functional form. In reality this function is only valid at integer multiples of

n-indices’s. This is the cause of the apparent discontinuity of the ′te′ mode at n = 0.
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Figure D.4.: Capacitive Junction Mode Voltages Vs n-index ,evaluated at m=0

D.2.1.3. Waveguide Admittances

The characteristic admittances in rectangular waveguide are given by

Y0,(m,n,l) =


−ωε
kz

l =′ tm′

kz
ωµ

l =′ te′

The waveguide input admittances depend on the terminations. Any termination

which can be faithfully represented by an input admittance can be modeled by this

technique. For simplicity we will assume a matched termination at both waveguides.

Other For matched conditions in region I,

I

Y
′

in,i 6=p =
I

(ai − bi)
(ai + bi)

∣∣∣∣∣∣
i 6=p

= −1
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For matched conditions in region II,

II

Y
′

in,j =
II

(bj − aj)
(bj + aj)

= 1

See my other paper for a derivation of this.

D.2.1.4. Junction Admittance

At each frequency of interest, the junction admittance is calculated by

YI′

in,p =
∑
j

(
VII

j

)2
Y II
j +∑

i 6=p

(
VI

i

)2
Y I
i(

VI
p

)2
Yp

Where the indices’s i and j are interpreted as all possible modes, but will in practice

be truncated. Acceptable truncation values can be systematically determined by

defining some kind of convergence metric, such as maximum complex difference of

successive admittance values for increasing number of modes. This is discused in

detail in the implementation chapter.

D.2.1.5. Results

The reflection coefficient of a given junction admittance is calculated by

S11,p =
1− Y ′

in,p

1 + Y
′
in,p
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D.2 Outline Verification of Variational Method

Below are the results of the above analysis evaluated for WR1.5 waveguide junction

with a offset of ∆b = a
10 , using 11 modes for each dimension ( M,N = 11, 11). Note

the phase response illustrates that this junction looks capacitive.

Figure D.5.:
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Figure D.6.:

Figure D.7.:
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D.2.2. Inductive Offset

Next, we will examine the special case, of ∆b = 0, so there is only a step in the ′a′

dimension. Due to the modes this kind of offset excites, it produces an admittance

which is inductive. An illustration of the cross section of the junction as seen by an

input waveguide is shown below.

Δa

a

b

Figure D.8.: Cross section as seen from input waveguide

D.2.2.1. Assumed Field

Assuming the aperture field is the dominant mode in the common cross-section,

Eap =


ŷ · sin

(
π

(a−∆a)x
)

0 < x < a−∆a, 0 < y < b

0 else

Note this is only the dominant mode as long as a > b. The analysis of the inductive

offset is carried out in similar manner to the capacitive offset, with the difference
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that the aperture field, and cross-section have changed.

D.2.2.2. Mode Voltages

The mode voltages are found in an analogous way to the capacitive junction, with

a change in the integral bounds. Introducing variable, c = a−∆a

V(m,n,l) =
cˆ

0

dx

bˆ

0

dy, Eap · em,n,l

= f(..)

cˆ

0

dx

bˆ

0

dy, cos
(
nπ

b
y
)
sin

(
π

c
x
)
sin

(
mπ

a
x
)

= f(..)b δ(n)
cˆ

0

dx, sin
(
π

c
x
)
sin

(
mπ

a
x
)

This last integral is a little tricky2, but making use of the mixing trig identity3,

sin (a) sin (b) = 1
2 [cos (a− b)− cos (a+ b)]

2If you are lazy, or want to check your work, you can put this directly into wolfram alpha;
http://www.wolframalpha.com. Just enter: Integral(sin(m*pi*x/a)*sin(pi*x/c),(x,0,c))

3http://en.wikipedia.org/wiki/List_of_trigonometric_identities
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=
cˆ

0

dx, sin
(
π

c
x
)
sin

(
mπ

a
x
)

=
cˆ

0

dx,
1
2

(
cos

[(
π

c
− mπ

a

)
x
]
− cos

[(
π

c
+ mπ

a

)
x
])

=
sin

[(
π
c
− mπ

a

)
x
]

2
(
π
c
− mπ

a

)
∣∣∣∣∣∣

c

0

−

sin
[(

π
c

+ mπ
a

)
x
]

2
(
π
c

+ mπ
a

)
∣∣∣∣∣∣

c

0

=
sin

[(
π
c
− mπ

a

)
c
]

2
(
π
c
− mπ

a

) −
sin

[(
π
c

+ mπ
a

)
c
]

2
(
π
c

+ mπ
a

)
= c

2 ·
[
sinc

(
1− c

a
m
)
− sinc

(
1 + c

a
m
)]

Including the earlier found ′n′-dependence, we have a final expression for the mode-

voltages.

V(m,n,l) =


f(..) · δ(n) bc

2 ·
[
sinc

(
1− c

a
m
)
− sinc

(
1 + c

a
m
)]

l =′ te′; (m,n) 6= (0, 0)

0 l =′ tm′;

Only the n = 0 modes are excited, which means the TM mode voltages will all be

zero, because TM modes require m 6= 0 and n 6= 0. Shown below the TE mode

voltage vs m-index, for an offset of ∆a

a
= 1

10 . The dominant TE10 mode is most

strongly coupled to, which makes sense.
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Figure D.9.:

D.2.2.3. Results

Below are the results of the above analysis evaluated for WR1.5 waveguide junction

with a offset of ∆a = a
10 , using 11 modes for each dimension ( M,N = 11, 11). For

validation, the results of a HFSS simulation of the same geometry is shown. Note

the phase response illustrates that this junction looks inductive, as expected.
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Figure D.10.:
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Figure D.11.:
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Figure D.12.:
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D.2.3. Resonant Offset

Finally, we will examine the general case, of ∆b 6= 0,∆a 6= 0. This junction excites

both inductive and capacitive modes, and thus acts like a resonant LC circuit. An

illustration of the cross section of the junction as seen by an input waveguide is

shown below.

∆
a

a

b

∆
b

Figure D.13.: Cross section as seen from input waveguide

D.2.3.1. Assumed Field

Assuming the aperture field is the dominant mode in the common cross-section,

Eap =


ŷ · sin

(
π

(a−∆a)x
)

0 < x < a−∆a, 0 < y < b−∆b

0 else

D.2.3.2. Mode Voltages

Making use of the solutions to the integrals we found in the evaluation of the ca-

pacitive and inductive offsets, we can immediately write down the answer,
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V(m,n,l) =
a−∆aˆ

0

dx

b−∆bˆ

0

dy, Eap · em,n,l

= f(..)

a−∆aˆ

0

dx

b−∆bˆ

0

dy, cos
(
nπ

b
y
)
sin

(
π

a
x
)
sin

(
mπ

a
x
)

= = f(..)
cd

2

[
sinc

(
d

b
n

)]
·
[
sinc

(
1− c

a
m
)
− sinc

(
1 + c

a
m
)]

Explicitly writing the eigenfunction scaling factors,

V(m,n,l) =


f(..) · cd2

[
sinc

(
d
b
n
)]
·
[
sinc

(
1− c

a
m
)
− sinc

(
1 + c

a
m
)]

l =′ te′; (m,n) 6= (0, 0)

f(..) · cd2
[
sinc

(
d
b
n
)]
·
[
sinc

(
1− c

a
m
)
− sinc

(
1 + c

a
m
)]

l =′ tm′; m 6= 0, n 6= 0

Because this junction couples many modes in m and n , in general, illustrating the

nature of the coupling requires a 2D surface. Below is colored image of the coupling

matrix to each mode-type sampled at integer values of m and n.

Figure D.14.: Coupling Matrices for ∆a

a
= 1

10 ,
∆b

a
= 1

10
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D.2.3.3. Results

Below are the results of the above analysis evaluated for WR1.5 waveguide junction

with a offset of ∆a = a
10 ,∆b = a

10 , using 11 modes for each dimension ( M,N =

11, 11). For validation, the results of a HFSS simulation of the same geometry is

shown. Note the phase response illustrates that this junction looks inductive, as

expected.

Figure D.15.:
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Figure D.16.:
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D.2.4. General Case: Dimensional change with offset

From the first few examples it should start to be clear that each side of the junction

can be dealt with independently from the other. The only requirement is that

assumed field must be consistent between the two regions. This means one can

solve a more general aperture geometry and then tailor it to suite a variety of

discontinuities. A cross-sectional geometry which can provide solutions for all of the

previous problems is illustrated in the figure below.

The larger guide is of dimensions AxB, the aperture is axb. The lower left corner

of the aperture is offset from the larger’s, by an aribitrary amount (x0, y0).

A

Bb

a

(x,y)
0    0

(0,0)

Figure D.18.: Step Down

One may imagine this aperture field is due to a smaller guide radiating into a larger

guide. The assumed aperture field will be the dominant mode of the smaller guide.

Eap =


ŷ · sin

(
π
a
x− π

a
x0
)

x0 < x < x0 + a y0 < y < y0 + b

0 else

The mode volatge will be
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VI
(m,n,l) =

x0+aˆ
x0

dx

y0+bˆ
y0

dy, Eap · em,n,l

= f (..) ·
x0+aˆ
x0

dx

y0+bˆ
y0

dy, sin
(
π

a
x− π

a
x0

)
· sin

(
mπ

A
x
)
cos

(
nπ

B
y
)

This integral is serperable into the product of two integrals. Each integral also

represents a single dimension, meaning a step down in width is handled by the

x-dependent part, while a step in height is handeled by the y-dependent part.

VI
(m,n,l) = f (..)·


x0+aˆ
x0

dx, sin
(
π

a
x− π

a
x0

)
· sin

(
mπ

A
x
)

︸ ︷︷ ︸
width step

·
y0+bˆ
y0

dy, cos
(
nπ

B
y
)

︸ ︷︷ ︸
height step



First the height step integral,

=
y0+bˆ
y0

dy, cos
(
nπ

B
y
)

= B

nπ
sin

(
nπ

B
y
)∣∣∣∣∣
y0+b

y0

= B

nπ
sin

(
nπ

B
(y0 + b)

)
− B

nπ
sin

(
nπ

B
y0

)
= (y0 + b) · sinc

(
n

B
[y0 + b]

)
− y0 · sinc

(
n

B
y0

)
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Second the width step part,

=
x0+aˆ
x0

dx, sin
(
π

a
x− π

a
x0

)
· sin

(
mπ

A
x
)

=
x0+aˆ
x0

dx, cos
([
π

a
− mπ

A

]
x+ π

a
x0

)
+

x0+aˆ
x0

dx, cos
([
π

a
+ mπ

A

]
x− π

a
x0

)

= 1
2

 1(
mπ
A
− π

a

) [sin([mπ
A
− π

a

]
[x0 + a] + π

a
x0

)
− sin

([
mπ

A
− π

a

]
[x0] + π

a
x0

)]
−

1(
mπ
A

+ π
a

) [sin([mπ
A

+ π

a

]
[x0 + a]− π

a
x0

)
− sin

([
mπ

A
+ π

a

]
[x0]− π

a
x0

)]

This form has a singularity at A
a

= int , which can be avoided either by perturbing

one of the widths so that the ration is never an integer, or by using l’hopital. The

perturbation is easier and more efficient to implement computationallly.

In summary, the total coupling of an offset rectangular aperture in a rectangular

waveguide is,

VI
(m,n,l) = f(..) ·

(y0 + b) · sinc
(
n

B
[y0 + b]

)
− y0 · sinc

(
n

B
y0

)
·

1
2

 1(
mπ
A
− π

a

) [sin([mπ
A
− π

a

]
[x0 + a] + π

a
x0

)
− sin

([
mπ

A
− π

a

]
[x0] + π

a
x0

)]
−

1(
mπ
A

+ π
a

) [sin([mπ
A

+ π

a

]
[x0 + a]− π

a
x0

)
− sin

([
mπ

A
+ π

a

]
[x0]− π

a
x0

)]

Next we will use this result to solve a roated waveguide discontinuity.
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D.2.5. Rotated Waveguide

The rotated waveguide, although initially measured on accident, can be used as a

standard as well. Due to the orthogonality of dominant modes in each region there

is no propagating mode in the ouput region. This means the response is solely

determined by the evanscent fields in the second region. If the second region is

shorted close to the junction, the evanscent fields will be reflected with a different

phase than if the region was matched. One advantage of using this as a standard is

that i think it will be less sensitive to translation misalignment. This has yet to be

rigorously proved.

b I
I

aI
I

aI

b I

Figure D.19.: Rotated waveguide Junction

We will first solve this for a perfect alignment, meaning both guides are share com-

mon center, and then explore how sensitive it is to missalignment, to see if we need

to formulate the general case.
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a/4

a

b

a/4

Figure D.20.: Rotated waveguide cross-section

D.2.5.1. Assumed Field

Assuming the aperture field is the dominant mode in the common cross-section,

Eap =


ŷ · sin

(
π
a
x− π

a
x0
)

a
4 < x < 3a

4 0 < y < b

0 else

Due to the asymetry, between the aperture field and the two regions, the mode-

voltages will be different for each region.
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D.2.5.2. Mode Voltages: Region I (input)

a

b

a/4a/4

Figure D.21.: Cross section as seen from input waveguide

Instead of re-doing the integrals, we can just tailor this problem to fit into the

general problem we just solved of ’change is guide size with arbitrary offset’.

Eap =


ŷ · sin

(
π
a
x− π

a
x0
)

x0 < x < x0 + a y0 < y < y0 + b

0 else

Fitting into this notation, the guide is of size axb and the aperture is of size a
2xb

with an offset of
(
a
4 , 0

)
. To be clear, the relation between the previous more general

problem and this problem are shown in the table below.

General Currently

A a

B b

a a
2

b b

x0, y0
a
4 , 0
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Skipping straight to the result,

VI
(m,n,l) = f(..) ·

[(y0 + b) · sinc
(
n

B
[y0 + b]

)
− y0 · sinc

(
n

B
y0

)]
·

1
2

 1(
mπ
A
− π

a

) [sin([mπ
A
− π

a

]
[x0 + a] + π

a
x0

)
− sin

([
mπ

A
− π

a

]
[x0] + π

a
x0

)]
−

1(
mπ
A

+ π
a

) [sin([mπ
A

+ π

a

]
[x0 + a]− π

a
x0

)
− sin

([
mπ

A
+ π

a

]
[x0]− π

a
x0

)]

Substituting in our variables and making a lot of tedius simplificiations,

VI
(m,n,l) = f(..) ·

[
b · sinc (n) · −a

π

m

m2 + 4

(
sin

[3π
4 m

]
+ sin

[
π

4m
])]

D.2.5.3. Mode Voltages: Region II (output)

a

b

a/4

a/4

Figure D.22.: Cross section as seen from output waveguide
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Region II (the output waveguide) can be analyzed as is, or in rotated coordinates.

The advantage to rotating cordinates is that it more closely resembles what we have

already analyzed. Tailoring the general result to fit this discontinuity, we have the

assumed field

Eap =


ŷ · sin

(
π
a
x− π

a
x0
)

x0 < x < x0 + a y0 < y < y0 + b

0 else

The guide is of size a
2x2b and the aperture is of size a

2xb with an offset of
(
0, b2

)
. To

be clear, the relation between the previous more general problem and this problem

are shown in the table below.

General Currently

A a
2

B 2b

a a
2

b b

x0, y0 0, b2

Skipping straight to the result,

VI
(m,n,l) = f(..) ·

(y0 + b) · sinc
(
n

B
[y0 + b]

)
− y0 · sinc

(
n

B
y0

)
·

1
2

 1(
mπ
A
− π

a

) [sin([mπ
A
− π

a

]
[x0 + a] + π

a
x0

)
− sin

([
mπ

A
− π

a

]
[x0] + π

a
x0

)]
−

1(
mπ
A

+ π
a

) [sin([mπ
A

+ π

a

]
[x0 + a]− π

a
x0

)
− sin

([
mπ

A
+ π

a

]
[x0]− π

a
x0

)]
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Substituting in our variables and making a lot of tedius simplificiations,

VI
(m,n,l) = f(..) ·

(y0 + b) · sinc
(
n

B
[y0 + b]

)
− y0 · sinc

(
n

B
y0

)
·

1
2

 1(
mπ
A
− π

a

) [sin([mπ
A
− π

a

]
[x0 + a] + π

a
x0

)
− sin

([
mπ

A
− π

a

]
[x0] + π

a
x0

)]
−

1(
mπ
A

+ π
a

) [sin([mπ
A

+ π

a

]
[x0 + a]− π

a
x0

)
− sin

([
mπ

A
+ π

a

]
[x0]− π

a
x0

)]

D.2.5.4. Mode Voltages: Region II Alternative Integrals, (output)

The aperture assumed for Region I is in Region II,

Eap =


ŷ · sin

(
2π
a
x
)

0 < x < b a
4 < y < 3a

4

0 else

Rotating the coordinates this becomes,

a

b

a/4a/4

Figure D.23.: Rotated cross section as seen from output waveguide
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Eap =


x̂ · sin

(
2π
a
y
)

a
4 < x < 3a

4 0 < y < b

0 else

Evaluating the mode voltages

VII
(m,n,l) =

3a
4ˆ

a
4

dx

bˆ

0

dy, Eap · em,n,l

= f (..) ·

3a
4ˆ

a
4

dx

bˆ

0

dy, sin
(
π

b
y
)
sin

(
nπ

b
y
)
cos

(
mπ

a
x
)

= f (..) · δ (n− 1) b2

3a
4ˆ

a
4

dx, cos
(
mπ

a
x
)

= f (..) · δ (n− 1) b2 a
[ 1
mπ

sin
(3π

4 m
)
− 1
mπ

sin
(
π

4m
)]

= f (..) · δ (n− 1) b2 · a
[3
4sinc

(3π
4 m

)
− 1

4sinc
(
π

4m
)]

In summary the mode-voltages for each region are,

VI
(m,n,l) = −f (..) · δ (n) b · a2π

4
(m2 − 4)

(
sin

[3π
4 m

]
+ sin

[
π

4m
])

VII
(m,n,l) = f (..) · δ (n− 1) b2 · a

[3
4sinc

(3π
4 m

)
− 1

4sinc
(
π

4m
)]
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E.1. Modeling an Open Rectangular Waveguide,

with the ’Complexification and

Exatrapolation’ Technique

E.1.1. Background

Open waveguides have been studied a lot. A review of the various mathematical

and numerical methods which have been succesfully used are given very thouroghly

by Gardinal in [?]. Most notably, variational solutions have been cacluated by M.

H. Cohen et. al.1, and exact solutions by correlation matrix are given by Macphie

[?].

Recently, Shen and Macphie have presented a technique which provides accurate

results and is simpler (in some sense), and computationally more efficient than full-

wave solutions. The technique, which was introduced by W. D. Murphy et. al.2, is

appropriatly named ’complexification and extrapolation’.

Why am I using this technique, when exact methods exist in a variety of different

forms? Because I had at my disposal the variational solution to a homogeneously

filled waveguide enlargment discontinuity. With this, the additional effort to im-

plement Macphie’s ’complexification and extrapolation’ technique was very little.

Furthermore, I have not aware of this method being used with the variational tech-

nique, which probably is faster than the correlation-matrix method, and may provide

other benefits I am unaware of at the moment.

1The aperture admittance of a rectangular waveguide radiating into half-space, THis is not avail-
able on the internet as far as i could find.

2Acceleration methods for the iterative solution of electromagnetic scattering problems, I couldnt
find this so i just read the abstract.
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E.1.2. Introduction

The concept of ’complexification and extrapolation’ is explained nicely in [?], but

will be repeated here for the reader. The technique is as follows, approximate a

waveguide radiating into free-space by a waveguide radiating into a larger waveg-

uide. For an accurate solution, a very large waveguide must be used, and the number

of modes needed to provide convergence is very large, and thus computationally ex-

pensive (this actually crashed my python with Memory Error). The trick is then to

fill the larger waveguide with a lossy dielectric. This makes which convergence pos-

sible with a reasonable number of modes. This simulation is run for many different

values of dielectric loss, and the lossless case is then calculated by extrapolation.

Below is a figure illustrating the waveguide junction used in this approximation,

both in 3D and in cross-section. Also shown is the dominant mode, which is used

as the assumed field in the variational calculation3.

b I
I

aI
I

aI

b I

Figure E.1.: 3D illustration of Junction

A

Bb

a

(x,y)
0    0

(0,0)

Figure E.2.: Cross section of junction
3See ’Calculation of the Junction Admittance for a Translation Miss-aligned Rectangular Waveg-
uide Interface’ by me for details of the variational calculation.
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b B

Figure E.3.: Side View of Junction, with lossy Dielectric in Larger Guide

E.1.3. Motivation

To provide an understanding for how the ’complexification and extrapolation’ tech-

nique may have be developed, we will examine my failed initial attempts to model

the open as a step into a larger guide without loss. Below are variational solutions for

the normalized junction addmitance (really the conductance), for the discontinuity

illustrated in figure Fig. E.2, with the larger guide width being 10x larger than the

smaller guide (A
a

= 10). Examining this plot we can see many jaggy spikes. These

correspond to higher order modes ’kickin on’ in the larger guide. The simulations

are made for increasing number of modes and one observes that the trace apears to

converge, in this case, after about 30 modes are accounted for. (dont worry, a more

rigorous measure of convergence is presented later.)
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Figure E.4.:

To be confident that the larger waveuide is accurately approximating free-space, this

trace should remain stable as the larger guide is increased in size. Below is the same

plot as above, except made for larger guide widths equal to 20xa, and 100xa. What

is occuring is more modes are kickin on, and they are smoothing out the admittance.
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Figure E.5.:

Figure E.6.:

After stairing at these two plots for a few minutes, one realizes; there are two
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important quantities here.

1. The size of otuput guide needed for a stable admittance solution, and

2. The number of modes need for a convergent solution, at a given output guide

size.

The problem, which is the achillies heel to his approach, is that number of modes

needed for a convergent solution grows too fast as the output guide size is increased.

This problem can be studied quantitatively once an appropriate measure of conver-

gence is agreed upon. This turns out to be a tricky problem.

E.1.4. Convergence Parameters

The measure of convergence was based off of Bauwen’s understanding of HFSS. The

convergence parameter was defined as the maximum complex difference between

consective admitance values, taken over a band of frequencies.

σ = max
(∣∣∣Y (ω)n − Y (ω)n−1

∣∣∣ ;ω)

The tricky part is that for this value alone, is meaningless. The rate at which the

parameter one is varying from sweep to sweep (accross n) must be given to provide

meaning to the convergence parameter, σ. To the best of my knowledge, these two

values must be chosen huersitically.

To further compound the complexity, there are two convergence parameters we have

to deal with, defined as above but for different variables for n.

1. σ: The convergence of the admittance with respect to the number of modes

used, at a given scaling factor (n = #modes).
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2. ρ: the convergence of the admittance with respect to the ’scaling factor’ of the

output guide width (n = A
a
).

Below is a plot of the number of modes needed for a convergence at 625GHz, vs the

scaling factor of the output waveguide width (A
a
) for a variety of dielectric loss values

in the larger guide. The convergence parameters in this case where σ = 1e− 3, and

ρ = 1e− 3.

This figure illustrates the problem, the number of modes required for convergence

vs scaling factor is a linear relationship. Our computation order increases roughly

like the number of modes squared. ( actually 4x number of modes squared, because

I take same number of modes in each guide, and there are ’TE’ and ’TM’ modes).

This combined with a plot of the admittance with respect to the scaling factor for

a lossless, is a non-rigorous proof that this procedure is doomed.

Figure E.7.:

If loss is introduced into the larger waveguide, however, the convergence of the
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admittance with respect to the scaling factor is much improved. Below are plots

of real and imaginary parts of the admittance for 3 dielectric loss values calculated

at 625GHz. Similar plots are given in [?]. As one can see, the larger the loss the

quicker the convergence.

Figure E.8.:
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Figure E.9.:

The above plots are components of the complex admittance plot below, which is a

parametric function dependent on scaling factor.
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Figure E.10.: Junction Admittance, as Scaling Factor Increases

E.1.5. Exatrapolation

The idea now is to get three converged results (converged with respect to both σ and

ρ) and use a lagrange polynomial extrapolation to calculate the admittance value in

the lossless case.

A useful tip from [?] about the polynomial extrapolation,

As pointed out in [..], parabolic extrapolation is second-order accurate provided the

function .. is sufficiently smooth.

Meaning if the dielectric losses chosen are linearly spaced from 0 onward, the error in

the lossless case of good to the second order. For the extrapolation I used the same

dielectric loss values as in [?]. Below are plots of the Conductance and Susceptance,

as above, but for the dielectric loss values I used in the interpolation. For the

interpolation calculation used the a function from scipy (scipy.interpolate.lagrange)
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Figure E.11.:

Figure E.12.:

Below is a plot illustrating the extrapolating polynomial at 625GHz.
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Figure E.13.: Extrapolating Polynomial

E.1.6. Comparison With HFSS

Below are the simulation results compared with HFSS.

Figure E.14.:
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Figure E.15.:

Figure E.16.:
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Figure E.17.:
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E.2. Measurements of the Radiating Open

Standard at WR-10

E.2.1. Introduction

The usage of the rectangular waveguide radiating open (RO) as a calibration stan-

dard has many desirable qualities, such as

• Resistant to flange alignment verfication

• Its free

• well approximaited by simple models at higher frequencies

• Provides common impedance standard.

Recently, efforts led by Dylan Williams to produce an accurate analytical solution for

a RO with inclusion of flange effects to be used for calibration have been made4. In

contribution to these efforts, measurements verifying the solution at many waveguide

bands are being made.

This paper presents measurement results for the WR-10 waveguide band made using

an HP-8510 with HP-XXXX extension modules. These measurements include com-

parisons between a radiating open from a standard UG-387 flange and a radiating

open from an approximation to a infinite flange.

E.2.2. Setup

Below is a picture illustrating the general measurement setup. Specifically this was

taken during the measurement of the radiating open standard. Close-up pictures

illustrating each flange are seen in Figures 2 and 3.
4Reflection Coefficient of Radiating Rectangular-Waveguide Test Ports
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Figure E.18.: Picture of Setup

Figure E.19.: Close up of Approximation to Infinite Flange
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Figure E.20.: Standard Flange

E.2.3. Initial Results5

To make the following explanation clear, my naming convention is as follows:

Transmissive standards are described by a single word or phrase, while reflective

standards are described by a comma seperated word/phrase, each describing the

one-port standard on a single port. For example; (short, match) is interpreted as

meaning ’short on port 1, and a match on port 2’.

The standards measured are:

• thru

• line

• short, delay short

• delay, short short
5These measurements where made on 01/21/2011.
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• match, short

• short, match

The line and delay short standard are realized using a quarter wavelength shim at

band-center, (d = λbc
4 ). Calibrations were calculated using a generic least squares

algorithm that neglects leakage. One calibration set , refered to as ’without Match’,

set consisted of

• thru

• line

• short, delay short

• delay, short short

The other calibration set used, as ’with Match’, consisted of

• thru

• line

• match, short

• short, match

The results of the infinite flange as well as the standard flange are shown below for

each calibration set.
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Figure E.21.:
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Figure E.22.:

The results indicate that the simple HFSS model predicts results that are on the
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order of the measurement noise, and variation between calibration sets. Thus, it

is hard to conclusively state the effect that the pins and finite flange have on the

reflection coefficient for the open. However, loosly speaking, the standard flange

seems to produce a slightly larger and more varied reflection coefficient.

Of the two calibrations and both flanges, the calibration ’with match’ shows that

the infitinite flange follows the simulated response most closely.

E.2.3.1. Verification plots

These plots are calibrated measurements of standards using in the calibration set.

The de-trended phase plots are de-trended from the ideal definitions, which are

calculated analytically.
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E.2.4. Improved Results 6

E.2.4.1. Switch-terms

After a helpful discussion with Dylan, the ’noise’ in the last section was discovered to

be largely due effects of the ’switch terms’. See [24] for full details on switch terms.

In short, the switch terms are extra error terms which represent the fact that the

VNA does not fit the ’error-box’ model perfectly. This is because for VNA’s with one

source, the non-sourced port must be terminated with an internal load. The load is

not ideal, and is different for each port (actually this is due to an electronic switch).

However, the response of the imperfect load can be measured and its effects removed.

Measurement ability for switch terms in the HP8510, as well as general suport for

’un-terminating’ switch terms measurements during calibration was implemented in
6These measurements where made on 01/23/2011.
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mwavepy.

E.2.4.2. Effects of Using Switch-terms

The effects of taking into account the switch-terms where measured. This illustrated

in the plots below. Each graph contains three traces:

1. two-port: two-port calibration as described above.

2. one-port: a one-port calibration at each port using: short, delay-short, and a

load.

3. two-port with switch-terms: two-port calibration after switch-terms have been

un-terminated from the raw measurements

The results show the effect of using switch-terms is significant. The fact that the

standard two-port error seems to be bound by the one-port calibration is interesting

and I can not think of an explanation.

The verification standard used was a Rotated Delay-Short (RDS), which should have

unity reflection. The phase of this standard was predicted using both HFSS models,

and a variational solution.
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E.2.4.3. Results

The reflection coefficient and its polar components for the RO are shown below. The

labels given in the legend are explained below.

1. inf flange: large plate which approximates an infinite flange, as shown in figure

Fig. E.19.

2. std flange: the standard UG-387, as shown in figure Fig. E.20.

3. HFSS: simple HFSS simulation by alex

4. From Dylan: complex HFSS simulation from dylan

5. Variational C&E: a Variational Complexification and Extrapolation technique,

as described in 7
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Figure E.31.:

7Modeling an Open Rectangular Waveguide, with the ’Complexication and Exatrapolation’ Tech-
nique. Alex Arsenovic 10/22/2010
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E.2.4.4. Interpretation

Firstly, the measurements can interpreted simply as a verification of an analytical

model. From this persepective, it is appropriate to compare the inf flange to the

HFSS simulations. This can be done visually through inspecting the plots in the

previous section. Alternatively, it can be quantified in terms of a metric that is

more relevant to the problem of calibration; the complex distance between the two

responses. This is shown below in figure Fig. E.34 (note that the inf flange is re-

termed ’Plate’)
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Figure E.34.:

While the previous figure is important for validating the analytical model, accurately

modeling a large plate is not useful for practical calibration applications. Instead,

we need a model for the actual UG-387 flange. Because the flange is geometrically

complex, it is desirable to model only the components that are most significant to

its electrical response.
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An appropriate question to ask is; how different is the flange and infinite plate?

Shown in figure Fig. E.35 is the magnitude of the complex difference between mea-

surements of the flange and the infinite plate.
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Figure E.35.:

Comparing figure Fig. E.35 with figure Fig. E.34, we can conclude that the mag-

nitude of the difference between our model and measurement of the infinite plate,

is comparable to the difference between the infinite plate and the flange. In other

words, the accuracy of our model is comparable to the effects of the flange.

This brings us to a somewhat strange but practical comparison. Even though our

analytical model is for an infinite plate, how far is it from the measurement of the ac-

tual flange? This difference is shown in figure Fig. E.36. Suprisingly, figure Fig. E.36

indicates that theorectical response of the infinite flange is closer to response of the

standard flange. This may be attributed to two causes; either the infinite plate is

far from what we are modeling in HFSS, or the measurements are not accurate.
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Whatever the reason, it is hard to put theoretical efforts towards improving model

of the actual flange, when the model for the geometrically simpler inf plate is as

inaccurate as the two measurements are different.
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E.2.4.5. ’Good Enough’

Although improving the model for the RO may be justified in and of itself, a well

defined goal in accuracy is important to define before the standard is used in practice.

One of the main benefits of the RO as a load standard is the alieviation of flange

misalignment. Therefore, a reasonable goal is to achieve an agreement between

theory and measurments that is bettter than the error introduced by the flange for

a load standard.

Shown in figure Fig. E.37 is a comparison of the current model analytical-measurement

descrepency against two simulations of misalignment on a perfect match standard.

1. Misaligned Match 1: perfect match with missalignment of δa, δb = a
10
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2. Misaligned Match 2: perfect match with missalignment of δa, δb = a
30
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From this plot, it can be concluded the effects of the simulated waveguide missalign-

ments are more significant than the inacuracy of the RO model. This conclusion

relies on the assumption that our measurements faithfully represent the true re-

sponse of the RO.

In other words, our model for the RO is in error, but this error is less than the error

introduced by a waveguide missalignment of a
30 .

Complex plots of the different load standards are shown below.
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E.3. Self-Calibration of Misaligned Rectangular

Waveguide

E.3.1. Summary

A virtual experiment, has been constructed to test the performance of a self-calibration

routine in presence of flange-induced translation missaligment errors. The results

for the initail test are shwon in detail. Following this, a monte-carlo simulation was

conducted to determine the algorithms average performance, given a realistic model

for the offset.

The results show that the procedure does work. How well?

• Given offsets of approximaitley a
10 in each dimension, the offsets where deter-

mined to within about 20% of their true values (within 5% for the monte-carlo

analysis).

• The improvement in determined embedding network scattering parameters

error, is approxmaitly an order of magnitude.

The results are encouraging, and warrant further investigation, but must be inter-

preted within the correct scope. This experiment has shown that the procedure

works in pressence of noise, given that the the flange miss-alignment is the ONLY

source of systematic error. It may also work in presence of other systematic errors,

with or without a modified self-calibration scheme, but this cannot be assserted from

the following results.
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E.3.2. Explaination of Setup

• A ficticous, but reasonable, 2-port error network was used to simulate the

systematic effects of the VNA.8

• A calibration was performed using the following standards; short, open, match,
λbc
4 delay short. It was arbitrarily simulated at X-band, but the entire process

scales seemlessly to any band.

• The short and open where both assumed to be perfect. The match and delay

short where simulated with randomly selected, but known, translation off-

set of magnitude approximaitly a
10

9. This value is taken from measurement

estimates at WR-1.510

• Standards where cascaded behind the ficticous VNA to simulate measure-

ments. Realistic, additive, white gaussian noise, based off previous measur-

ments of VNA drift was then added to the measurements11. Note that this

noise has different distrobutions in magnitude and phase components.

• The measurements where then used in a standard least squares calibration

and a self-calibration routine with unknown translation miss-alignment12.

• Algorithm Configuration: The self-calibration was provided
(
a
20 ,

a
20

)
as the ini-

tial guess for offsets. The function and parameter vector tolerance (ftol,xtol)

passed to the minimization algorithm was 1e-5. The variational calculation

used to calculate the response of the offset junction, was set to converge

the maximum succeeding normalized difference in junction addmittance to

max (∆Y ′ (n, n− 1)) = 1e− 3.
8The S-parameters for VNA was taken from a previous calibration.
9see my variational expression for waveguide offsets

10From Hesler and Dylan
11see my VNA noise analysis
12see my paper on self-calibration

267



E.3 Self-Calibration of Misaligned Rectangular WaveguideApplications of Variational Techniques

E.3.3. Results

The true, and self-calibration determined offsets for the delay and match standards

are plotted below. The determined offsets are very close to the true values, with

an error of about 20% of the magnitude of the offset. This data is interesting two

reasons:

1. it provides verification that the algorithm finds the true values, and

2. it provides a way to measure flange missalignment, by using the flanges them-

selves.

Figure E.39.: True vs to Determined Offsets

Below is a a plot of the magnitude of the errror in determined scattering parameters

of the embedding network. The self-calibration routine shows an order of magnitude

improvement over the traditional least squares approach.
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Figure E.40.: Error in Scattering Parameters of Determined Embedding Network

For practical figures of merit, which more closly resembles somthing you could wit-

ness in an actual measurement, calibrated measurements of verification standards

are given. The following is calibrated measurements of a perfectly aligned λbc
8 shim,

ad a perfectly aligned match.
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Figure E.41.: Calibrated Measurement of λbc
8 shim (not used in calibration).

Figure E.42.: Calibrated Measurement of Perfect Match (not used in calibration).
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E.3.4. Monte-Carlo Statistical Analysis

A statistical analysis was conducted to ensure that the above performace was not

abnormal for the routine. The same calibration as described above was conducted

101 times, which means 201 offset flange interfaces. The flange offsets where selected

as random variables from a physically realistic distrobution. The magnitude was

sampled from an arc-sine distrobution13, with largest offset being a
10 . The phase was

selected from a uniform distrobution between 0, 2π. A histogram of the randomly

chosen offset magnitudes, is shown in the plot below.

Figure E.43.:

The normalized error in determined offset was measured as the euclidean distance

between the actual offset and the deftermined offset. A histogram of the normalized

error is shown below. From this sample, the normalized error was all below 5%.

This is better than originally simulated. Offsets of magnitude < a
100 where removed

13see dylan’s 500-750ghz waveguide calibration paper
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from this histogram because their normalized error is exagerated due to their small

magnitue.

Figure E.44.:

To concisely represent the information displayed in figure Fig. E.40 for the numer-

ous calibrations, a concise metric was made. This metric is long-winded but self-

explanitory, its the mean of the magntiudes of the error in the embedding network’s

scatter parameters. A histogram of this metric for both the least squares calibration

and the self-calibration are shown below. It shows that the error in self-calibration

was smaller on average, by an order of magnitude.
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Figure E.45.:

E.3.5. Conclusion

Given the assumed models for systematic and random errors the self-calibration

method can provide significant improvements in measurements, as well as provide a

way to measure flange-aligment using standards which use the flanges themselves.

It is important to note that the simulation here assumes accurate knowledge of two

other standards. In this case, those standards where a short and radiating open.

This simulation also assumes there is no other source of systematic error.

E.3.6. Furture

Other calibration kits could be simulated such as, short, 2-delays, and a match.

Also other sources of systematic errors could be introduced, such as waveguide

dimensional uncertainty.
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