
 
 

 

 

 

 

 

VALIDATING A MATHEMATICS INTERIM ASSESSMENT WITH COGNITIVELY 

DIAGNOSTIC ERROR CATEGORIES 

 

A Dissertation 

Presented to the Faculty of the Curry School of Education 

University of Virginia 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

 

 

 

By 

Christine C. Hutchison, B.A., Lynchburg College 

May, 2014 

 

 

 

 



 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Christine C. Hutchison 

All Rights Reserved 

May, 2014 
 

 



 

iii 

 

 

Abstract 

J. Patrick Meyer, III 

 

The stressors of the No Child Left Behind Act have thrust educators into a data-

driven accountability culture.  As school divisions are racing to keep up with increasingly 

higher achievement demands, educators are scrambling to find testing and instructional 

methods for improving mathematics achievement prior to students sitting for end-of-

grade (EOG) and end-of-course (EOC) tests.  Over the past several years, interim 

assessments have emerged as a possible solution, although there is a paucity of empirical 

research to support interim assessments as vehicles for improving mathematics 

achievement.  The purpose of this mixed methods study was to create and validate a 7
th

 

grade mathematics interim assessment which incorporated cognitively diagnostic error 

categories.  The interim assessment followed an ordered multiple-choice test design 

where distractors represented students’ common errors.  Inspiration for the development 

of the error categories came from the cognitive and school improvement literature.  The 

error categories comprise: conceptual, procedural, and attention errors.  Validity evidence 

was gathered from qualitative sources (i.e., student cognitive think-alouds, expert teacher 

reviews), and quantitative sources (i.e., classical test theory analysis, distractor analysis, 

differential item functioning, and a partial credit item response theory analysis).  Results 

suggest that there is validity evidence to support the development of the cognitively 

diagnostic error categories and the overall test design. Of the three error categories, the 

attention error category was the most problematic and erratic.  Validity evidence to 
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support the ordering of the error categories was not consistent.  More research needs to be 

done in the development of the attention error category and the ordering of all three error 

categories.  Limitations to the study and opportunities for future research were discussed.   
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Chapter I: Validating a Mathematics Interim Assessment with  

Cognitively Diagnostic Error Categories 

With the enactment of the No Child Left Behind Act of 2001(No Child Left 

Behind Act of 2001, 2002) all states are required to establish accountability systems with 

the express purpose of closing the achievement gap among all students, especially 

marginalized subgroups.  Consequently, all states administer high-stakes summative 

assessments which reflect state content standards in reading and mathematics.  In the 

elementary and middle school, these assessments are referred to as end-of-grade (EOG) 

assessments while in the high school setting these assessments are called end-of-course 

(EOC) tests.   

In the eleven years since NCLB has become law, education has been transformed 

into a data-driven culture.  Educators are expected to use EOG and EOC summative 

assessments as barometers of student achievement as well as indicators of how 

achievement and instruction might be improved.  But, educators and policymakers know 

that EOC/EOG assessments do not “provide instructionally useful information” (Perie, 

Marion, & Gong, 2009, p. 5).  In fact, many schools have not been able to maintain the 

increasingly high achievement benchmarks required to attain adequately yearly progress 

(AYP) and school accreditation.  Without this consistent attainment of AYP, some schools 

have been forced into school improvement by their State Departments of Education.  If 

school improvement has not ameliorated the school’s achievement, the school becomes 

subject to sanctions and possible government takeover (Hu, 2011; "School Boards File 

Lawsuit School Takeover is Unconstitutional," 2013).  School takeovers have occurred in 

many states: New York, California, Connecticut, New Jersey, and Pennsylvania (Hu, 
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2011; Rundquist, 2013).  Not surprisingly, this legislation has caused considerable angst 

among teachers and administrators alike.   

In response to the stressors of the NCLB accountability climate, President Obama 

has called for a reauthorization of the Elementary and Secondary Education Act (ESEA) 

of 1965 (United States Department of Education [US Department of Education], 2010).  

Obama’s plan eliminates AYP benchmarks with more flexible school reform measures.  

His plan addresses several key priorities: a focus on all students being college and career 

ready through new courses, tests, and teacher professional development centered on new 

college and career ready standards; a revision of teacher and principal evaluation 

measures based on teacher observations and student growth models; greater support for 

charter schools and other innovative instructional plans which address continuous school 

improvement and closing the achievement gap (US Department of Education, 2010, pp. 

3-6).  Clearly, accountability is not going away.  Despite President Obama’s push for 

reauthorization of the ESEA, educators still require instructionally meaningful methods 

to measure and increase student achievement.   

Given NCLB and the reauthorization of the ESEA, some school districts have 

implemented interim assessments to provide teachers with instructionally useful data 

about students’ achievement prior to their sitting for the state EOG/EOC assessment.  

Interim assessments are defined as assessments that lie characteristically between 

formative and summative assessments (Perie et al., 2009; Perie, Marion, Gong, & 

Wurtzel, 2007).  Unlike formative assessments, interim assessments are not classroom 

assessments (Clune & White, 2008; Perie et al., 2009; Perie, Marion, Gong, & Wurtzel, 

2007).  They are standardized assessments developed by testing companies, school 
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district content specialist(s), or a combination of teachers and district level content 

specialist(s).  Although teachers may participate in the development of interim 

assessments, they are typically not the sole authors.  Whereas formative assessments are 

administered during or immediately following a specific curricular unit, interim 

assessments are typically administered one to three times a year.  As such, feedback from 

interim assessments is less immediate to instruction.  Because interim assessments are 

administered less frequently than classroom assessments, they can examine student 

retention of key content and student growth as teachers prepare students for the 

EOC/EOG assessment.   

Background 

Little empirical research has occurred with interim assessments.  Much of the 

research has relied on teacher observations, interviews, and surveys (Christman et al., 

2009; Clune & White, 2008; Goertz, Oláh, & Riggan, 2009; Marsh, Pane, & Hamilton, 

2006).  Several of these studies revealed that teachers alter their instruction in response to 

interim assessment data (Christman et al., 2009; Clune & White, 2008), although there is 

substantial variability in how effective teachers are in their data analysis and 

interpretation (Goertz et al., 2009).  Fewer studies have investigated the effect of interim 

assessments on student achievement.  The Carlson et al. (2011) study is one of the first 

large-scale empirical studies which suggests that interim assessments are a viable means 

of improving student achievement in mathematics.  The Carlson interim assessments 

mirrored the state test blueprint and were administered as quarterly, predictive 

assessments.  Training was provided to teachers and administration in data analysis, data 

interpretation, and the data-driven reform process.  Despite the significant contributions 



4 

 

 

of the aforementioned studies, no research has explored what interim assessment 

framework may be cognitively and instructionally meaningful for teachers.  Cognitive 

diagnostic assessments offer a possible interim assessment framework to support these 

goals. 

Cognitive diagnostic assessments (CDAs) are assessments of student learning 

which diagnose student “knowledge structures and cognitive processing skills” so that 

remediation is informed (Leighton & Gierl, 2007b, p. 3; Nichols, 1994).  Leighton and 

Gierl (2007a) suggest that if a cognitive model is not empirically derived, then it cannot 

support diagnostic inferences.  Nichols (1994) submits that the underlying cognitive 

theory of CDA is used to generate assessments and predict results.  Assuming that a CDA 

meets both conditions set forth by Leighton, Gierl, and Nichols, the resulting data should 

allow teachers to “alter student misconceptions and faulty strategies” (Leighton & Gierl, 

2007b, p. 6).  However, despite these theoretical definitions, no clear testing framework 

for CDA achievement tests has been established.   

Several researchers have created CDA models as a paradigm for diagnosing 

student content strengths and weaknesses and to potentially inform instruction (Briggs, 

Alonzo, Schwab, & Wilson, 2006; Embretson, 1998; Gierl, Leighton, & Hunka, 2007; 

Mislevy, Almond, & Lukas, 2003; Mislevy & Haertel, 2006; Rupp & Templin, 2008; 

Rupp, Templin, & Henson, 2010; Tatsuoka, 2009).  The challenge is to find a testing 

framework that is not too fine or large grain so that the test data are not overwhelming to 

teachers while simultaneously being rich in diagnostic data.  Six approaches to CDAs are 

discussed in this study: the Rule-Spaced Model (RSM), the Attribute Hierarchy Model 



5 

 

 

(AHM), the Diagnostic Classification Model (DCM), Evidence-Centered Design (ECD), 

the Cognitive Design System (CDS), and Ordered Multiple Choice (OMC) assessments.   

The RSM is a statistical model that combines error theory and item response 

theory (IRT) to classify and diagnose student’s cognitive errors (Tatsuoka, 1983, 1986, 

2009).  The RSM is comprised of two stages, the selection of feature variables and 

statistical pattern classification.  The selection of feature variables is supported by Q 

matrix theory and the development of several supporting matrices.  Oftentimes the RSM 

is retrofitted to an existing test which compromises the cognitive diagnostic capability of 

the assessment (Gierl, 2007; Gierl et al., 2007).  Moreover, the RSM offers the educator a 

fine-grained diagnosis of student content strengths and weaknesses which would likely 

not be practical for teachers.   

Like the RSM, the AHM employs Q matrix theory and attributes which are 

developed by content experts (Gierl, 2007; Gierl et al., 2007; Leighton, Gierl, & Hunka, 

2004).  AHM attributes are represented in the same type of matrices seen in Tatsuoka’s 

RSM.  The primary differences between the RSM and the AHM are (a) the AHM is 

applied a priori to a test and (b) the AHM focuses on student content mastery opposed to 

student error analysis.  An emphasis on content strengths may leave gaps in teachers’ 

understanding of student weaknesses as content weaknesses are not necessarily an 

absence of content strengths.  Students have content weaknesses for a variety of reasons 

and the AHM does not appear to help in illuminating what those weaknesses are.  

Furthermore, the AHM is likely too mathematically sophisticated for most teachers to 

comprehend.  The fine-grain diagnosis of students’ achievement using the AHM would 
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likely overwhelm teachers.  Finally, the AHM is not recommended for achievement tests 

(Gierl et al., 2007).  

The next model, the DCM is a statistical model that predicts student performance 

according to a set of mastered attributes (Rupp & Templin, 2008; Rupp et al., 2010).  

Like AHM, the DCM employs a Q matrix to specify the item attribute relationship where 

attributes are assigned a priori.  However, because the DCM allows any given item to 

have more than one latent skill load on it, the items are multidimensional.  For instance, if 

one attribute is addition and another is subtraction, one item might assess both the 

addition and subtraction attributes.  Unlike most assessment models, the DCM does not 

provide a scaled score, but rather a profile of mastered skills or attributes.  The student 

mastery profiles are presented as probabilities of mastery.  Despite the attribute mastery 

profiles, DCMs focus on why a student is not performing well.  Because this model is 

centered on skills acquired rather than a cognitive processing diagnosis, it is not an 

appropriate model for this study.   

Following is ECD which is a construct-centered approach that focuses on the 

accumulation of evidence to support student inferences.  Thus, ECD addresses the 

validity of a test’s scores.  ECD divides test development into four models: student 

model, evidence model, task model, and assembly model (Gorin, 2007; Mislevy et al., 

2003).  The student model characterizes a student’s mastery of specific skills linked to the 

test’s purpose.  The evidence model describes the observable behaviors required to 

support the student model while the task model defines the kind of task required to elicit 

item mastery.  Finally, the assembly model expresses how the student, evidence, and task 

models work together to present the final assessment.  Although the ECD provides a 
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comprehensive approach to cognitive test development and test validity, it also appears to 

be a renaming of traditional test design principles.  Hence, the ECD does not appear to 

offer any new information for this study.   

The fifth model, the CDS merges cognitive principles with test design in a fashion 

that may not be overwhelming to teachers.  With CDS, cognitive theory precedes test 

design and item development (Embretson, 1998, 1999, 2010; Embretson & Gorin, 2001; 

Gorin, 2007).    Psychometric models are used to evaluate the model fit of the item 

responses.  Items with good model fit provide strong evidence of the construct being 

measured.  On the other hand, items with poor model fit need to be reviewed for item 

refinement or the construct needs to be reconsidered.  CDS is typically used for ability 

measures, such as spatial reasoning tasks.  Some of Embretson’s ability tests are multiple-

choice assessments.  Embretson’s most prominent finding from her multiple-choice 

assessments was that the decision process was impacted by the nature of the distractors 

(Embretson & Gorin, 2001, p. 360).   

The last model is OMC assessments, which given their multiple-choice format 

already is familiar to teachers.  OMC assessment researchers recommend that distractors 

should be written using students’ common errors and misconceptions (Briggs et al., 

2006); however, this model does not include students’ thinking processes in the 

composition of test items.  In addition, the distractors do not represent error categories, 

but rather levels of student understanding.  Although the OMC assessments are the 

closest test framework to the interests of this study, changes still need to be made so that 

they are suitable as cognitively diagnostic interim assessments.   
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Although some empirical studies have investigated these assessment types 

separately, I have found no empirical studies that have validated an interim assessment 

that is cognitively diagnostic.  This mixed methods study merges interim assessments, 

CDA models, cognitive psychology, and mathematics cognition using a framework built 

around the following principles.  First, teachers are demanding that any required 

assessments have “maximum instructional value” (Huff & Goodman, 2007, p. 24).  If 

interim assessments could point specifically to where student misconceptions lie and 

where deficits are in students’ cognitive processes, interim assessments could foreseeably 

render “maximum instructional value.”  Second, interim assessments must incorporate 

student misconceptions in the item scoring.  Third, most interim assessments are 

multiple-choice tests where item responses are scored dichotomously.  The resulting 

scores describe student’s correct responses, but reveal nothing about students’ incorrect 

responses.  As such, these assessments lose valuable data about student misconceptions 

making instructional modification difficult (Black & Wiliam, 1998) and fueling criticisms 

for why they cannot be used for cognitive diagnosis (Hermann-Abell & DeBoer, 2011).  

Fourth, some CDA models are fine-grain tests that potentially inundate teachers with too 

much data.  For instance, if a teacher administers a 25-item mathematics interim 

assessment to her 120 secondary students and each item has 4 response options, she has 

25 data points per student.  This translates into 3,000 data points per interim assessment.  

Clearly, the volume of this data is overwhelming to teachers who are attempting to 

remediate student cognitive weaknesses and extend student understandings.  My goal is 

to develop a mathematics interim assessment framework that integrates each of these 

principles.   
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Inspiration for how to develop a mathematics interim assessment to meet each of 

these principles comes from the cognitive and interim assessment literature (Baddeley, 

2007; Bjorklund, 2005; Dehn, 2008; Feifer & De Fina, 2005; Goertz, Oláh, & Riggan, 

2009; Matlin, 2002; Mazzocco & Devlin, 2008).  For instance, Goertz et al. (2009) 

investigated how teachers used multiple-choice mathematics interim assessments to 

modify instruction.  These teachers developed four error categories to explain student 

performance: a procedural-conceptual continuum, conceptual understanding, other 

cognitive weaknesses which included test anxiety, difficulty maintaining attention, and 

weak reading ability, and contextual diagnoses which were outside the realm of school 

influence.  Several components of these error categories fit with an information 

processing approach to cognition:  procedural-conceptual continuum, conceptual 

understanding, and attention (Baddeley, 2007; Bjorklund, 2005; Dehn, 2008; Feifer & De 

Fina, 2005; Matlin, 2002). 

To capture the spirit of the aforementioned categories and provide a mechanism 

for teachers to more easily differentiate and remediate instruction, I redefined the error 

categories as procedural knowledge, conceptual or declarative knowledge, and attention.  

A brief definition of each error follows.   

Attention errors suggest lapses in selective and/or sustained attention abilities 

(Baddeley, 2007; Bjorklund, 2005; Feifer and De Fina, 2005; Matlin, 2002; Sergeant, 

1996).  I submit that attention errors are more about what students did not do in their 

problem solving, rather in what they did do.  In other words, attention errors are sins of 

omission instead of commission.  For instance, they may have left off the last step when 

solving a problem, thinking they had completed the entire series of steps.  This leaving 
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off of the last step may be due to a lapse in sustaining their attention on the mathematics 

problem solving.  In this case, the formula(s) chosen are correct, and the procedures and 

calculations are correct.   

Procedural errors are related to procedural knowledge and are defined as 

calculation errors or missteps in problem solving.  For example, in the calculation of a 

multi-step problem, perhaps the student begins the problem correctly and then makes a 

calculation error further in their problem solving.  Or, in a word problem, maybe they 

understood what the problem was asking, selected the correct formula, but then they 

made mistakes using the formula.  Or, perhaps the student calculated the slope of a line as 

,
y

x




rather than .

x

y




 

Conceptual/declarative errors are tied to conceptual/declarative knowledge, which 

refers to “knowledge about facts and things” (Matlin, 2002, p. 254).  In a mathematics 

context, conceptual errors can be defined as mathematics vocabulary, mathematics facts, 

mathematics rules, mathematics notation and their meanings, and the selection of an 

appropriate formula or operation for a given problem.  Many times the errors refer to the 

student’s absence of some factual information.  For example, suppose a student is asked 

to graph a series of points in a Cartesian coordinate plane.  If the student reverses the x- 

and y-coordinates for all of the points, it could be deduced that the student does not know 

which axis is the x-axis or y-axis.  On the other hand, if the student did not reverse all of 

the coordinates, it is possible that this represents a procedural error.  Conceptual errors 

also encompass conceptual understanding, but some resources are not clear on exactly 

what this entails.   
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These new error categories can potentially link students’ thinking processes with 

their acquired skills.  As a result, the error categories can give direction to teachers in 

how they remediate student content weaknesses.  For example, if a student has more 

conceptual errors, a teacher might use manipulatives or other hands-on instructional 

strategies to remediate their conceptual misunderstandings.  Alternatively, if a student has 

more procedural errors, a teacher might focus on using foldables, flow charts, or thinking 

maps to review the correct process for solving a specific type of problem.  On the other 

hand, if the student has made more attention errors, the teacher might work on helping 

the student with planning and executive function skills so that the student can be more 

successful in his or her mathematical problem solving.   

To align the error categories with item scoring, it would be helpful to order these 

categories according to their degree of correctness.  Several researchers’ work gives 

direction to how the ordering of these error categories could be conceptualized.   

Mazzocco and Devlin’s (2008) research compared students with low mathematics 

achievement (LA) to those with mathematical learning disabilities (MLD).  Their 

research showed that in general students with MLD had a “weak rational number sense 

and inaccurate beliefs about rational numbers” whereas students with LA exhibited a 

partial understanding of fractions and decimals with a propensity to memorize labels, 

procedures, and fraction to decimal equivalencies without a clear understanding of 

fundamental concepts (Mazzocco & Devlin, 2008, p. 690).  This study not only gives 

credibility to the creation of conceptual and procedural error categories, but it also 

suggests that students with less mathematical skill (MLD) make more conceptual errors 

than students with more mathematical skill while students with slightly more skill (LA) 
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have some conceptual and procedural understanding.  Other research studies are 

consistent with this generalization (Geary, Hoard, & Bailey, 2011; Mazzocco, Myers, 

Lewis, Hanich, & Murphy, 2013).   

Baddeley’s (2007) model of working memory provides further inspiration for an 

attention error category.  His model is divided into three components: the phonological 

loop, the visuo-spatial sketchpad, and the central executive.  Depending upon the nature 

of a given mathematics problem, each of these working memory components could be 

involved in mathematical problem solving.  However, attentional capacities reside within 

the central executive component and are the most “crucial feature of working memory” 

(Baddeley, 2007, p. 124).  The central executive is “crucial” because it determines which 

information in a mathematics problem should receive attention and which should not 

(Feifer & De Fina, 2005).  Furthermore, Baddeley (2007) and Feifer and De Fina (2005) 

argue that not only is the central executive critical in directing, shifting, and sustaining 

attention, but it is also important in the inhibition of negative distractors and the selection 

of necessary strategies to execute a cognitive task.  The central executive, therefore, 

orchestrates the action required in working memory and, in turn, mathematical problem 

solving.  Since attention is more about focus and orchestration and less about the storage 

of memory components, perhaps attention errors are lesser errors than procedural and 

conceptual errors because they are not about stored memory components.   

Based on the aforementioned research, I am positing that attention errors are the 

least serious of the three error categories, followed by procedural errors, and then 

conceptual errors.  Once the data is collected, the exact ordering of the error categories 

will be validated.    



13 

 

 

The purpose of this study is to create and validate an interim assessment for 7th 

grade mathematics.  The assessment will consist of ordered multiple-choice categories 

with distracters that contain common student misconceptions.  The error categories will 

be linked to cognitive processes and will comprise: attention, procedural knowledge, and 

declarative or conceptual knowledge.  Through error analysis, educators will be able to 

determine student’s error patterns so that teachers will be better equipped to remediate 

their misconceptions and faulty strategies and extend their understandings.  

This study will answer the following research questions:  

(1) What validity evidence from the expert reviews and cognitive interviews 

supports the error categories? 

(2) What is the relationship between students’ problem-solving errors and 

teachers’ perceptions of students’ problem-solving errors? 

(3) What is the item response theory evidence to support the OMC interim 

assessment framework?   

(4) Do the errors made by advanced 6
th

 grade mathematics students differ 

from those made by general 7th grade mathematics
1
 students? 

(5) Do the errors made by special education mathematics students differ from 

those made by regular mathematics students? 

                                                 

1
 In this school division many SOL courses are divided into two sections, “advanced” and 

“general.”  In this division, 7
th

 grade mathematics SOLs are taught in two courses, advanced 6
th

 grade 

mathematics and general 7th grade mathematics.  Students enrolled in advanced 6
th

 grade mathematics are 

presumed to have higher ability levels while those in general 7th grade mathematics are presumed to have 

lower ability levels.  Thus, this terminology is division specific.   
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Methods 

Because the purpose of this study is to create and validate an interim assessment 

for 7
th

 grade mathematics and to use the resulting test scores to inform instruction, 

validity evidence was required from multiple sources to support inferences drawn about 

this population (Crocker & Algina, 2008; Haladyna, 2004; Haladyna & Rodriguez, 2013; 

Kane, 2009).  As suggested by Haladyna (2004), much of this validity evidence came 

from a study of the item development procedures and an item analysis.  Additional 

evidence was gathered from expert teachers’ reviews and student interviews.  Therefore, 

a mixed-methods research design was employed because quantitative and qualitative 

methods were necessary to answer the research questions.  Analyses were performed 

separately and then mixed during the discussion and interpretation of the data.  

Ultimately, the validation process was a joining together of the test’s purpose, its 

inferences about the population, and the evidence gathered to support those inferences 

(American Educational Research Association, American Psychological Association, & 

National Council on Measurement in Education, 1999; Kane, 2006; Schmeiser & Welch, 

2006). 

Test development.  One middle school mathematics teacher and I created the 

initial interim assessment test items.  Each test writer used the Virginia SOL Test 

Blueprint (Virginia Department of Education [VDOE], 2009a), 7
th

 grade Mathematics 

Curriculum Framework (Virginia Department of Education [VDOE], 2009b), and the 

local 7
th

 grade mathematics pacing guide as guides for test item content development.  In 

addition, the test writers followed the item-writing guidelines promulgated throughout the 
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theoretical and empirical research literature (Haladyna, 2004; Haladyna & Downing, 

1989a; Haladyna & Downing, 1989b).   

We created a 25-item interim assessment with ordered multiple-choice (OMC) 

error categories such that distracters represented common student misconceptions.  This 

interim assessment represented the third 9 weeks interim test for a Virginia school 

division.  The interim assessment addressed SOLs: theoretical and experimental 

probability (7.9), compound probability (7.10), statistics (7.11), relations (7.12), writing 

and evaluating algebraic expressions (7.13), properties of operations (7.16), arithmetic 

and geometric sequences (7.2), and solving linear equations (7.14).  Seventeen test items 

were devoted to these SOLs out of the total of 25 test items.  The remaining 8 items 

constituted common items from the previous interim assessment.  After the second 9 

weeks interim test administration, a frequency analysis was used to determine the lowest 

performing items for the division.  The frequency analysis measured the number and 

percent of students who correctly responded to each item.  The 8 items with the lowest 

percent correct formed the basis for the common items on the subsequent interim 

assessment.  Common items did not refer to the same test items, but rather similar test 

items.  Common items were defined as (a) items which used the same question stem with 

different numbers, (b) items in which the sequence of the response options changed so 

that if option A was previously correct, this was no longer the case, and (c) items which 

retained the same location within the overall test.  I am hypothesizing that this common 

item model was a sufficient measure of student remediation and growth in achievement.  

The common item SOLs included: proportional reasoning (7.4), volume and surface area 
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of rectangular prisms and cylinders (7.5), similar quadrilaterals and triangles (7.6), 

properties of quadrilaterals (7.7), and transformations of polygons (7.8).   

Once the first draft of each test was developed, middle school mathematics 

teachers from the division reviewed the items and key through a peer review process to 

ensure that the items were aligned with the 7
th

 grade mathematics SOLs and the 

division’s pacing guide.  Teachers were asked to confirm that the key was accurate and 

that all test items were clear, free from errors, and appropriate for 7
th

 grade students.  No 

revisions to items or the key were required before test implementation. 

Each item included three distractors which encompassed students’ common 

mistakes or misconceptions.  Based on the cognitive research previously discussed, I 

propose that the error categories attention, procedural knowledge, and conceptual 

knowledge were sufficient in describing students’ common mathematics mistakes.  

Although these three error categories might be satisfactory, I do not anticipate that they 

describe all nuances of mathematics cognition.  Other categories may emerge in this 

study, but at this point, these three error categories appear to be the most salient in 

describing students’ mathematics problem solving and the source of their common errors.   

Errors were ordered according to their degree of correctness.  Students’ scores for 

each item were represented as partial credit scores.  Correct responses were scored as 3, 

attention errors as 2, procedural errors as 1, and conceptual/declarative errors as 0.   

These error categories are not believed to be mutually exclusive (Kruschke, 2005; 

Rittle-Johnson & Siegler, 1998).  The overlap and influence of one error category on 

another could make the assignment of error categories arduous.  Thus, the assigned error 

category represented the primary or overarching cognitive error.  In this way, the most 
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prominent cognitive feature of the error should be recognized.  Correct error category 

assignment is very important to the eventual success of teachers’ remediation efforts.  

Incorrect error category assignment could result in a teachers’ misunderstanding of 

student mistakes and the selection of inappropriate remediation interventions. 

Cognitive interviews and expert teacher reviews.  To validate the development 

of the error categories, 12 students and 3 teachers participated in retrospective cognitive 

think-alouds (TA).  Student TAs centered on students re-enacting their mathematics 

problem solving.  Probes constituted questions such as, “tell me why you moved from this 

step to that step?” or “can you show me what you were thinking?” or “why did you not 

select answer A?”  Answers to some of these probes could illuminate a student’s 

problem-solving rationale and perhaps pinpoint why students struggle mathematically.  

The resulting data was used to confirm the development and assignment of the error 

categories.  Teacher TAs focused on their perceptions of student errors.  The teacher TA 

data allowed for the comparison of teachers’ pre-conceptions of student errors with 

students’ explanations of their reasoning.   

Three different middle school mathematics teachers participated in the rating of 

the error categories.  The teacher raters were trained according to the error category 

rubric.  The training constituted a theoretical explanation of each error category and its 

relationship to cognitive processing.  Several test examples were provided of incorrect 

responses and their error category assignment.  The teacher raters were given the 

opportunity to practice categorizing errors on several items before the rating data was 

collected.  The teachers rated all 25 test items using the interim assessment items and the 
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answer key without error categories.  Since each item had three incorrect responses, each 

teacher rated 75 incorrect response options.   

Participants.  All advanced 6
th

 grade and general 7th grade mathematics students 

were administered the interim assessment.  However, nine advanced 6
th

 grade and general 

7th grade mathematics students participated in the student TAs. Three mathematics 

teachers participated in the teacher TAs and three different mathematics teachers were 

teacher raters.  Each teacher participant had a minimum of three years of teaching 

experience.  As such, teacher participants had an in-depth understanding of common 

student misconceptions and middle school mathematics.   

Data collection procedures.  Parental consent forms were distributed to all 

advanced 6
th

 grade and general 7th grade mathematics students at three middle schools 

prior to interim assessment administration.  A stratified random sample of students was 

selected from those forms in which parents bestowed consent.  Stratification occurred in 

two ways: middle school matriculation and course enrollment (i.e, advanced 6
th

 grade 

mathematics and general 7th grade mathematics).  This double stratification ensured that 

students from each course were represented in a given school’s random sample.  Because 

three students were selected from each school, a total of nine students were selected for 

the TAs.  Student assent procedures (i.e., written and verbal assent) were followed to 

ensure the willingness of each student to participate in the cognitive interview process.   

The sampled TA students were interviewed in a secure testing location on the 

school campus.  Student 1 at each school was interviewed for items 1-8, student 2 at each 

school was interviewed for items 9-16, and student 3 was interviewed for items 17-25.  A 

student think-aloud protocol was utilized giving each interview a consistent structure.  
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Each think-aloud was audio-taped and transcribed to ensure the interview methodology 

was followed.  The think-aloud interview was untimed allowing students ample time to 

problem solve.  

Subsequently, three teacher TAs were administered in the teacher’s classrooms 

during their planning periods.  The teacher TAs were audio-taped and transcribed to 

ensure the interview methodology was followed.  Educators examined the same test items 

the sampled students were given.   

Finally, the teacher raters were trained using the training protocols.  Once the 

teacher raters were comfortable with how to rate the distractors, they each rated all 25 test 

items.  Teacher raters were permitted to use their training resources to better assist them 

in assigning error categories to each distractor.  

Student group comparisons according to types of errors.  In the current 

accountability climate, teachers are required to use test data to drive instruction, but many 

teachers are in a quandary how to achieve this expectation (Mandinach & Honey, 2008; 

Marsh, et al., 2006; Young, 2006).  Anecdotally, these teachers may make comparisons 

between some of their student subgroups (e.g., special education students, second-

language learners, disadvantaged students) wondering what are the cognitive strengths of 

some of these groups?, what are their shared cognitive weaknesses? should I use different 

instructional strategies for one group versus another to increase achievement?  If, for 

instance, teachers had evidence that special education students make more conceptual 

errors as a group than general education students
2
, this data could be helpful in teachers’ 

                                                 

2
 General education is a division-specific term that signifies those students who do not receive 

special education or 504 accommodations.   
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instructional planning and remediation.  It is questions like these that suggest an 

investigation needs to be made comparing the student groups in this study.   

The student participants in this study were divided into several student groups:  

advanced 6
th

 grade versus general 7th grade mathematics students and general education 

versus special education mathematics students.  I was interested in discerning if either of 

these student groups differs in the types of errors made.  If so, this data would provide 

teachers with valuable lesson planning/remediation data.  For example, if general 7th 

grade mathematics students as a group made more conceptual errors than advanced 6
th

 

grade mathematics students, this data would suggest that teachers place greater emphasis 

on conceptual knowledge constructs (e.g., mathematics vocabulary, mathematics facts, 

mathematics notation, and general mathematics concepts).   

Data analysis.  An item analysis was performed using the psychometric program 

jMetrik (Meyer, 2002).  The item analysis comprised a classical test theory analysis, 

distractor analysis, differential function analysis (DIF), and item response theory (IRT) 

analysis of polytomous items.  Since the test items are polytomous where “partial credit 

[is awarded] for partial success,” the IRT partial credit model was employed (Masters, 

1982, p. 150).  An important contribution of an IRT analysis is the item map (Wilson, 

2005).  Here the item map served two functions: it helped validate the ordering of the 

error categories and it provided teachers an additional diagnostic tool of students’ content 

strengths and weaknesses.  Furthermore, the error categories were also validated using a 

chi-square analysis, which compared the IRT theta values to the error category 

assignments on the test key.     
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Transcriptions of the student and teacher TAs were analyzed for patterns and 

trends using case-ordered matrices (Miles & Huberman, 1994).  Student and teacher 

responses were analyzed to determine how well they fit with the error category 

descriptions.  Descriptive statistics were calculated to characterize the quality of the 

student mathematics talk and teacher’s expert review of students’ problem-solving 

behaviors.  Three Chi-Square analyses were performed to determine the degree to which 

(a) the expected error categories matched the student responses, (b) the expected error 

categories matched the teacher perceptions, and (c) the student responses matched the 

teacher perceptions.  The teacher ratings were then evaluated for their interrater 

agreement.   

Finally, Chi-Square analyses were used to determine the association between 

student group membership (i.e., advanced 6
th

 grade versus general 7th grade mathematics 

and regular versus special education students) and the error categories.  SPSS (IBM SPSS 

Version 22.0, 2013) was used to perform this analysis.   

Validating a mathematics interim assessment with cognitively diagnostic error 

categories represents an important step in furthering the research for CDAs and interim 

assessments theoretically, empirically, and practically.  First, the development of the error 

categories broadens the theoretical foundation of CDAs beyond skills, attributes, and 

levels of student understanding.  Second, given that little empirical research has occurred 

with interim assessments, this study adds to the extant literature.  Finally, this research 

provides a potentially meaningful method for improving student achievement in the 

present accountability culture.   
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Chapter II: Background 

The goal of this study is to create and validate a mathematics interim assessment 

in which the test data informs instruction through a close connection between the test and 

student cognition.  This chapter begins with a definition of “interim assessments” and 

then examines the purposes which drive interim assessment development.  It 

subsequently reviews testing from two perspectives: interim assessments and their 

instructional use in schools versus cognitive diagnostic assessment models.  Following is 

a brief look at cognition as it is related to mathematics.  Finally, the chapter ends with a 

recommended test design that provides teachers with the necessary diagnostic data to 

better inform instruction.   

Interim Assessments Defined 

Formative and summative assessments are well-known forms of assessments 

among educators, content specialists, school administrators, and test developers.  

Summative assessments are tests of learning in which the assessor is interested in a grade 

or score that indicates where the examinee is in their understanding of a set of concepts 

(Ainsworth & Viegut, 2006; Perie, Marion, & Gong, 2009).  No remediation of skills is 

performed.  Rather, after the score is recorded and explained, new learning occurs.  

Summative assessments have been administered for many years as classroom 

assessments and large-scale standardized assessments, as seen in the IOWA test of basic 

skills, Stanford 10, and state-level end-of-course (EOC) or end-of-grade (EOG) content 

tests like the Virginia SOL tests.   

Formative assessments have a uniquely different goal from summative 

assessments.  Formative assessments are “tests for learning” (Ainsworth & Viegut, 2006, 
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p. 23).  With formative assessments, assessors seek to provide immediate feedback to the 

examinee and educator (Ainsworth & Viegut, 2006; Black & Wiliam, 1998ab; Wiliam, 

2011).  Formative assessments occur in the middle of the learning sequence, because the 

goal of formative assessments is to inform instruction.  If the ensuing instruction is not 

modified to accommodate students’ instructional needs, the assessment does not qualify 

as a formative assessment despite the intended purpose of the test (Black, Harrison, Lee, 

Marshall, & Wiliam, 2004; Black & Wiliam, 1998ab; Wiliam, 2011).  Black and Wiliam 

(1998a) performed a meta-analysis of 250 formative assessment studies in which their 

research suggests that formative assessments are the most powerful type of assessment to 

improve teaching and student achievement.   

Figure 1:  Assessment tiers  
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standardized assessments developed by testing companies, school district content 

specialist(s), or a combination of teachers and district level content specialist(s).  

Although teachers may participate in the development of interim assessments, they are 

typically not the sole authors.  Whereas formative assessments are administered during or 

immediately following a specific curricular unit, interim assessments are only 

administered one to three times a year.  As such, feedback from interim assessments is 

less immediate to instruction.  Because interim assessments are administered less 

frequently, they can examine student retention of key content and student growth.  

Results from interim assessments are typically aggregated at the school or district level.  

School districts may have many reasons to implement interim assessments, the primary 

reason being to improve student achievement.   

Purposes of Interim Assessments 

Perie, Marion, and Gong (2009) identified three purposes of interim assessments: 

evaluative, predictive, and instructional.  Interim assessments used for evaluative 

purposes are designed to compare teacher effectiveness, pedagogical techniques, or 

curriculum programs over time by aggregating student performance data (Perie et al., 

2009).  Evaluative interim assessment results may be aggregated over the course of one 

or more academic years.  For instance, district level policymakers can use the data from 

evaluative interim assessments to inform the development of pacing guides based on the 

needs of large groups of students.  Thus, evaluative interim assessments are focused on 

adapting curricular units, pacing guides, and pedagogical techniques for future students, 

not the students actually being assessed.  An evaluative use of interim assessments 

requires standardization across schools. Should each school within a district develop and 
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administer different interim assessments, the assessments could not be aggregated, at 

which point these tests are no more helpful than a typical classroom assessment.  Perie et 

al. (2009) recommend that evaluative interim assessments should (a) be aligned with the 

state’s content standards, (b) contain items with a range of difficulty, and (c) comprise 

mixed item types.  They believe these criteria would allow for a clearer understanding of 

a district’s educational programs.   

On the other hand, interim assessments used for predictive purposes are designed 

to determine a student’s probability of achieving a criterion score on an EOC or EOG 

summative assessment (Perie et al., 2009).  Given NCLB and many state’s mandated 

requirements for student achievement, predictive interim assessments are an enticing goal 

for school districts to adopt.  Should a school district elect to create predictive interim 

assessments, they could potentially target their remediation efforts to students who are 

predicted to fail the EOC or EOG summative assessment.  To ensure the predictive 

capability of the interim assessments, Perie et al. (2009) recommend the interim 

assessment would need to be highly correlated with the criterion measure and test 

blueprint.  In addition, both assessments should be composed of similar item types and 

difficulty levels.  Although predicting a student’s test score is valuable, most educators 

are likely interested in how to improve test scores of students who are predicted to fail 

EOC assessments (Perie et al., 2009).  To do so requires an instructional use of interim 

assessments. 

Interim assessments that are designed for instructional purposes are the most 

closely aligned with formative assessments because their focus is to modify instruction 

and improve student learning (Perie et al., 2009).  Thus, instructional interim assessments 
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are aligned with state content standards allowing school districts to aggregate students’ 

strengths and weaknesses according to those standards.  Perie et al. (2009) contend 

teacher knowledge of students’ strengths and weaknesses is not sufficient to modify 

instruction.  Teachers need strategies for effectively altering their teaching to meet 

students’ instructional and learning needs.  Perie et al. (2009, p. 6) recommend that 

instructional interim assessments should fit “seamlessly with instruction” providing not 

only important data for educators but also opportunities for student learning.  Finally, 

Perie et al. (2009) argue that instructional interim assessments should be developed so 

that educators have a clearer understanding of student cognition from test items’ incorrect 

answers. 

Even though each of these purposes is presented as distinctly separate, there is 

overlap. For example, if an interim assessment is used for instructional purposes, it can 

also be used for predictive purposes (Perie et al., 2009).  Despite this apparent versatility 

in test design purposes, Perie et al. (2009) recommend that each interim assessment have 

a primary purpose ensuring that a test’s goal is adequately and sufficiently fulfilled.   

Henceforth, this research study will address interim assessments used for 

instructional purposes.  For interim assessments to be truly instructional, the 

accompanying scores must yield diagnostic information which aids teachers in their 

understanding of student content strengths and weaknesses.  Only then can teachers have 

the information with which they can remediate student misconceptions or extend student 

understandings.   
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Interim Assessments and Schools  

Given the rigorous demands of NCLB and state content standards, such as the 

Virginia Standards of Learning (SOLs) and the Common Core Standards, teaching in 

public education is more and more concerned with accountability and student 

achievement (Little, 2012).  Many policymakers once believed that EOC and EOG 

summative assessments would render diagnostically helpful information in improving 

student achievement (Perie et al., 2009), but this has proved false.  These conditions have 

bread a market for interim assessments despite the paucity of research to support this 

venture (Goertz, Olah, & Riggan, 2009).  In fact, within the testing world interim 

assessments are a relatively new phenomenon.  The research literature describes interim 

assessments using many terms other than interim assessments, including benchmark 

assessments, periodic assessments, and formative assessments (Perie et al., 2009).  Given 

the limited interim assessment research “it is unclear whether interim assessments would 

function as a system of classroom assessment capable of producing the major gains in 

student achievement attributed to formative classroom assessments” (Clune & White, 

2008, p. 14).   

The school reform, data-driven decision making (DDDM), and school 

improvement plan (SIP) research literature is replete with the use of interim assessments 

(see Carlson, Borman, & Robinson, 2011; Christman et al., 2009; Clune & White, 2008; 

Datnow, Park, & Wohlstetter, 2007; Goertz, Olah, & Riggan, 2009; Henderson, Petrosino, 

Guckenburg, & Hamilton, 2007; Marsh, Pane, & Hamilton, 2006; Olah, Lawrence, & 

Riggan, 2010), yet there is conflicting evidence that interim assessments are actually 
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effective in increasing student achievement (Christman et al., 2009; Goertz et al., 2009; 

Olah, Lawrence, & Riggan, 2010).  

For instance, Henderson et al.’s (2007) quasi-experimental study used an 

interrupted time series to examine the impact of quarterly interim assessments on middle 

school mathematics achievement.  They found no statistically significant or substantively 

important difference between the intervention (i.e., those schools implementing interim 

assessments) and control schools.  The lack of a statistical difference could have occurred 

for several reasons:  the study used school level data rather than student level data, data 

were lacking on what interim assessment practices existed in the control schools, and the 

researchers did not disaggregate the data by mathematics strand which might have made 

the results more sensitive to the interim assessments.   

In the Clune and White (2008) qualitative study, the researchers investigated if the 

intended purposes of the interim assessments were achieved.  These purposes included: 

greater alignment of the curriculum to state standards, additional practice for the state 

EOC or EOG test, and the generation of data to be used for instructional improvement.  

Although each of these purposes was achieved on some level, teachers complained most 

about the loss of instructional time.  Furthermore, it was not clear how much instruction 

actually improved and if the improvements were sufficient to warrant the cost of the 

interim assessments.  After three years the school district opted to cease using interim 

assessments.   

In contrast, the Carlson et al. (2011) study is one of the first large-scale efforts to 

assess causal effects of a data-driven reform on achievement outcomes.  The Carlson 

study used a multi-state district-level cluster randomized trial in over 500 schools within 
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59 school districts.  The majority of the schools were low-performing, but diverse in their 

setting (e.g., urban vs. rural), ethnicity, and socio-economic status.  The treatment group 

implemented interim assessments for the three years of the study, while the control group 

received a one year delay in the treatment.  The interim assessments were created to 

mirror the state assessment blueprint and question types and to serve a predictive 

purpose.  Correlation with the state test was between 0.80 and 0.85.  During the first 

cohort year approximately 60-70% of the assessments were administered one to two 

times during the school year.  Over the final two years, greater than 90% of the 

assessments were administered quarterly, which was in accordance with the test 

implementation design.  With a mathematics effect size of approximately 0.20, the 

Carlson (2011) study is the best evidence that interim assessments can contribute 

substantively and significantly to improving mathematics achievement.   

Despite the evidence from the Carlson study, it is just one study.  There is no clear 

paradigm of data-driven decision making for school divisions to follow, especially with 

respect to interim assessments.  With some studies, the intent is for the interim 

assessments to be used diagnostically, but some teachers end up using them predictively 

(Blanc et al., 2010; Christman et al., 2009).  In other studies, the focus is to modify 

instruction based on the data (Christman et al., 2009; Clune & White, 2008; Goertz et al., 

2009).   

Instructional modification might refer to small-group instruction or peer teaching 

of “bubble students” who are just below the passing criterion score (Marsh et al., 2006).  

More often than not, teachers re-teach the procedural steps or go over the entire test 

demonstrating how to do each mathematics problem (Christman et al., 2009; Goertz et 
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al., 2009; Olah, Lawrence, & Riggan, 2010; Shepard, 2010).  These studies provide little 

evidence that teachers remediate students’ conceptual knowledge.  In the Goertz et al. 

(2009) study only 10-15% of the test items allowed for conceptual inferences to be 

drawn, which gives credence to the procedural diagnoses.  Additionally, only 2-3 items 

out of 20 contained common student errors as distractors.  If multiple choice items are not 

designed to encompass students’ common errors, procedural and conceptual diagnoses, 

then it is plausible that they will provide few opportunities to illuminate student 

understanding (Goertz et al., 2009; Goren, 2010).   

The research literature provides numerous suggestions for interim assessment 

design and analysis so that student achievement might be improved.  The most salient 

ones include (a) design multiple choice items to be diagnostic: contain students’ common 

errors, procedural and conceptual knowledge distractors (Goertz et al., 2009; Goren, 

2010; Mandinach & Honey, 2008; Shepard, 2010), (b) design the assessments to be 

cumulative so that student retention and progress can be tracked across the academic year 

(Marshall, 2008), (c) create a robust “feedback system” in which educators not only 

determine which students need remediation/intervention but they also reflect on how they 

need to change their instruction to promote learning (Blanc et al., 2010), (d) assess the 

effectiveness of the remediation interventions (Christman et al., 2009), and (e) provide 

more professional development to teachers in the analysis and interpretation of test data 

(Boudett, Murnane, & City, 2005; Mandinach & Honey, 2008).   

Researchers are not the only ones making recommendations for changes to 

interim assessments and their analysis.  Teachers are as well.  Huff and Goodman (2007, 

p. 24) state that “educators are demanding … that they receive instructionally relevant 
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results from any assessments in which their students are required to participate and that 

these assessments be sufficiently aligned with classroom practice to be of maximum 

instructional value.”  But, what does such an interim assessment framework look like?  

For an interim assessment to be of “maximum instructional value” it should be diagnostic 

so that teachers have sufficient feedback to determine not only student content strengths 

and weaknesses, but also indicates the processes students use in their problem solving 

(Boudett, City, & Murnane, 2010).  However, caution should be exercised so that the 

amount of this data is not overwhelming to teachers.  This raises another concern, data 

analysis.   

Several researchers have noted that teachers as a group do not possess a high 

degree of assessment literacy or lack a background in statistics (Mandinach & Honey, 

2008; Marsh et al., 2006; Young, 2006).  Many of these same researchers have 

recommended that teachers have professional development in how to use assessment 

protocols to frame their data analysis (Bambrick-Santoyo, 2010; Boudett et al., 2005; 

Christman et al., 2009; Datnow et al., 2007).   

A further concern is the type of items that comprise the interim assessment.  

Because of scoring time constraints most of the interim assessments in the 

aforementioned studies are multiple choice tests.  Thus, for this study an interim 

assessment framework needs to be found that (a) is cognitively diagnostic, (b) is multiple 

choice, (c) has data that is not too small or large grain, and (d) illuminates the processes 

students use in their mathematics problem solving.  One assessment framework that can 

potentially satisfy each of these conditions is cognitive diagnostic assessment models.  
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Cognitive Diagnostic Assessment Models  

A cognitive diagnostic assessment (CDA) model is a model of student learning 

which diagnoses student “knowledge structures and cognitive processing skills” so that 

remediation is informed (Leighton & Gierl, 2007b, p. 3; Nichols, 1994).  Leighton and 

Gierl (2007a) suggest that if a cognitive model is not empirically derived, then it cannot 

support diagnostic inferences.  Nichols (1994) submits that the underlying cognitive 

theory of CDA is used to generate assessments and predict results.  Assuming that a CDA 

meets both conditions set forth by Leighton, Gierl, and Nichols, the resulting data should 

allow teachers to “alter student misconceptions and faulty strategies” (Leighton & Gierl, 

2007b, p. 6).  However, despite these theoretical definitions, no clear testing framework 

for CDA achievement tests has been established.   

I will review several CDA models to discern how suitable they are for a 

mathematics interim assessment. My goal is to find a CDA that is not too large grain that 

the test score data is not diagnostically helpful or too small grain that the amount of data 

is overwhelming to teachers.  Therefore, the CDA model needs to have data which is (a) 

cognitively diagnostic, (b) “medium grain,” and (c) practically useful to teachers in their 

instructional planning and remediation.   

Gorin (2007) identified two types of CDAs:  statistical models and cognitive 

models.  Gorin defined statistical models as those which focus primarily on post hoc tests 

and item analysis, specifically the rule space model and the attribute hierarchy model.  

Gorin contends that cognitive models implement cognitive theory throughout the item 

and test development process.  She cited Mislevy’s Evidence-Centered design and 

Embretson’s Cognitive Design system as examples of cognitive models.  Lastly, Gorin 
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discussed ordered multiple choice questions as a potential CDA model given two 

significant changes to the typical multiple choice paradigm: the tests are not binarily 

scored and the distractors are written using student misconceptions.   

Given Gorin’s analysis of CDA assessments, I will begin with an examination of 

Tatsuoka’s Rule-Space model, since Tatsuoka was “one of the first psychometricians to 

embrace the union” of cognitive psychology and psychometric theory (Gierl, Leighton, & 

Hunka, 2000, p. 41).  Then, I will proceed with a discussion of Leighton and Gierl’s 

Attribute Hierarchy Method, Mislevy’s Evidence-Centered Design, Embretson’s 

Cognitive Design System, and Ordered Multiple Choice categories.  One other CDA 

model I will examine is the Diagnostic Classification Model which has received 

significant attention in the literature.  Although other CDA models exist, I am focusing on 

those which have contributed substantially to the cognitive diagnostic assessment 

literature.   

Rule Space model.  During the 1980s binary scoring was the most common 

method of scoring achievement tests, but Tatsuoka (1983, 1986, 2009) believed that total 

scores lack valuable information about student’s errors and misconceptions.  For instance, 

two students with the same score of 50% may have missed different problems altogether 

or they may have missed the same problems for different reasons (Tatsuoka, 2009).  

Tatsuoka (1983) also argued that some students may select the correct answer using 

inaccurate rules or procedures.  Thus, Tatsuoka (2009) reasoned total scores are not 

cognitively diagnostic and they do not provide sufficient information for remediation.  To 

ameliorate the inherent problems with binary scoring, Tatsuoka (1983) developed the 

Rule-Space model (RSM).  Her goal was to provide a testing framework which (a) 
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classified and diagnosed student error patterns and (b) provided a mechanism for 

instructional evaluation and student remediation (Tatsuoka, 1983, 1986, 2009).  

The RSM is a deterministic and probabilistic model that combines error theory 

and item response theory (IRT) to classify and diagnose student’s cognitive errors 

(Tatsuoka, 1983, 1986, 2009).  The RSM is comprised of two stages, the selection of 

feature variables and statistical pattern classification.   

The selection of feature variables stage encompasses the development of the Q 

matrix theory and the subsequent formation of several matrices: the adjacency matrix, the 

reachability matrix, the Q matrix, the reduced Q matrix, and the ideal attribute matrix 

(Gierl et al., 2000; Tatsuoka, 2009).  Originally, these matrices were characterized by 

rules or procedures that examinees must perform to correctly answer a test item 

(Tatsuoka, 1983, 1986).  For example, Tatsuoka (1983) described Rule 2 in one study as,  

the student uses a wrong rule for addition.  He or she 

subtracts the smaller absolute value from the larger 

absolute value and takes the sign of the first number in the 

answer.  The student converts subtraction to addition 

problems correctly, [and] then consistently applies the same 

erroneous rule to the new addition problem.  (p.346) 

 

With additional research, Tatsuoka (1995) broadened the matrices to comprise 

items and more general attributes, rather than only items and procedural rules.  Tatsuoka 

defined attributes as unobservable knowledge, skills, or procedures necessary to correctly 

answer a test item (Birenbaum et al., 1993; Tatsuoka, 1995, 2009).  The construction of 

attributes as models of item performance is hypothesized by content experts, such as 

cognitive researchers and educators (Birenbaum et al., 1993; Tatsuoka, 2009).  Once 

identified, the attributes are ordered hierarchically, although this is not a requirement with 

the RSM (Gierl, 2007; Tatsuoka, 1990).  In short, the matrices are created so that (a) 
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items can be matched with attributes at a fine grain and (b) cognitive diagnosis of student 

error patterns can be achieved (Birenbaum et al., 1993; Gierl, Alves, & Majeau, 2010; 

Gierl et al., 2000; Tatsuoka, 1983, 1986, 2009).   

Following matrix development is the construction of the ideal item response 

vector, or ideal knowledge states.  The ideal item response vector contains the ideal 

attributes paired with a total score.  If many examinee score patterns occur that do not fit 

the ideal item response vector, then one or more of the following is true, (a) the attributes 

were not correctly identified, (b) the attribute hierarchy is not true, (c) the items did not 

coincide with the cognitive model, (d) the test was incongruous with the examinees 

sampled, or (e) several slips occurred (Gierl, et al., 2000).  Once the ideal item response 

vector is complete, item generation begins.   

The next stage, statistical pattern classification occurs within the rule space where 

examinee’s item response patterns are plotted and compared to ideal item response 

patterns (Birenbaum et al., 1993).  The rule space is a two dimensional Cartesian 

coordinate system where the x-axis is defined as theta, θ or ability and the y-axis is 

defined as zeta, ζ , the person-fit statistic or the unusualness of an item response 

(Birenbaum, et al., 1993; Gierl, 2007; Tatsuoka, 1983, 1986, 2009).  The rule space is a 

statistical tool used for the classification of item response patterns by way of the 

examinee’s mastery (and non-mastery) of attributes (Birenbaum et al., 1993).  As such, an 

examinee’s item response pattern forms a picture of their likely knowledge state.  The 

ideal knowledge state or correct response is found at the point (1, 1).  The ordered pair, 

(θ, ζ), indicates the distance from each of the ideal knowledge states.  Points with higher 

θ values indicate more ability while lower θ values indicate less ability.  In turn, points 
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further from the θ axis indicate students with more unusual responses while points closer 

to the x-axis represent students with more common item responses.  In order to classify a 

student’s knowledge state, a probability ellipse is drawn around each student’s item 

responses.  The shortest Mahalanobis distance between a student’s item response pattern 

and the ideal item response pattern indicates the student’s knowledge state and the most 

conservative attribute mastery pattern (Birenbaum et al., 1993).  In practice, the shortest 

Mahalanobis distance means teachers are likely to capture all concepts and skills students 

have not mastered.  Thus, the attribute mastery pattern provides a mechanism for 

instructional planning and remediation.  However, because this method of identifying 

knowledge states and the attribute mastery patterns is based on probability, teachers may 

reteach some concepts students already know.  

With many applications of the RSM, the attribute hierarchy cannot be fully 

developed because the RSM is retrofitted to an extant test (Gierl, 2007), although this is 

not always the case (Birenbaum et al., 1993).  If retrofitting does occur, the test may not 

have the necessary item types to generate a Q matrix (Gierl, 2007).  Without a Q matrix, 

the cognitive model is incomplete because the hierarchy is relatively simple and rule-

based or there are “few hierarchical relationships explicitly represented between 

attributes” (Gierl, 2007, p. 334).   

In response to the RSM, many other CDA models have been developed; one of 

these is the Attribute Hierarchy method (AHM). 

Attribute Hierarchy method.  Because the AHM is an extension of the RSM, 

many features of these models are the same.  Thus, my discussion will focus on the key 

similarities and differences between both models.   
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Like the RSM, the AHM employs Q matrix theory and attributes which are 

developed by content experts (Gierl, 2007; Gierl, Leighton, & Hunka, 2007; Leighton, 

Gierl, & Hunka, 2004).  AHM attributes are represented in the same type of matrices seen 

in Tatsuoka’s RSM: the adjacency matrix, the reachability matrix, the Q matrix, the 

reduced Q matrix, and the ideal attribute matrix.  The fundamental difference between the 

RSM and the AHM is in their assumptions about how cognitive attributes are modeled 

(Leighton, Gierl, & Hunka, 2004).  The RSM does not require that attributes are 

hierarchically ordered (Tatsuoka, 1990), although the AHM does (Leighton et al., 2004).  

Because an attribute hierarchy presupposes dependence among the cognitive attributes, 

the attributes with the AHM are dependent.  Since the RSM lacks a required attribute 

hierarchy, the attributes may be independent or dependent.  Furthermore, with the AHM 

four hierarchical attribute structures are employed to demonstrate the direct and indirect 

relations which can exist between attributes (Gierl et al., 2007; Leighton et al., 2004).  

These hierarchical attribute structures can be used alone or combined into more complex 

structures.  No such attribute structure exists with the RSM.   

As previously mentioned the RSM is often retrofitted to an existing test which 

forces a Q matrix upon test items not designed for cognitive diagnosis (Gierl, 2007).  The 

resulting cognitive model is developed post hoc, which compromises the cognitive skill 

capability of the assessment.  On the other hand, the AHM depends on an a priori 

development of the attribute hierarchy (Leighton et al., 2004).  This process supports (a) 

an attribute hierarchy that guides item development, (b) a more fully developed Q matrix, 

and (c) a greater capability for cognitive skill diagnosis.   
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Finally, in both models statistical pattern classification occurs within the rule 

space by comparing observed examinee response patterns to ideal response patterns. With 

the RSM, the purpose of statistical pattern classification is to determine examinees’ 

probable cognitive errors and misconceptions (Gierl, 2007; Tatsuoka, 1990).  However, 

the goal in the AHM is to discern which attributes examinees are likely to have mastered 

(Gierl, 2007).   

I propose that if a test design focuses on cognitive strengths/content mastery, then 

the teacher lacks sufficient information in how to remediate student weaknesses.  When 

students answer an item incorrectly, they are all not likely to have arrived at their wrong 

response in the same way, or for the same reasons.  Error analysis information has the 

potential to better inform instruction if it points to ways in which examinees responded 

incorrectly.   

Diagnostic Classification Model.  The DCM is a statistical model that predicts 

student performance according to a set of mastered attributes (Rupp & Templin, 2008; 

Rupp et al., 2010).  Like AHM, the DCM employs a Q matrix to specify the item attribute 

relationship where attributes are assigned a priori.  However, because the DCM allows 

any given item to have more than one latent skill load on it, the items are 

multidimensional.  For instance, if one attribute is addition and another is subtraction, one 

item might assess both the addition and subtraction attributes.   

The optimal test purpose for DCMs is as a classification measure, such as with 

EOG/EOC tests.  In this type of assessment students are classified as pass or fail.  More 

often they are divided into achievement levels, such as pass advanced, pass proficient, 

basic, and below basic.   
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Unlike most assessment models, the DCM does not assign a scaled score, but 

rather a profile of mastered skills or attributes.  This profile of mastered skills is obtained 

by comparing students’ observed behaviors to two models, a measurement model and a 

structural model.  Measurement model item parameters indicate how students with 

different diagnostic profiles respond to a group of test items.  These results reveal which 

items are better at distinguishing between students with dissimilar diagnostic profiles.  

The structural model compares the frequency of the student diagnostic profiles in the 

population.  These results help validate the credibility of the observed diagnostic profiles.  

The resulting student mastery profiles are presented as probabilities of mastery.  Despite 

the attribute mastery profiles, DCMs focus on why a student is not performing well.  

Because this model is centered on skills acquired rather than on a cognitive processing 

diagnosis, it is not an appropriate model for this study.   

Evidence-Centered Design.  Mislevy’s Evidence-Centered Design (ECD) is a 

detailed, comprehensive assessment design framework involving a series of evidentiary 

arguments (Behrens, Mislevy, Bauer, Williamson, & Levy, 2004; Gorin, 2007; Mislevy, 

Almond, & Lukas, 2003; Mislevy & Haertel, 2006; Williamson, Bauer, Steinberg, 

Mislevy, Behrens, & DeMark, 2004).  Mislevy begins by breaking down the test 

development process into five layers (Mislevy & Haertel, 2006) and four models (Gorin, 

2007; Mislevy et al., 2003; Williamson et al., 2004).  Each layer and model is labeled 

using a unique terminology not seen with other test design frameworks.  Together these 

layers and models address the design, implementation, and delivery of an educational 

assessment.  Mislevy argues that ECD’s structural design creates a common language 

among professionals engaged at varying facets of the test development process (Behrens 
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et al., 2004; Mislevy et al., 2003).  He further adds that the “consistent use of the 

terminology of ECD [gives] us a language to conceptualize and articulate possibilities 

that could not have been brokered with older language” (Behrens et al., 2004, p. 299).   

First, I will briefly discuss ECD’s five layers, which encompass domain analysis, 

domain modeling, conceptual assessment framework, assessment implementation, and 

assessment delivery (Mislevy & Haertel, 2006).  Because the four model structure is 

subsumed within ECD’s conceptual assessment framework (CAF) layer, I will briefly 

examine its structure during the CAF discussion.   

The first layer of ECD test development is domain analysis which is the collection 

of content area information to be assessed.  This content information may consist of state 

standards, concept maps, domain specific terminology, knowledge representations, tools, 

and domain specific notation (Mislevy & Haertel, 2006).  Subsequently, in domain 

modeling content experts focus on the “big ideas of a given domain” (Mislevy & Haertel, 

2006, p. 8).  Here content experts decide what the test will measure and how it will be 

executed.  Examples of domain modeling include assessment argument diagrams, 

potential observations or rubrics, potential work products, and primary knowledge and 

skills.   

The third layer, the conceptual assessment framework (CAF) is the backbone or 

blueprint for the assessment (Mislevy et al., 2003).  The CAF encompasses the technical 

specifications, evaluation procedures, and measurement models of the test.  The CAF is 

organized around four models: the student model, evidence model, task model, and the 

assembly model (Gorin, 2007; Mislevy et al., 2003; Mislevy & Haertel, 2006; 

Williamson et al., 2004) (See Figure 2).  
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Figure 2:  The four central models of an ECD framework 

 

Williamson et al., 2004, p. 306 

 

The student model is represented by a set of claims pertaining to the knowledge, 

skills, or abilities the test seeks to measure (Gorin, 2007; Mislevy et al., 2003; Mislevy & 

Haertel, 2006; Williamson et al., 2004).  For instance, in the NetPASS computer 

networking assessment, one of the student model claims was “students can identify the 

cause of connectivity problems at the physical, data link, and network layers of the OSI 

mode” (Gorin, 2007, p. 180; Williamson et al., 2004, p. 311) (See Figure 3).  Because the 

NetPASS claim uses the language, “students can identify…,” the claim is measurable.  

State content standards in many states are written in similar measurable ways as seen in 

the NetPASS claim example.  For instance, one of the 7
th

 grade mathematics Virginia 

SOL standards, 7.15b is the student will graph solutions to inequalities on a number line 

(Virginia Department of Education [VDOE], 2009, Curriculum Framework: 7
th

 grade, p. 

26).  Virginia SOL standard 7.15b is measurable because the assessor can gather evidence 

to demonstrate mastery of this skill.  Perhaps, then, an abbreviated definition of a student 

model is a set of measurable content standards or claims.   
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Figure 3:  Claim and Evidence Chain from the NetPASS assessment 

Student Model 

Claims: 

1. Students can use a systematic approach to identify and solve network problems. 

2. Student can identify the cause of connectivity problems at the physical, data 

link, and network layers of the OSI mode. 

3. Students can use TCP/IP utilities to troubleshoot network connectivity problems. 

 

 

Evidence Model 
Claim:  Student can identify the cause of connectivity problems at the physical, 

data link, and network layers of the OSI mode.   

 

Representations to capture information from student: 

1. Log file of IOS commands 

2. Configuration files for routers (state of network) 

3. Worksheet (set of faults) 

4. Network diagram 

5. Essay 

 

 

Observable Features 
Representation: Log file of IOS 

Observable features: 

1. Steps taken to identify problem(s) 

2. Identification of network problem(s) 

3. Connection between steps and problem(s) 

 
(Gorin, 2007, p. 180) 

The evidence model provides evidentiary representations in support of the student 

model claims (Gorin, 2007; Mislevy et al., 2003; Mislevy & Haertel, 2006; Williamson et 

al., 2004).  The evidence model gathers this data through two components: evidence rules 

and a measurement model.  Evidence rules guide the item response scoring process 

because they govern the identification and summary of evidence within tasks.  

Continuing with the NetPASS example, there are several proposed forms of evidence that 

could demonstrate mastery of the aforementioned claim.  Evidence could manifest as a 
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log file of IOS commands, configuration files for routers, a worksheet, a network 

diagram, or an essay (Gorin, 2007, p. 180; Williamson et al., 2004, p. 311).  In contrast, 

the measurement model guides the summary scoring process because it is concerned with 

the accumulation and synthesis of evidence across tasks (Mislevy et al., 2003; 

Williamson et al., 2004).  Measurement models consist primarily of psychometric models 

such as classical test theory, item response theory, and cognitive diagnostic models.   

The task model describes the observable features of each evidence model 

representation (Gorin, 2007; Mislevy et al., 2003; Mislevy & Haertel, 2006; Williamson 

et al., 2004).  Again using the NetPASS example, the observable features represented in 

the task model include (a) steps taken to identify problems, (b) identification of network 

problems, and (c) connection between step and problems (Gorin, 2007, p. 180; 

Williamson et al., 2004, p. 311).  A typical assessment has more than one task model.  In 

fact, a task model often comprises a “family of potential tasks” with different item types 

requiring different task models (Mislevy et al., 2003, p. 11).   

Finally, the assembly model expresses how the student, evidence, and task models 

work together to present the final assessment (Mislevy et al., 2003).  Assembly rules 

dictate a host of decisions such as the content of reading passages, the number of items 

that use mathematical figures, sentence complexity, and the mix of item types.  Overall, 

the assembly model explains how the tasks are organized and presented to best represent 

the domain being assessed.  Taken together the student, evidence, task, and assembly 

models provide an evidentiary chain that supports inferences about students’ mastery of 

specific skills.  This organizational model structure confirms why the CAF is seen as the 

blueprint of the ECD framework.   
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The last two layers, assessment implementation and assessment delivery pertain 

to the implementation and scoring of the tests, respectively (Mislevy & Haertel, 2006).  

Assessment implementation includes such activities as fitting the measurement models to 

the test scores, using piloted test data to refine evaluation procedures, and the 

development of task materials and tools.  In turn, assessment delivery entails examinee’s 

interaction with tasks, task and test-level scoring, and score reporting.  Examples include 

numerical and graphical summaries of test scores by examinee and by group.   

ECD is a construct-centered approach that has been criticized by some researchers 

as merely a renaming of test development procedures and standards that have been 

implemented for many years (Mislevy & Haertel, 2006).  Mislevy recognizes that “all of 

the innovations… [such as] in cognitive psychology, …measurement models, task design, 

scoring methods…have been developed by thousands of researchers across many fields 

of study, without particular regard for ECD” (p. 17).  However, Mislevy contends that 

ECD is  

a framework that does indeed provide new words for things 

we are already doing.  But, it helps us understand what we 

are doing at a more fundamental level.  And it sets the stage 

for doing what we do now more efficiently, and learning 

more quickly how to assess in ways that we do not do now 

(p. 18).  

 

Despite Mislevy’s contentions, the ECD does not appear to offer significant 

differences from more traditional models in informing teachers about students’ cognitive 

processes relative to their mathematics problem solving.  Susan Embretson’s Cognitive 

Design System offers a different perspective on how to merge cognitive theory with test 

design and item development.  A brief description of her model follows.  
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Cognitive Design System.  Embretson’s Cognitive Design System (CDS) is an 

assessment model in which cognitive theory occupies a central role in test design and 

item development (Embretson, 1998, 1999, 2010; Embretson & Gorin, 2001; Gorin, 

2007).  Unlike more traditional cognitive models, with the CDS cognitive theory 

precedes test design and item development.  This cognitive theory focus is managed 

through two frameworks, a conceptual framework and a procedural framework.   

The conceptual framework addresses the construct validation of a measure 

through two components: construct representation and nomothetic span (Embretson, 

1983, 1998; Embretson & Gorin, 2001).  Construct representation involves the “meaning 

of test scores” (Embretson, 1998, p. 382).  This meaning is established by understanding 

the processes, skills, and knowledge examinees use in their problem solving and then 

subsequently linking item features to cognitive theory.  As a result “test items can be 

designed to reflect specified cognitive constructs” (Embretson, 1998, p. 382).  While 

construct representation is concerned with the meaning of test scores, nomothetic span is 

concerned with the usefulness of test scores for measuring individual differences.  

Nomothetic span is assessed by examining the correlations of test scores with the 

“strength, frequency and pattern of significant relations with other measures” 

(Embretson, 1983, p. 180).  In short, construct representation is about “identifying the 

theoretical mechanisms that underlie task performance” while nomothetic span is about 

the relationship of a test to other external measures (Embretson, 1983, p. 180).   

The procedural framework is comprised of a series of iterative stages where 

cognitive theory drives test design, item development, and the estimation of item 

parameters (Embretson, 1998, 2001).  Through these stages, the procedural framework 
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provides a process model of item performance and it relates item processes to test 

validity.  The procedural framework includes seven stages: (a) specify the goals of 

measurement, (b) identify design features in the task domain, (c) develop the cognitive 

model, (d) generate items, (e) evaluate models for generated tests, (f) bank items by 

cognitive complexity, and (g) validation: nomothetic span.  A brief description of each 

stage follows. 

In the first stage, specify the goals of measurement, the goals for construct 

representation and nomothetic span are articulated.  With the second stage, identify design 

features in the task domain, potential item types are reviewed in the cognitive psychology 

literature.  In addition, differing task features are considered with respect to process, skill, 

and knowledge structures and a test’s measurement goals.  Although these first two stages 

are typically seen in traditional test development, with CDS cognitive theory plays a 

significant role.  

The next two stages are essential to the CDS because this is where the construct 

representation of the test is explicitly defined and construct validity is elaborated.  The 

third stage is the development of the cognitive model.  Here “relevant cognitive processes, 

strategies, and knowledge structures must be identified and organized into a unified 

model” (Embretson & Gorin, 2001, p. 351).  Then, this model must be integrated with the 

cognitive psychology research and the chosen item type(s).  For each item type, item 

features must be explicitly manipulable, defined, and scoreable so that the differing 

cognitive processes can be represented in test items.  Next, the cognitive item features 

must be studied empirically to determine the impact on the psychometric properties of the 

test.  Once the cognitive model is firmly established, then in the fourth stage the cognitive 
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model is operationalized to generate test items.  Ideally, the differences in test item 

structures should represent differences in cognitive processes.   

The last stages elucidate the psychometric properties of the assessment.  In the 

fifth stage the cognitive and psychometric models must be evaluated to determine the fit 

of the cognitive theory to the item response data.  Cognitive model fit is established by 

predicting item performance.  The independent variables encompass item structures and 

item stimulus features, while the dependent variables often include response time and 

item difficulty.  The impact of the item structures and stimulus features indicates the 

relative cognitive processes these items represent.  In contrast, the psychometric model fit 

is an evaluation of the fit of an IRT model to the item response data.  Should the IRT 

model not sufficiently fit the item response data, then the cognitive model needs to be 

revised.  Poor psychometric model fit could occur for two reasons: convergent or 

divergent data.  For example, if manipulations of the item variables create no change, or 

an unpredictable change in the item parameters, then the model does not sufficiently 

account for the relationship between the item features and the cognitive model.  Or, if 

variables not included in the model affect the item parameters, then the model is lacking 

important variables which account for significant sources of variance.  By testing and 

manipulating item features, stronger conclusions can be made about the effects of the 

cognitive model on test scores. Subsequently, in the sixth stage, bank items by cognitive 

complexity, test items can be stored in a test bank according to their cognitive complexity.  

This process assumes, of course, that the cognitive and psychometric models fit the test 

data well.  If the psychometric model sufficiently predicts item performance, then items 

can be apportioned according to features that contribute toward item difficulty.  Items can 
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then be categorized according to their difficulty and cognitive complexity.  Finally, the 

last stage is validation or nomothetic span.  Here test items are evaluated as to how well 

they correlate with other external measures of the construct(s).   

Embretson and Gorin (2001) contend that the CDS approach renders many 

advantages over other CDA models: 

(1) Item parameters may be predicted for newly developed items. 

(2) Construct validity is more completely understood. 

(3) Construct validity may be understood at the item level. 

(4) Enhanced score interpretations are feasible if IRT scaling is used.   

(5) Items may be developed for specified sources of cognitive complexity. 

(6) Computer generation of items with specified sources and levels of item 

difficulty may be feasible (p. 352). 

Despite the union of cognitive theory and testing, Embretson believes that the 

“most important potential for cognitive theory is test design” (Embretson & Gorin, 2001, 

p. 365).  Embretson contends that traditional construct validity paradigms relegate 

cognitive theory as a post-hoc interpretation after a test design is complete.  Embretson 

insists that cognitive theory can have a profound impact on construct representation if it 

is used prior to test design and development.  For instance, Embretson has used CDS for 

ability and achievement tests, although most often with ability measures.  In an object 

assembly test, Embretson used a four distractor multiple choice model to define her item 

structure.  Her most prominent finding from the object assembly cognitive model was 

that the decision process was impacted by the nature of the distractors (Embretson & 

Gorin, 2001, p. 360).  Thus far, no other CDA has described using a multiple-choice item 
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structure, yet this item structure is immensely popular with achievement tests.  

Additionally, none of the other CDA models have discussed the significance that multiple 

choice distractors can play in the decision process of mathematical problem solving.  The 

next model will not only explore a multiple-choice assessment model, but it will also 

examine cognitive diagnosis from the perspective of the item distractors.   

Ordered Multiple-Choice tests.  Traditional multiple-choice (TMC) tests are 

often viewed as assessing a low level of content and cognitive demand, especially 

definitions and the recall of facts (Hamilton, Nussbaum, & Snow, 1997).  Scoring is 

dichotomous with responses scored as correct or incorrect.  The resulting scores describe 

which item content students answered correctly, but it reveals nothing about students’ 

incorrect responses.  As such, dichotomous scoring loses valuable data about student 

misconceptions making instructional modification difficult (Black & Wiliam, 1998b) and 

fueling criticisms for why multiple-choice assessments cannot be used for cognitive 

diagnosis (Hermann-Abell & DeBoer, 2011).   

In response to TMC assessments, Briggs et al. (2006) have devised ordered 

multiple-choice (OMC) assessments in which item distractors are written using common 

student misconceptions and linked to students’ developmental levels (Haladyna & 

Rodriguez, 2013).  OMC assessments blend the objectivity of TMC assessments with the 

richness of constructed response assessments (Briggs & Alonzo, 2009).   

In OMC assessments response options are ordered along a progress variable 

(Wilson, 2008).  Wilson (2008) defines a progress variable as a continuum of content 

understanding divided into successive levels of development.  The highest level 

exemplifies complete understanding of a concept while the lowest level represents the 
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least understanding.  Progress variables are derived iteratively from the research literature 

and a blend of professional opinion about what demonstrates higher and lower levels of 

understanding.  But, as Alonzo and Steedle (2009) point out there may not be enough 

research to depict each level of the progress variable, or enough research to determine the 

relationship between levels.  Therefore, progress variables are a “hypothesis about 

student thinking, rather than a description” (Alonzo & Steedle, 2009, p. 393).  Once the 

progress variables are developed they are submitted to a series of validation procedures 

(e.g., cognitive think-alouds and clinical interviews).   

Progress variables are often depicted in a construct map (Wilson, 2005).  

Misconceptions represented at one level of a construct map are resolved at the next level 

(Wilson, 2008).  Table 1 depicts a construct map for the properties of light.  Each level 

represents the knowledge that a student possesses and possible misconceptions or 

common errors.  Misconceptions at each level should not be thought of merely as errors 

but as developmental stages (Briggs, Alonzo, Schwab, & Wilson, 2006).  Score level 4 

indicates that the student completely understand the properties of light while score level 1 

demonstrates the least understanding.  A construct map can be especially helpful to 

teachers in their instructional modification and differentiation.  Some construct maps 

depict common error(s) more explicitly than seen in Table 1 (Briggs et al., 2006, p. 42).   
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Table 1  

A Construct Map of the Properties of Light  

Score 

Level 

Description 

 

4 Student conceives of light as a distinct entity in space.  Understands the 

relationship between a light’s source, its motion and path, the objects it 

encounters along the way and the effect it produces.  

 

3 Student conceives of light as a distinct entity in space, traveling in a 

straight line.  Lacks an understanding of how light interacts with objects. 

 

2 Student understands limited cause and effect relationships between a light’s 

source (bulb), state (brightness) and the effect it produces (patch of light). 

 

1 Student identifies light solely with respect to its source or its effect.  Light 

is not understood apart from its effects.  Student defines light in relation to 

dark.   

 
Briggs et al., 2006, p. 38 

 

Some of the research literature uses the term learning progression instead of 

progress variables, especially the science education literature (Alonzo & Steedle, 2009).  

In the mathematics education literature, learning progressions are called learning 

trajectories (Daro, Mosher, & Corcoran, 2011).  But, the term learning 

progression/learning trajectory does not have the same meaning to all researchers or 

content areas.  For example, some researchers use the term learning 

progressions/trajectories to represent broader learning over several years, such as when 

students learn multiplicative thinking or rational number reasoning.  Daro et al. (2011) 

state this trajectory occurs from kindergarten through 8
th

 grade.  In this paper learning 

progressions/trajectories refer to student thinking over a curricular unit.  Thus, in this 

context the terms progress variables and learning progressions/trajectories are 

interchangeable.   
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Psychometric modeling of OMC assessments is often achieved using item 

response theory (IRT), especially the Rasch model (Hermann-Abell & DeBoer, 2011), 

Partial Credit Model or the Ordered Partition Model (Briggs et al., 2006; Wilson, 2008).  

However, Briggs and Alonzo (2009, p. 8) find several potential problems with construct 

maps and IRT models.  They argue that in OMC construct maps (a) the location of 

category thresholds is inconsistent, (b) cutpoints cannot be used to classify students into 

specific categories because student ability and item category thresholds are estimated 

with error.  These standard errors of measurement are largest at the highest and lowest 

ends of the logit continuum, (c) a continuous interpretation of achievement is suggested 

yet student achievement levels are ordinal, and (d) multiple response options for some 

items are placed at the same level.  In fact, Briggs and Alonzo posit that no model in the 

Rasch family of IRT models can solve these problems.  Their solution is the Attribute 

Hierarchy Method (AHM) which they contend pushes the test developer to explicitly 

define not only the attributes but also the movement from one skill level to the next.  

However, the AHM is not without its problems.  First, the AHM is primarily used for 

very fine-grained diagnoses, which does not fit with OMC assessments. Since most 

interim assessments are multiple-choice tests with three to four distractors and consist of 

approximately 20-30 items, the average multiple-choice test cannot handle a fine-grain 

diagnosis and still cover the necessary curricula.  Second, Briggs and Alonzo (2009) 

assert that if a progress variable is more qualitative in its orientation then it is less 

conducive to the AHM.  Lastly, the AHM has no model fit indices, yet IRT models do.  

Given the aforementioned conditions, there appears to be little benefit to using the AHM 

for the psychometric modeling of OMC assessments.   
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According to Alonzo and Steedle (2009), scoring of OMC assessments reveals 

that expert students read an item and then they categorize the problem according to rules 

and principles.  In contrast, novice students pay more attention to surface features of the 

problems.  This practice illuminates how novice students might display misconceptions in 

their item responses.  Alonzo and Steedle (2009) also discovered that students’ 

vocabulary deepens in concert with their conceptual understanding.  Both of these 

distinctions between expert and novice students provide guidance for writing OMC items.   

Finally, OMC assessments offer two advantages as a framework for interim 

assessments: they maintain the reliability advantages of TMC scoring even though OMC 

assessments have polytomous items (Briggs et al., 2006) and they offer teachers rich 

diagnostic information without being overwhelming.  Thus far, OMC assessments have 

become increasingly popular in science education (Alonzo & Steedle, 2009; Briggs & 

Alonzo, 2009; Hermann-Abell & DeBoer, 2011; Wilson, 2008) but, no comparable OMC 

assessments have been devised in mathematics.   

A Recommended Test Design 

Several of the CDA models claim that they are employing an “information 

processing approach” in their assessment design or cognitive skills diagnosis (Gierl et al., 

2007).  Information processing theories usually contain components such as declarative 

knowledge, procedural knowledge, attention, processing speed, and working memory 

(Baddeley, 2007; Bjorklund, 2005; Dehn, 2008; Matlin, 2002).  Broadly speaking, 

information processing theories deal with input (e.g., thinking processes) and output (e.g., 

skills) components.  The aforementioned CDA models do not explicitly reference input 
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components instead they focus exclusively on students’ skills, which are output 

components.   

Although understanding students’ skill levels is important, teachers in this current 

accountability climate are demanding “they receive instructionally relevant results from 

any [required] assessments… and that these assessments be sufficiently aligned with 

classroom practice to be of maximum instructional value” (Huff & Goodman, 2007, p. 

24).  Most teachers believe the diagnostic information currently available in most large-

scale score reports is not detailed enough (Huff & Goodman, 2007, p. 44).  Moreover, 

over 80% of the teachers surveyed by Huff and Goodman felt it was important to have 

suggested instructional strategies to accompany student diagnostic data.  Despite teacher 

demands most interim assessments are multiple-choice tests where item responses are 

scored dichotomously.  The resulting scores describe students’ correct responses, but 

reveal nothing about students’ incorrect responses.  As such, these assessments lose 

valuable data about student misconceptions making instructional modification difficult 

(Black & Wiliam, 1998a) and fueling criticisms for why they cannot be used for 

cognitive diagnosis (Hermann-Abell & DeBoer, 2011).  Furthermore, some CDA models 

are fine-grain tests that potentially inundate teachers with too much data.  A balance 

needs to be found so that teachers have meaningful data that is not overwhelming.  If 

interim assessments could point specifically to where student misconceptions lie and 

where deficits are in student’s cognitive processes, interim assessments could foreseeably 

render “maximum instructional value.”  My goal is to develop an interim assessment that 

resolves each of these challenges.   
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Inspiration for how to develop an interim assessment to meet each of these 

challenges came from the cognitive and interim assessment literature (Baddeley, 2007; 

Bjorklund, 2005; Dehn, 2008; Feifer & De Fina, 2005; Goertz et al., 2009; Matlin, 2002; 

Mazzocco & Devlin, 2008).  For instance, Goertz et al. (2009) investigated how teachers 

used multiple-choice interim assessments to modify instruction.  These teachers 

developed four error categories to explain student performance:  a procedural-conceptual 

continuum, conceptual understanding, other cognitive weaknesses which included test 

anxiety, difficulty maintaining attention, and weak reading ability, and contextual 

diagnoses which were outside the realm of school influence.   

To capture the spirit of the aforementioned categories and provide a mechanism 

for teachers to more easily differentiate and remediate instruction, I redefined the error 

categories as procedural knowledge, conceptual or declarative knowledge, and attention.  

As such, these error categories fit with an information processing approach to cognition 

(Baddeley, 2007; Bjorklund, 2005; Dehn, 2008; Feifer & De Fina, 2005; Matlin, 2002) as 

well as the five interwoven strands of mathematical proficiency espoused by the National 

Research Council (NRC, 2001).  The NRC’s strands of mathematical proficiency 

encompass conceptual understanding, procedural fluency, strategic competence, adaptive 

reasoning, and productive disposition.  The succeeding paragraphs will briefly examine 

cognition and these new error categories (attention, procedural knowledge, and 

conceptual knowledge) from the perspective of mathematical problem solving.   

Mathematics cognition and problem solving.  Matlin (2002, p. 364) contends 

that “attention is a necessary initial [emphasis added] component of understanding a 
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problem.”  Based on Matlin’s statement, attention is required before problem solving can 

begin.  But, attention is not a solitary construct.   

Attention is an important feature of Baddeley’s (2007) model of working memory.  

His model is divided into three components: the phonological loop, the visuo-spatial 

sketchpad, and the central executive.  Depending upon the nature of a given mathematics 

problem, each of these working memory components could be involved in mathematical 

problem solving.  However, attentional capacities reside within the central executive 

component and are the most “crucial feature of working memory” (Baddeley, 2007, p. 

124).  The central executive is “crucial” because it determines which information in a 

mathematics problem should receive attention and which should not (Feifer & De Fina, 

2005).  Baddeley (2007) and Feifer and De Fina (2005) argue that not only is the central 

executive critical in directing, shifting, and sustaining attention, but it is also important in 

the inhibition of negative distractors and the selection of necessary strategies to execute a 

cognitive task.  The central executive, therefore, orchestrates the action required in 

working memory and, in turn, mathematical problem solving.   

Sergeant (1996) submits that attention can be subdivided into selective attention 

and sustained attention.  Selective attention is defined as the ability to ignore irrelevant 

stimuli while focusing on the task at hand (Bjorklund, 2005; Matlin, 2002; Sergeant, 

1996).  Sustained attention is defined as the ability to maintain one’s focus as long as 

necessary to complete a given task (Bjorklund, 2005; Sergeant, 1996).  Selective and 

sustained attention capacities are activated when a student begins reading a mathematics 

question.   
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For example, when reading a mathematics question, the student must discern what 

the question is asking while simultaneously filtering out any extraneous and irrelevant 

stimuli.  This action is selective attention.  Then, declarative and/or procedural 

knowledge is activated and the associated information is drawn into working memory for 

manipulation (Dehn, 2008; Dehn, 2010).  As mathematics problems become more 

complex, students must maintain their focus on the question to determine the kind of 

problem the question is addressing, how to set up the problem, what formula(s) must be 

used to answer the question, and then finally how to solve the problem.  This action 

involves both sustained attention and selective attention since the student needs to 

continually select the appropriate details to focus on while simultaneously sustaining 

their focus on the problem-solving task.   

Without a combination of selective and sustained attention capacities, students are 

not likely to be successful problem solvers.  Despite the role of attention as an initial 

phase in problem solving none of the cognitive diagnostic assessment models previously 

mentioned consider it.  Given the importance of selective and sustained attention on 

mathematics problem solving, attention will be included as an error category in my 

interim assessment framework.   

Once a student’s attention is activated, needed information is retrieved from long-

term memory and brought into working memory so that novel problem solving can occur 

(Dehn, 2008).  Long-term memory is subdivided into episodic and semantic memory, 

where episodic memory consists of the relevant events in our history and semantic 

memory contains “all the general knowledge we possess” (Dehn, 2008, p. 72).  Semantic 

memory is divided into declarative and procedural knowledge (Dehn, 2008).   
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Procedural knowledge involves knowledge about (a) how to perform actions 

(Dehn, 2010; Matlin, 2002), (b) how to perform the “steps required to complete various 

tasks” (Dehn, 2008, p. 72), (c) “how to solve problems and apply information” (as cited 

in Kamphaus, 2005, p. 57), and (d) the “action sequences for solving problems,” or 

“skills, algorithms, …[and] strategies” (Rittle-Johnson & Siegler, 1998, p. 77).   

Declarative knowledge includes factual information, specifically, concepts, 

propositions, schemata, frames, scripts, and rules (Bjorklund, 2005; Dehn, 2008; Dehn, 

2010; Kamphaus, 2005; Matlin, 2002).  In a mathematics context, declarative knowledge 

can be defined as mathematics vocabulary, mathematics facts, mathematics rules, 

mathematics notation and their meanings, and selection of an appropriate formula for a 

given problem.   

According to Kamphaus (2005), declarative and procedural knowledge are 

inseparable components in solving problems.  Dehn (2010, p. 29) argues that the 

“organizational structure of semantic memory lends itself well to academic learning that 

places a heavy emphasis on conceptual and factual learning.”  Thus, it is reasonable to 

include declarative and procedural knowledge as error categories since semantic memory 

errors would likely impact a student’s mathematics achievement.   

Attention, procedural knowledge, and declarative knowledge error categories 

appear to be necessary for a meaningful and cognitively diagnostic interim assessment.  

At this point, no other error categories will be pursued.  Although each error category 

may be clearly defined, identifying the error category a given error exemplifies is not 

simple.  Cognition is a complex process.  Bjorklund (2005) argues that efficient 

information processing is an interaction of several processes: consciousness, attentional 
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capacity, and working memory.  One process stimulates another in the processing of 

stimuli.   

For instance, Kruschke (2005) posits that selective attention is involved in the 

categorization that is stored within declarative memory.  Kruschke (2005, p. 186) used 

the example of deciding if an animal is a duck or a rabbit to illustrate how categorization 

works.  Kruschke contends that when the mind is categorizing an animal as a “duck” or a 

“rabbit,” a person needs to pay attention selectively to features of the animal to determine 

which characteristics it possesses and, in turn, which category it belongs to.  Based upon 

Kruschke’s theory of categorization, selective attention and declarative memory are not 

mutually exclusive.   

Other researchers have debated the relationship between when and how 

conceptual and procedural knowledge develop (Rittle-Johnson & Siegler, 1998).  Based 

on a comparison of 34 studies, Rittle-Johnson and Siegler contend that declarative and 

procedural knowledge do not always develop in the same manner.  At times, conceptual 

knowledge appears to develop before procedural knowledge.  At other times the converse 

is true.  Rittle-Johnson and Siegler (1998, pp. 77-78) have postulated that conceptual and 

procedural knowledge “develop iteratively, with small increases in one leading to small 

increases in the other, which trigger new increases in the first.”  Given this variance in 

development, it is plausible that declarative and procedural knowledge are not mutually 

exclusive memory components.  In fact, attention, declarative knowledge, and procedural 

knowledge are likely not mutually exclusive error categories.  No research was found that 

indicates whether attention and procedural knowledge are mutually exclusive memory 

components.  Therefore, one might conclude that attention and procedural knowledge are 
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not mutually exclusive, in as much as one has to sustain their attention on a task as one 

moves through solving a multi-step problem.   

In brief, attention errors suggest lapses in selective and/or sustained attention 

abilities (Baddeley, 2007; Bjorklund, 2005; Feifer & De Fina, 2005; Matlin, 2002; 

Sergeant, 1996).  Procedural errors are defined as calculation errors or missteps in 

problem solving while conceptual/declarative errors are mistakes in factual information 

(e.g., formulas, notations, definitions).  These new error categories can potentially link 

students’ thinking processes with their acquired skills.  Thus, for any given item a teacher 

might remediate some students with more conceptual tasks while other students might 

receive remediation that is more procedurally based.  This remediation process should 

allow for student weaknesses to be targeted according to lapses or deficits in student 

thinking.   

Ideally, it would be helpful if these error categories could be ordered according to 

their degree of correctness.  Since attention is more about focus and orchestration and 

unconcerned with the direct storage of memory components, I will assume that attention 

errors are lesser errors than either procedural or conceptual/declarative errors.  In 

contrast, several studies give direction to how the ordering of the procedural and 

conceptual error categories could be conceptualized.   

Mazzocco and Devlin’s (2008) research compared students with low mathematics 

achievement (LA) to those with mathematical learning disabilities (MLD).  Their 

research showed that in general students with MLD had a “weak rational number sense 

and inaccurate beliefs about rational numbers” whereas students with LA exhibited a 

partial understanding of fractions and decimals with a propensity to memorize labels, 
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procedures, and fraction to decimal equivalencies without a clear understanding of 

fundamental concepts (Mazzocco & Devlin, 2008, p. 690).  This study not only gives 

credibility to the creation of conceptual and procedural error categories, but it also 

suggests that students with less mathematical skill (MLD) make more conceptual errors 

than students with more mathematical skill while students with slightly more skill (LA) 

have some conceptual and procedural understanding.  Other research studies are 

consistent with this generalization (Geary, Hoard, & Bailey, 2011; Mazzocco, Myers, 

Lewis, Hanich, & Murphy, 2013).  These studies suggest that conceptual errors are 

greater errors than procedural error.   

Therefore, this study will consist of an interim assessment test design in which the 

items are multiple-choice, the distractors are students’ common misconceptions, and the 

errors are aligned with an information processing theory of cognition: attention, 

procedural knowledge, and conceptual/declarative knowledge errors.  Lastly, the errors 

will be ranked from most correct to least correct:  attention errors, procedural knowledge 

errors, and conceptual/declarative knowledge errors.   

Summary and Purpose  

The accountability issues surrounding the NCLB Act of 2001 have prompted a 

relatively new phenomenon in the testing world, interim assessments.  Little empirical 

research has occurred with interim assessments.  Much of the research has relied on 

teacher observations, interviews, and surveys (Christman et al., 2009; Clune & White, 

2008; Goertz et al., 2009; Marsh et al., 2006).  Several of these studies revealed that 

teachers alter their instruction in response to interim assessment data (Christman et al., 

2009; Clune & White, 2008), although there is substantial variability in how effective 
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teachers are in their data analysis and interpretation (Goertz et al., 2009).  Fewer studies 

have investigated the effect of interim assessments on student achievement.  The Carlson 

et al. (2011) study is one of the first large-scale empirical studies which suggest that 

interim assessments are a viable means of improving student achievement in 

mathematics.  The Carlson interim assessments mirrored the state test blueprint and were 

administered as quarterly, predictive assessments.  Training was provided to teachers and 

administration in data analysis, data interpretation, and the data-driven reform process.  

Despite the significant contributions of the aforementioned studies, no research has 

explored what interim assessment framework may be cognitively and instructionally 

meaningful for teachers.  CDA models offer a possible interim assessment framework to 

support these goals. 

Several researchers have created CDA models as a paradigm for diagnosing 

student content strengths and weaknesses and to potentially inform instruction (Briggs et 

al., 2006; Embretson, 1998; Gierl et al., 2007; Mislevy et al., 2003; Mislevy & Haertel, 

2006; Rupp & Templin, 2008; Tatsuoka, 2009).  The challenge is to find a testing 

framework that is not too fine or large grain so that the test data are not overwhelming to 

teachers while simultaneously being rich in diagnostic data.  Six CDA models were 

discussed in this study: the RSM, AHM, DCM, ECD, CDS, and OMC assessments.   

In brief, the RSM (Tatsuoka, 1983, 1986, 2009), the AHM (Gierl, 2007; Gierl, 

Leighton, & Hunka, 2007; Leighton, Gierl, & Hunka, 2004), and the DCM (Rupp & 

Templin, 2008; Rupp et al., 2010) are statistical models that employ Q matrix theory and 

attributes developed by content experts.  Despite their similarities, the RSM, the AHM, 

and the DCM have their differences.  The RSM is focused on error analysis and is often 
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retrofitted to tests, which compromises the cognitive diagnostic capability of the 

assessment.  In turn, the AHM focuses on student content mastery and is applied to tests a 

priori.  Although student content strengths are important, this focus may leave gaps in 

teachers’ understanding of student weaknesses as content weaknesses are not necessarily 

an absence of content strengths.  Even though the DCM can provide a multidimensional 

view of student mastery per item, the focus of this model is skill mastery.  In fact, the 

DCM predicts the probability of student performance according to a profile of mastered 

attributes.  Given that the DCM is about skills and attributes, it is not congruent with the 

interests of this study.  The next model, ECD is a construct-centered approach which 

focuses on the accumulation of evidence to support student inferences (Gorin, 2007; 

Mislevy et al., 2003).  Although the ECD provides a comprehensive approach to 

cognitive test development, it also appears to be a renaming of traditional test design 

principles and therefore, offers no new information for this study.  In the next model 

(CDS), cognitive theory precedes test design and item development (Embretson, 1998, 

1999, 2010; Embretson & Gorin, 2001; Gorin, 2007).  Although the CDS has potential, it 

has been primarily used for ability measures.  The last model is the OMC assessments, 

which given their multiple-choice format already is familiar to teachers.  OMC 

assessment researchers recommend that distractors should be written using students’ 

common errors and misconceptions (Briggs et al., 2006); however, this model does not 

include students’ thinking processes in the composition of test items.  In addition, the 

distractors do not represent error categories, but rather levels of student understanding.  

Although the OMC assessments are the closest test framework to the interests of this 
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study, changes still need to be made so that they are suitable as cognitively diagnostic 

interim assessments.   

The purpose of this study is to create and validate an interim assessment for 7th 

grade mathematics. The assessment will consist of ordered multiple-choice categories 

with distracters that contain common student misconceptions.  The error categories will 

be linked to cognitive processes and will comprise: attention, procedural knowledge, and 

declarative knowledge.  Through error analysis, educators will be able to determine 

student’s error patterns so that teachers will be better equipped to remediate their 

misconceptions and faulty strategies and extend their understandings. The details of the 

test development and its accompanying validation procedures will be described in 

Chapter 3. 

This study will answer the following research questions:  

(1) What validity evidence from the expert reviews and cognitive interviews 

supports the error categories? 

(2) What is the relationship between students’ problem-solving errors and 

teachers’ perceptions of students’ problem-solving errors? 

(3) What is the item response theory evidence to support the OMC interim 

assessment framework?   

(4) Do the errors made by advanced 6
th

 grade mathematics students differ 

from those made by general 7th grade mathematics students? 

(5) Do the errors made by special education mathematics students differ from 

those made by regular mathematics students? 

  



65 

 

 

 

Chapter III: Development and Validation of a Diagnostic Interim Assessment 

Since the purpose of this study was to create and validate an interim assessment 

for 7th grade mathematics and to use the resulting test scores to inform instruction, 

validity evidence was required from multiple sources to support inferences drawn about 

this population (Haladyna, 2004; Haladyna & Rodriguez, 2013; Kane, 2009).  As 

suggested by Haladyna (2004), much of this validity evidence came from a study of the 

item development procedures and an item analysis.  Additional evidence was gathered 

from expert teachers’ reviews and student interviews.  Therefore, a mixed-methods 

research design was employed because quantitative and qualitative methods were 

necessary to answer the research questions.  As stated by Creswell and Plano Clark 

(2011, p. 5), mixed methods research designs are appropriate when the research design 

“provides a better understanding of [the] research problems than either approach alone.” 

Analyses were performed separately and then mixed during the discussion and 

interpretation of the data.  Ultimately, the validation process was a joining together of the 

test’s purpose, its inferences about the population, and the evidence gathered to support 

those inferences (American Educational Research Association, American Psychological 

Association, & National Council on Measurement in Education, 1999; Kane, 2006; 

Schmeiser & Welch, 2006).   

This chapter begins with a brief description of the research setting and a 

discussion of the test development process: table of specifications, item writing 

procedures, and error category rubric development.  The second section concentrates on 

the types of evidence needed to support the development of the error categories, 
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specifically, cognitive interviews and expert teacher ratings.  Following is a description of 

the data analysis methods needed to answer the research questions.   Finally, the chapter 

concludes with the results of the error category validation.  In contrast, chapter 4 

examines the methods and results for the item analysis and the comparison of student 

groups (e.g., advanced 6
th

 grade versus general 7th grade mathematics) according to the 

errors made.  Together these chapters document the necessary evidence to support the 

interpretations and uses of the interim assessment scores.   

Research Setting 

The Virginia school division where this study occurred administered three interim 

assessments during the academic year.  Each interim assessment was given at the end of 

the nine-week marking period within a 5-day testing window.  Teachers elected which 

day within the testing window they wanted to implement the interim assessment.  

Immediately following interim assessment administration, teachers received score reports 

which described student strengths and weaknesses per the SOLs tested.  The score reports 

also included an error analysis of student performance.  Each nine week’s interim 

assessment data informed teachers’ instruction during the 2-3 days of remediation 

immediately following testing.  

This study centered on a Virginia school division’s third nine weeks interim 

assessment for 7
th

 grade mathematics.  The school division administered the 7
th

 grade 

mathematics interim assessment to both advanced 6
th

 grade and general 7th grade 

mathematics students.  The underlying principle here was that both student groups take 

the same SOL test; therefore, they were given the same interim assessment.  The resulting 
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score reports were divided by grade and class meaning there was a separate score report 

for advanced 6
th

 grade versus general 7th grade mathematics students.          

Test Development                

The third nine weeks interim assessment consisted of 25 multiple choice items, 

which followed the sequencing of SOLs within the division’s pacing guide.  The pacing 

guide for this school division was detailed and specific.  First, it followed the Virginia 

SOL curriculum framework.  Second, it prescribed the sequence of content instruction 

and the number of days that should be devoted to each SOL.  Furthermore, the pacing 

guide referenced division-provided instructional resources, such as manipulatives (e.g., 

algebra tiles, counters, fraction equivalency towers) that teachers were expected to use in 

their instruction.  As such, division leaders supposed that all teachers would implement 

the pacing guide with fidelity.      

In addition to items being aligned with the Virginia SOL curriculum framework 

and the division pacing guide, each item included three distractors that encompassed 

students’ common errors or misconceptions.  The decision to use three distractors was 

based on the following rationales: (a) the Virginia SOL tests use three distractors and 

modeling an interim assessment after the VDOE format was reasonable given that the 

interim assessments were meant to foreshadow student performance on the SOL test, (b) 

the interim assessments were meant to be used for instructional purposes, and (c) since 

lower-scoring examinees are typically more varied in their response patterns (Levine & 

Drasgow, 1983) the four- and five-option item would provide the most information (Lord, 

1977).  Furthermore, Lord (1977) and Levine and Drasgow (1983) posit that higher 

scoring examinees are less inclined to guess than lower-scoring examinees.  Based on 
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these studies, I hypothesized that more distractors were needed to discriminate ability 

levels for lower-scoring test takers.  Since I was interested in discerning the types of 

cognitive misconceptions examinees had in their problem solving in a format that 

paralleled the Virginia SOL exam, all items in the mathematics interim assessments had 

three distractors.  

Table of specifications.  Before test item writing commenced, a table of 

specifications was generated (See Table 2 and Table 3).  The table of specifications 

indicated the quantity of items tested per SOL as well as the specific knowledge or skills 

each item assessed.   

The interim assessments were cumulative in nature with each assessment 

containing 8 items from the previous interim assessment.  After each interim test 

administration, a frequency analysis was used to determine the lowest performing items 

for the division.  The frequency analysis measured the number and percent of students 

who correctly responded to each item (See Appendices A and B).  The 8 items with the 

lowest percent correct formed the basis for the common items on the subsequent interim 

assessment.  Because this study centered on the third interim assessment, it had 8 

common items from the second nine weeks interim test.  In this context, common items 

did not refer to the same test items, but rather similar test items.  Common items were 

defined as (a) items which used the same question stem with different numbers, (b) items 

in which the sequence of the response options had changed so that if option A was 

previously correct, this was no longer the case, and (c) items which retained the same 

location within the overall test.  I hypothesized that this common item model would be a 

sufficient measure of student remediation and growth in achievement.  
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The interim assessment addressed SOLs: theoretical and experimental probability, 

compound probability, statistics, relations, writing and evaluating algebraic expressions, 

properties of operations, arithmetic and geometric sequences, and solving linear 

equations.  Seventeen of the 25 test items were devoted to these SOLs.   

The remaining items consisted of the 8 common items as revealed by the second 

nine weeks frequency analysis.  The advanced 6
th

 grade mathematics frequency analysis 

showed that the items with the lowest percent correct included items: 11, 16, 13, 8, 25, 

15, 6, and 12 (See Appendix A).  In contrast, the general 7th grade mathematics 

frequency analysis determined that the items with the lowest percent correct were items: 

11, 16, 25, 8, 6, 13, 21, and 15 (See Appendix B).  These lists of lowest-performing items 

were nearly the same for both groups.  The difference occurred with items 12 and 21.  

With item 21 only 31.5% of general 7th grade mathematics students correctly answered 

this item, while with item 12, 51% of the advanced 6
th

 grade mathematics students 

answered this item correctly.  Since fewer of the general 7th grade students answered 

item 21 correctly compared to the percent of advanced students who responded to item 12 

correctly, I included item 21 as a common item.  Therefore, the common items for the 

third nine weeks assessment followed the item structure of items: 11, 16, 25, 8, 6, 13, 21, 

and 15.  The SOLs which corresponded to the common items included: proportional 

reasoning, volume and surface area of rectangular prisms and cylinders, similar 

quadrilaterals and triangles, properties of quadrilaterals, and transformations of polygons.   
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Table 2  

Third Interim Assessment Table of Specifications 

Number  

of Items 

SOL Description 

2 7.2 The student will describe and represent arithmetic and geometric 

sequences using variable expressions. 

 

2 7.4* The student will solve single-step and multistep practical 

problems, using proportional reasoning.  

 

2 7.5* The student will describe volume and surface area of cylinders, 

solve practical problems involving the volume and surface area 

of rectangular prisms and cylinders, and describe how changing 

one measured attribute of a rectangular prism affects its volume 

and surface area. 

 

2 7.6* The student will determine whether plane figures-quadrilaterals 

and triangles-are similar and write proportions to express the 

relationships between corresponding sides of similar figures. 

1 7.7* The student will compare and contrast the following 

quadrilaterals based on properties: parallelogram, rectangle, 

square, rhombus, and trapezoid. 

 

1 7.8* The student given a polygon in the coordinate plane will 

represent transformations (reflections, dilations, rotations, and 

translations) by graphing in the coordinate plane. 

 

2 7.9 The student will investigate and describe the difference between  

the experimental probability and theoretical probability of an 

event.  

 

2 7.10 The student will determine the probability of compound events, 

using the Fundamental Counting Principle.  

 

2 7.11 The student, given data in a practical situation, will construct and 

analyze histograms and will compare and contrast histograms 

with other types of graphs presenting information from the same 

data set. 

 

2 7.12 The student will represent relationships with tables, graphs, 

rules, and words. 

 

*Common item(s) are noted with an asterisk. 
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Table 3 

Third Interim Assessment Table of Specifications 

Number  

of Items 

SOL Description 

3 7.13 The student will write verbal expressions as algebraic 

expressions and sentences as equations and vice versa; and 

evaluate algebraic expressions for given replacement values of 

the variables. 

 

2 7.14 The student will solve one- and two-step linear equations in one 

variable and solve practical problems requiring the solution of 

one- and two-step linear equations. 

 

2 7.16 The student will apply the following properties of operations 

with real numbers: commutative and associative properties of 

addition and multiplication, the distributive property, the additive 

and multiplicative identity properties, additive and multiplicative 

inverse properties, and the multiplicative property of zero. 

 

*Common item(s) are noted with an asterisk. 

 

Item-writing procedures. One middle school mathematics teacher and I created 

the initial interim assessment test items.  Each test writer used the Virginia SOL Test 

Blueprint (Virginia Department of Education [VDOE], 2009a), 7
th

 grade Mathematics 

Curriculum Framework (Virginia Department of Education [VDOE], 2009b), and the 

local 7
th

 grade mathematics pacing guide as guides for test item content development.  In 

addition, the test writers followed the item-writing guidelines promulgated throughout the 

theoretical and empirical research literature (Haladyna, 2004; Haladyna & Downing, 

1989a; Haladyna & Downing, 1989b).   

Haladyna and Downing reviewed 46 chapters and textbooks to derive a list of the 

most frequently cited item-writing rules.  Then they validated the rules to determine if 

any should be eliminated or ameliorated.  Given the scope of this study, it is noteworthy 
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that 19 of the studies that Haladyna and Downing (1989b) reviewed recommended that 

students’ common errors be among the multiple choice distractors.  Hence, the final list 

of item-writing rules for this study relied on content directives from the Virginia 

Department of Education and the local school division’s pacing guide as well as the item-

writing guidelines espoused by research.   

Once the first draft of each test was developed, middle school mathematics 

teachers from the division reviewed the items and key through a peer review process to 

ensure that the items were aligned with the 7
th

 grade mathematics SOLs and the 

division’s pacing guide.  Teachers were asked to confirm that the key was accurate and 

that all test items were clear, free from errors, and appropriate for 7
th

 grade students.  

Revisions to items and the key were made, if necessary before test implementation.   

Error category rubric development.  Each item included three distractors which 

encompassed students’ common mistakes or misconceptions.  Errors were ordered 

according to how incorrect they were.  For instance, minor errors, such as failing to 

include the correct units when calculating the area or volume of a shape would indicate 

more correctness than a student who was confused by mathematics vocabulary or one 

who did not know the rule for the order of operations.  Students’ scores for each item 

were represented as partial credit scores such that a score of 3 was completely correct, 

and a 2 was more correct than a score of 1.  The most incorrect response was scored as 0.   

In addition, the error categories corresponded to an information processing theory 

of cognition.  Cognition, especially mathematics cognition is a complex process with no 

single, accepted theory describing how information is acquired, stored, and retrieved.  

Researchers have identified many components important to cognitive processing, such as 
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declarative knowledge, procedural knowledge, processing speed, and attention (Baddeley, 

2007; Bjorklund, 2005; Dehn, 2008, 2010; Matlin, 2002).  Processing speed was not 

considered as an error category since the interim assessment was an untimed test.   

Based on the cognitive research previously discussed, I proposed that the error 

categories attention, procedural knowledge, and conceptual knowledge were sufficient in 

describing students’ common mathematics mistakes.  Although these three error 

categories were believed to be satisfactory, I did not anticipate that they described all 

nuances of mathematics cognition.  Other categories might emerge in this study, but at 

this point, these three error categories appeared to be the most salient in describing 

students’ mathematics problem solving and the source of their common errors.   

Of the three error categories proposed, attention errors were the most difficult to 

pinpoint.  In fact, I did not find any CDA literature that separated attention into its own 

error category.  Tatsuoka (1983) focused much of the RSM on procedural errors while 

Briggs et al. (2006) centered the OMC assessments on progress variables which 

essentially captured procedural and conceptual errors.  Several of the remaining CDA 

models (i.e., AHM, ECD, or CDS) did not explicitly address students’ cognitive errors 

because their diagnostic capacities appeared to be more aligned with cognitive strengths.   

On the other hand, Goertz et al. (2009) indicated that teachers developed four 

error categories in their interim assessment analysis of student performance: procedural, 

conceptual, other cognitive weaknesses, and contextual diagnoses.  Attention errors were 

among the list of errors in the category “other cognitive weaknesses.” The remaining 

errors in this category included weak reading ability, test anxiety, and low levels of 

English proficiency.  Although each of these “other cognitive weaknesses” was very 
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different from each other, teachers believed they impacted mathematics achievement.  

Assuming this category of “other cognitive weaknesses” remained unchanged, a teacher 

would not know which component(s) within this category were areas the student needed 

strengthened.  I submit that attention should be its own error category so that teachers can 

specifically remediate this cognitive weakness.  A detailed description of how each of 

these cognitive error categories corresponded to mathematical problem solving follows.  

Attention errors.  Based on the cognitive research previously discussed 

(Baddeley, 2007; Bjorklund, 2005; Feifer and De Fina, 2005; Matlin, 2002; Sergeant, 

1996), I posited that attention errors were related to lapses in selective and/or sustained 

attention abilities.  I suggested that attention errors were more about what a student did 

not do in their problem solving, rather in what they did do.  Furthermore, I submitted that 

students with attention errors possessed both a conceptual and procedural understanding 

of a given mathematics problem.  I proposed that students who made attention errors had 

(a) selected the correct formula(s), (b) understood the mathematics vocabulary and 

notation, and (c) correctly performed all calculations and procedures.  However, 

somehow in their problem solving they ignored some aspect of what a question was 

asking them to do.  Perhaps they misread the directions or they just did not follow the 

directions.  For instance, they may have left off the last step when solving a problem, 

thinking they had completed the entire series of steps.  This leaving off of the last step 

may be due to a lapse in sustaining their attention on the mathematics problem solving.  

In this case, the formula(s) chosen were correct, and the procedures and calculations were 

correct.  They just did not go far enough to complete the question asked.  Or, they may 

have been asked to simplify a fractional answer, yet they did not.  Another possibility was 
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that they may have mislabeled the sides or angles in a geometry problem.  For example, if 

an angle should have been labeled as ABC , they may have transposed BC to CB and 

wrote the angle as ACB .  Finally, they may have been asked to find the next 2 numbers 

in a geometric sequence, but they only found 1 number.  My hypothesis was that attention 

errors were more about omission rather than commission.   

Procedural errors.  Procedural errors were ranked here as characteristically 

between attention and declarative/conceptual errors.  With procedural errors the student 

had some understanding of the underlying concepts, vocabulary, and notation; hence, 

they had a conceptual understanding of the mathematics concepts, vocabulary, and 

notation.  Moreover, there was often something correct in part of the problem solving.  

This was why the procedural error was not seen as serious as the declarative/conceptual 

knowledge error.  Unlike an attention error, there was a mistake somewhere in the 

calculation or steps performed (e.g., wrong step, skipped step).  Perhaps in the calculation 

of a multi-step problem, the student began the problem correctly and then subsequently 

made a calculation error.  Or, perhaps in a word problem, they understood what the 

problem was asking, selected the correct formula, but then they made mistakes using the 

formula.           

Examples of procedural errors include (a) they may have calculated the slope as 

,
y

x




 rather than ,

x

y




 (b) they may not have carried numbers correctly when multiplying 

multi-digit numbers, (c) they may not have regrouped correctly when subtracting multi-

digit numbers, and (d) they may have described an ordered pair as (y, x) rather than as (x, 

y).           
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Conceptual errors.  Conceptual errors were the most serious of the error 

categories because these errors indicated that the student had little or no understanding of 

fundamental mathematics concepts.  Matlin (2002, p. 254) described declarative or 

conceptual knowledge as “knowledge about facts and things.”  In a mathematics context 

conceptual errors could entail selecting the wrong formula, misunderstanding 

mathematics vocabulary or mathematics notation.  Many times the errors referred to the 

student’s absence of some factual information.  For example, suppose a student was 

asked to graph a series of points in a Cartesian coordinate plane.  If the student reversed 

the x- and y-coordinates for all of the points, it could be deduced that the student did not 

know which axis was the x-axis or y-axis.  On the other hand, if the student did not 

reverse all of the coordinates, it was possible that there was some other type of error.  

Perhaps, in this case, the student was confused about graphing only points on the axes, 

not all points.  Graphing some of the points correctly and others incorrectly could be a 

procedural error since the student demonstrated an understanding for graphing some 

points correctly.  Table 4 lists a brief description of each error category and its 

corresponding partial credit assignment.   
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Table 4  

Partial Credit Scores and Cognitively Diagnostic Error Categories 

Partial Credit  

Score 

Error Category 

Descriptor 

Brief Synopsis of Error Categories 

3 Correct No error 

 

2 Attention errors 

 

 

This error is more about what the student did not do, 

rather than what they did do.  The student may have 

misread the directions or they did not follow the 

directions.  All of the mathematics performed is correct.   

 

1 Procedural 

knowledge 

errors 

 

Parts of the problem solving are correct. Errors include 

calculation errors or procedural mistakes—wrong step, 

skipped step.  This student has a conceptual 

understanding of the mathematics required in an item.  

They select the correct formula and are familiar with 

the needed mathematics vocabulary and notation. 

 

0 Declarative or 

Conceptual 

knowledge 

errors 

 

Factual knowledge errors.  Errors may involve 

conceptual understanding, mathematics facts, 

vocabulary, or the meaning of notation. These are 

concepts that can be memorized and later recalled—

factual knowledge.  They also may not be able to 

recognize the type of mathematics problem a given 

item represents.  They may choose the wrong formula.  

  
 

Error category assignment. As discussed in Chapter 2, the error categories were 

not believed to be mutually exclusive (Kruschke, 2005; Rittle-Johnson & Siegler, 1998).  

The overlap and influence of one error category on another could make the assignment of 

error categories arduous.  I suggest when categorizing each incorrect response, the 

designated error category must be the primary or overarching cognitive error.  In this 

way, the most prominent cognitive feature of the error should be recognized.  Correct 

error category assignment is very important to the eventual success of teachers’ 

remediation efforts.  Incorrect error category assignment could result in a teachers’ 

misunderstanding of student mistakes and the selection of inappropriate remediation 

interventions.   
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Cognitive Interview and Expert Teacher Reviews  

In order to confirm the development of the error categories and their 

corresponding assignment for each test item’s distractors, a series of cognitive interviews 

and expert teacher reviews were established.   

Cognitive interviews.  Cognitive interviews, or more commonly called “think-

alouds,” comprise two forms:  concurrent versus retrospective interviews (Ericsson & 

Simon, 1993).  In the context of this research study, concurrent think-alouds (TA) are 

cognitive interviews which occur while a student is solving mathematics problems.  With 

a retrospective TA the student explains their thinking about solving mathematics 

problems after a test is administered.   

At the beginning of a cognitive interview, the researcher typically has the student 

practice how to “think aloud” while solving several mathematics problems until they are 

more comfortable with the process (Ericsson & Simon, 1993).  Researchers often provide 

directions such as “keep talking” if a student becomes silent (Ericsson & Simon, 1993).  

Probes may be used by the researcher to encourage richer, more detailed speech from the 

student.  Ericsson and Simon (1993) contend that the “thinking aloud” process is not 

foreign to students since they often are expected to explain their thinking in a classroom 

setting.  However, concurrent and retrospective TAs are not without their challenges.   

For instance, although with a concurrent TA the student explains their problem 

solving as they calculate mathematics problems, the vocalization of thoughts may slow 

their problem solving (Ericsson & Simon, 1993).  On the other hand, the retrospective 

TAs give the student the opportunity to problem solve without the interview demands 

interrupting their cognitive processing.  However, if retrospective TAs occur too long 
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after a test is administered, some of the episodic memories associated with the problem 

solving may deteriorate.  To capture the benefits of both TA methods, Ericsson and Simon 

(1993) recommend including concurrent and retrospective TAs in a research study.  I 

employed retrospective TAs for my cognitive interviews because I believed they would 

be the least invasive to the learning environment and their data is generally consistent 

with those rendered with concurrent TAs (Ericsson & Simon, 1993).            

Student think-alouds.  A student think-aloud protocol was administered to 

advanced 6
th

 grade and general 7th grade mathematics students.  The goal of the TA was 

(a) to deepen my understanding of student’s mathematics misconceptions and (b) to 

confirm the development of the interim assessment’s error categories.  Since students 

were recalling past problem solving, probes were required.  Probes are often used to 

clarify student’s statements or as a means of re-enacting the problem-solving episode.  In 

this study, probes constituted questions such as, “tell me why you moved from this step to 

this step?” or “can you show me what you were thinking?” or “why did you not select 

answer A?”  Answers to some of these probes helped illuminate a student’s problem-

solving rationale and gave direction to why students struggle mathematically.  The 

resulting student data was used to confirm the development and assignment of the error 

categories.  

Expert teacher reviews.  Expert teacher reviews occurred in two forms: teacher 

think-alouds and teacher ratings of the error category assignments.  Teacher TAs were 

structured in the same way as the student TAs except they addressed teacher perceptions 

of students’ cognitive processing.  In other words, what did the teachers believe students 
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were thinking mathematically when they chose certain item distractors?  A complete 

description of both types of expert teacher reviews follows.  

Teacher think-alouds.  The teacher think-aloud protocol was administered to 

three middle school mathematics teachers.  The objective of the TA was to ascertain what 

teachers perceive is the reasoning behind student problem-solving errors.  Probes were 

used to clarify teacher’s statements or to deepen their explanations of student problem-

solving behaviors.  Probes consisted of questions such as, “what do you think is the 

reason a student might choose answer A?” This data was helpful in determining how 

closely teacher perceptions of student errors fit with the error categories.  Additionally, 

this data allowed the researcher to compare educators’ preconceptions of student errors 

with students’ explanations of their reasoning.   

Teacher raters.  Three middle school mathematics teachers were trained 

according to the error category rubric.  The training comprised a theoretical explanation 

of each error category as it related to cognitive processing.  Several test examples were 

provided of incorrect responses and their error category assignment.  The teacher raters 

were given the opportunity to practice categorizing errors on several items before the 

rating data was collected.  I fielded questions to clarify the error category rubric, if 

necessary.  Then, the teachers rated all 25 test items using the interim assessment items 

and the answer key without error categories.  Since each item had three incorrect 

responses, each teacher rated 75 incorrect response options.  The resulting teacher rating 

data was analyzed to determine the interrater agreement.  

Participants.  The student participants for the cognitive interviews (i.e., student 

think-alouds) consisted of nine advanced 6
th

 grade and general 7th grade mathematics 
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students.  Three mathematics teachers participated in the teacher think-alouds and three 

different mathematics teachers participated as teacher raters.  The teachers had at least 

three years of teaching experience.  As such, they had an in-depth understanding of 

common student misconceptions and middle school mathematics. 

Data collection procedures.  Parental consent forms were distributed to all 

advanced 6
th

 grade and general 7th grade mathematics students at three middle schools 

prior to interim assessment administration.  Furthermore, teacher interview and rater 

consent letters were distributed to all selected mathematics teachers prior to the interim 

assessment administration.  Before testing commenced, all consent forms were collected 

by the researcher.  A stratified random sample of students was selected from those forms 

in which parents bestowed consent.  Stratification occurred in two ways: middle school 

matriculation and course enrollment (i.e, advanced 6
th

 grade mathematics and general 7th 

grade mathematics).  This double stratification ensured that students from each course 

were represented in a given school’s random sample.  Since three students were selected 

from each school, a total of nine students were selected for the TAs.  Student assent 

procedures were followed to ensure the willingness of each student to participate in the 

cognitive interview process.  Student assent consisted of written assent via the parent 

consent letter and verbal assent the day of the cognitive interview.   

Within approximately one week after the interim testing window commenced, the 

researcher traveled to the three middle schools to perform the student TA interviews.  

Since the mathematics teachers chose which day within the testing window they 

administered the interim assessment, the number of days from when the students actually 

took the interim assessment varied.   
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The sampled TA students were removed from the mathematics classroom and 

brought to a secure testing location where they were able to freely explain their problem 

solving within the TA interview.  These students were asked to explain their reasoning for 

one third of the test, or approximately eight test items.  Student 1 at each school was 

interviewed for items 1-8, student 2 at each school was interviewed for items 9-16, and 

student 3 was interviewed for items 17-25.   

A student think-aloud protocol was utilized giving each interview a consistent 

structure.  Each think-aloud was audio-taped and transcribed to ensure the interview 

methodology was followed.  The think-aloud interview and the general testing for all 

students occurred within a 50-minute class period.  At the conclusion of the TA, each 

student received a $20 gift card for their participation in the interview process.   

Following the interim assessment administration, three advanced 6
th

 grade and 

general 7th grade mathematics teachers were interviewed using a think-aloud protocol.  

As with the student TAs, the teacher TAs were audio-taped and transcribed to ensure the 

interview methodology was followed.  Educators examined the same test items the 

sampled students were given for their TAs.  Each teacher received a $20 set of 

mathematics manipulatives for their participation.     

After the student and teacher TAs were completed, the three teacher raters were 

trained.  Once the teacher raters were comfortable with how to rate the distractors, they 

were given them a copy of the interim assessment questions and a copy of the key 

without the error category assignments so they could assign error categories to each 

distractor.  Teacher raters were permitted to use the aforementioned training resources to 

better assist them in assigning error categories to each distractor.            
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Error Category Validation Results 

Results in this section address the research questions:  what validity evidence from 

the expert reviews and cognitive interviews supports the error categories and what is the 

relationship between students’ problem-solving errors and teachers’ perceptions of 

students’ problem-solving errors.  This section begins with an examination of the student 

participants and proceeds with an analysis of the student cognitive interviews, or think-

alouds.  Following is an examination of the teacher interview participants and a chi-

square analysis of their perceptions concerning students’ problem-solving behaviors.  

Subsequently, teacher rater demographics and interrater agreements are presented.   

Cognitive interviews.  Three students from each of three middle schools 

participated in retrospective cognitive interviews (think-alouds).  In other words, 9 

student think-alouds were administered.  Of these 9 students, 4 were black students 

(44.4%), 4 were white students (44.4%), and 1 was an Asian student (11.1%).  Two 

students (22.2%) received special education accommodations.  Table 5 displays the 

student interviewee demographics.  

Table 5  

Demographics of Student Interviewees 

Student Gender Ethnicity Special Education Course Enrollment 

1 F White  6
th

 Advanced 

2 F Black  6
th

 Advanced 

3 F White  6
th

 Advanced 

4 M White  7
th

 Regular 

5 F Asian  6
th

 Advanced 

6 F Black  7
th

 Regular 

7 F Black x 7
th

 Regular 

8 F Black x 7
th

 Regular 

9 F White  7
th

 Regular 
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In the cognitive interviews students were asked to not only describe what they 

were thinking when they selected an incorrect response, but they were also asked why 

they did not select each of the remaining response options.  Transcriptions of the student 

think-alouds were analyzed for patterns and trends using case-ordered matrices (Miles & 

Huberman, 1994).  Descriptive statistics were calculated to characterize the quality of 

student mathematics talk.  If students’ mathematics talk fit neatly with one of the error 

categories, then this error category was assigned to the student’s explanation.  If not, they 

were assigned an “other” category.  Two types of types of explanations fell within the 

“other” category: process of elimination and guessing (See Table 6).  Combined all 

students provided 225 responses to the distractors, yet only 6 responses (2.7%) were due 

to a process of elimination and 7 responses (3.1%) were because of guessing.      

Table 6 

Descriptive Statistics of Student Mathematics Talk 

Data Proportion of Student 

Responses 

Percent 

Confusion with “NOT”  (items 8 and 23)  2/6 33% 

Misunderstanding “comparing” (item11)  2/3 67% 

“Other” category 

             __process of elimination  

            __ guessed on 1-2 items 

 

6/225 

7/225 

 

2.7% 

3.1% 
 

Evidence of the process of elimination and guessing can be seen in the dialogue 

which follows.   

Process of Elimination: 

 Researcher: Why did you pick B? 

 Student: Um. Well, I knew it wasn’t either A or D just by looking at that.   

 Researcher: By looking at what? 

 Student: At the um, -2x – 3 = 7 

  Researcher:   So, you immediately eliminated A and D because they didn’t 

match the -2x? 
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 Student: Yeah. 

 Researcher: When you say they didn’t match, can you point to where they 

didn’t match? 

 Student: Um, well the -2x would be the shaded –x.  So, there’s two.  

 Researcher: Okay. And A didn’t have that and neither did D.   

 Student: Yeah.   

 Researcher: Ok.  So, you’re pointing to the variable tiles [that they] were not 

the same size or shading.   

Guessing: 

 Student: Well, I did analyze everything but I was really confused and I 

was trying, and I kept second guessing myself and everything.  

So, I was like, well BC/DE isn’t really comparing anything so if 

it’s not comparing anything, then they’re equal.  So, I kind of 

just put that one in desperation.  

 

Other than assigning error categories to student responses, student responses were 

analyzed to determine if there were any other patterns or trends.  Two patterns emerged 

which were related to specific words.  Several students struggled with the words not and 

comparing.  Although items 8 and 23 both used the word not in the question stem, only 

item 8 proved to be a challenge.  Despite the fact that in both cases the word not was in 

all capital letters, one student never saw it as evidenced in the following discourse.   

   Researcher:   So, why did you put B? 

 Student: I think that’s wrong, is it wrong? 

 Researcher: It’s wrong. 

 Student: I thought so. I didn’t see the NOT. 

 Researcher: Ahhhh.  That’s important.   

 

In contrast, another student misunderstood the meaning of not in item 8.   

 Researcher: Can you tell me why you put A? 

 Student: I put A because it said it could not be…It said the proportions 

could not be used to find out how many students got a B.  So, I 

put A, because it is not a proportion to equal anything.  So, you 
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don’t know how many students got how many of 6 out of 8 

students got a B on the report card.  

 Researcher: Okay, so do you know what A is called, if it is not a proportion? 

 Student:         No, it’s just a fraction. 

 Researcher:    Is there another name for that? 

 Student: Um, no. 

 

Item 11 used the word comparing in the question stem, which confused two 

students.  The question asked students to compare squares and rectangles and then select 

the true statement.  This student thought comparing two things meant they could not be 

alike, yet comparing means to find the similarities and dissimilarities of two or more 

things.   

 Student: B, I didn’t really touch. 

 Researcher: Why is that? 

 Student: Both a square and a rectangle are a special type of rhombus.  

That has nothing to do between the differences. 

  Researcher:   Okay, so now we’re on C, which is what you picked. 

 Student: Uh huh.  Squares have 4 equal sides.  Rectangles have 2 pairs of 

equal sides.  I thought that this was right, because it’s true, but I 

got it wrong because it wasn’t comparing.  

 Researcher: What do you mean? 

 Student: It’s not, um, squares have all 90 degree angles, but they have 4 

equal sides.  Rectangles have 90 degree angles, but they don’t 

have all equal sides. That’s like comparing, but what I chose was 

just a fact, which wasn’t right.  

  

Next, I compared the items students answered incorrectly with the error categories 

assigned on the test key.  Collectively, student participants missed 43 test items.  Overall, 

the explanations students provided regarding their errors matched 74.4% of the error 

categories assigned on the test key (See Table 7).   
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Table 7: Agreement between Student Explanations and the Test Key 

Student’s Error 

Explanations 

Test Key Error Category Assignments 

Conceptual Procedural Attention Frequency 

Conceptual 13 1 6 20 

Procedural 0 16 1 17 

Attention 1 2 3 6 

Total 14 19 10 43 

 

Specifically, if a conceptual error was assigned on the test key, student 

explanations agreed with the key 92.9% of the time, otherwise student explanations 

agreed with an attention error (7.1%).  If a procedural error was assigned on the test key, 

student agreement was 84.2%, otherwise student explanations agreed with an attention 

error (10.5%) or a conceptual error (5.3%).  But, if an attention error was assigned on the 

test key, student explanations agreed with the test key 30% of the time, otherwise student 

explanations agreed with a conceptual error (60%) or a procedural error (10%).   

A chi-square analysis was performed to determine the relationship between 

incorrect student responses and the error categories assigned on the test key.  Henceforth, 

student’s incorrect item responses will be referred to as a student mistake.  For example, 

if an item’s correct answer is C and a student answered B, then B is a student mistake.  

The contingency table in Table 8 compares student mistakes with the error category 

assignments on the test key.  The chi-square analysis revealed that there was no 

statistically significant difference in students’ descriptions of their mistakes and the error 

categories assigned on the key ).191.0,2,309.3( 2  pdf   In other words, the 

explanations students provided regarding why they made mistakes fit with the error 

categories assigned on the test key.      

 

 



88 

 

 

Table 8  

Student Mistakes vs Error Categories Assigned on the Test Key 

 Conceptual Procedural Attention Total 

Student Mistakes 20 (0.7) 17 (-0.1) 6 (-0.9) 43 

Test Key: Error 

Assignment 

14 (-0.7) 18 (0.1) 11 (0.9) 43 

Total 34 35 17 86 

Note: Standardized residuals in parentheses 
 

In the student interviews I questioned students about their mistakes and their 

reasons for not selecting the remaining response options.  However, I discovered that 

fewer students were able to adequately articulate their reasons for not selecting a 

distractor.  As such, some students’ responses consisted of threads of mumbling, 

disorganized, or nonsensical speech.  These responses illustrated how unorganized some 

students are in their mathematical thinking.  Thus, for this next analysis I only included 

those students who could adequately explain their thinking.  Five out of the nine students 

interviewed were selected for this analysis.  

The explanations students provided of why they did not select a specific distractor 

agreed with the error categories assigned on the test key 86.8% of the time.  If a 

conceptual error was assigned, agreement between the student’s explanation and the key 

was 95.8%.  If a procedural error was assigned, agreement was 92.3%.  But, when an 

attention error was assigned, agreement dropped to 63%.  A contingency table compared 

student explanations of each distractor they did not select to the error categories assigned 

on the test key (See Table 9).  A chi-square analysis revealed that there was no 

statistically significant difference between student explanations of distractors they did not 

select and the error categories assigned on the test key ).434.0,2,671.1( 2  pdf        
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Table 9  

Articulate Student Explanations vs Error Category Assignment 

 Conceptual Procedural Attention Frequency 

Articulate Student 

Explanations 

56 (0.6) 38 (-0.1) 20 (-0.7) 114 

Test Key: Error 

Category 

Assignment 

48 (-0.6) 39 (0.1) 27 (0.7) 114 

Total 104 77 47 228 

Note: Standardized residuals in parentheses 

 

Expert teacher reviews.  Expert teacher reviews were comprised of (a) teacher 

perceptions of students’ problem-solving behaviors and (b) teacher ratings of the error 

category assignments.  Each of the next two sections begins with a description of the 

teacher participants followed by a descriptive analysis of the data.   

Teacher think-alouds.  Three middle school mathematics teachers participated in 

the teacher cognitive interviews, or think-alouds.  Teachers were selected who had many 

years of experience teaching advanced 6
th

 grade and/or general 7th grade mathematics.  

Teacher demographics are depicted in Table 10.   

Table 10 

Demographics of Teacher Interviewees 

Teacher Gender Total Yrs 

Teaching  

Yrs Teaching 6
th

 or 7
th

 grade 

Mathematics 

 

Teacher 1 F 30 23 

Teacher 2 F 7 7 

Teacher 3 F 23 23 

 

Teacher transcripts were organized in case-ordered matrices.  Transcripts were 

reviewed multiple times to discover the patterns and trends in teacher perceptions.  Like 

the student responses, teacher responses were coded according to the error category 
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assignments.  Table 11 compares teacher perceptions with the error category assignments 

on the test key.   

Table 11  

Teacher Perceptions vs Error Category Assignments on the Test Key 

 Key-Conceptual Procedural Attention Frequency 

Teachers-Conceptual 90 0 0 90 

Procedural 1 78 1 80 

Attention 0 6 45 51 

Total 91 84 46 221 

 

Overall, teacher perceptions of student problem-solving behaviors agreed with the 

error category assignments on the test key 96.38% of the time.  If a distractor was scored 

as a conceptual error, teacher agreement was 98.9%.  If a distractor was scored as a 

procedural error, teacher agreement was 92.86%.  With distractors scored as attention 

errors, teacher agreement was 97.83%.   

A contingency table compared teacher perceptions of students’ problem-solving 

behaviors to the error category assignments (See Table 12).  A chi-square analysis 

showed that there was no statistically significant difference between the teacher 

perceptions and the error category assignments )951.0,2,100.0( 2  pdf .   

Table 12  

Teacher Perceptions vs Error Categories Assignments on the Test Key 

 Conceptual Procedural Attention Frequency 

Error Categories 31 (0.1) 28 (0.1) 16 (-0.2) 75 

Teacher Perceptions 90 (0.0) 80 (-0.1) 51 (0.1) 221 

Total 121 108 67 296 

 

Teacher perceptions were then compared to student mistakes using a contingency 

table (See Table 13).  Overall, agreement between teacher perceptions and student 

mistakes was 74.2%.  If a student made a conceptual error, teacher perceptions agreed 
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with the students 92.86% of the time.  If a student made a procedural error, teacher 

agreement was 86.54%.  However, if a student made an attention error, teacher agreement 

was 32.35%.  

A chi-square analysis was performed to determine the relationship between 

student mistakes and teacher perceptions of their problem-solving behaviors.  The chi-

square analysis indicated there was a statistically significant difference in students’ 

descriptions of their mistakes and teacher perceptions of students’ problem solving 

).017.0,2139.8( 2  pdf  No standardized residuals were statistically significant.  

The effect size suggested a weak association between student mistakes and teacher 

perceptions (Cramer’s V =0.178).      

Table 13  

Student Mistakes vs Teacher Perceptions   

 Conceptual Procedural Attention Frequency 

Student Mistakes 60 (1.3) 50 (-0.1) 18 (-1.6) 128 

Teacher Perceptions 42 (-1.3) 52 (0.1) 34 (1.6) 128 

Total 102 102 52 256 

Note: Standardized Residuals in parentheses 

 

Next, teacher perceptions were compared to students’ explanations of all item 

distractors.  As mentioned previously, I only included those students who could 

adequately explain their thinking.  Overall, when students explained each item distractor 

they agreed with teacher perceptions 84.95% of the time.  For instance, if teachers 

perceived an error was conceptual, student responses agreed with them 81.82% of the 

time.  If a teacher perceived an error was procedural or attention, student agreement was 

87.39% and 87.5%, respectively.   

A contingency table compared articulate student explanations of the distractors to 

teacher perceptions (See Table 14).  A chi-square analysis revealed that there was a 
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statistically significant difference between students’ distractor explanations and teacher 

perceptions ).040.0,2,450.6( 2  pdf   No standardized residuals were 

statistically significant.  In addition, the effect size was small indicating a weak 

association between student distractor explanations and teacher perceptions (Cramer’s V 

= 0.104).        

Table 14  

Articulate Student Explanations of Distractors vs Teacher Perceptions 

 Conceptual Procedural Attention Frequency 

Articulate Student 

Explanations 

132 (1.0) 111 (0.2) 56 (-1.5) 299 

Teacher Perceptions 111 (-1.0) 107 (-0.2) 81 (1.5) 299 

Total 243 218 137 598 

Note: Standardized Residuals in parentheses 

 

Teacher raters.  Three different middle school mathematics teachers rated the 

interim assessment’s error category assignments.  Teacher rater selection was based on 

two factors: the teacher had previous experiences in item development for the school 

division’s interim assessments and the teacher had several years’ experience teaching 

advanced 6
th

 grade and/or general 7th grade mathematics (See Table 15).  Although rater 

3 had one year of mathematics teaching experience, she served as my mathematics 

specialist intern where she was exposed to test development and data analysis methods.  

Table 15  

Demographics of Teacher Raters 

Teacher Gender Years 

Teaching 

Years Teaching 

Mathematics 

Years Teaching 

6
th

Advanced or 

7
th

Regular 

Other Related 

Mathematics 

Experiences 

 

Rater 1 M 6 6 6 n/a 

Rater 2 F 16 16 4 n/a 

Rater 3 F 4 1 1 Graduate intern 
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All three teacher raters had perfect agreement with me for 24 of the 25 test items, 

resulting in a raw agreement of 100%.  Item 7 was the exception.  Here raters 2 and 3 

were in perfect agreement with me, while rater 1 was in perfect agreement with me 

except for 1 distractor (See Table 16).  Rater 1 rated this distractor as a procedural error 

whereas I rated it as a conceptual error.  Consequently, for item 7 the agreement between 

the 3 raters and me was 88.9%.   

Table 16  

Item 7 Error Category Assignments 

 Me Rater 1 Total 

0 1 2 

0 1 1 0 2 

1 0 0 0 0 

2 0 0 1 1 

Total 1 1 1 3 
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Chapter IV: Test Scoring, Analysis, and Group Comparisons 

Whereas Chapter 3 looked at the validation of the error categories and evidence to 

support the test development process, Chapter 4 explores the methods and results 

concerning an item analysis and a comparison of student groups (e.g., advanced 6
th

 grade 

and general 7th grade mathematics).  And so, this chapter begins with an examination of 

the test participants and data collection procedures.  Then, the methods and results of the 

item analysis are discussed, specifically, classical test theory (CTT), distractor analysis, 

differential item functioning (DIF), and item response theory (IRT) methods.  Following 

is a look at the methods and results for the student group comparisons.  The goal of the 

student group comparisons is to provide direction to teachers’ instructional planning and 

remediation efforts by illuminating potential differences among student groups in the 

errors they make.   

Participants 

The participants were advanced 6
th

 and general 7th grade mathematics students 

and their teachers from an urban school division in Virginia.  Although these students 

were in different grades, they each were taught 7
th

 grade SOLs and their teachers 

followed the same curriculum pacing guide schedule throughout the academic year.  

Thus, advanced 6
th

 grade mathematics and general 7th grade mathematics students were 

administered the same interim assessments. By sampling students from both of these 

mathematics courses, a more heterogeneous population of students could be achieved.   

Approximately, 547 students were enrolled in advanced 6
th

 grade and general 7th 

grade mathematics courses (Advanced 6
th

 = 259 and Regular 7
th

 =288).  This population 
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of students was characterized by (a) a high level of poverty, about 60% for the division, 

and (b) a low VA SOL pass rate on the new mathematics SOLs, less than 25% for 7
th

 

grade students during the 2011-2012 academic year (Virginia Department of Education 

website, n.d.).  The VA state average SOL pass rate for 2011-2012 was 58% (Virginia 

Department of Education website, n.d.).  Due to the transiency of this population, student 

course enrollment numbers were apt to vary by the time the interim assessments were 

administered.  Thirteen licensed educators taught these courses (Advanced 6
th

 grade = 5 

teachers, General 7th grade mathematics = 8 teachers).  

Data collection procedures   

All of the division’s advanced 6
th

 grade and general 7th grade mathematics 

students’ third interim assessment scores were collected after the third nine weeks interim 

assessment administration.  Since data were collected as part of the normal educational 

process in the division, parent consent was not required.  Once the score data were 

collected, all of the data files were organized for the item analysis.  An item analysis of 

the interim assessment scores was performed using the psychometric analysis program 

jMetrik (Meyer, 2002).  Since the test items were polytomous where “partial credit [was 

awarded] for partial success,” the IRT partial credit model was employed (Masters, 1982, 

p. 150).  An important contribution of the IRT analysis was an item map (Wilson, 2005).  

Here the item map served two functions: as a means of validating the ordering of the 

error categories and to give teachers an additional diagnostic tool to assist in their 

remediation efforts.  Furthermore, the error categories were also validated using a chi-

square analysis, which compared the IRT theta values to the error category assignments 

on the test key.     
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Item Analysis Results 

The results presented here represent the quantitative evidence that support the 

development of a mathematics interim assessment with cognitively diagnostic error 

categories.  Results in this section address the research question: what is the item 

response theory evidence to support the OMC assessment framework?  Since this section 

provides the technical documentation of the interim assessment, it begins with an 

examination of the student participants.  Following is a complete item analysis of the test 

scores to include a classical test theory analysis, distractor analysis, differential function 

analysis, and item response theory analysis. 

Participants.  The 3
rd

 9 weeks interim assessment was administered to 519 

advanced 6
th

 grade and general 7th grade mathematics students.  Of these 519 students, 

one student’s data was removed because all of the student’s responses could not be read 

by the Scantron scanner.  As a result only 518 student responses were retained for data 

analysis.   

The student population was comprised of 255 males (49.2%) and 263 females 

(50.8%).  Students were distributed among several race categories: 4 American Indians 

(0.8%), 12 Asians (2.3%), 252 Blacks (48.6%), 212 Whites (40.9%), and 38 Multi-Race 

(7.3%) students.  Student enrollment was somewhat greater in general 7th grade 

mathematics than in advanced 6
th

 grade mathematics, 281 students (54.2%) and 237 

students (45.8%), respectively.  47 out of 518 students (9.1%) received special education 

accommodations. 
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As mentioned previously, test items were polytomously scored based on the 

cognitive error categories.  Correct items were scored as 3, attention errors were scored as 

2, procedural errors as 1, and conceptual errors as 0 (See Appendix C).  Because items 

were written using students’ common errors, three error categories were not necessarily 

conducive to all items.  As such, 8 items involved conceptual, procedural, and attention 

error categories, while 15 items had only two error categories.  Because items 5 and 23 

focused on student understanding of mathematics vocabulary, conceptual errors were the 

only relevant errors assigned.  Hence, items 5 and 23 were dichotomous.  With 25 items 

and correct responses scored as 3 and the partial credit scoring rubric seen in Appendix C, 

the maximum possible sum score was 56.  The groups all students, males, females, 

blacks, and whites had similar mean test scores and standard deviations (See Table 17).   

Table 17 

Test Score Descriptive Statistics 

Group N Minimum Score Maximum Score Mean  Standard Deviation 

All Students 518 14 53 32.8 6.80 

Males 255 14 52 32.1 6.75 

Females 263 18 53 33.6 6.77 

Blacks 252 16 50 31.1 6.26 

Whites 212 18 53 34.8 6.71 

 

A comparison between each subgroup’s test scores is more easily visible in a 

histogram.  The distribution of each group’s test scores is unimodal and symmetric (See 

Figure 4).  
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Figure 4:  Histogram of All Group’s Test Scores 

  

  

 

 

 

Classical Test Theory Analysis.  An item analysis was performed using jMetrik 

(Meyer, 2002), which revealed that item difficulties ranged from 0.3166 to 2.5541.  The 

easiest item was item 2 (difficulty= 2.5541) and the most difficult item was item 23 
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(difficulty= 0.3166) (See Appendix D).  Livingston (2006) suggests that if test items are 

partial credit items, it is helpful to report the frequency of students who responded to each 

item distractor (See Appendix E).    

Item discriminations ranged from -0.0174 to 0.4079.  Item 16 was the only item 

with a negative discrimination, -0.0174.  Consideration may be given to removing item 

16, which would increase reliability to 0.6459.  Four items had acceptable 

discriminations between 0.30 and 0.70 (Allen & Yen, 1979; Bond & Fox, 2007).  

Thirteen test items had low discriminations between 0.20 and 0.29 and four items had 

discriminations between 0.10 and 0.19.  Together the low discrimination items lowered 

the estimated reliability because they did not discriminate well between students who did 

and did not possess the assessed skills (Allen & Yen, 1979; Livingston, 2006).  Three 

items had very low item discriminations (< 0.10), which meant that these items 

discriminated very poorly between ability groups.  These items included item 6 (0.0914), 

item 9 (0.0934), and item 23 (0.0521).  All of the items with low item discriminations 

were reviewed to determine if their item construction might be ameliorated.   

The interim assessment was assumed to be unidimensional, although this 

assumption was not specifically tested.  Reliability estimates are in excess of 0.62 for all 

subgroups, except black students (See Table 18).  The greatest score variation was seen 

with black students (SEM= 4.19 and 4.25), while white students saw the smallest score 

variation (SEM= 4.04 and 4.09).   In addition, the 95% confidence intervals indicate that 

the reliability coefficients rendered comparable results across most subgroups.  For 

instance, Guttman’s lambda-2 estimates were between 0.5495 and 0.6352.   
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Table 18 

Guttman’s Lambda-2 Reliability Estimates and SEM 

Group Coefficient 95% CI SEM 

 

All Students 0.6251 (0.5769,   0.6702) 4.1572 

Male 0.6255 (0.5559,   0. 6888) 4.1237 

Female 0.6277 (0.5596,   0.6897) 4.1250 

Blacks 0.5495 (0.4653,   0.6261) 4.1913 

Whites 0.6352 (0.5605,   0.7025) 4.0416 

 

Distractor analysis.  The premise of distractor analysis is to improve distractors 

and overall item performance by determining which distractors should be refined or 

rewritten and which distractors should simply be eliminated.  This, in turn, provides 

“important validity evidence to the overall validation process” (Haladyna, 2004, p. 219).  

The distractor analysis was conducted using statistical, tabular, and graphical data 

analysis methods.  Even though each of these methods is uniquely different in their 

approach, they should provide similar evidence of problematic item distractors.     

Distractor-total correlations.  A distractor-total correlation should be negative. 

However, the distractor analysis revealed that items 8, 9, and 11 each had one distractor 

with a positive distractor-total correlation (See Table 19). These items warranted further 

review.  

Table 19  

Distractor Analysis of Item Discriminations 

Item # Item discrimination A B C D 

8 0.1751 -0.2862 -0.3524  0.2997  0.0066 

9 0.0934  0.0760  0.0882 -0.4096 -0.1904 

11 0.2517 -0.3980 -0.3874  0.0477  0.1975 

Note: Item discrimination for the correct response is in bold.  

Only one similarity could be found among the three positive item discriminations 

and item construction.  For items 9 and 11, the distractors with positive item 
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discriminations were those assigned as attention errors.  Perhaps because these items 

dealt with attention to detail, more students who were not strong in the assessed domain 

were enticed by these distractors.  Otherwise, the content domain assessed for items 8 

(proportional reasoning), 9 (probability), and 11 (geometry) were quite different.  

Furthermore, with item 8 the positive item discrimination occurred with the distractor 

endorsed the least frequently while with item 11 it was the distractor endorsed the most 

frequently.  Conversely, item 9’s positive item discrimination was neither the most nor 

least frequently endorsed.  Apart from the similarity with two attention distractors having 

positive item discriminations, there appears to be no other discernable pattern with item 

construction.       

Student response rate.  Haladyna (1993) posits that item distractors with less than 

a 5% response rate are likely selected due to guessing and, therefore, should be rewritten.  

However, before immediately rewriting these items, a more thorough analysis needs to 

occur to determine why there is less than a 5% response rate.  Items for this assessment in 

which the distractors have < 5% response rate are seen in Table 20. 

Table 20  

Distractors with < 5% Response Rate 

Item # Item Difficulty A (%) B (%) C (%) D (%) 

2 2.5541   4.8 75.3    9.2 10.4 

3 2.3649 58.2   1.0   1.2 39.5  

4 1.3745   3.9 66.7  11.8 17.3 

5 0.6931 69.2  16.2 12.5   1.5 

7 0.6988 33.9  54.3   9.4   1.9 

22 2.3938 66.5  10.4 18.7   4.2 

Note: Correct responses are in bold. 

 

Several of the items which rendered distractors with less than a 5% response rate 

were among the easier test items, specifically, items 2, 3, and 22.  It is reasonable that 
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easier items would not be enticing to students because most students would likely know 

the required content.  Distractors with a low response rate tended to be conceptual errors 

(items 2, 3, 5, and 22), although attention errors (items 4 and 7) and procedural errors 

(item 3) were also evident.  The content domains assessed included: items 2, 3, and 4 

(algebra), items 5 and 7 (properties of numbers), and item 22 (probability).  Finally, with 

items 5, 7, and 22 the distractor with the low response rate was option D.  In reviewing 

the content of these distractors, these are the distractors that were the least plausible.   

Nonparametric curves.  Unlike parametric curves, nonparametric curves are not 

required to conform to strictly monotonically increasing functions.  As such, 

nonparametric curves can reveal more about problematic items (Haladyna, 2004, 2013; 

Meyer, in press) than parametric curves.  Each item was examined to see if they exhibited 

one or more of the following undesirable traits: (a) correct response curves that decrease 

as student ability increases (Haladyna, 2004; Meyer, in press), (b) correct responses that 

are never endorsed, and (c) distractors that are flat or non-discriminating (Haladyna, 

2013).   

To create nonparametric curves, sum scores were transformed into van der 

Waerden normalized scores.  The nonparametric curves revealed that generally all test 

items displayed the highest score category increasing monotonically as student ability 

increased.  There were slight deviations in this pattern with item 23 (See Figure 5).   

Item 23 was an application of statistics vocabulary.  Students were asked to 

determine which type of graph could not be used for a given histogram.  Item 23 had a 

very gradual overall increase across ability with peaks at ability scores of approximately  
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-2.25 and 0.75.  All response options were more likely at some point except option A 

which was “line plot.”        

Figure 5:  Correct Response Option Decreases Slightly as Ability Increases 

 

In addition, the highest score category was more likely in all items except item 11 

(See Figure 6).  With item 11 students were expected to select the true statement 

comparing squares and rectangles.  Distractor C was chosen far more frequently across 

all ability groups.   

Figure 6:  Correct Response Option is Never More Likely  
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Distractor C was “Squares have 4 equal sides.  Rectangles have 2 pairs of equal 

sides.”  If a student did not read the distractor carefully, they might have missed that the 

word opposite was not included in the sentence.  To be correct the statement should have 

said, “Squares have 4 equal sides.  Rectangles have 2 pairs of opposite equal sides.”  

Rather, it said “2 pairs of equal sides.”  Two pairs of equal sides could refer to adjacent 

sides being equal; hence, the error.  This distractor was enticing to 59.3% of students (See 

Appendix E).     

All of the test items had at least one response option that was never more likely.  

Six items had nearly flat distractor curves (items 3, 5, 7, 9, 19, 25) (See Appendix F).  

Flat curves suggest that a distractor is poorly functioning and needs to be rewritten since 

no ability level is endorsing this distractor with any frequency.  In fact, each of these 

distractors has less than a 5% response rate, as previously discussed.  With 2/3 of these 

items, the flat curve occurred with response option D.  Six items had one item distractor 

that was non-discriminating (items 1, 6, 8, 14, 15, 23) (See Appendix G).  With 2/3 of 

these items, the non-discriminating curve occurred with a procedural error.  In all but one 

of these cases, there were 2 procedural response options and 1 option that was either a 

conceptual or attention error.   

Items 9 and 16 were especially problematic items (See Figure 7).  Item 9’s correct 

response was always the more likely response while item 16’s correct response was only 

the most likely response with greater than a 2.0 van der Waerden score.  With item 9 

students were asked to calculate the probability of 2 dependent events.  Given that 54.2% 

of the students answered this item correctly, it was likely not too difficult for many 

students.   
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Figure 7:  Correct Response Options for Items 9 and 16 

  

 

Differential item functioning analysis.  Differential item functioning (DIF) 

analyses were performed to measure the degree to which item performance is the same 

for members of two different groups that have the same overall ability level.  jMetrik 

(Meyer, 2002) was used to perform the DIF analyses.  jMetrik uses the Cochran-Mantel-

Haenszel statistic for testing statistical significance and the standardized mean difference 

to assess practical significance among polytomous items (Meyer, in press).  Items were 

classified using the ETS classification system where AA items indicate negligible DIF, 

BB items suggest moderate DIF, and CC items signal severe DIF.   

The first DIF analysis involved male and female examinees (focal group = 

females, reference group = males).  The gender DIF analysis revealed that no items were 

classified as CC items.  On the other hand, item 25 displayed moderate DIF (BB+) and 

favored females.  Given that item 25 is needed for content validity and it displays a 

moderate degree of DIF, it was retained.        

The second DIF analysis measured test fairness with respect to race (focal group 

= blacks, reference group = whites).  The race DIF analysis indicated that item 17 
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exhibited severe DIF (CC-) and favored whites.  Furthermore, although 10 items 

exhibited moderate DIF (BB+ or BB-), the DIF is canceling DIF (See Table 21).   

Table 21 

Differential Function Analysis for Gender and Race 

DIF 

Analysis 

Item # Mantel-

Haenszel 

p-value Effect Size DIF Classification 

Gender 25 1.31 0.25  0.12 BB+ 

Race 4 4.58 0.03  0.19 BB+ 

Race 7 1.88 0.17  0.15 BB+ 

Race 11 4.45 0.03 -0.18 BB- 

Race 14 0.22 0.64 -0.10 BB- 

Race 16 2.43 0.12  0.23 BB+ 

Race 17 5.26 0.02 -0.20 CC- 

Race 18 2.78 0.10  0.25 BB+ 

Race 21 1.41 0.23 -0.27 BB- 

Race 22 6.24 0.01 -0.19 BB- 

Race 24 3.13 0.08 -0.11 BB- 

Race 25 2.54 0.11  0.18 BB+ 

 

Canceling DIF describes situations where there are an equal number of BB+ and 

BB- items resulting in no overall DIF.  Because item 17 exhibited severe DIF, a purified 

sum score was calculated.  Then, the DIF analysis was run a second time with the 

purified matching score, but the results were worse.  Here item 11 was classified as CC- 

and several items were classified as BB+ or BB- items without the benefit of canceling 

DIF.  Next, a nonparametric curve for item 17 was created to determine the uniformity in 

the DIF (See Figure 8).  Nonparametric curves displayed uniform DIF across all ability 

levels except at -2.5 where the reference and focal curves merged briefly.  Given the 

severity of DIF and that other items within the test assess the same content domain item 

17 could be eliminated from the test.       
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Figure 8:  Race DIF for Item 17 

 

Item response theory analysis.  Each item was scored using a partial credit 

model (PCM) and cognitively diagnostic error categories.  As previously discussed, a 

correct response was scored as 3, an attention error was scored as 2, a procedural error 

was scored as 1, and a conceptual error was scored as 0.  All 25 test items did not 

incorporate all 3 error categories.  Because each distractor was written using common 

errors, all 3 error categories were not relevant or “common.”  Furthermore, if items did 

not use all three error categories, not only was the error scoring not necessarily 

sequential, but scoring did not always include 0.  Therefore, items without 3 error 

categories needed to be recoded (See Appendix C).   

The PCM results revealed that estimated item difficulties ranged from 

approximately -1.04 to 1.03 with a standard error of approximately 0.05 (See Appendix 

H).  The weighted mean square (WMS) or infit statistics were from 0.87 to 1.26 and the 

unweighted mean square (UMS) or outfit statistics were from .8051 to 1.3875.  Since the 

interim assessment was a low-stakes assessment, good infit (WMS) and outfit (UMS) 

statistics should be between 0.7 and 1.3 (Bond & Fox, 2007, p. 243).  Infit and outfit 
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measures for item fit were all within acceptable limits except for item 16 (See Appendix 

H).  Although item 16’s infit was reasonable at 1.26, the outfit statistic = 1.39 indicating 

that item 16 underfits the model (Bond & Fox, 2007, p. 240).  In other words, this item 

was likely too difficult for students resulting in their erratic responses.  The root mean 

square of the error (RMSE) = .06 and indicates a reasonable, although not ideal model fit 

for this population (Browne & Cudeck, 1992).  Item reliability was estimated at 0.9863 

with a separation index = 8.4971.  Thus, item difficulty estimates are very reproduceable 

with this sample and the measure can sufficiently separate items according to their item 

difficulty.   

Person ability (theta values) estimates ranged from -0.8881 to 2.2549 with a mean 

theta = 0.2709 and a standard deviation = 0.4276.  Person reliability was estimated at 

0.6597 with a person separation index = 1.3922.  Person reliability was likely low due to 

the homogeneity of the population assessed and the use of common errors.  Person 

separation was low given that it is less than 2 (Meyer, in press).  The test information 

function indicated that test precision was highest at a theta = 0 (See Figure 9).       

Figure 9:  Test Information Function 
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Next, the ordering of the error categories was validated through an item map and 

an examination of the error category thresholds (See Appendix I).  Items in Appendix I 

were grouped according to the error categories assigned.  For example, all items scored 

exclusively with conceptual and procedural errors, procedural and attention errors, or 

conceptual and attention errors are in separate tables.  Only 6 items did not have a 

reversal: items 6, 8, 11, 17, 19, and 24.  A few patterns were evident in items without 

reversals versus those with reversals.  First, items without reversals tended not to have a 

“throwaway” or implausible distractor.  Second, nonparametric curves suggested that 

generally items without reversals tended to have steeper decreasing slopes for the 

distractors (See Appendix J).  Finally, 2/3 of the items without reversals were scored with 

conceptual and procedural errors.  Only one item was scored with procedural and 

attention errors while one item was scored with conceptual and attention errors.  No other 

patterns were apparent with respect to content domains assessed or item difficulty.  

Several researchers have suggested that there is an ordering to conceptual and procedural 

errors (Geary et al., 2011; Mazzocco & Devlin, 2008; Mazzocco et al., 2013).  Perhaps 

the reversals were somehow related to the attention errors. 

An item map visually depicted the ordering of the error categories (See Appendix 

K).  Here several test items had threshold reversals.  Higher point values mapped to low 

points on the scale and lower point values mapped to higher points on the scale.  Out of 

23 polytomous test items, 16 items had attention errors as one of their error categories.  

These items included: 1, 2, 3, 4, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21, and 22.  Only 

12.5% of the aforementioned items did not have a reversal, items 11 and 17.  In contrast, 

7 items did not have attention errors as one of their error categories.  These items 
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consisted of:  6, 8, 12, 15, 19, 24, and 25.  Approximately, 57.1% of these items did not 

have a reversal, items 6, 8, 19, and 24.  On the other hand, 8 items had all three error 

categories: items 1, 2, 3, 13, 16, 18, 21, and 22.  All of these items have reversals as 

demonstrated in the item map.  With 62.5% of these items, the attention error was the 

reason for the reversal.  These items included: 1, 2, 13, 18, and 22.    

  The item map also revealed that many of the test items were closely matched to 

student ability.  Because of the relationship between persons, item difficulty, and the step 

parameters, these students were measured with a great amount of precision.  Conversely, 

several students at the highest ability levels and some students at the lowest levels were 

measured with less precision and more error.  In order to measure these students with 

greater precision additional items need to be added to the test at the higher and lower 

ends of the ability scale.   

Student Group Comparisons According to Types of Errors 

In the current accountability climate, teachers are required to use test data to drive 

instruction, but many teachers are in a quandary how to achieve this expectation 

(Mandinach & Honey, 2008; Marsh et al., 2006; Young, 2006).  This requirement can be 

exacerbated if teachers teach more than one course preparation (e.g., general 7th grade 

mathematics and Algebra 1) or more than one level of the same course (e.g., advanced 

versus general 7th grade mathematics).  Coupled with the differences in course 

preparations are the demands to differentiate instruction for low achieving students, 

special education students, second-language learners, and general education students.  

Anecdotally, these teachers may make comparisons between some of the aforementioned 

student groups (e.g., general versus special education students, or advanced versus 
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general mathematics students), such as what are the cognitive strengths of the various 

groups? what are their shared cognitive weaknesses?, should I use different instructional 

strategies for one group versus another to increase achievement?  If, for instance, 

teachers had evidence that special education students make more conceptual errors as a 

group than general education students, this data could be helpful in teachers’ instructional 

planning and remediation. In addition, comparing student errors according to ability 

levels could provide further evidence of an ordering to the error categories.  It is 

questions like these that suggest an investigation needs to be made comparing the student 

groups in this study.  

The student participants in this study can be divided into several student groups: 

(a) advanced 6
th

 grade versus general 7th grade mathematics students, (b) general 

education versus special education mathematics students, and (c) student ability quartiles.  

I am interested in discerning if any of these student groups differ in the types of errors 

made.  If so, this data could provide teachers with valuable lesson planning/remediation 

data.  For example, if general 7th grade mathematics students as a group made more 

conceptual errors than advanced 6
th

 grade mathematics students, this data would suggest 

that teachers place greater emphasis on conceptual knowledge constructs (e.g., 

mathematics vocabulary, mathematics facts, mathematics notation, and general 

mathematics concepts) with the general 7
th

 grade mathematics students.  Therefore, I 

compared student groups (e.g., advanced 6
th

 grade versus general 7th grade, and special 

education versus general education) to determine if there were significant relationships 

between group membership and the types of errors made on the 7
th

 grade interim 

assessment.   
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Analysis of Student Groups.  Student data in this study were divided into several 

groups to determine if student membership affected the kinds of errors students made.  

These groups were (a) advanced 6
th

 grade and general 7
th

 grade mathematics, (b) special 

education and general education mathematics students, and (c) student ability quartiles. 

Chi-square analyses were performed using SPSS (IBM SPSS Version 22.0, 2013).  

Student Group Comparison Results 

Results in this section address the research questions do the errors made by 

advanced 6
th

 grade mathematics students differ from those made by general 7th grade 

mathematics students and do the errors made by special education mathematics students 

differ from those made by general mathematics students? This section begins by 

examining the relationship between course enrollment and the volume of student errors.  

Following is an investigation which explores the frequency of errors made by special 

needs students and general education students.  The last section explores the association 

between student ability and errors made.   

Advanced 6
th

 Grade versus General 7th grade Mathematics Students.  

Student test scores were divided among two groups, those enrolled in advanced 6
th

 grade 

mathematics and those enrolled in general 7th grade mathematics.  A contingency table 

was created to compare course enrollment and the frequency of conceptual, procedural, 

and attention errors for all items (See Table 22).  A chi-square analysis revealed that the 

there was a significant association between the types of errors made and course 

enrollment )033.0,2,838.6( 2  pdf .  No standardized residuals were significant.  

Furthermore, the effect size was small indicating that the relationship between course 

enrollment and types of errors made was very weak (Cramer’s V = 0.032).   
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Table 22  

Course Enrollment vs Error Categories Assigned on the Test Key 

 Conceptual Procedural Attention Frequency 

Adv 6
th

 grade 1115 (-0.5) 981 (-0.9) 786 (1.7) 2882 

Gen 7
th

 grade 1567 (0.4) 1416 (0.8) 969 (-1.4) 3952 

Total 2682 2397 1755 6834 

Note: Standardized Residuals in parentheses 

 

Special education versus general education mathematics students.  Student 

test scores were divided into two groups, those with and without special education 

accommodations.  Next, a contingency table was created to compare the frequency of 

errors made by special needs and general education students (See Table 23).  A chi-square 

analysis revealed that there was not a significant association between the types of errors 

made and whether or not a student has special education accommodations

).895.0,2,222.0( 2  pdf  In addition, Cramer’s V = 0.006, which indicates there 

is no relationship between special/general education and the types of errors made.  

Table 23  

Special Education/General education vs Error Categories Assigned on the Test Key 

 Conceptual Procedural Attention Frequency 

Special Education 264 (-0.1)                         236 (-0.2) 175 (0.4) 675 

General education 2395 (0.0) 2161 (0.1) 1528 (-0.1) 6084 

Total 2659 2397 1703 6759 

Note: Standardized Residuals in parentheses 
    

The results from this analysis were surprising given that across many school 

divisions special needs students as a group tend to have a lower pass rate on the Virginia 

SOL than other subgroups (Virginia Department of Education website, n.d.).  However, 

special needs students by definition encompass not only students with low ability levels, 

but also those with physical and emotional handicaps.  Therefore, it might be more 

appropriate to divide student test scores into quartiles according to IRT theta scores.  This 
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would allow for a chi-square analysis comparing ability with the error category 

assignments.  This analysis would also provide additional validity evidence with respect 

to the ordering of the error categories.   

Ability quartiles versus error categories.  Student test scores were divided into 

quartiles with respect to students’ IRT theta scores and compared to the error categories 

for all items (See Table 24).  A chi-square analysis indicated that there was a significant 

association between ability quartiles and errors made )001.,6,340.84( 2  pdf .  

Several standardized residuals were statistically significant. These residuals suggest that: 

Q1 students tend to make more conceptual errors than higher-level students (z = 2.4, p < 

0.05) and Q4 students tend to make more attention errors than lower-level students (z = 

5.6, p < 0.001).  Despite the significant standardized residuals and chi-square, the 

association between ability quartiles and errors made was very weak (Cramer’s V = 

0.079).       

Table 24  

Theta Ability Quartiles vs Errors Made for All Items 

 Conceptual Procedural Attention Frequency 

Q1 824 (2.4) 724 (1.8) 384 (-5.0) 1932 

Q2 669 (1.4) 541 (-1.1) 405 (-0.5) 1615 

Q3 773 (-1.6) 752 (0.8) 559 (1.0) 2084 

Q4     416 (-2.5) 377 (-2.1) 407 (5.6) 1200 

Total 2682 2394 1755 6831 

Note: Standardized Residuals in parentheses 
 

Although there are significant differences in ability and the kind of errors made, 

how much of that difference is attributed to whether an item has all 3 error categories, or 

just two?  Consequently, I grouped items that shared the same error category 

assignments.  Then, I performed a chi-square analysis on each group of items comparing 

ability quartiles and errors made.   
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The first contingency table compared ability quartiles and all items that had 

conceptual, procedural, and attention errors (See Table 25).  A chi-square analysis showed 

that there was a significant association between ability quartiles and errors made when 

the errors encompassed three error categories ).001.,6172.46( 2  pdf   Several 

standardized residuals were statistically significant. These residuals suggested that Q1 

students tend to make more conceptual errors than higher-level students (z = 3.2, p < 

0.01).  Moreover, Q3 students (z = 2.5, p < 0.5) and Q4 students (z = 2.4, p < .05) tended 

to make more attention errors than lower-level students.  In spite of the significant 

standardized residuals and chi-square statistics, the association between ability and the 

conceptual, procedural, and attention errors was very weak (Cramer’s V = 0.107).       

Table 25  

Ability Quartiles vs Items with Conceptual, Procedural, and Attention Errors 

 Conceptual Procedural Attention Frequency 

Q1 219 (3.2) 216 (1.0) 180 (-3.7) 615 

Q2 136 (-0.3) 170 (0.8) 180 (-0.5) 486 

Q3 142 (-1.8) 177 (-1.0) 260 (2.5) 579 

Q4 77 (-1.7) 96 (-1.0) 152 (2.4) 325 

Total 574 659 772 2005 

Note: Standardized Residuals in parentheses 
 

The second contingency table compared ability quartiles and items that 

incorporated conceptual and procedural errors (See Table 26).  Here a chi-square analysis 

revealed that there was a significant association between ability and the conceptual and 

procedural errors made ).002.,3,842.14( 2  pdf   Some standardized residuals 

were statistically significant.  These residuals suggested that Q2 students tended to make 

more conceptual errors than higher-level students (z = 2.0, p < 0.05) while Q2 students 

made fewer procedural errors than other students (z = -2.0, p < 0.05).  Although the chi-
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square and residuals were significant, Cramer’s V suggested a weak association between 

ability and the occurrence of conceptual and procedural errors (Cramer’s V = 0.088).       

Table 26  

Ability Quartiles vs Items with Conceptual and Procedural Errors 

 Conceptual Procedural Frequency 

Q1 286 (0.5) 252 (-0.5) 538 

Q2 264 (2.0) 188 (-2.0) 452 

Q3 291 (-1.6) 328 (1.7) 619 

Q4 159 (-0.6) 164 (0.7) 323 

Total 1000 932 1932 

Note: Standardized Residuals in parentheses 
 

The third contingency table compared ability quartiles with items including 

procedural and attention errors (See Table 27).  A chi-square analysis showed that there 

was a statistically significant association between ability quartiles and procedural and 

attention errors )001.0,3,488.28( 2  pdf .  Several standardized residuals were 

also statistically significant.  In fact, Q1 students tended to make more procedural errors 

than higher-level students (z = 2.2, p < 0.05) while Q4 students were more likely to make 

attention errors than their lower-level cohorts (z = 3.1, p < 0.01).  Nevertheless, the 

association between ability and procedural and attention errors was weak (Cramer’s V = 

0.143).        

Table 27  

Ability Quartiles vs Items with Procedural and Attention Errors 

 Procedural Attention Frequency 

Q1 256 (2.2) 129 (-2.6) 385 

Q2 183 (-0.2) 138 (0.2) 321 

Q3 250 (0.1) 178 (-0.2) 428 

Q4 117 (-2.6) 141 (3.1) 258 

Total 806 586 1392 

Note: Standardized Residuals in parentheses 
 

The final contingency table investigated the association between ability quartiles 

and items with conceptual and attention errors (See Table 28).  A chi-square test revealed 
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that there was a significant association between ability quartiles and errors made

)001.,3,735.39( 2  pdf .  Several standardized residuals were statistically 

significant.  For instance, Q1 students tended to make more conceptual errors than 

higher-level students (z = 2.1, p < 0.05) whereas Q4 students tended to make more 

attention errors than lower-level students (z = 4.1, p < 0.001).  Despite the statistical 

significance of these measures, there was a weak association between student ability and 

errors made (Cramer’s V = 0.196).   

Table 28  

Ability Quartiles vs Items with Conceptual and Attention Errors 

 Conceptual Attention Frequency 

Q1 190 (2.1) 75 (-2.7) 265 

Q2 162 (0.7) 87 (-0.9) 249 

Q3 195 (0.0) 121 (0.0) 316 

Q4 89 (-3.2) 114 (4.1) 203 

Total 636 397 1033 

Note: Standardized Residuals in parentheses 
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Chapter V: Discussion 

This last chapter begins with an overall summary followed by interpretations and 

conclusions of the validity evidence.  Subsequently, three limitations are explored and 

suggestions offered for further research.   

Summary  

The effects of NCLB (No Child Left Behind Act of 2001, 2002) and the 

reauthorization of the ESEA of 1965 (US Department of Education, 2010) have created a 

data-driven instructional environment within public schools as evidenced by the school 

improvement literature (Mandinach & Honey, 2008; Marsh et al., 2006).  Teachers and 

administrators feel the strain of not only increasing students’ mathematics achievement 

but doing so while also increasing the rigor of their instruction as they prepare students 

for state EOG/EOC tests.  Should schools and school divisions not meet state 

achievement targets, they are threatened with school sanctions and takeovers (Hu, 2011; 

Rundquist, 2013).  This accountability climate has pushed teachers to demand that all 

required assessments be of “maximum instructional value” (Huff & Goodman, 2007, p. 

24).  Not surprisingly, many school divisions have turned to interim assessments as a 

means of meeting their achievement targets despite the paucity of research to support this 

venture (Goertz et al., 2009).  The attractiveness of interim assessments lies in the 

promise of providing teachers with instructionally useful data about student achievement 

prior to students sitting for their state EOG/EOC test.  Cognitively diagnostic interim 

assessments offer a potential framework to support the needs and demands of educators 

within this accountability climate.   
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Cognitive diagnostic assessments (CDAs) are assessments of student learning 

which diagnose student “knowledge structures and cognitive processing skills” so that 

remediation is informed (Leighton & Gierl, 2007b, p. 3; Nichols, 1994).  Although 

several CDA paradigms exist, such as the RSM (Tatsuoka, 1983), AHM (Gierl et al., 

2007), DCM (Rupp & Templin, 2008), ECD (Mislevy et al., 2003), CDS (Embretson, 

1998), and OMC (Briggs et al., 2006), the challenge is to find a testing framework that is 

rich in diagnostic data while not overwhelming teachers with too much data.   

In order to provide teachers with an interim assessment that offered “maximum 

instructional value,” I developed an interim assessment framework which partly followed 

the OMC model, but it also was influenced by the interim assessment, school 

improvement, and cognitive psychology literature (Baddeley, 2007; Goertz et al., 2009; 

Mazzocco & Devlin, 2008; Mazzocco et al., 2013).  For instance, all items were multiple-

choice with four response options.  Distractors incorporated students’ common errors and 

were cognitively diagnostic.  Error categories were tied to conceptual knowledge, 

procedural knowledge, and attention constructs.  The goal of the interim assessment 

framework was to use error analysis to provide teachers with cognitively rich data with 

which they could improve student achievement in mathematics.       

Therefore, the purpose of this study was to create and validate an interim 

assessment for 7th grade mathematics and to use the resulting test scores to inform 

instruction.  As recommended in the research literature, validity evidence was gathered 

from multiple sources to support diagnostic inferences about the population (Haladyna, 

2004; Haladyna & Rodriguez, 2013; Kane, 2009).  Evidence came from an item analysis, 
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distractor analysis, cognitive interviews, and expert teacher reviews.  This mixed-

methods study sought to answer the following research questions:  

(1) What validity evidence from the expert reviews and cognitive interviews 

supports the error categories? 

(2) What is the relationship between students’ problem-solving errors and 

teachers’ perceptions of students’ problem-solving errors? 

(3) What is the item response theory evidence to support the OMC interim 

assessment framework? 

(4) Do the errors made by advanced 6
th

 grade mathematics students differ 

from those made by 7
th

 grade mathematics students? 

(5) Do the errors made by special education mathematics students differ from 

those made by general mathematics students? 

Conclusions 

The conclusions rendered here represent a synthesis of all of the validity evidence 

gathered in this study.  Conclusions are presented in three broad areas: validation of the 

error categories, item analysis, and implications for mathematics instruction.   

Validation of the Error Categories.  This section addresses the research 

questions: what validity evidence from the expert reviews and cognitive interviews 

support the error categories and what is the relationship between students’ problem-

solving errors and teachers’ perceptions of students’ problem-solving errors. Student 

error explanations were generally congruent with the error categories assigned on the test 

key.  For example, whether students were explaining their mistakes (i.e., incorrect item 

responses) or why they did not select specific distractors, student explanations were about 
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90% in agreement with the conceptual and procedural error categories.  If, however, 

students were explaining a mistake and an attention error was assigned, agreement was 

only 30%.  Conversely, if students were explaining why they did not select a specific 

distractor and an attention error was assigned, agreement was 63%.  Clearly, most of the 

variation in error category assignment was with attention errors.  When a chi-square 

analysis was performed it revealed that there was no significant difference between 

student explanations of their mistakes and the error categories assigned on the test key.  

Thus, overall the error categories were validated by the students’ cognitive interviews.   

Teachers participated in cognitive think-alouds where they provided their 

perceptions of why students selected a given item distractor.  When teacher’s perceptions 

were compared to the error category assignments on the test key, teachers agreed with the 

error category assignments about 96% of the time.  Yet, when teacher’s perceptions were 

compared against student’s mistakes or student’s explanations of distractors, agreement 

dropped to about 74% over the three error categories.  Chi-square analyses revealed that 

there was no significant difference between teacher perceptions and the errors on the test 

key whereas there was a significant difference when teacher perceptions were compared 

to student’s actual errors.  Again, the greatest variation was with the attention errors.  

Finally, teacher raters were given a test and a test key with no error categories.  After 

receiving training in the error categories, teacher raters assigned error categories to each 

distractor.  The agreement between the teacher raters and the test key was nearly 100%.  

Clearly, the common thread throughout the student and teacher cognitive interviews is the 

attention errors.  More research needs to be done with respect to refining the definition of 

the attention error category.   
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Taken together, there is substantial evidence validating the conceptual and 

procedural error categories.  Although there was some validity evidence for the attention 

error category, the question becomes is the attention error category too narrow (or too 

broad)?  

Item analysis.  This section focuses on the research question: what is the item 

response theory evidence to support the OMC interim assessment framework.  An item 

analysis was performed using classical test theory (CTT), distractor analysis, differential 

item functioning (DIF) analysis, and item response theory (IRT) methods.   

Although some analyses suggested that items 6, 9, and 23 might be problematic.  

This was not generally confirmed across all of the analyses.  Item 17 was shown to have 

uniform DIF favoring white students over black students.  No other analyses indicated 

that item 17 was an issue, yet this result is significant and should not be ignored.  

Consideration should be given to removing this item or rewriting it.   

On the contrary, several analyses revealed that item 16 was problematic.  The 

CTT analysis showed that item 16 had a negative item discrimination which indicated 

that lower-scoring students had a greater chance of scoring the item correct than higher-

scoring students.  This could be due to the test item being misskeyed or ambiguously 

written.  The test key revealed that the item was not misskeyed.  Moreover, item 16 

underfit the IRT partial credit model.  Underfitting items are a concern because it can 

indicate that the item was too difficult for the population resulting in students’ erratic 

responses (Bond & Fox, 2007, p. 240).  A nonparametric curve of item 16 revealed only 

students at the highest ability level were more likely to respond correctly to this item.  

Based upon this item’s construction and the various statistical and graphical analyses, 
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item 16 should be rewritten.  Currently, item 16 uses 2 graphics, a photo of a garage and a 

floor plan.  The item asked students to find the number of gallons required to paint the 

interior of the garage: the walls, floor, and ceiling.  This problem was about surface area, 

yet many students calculated the volume.  Perhaps a labeled, 3-D drawing would help 

make this item more clear for students.     

Nonparametric curves revealed that generally all test items displayed the highest 

score category increasing as student ability increased.  The highest score category was the 

most likely response in all items except item 11 where an attention error was the most 

likely response.  Nonparametric curves likewise showed that all of the test items had at 

least one response option that was never more likely.  This could be due to the use of 

students’ common errors.  Several items had a flat curve or non-discriminating curve, 

which indicated that the distractor was not performing well and should be rewritten or 

eliminated. Many times the flat curves occurred with option D.  Perhaps some students 

never read option D, because the item was easy or they were “enticed” by a different 

response option.  Or, option D was so implausible to some students that it was rarely 

selected.  Moreover, the flat curve could be due to the use of common student errors.  

Changing the sequence of the response options could change the functionality of the 

distractor, but it is more likely that these response options need to be rewritten.   

A distractor analysis of response rates indicated that 6 items had less than a 5% 

response rate.  Haladyna (2004) argues this is likely due to guessing.  Option D was the 

response option with less than a 5% response rate for three of the six items.  Option D 

was also the least plausible distractor in each of these three items. Altogether the 

nonparametric curves and the distractor analysis results suggested that 2 distractors may 
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be sufficient to measure the latent trait and still provide a cognitive diagnosis of student 

ability.  Thinning the number of distractors fits with Haladyna’s (1993) research.   

Reliability estimates were generally lower than expected using classical test 

theory methods (i.e., Guttman’s lambda2 = 0.6251) and item response theory methods

)6597.0(  .  Several factors likely contributed to the low reliability estimates.   

First, most of the test items using CTT methods had item discriminations below 

0.30, which is important given that item discriminations between 0.3 and 0.7 maximize 

test score reliability (Allen & Yen, 1979).  Second, Sadler (1998) argues that reliability 

and item discriminations are decreased when common errors are used as distractors.  

Sadler contends that common error distractors include attractive answers which entice 

students uncertain of the correct response.  As such, these items are more difficult.  Third, 

the population assessed comprises a Virginia urban school division in which less than 

25% of 7
th

 grade mathematics students passed the SOL test in 2012.  Overall, this 

population is generally low performing and homogeneous.  The current 7
th

 grade 

population is likely similar in many respects to previous 7
th

 grade students.  Haladyna 

(2004) suggests that item discriminations can be biased when the population assessed is 

homogeneous.             

Validity evidence to support the ordering of the error categories was sought from 

two sources: an item map and a chi-square analysis comparing student ability and the 

error categories.  An item map revealed that several items had reversals.  The most 

important finding in the item map was that of the 8 items which have conceptual, 

procedural, and attention errors, 5 of them have the threshold between procedural and 

attention errors reversed.  This suggests that the attention error category was not 
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consistently the least serious error among the error categories.  Furthermore, a chi-square 

analysis revealed that there was a statistically significant difference between student 

ability and the error category assignments.  Although the association between these 

variables was weak, lower-level students tended to make more conceptual errors than 

higher-level students and higher-level students tended to make more attention errors than 

lower-level students.  The conceptual error results are supported by the extant literature 

(Geary et al., 2011; Mazzocco & Devlin, 2008; Mazzocco et al., 2013).   

Even though there is some evidence to support the ordering of the error categories 

(i.e., conceptual errors are generally more serious than procedural ones), the attention 

error category evidence is not consistent enough.  At times the attention error category is 

the least serious error.  At other times it is the most serious error.  More research needs 

occur to determine if indeed there is an ordering to the error categories, especially with 

respect to the attention error.   

Implications for mathematics instruction.  This section answers the research 

questions: do the errors made by advanced 6
th

 grade mathematics students differ from 

those made by general 7th grade mathematics students and do the errors made by special 

education mathematics students differ from those made by general mathematics students. 

First, the chi-square analysis comparing errors made by advanced 6
th

 grade and general 

7th grade mathematics students revealed that there was a significant difference in the 

errors made.  General 7th grade mathematics students tended to make more conceptual 

errors than advanced 6
th

 grade mathematics students and advanced 6
th

 grade students 

tended to make more attention errors than their general 7th grade cohorts.  Not 

surprisingly, the greatest inconsistency in the data was with attention errors.  
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Second, there were no significant differences in errors made between special 

education and general education mathematics students.  This is likely because special 

education students encompass not only those with low ability levels, but also those with 

emotional and physical handicaps.   

Finally, there were significant differences in errors made by students at the lowest 

ability quartile, quartile 1.  These students tended to make more conceptual errors than 

their higher-ability cohorts.  In turn, the highest-ability students tended to make more 

attention errors than the lowest-ability students.   

Taken together these results suggest that teachers spend more time teaching 

and/or remediating conceptual knowledge constructs (e.g., mathematics vocabulary, 

notation, and facts) to lower-ability students, especially those enrolled in lower level 

mathematics courses.  These generalizations fit with the extant literature (Geary et al., 

2011; Mazzocco & Devlin, 2008; Mazzocco et al., 2013).      

Limitations 

One of my early research design decisions was to implement concurrent and 

retrospective cognitive interviews as espoused by Ericsson and Simon (1993).  Cognitive 

interviews were to occur during the third nine weeks interim assessment administration, 

but access could not be achieved at that time.  In fact, access was not achieved until 

shortly after the third nine weeks interim assessment administration resulting in solely 

retrospective cognitive interviews.  The danger with retrospective cognitive interviews is 

that students might forget how they solved specific test items.  Forgetting can be 

mitigated by having artifacts that stimulate someone’s memory.  For instance, during the 

cognitive think-alouds, I had access to the students’ actual paper-pencil test during the 
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interview.  When students saw their test this frequently helped trigger their memory of 

how they solved specific test items.  Sometimes I needed to ask a student to re-enact 

“answering an item” during the interview, because they could not remember how they 

solved it by simply looking at their test.  Usually, this helped alleviate their forgetting.  

On a rare occasion, a few students could not remember how they solved a test item 

despite my probes or requests.  I, then, proceeded to ask them about the remaining 

distractors and why they think they did not select them.  

A second limitation was that access to each student was limited to a 50-minute 

class period.  Immediately before class began I retrieved the student interviewee and 

brought them to the interview location.  The entire interview, including practice time 

needed to be completed within 50 minutes per the agreement with the school division.  

This was especially challenging with students whose processing speed was slow or whose 

thinking was unorganized and unsystematic. 

A third limitation was that despite the school division’s directive that all 

mathematics teachers follow the pacing guide and use the manipulative tools and other 

resources provided, some teachers likely deviated somewhat from those expectations.  

Instructional fidelity is not easy to achieve given that each teacher directs the 

instructional environment within their classroom.  In other words, teachers decide the 

dosage of content delivered as well as the instructional strategies, manipulatives, and 

methods employed.  Since I did not have access to teacher identification variables, I was 

not able to discern the extent to which teacher’s instruction and “dosage” contributed to 

this data set.  Including teacher identification variables would be an appropriate next step 

for a future study.   
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Opportunities for Further Research 

There are two directions in which future research needs to move.  First, more 

validity research needs to occur with respect to the error categories: conceptual, 

procedural, and attention.  Although this study did provide evidence that helped validate 

the conceptual and procedural error categories, the attention error category needs further 

research.  For instance, cognitive think-alouds did reveal that students do have lapses in 

their attention while solving mathematics problems.  But, this was not always the case.  

At other times, some students had difficulty articulating their mathematical problem-

solving.  Their thinking was disorganized and sometimes nonsensical.  What is it about 

some students’ thinking that they have difficulty relating their thoughts?  It appears that 

more is going on here than an attention error can appropriately define.  Perhaps the 

attention error category is really more about weaknesses with respect to executive 

function.  Executive function as defined by Naglieri and Goldstein (2013) includes nine 

components: attention, emotion regulation, flexibility, inhibitory control, initiation, 

organization, planning, self-monitoring, and working memory.  Not only is attention 

subsumed within executive function but so are planning, organization, self-monitoring, 

and working memory.  Presumably, all of these components contribute toward the act of 

mathematical problem solving as well as the explanation of it.   If indeed the attention 

error category was too narrow, this might explain the lack of consistent agreement with 

the attention error category between educators and students.  Thus, a future study could 

incorporate concurrent cognitive think-alouds which are directed at validating the error 

categories: conceptual, procedural, and executive function.   
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Second, teachers not only want required assessments to provide “maximum 

instructional value,” they also want instructional strategies to accompany student 

diagnostic data (Huff & Goodman, 2007, p. 24).  Thus, new research needs to explore 

interventions tied to each of the error categories.  In this way teachers will have 

appropriate guidelines and tools to help redirect students’ common errors and 

misconceptions and extend student understandings.  Without unique instructional 

strategies linked to the error categories, teachers will likely remediate students’ errors 

using item-by-item teaching (Shepard, 2010) and “procedural” teaching strategies 

(Goertz et al., 2009; Oláh et al., 2010 ).  
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Appendix A: Mathematics 6A: Student item responses for the second nine weeks 

interim assessment 

 

Item# SOL Answer A B C D Missing 

1 7.1g C 26 - 10.5% 41 - 16.5% 165 - 66.5% 16 - 6.5% 0 - 0.0% 

2 7.3c D 3 - 1.3% 90 - 36.3% 8 - 3.2% 147 - 59.3% 0 - 0.0% 

3 7.3c A 201 - 81.1% 19 - 7.7% 19 - 7.7% 9 - 3.6% 0 - 0.0% 

4 7.1f B 95 - 38.4% 133 - 53.6% 4 - 1.6% 15 - 6.0% 1 - 0.4% 

5 7.4b A 168 - 67.8% 3 - 1.2% 50 - 20.2% 26 - 10.5% 1 - 0.4% 

6 7.4c D 37 - 15.0% 50 - 20.2% 43 - 17.3% 118 - 47.6% 0 - 0.0% 

7 7.3a C 24 - 9.7% 29 - 11.7% 133 - 53.6% 62 - 25.0% 0 - 0.0% 

8 7.4a A 80 - 32.3% 56 - 22.6% 39 - 15.7% 73 - 29.4% 0 - 0.0% 

9 7.7a C 11 - 4.5% 20 - 8.1% 144 - 58.1% 73 - 29.4% 0 - 0.0% 

10 7.4d D 24 - 9.7% 32 - 12.9% 22 - 8.9% 170 - 68.5% 0 - 0.0% 

11 7.7b B 9 - 3.7% 13 - 5.2% 208 - 83.9% 18 - 7.3% 0 - 0.0% 

12 7.8c B 25 - 10.1% 126 - 50.8% 82 - 33.1% 15 - 6.0% 0 - 0.0% 

13 7.6b A 57 - 23.0% 35 - 14.1% 31 - 12.5% 125 - 50.4% 0 - 0.0% 

14 7.8f D 48 - 19.4% 20 - 8.1% 14 - 5.6% 165 - 66.5% 1 - 0.4% 

15 7.8e A 105 - 42.4% 17 - 6.9% 31 - 12.5% 94 - 37.9% 1 - 0.4% 

16 7.5c B 25 - 10.1% 53 - 21.4% 133 - 53.6% 37 - 14.9% 0 - 0.0% 

17 7.4f C 2 - 0.9% 51 - 20.6% 139 - 56.0% 56 - 22.6% 0 - 0.0% 

18 7.9b D 8 - 3.3% 26 - 10.5% 69 - 27.8% 145 - 58.5% 0 - 0.0% 

19 7.9a A 216 - 87.1% 4 - 1.6% 27 - 10.9% 1 - 0.4% 0 - 0.0% 

20 7.5i C 65 - 26.3% 15 - 6.0% 153 - 61.7% 14 - 5.6% 1 - 0.4% 

21 7.5j B 46 - 18.6% 156 - 62.9% 33 - 13.3% 13 - 5.2% 0 - 0.0% 

22 7.5d B 19 - 7.7% 163 - 65.7% 27 - 10.9% 39 - 15.7% 0 - 0.0% 

23 7.5f C 5 - 2.1% 62 - 25.0% 178 - 71.8% 3 - 1.2% 0 - 0.0% 

24 7.6d D 22 - 8.9% 27 - 10.9% 13 - 5.2% 186 - 75.0% 0 - 0.0% 

25 7.6a D 105 - 42.4% 16 - 6.5% 36 - 14.5% 88 - 35.5% 3 - 1.2% 

*Quantities represent the number and percent of students who selected a specific response 

option.  Correct responses are in bold. 
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Appendix B: Mathematics 7R: Student item responses for the second nine weeks 

interim assessment 

 

Item 

# 

SOL Correct 

Answer 

A 

 

B C D Missing 

1 7.1g C 40 - 14.4% 75 - 27.0% 130 - 46.8% 30 - 10.8% 3 - 1.1% 

2 7.3c D 11 - 4.0% 106 - 38.1% 10 - 3.6% 149 - 53.6% 2 - 0.7% 

3 7.3c A 202 - 72.7% 47 - 16.9% 21 - 7.6% 6 - 2.2% 2 - 0.7% 

4 7.1f B 135 - 48.6% 103 - 37.1% 22 - 7.9% 15 - 5.4% 3 - 1.1% 

5 7.4b A 127 - 45.7% 25 - 9.0% 82 - 29.5% 41 - 14.7% 3 - 1.1% 

6 7.4c D 66 - 23.8% 76 - 27.3% 59 - 21.2% 71 - 25.5% 6 - 2.2% 

7 7.3a C 30 - 10.8% 37 - 13.3% 140 - 50.4% 69 - 24.8% 2 - 0.7% 

8 7.4a A 64 - 23.1% 91 - 32.7% 83 - 29.9% 37 - 13.3% 3 - 1.1% 

9 7.7a C 27 - 9.8% 51 - 18.3% 101 - 36.3% 98 - 35.3% 1 - 0.4% 

10 7.4d D 54 - 19.5% 83 - 29.9% 37 - 13.3% 104 - 37.4% 0 - 0.0% 

11 7.7b B 29 - 10.5% 35 - 12.6% 174 - 62.6% 40 - 14.4% 0 - 0.0% 

12 7.8c B 34 - 12.3% 112 - 40.3% 97 - 34.9% 35 - 12.6% 0 - 0.0% 

13 7.6b A 76 - 27.4% 49 - 17.6% 28 - 10.1% 123 - 44.2% 2 - 0.7% 

14 7.8f D 59 - 21.3% 30 - 10.8% 40 - 14.4% 149 - 53.6% 0 - 0.0% 

15 7.8e A 89 - 32.1% 67 - 24.1% 43 - 15.5% 79 - 28.4% 0 - 0.0% 

16 7.5c B 66 - 23.8% 48 - 17.3% 102 - 36.7% 60 - 21.6% 2 - 0.7% 

17 7.4f C 12 - 4.4% 86 - 30.9% 98 - 35.3% 81 - 29.1% 1 - 0.4% 

18 7.9b D 38 - 13.7% 41 - 14.7% 102 - 36.7% 96 - 34.5% 1 - 0.4% 

19 7.9a A 233 - 83.9% 11 - 4.0% 25 - 9.0% 9 - 3.2% 0 - 0.0% 

20 7.5i C 108 - 38.9% 39 - 14.0% 102 - 36.7% 27 - 9.7% 2 - 0.7% 

21 7.5j B 94 - 33.9% 88 - 31.7% 67 - 24.1% 29 - 10.4% 0 - 0.0% 

22 7.5d B 33 - 11.9% 137 - 49.3% 45 - 16.2% 62 - 22.3% 1 - 0.4% 

23 7.5f C 17 - 6.2% 79 - 28.4% 173 - 62.2% 9 - 3.2% 0 - 0.0% 

24 7.6d D 33 - 11.9% 45 - 16.2% 39 - 14.0% 160 - 57.6% 1 - 0.4% 

25 7.6a D 126 - 45.4% 32 - 11.5% 66 - 23.7% 53 - 19.1% 1 - 0.4% 

*Quantities represent the number and percent of students who selected a specific response 

option.  Correct responses are in bold.   
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Appendix C: Item Scoring and Partial Credit Recoding 

 

Item # Correct Answer Item Scoring w/Error 

Codes 

Items w/Partial Credit ReCoding* 

1 C A=0, B=1,C=3,D=2  

2 B A=0, B=3,C=2,D=1  

3 D A=2, B=0,C=1,D=3  

4 B A=2, B=3,C=1,D=1 A=1, B=2,C=0,D=0 

5 A A=3, B=0,C=0,D=0 A=1, B=0,C=0,D=0 

6 B A=1, B=3,C=1,D=0 A=1, B=2,C=1,D=0 

7 A A=3, B=0,C=0,D=2 A=2, B=0,C=0,D=1 

8 C A=0, B=1,C=3,D=1 A=0, B=1,C=2,D=1 

9 A A=3, B=2,C=1,D=1 A=2, B=1,C=0,D=0 

10 B A=0, B=3,C=0,D=2 A=0, B=2,C=0,D=1 

11 D A=0, B=0,C=2,D=3 A=0, B=0,C=1,D=2 

12 A A=3, B=0,C=0,D=1 A=2, B=0,C=0,D=1 

13 C A=0, B=2,C=3,D=1  

14 D A=1, B=1,C=2,D=3 A=0, B=0,C=1,D=2 

15 C A=1, B=0,C=3,D=0 A=1, B=0,C=2,D=0 

16 C A=2, B=0,C=3,D=1  

17 A A=3, B=2,C=1,D=1 A=2, B=1,C=0,D=0 

18 B A=0, B=3,C=2,D=1  

19 C A=0, B=1,C=3,D=0 A=0, B=1,C=2,D=0 

20 D A=1, B=1,C=2,D=3 A=0, B=0,C=1,D=2 

21 C A=1, B=0,C=3,D=2  

22 A A=3, B=2,C=1,D=0  

23 D A=0, B=0,C=0,D=3 A=0, B=0,C=0,D=1 

24 B A=1, B=3,C=1,D=0 A=1, B=2,C=1,D=0 

25 C A=0, B=1,C=3,D=0 A=0, B=1,C=2,D=0 
*Error Categories are collapsed to allow for Partial Credit Modeling.  Items with 3 assigned 

error categories did not need to be recoded.  
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Appendix D: Classical Test Theory: Item Analysis Statistics 

 

Item # Item Difficulty Standard Deviation Item Discrimination** 

1 1.9730 1.1516 0.3350 

2 2.5541 0.8641 0.2881 

3 2.3649 0.5598 0.2691 

4 1.3745 0.9070 0.2240 

5 0.6931* 0.4617 0.2937 

6 1.1313 0.7807 0.0914 

7 0.6988 0.9443 0.2702 

8 1.0212 0.7551 0.1751 

9 1.2645 0.8672 0.0934 

10 0.8842 0.8938 0.2732 

11 0.9440 0.6364 0.2517 

12 1.0676 0.8847 0.1612 

13 1.5328 1.0564 0.1662 

14 0.8494 0.9101 0.1452 

15 1.0039 0.9246 0.2647 

16 1.0734 1.1941 -0.0174 

17 0.9961 0.6493 0.2916 

18 2.2548 1.0613 0.3625 

19 1.4131 0.7004 0.2952 

20 0.9537 0.8538 0.2678 

21 1.8822 1.1881 0.3241 

22 2.3938 0.9326 0.4079 

23 0.3166* 0.4656 0.0521 

24 1.4595 0.6261 0.2618 

25 0.7471 0.9533 0.2462 
*Dichotomously scored items. All distractors represent conceptual errors with assigned 

score= 0 

**Polyserial Correlation  
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Appendix E: Distractor Frequency Analysis (%) for Partial Credit Items 

 

Item #  A  B  C  D  Missing 

1  15.1  21.2  49.4*  13.9  0.4 

2**  4.8  75.5  9.3  10.4  0 

3**  58.3  1.0  1.2  39.6  0 

4**  3.9  66.8  11.8  17.4  0.2 

5**  69.3  16.2  12.5  1.5  0.4 

6  15.6  37.8  21.8  23.9  0.8 

7**  34.0  54.4  9.5  1.9  0.2 

8  27.2  25.9  29.5  17.2  0.2 

9**  54.2  18.0  23.6  3.9  0.4 

10  28.6  34.7  17.2  18.9  0.6 

11  11.6  11.4  59.3  17.6  0.2 

12  42.7  23.9  11.6  21.4  0.4 

13  14.3  10.8  28.6  45.9  0.4 

14  25.7  23.6  15.1  34.9  0.8 

15  14.7  14.5  42.9  27.8  0.2 

16  17.8  48.1  19.1  14.5  0.6 

17  20.8  57.9  13.9  6.6  0.8 

18  10.4  61.2  14.1  13.7  0.6 

19  6.4  34.0  53.7  5.6  0.4 

20  17.6  20.7  27.0  34.2  0.6 

21  10.4  21.4  43.1  24.3  0.8 

22  66.6  10.4  18.7  4.2  0 

23  18.1  28.0  27.2  31.7  0 

24  25.7  53.1  14.1  6.9  0.2 

25**  42.3  2.9  35.9  18.5  0.4 

*Correct responses are in bold.  

**Distractors with < 5% response rate 
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Appendix F: Items with Flat Nonparametric Curves 
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Appendix G: Items with Non-discriminating Nonparametric Curves 
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Appendix H: IRT Item Parameter and Fit Statistics 

 

Item # Difficulty Std Error WMS (infit) UMS (outfit) 

 

1 -0.18 0.04 0.94 0.90 

2 -0.76 0.05 0.92 0.88 

3 -1.04 0.08 0.95 0.94 

4 -0.19 0.05 1.00 1.01 

5 -0.56 0.10 0.95 0.93 

6 0.02 0.06 1.06 1.06 

7 0.60 0.05 0.99 1.01 

8 0.22 0.06 1.01 1.00 

9 -0.11 0.05 1.07 1.06 

10  0.41 0.05 0.98 0.97 

11  0.40 0.07 0.97 0.97 

12  0.16 0.05 1.04 1.05 

13  0.03 0.05 1.07 1.07 

14  0.44 0.05 1.06 1.06 

15  0.25 0.05 0.99 0.98 

16  0.61 0.04 1.26 1.39 

17  0.26 0.07 0.94 0.94 

18 -0.41 0.04 0.90 0.85 

19 -0.52 0.07 0.94 0.93 

20  0.32 0.05 0.98 0.97 

21 -0.02 0.04 0.96 0.91 

22 -0.74 0.05 0.87 0.81 

23 1.03 0.10 1.03 1.03 

24 -0.78 0.07 0.95 0.95 

25  0.55 0.05 1.01 1.00 
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Appendix I: IRT Item Category Thresholds for Items with 3 Error Categories  

 

Item #  Category Thresholds SE WMS UMS 

 

1* 0     

1     

2 

3 

 

-0.08 

0.81 

-0.74 

 

0.13 

0.10 

0.09 

 

1.01 

0.83 

0.98 

 

1.01 

0.73 

0.98 

2* 0 

1 

2 

3 

 

0.02 

1.03 

-1.05 

 

0.20 

0.12 

0.11 

 

0.99 

0.89 

0.97 

 

1.00 

0.64 

0.99 

3* 0 

1 

2 

3 

 

0.92 

-2.69 

1.77 

 

0.43 

0.30 

0.09 

 

0.91 

0.94 

0.99 

 

0.89 

0.93 

1.00 

13* 0 

1 

2 

3 

 

-1.08 

1.67 

-0.59 

 

0.13 

0.10 

0.10 

 

1.15 

1.24 

1.05 

 

1.12 

1.22 

1.05 

16* 0 

1 

2 

3 

 

0.75 

-0.52 

-0.23 

 

0.09 

0.10 

0.12 

 

1.12 

1.19 

1.14 

 

1.98 

1.24 

1.20 

18* 0 

1 

2 

3 

 

0.19 

0.55 

-0.75 

 

0.15 

0.11 

0.09 

 

0.96 

0.74 

0.91 

 

0.97 

0.55 

0.94 

21* 0 

1 

2 

3 

 

0.82 

-0.62 

-0.20 

 

0.11 

0.10 

0.09 

 

0.64 

0.86 

0.96 

 

0.52 

0.72 

0.97 

22* 0 

1 

2 

3 

 

-0.69 

1.50 

-0.80 

 

0.21 

0.11 

0.10 

 

0.86 

0.82 

0.90 

 

0.77 

0.64 

0.94 
*Items with Reversals.                  SE = Standard Error 
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Appendix I (cont’d): IRT Item Category Thresholds for Items with Conceptual and 

Procedural Errors 

 

Item # Category Thresholds 

 

SE WMS UMS 

6 0 

1 

2 

 

-0.30 

0.30 

 

0.11 

0.09 

 

0.91 

1.06 

 

0.83 

1.06 

8 0 

1 

2 

 

-0.50 

0.50 

 

0.10 

0.10 

 

0.94 

0.97 

 

0.90 

0.97 

12* 0 

1 

2 

 

0.52 

-0.52 

 

0.10 

0.09 

 

1.03 

1.03 

 

1.00 

1.03 

15* 0 

1 

2 

 

0.99 

-0.99 

 

0.09 

0.09 

 

1.09 

0.97 

 

1.05 

0.97 

19 0 

1 

2 

 

-0.37 

0.37 

 

0.14 

0.09 

 

0.81 

0.93 

 

0.74 

0.95 

24 0 

1 

2 

 

-0.80 

0.80 

 

0.17 

0.09 

 

0.88 

0.97 

 

0.82 

0.98 

25* 0 

1 

2 

 

2.70 

-2.70 

 

0.10 

0.10 

 

1.49 

0.98 

 

1.73 

0.98 
*Items with Reversals.             SE = Standard Error 

 

 

IRT Item Category Thresholds for Items with Conceptual and Attention Errors 

 

Item # Category Thresholds 

 

SE WMS UMS 

7* 0 

1 

2 

 

3.10 

-3.10 

 

0.10 

0.10 

 

1.55 

0.96 

 

1.48 

0.97 

10* 0 

1 

2 

 

0.67 

-0.67 

 

0.09 

0.10 

 

0.97 

0.97 

 

0.92 

0.97 

11 0 

1 

2 

 

-1.17 

1.17 

 

0.11 

0.12 

 

1.01 

0.99 

 

1.01 

0.99 
*Items with Reversals.          SE = Standard Error 
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Appendix I (cont’d): IRT Item Category Thresholds for Items with Attention and 

Procedural Errors 

 

Item # Category Thresholds 

 

SE WMS UMS 

4* 0 

1 

2 

 

2.37 

-2.37 

 

0.10 

0.10 

 

0.48 

1.00 

 

0.60 

1.02 

9* 0 

1 

2 

 

0.69 

-0.69 

 

0.10 

0.09 

 

1.36 

1.13 

 

1.37 

1.11 

14* 0 

1 

2 

 

0.94 

-0.94 

 

0.09 

0.10 

 

1.16 

1.00 

 

1.11 

1.00 

17 0 

1 

2 

 

-1.11 

1.11 

 

0.11 

0.11 

 

0.89 

0.92 

 

0.86 

0.92 

20* 0 

1 

2 

 

0.21 

-0.21 

 

0.09 

0.10 

 

1.12 

0.94 

 

1.16 

0.93 
*Items with Reversals                      SE = Standard Error 
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Appendix J: Nonparametric Curves of Items Without Reversals 
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Appendix K: Item Map 

 

 

 

 

 


