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Next we show that the above language can be used to express different kinds of

information flow predicates.

Noninference

This predicate specifies that the high-level events should not influence the low-level events

in the system. A system S is said to satisfy Noninference if

That is, if there is a trace x in the system then there should be another trace y that

has the same low-level events as x even when the high-level events are non-existent (here

a value λ implies that the corresponding event is non-existent).

Generalized Noninference

This predicate specifies that the high-level input event should not influence the low-level

events in the system. A system S is said to satisfy Generalized Noninference if

The meaning of the above statement is that, if there is a trace x in the system then

there should be another trace y that has the same low-level events as x even if the high-level

inputs of y are non-existent.

Separability

This predicate specifies that it should not be possible to deduce anything about the high-

level events by observing the low-level events. A system S is said to satisfy Separability if

x S x( )( ) y
S y( ) LIN x( ) LIN y( )=( ) LOUT x( ) LOUT y( )=( )∧ ∧ ∧

HIN y( ) λ=( ) HOUT y( ) λ=( )∧ 
 ∃⇒ 

 ∀

x S x( )( ) y
S y( ) LIN x( ) LIN y( )=( ) LOUT x( ) LOUT y( )=( )∧ ∧ ∧

HIN y( ) λ=( ) 
 ∃⇒ 

 ∀

x y
S x( )

∧
S y( ) 

 ÷
 ÷
 

p
S p( ) HIN p( ) HIN x( )=( )∧ ∧

HOUT p( ) HOUT x( )=( ) ∧
LIN p( ) LIN y( )=( ) LOUT p( ) LOUT y( )=( )∧ 

 ÷
 ÷
 

∃⇒
 
 ÷
 ÷
 

∀∀
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That is, if there are two traces x and y in the system then there is a trace p whose

high-level and low-level events are an interleaving of the high-level and low-level events

of the traces x and y.

Generalized Noninterference

Generalized Noninterference specifies that it should not be possible to deduce anything

about the high-level inputs by observing the low-level events. A system S is said to satisfy

Generalized Noninterference if

That is, if there are two traces x and y in a system then there is a trace p that is an

interleaving of the high-level inputs and low-level events of traces x and y.

Definition: A property X is said to be weaker than the property Y if  is a valid

formula.

From the above definition we can see that Generalized Noninterference is weaker

than Separability. In fact, the following partial order specified in [MCL94] can be easily

derived from the above definitions.

Figure 2.1 : Partial Order of Information Flow Predicates

x y
S x( )

∧
S y( ) 

 ÷
 ÷
 

p
S p( ) LOUT p( ) LOUT x( )=( )∧ ∧

LIN p( ) LIN x( )=( ) HIN p( ) HIN y( )=( )∧ 
 ∃⇒

 
 ÷
 ÷
 

∀∀

X Y⇒( )

Separability

Generalized
Noninterference

Noninference

Generalized Noninference
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In this section we showed that information flow predicates can be expressed in a

two-sorted predicate logic based language. In the following section we will show that this

formalism can be used to express the composition constructs.

2.3.4 Specification of Composition Constructs

Information systems can be composed in a variety of ways. Typically, a composition of two

systems is defined to be a new system whose behaviors are defined in terms of the behaviors

of its constituent systems. In our framework, a composition construct can be specified by

the relationship between the set of traces in the constituent systems S1 and S2 with the set

of traces in their composition S. This formulation of composition constructs as relations

between traces transforms the problem of proving the security properties of composed

systems to theorem proving in predicate logic.

Depending on the systems that are involved, the composition constructs can be

divided into internal and external composition constructs.

2.3.4.1 Internal Composition

The internal composition constructs are typically Boolean constructs such as union and

intersection that are used to compose similar kinds of systems. Hence the traces of all the

systems involved in internal composition are defined by the same set of characterizing

functions.

Union

The union of S1 and S2 accepts the input that is acceptable to either S1 or S2 and produces

the output that is same as one of the outputs produced by S1 or S2. It is formally specified as

x S x( ) S1 x( ) S2 x( )∨( )⇔( )∀
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Intersection

The intersection of S1 and S2 accepts the input that is acceptable to both S1 and S2 and

produces the output that can be produced by both. It can be formally specified as

Difference

The difference of two systems S1 and S2 accepts the input that is acceptable to both S1 and

S2 but produces output that is acceptable to either S1 or S2 but not both. It can be formally

specified as

and also

2.3.4.2 External Composition Constructs

The external composition constructs are cross product, cascade and feedback and these are

used to construct a system from a number of other systems. In the formulation of the these

composition constructs we use the simple system definition given in Section 2.2.1 to make

the definitions easier to understand. However, it should be noted that these definitions can

be easily extended to handle the general definition of a system given in Section 2.2.1.

Cross Product

Here two systems are run in parallel and any trace of the combined system is a combination

of the traces from the individual systems. A system S is said to be the cross-product of two

systems S1 and S2 if it satisfies the following condition.

x S x( ) S1 x( ) S2 x( )∧( )⇔( )∀

x S x( ) y z
S1 y( ) IN x( ) IN y( )=( ) S2 z( ) IN x( ) IN z( )=( )∧ ∧∧ ∧

OUT x( ) OUT y( )=( ) OUT x( ) OUT z( )=( )∨ ∧
OUT y( ) OUT z( )≠( ) 

 ÷
 ÷
 

,∃⇒
 
 ÷
 ÷
 

∀

y∀ z
S1 y( ) IN y( ) IN z( )=( )∧ ∧

S2 z( ) OUT y( ) OUT z( )≠( )∧ 
  x

S x( ) IN x( ) IN y( )=( )∧ ∧
OUT x( ) OUT y( )=( ) ∨

OUT x( ) OUT z( )=( ) 
 

 
 ÷
 ÷
 

∃⇒
 
 ÷
 ÷
 

,
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The meaning of the above statement is that every trace in S is obtained by

concatenating a trace from S1 and another trace from S2.

Also,

That is, for every trace x in S1 and every trace y in S2 there is a trace in S that is

obtained by concatenating x and y.

The cross-product operation can be pictorially depicted as shown below.

Figure 2.2 : Cross-product Composition of S1 and S2

Cascade

In this kind of composition, the output of one system is fed as input to another system. A

system S is said to be the cascade of two systems S1 and S2 if it satisfies the following

condition

x S x( )
y S1 y( ) IN1 x( ) IN1 y( )=( ) OUT1 x( ) OUT1 y( )=( )∧ ∧( )∃

∧
z S2 z( ) IN2 x( ) IN2 z( )=( ) OUT2 x( ) OUT2 z( )=( )∧ ∧( )∃ 

 ÷
 ÷
 

⇒
 
 ÷
 ÷
 

∀

x y
S1 x( ) ∧

S2 y( ) 
  z

S z( ) OUT1 z( ) OUT1 x( )=( )∧( ) ∧
OUT2 z( ) OUT2 y( )=( ) ∧

IN1 z( ) IN1 x( )=( ) IN2 z( ) IN2 y( )=( )∧ 
 ÷
 ÷
 

∃⇒
 
 ÷
 ÷
 

∀∀

IN1

IN2

OUT1

OUT2

S1

S2

S

x S x( ) y z

S1 y( ) S2 z( ) HIN x( ) HIN y( )=( )∧ ∧ ∧
LIN x( ) LIN y( )=( ) HOUT x( ) HOUT z( )=( )∧ ∧

LOUT x( ) LOUT z( )=( ) LOUT y( ) LIN z( )=( )∧ ∧
HOUT y( ) HIN z( )=( ) 

 ÷
 ÷
 ÷
 ÷
 

∃∃⇒

 
 ÷
 ÷
 ÷
 ÷
 

∀
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The meaning of the above statement is that, every trace x in S is built out of a trace

y in S1 and a trace z in S2 where the outputs of y are same as the inputs of z and inputs of

x are same as inputs of y and outputs of x are same as the outputs of z.

Also,

That is, if there are two traces y and z in S1 and S2 where outputs of y are same as

the inputs of z then there will be a trace x is S such that the inputs of x are same the inputs

of y and the outputs of x are same as the outputs of z.

This composition can be pictorially represented as

Figure 2.3 : Cascade Composition of S1 and S2

Feedback

Here a system acts as front end to another system i.e., the input and output of a system is

presented to the outside world through a front-end. A system S is said to be feedback

composition of two systems S1 and S2 if it satisfies the conditions shown below where f

and f ’ are some arbitrary functions with signature [valseq → valseq].

Typically f and f ’ are such that given a sequence x, an interleaving, denoted by the

function symbol C, of f(x) and f ’(x) produces the sequence x i.e., (C(f(x), f’(x)) = x).

y z
S1 y( ) S2 z( )∧ ∧

LOUT y( ) LIN z( )=( ) ∧
HOUT y( ) HIN z( )=( ) 

 ÷
 ÷
 

x

S x( ) HIN x( ) HIN y( )=( )∧ ∧
LIN x( ) LIN y( )=( ) ∧

LOUT x( ) LOUT z( )=( ) ∧
HOUT x( ) HOUT z( )=( ) 

 ÷
 ÷
 ÷
 ÷
 

∃⇒

 
 ÷
 ÷
 ÷
 ÷
 

∀∀

S1

HIN

LIN S2

HOUT

LOUT

S

HIN

LINLOUT

HOUT
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The meaning of the above statement is that every trace x of S is obtained from a

trace y in S1 by applying some function on it provided there is a trace z in S2 that can be

obtained from the trace y by applying some other function.

Also,

That is, for every trace y in S1 and z in S2 that satisfy a certain property there is a

trace x in S that is obtained from y by applying some function to it.

This operation can be pictorially represented as

Figure 2.4 : Feedback Composition of S1 and S2

x S x( ) y z

S1 y( ) S2 z( ) HIN x( ) f HIN y( )( )=( )∧ ∧ ∧
LIN x( ) f LIN y( )( )=( ) HOUT x( ) f′ HOUT y( )( )=( )∧ ∧

LOUT x( ) f′ LOUT y( )( )=( )
LIN z( ) f LOUT y( )( )=( ) HIN z( ) f HOUT y( )( )=( )∧ ∧
HOUT z( ) f′ HIN y( )( )=( ) LOUT z( ) f′ LIN y( )( )=( )∧ 

 ÷
 ÷
 ÷
 ÷
 ÷
 

∃∃⇒

 
 ÷
 ÷
 ÷
 ÷
 ÷
 

∀

y z

S1 y( ) S2 z( ) LIN z( ) f LOUT y( )( )=( )∧ ∧ ∧
HIN z( ) f HOUT y( )( )=( ) ∧

HOUT z( ) f′ HIN y( )( )=( ) LOUT z( ) f′ LIN y( )( )=( )∧ 
 ÷
 ÷
 

⇒

x
S x( ) HIN x( ) f HIN y( )( )=( ) LIN x( ) f LIN y( )( )=( )∧ ∧ ∧
LOUT x( ) f′ LOUT y( )( )=( ) HOUT x( ) f′ HOUT y( )( )=( )∧ 

 ∃ 
 ÷
 ÷
 ÷
 ÷
 ÷
 

∀∀

f’

f’
LOUT

f

f’

f’

f

S2

HIN

LIN

HIN

LIN

HOUT

LOUT

C

C
HIN

LIN

S1

HOUT

S
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2.4 Proving Composition Properties of Information Flow Predicates

In this section we will develop a general method for proving the composition properties of

information flow predicates that are expressed in the notation developed in earlier sections.

Let S1 be a system that satisfies the property  and S2 be another system

that satisfies the property . Also, let  be some property satisfied by both

the systems S1 and S2. In order to prove that the composition S of S1 and S2 satisfies the

property , the following approach can be used.

• Assume that  is true in S, which implies that S contains some set of

traces S that satisfy the property P (if there are no such traces then the theorem is

trivially true).

• From the definition of composition construct deduce that a set of traces S1 are

present in S1 and another set of traces S2 are present in S2 from the set of traces S

present in S derived in the previous step.

• From the property  and the set of traces S1 prove that there is a set of

traces S1’ in S1 and similarly from the property  and the set of traces S2

prove that the is a set of traces S2’ in S2.

• If required use the additional property  of the systems S1 and S2 and the

set of traces S1’ and S2’ in S1 and S2 respectively to deduce the presence of the set

of traces S1’’ in S1 and S2’’ in S2.

• Now, again from the definition of the composition construct prove that the set of

traces S1’’ in S1 and S2’’ in S2 can be composed to produce a set of traces S’’ in S.

Also prove that the set of traces S’’ in S implies that Q is true in system S.

It should be noted that the above method is a generalization of a number of proofs

given in [MCL94] for composition theorems for a variety of composition constructs and

A B⇒( )

C D⇒( ) R T⇒( )

P Q⇒( )

P Q⇒( )

A B⇒( )

C D⇒( )

R T⇒( )
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that they can all be derived using the above approach. In the following example we will

show that Generalized Noninterference is composable under certain conditions using this

method.

Example 2.1: Let S1 be a system that satisfies Generalized Noninterference i.e.,

and S2 is another system that also satisfies the Generalized Noninterference i.e.,

Let the cascade of S1 and S2 be S which means that it satisfies the properties

and

Also let S1 and S2 satisfy the following property:

Now prove that the Cascade S of S1 and S2 satisfies Generalized Noninterference i.e.,

Proof:

x y
S1 x( )

∧
S1 y( ) 

 ÷
 ÷
 

p
S1 p( ) LOUT p( ) LOUT x( )=( )∧ ∧

LIN p( ) LIN x( )=( ) HIN p( ) HIN y( )=( )∧ 
 ∃⇒

 
 ÷
 ÷
 

∀∀

x y
S2 x( )

∧
S2 y( ) 

 ÷
 ÷
 

p
S2 p( ) LOUT p( ) LOUT x( )=( )∧ ∧

LIN p( ) LIN x( )=( ) HIN p( ) HIN y( )=( )∧ 
 ∃⇒

 
 ÷
 ÷
 

∀∀

x S x( ) y z

S1 y( ) S2 z( ) HIN x( ) HIN y( )=( )∧ ∧ ∧
LIN x( ) LIN y( )=( ) HOUT x( ) HOUT z( )=( )∧ ∧

LOUT x( ) LOUT z( )=( ) LOUT y( ) LIN z( )=( )∧ ∧
HOUT y( ) HIN z( )=( ) 

 ÷
 ÷
 ÷
 ÷
 

∃∃⇒

 
 ÷
 ÷
 ÷
 ÷
 

∀

y z
S1 y( ) S2 z( )∧ ∧

LOUT y( ) LIN z( )=( ) ∧
HOUT y( ) HIN z( )=( ) 

 ÷
 ÷
 

x

S x( ) HIN x( ) HIN y( )=( )∧ ∧
LIN x( ) LIN y( )=( ) ∧

LOUT x( ) LOUT z( )=( ) ∧
HOUT x( ) HOUT z( )=( ) 

 ÷
 ÷
 ÷
 ÷
 

∃⇒

 
 ÷
 ÷
 ÷
 ÷
 

∀∀

x y
S1 x( ) ∧

S2 y( ) 
  z

S2 z( ) LOUT x( ) LIN z( )=( )∧ ∧
LOUT y( ) LOUT z( )=( ) HOUT x( ) HIN z( )=( )∧ 

 ∃⇒ 
 ∀∀

x y S x( ) S y( )∧( ) p
S p( ) LOUT p( ) LOUT x( )=( )∧ ∧

LIN p( ) LIN x( )=( ) HIN p( ) HIN y( )=( )∧ 
 ∃⇒ 

 ∀∀
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Step1:

Assume that there are two traces x1 and y1 that satisfy the property .

Step 2:

Now, from the definition of cascade and S(x1) we can deduce that there are traces x11 and

x12 that satisfy the following property:

Again from the definition of cascade and S(y1) we can deduce that there are traces y11 and

y12 that satisfy the following property:

Step 3:

Now the traces x11 and y11 in S1 and the definition of Generalized Noninterference of S1

we can deduce that there are two traces p and q in S1 that satisfy the following properties:

and

Step 4:

S x1( ) S y1( )∧( )

S1 x11( ) S2 x12( )∧ HIN x1( ) HIN x11( )=( )∧ ∧
LIN x1( ) LIN x11( )=( ) HOUT x1( ) HOUT x12( )=( )∧ ∧

LOUT x1( ) LOUT x12( )=( ) LOUT x11( ) LIN x12( )=( )∧ ∧
HOUT x11( ) HIN x12( )=( ) 

 ÷
 ÷
 ÷
 ÷
 

S1 y11( ) S2 y12( )∧ HIN y1( ) HIN y11( )=( )∧ ∧
LIN y1( ) LIN y11( )=( ) HOUT y1( ) HOUT y12( )=( )∧ ∧

LOUT y1( ) LOUT y12( )=( ) LOUT y11( ) LIN y12( )=( )∧ ∧
HOUT y11( ) HIN y12( )=( ) 

 ÷
 ÷
 ÷
 ÷
 

S1 p( ) LOUT p( ) LOUT y11( )=( )∧ ∧
LIN p( ) LIN y11( )=( ) HIN p( ) HIN x11( )=( )∧ 

 

S1 q( ) LOUT q( ) LOUT x11( )=( )∧ ∧
LIN q( ) LIN x11( )=( ) HIN q( ) HIN y11( )=( )∧ ∧ 

 
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Now the trace p in S1 and the trace y12 in S2 and the property of S1 and S2 imply that there

is a trace p’ in S2 that satisfies the following property:

Also the trace q in S1 and the trace x12 in S2 and the property of S1 and S2 imply that there

is a trace q’ in S2 that satisfies the following property:

Step 5:

Now, from the trace p in S1 and the trace p’ in S2 and the definition of cascade operation

we can deduce that there is a trace r in S that satisfies the following property:

Also from the trace q in S1 and the trace q’ in S2 we can deduce form the definition of

cascade operation that there is a trace s in S that satisfies the following property:

Now, substituting the values for HIN(q), LIN(q), LOUT(p) and HOUT(p) from the

properties derived before, the above statements reduce to:

and

Hence the cascade S of S1 and S2 as specified above satisfies Generalized Noninterference.

■

S2 p′( ) LOUT p( ) LIN p′( )=( ) HOUT p( ) HIN p′( )=( )∧ ∧
LOUT p′( ) LOUT y12( )=( ) 

 

S2 q′( ) LOUT q( ) LIN q′( )=( ) HOUT q( ) HIN q′( )=( )∧ ∧
HOUT q′( ) HIN x12( )=( ) 

 

S r( ) HIN r( ) HIN p( )=( ) LIN r( ) LIN p( )=( )∧ ∧ ∧
LOUT r( ) LOUT p′( )=( ) HOUT r( ) HOUT p′( )=( )∧ 

 

S s( ) HIN s( ) HIN q( )=( ) LIN s( ) LIN q( )=( )∧ ∧ ∧
LOUT s( ) LOUT q′( )=( ) HOUT s( ) HOUT q′( )=( )∧ 

 

S r( ) HIN r( ) HIN x1( )=( ) LIN r( ) LIN y1( )=( )∧ ∧ ∧
LOUT r( ) LOUT y1( )=( ) HOUT r( ) HOUT p′( )=( )∧ 

 

S s( ) HIN s( ) HIN y1( )=( ) LIN s( ) LIN x1( )=( )∧ ∧ ∧
LOUT s( ) LOUT x1( )=( ) HOUT r( ) HOUT q′( )=( )∧ 

 
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The above proof process can be summarized by the following figure.

Figure 2.5 : Proof Procedure for Composition Properties

Here the property to be proved about the composed system S is . From P,

it has been deduced that there are two traces x1 and y1 in S. From x1 in S, it was deduced

that there are traces x11 and x12 in S1 and S2 respectively and from y1 in S, it was deduced

that there are traces y11 and y12 in S1 and S2 respectively by the definition of composition

construct. From the definition of Noninterference and the traces x11 and y11 in S1 it was

deduced that there is a trace p in S1. Now from the property of S1 and S2 and the trace p in

S1 and y12 in S2, it was deduced that the trace p’ is present in S1. Also, from the property

of S1 and S2 and the traces q in S1 and x12 in S2, it was deduced that the trace q’ is present

in S2. Now from the definition of composition construct and the traces

• p in S1 and p’ in S2 we can deduce that there is a trace r in S and

• q in S1 and q’ in S2 we can deduce that there is a trace s in S.

The traces r and s in S imply that it satisfies Generalized Noninterference.

All the other theorems about the properties of composition constructs in [MCL94]

can be proved in a systematic manner using the above approach.

x12 y11

x1

y12

y1

x11

p’ q’

r s

p              q

P Q⇒( )
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2.5 Automated Proof of the Composition Properties

The framework given in the previous section can be easily automated since each of the

steps correspond to standard theorem proving rules as shown below:

• step 1 involves skolemizing (replacing a universally quantified variable with a

constant usually referred to as skolem constant) the property to be proved.

• step 2 involves quantization (replacing an existentially quantified variable with a

unique constant that has not appeared before) followed by skolemization of the

definition of the composition operation.

• step 3 involves quantization followed by skolemization of the information flow

properties of the systems S1 and S2.

• step 4 involves quantization followed by skolemization of the property satisfied by

S1 and S2.

• step 5 is the quantization followed by skolemization of the definition of the com-

position operation.

In Appendix A, we give the specification and the proof of the above theorem in the PVS

theorem proving system.

2.6 Conclusions

We gave a logical framework for specifying and reasoning about the possibilistic security

properties that can be expressed in the form (A ⇒ B). We also give a framework for

reasoning about the composition of these properties. This approach is not just limited to

information flow security properties that are expressed as interleaving functions on traces

but can be used to reason about any property that is in the appropriate form. Moreover, the

rich logical formalism underlying predicate logic makes the reasoning process simple and

elegant and facilitates use of automatic theorem proving systems.
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Chapter 3

Formal Specification of Information
Flow Policies

Unambiguous and precise specification of security policies is an important element of the

design of security critical systems. Towards this end, a formal specification method based

on temporal logic is developed and its semantics is given in terms of a state machine model.

The utility of this method is demonstrated by using it to specify some common security

policies.

3.1 Introduction

Security policies are important to security-critical systems. A formal and unambiguous

specification of the security policy can help the system designers understand the policy, and

enable the evaluators to verify that the system enforces it correctly using formal analysis

techniques.

A number of security policies have been proposed in the literature such as the MLS

policy [BL73], the Chinese Wall security policy [BN89] and the Clarke-Wilson

A policy is a temporary creed liable to be changed, but while it holds good
it has to be pursued with apostolic zeal

- Mohandas K . Gandhi
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Commercial security policy [CW87]. These policies, as defined, are representatives of a

class of policies. For example, the MLS policy is a generic policy that is used primarily in

military systems — but no system enforces it exactly as defined in the literature. Major

military information systems, such as CMW [CFG87], MMS [MCL84] and LOCK

[BKY85], enforce policies that resemble the MLS policy at a very high level of abstraction.

In these systems, the specification of the security policy is not independent of functional

description of the system. As a result:

• the security policy is more difficult to identify and understand, and

• the verification process is more difficult.

For these reasons, we develop a formal specification language that can be used to

specify the information flow requirements of the security policy independent of the system

specification. The formal specification of the access control requirements of the security

policies are dealt with in the next chapter.

3.2 Specification of Information Flow Security Policies

An information flow security policy consists of a set of information classes and a set of

restrictions on the way in which information can flow among these classes. At the level of

policy specification, the meaning of the term information flow is not important and is

treated as an uninterpreted predicate (in fact the information flow predicates defined in the

previous chapter are used to assign meaning to this term). Of interest, however, is the effect

of different information flows on the state of the system.

Information systems are usually represented using state transition systems, making

security policies properties of sequences of transitions. The fact that security policies are

properties of sequences of transitions suggests that they can be specified using temporal

logic.
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3.2.1 Temporal Logic

Temporal logic was proposed by Pneuli [PN77] as a tool for specifying and verifying the

properties of concurrent programs. Considerable work has been done on the theory of

temporal logic, and it has been applied in several areas other than concurrent program

verification. In our work we use temporal logic in the formal specification of information

flow policies.

Temporal logic differs from traditional logic by including temporal operators in

addition to the traditional logical operators. These temporal operators are used to express

the properties of the system in relation to time. Different forms of temporal logic exist

based on different interpretations of time. A common version is Linear Time Temporal

Logic (LTL) which views each time instant as having a unique successor. This logic

includes the temporal operators ❑ (always) and ◊ (eventually) and can be used to reason

about structures that are linear sequences. Another form of temporal logic is Branching

Time Temporal Logic (BTL), which assumes that each instant in time can have several

successors, each corresponding to a different future. This logic has the path quantifiers A

(for all paths) and E (for some path) in addition to the temporal operators. This logic can

be used to reason about structures that are infinite trees such as the computation tree of a

non-deterministic program.

Another kind of temporal logic is Partial Order Temporal Logic — used to deal with

structures that are partial orders. These partial orders often arise in the execution of

concurrent programs. This logic contains past operators ◊ (at some point in the past) and ❑

(at all times in the past) in addition to the temporal operators and path quantifiers. It can be

seen that POTL is at least as powerful than LTL and BTL by the fact that it subsumes both

LTL and BTL.
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Temporal logic is used in the verification of properties of programs in the following

manner [WOL87]:

• an axiomatic system is specified to relate the program constructs and the temporal

formulas,

• the property to be verified is specified as a temporal formula, and

• the axiomatic system is applied to the program, proving the desired formula.

We intend to use a similar approach to verify that system specifications enforce

security policies.

The LTL and BTL are used for specifying the properties of a system with respect to

the events occurring in the current state or some future state (hence the linear structure and

infinite tree structure of interpretation for LTL and BTL respectively). Security policies

which are properties of a system that depend on the events in the past, present, and future,

cannot be expressed using LTL or BTL. POTL, on the other hand, with its past and future

temporal operators, is ideally suited for the specification of such security policies.

3.2.2 A Specification Language for Security Policies

A security policy, SP, can be specified as a four-tuple, (C, Op, P, A), where

• C is a finite set of information classes,

• Op is a set of relations, including the equality relation (=), on information classes

in C,

• P is a finite set of primitive propositions. These propositions are the information

flow relations over the information classes. For example, a proposition may be of

the form (A → B) where A and B are information classes and → is an information

flow operator which denotes a predicate discussed in Chapter 2.
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• A is the set of policy statements as defined below.

Policy statements are temporal logic formulas containing:

• the constants true and false.

• A set of variables ranging over the set of information classes C.

• The Boolean connectives ¬, ∧, ∨ and ⇒.

• The Boolean quantifiers ∀ and ∃ used to quantify over information classes.

• The temporal operators o (previous) and ∪ (since), o (next), ∪ (until).

• The path quantifiers A and E.

The policy statements also contain several other operators that can be defined in terms of

the basic temporal operators listed above. These operators are:

• ◊p (eventually in future p) abbreviation for (true ∪ p)

• ❑p (always in the future p) abbreviation for ¬◊¬p

• ◊p (sometime in the past p) abbreviation for (true ∪ p)

• ❑p (always in the past p) abbreviation for ¬◊¬p.

Definition: A state formula is defined as follows:

• A primitive formula is a state formula.

• If A and B are information classes or variables then A × B is a state formula where

× ∈ Op i.e., × is an operation defined on the information classes.

• If X and Y are state formulas then so are ¬X, X ∧ Y, X ∨ Y and X ⇒ Y.

• If X and Y are state formulas then so are (o X) and (X ∪ Y).

• If X is a state formula and v is a class variable then ((∀v) X), ((∃v) X) are state for-
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mulas.

• If X is a path formula then AX and EX are state formulas.

Definition: A path formula is defined as follows:

• If X and Y are state formulas then (o X) and (X ∪ Y) are path formulas.

Definition: The policy statements are a set of state formulas that the initial state must

satisfy.

An information flow policy that does not specify any restrictions on the flow of

information between different information classes is the least restrictive policy since any

implementation trivially satisfies it. This least restrictive policy is denoted by ⊥.

3.2.3 Formal Specification of Security Policies

In this section we formally specify some common security policies using the language that

was developed in the previous section.

Example 3.1: In the classic Multi-Level security policy [LAN81], there are some number

of information classes over which a partial order is defined. Information is permitted to flow

between two classes only if they are properly ordered with respect to one another. A typical

MLS policy used by the military is:

• The set of classes C is {Top-Secret, Secret, Classified, Un-Classified}.

• The set Op is { ≤, = } where

• the relation ≤ imposes a total order on these information classes, and

• = has the usual meaning.

• The set of primitive propositions are (X → Y) for every information class X and Y.
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• The policy statement is:

That is, information can flow from a Class to the same or a higher Class; it does not

say anything about whether an implementation must allow that flow; thus a system that

does not permit any information flow trivially satisfies this policy. To disallow such trivial

implementations we can add a statement specifying that the information flow between two

information classes be permitted in at least one path from the initial state.

That is, the initial state should be such that for every information class X which is less than

or equal to another class Y, there should be a path containing a state in which information

flows from X to Y.

Alternatively, we can impose a more restrictive condition requiring that every

reachable state satisfy the above condition i.e.,

Finally, a different sort of requirement might be that information flow between two

classes always be possible. This can be specified as follows:

It should be noted that the above specification of MLS is something that an

implementor or verifier of an information system would prefer over the informal

specifications usually found in the literature. Also, the statements about the additional

functional requirements imposed on the information flows cannot usually be expressed

using other formalisms in such a compact and precise manner.

A X∀ Y, X Y→( ) X Y≤( )⇒( )×( )

X∀ Y X Y≤( ) E X Y→( )◊⇒( )×,

A X∀ Y X Y≤( ) E X Y→( )◊⇒( )×,( )

A X∀ Y X Y≤( ) A X Y→( )◊⇒( )×,( )
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Example 3.2: The Chinese Wall security policy [BRE89] groups entities into conflict of

interest classes and states that information can flow from at most one entity belonging to a

conflict of interest class to any given entity. Given two banks, Bank1 and Bank2, and a

consultant Cons information can flow either from Bank1 to Cons or from Bank2 to Cons

but not both (here Bank1 and Bank2 belong to a conflict of interest class). This policy can

be specified as:

• The set of information classes, C, is {Bank1, Bank2, Cons}.

• The set of relations, Op, is {=c, =} where

• =c holds between two classes if they belong to the same conflict of interest

class. Here (Bank1 =c Bank2 and Bank2 =c Bank1). Note that for any class X,

it is not the case that (X =c X).

• = has the usual meaning.

• The primitive propositions are of the form (X → Y) for every X and Y in C.

• The policy statements are:

In the most general case the above policy statements can be expressed as:

where X, Y and Z are information class variables and =c is as defined above.

This example shows that it is easy to express security policies that are discretionary

in nature, where information can flow between different classes only under some dynamic

conditions, through the use of existential path quantifier and the eventuality temporal

operator.

A Bank1 Cons→( ) E Bank2 Cons→( )◊( )¬⇒( )

A Bank2 Cons→( ) E Bank1 Cons→( )◊( )¬⇒( )

A X Y Z X Y→( ) Z c X=( )∧( ) E Z Y→( )◊( )¬⇒( )×, ,∀( )
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Example 3.3: Consider a system that charges its users for access to a data-base. In this case

the information flow from the data-base to the user is allowed only if the service

administrator has access to the credit card information of the user. This policy can be

expressed as:

• The set of information classes C is {database, user, usercc, administrator}.

• The set of Operators Op is {=} where = has the usual meaning.

• The primitive propositions are (X → Y) for every X and Y in C.

• The policy statement is:

That is, it should always be the case that if information flows from the database to

the user, then information should flow from usercc to the administrator at the same time.

Example 3.4: Consider a system where a government department is allowed to give the

information about a contract to at most one of the many competing agencies, Agencyi

where i ranges from 1 to n. Such a policy can be expressed in the above language as:

• The set of information classes C is {Agency1, Agency2, ..., Agencyn, Govt}.

• The set of relations, Op, is {=c, =} where

• =c specifies that two information classes belong to the same conflict of interest

class, here Agencyi =c Agencyj for all i and j, i ≠ j, and

• = has the usual meaning.

• The primitive propositions P are of the form (X → Y) for every X and Y in C.

• The policy statement is:

A database user→( ) usercc a→ dministrator( )⇒( )

A X Y Govt X→( ) X c Y=( )∧( ) A Govt Y→( )¬⇒( )×,∀( )
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That is, if information flows from Govt to Agencyi then information cannot flow

from Govt to a different Agencyj ever.

Example 3.5: A MLS policy that includes a trusted entity that is allowed to violate the MLS

restrictions can be specified as:

• The set of classes C is {Top-Secret, Secret, Classified, Un-Classified, Trusted}.

• The set Op is { ≤, = } where

• ≤ imposes a total order on the information classes except the class Trusted, and

• = has the usual meaning.

• The set of primitive propositions are (X → Y) for every information class X and Y.

• The policy statement is:

That is, information is allowed to flow from lower class to a higher class or in either

direction between any class and the class Trusted.

Note that the above policy allows information to flow indirectly between

information classes in a manner that violates the MLS policy conditions — as long as they

occur through an entity belonging to the Trusted information class. This specification

reveals yet another variation on the ubiquitous MLS policy.

Example 3.6: Consider a system consisting of three information classes {BkGrnd, Cur,

User}. The security policy is that information of class Cur can be given to a User only if

User has the BkGrnd information. Such a policy can be specified as follows:

• The set of classes, C, is {BkGrnd, Cur, User}.

• The set Op {=}, where = has the usual meaning.

A X∀ Y, X Y→( ) X Y≤( ) X Trusted=( ) Y Trusted=( )∨ ∨( )⇒( )( )
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• The set of primitive propositions are (X → Y) for every information class X and Y.

• The policy statement is:

A❑ ((Cur → User) ⇒ ◊ (BkGrnd → User))

The above expression states that information is allowed to flow from Cur to User

only if at some time in the past information flow occurred from BkGrnd to the User. This

example demonstrates the use of past operators in expressing security policies. Note that

this policy cannot be expressed with future operators since the information flow from

BkGrnd to User only enables the information to flow from Cur to User but does not say

whether it actually occurs or not.

The preceding examples show that the policy specification language developed here

is expressive enough to specify a large class of security policies and formal enough to do

so in a precise and unambiguous manner.

3.3 A Model for Information Flow Policies

An information system that has to enforce a security policy can be modeled as a state

machine that constitutes an interpretation of the formulas in that policy. If the temporal

formulas of the security policy hold under this interpretation, then the corresponding

system satisfies the policy. In this section we present the semantics of the language

specified in the previous section over a system modeled as a state machine.

3.3.1 State Machine Model

An information system that enforces a security policy, SP = (C, Op, P, A), can be specified

as a state transition machine M = (S, Ε, τ, s0) where

• S is the set of all states described by means of state variables,

• E is the set of entities in the system,
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• τ is the state transition relation, τ ⊆ S × S, and

• s0 is a state in S that is the starting state.

Definition: Given a security policy SP = (C, Op, P, A) and a state machine M = (S, E, τ, s0)

an Interpretation I is of the form (η, π), where

• η is a class assignment function of the form η: E → C that assigns an information

class to every entity.

• π : S → P (Pη) is an interpretation function that gives the validity of all the propo-

sitions that can be derived from the primitive propositions in a given state. Here Pη

denotes the set of all propositions obtained by replacing every information class c

in the proposition p ∈ P by an entity e where η(e) = c.

In Chapter 4 we will show that the formal specification language Z can be used to

specify a state machine that includes the interpretation of the security policy it has to

enforce.

Definition: Given a state machine M = (S, E, τ, s0), a security policy SP = (C, Op, P, A) that

must be enforced by M, and an interpretation I = (η, π), an interpretation instance is defined

as (η’, π) where η’ is the class assignment function (η’ : E → C) such that for every

information class c there is at most one entity e such that, η’(e) = η(e) = c.

The interpretation instance of an interpretation defines another interpretation where

each information class has just one entity associated with it, permitting the truth value of

any formula that is specified in terms of information classes to be determined. It should be

noted that an interpretation I of a security policy SP in a state machine M has a number of

instances with different class assignment functions.
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Definition: Given a state machine M = (S, E, τ, s0) that satisfies the security policy SP = (C,

Op, P, A), a path is defined to be a state machine M’ = (S, E, τ’, s0) where τ’ is a mapping

of the form τ’ : S → S such that (τ’(s) ∈ τ(s)) for all s in S.

A path in a state machine gives the linear sequence of state transitions that are

possible from the initial state. Note that every state in the transition function of a path has

only one next state.

The truth value of a formula can be inductively defined as shown in the following

definition.

Definition: A formula X of a security policy is said to be true in a state machine M = (S, E,

τ, s0) under an interpretation instance I’ = (η’, π) of an interpretation I = (η, π), written as

MI’ |– X (read the |– symbol as satisfies) if X is

• (A → B) and there exist entities a and b such that (a → b) ∈ π(s) where (η’(a) = A)

and (η’(b) = B).

• (A op B) where op ∈ Op and (A op B) is true.

• (P ∧ Q) and MI’ |– P and MI’ |– Q.

• (P ∨ Q) and MI’ |– P or MI’ |– Q.

• ((∀v)P) and for every information class c, MI’ |– P | v = c.

• ((∃v)P) and there is an information class c such that, MI’ |– P | v = c.

• ¬ P and MI’ |– P is not true.

• AP and for any path M’ derived from M, M’I’ |– P.

• EP and for some path M’ derived from M, M’I’ |– P.

• (ο P) and for all states s’’ such that τ(s’’) = s and M’’I’ |– P where
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M’’ = (S, E, τ, s’’).

• (P ∪ Q) and for every sequence

where (τk(s0) = s) and (τ0(s0) = s0) the following conditions are true:

• There is a j where 0 ≤ j < k, such that

• |– P for all 0 ≤ i ≤ j, and

• |– Q for all j < l ≤ k.

where Mp is (S, E, τ, τp(s0)) and τp(s) is the pth element in the sequence

Definition: A path formula X is said to be true in the path M’ = (S, E, τ’, s) of the machine

M = (S, E, τ, s0) under an interpretation instance I’ = (η’, π) written as MI’ |– X if X is of

the form:

• (ο P) and  |– P where M’’ = (S, E, τ’, τ’(s)).

• (P ∪ Q) and for some j ≥ 0,  |– Q and for all 0 ≤ k < j,  |– P where Mi is a

machine (S, E, τ’, τ’i(s)) and τ’i(s) is the ith element in the sequence

Definition: A state machine M is said to enforce a security policy SP under an interpretation

I if the policy statements of SP are true in M under every interpretation instance of I.

s0 τ s0( ) τ τ s0( )( ) … τk s0( ), , , , 
 

M i
I′

M l
I′

s τ s( ) τ τ s( )( ) …, , ,( )

M″
I′

M j
I′

M k
I′

s τ′ s( ) τ′ τ′ s( )( ) …, , ,( )
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It should be noted that the interpretation function π is critical. Depending on the

kind of security that is desired this function is selected appropriately.

Definition: A Security Policy is said to be consistent if there exists a state machine and an

interpretation in which the policy axioms are true.

In this section we gave the formal semantics of the information flow policy

specification language proposed in the previous section. It should be noted that the

semantics given here are useful in understanding the precise meaning of a specification but

do not provide an efficient method for verifying whether a state machine correctly enforces

the security policy. This issue of providing an efficient method for verifying that a state

machine actually enforces a policy will be dealt with in Chapter 4.

3.4 Related Work

Existing information flow policy specification formalisms can be broadly categorized into

two classes:

• Modal logic based specifications,

• Operator based specifications.

In this section we compare these formalisms with our temporal logic based

approach.

3.4.1 The Modal Logic Approach

In a modal logic approach, information is modeled as knowledge, as specified by modal

operators whose semantics are given in terms of the behavior of the system. This approach

has been used in [CUP93] for specifying security policies.

3.4.1.1 The Model

A system is modeled as <O, D, T, S, A> where
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• O is the set of Objects.

• D is the domain of the values of objects.

• T is the set of time points.

• S represents the set of possible traces in the system where a trace specifies the

value of all the objects at all time instants.

• A is the set of subjects in the system. A is a subset of the set R, called the roles,

where R is the set of total functions from S into (P (O × T)). That is, the subjects

are modeled by their knowledge of the values of the objects in different traces of

the system.

Definition: Given a trace s and a subject A, (s  At) denotes the set of values of objects

known by subject A in s until time t.

3.4.1.2 Security Policy Specification

A security policy is a formula that is built out of a set of primitive formulas which are of

the form Val(o, t, d) where (o, t, d) ∈ (O × T × D) and Val(o, t, d) indicates that the value

of object o at time t is d and a set of operators:

• The usual Boolean connectives ¬, ∧, and ∨.

• Modal operator KA, t where A is a role and t is a time. KA, t ψ indicates that A, at

time t, knows that ψ is true.

• Modal operator RA, t where A is a subject and t is a time. RA, t ψ indicates that A

has permission, at time t, to know that ψ is true.

The semantics of the propositional and the Boolean formulas are specified in the usual way.

The semantics of the modal operators are specified as follows:

• The formula KA, t ψ is true in a trace s iff ψ is true in every trace s’ where (s  At)
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= (s’  At). That is, a role knows that ψ is true at some time t in a trace s if ψ is true

in every trace s’ that is indistinguishable from s.

• The formula RA, t ψ is true in a trace s if a subject A is assigned a role X such that

KX, t ψ is true in s. This statement means that a user is permitted to know that ψ is

true if there is a role X which knows that ψ is true.

The above logic can be used to express different kinds of security policies by identifying a

group of formulas that possess certain properties. Some of the groups identified in [CUP93]

are:

• Right(A, s, t) contains formulas whose truth value must be known to role A — i.e.,

for every formula ψ in Right(A, s, t), KA,t ψ should be true in s. This is used to

express policies like the MLS and Chinese Wall policies.

• Prohib(A, s, t) contains formulas whose truth value should not be known to role A

— i.e., for every formula ψ in Prohib(A, s, t), (¬KA,t ψ ∧ ¬KA,t (¬ ψ)) should be

true in s.

3.4.1.3 Comparison

In the modal logic approach of [CUP93], the notion of time is explicitly present in the

model, whereas in a temporal logic based approach it is captured by the temporal operators.

None of the security policies in the literature use absolute time and therefore this feature of

modal logic approach is of questionable value in policy specifications. Also we observed

that the abstraction provided by the temporal operators is adequate to represent the notion

of relative ordering of events occurring in policy specifications. These abstractions also

help the developer of a policy by eliminating the need to worry about extraneous details

such as representation and inference properties of time. Moreover, the fact that the Right

and Prohib formulas mentioned in the previous section are specified for every trace at each
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point in time makes them quite large and unwieldy. In the case where the lifetime of the

system is infinite it may even be impossible to enumerate them.

One of the drawbacks of the approach in [CUP93] is that it cannot be used to specify

security policies where only part of a trace must satisfy a certain property. For example, it

is difficult to specify a policy containing a requirement such as:

every legal state has the property that if information flows from A to B then

information cannot flow from B to C in the future.

In our formalism the above policy requirement can be easily specified as

In [CUP93], policies are specified by grouping formulas into sets that have to

satisfy some modal properties. For example, the sets Right and Prohib mentioned in the

previous section are used to specify the policies that contain explicit permission and

prohibition of information flow requirements. This sort of specification is more difficult to

develop since the specifier has to be cognizant of the subtleties of the underlying trace

semantics of the modal operators.

Another approach based on modal logic is the ‘logic of security’ [GMP93], in

which policies are specified by the modal operators P (permission) and O (obligation) as

well as the afore mentioned K (knowledge) operator. Here, P is used to specify the secrecy

policies and O is used to specify the integrity policies. Once again, since the modal

operators work on complete traces rather than the intermediate states in a trace, it is difficult

to specify properties that need to be satisfied by some part of a trace.

A A B→( ) A B C→( )¬( )⇒( )
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3.4.2 Operator Based Model

A model for specifying information flow policies that contain information classes and a set

of information flow operators, has been proposed in [FOL89a]. Based on this model a

taxonomy of information flow policies is developed in [FOL89b].

3.4.2.1 The Model

The security model consists of a set of

• Information classes C and

• Information flow operators FO = {→, ➽, ➻}

• (a → b) means information can flow from class a to class b,

• (A ➽ a) means information can flow from any subset of A to class a, and

• (A ➻ a) means information can flow from all the classes of the set A to the

class a.

As in the temporal logic based approach that we proposed earlier, the meaning of

the information flow operation is left uninterpreted.

3.4.2.2 The Policy Specification

Security policies are specified as a set of formulas where a formula is as follows:

Definition: A formula is of the form (A ➽ a) or (A ➻ a) where A is a set of information

classes and a is an information class.

Definition: A security policy is specified as a set of formulas.

Example 3.7: The Multi-Level security policy can be specified as follows:

• The information classes are {Top-Secret, Secret, Classified, Un-Classified}.

• The policy formulas are:
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• ({Un-classified} ➽ Classified)

• ({Un-classified, classified} ➽ Secret)

• ({Un-classified, Classified, Secret} ➽ Top-Secret)

[FOL89b] identifies different classes of information policies such as

• an separation policy that satisfies the following condition

∀A1, A2, a ×((((A1 ➻ a) ∈ P) ∧ ((A2 ➻ a) ∈ P)) ⇒ ((A1 ∪ A2) ➻ a) ∈ P))

• an aggregation policy that satisfies the following condition

∀A1, A2, a ×((A1 ∪ A2) ➻ a) ∈ P)) ⇒ (((A1 ➻ a) ∈ P) ∧ ((A2 ➻ a) ∈ P))

Other kinds of policies which are referred to as quasi-ordered policies and reflexive

policies are identified in [FOL89b]. [FOL89b] also gives a high water mark mechanism for

implementing different kinds of policies by converting the policies into a lattice.

3.4.2.3 Comparison

The work in [FOL89b] is the first attempt at classifying the information flow policies and

proposing a taxonomy for them. However, the class of information flow policies that can

be expressed using the above approach is limited due to the small number of information

flow operators. For example, there is no way of expressing a policy requirement such as

using the two information operators defined in [FOL89a].

An underlying assumption in the approach of [FOL89b] is that information flow

policies are specified as sets of allowed information flows. In practice, this is not usually

the case. Most of the security policies in the literature — MLS policy, Chinese Wall policy

— are specified in terms of disallowed information flows. In many cases it is left to the

A A B→( ) A B C→( )¬( )⇒( )
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discretion of the implementor whether to actually allow all the information flows that do

not violate the security policy. For example, the Chinese Wall policy only says that

information should not flow from entities belonging to the same conflict of interest class to

another entity. It does not say what information flows need actually occur to start with.

Hence a formalism such as the one proposed earlier in this chapter, which includes the

complete first order logic, is more expressive than the operator based model.

3.5 Conclusions

A Partial Order Temporal logic based specification mechanism, which can be used in the

specification of information flow security policies, has been developed. This mechanism is

successfully used to specify some common information flow security policies in a succinct

and unambiguous manner. Formal semantics for this language are provided using a state

machine model that allows one to precisely understand the meaning of the policy. This

logic based approach is more expressive than other formalisms proposed in the literature

for specifying security policies.
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Chapter 4

Specification of Security Critical
Systems

Access control models have been proposed for describing and analyzing the protection

mechanisms of information systems. However, these models have rarely been used in

practice for either purpose. In this chapter we take a critical look at existing access control

models and identify some reasons for their lack of use. We propose that the specification

language Z [DIL90] is more suitable for describing the protection mechanisms of

information systems and show that temporal logic can be used to specify access control

policies. We also develop a language for specifying the set of traces generated by a formal

specification that can be used in the verification of its security properties.

4.1 Introduction

Access Control models played an important role in modeling and analyzing the security of

computer systems in the 1970’s. These models were used in the design of secure operating

systems such as the UCLA Data Secure Unix [WAL80], and PSOS [LAN81]. They were

also used in detecting security holes in extant operating systems such as Multics, where a

A commercial society whose members are essentially ascetic and indifferent
in social rituals has to be provided with blue prints and specifications for

evoking the right form for every occasion

- Marshall McLuhan
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card reader daemon could install a Trojan horse in a user file space [JON78]. Although

security holes similar to the one in Multics have been found in modern operating systems,

access control models had very little role in discovering them. This is unfortunate, since a

simple analysis of the protection mechanisms most likely could have found most of these

holes in a systematic manner.

Access control models are state machines consisting of a set of

• entities,

• access rights between the entities, and

• transitions — the state changing operations.

The state transitions occur non-deterministically provided the appropriate access

rights are present. Security analysis in these systems is concerned with the reachability of

a state from the initial state. This is referred to as the Question of Safety and was shown to

be undecidable in the general case [HAR76].

Access control models were first described by Lampson in [LAM74]. Later, a

number of models were proposed that differ in expressive power and decidability of safety;

these include the HRU model [HAR76], take-grant model [SNY81], Grammatical

protection models [SNY81], Schematic Protection model [SAN88], Extended Schematic

Protection model [AMM92], and Typed Access Matrix model [SAN92]. Although a

number of interesting results about the question of safety exist with respect to these models,

none of them have been used in practice to analyze the safety of the protection mechanisms

of large scale systems.

The HRU model is the first and most general model. It consists of a set of Subjects

and Objects and the protection state of the system is described by means of a two

dimensional access matrix indexed by the entities. This matrix contains the set of rights
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between the Subjects and Objects. Six primitive operations are defined on this access

matrix (enter a right, delete a right, create a subject, create an object, destroy a subject,

destroy an object) that can be combined in arbitrary ways to create new commands. The

safety question in this model is the reachability of a specified state from the initial state with

a given set of commands. It was shown in [HAR76] that this safety question is undecidable.

The Schematic Protection model (SPM) is a restricted form of HRU model where the

entities are associated with types (not just Subject and Object as in HRU model) and the

operations are limited to creation of new entities and copying of rights. Although it is not

as general as the HRU-model, SPM has better safety analysis techniques. The Typed

Access Matrix model [SAN92] is similar to HRU except that the entities have types

associated with them. The conditions for making the safety question decidable are tighter

in this model than the corresponding ones of the HRU model.

In this chapter we investigate the reasons for the reluctance on the part of security

practitioners to use access control models in security verification and propose an alternative

approach for modeling the protection features of information systems.

4.2 Access Control Models and Security Verification

The general approach mandated by the Trusted Computer Systems Evaluation Criteria

[ORA85] for building secure systems is illustrated by the following figure.

Figure 4.1 : The Security Verification approach

Formal Specification of Security Policy

Verification

Verification

An Implementation of the System

Formal specification of the system
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In the above figure, two separate verification processes are carried out:

• one between the security policy and the abstract specification of the system, and

• the other between the abstract specification of the system and the software or hard-

ware that actually implements it.

This approach is both practical and productive since it decomposes the task of

security verification into more manageable sub-tasks. Since most security holes are design

flaws, we are interested in the verification of the security policy with respect to system

specifications that contain the design aspects of the system. The verification between the

actual implementation of the system and its specification is also important, of course;

conventional program verification can be used for this purpose.

The formal specification of a system is useful in many ways. In fact, many security

holes can be found just by writing the specification down. The use of a second, qualitatively

different paradigm forces the specifier to have a deeper understanding of the system. It

reveals things that would otherwise be obscure and tend to be ignored. This statement is

supported by the experience in a large number of areas such as authentication protocols,

network protocols, software engineering, formal methods. As an added benefit, if the

specification is in a user friendly language, it can even be used as a reference manual to

communicate the features of the system to its users.

In order to apply the approach shown in fig 4.1 to model and verify computer

security, three steps need to be performed:

• the security policy must be specified as properties of the behavior of the system,

• the specification of the system must developed using a model such as an access

control model

• the verification consisting of checking whether all the reachable states do indeed
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possess the required properties, must be performed.

Traditional access control models are lacking in three important aspects that are

crucial for specification and verification of security policies. These are:

• Abstraction mechanisms,

• Security Analysis, and

• Policy Specification.

In the following sections we elaborate on each of these issues by means of

examples.

4.2.1 Abstraction Mechanisms

Access control models were initially proposed to model the protection of main memory

between processes in multi-programmed systems [LAN81]. The advent of timesharing and

networking changed the protection landscape drastically, but access control models have

not changed to accommodate these developments.

Modern operating systems are complicated, with diverse features that affect the

protection state in a number of ways. The abstraction mechanisms provided by the

traditional access control models are primitive, making the task of modeling and analyzing

protection features of information systems extremely difficult. For instance,

• There is no natural way to model the infamous suid (set user id) bit, or the environ-

ment variables of the Unix operating system — both of which have been the root

of many a security problem.

• There is no natural way to enforce the concept of groups where the entities belong-

ing to the same group possess the same access privileges. This notion of groups is

important in secure systems since the Computer Systems Evaluations Criteria
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[ORA85] of the Department of Defense mandates that systems provide facilities so

that groups can be realized and their affect on the security of the system can be

analyzed.

The above examples show that access control models cannot easily describe many

real world systems making the task of using them to analyze security properties difficult.

4.2.2 Security Analysis

One of the primary goals of access control models is to enable formal analysis of the safety

of systems that they model. As mentioned before, in the general case the question of safety

is undecidable for these models. Therefore, these models make some assumptions about the

system to make the safety question decidable. These assumptions typically are:

• restrictions on the form of the transition relation — so that the size of the protec-

tion state of the system is bounded. For example, in the SPM [SAN88], a newly

created entity must be less powerful than its parent so that the number of possible

states is finite in number.

• the set of transitions in the model need to satisfy the restoration principle; that is,

any of the access rights that might be deleted can be reinstated. It means that the

deletion of access rights does not have any affect on the protection state of the sys-

tem. All the access control models mentioned earlier make this assumption.

Clearly the above assumptions are not realistic. For example, few systems satisfy

the restoration principle — in Unix a user can change the ownership of a file he owns to

another user but cannot get the ownership changed back without the cooperation of the new

owner or the root.

The restrictions on the form of operations for bounding the size of the protection

state of the system are also not very realistic. In fact, the problem it purports to address
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doesn’t really exist — in real systems it is usually not possible to indefinitely increase the

size of protection state by creating an unbounded number of new entities as assumed by the

create operation in many of the access control models.

Access control models contain two types of rights:

• normal rights used to perform operations such as the read, write, etc., and

• control rights, which effect the protection state of the system, such as take and

grant in tg-model.

An assumption made by access control models is that the control rights can be

copied just like normal rights. This assumption makes the security analysis quite difficult.

But again this assumption is not true in practice; in most systems, a user is not allowed to

copy control rights. For example, in Unix one cannot copy the control rights like ownership

but can only transfer it. This kind of realistic restriction on the control rights has good

potential to simplify security analysis.

4.2.3 Policy Specification

The security policies for which access control models provide useful analysis techniques

are usually of the form that certain set of states, labeled unsafe, should not be reachable

from the initial state. Unfortunately, these kinds of policies are not representative of the real

world since the safety of a state is often dependent on how it is reached from the initial state.

A state that is safe when reached through one sequence of actions may be unsafe when

reached through a different sequence. For example, a state where user A has read access to

user B’s file may or may not be safe. A security policy might state that such a state is safe

if B explicitly authorizes the read access for A, otherwise it is not.

It is widely accepted that security policies and the mechanisms used to enforce them

are orthogonal [WUL80] and therefore should be treated as such. Although a given access
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control model can answer questions about the reachability of certain unsafe states, ideally

we would like it to answer questions about an arbitrary policy. For example, the take-grant

model can be used to determine whether an entity can obtain certain rights to another entity

but cannot address whether information can flow between two entities. This is because the

take-grant model does not contain an interpretation for the term information flow. Once this

term is assigned a meaning in the domain of the take-grant model, it is possible to derive

the truth value of predicates that depend on this term in any state of the system. Ideally, the

policy specification language should be independent of the access control model and the

mapping between them should define the security requirements of the system under

consideration.

The Bell and LaPadula model (BLP) [BL74] is an access control security model that

enforces the MLS policy by the following two restrictions on the actions of the entities:

• An entity cannot read an entity at a higher level than itself (no read-up) and

• An entity cannot write to an entity at a lower level than itself (no write-down),

This model was criticized by McLean [MCL87] because it includes systems that are

insecure according to the MLS policy — a system containing an operation that changes the

levels of all the entities to a single level. In response [BEL88], it was argued that the BLP

model is in fact correct as defined due to the presence of the tranquility principle which

states that the levels of active entities cannot change. This confusion is due to the fact that

the BLP model has become synonymous with the MLS policy, while in reality BLP is

simply an access control model that attempts to enforce the MLS policy. We feel that it is

both a prerogative and a responsibility of the security policy to specify whether or not the

classifications associated with the entities can be altered. Therefore we contend that the

BLP model with the tranquility principle and the same model without it satisfy different

policies — both unfortunately referred to as the MLS policy.
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In this section we argued that access control models are not suitable for developing

system specifications that can be used in security verification. In the following sections we

will propose a framework for specifying the protection features of information systems that

is amenable to verification.

4.3 A New Approach to System Specification

A major limitation of traditional access control models is the underlying assumption that

the world is composed of only subjects, objects, access rights and the protection state

access matrix. These abstraction mechanisms provided by the access control models are

inadequate for modeling all the protection features of modern information systems. A

richer set of abstraction mechanisms, which can also be used in the verification process, is

required for describing the protection features of these systems. In this section we propose

that the specification language Z, with its rich set of abstraction mechanisms based on set

theory and predicate calculus, can be used to describe the protection features of information

systems.

Formal specification notations can be classified into two categories[WIN90]:

• model based specification and

• property based specification.

In a model-based approach, the behavior of the system is specified by first

constructing a model of the system in terms of abstract structures such as sets, relations,

functions, sequences, etc., and then describing the operations by their affect on the system

state. In property-based methods, a system is described indirectly by means of a set of

properties that it is required to satisfy. These two approaches, although quite different at the

syntactic level, are equivalent in expressive power at the semantic level. Model-based

notations include Z, VDM, InaJo, Petrinets, CSP and Unity and property based languages

include Larch, Clear and Act One.
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The protection features of information systems can be modeled quite naturally as

state machines, where the state description consists of information such as labels regarding

the security characteristics of entities or access rights in tables like access matrices. These

structures can be described conveniently by the abstraction mechanisms provided by a

model based specification language such as Z [DIL90]. The operations in the system can

be modeled as state transitions in the system.

It is easy to see how this approach can be used in describing the protection features

of an operating system. For example, in Unix:

• Users can be modeled by entities with properties that describe their environment

and

• Files can be described by entities with properties that specify the access rights,

owner id, suid bit, etc.

In order for this form of specification to be useful in security verification, we need

to develop a framework in which security properties, expressed in temporal logic, can be

verified. This will be dealt with in the next chapter. In the following sections we show how

the specification language Z can be used to specify the protection features of information

systems and also specify the behaviors of interest in a compact way over which the

temporal properties can be interpreted.

4.3.1 Overview of Z

Z is a specification language based on first-order predicate calculus and typed set theory.

The model of computation is a non-deterministic state transition machine. The state in this

model consists of a set of state variables and the transitions are described as the changes

that can occur to the values of these variables.

The specification of a system in Z consists of two parts:
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• State Description — The state, in Z, is described using a set of state variables.

These variables have a type associated with them where the type can be a basic one

such as integer or a more complicated one such as a relation or a function. The val-

ues of the state variables describe the state of the system at any instant.

• Operation Description — The operations are described by specifying their effect

on the state variables of the system. These operations describe the conditions under

which they can occur, referred to as pre-conditions, and their affect on the state of

the system, referred to as post-conditions.

The basic unit of specification in Z is a schema that consists of:

• A declaration part where state variables are declared and

• A body part where the pre-conditions and affects of the operation described by the

schema are listed in a declarative manner.

By convention, in schemas describing operations, the unprimed variables (e.g. user)

represent are the state variables before the operation occurs and primed ones (e.g. user’)

represent the variables after the occurrence of the operation. Hence a condition in a schema

that does not include any primed variables is a pre-condition and any condition that

contains a primed variable is a post-condition.

The computational model in Z is non-deterministic — any operation whose pre-

condition is true may be executed. Note that a non-deterministic model of computation

does not mean that the affect of a given operation is non-deterministic. For more details

about the features of Z see Appendix B.

An important feature of security policies of information systems is that the ability

to perform operations is bestowed upon only a select set of objects in the system. In order

to capture this feature in specifications, we extend Z, by defining a variable that ends in a
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‘#’ to denote an input variable not under the control of the entity invoking the operation. It

is assumed that such a variable is assigned a value by the underlying system at the time of

operation invocation.

4.3.2 An Example

The take-grant model [SNY81] is an access control model used to describe the protection

mechanisms in operating systems. This model can be specified in Z by giving schemas for

the state description, the state changing operations, and the initial state. The schema for

state description is given below.

This schema defines the state as consisting of four state variables:

• Entities, Subjects, and Objects which are each a set of NAME (the emphasized P

denotes power set)

• AM is a partial function mapping pairs of names to sets of rights (the cross is the

cross-product and the arrow with a slash in the middle denotes a partial function).

Here, NAME is assumed to be a string of characters and RIGHT is the set {t, g, r,

w} denoting the take, grant, read and write rights respectively.

The meaning of each line in the body part of the schema is:

• An entity must be either a Subject or an Object.

tg �model

Entities : PNAME

Subjects : PNAME

Objects : PNAME

AM : NAME �NAME 7! PRIGHT

Subjects [Objects = Entities

Subjects \Objects = �

8 x ; y � (((x ; y) 2 domAM )

, ((x 2 Entities)^ (y 2 Entities)))

1
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• An entity cannot be both a Subject and an Object.

• AM is a two-dimensional array consisting of a row and a column for every entity

and also every row and column in this AM corresponds to some entity. (The dot is

the separator between the quantified variables and the expression).

The three operations take-rule, grant-rule and create-rule of this take-grant model

can be specified as follows:

The first line in the declaration part includes the declarations and conditions of the

schema tg-model described earlier (delta indicates a change in the state and declares the un-

primed and the primed versions of the variables). The second line declares the variable set

by the system, Invoker#, to be of type NAME and also two input variables (ending in

question marks) of type NAME. The third line declares another input variable of type

RIGHT.

The meaning of each line in the body part of the schema is described below:

• This operation can be invoked only by an entity belonging to Subjects.

• The name from which a right is obtained must belong to Entities.

• The name to which the right refers must belong to Entities.

take � rule

�tg �model

Invoker#;From?;To? : NAME

r? : RIGHT

Invoker# 2 Subjects

From? 2 Entities

To? 2 Entities
0t 0 2 AM (Invoker#;From?)
r? 2 AM (From?;To?)
AM 0= AM �

((Invoker#;To?) 7! (AM (Invoker#;To?) [ fr?g))

1
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• A take right needs to be present in the access matrix between the entity that

invokes this schema and the entity from which the right is being taken.

• The requested right must be possessed by the entity from which it is being taken.

• After the operation the access matrix is updated so that the entity that invoked this

operation has the appropriate right to the requested entity (the circle with a plus

sign in it is the function override operator).

The following schema describes the grant-rule.

This schema similar to the take-rule schema except for the following two aspects.

• A grant right needs to be present for it to be invoked.

• The effect on the state variables is different to reflect the grant rule of the take-

grant model.

grant � rule

�tg �model

Invoker#;To?;For? : NAME

r? : RIGHT

Invoker# 2 Subjects

For? 2 Entities

To? 2 Entities
0g 0 2 AM (Invoker#;To?)
r? 2 AM (Invoker#;For?)
AM 0 = AM � ((To?;For?) 7! (AM (To?;For?) [ fr?g))

1
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The create rule is:

The declaration part of this schema is similar to the earlier schemas. The meaning of the

statements in the body part is as shown below.

• An entity belonging to Subjects can invoke this operation.

• The name of the new entity needs to be unique.

• The newly created entity can be either a subject or an object.

• The set of entity names is updated with the name of the newly created entity.

• The rows and columns of AM that do not correspond to Invoker# or New? are

unchanged.

• All the entries in the column corresponding to the newly created entity, except that

for the entity that invokes this operation are empty.

• The creator of the new entity gets the rights that it requested.

create � rule

�tg �model

Invoker#;New? : NAME

r? : PRIGHT

Invoker# 2 Subjects

New? 62 Entities

(Subjects 0 = Subjects [ fNew?g)

_(Objects 0 = Objects [ fNew?g)

8 x ; y � (((x 2 Entities) ^ (y 2 Entities) ^

(x 6= Invoker#)^ (y 6= New?))
) (AM 0(x ; y) = AM (x ; y)))

8 x � (((x 2 Entities)^ (x 6= Invoker#))
) (AM 0(x ;New?) = �))

AM 0(Invoker#;New?) = r?

1
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The initial state is:

The initial state of the system specifies that any set of values to the state variables

which satisfy the invariants specified in the tg-model schema constitutes a valid initial state.

4.3.3 Specification of Protection Features of Unix File System

In order to demonstrate the ability of Z to specify the protection mechanisms of large

systems we used it to describe a subset of the protection features of the Unix file system.

This specification is given in Appendix C. This exercise demonstrated that Z is indeed

suitable for specifying the protection features of real systems. In this process we discovered

that the natural language description of the semantics of certain features of the file system

(access bits of the directories) were not precise and in fact differ between different

implementations.

4.4 Specification of Access Control Policies

Security policies usually consist of both access control requirements and information flow

requirements. In order to completely specify a security policy we must be able to specify

both these requirements. In Chapter 3 we developed a temporal logic based framework for

specifying information flow requirements of security policies. In this section we will show

that temporal logic can be used to specify access control policies as well.

Access control requirements are expressed as properties that must be satisfied by a

set of states reachable from the initial state. These properties are specified as conditions on

the values of the state variables in the description of the system. Hence these requirements

can be expressed as temporal properties of the sequence of state transitions that can occur

in the system. The temporal logic framework developed in Chapter 3 can be used to specify

Init

�mtg �model

1



Chapter 4:  Specification of Security Critical Systems 85

these access control policies where the primitive propositions are expressions that describe

a state in Z.

For example, the requirement that entity A cannot obtain a right to read an entity B

in the take-grant model specified in Section 4.3.2 can be expressed as

That is, every state reachable from the initial state should be such that AM(A, B)

does not contain ‘r’ right.

Access control policies usually consist of:

• Mandatory access requirements and

• Discretionary access requirements.

Mandatory requirements, as the name suggests, must be true for each and every

state of the system, whereas discretionary requirements need only be true for some

specified subset of system states. A mandatory access requirement is usually expressed as

 where P is some property of a state. For example, a statement such as ‘there

must be no read from an entity of lower level to an entity of higher level’ in Bell-LaPadula

model is a mandatory requirement. This requirement, usually referred to as the simple-

security property, can be expressed in temporal logic as

where Class, AM and ‘r’ are described by the state description of the system.

A discretionary access requirement is usually expressed as  where P is

some property. For example, a statement such as ‘it should be possible for an entity A to

acquire a read access to an entity B’ is a discretionary requirement that can be expressed as

A ′r′ AM A B,( )∉( )

A P( )( )

A Class A( ) Class B( )≤( ) ′r′ AM A B,( )∉( )⇒( )

E P( )◊( )

E ′r′ AM A B,( )∈( )◊



Chapter 4:  Specification of Security Critical Systems 86

where AM and ‘r’ are in the state description of the system.

4.5 Trace Specifications

The Z specification of a system does not include any notion of control flow. The schemas

in the specification only enumerate all possible conditions under which the operations can

take place and specify their effect on the state of the system. In order to reason about the

properties of a specification, some compact way of referring to the set of traces that can be

generated by a system needs to be devised. In this section we develop such a framework.

Definition: Given a system whose operations are described by the schemas Op1, Op2,...,

Opn, a trace formula is defined as follows:

• Any of the operations Opi of the given system is a trace formula.

• If I is a state expression that does not contain any primed variables and X is a trace

formula then so is .

• If X1, X2, ..., Xm are trace formulas then so are

• C(X1, X2, ..., Xm), and

• D(X1, X2, ..., Xm).

where C and D are trace operators whose semantics will be given later in this

section.

The importance of trace formula is that it can compactly represent the set of all

traces that are of interest in a given system. In order to give the semantics of trace formulas,

we first need some definitions on sequences.

Definition: Given a trace t which is a sequence of states of the form (s0, s1, ..., sm)

• first(t) is the state s0.

I X∧( )
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• rest(t) is the sequence (s1, ..., sm)

• concat(t, t’) is the sequence (s0, s1, ..., sm, s’0, s’1, ..., s’n) where t’ is another trace

of the form (s’0, s’1, ..., s’n).

• last(t) is the state sm.

The set of traces generated by a trace expression can be characterized as shown

below.

Definition: The set of traces generated by a trace expression X of a system S whose

specification is (s, Init, {Op1, Op2,..., Opn}) is denoted as TX and is

• If X is of the form Opi then TX contains a trace of the form (s0, s1) where s0 and s1

are states in the system S and s0 satisfies the preconditions of Opi and s1 satisfies

the post-conditions of Opi.

• If X is of the form  where I is a pre-condition then TX is such that

• every trace of TX is in TY, and

• for every trace t in TX, I is true in first(t).

• If X is of the form C(X1, X2, ..., Xm) then every trace t in TX consists of sequences

t1, t2, ..., tp such that

• t is equal to concat(t1, rest(t2), ..., rest(tp)),

• for all i, 1 ≤ i < p, last(ti) = first(ti+1), and

• for all i, 1 ≤ i ≤ p, ti belongs to one of  for 1 ≤ j ≤ m.

• If X is of the form D(X1, X2, ..., Xm) then every trace t in TX consists of sequences

t1, t2, ..., tm such that

I Y∧( )

TXj
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• t is equal to concat(t1, rest(t2), ..., rest(tm)),

• for all i, 1 ≤ i < m, last(ti) = first(ti+1), and

• for all i, 1 ≤ i ≤ m, ti belongs to .

Note that the C is a closure operator and D is a sequencing operator. Any trace that

is generated by the C operator with some parameters is constructed by concatenating a set

of sub-traces where each sub-trace is generated by any of its parameters. Similarly, any

trace generated by the D operator with a sequence of parameters is constructed by

concatenating the ordered sequence of sub-traces where each sub-trace is generated by its

corresponding parameter.

The above definition inductively defines the set of all traces generated by a trace

expression. The trace specification operators C and D can be used to concisely specify any

set of traces that are of interest in security policies. For instance, the set of all traces that

can be generated by a system whose initial state is described by the schema Init and whose

operations are described by the schemas Op1, Op2,..., Opn is represented by the trace

expression

Example 4.1: The set of all traces generated by the take-grant model specified in Section

4.3.2 is as follows:

The above expression denotes the set of all traces that can be generated by applying any of

the take-rule, grant-rule and create-rule to the initial state Init.

TXi

Init C Op1 Op2 … Opn, , ,( )∧

Init C take rule– grant rule– create rule–, ,( )∧
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Example 4.2: The set of all traces generated by the take-grant model where the take-rule is

applied at least once can be represented as

In this section, given a state machine specification of an information system, we

developed a compact way of representing the required set of traces generated by it. Security

policies, being the properties that the set of traces need to satisfy, can be verified against

these trace specifications. A framework for carrying out this verification will be developed

in next chapter.

4.6 Related Work

The framework that we presented in this chapter for specification of the traces has some

similarities to the Temporal Logic of Actions (TLA) [LAM93] that is used for specifying

and reasoning about concurrent systems. In this section we compare our framework with

TLA.

4.6.1 Temporal Logic of Actions (TLA)

TLA is a logic for specifying and reasoning about concurrent programs. In this framework,

both programs and properties are represented in a logic that is similar to the temporal logic,

and verification is the process of showing that the program implies the property. A program

is modeled as a state machine consisting of

• a set of states where a state is described by the values of the state variables and

• a set of actions where an action is a Boolean-valued expression formed from vari-

ables, primed variables and constant symbols. An action represents a relation

between old states and new states where the un-primed variables refer to the old

state and the primed variables refer to the new state.

Init D
C take rule– grant rule– create rule–, ,( ) ,

take rule– ,
C take rule– grant rule– create rule–, ,( ) 

 ÷
 ÷
 

∧
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In this model, an algorithm is considered to be the collection of all possible

execution sequences that can be specified and reasoned about in temporal logic. The

program descriptions are of the form

where

• Init is a description of the initial state,

• N is the operations in the program,

• f is a tuple of all variables that may not change, and

• F is a conjunction of the formulas specifying the fairness conditions.

The usual temporal operators ❑ (always) ◊ (eventually) are used to specify the

properties of programs. In order to prove that a temporal property P is true about a program

it is required to prove that

If this statement is valid then the program which represents the antecedent satisfies

the property P. A set of rules were given in [LAM93] that can be used to prove statements

of the above form depending on the structure of property P.

4.6.2 Comparison

TLA uses temporal logic to specify both programs and properties which is very appealing

from the point of view of verification but it allows one to assume properties that may not

be true about a system. For example, the fairness conditions of TLA are just assumptions

and one needs to independently verify that these assumptions are indeed really enforced by

the system. In our framework, the system specification cannot make any assumptions about

the temporal behavior — every temporal property needs to be explicitly proved.

Init N[ ] f F∧ ∧

Init N[ ] f F∧ ∧( ) P⇒
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Careful comparison of TLA and our framework shows that the ❑ operator of TLA

has the same semantics as the C operator of our framework but there is no equivalent for

the D operator. This makes it impossible to specify and verify some properties like

functionality requirements in TLA. This is not a drawback of TLA since it was intended

only for concurrent programs where functionality is not an issue unlike security.

TLA is based on linear time temporal logic whereas our framework is based on the

more expressive partial order temporal logic which allows us to specify and reason about a

larger class of properties.

4.7 Conclusions

In this chapter, a model based specification approach to describe the protection mechanisms

has been advocated. The specification language Z with minor extensions has been used to

describe the take-grant system. We also developed a specification of the protection features

of Unix file system that is more complete and comprehensive than any other such formal

description using an access control model. We showed that the access control requirements

can be expressed using the state description mechanisms of Z and temporal logic. We also

developed a mechanism for a compact description of a set of traces that can be useful in the

verification process.
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Chapter 5

Security Policy Verification

It was shown in earlier chapters that the formal specification language Z can be used for

specifying the protection features of information systems and temporal logic can be used

for specifying their information flow and access control security policies. In this chapter we

propose a framework for verifying that the specification of an information system enforces

a given security policy. We demonstrate this framework by verifying an access control

policy and the MLS policy in a system similar to the take-grant model. We also investigate

the labeling mechanisms used for enforcing different kinds of information flow policies.

5.1 Introduction

The semantics of the temporal statements, which make up a security policy specified in

Chapter 3, provide a framework for verification. But unfortunately, the temporal operators

in the formulas require that the reasoning be carried out over long sequences of state

transitions. In the case of finite state machines, the verification process explores all possible

sequences of state transitions to verify the security policies. This method, usually referred

to as model checking, has been extensively used in network protocol verification and

Man associates ideas not according to logic or verifiable exactitude, but
according to his pleasures and interests. It is for this reason that most truths

are nothing but prejudices.

- Remy deGourmont
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hardware design verification among others. Security policies and their models are not finite

state machines and so the model checking approach cannot be used. In this chapter we

propose a set of rules that can be used inductively based on the structure of the temporal

formulas to verify that a system specification enforces the security policy.

5.2 Verification of Security Policies

An important goal of modeling a system from the security point of view is to answer the

question of safety — that is, whether a particular state is reachable from the initial state with

the provided set of operations. In most access control models this safety question is

undecidable in general but is decidable when the system is suitably restricted. For example,

• it has been shown [SNY81] that the question of safety in take-grant model can be

decided in linear time.

• it was proved that the question of safety is undecidable for SPM [SAN88] in the

general case but it is decidable when the instance of the model is acyclic (the cre-

ate graph is acyclic) and attenuating (the newly created entities do not have more

rights than their creators).

A similar kind of analysis methodology is desirable for the specification method

that we proposed in the earlier chapter that can handle both access control and information

flow requirements. But unfortunately the generality of the framework makes it very

difficult to design an algorithm as in [SNY81] and [SAN88]. Instead we propose a set of

rules that can be applied inductively to prove that a system enforces a security policy.

Given a system specified as (s, I, {Op1, ..., Opn}) we can use the following set of

rules to carry out the verification process. A verification rule is specified as
Cond1

…
Condn

Theorem
----------------------------------------------------------
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where Cond1, ..., Condn are the conditions that need to be proved in order to deduce that

the Theorem is valid. In the following rules the statement P is assumed to be free of

temporal operators.

• Rule 1:

where Op is an operation from the set of operations {Op1, Op2, ..., Opn}.

• Rule 2

where Op is an operation from the set of operations {Op1, Op2, ..., Opn}.

• Rule 3:

In order to prove that P is always true in all the traces generated by the expression

 find a condition Inv such that it

• implies that P is true and

• is invariant in all the trace expressions Xi.

• Rule 4:

I P⇒( ) I Op∧( )∨ P′⇒
I Op∧( ) A P◊⇒

----------------------------------------------------------------- and I P⇒( ) I Op∧( )∨ P′⇒
I Op∧( ) E P◊⇒

-----------------------------------------------------------------

I P⇒( ) I Op∧( )∧ P′⇒
I Op∧( ) A P⇒

----------------------------------------------------------------- and I P⇒( ) I Op∧( )∧ P′⇒
I Op∧( ) E P⇒

-----------------------------------------------------------------

I Inv⇒( )
Inv X1∧( ) A Inv( )⇒( ) … Inv Xn∧( ) A Inv( )⇒( )∧ ∧

Inv P⇒( )
I C X1 … Xn, ,( )∧( ) A P⇒

--------------------------------------------------------------------------------------------------------------------------------------------------------------

I C X1 … Xn, ,( )∧( )

I P¬∧( ) C X1 P′¬∧( ) … Xn P′¬∧( ), ,( )∧( ) A Inv( )⇒

Inv Op∧ P′⇒( )
I C X1 … Xn, ,( )∧( ) A P◊⇒

---------------------------------------------------------------------------------------------------------------------------------------------------------
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In order to prove that P is true at least once in every trace of a system of traces

described by , prove that every trace where P is not true in every state

of that trace can be extended by executing an operation Op from the set of operations to

reach a state where P is true.

• Rule 5:

where each of {x1, x2, ..., xm} is from the set {X1, X2,..., Xn}.

In order to prove that there is a trace in the set of traces described by

 where property P holds for every state in that trace, find a sequence

(x1, x2, ..., xm) such that Inv is true in every intermediate state. Then prove that Inv implies

that P is true.

• Rule 6:

where each of {x1, x2, ..., xm} are from the set {X1, X2,..., Xn}.

In order to prove that there is a trace in the set of traces described by

 where property P holds for some state in that trace, find a sequence

(x1, x2, ..., xm) which when applied to the initial state will result in a state where P is true.

I C X1 … Xn, ,( )∧( )

I Inv⇒
Inv D x1 x2 … xm, , ,( )∧( ) E Inv( )⇒

Inv P⇒
I C X1 … Xn, ,( )∧( ) E P⇒

------------------------------------------------------------------------------------------------------

I C X1 … Xn, ,( )∧( )

I D x1 x2 … xm, , ,( )∧( ) E P◊⇒
I C X1 … Xn, ,( )∧( ) E P◊⇒

------------------------------------------------------------------------------------

I C X1 … Xn, ,( )∧( )
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• Rule 7:

where {I1, I2, ..., In} are formulas that do not contain any temporal operators.

In order to prove that every state in every trace in the set of traces described by

 has the property P, find a set of intermediate conditions (I1, I2, ..., In)

such that each of Ii is invariant when the trace Xi is applied to a state described by Ii-1. Also

prove that every Ii implies P.

When (I1 = I2 = ... = In = Inv), the above rule reduces to

• Rule 8:

where {I1, I2, ..., In} are formulas that do not contain any temporal operators.

In order to prove that every state in every trace in the set of traces described by

 has the property P, find a set of intermediate conditions (I1, I2, ..., In)

I I1⇒( )

I1 X1∧( ) A I1⇒( ) … In Xn∧( ) A In⇒( )∧ ∧

I1 X1∧( ) A I◊ 2⇒( ) … In 1– Xn 1–∧( ) A I◊ n⇒( )∧ ∧

I1 P⇒( ) … In P⇒( )∧ ∧
I D X1 … Xn, ,( )∧( ) A P⇒

----------------------------------------------------------------------------------------------------------------------------------------------

I D X1 … Xn, ,( )∧( )

I Inv⇒( )
Inv X1∧( ) A Inv( )⇒( ) … Inv Xn∧( ) A Inv( )⇒( )∧ ∧

Inv P⇒( )
I D X1 … Xn, ,( )∧( ) A P⇒

--------------------------------------------------------------------------------------------------------------------------------------------------------------

I I1⇒( )

I1 X1∧( ) E I1( )⇒( ) … In Xn∧( ) E In( )⇒( )∧ ∧

I1 X1∧( ) E I◊ 2⇒( ) … In 1– Xn 1–∧( ) E I◊ n⇒( )∧ ∧

I1 P⇒( ) … In P⇒( )∧ ∧
I D X1 … Xn, ,( )∧( ) E P⇒

---------------------------------------------------------------------------------------------------------------------------------------------

I D X1 … Xn, ,( )∧( )
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such that there is a trace in the sequence of traces described by  such that each

state in it satisfies Ii. Also prove that every Ii implies P.

When (I1 = I2 = ... = In = Inv), the above rule reduces to

• Rule 9:

where {I1, I2, ..., In} are formulas that do not contain any temporal operators.

In order to prove that some state in some trace in the set of traces described by

 has the property P, find a set of intermediate conditions (I1, I2, ..., In)

such that there is a trace in the sequence of traces described by  where the final

state satisfies Ii+1. Also prove that any of Ii implies that P is true.

• Rule 10:

where {I1, I2, ..., In} are formulas that do not contain any temporal operators.

In order to prove that some state in every trace in the set of traces described by

 has the property P, find a set of intermediate conditions (I1, I2, ..., In)

Ii 1– Xi∧( )

I Inv⇒( )
Inv X1∧( ) E Inv( )⇒( ) … Inv Xn∧( ) E Inv( )⇒( )∧ ∧

Inv P⇒( )
I D X1 … Xn, ,( )∧( ) E P⇒

------------------------------------------------------------------------------------------------------------------------------------------------------------

I I1⇒( )

I1 X1∧( ) E I2( )◊⇒( ) … In Xn∧( ) E In 1+( )◊⇒( )∧ ∧

I1 P⇒( ) … In 1+ P⇒( )∨ ∨
I D X1 … Xn, ,( )∧( ) E P◊⇒

----------------------------------------------------------------------------------------------------------------------------------------------------

I D X1 … Xn, ,( )∧( )

Ii Xi∧( )

I I1⇒( )

I1 X1∧( ) A I2( )◊⇒( ) … In Xn∧( ) A In 1+( )◊⇒( )∧ ∧

I1 P⇒( ) … In 1+ P⇒( )∨ ∨
I D X1 … Xn, ,( )∧( ) A P◊⇒

-----------------------------------------------------------------------------------------------------------------------------------------------------

I D X1 … Xn, ,( )∧( )



Chapter 5:  Security Policy Verification 98

such that every the final state in trace in the sequence of traces described by

satisfies Ii+1. Also prove that any of Ii implies that P is true.

The rules given above deal with a temporal statement of the form (X P) where X is

a temporal operator and P does not contain any temporal operators. When P contains

temporal operators, the verification process gets more complicated. But fortunately most of

security policy statements are usually in a standard form which is

where X is a temporal operator (including the past operators) and P1, P2 are formulas that

do not contain any temporal operators in a system which is described by

. In order to handle these cases the following rules can be used.

• Rule 11:

where X is a temporal operator from the set .

In order to prove that every trace in a set of traces described by

 is such that if P1 is true in a state of that trace then some temporal

formula  will be true in that state if the system satisfies  starting from the state

that satisfies P1.

• Rule 12 a:

 ⇒ A❑ ( P1 ⇒ ❑ P2 )

Ii Xi∧( )

A P1 XP2⇒( )

I C Op1 … Opn, ,( )∧( )

I C Op1 … Opn, ,( )∧( ) A Inv( )⇒

Inv P1∧( ) C Op1 … Opn, ,( )∧( ) XP2⇒
I C Op1 … Opn, ,( )∧( ) A P1 XP2⇒( )⇒

-------------------------------------------------------------------------------------------------------------------

A A ◊ E E ◊, , ,{ }

I C Op1 … Opn, ,( )∧

XP2 XP2

I C Op1 … Opn, ,( )∧( ) A Inv( )⇒

Inv P1∧( ) P2⇒
Inv Op1 P1′∧ ∧( ) P2⇒( ) … Inv Opn P1′∧ ∧( ) P2⇒∧ ∧

---------------------------------------------------------------------------------------------------------------------------------------------------------
I C Op1 … Opn, ,( )∧( )
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In order to prove that every trace in a set of traces described by

 is such that every state leading to a state that satisfies P1 satisfies P2,

prove that there is an invariant Inv which is satisfied by every state in the system such that

• if Inv satisfies P1 then it satisfies P2, and

• if an operation transforms a state satisfying Inv into a new state satisfying P1

then the original state also satisfies P2.

• Rule 12 b:

⇒ A❑ ( P1 ⇒ ◊ P2 )

In order to prove that every trace in a set of traces described by

 is such that P2 is true in some state before P1 is true in a

subsequent state, prove that in any trace where P2 is not true in any of its states cannot have

P1 to be true in any of its states.

We have specified a set of rules that can be applied inductively to prove that the set

of traces generated by a given trace expression possess certain temporal properties. In the

subsequent sections we will illustrate the use of the framework developed in this section to

prove security properties.

It must be noted that the set of rules is not complete — it means that not all

statements that are true can be proved using the above set of inference rules. This is not a

major drawback since all the security policies that we have dealt with so far can be handled

by the above rules.

5.3 Verification of Access Control Policies

To illustrate the above framework we first use it to prove the conditions developed for the

take-grant model [SNY81] for the safety question i.e., given any initial state, whether an

entity A can get x right to another entity B — usually referred to as can-share(A, B, x). It

I C Op1 … Opn, ,( )∧

I P2¬∧( ) C Op1 P2′¬∧( ) … Opn P2′∧( ), ,( )∧( ) A P1¬( )⇒
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------

I C Op1 … Opn, ,( )∧( )

I C Op1 … Opn, ,( )∧( )
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was proposed [SNY81] that can-share(A, B, x) is true only if connected(AM, A, B, x) is

true where the predicate connected is defined as shown below.

Definition: The predicate connected(AM, A, B, x) is true if there are subjects s1, s2, ..., sn

in AM such that (the path description notation is given in Section 1.1.1.1)

• either (A = s1) or there is an object only path from s1 to A of the form  in

AM.

• there is an object only path from sn to B of the form  in AM.

• each (si, si+1) is such that

• there is either  or  or  or  between them in AM or

• there is an object only path between them in AM of the form  or  or

 or .

The above statement is a reformulation of the conditions given in [SNY81] where

only an informal argument for the proof of the above statement was given. This theorem

can be formally proved in the verification framework that we proposed earlier in this

chapter. The predicate can-share(A, B, x) can be represented as in

temporal logic.

Theorem:  iff connected(AM, A, B, x) is true in the initial state Init

in a system whose set of traces is described by the trace expression

where Init, take-rule, grant-rule and create-rule are the schemas defined in Section 4.3.2

Proof:

→
t* g

→

→
t* x

→

t
→

g
→

t
¬

g
¬

→
t*

¬
t*

→
t* g

→ ¬
t*

→
t* g

¬ ¬
t*

E x AM X Y,( )∈( )◊

E x AM X Y,( )∈( )◊

Init C take rule– grant rule– create rule–, ,( )∧
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If Part:

It is easy to see that there is a sequence of operations starting from the initial state

Init which depend on the subjects s1, s2,..., sn in the definition of the predicate

connected(A, B, x) which makes the statement (x ∈ AM(A, B)) true in a derived state.

Only If Part: Prove that

By distributing the negation over the existential path quantifier and the eventuality

temporal operator we get

The above statement can be proved by applying the rule 3 given in previous section

which is

Here I is the initial state which is  and the invariant

Inv is selected to be predicate .

Case 1: Prove that .

This is trivially true since I and Init are same.

Case 2: Prove that

By applying rule 1 this reduces to

c¬ onnected AM A B x, , ,( ) C take rule– grant rule– create rule–, ,( )∧
⇒

E x AM A B,( )∈( )◊( )¬

c¬ onnected AM A B x, , ,( ) C take rule– grant rule– create rule–, ,( )∧
⇒

A x AM A B,( )∈( )¬( )

I Inv⇒( )
Inv X1∧( ) A Inv( )⇒( ) … Inv Xn∧( ) A Inv( )⇒( )∧ ∧

Inv P⇒( )
I C X1 … Xn, ,( )∧( ) A P⇒

--------------------------------------------------------------------------------------------------------------------------------------------------------------

connected AM A B x, , ,( )( )¬

connected AM A B x, , ,( )( )¬

I Inv⇒( )

Inv take rule–∧ A Inv( )⇒( )

Inv take rule–∧ Inv′⇒( )
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Expanding Inv and take-rule from its schema, we get

(5.1)

(5.2)

(5.3)

(5.4)

Now prove that Inv’ is true i.e.,

Substituting the value of AM’ from equation 5.4 we get

Here it should be noted that the entities Invoker# and To? are already connected by

appropriate path which is clear from the equations 5.2 and 5.3. Hence the above equation

can be reduced to

This is true from the equation 5.1.

Hence case 2 is proved.

Case 3: Prove that

Similar to the proof in case 2.

Case 4: Prove that

Similar to the proof in case 2.

Case 5: Prove that

connected AM A B x, , ,( )( )¬

′t′ AM Invoker# From?,( )( )∈

r? AM From? To?,( )( )∈

AM′ AM
Invoker# To?,( ) →

AM Invoker# To?,( )( ) r?{ }∪ 
 ⊕=

connected AM′ A B x, , ,( )( )¬

connected AM
Invoker# To?,( ) →

AM Invoker# To?,( )( ) r?{ }∪ 
 ⊕ A B x, , , 

 
 
 ¬

connected AM A B x, , ,( )( )¬

Inv grant rule–∧ A Inv( )⇒( )

Inv create rule–∧ A Inv( )⇒( )

connected AM A B x, , ,( )( )¬ x AM A B,( )∈( )¬⇒
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From the definition of connected predicate it can be seen that if

then the sequence of subjects can be selected to be the empty sequence to satisfy all the

required conditions. Hence  from

which we can deduce the above statement.

Therefore we can conclude that .

Hence it can be concluded that the statement of the theorem is true.

■

This proof shows that the rules of inference given in Section 5.2 can be used to

prove that the system specification correctly enforces the access control policies.

5.4 Verification of Information Flow Policies

In this section we develop a formal specification of the protection features of an

information system and show that it satisfies MLS policy which is an information flow

policy. The system that we consider is similar to the take-grant model [SNY81] with a few

changes so that the MLS policy can be enforced.

5.4.1 The Security Policy Specification

The MLS policy to be enforced by the system is (C, Op, P, A) where

• The set of information classes C is {l1, l2,..., ln}.

• The set Op is {=, ≤} where

• ≤ which imposes a partial order on these information classes and

• = has the usual meaning.

• The set P is (X → Y) for every information class X and Y.

• The policy statement is

x AM A B,( )∈( )

x AM A B,( )∈( ) connected AM A B x, , ,( )( )⇒

A x AM A B,( )∈( )¬( )( )

A X Y,∀ X Y→( ) X Y≤( )⇒( )×( )
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5.4.2 Specification of the Information system

The system is specified as (S, π) where:

• S is the system description which among other things consists of

• a state variable Entities that denotes the set of entities in the system,

• a state variable η that gives the class assigned to each entity.

• a state variable AM which gives the rights that each entity has to other entities.

In a manner similar to the traditional take-grant model, the entities and their

rights are represented as nodes and (labeled) arcs of a graph

Figure 5.1 : The state of the system in mtg-model

where t (take), g (grant), r (read), w (write) denote the function of this right and

(s, r) is a label that denotes how this right can be used — s is an information

class, v is a set of information classes. The label (s, v) is used to control the

application of the state changing commands as shown later.

• the state changing commands — mtake-rule, mgrant-rule and mcreate rule;

these commands are defined in the following sections. In addition there are the

obvious read and write-rules; if entity a has an arc to entity b labeled with an r,

it can read the contents of b and if entity a has an arc to entity b labeled with a

w, it can write into b.

• π gives the truth value of the relations (l1 → l2) where l1, l2 ∈ C; (l1 → l2) is true

in a state if there exist two entities a and b where (η(a) = l1) and (η(b) = l2) and

there is a read/take right from b to a or a write/grant right from a to b. It should be

noted that this definition of information flow may be different depending on the

situation and the system specifier has the prerogative to choose an interpretation

a b
(s, v)

t, g, r, w
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appropriate to the application at hand. Formally the information flow relation can

be stated as:

5.4.2.1 The State Description

The state of the system can be described in Z as follows:

The declaration part of the above schema introduces a set of state variables whose purpose

is as described below.

• Entities is a set of names in the system.

• Subjects are the active entities that can change the state of the system through the

transition rules.

• Objects are the passive entities in the system.

• Class is the set of information classes.

• η is a function that assigns an information class to each entity.

a b r, ,( ) AM y x,( )∈( ) a b t, ,( ) AM y x,( )∈( )∨ ∨
a b w, ,( ) AM x y,( )∈( ) a b g, ,( ) AM x y,( )∈( )∨ 

  x y→( )⇒

mtg �model

Entities : PNAME

Subjects : PNAME

Objects : PNAME

Class : PNAME

� : NAME 7! NAME

AM : NAME �NAME 7! P(NAME �PNAME �RIGHT )

Subjects [Objects = Entities

Subjects \Objects = �

Class \ Entities = �

dom � = Entities

ran � = Class

8 x ; y � (((x ; y) 2 domAM )

) ((x 2 Entities)^ (y 2 Entities)))

8 x ; y; z � (((x ; y; z ) 2 ranAM )

) ((x 2 Class)^ (y 2 PClass)))

1
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• AM is the data structure that records the protection state of the system.

The body of the schema specifies the restrictions on state variables. The explanation

for each statement is given below.

• The set Entities is made up of the set of Subjects and Objects.

• A name cannot be a Subject and an Object at the same time.

• A name cannot be both an information class and an Entity.

• The class assignment function assigns an information class to only Entities.

• The class assignment function assigns only class names to an Entity.

• The rows and columns of access matrix are indexed by Entities.

• The contents of the access matrix is a three tuple where first is a class name, the

second is a set of information classes and the third is a right.

5.4.2.2 The Transition Rules

The Take-Rule:

mtake � rule

�mtg �model

Invoker#;From?;To? : NAME

r? : (NAME �PNAME �RIGHT )

Invoker# 2 Subjects

From? 2 Entities

To? 2 Entities

9 s1; v1; s2; v2; s; v ; x �

(((s1; v1;0 t 0) 2 AM (Invoker#;From?)) ^

(r? = (s; v ; x )) ^

((s2; v2; x ) 2 AM (From?;To?)) ^

(s1 2 v2) ^

(s = max (s1; s2)) ^
(v � v2))

(AM 0= AM �

((Invoker#;To?) 7! (AM (Invoker#;To?) [ fr?)g)))

1
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This schema states the conditions for an entity to copy a right from another entity.

It states that only a Subject can copy a right, the right to be copied should already exist at

the entity from which it is being copied. The changes to the state of the system can be

pictorially represented as shown below (dashed part shows the effect of transition):

Figure 5.2 : The mtake-rule of mtg-model

Here (s1 ∈ v2) and (s3, v3) is such that

where

The Grant-Rule:

(s1, v1) (s2, v2)
ba c

xt
(s3, v3)

x

s3 max s1 s2,( )= and v3 v2⊆

max s1 s2,( )
s1 if s2 s1≤
s2 if s1 s2< 

 =

mgrant � rule

�mtg �model

Invoker#;To?;For? : NAME

r? : (NAME �PNAME �RIGHT )

Invoker# 2 Subjects

For? 2 Entities

To? 2 Entities

9 s1; v1; s2; v2; s; v ; x �

(((s1; v1;0 g 0) 2 AM (Invoker#;To?)) ^

(r? = (s; v ; x )) ^

((s2; v2; x ) 2 AM (Invoker#;For?)) ^

(s1 2 v2) ^

(s = max (s1; s2)) ^
(v � v2))

(AM 0= AM �

((To?;For?) 7! (AM (To?;For?) [ fr?g))))

1
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This schema states the conditions for an entity to copy a right that it has to another

entity. It states that only a Subject can give away a right that it already has. The changes to

the state of the system can be pictorially represented as shown below,

Figure 5.3 : The mgrant-rule of mtg-model

Here (s1 ∈ v2) and (s3, v3) is such that

where max is as defined before.

The Create Rule:

(s1, v1) (s2, v2)
ab c

xg
(s3, v3)

x

s3 max s1 s2,( )= and v3 v2⊆

mcreate � rule

�mtg �model

Invoker#;New? : NAME

r? : P(NAME �PNAME � RIGHT )

Invoker# 2 Subjects

New? 62 Entities

Subjects 0 = Subjects [ fNew?g

_ Objects 0 = Objects [ fNew?g
Entities 0 = Entities [ fNew?g
�0 = � � (New? 7! �(Invoker#))
8 x ; y � (((x ; y; t) 2 r?)

) ((x = �(Invoker#)) ^
(8 z � ((z 2 y)) (x � z ))))

8 x ; y � (((x ; y; g) 2 r?)

) ((x = �(Invoker#)) ^
(8 z � ((z 2 y)) (z � x ))))

8 x ; y � (((x ; y; r) 2 r?)

) ((x = �(Invoker#))^ (y = �)))
8 x ; y � (((x ; y;w) 2 r?)

) ((x = �(Invoker#))^ (y = �)))
AM 0 = AM � ((Invoker#;New?) 7! r?)

1
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This schema states that a Subject can create an Entity that belongs to same

information class and get any right to it. Pictorially this can be represented as shown below:

Figure 5.4 : The mcreate-rule of mtg-model

Here

5.4.2.3 The Initial State

Let the initial state, Init be as described below.

This gives the set of conditions that characterize the set of initial states. It states that a take

or a read arc can exist from an entity to an entity at the same or lower class and a grant or

a write can exist from an entity to an entity at the same or higher level.

a bx
(s, v)

s η a( )= and v
l C∈ s l≤( ){ } if x t=
l C∈ l s≤( ){ } if x g=

= 
 

Init

�mtg �model

8 x ; y; a; b � (((a; b;0 t 0) 2 AM (x ; y))

) ((a = �(x ))^ (�(x ) � �(y)) ^
(8 z � ((z 2 b)) (�(y) � z )))))

8 x ; y; a; b � (((a; b;0 r 0) 2 AM (x ; y))

) ((a = �(x )^ (�(x ) � �(y)) ^
(8 z � ((z 2 b)) (�(y) � z )))))

8 x ; y; a; b � (((a; b;0 g 0) 2 AM (x ; y))

) ((a = �(y)^ (�(x ) � �(y)) ^
(8 z � ((z 2 b)) (z � �(y))))))

8 x ; y; a; b � (((a; b;0 w 0) 2 AM (x ; y))

) ((a = �(y))^ (�(x ) � �(y)) ^
(8 z � ((z 2 b)) (z � �(y))))))

1
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take or read arc:

Figure 5.5 : The take or read arc of mtg-model to enforce MLS

Here

Also, .

grant or write arc:

Figure 5.6 : The grant or write arc of mtg-model to enforce MLS

Here,

Also, .

5.4.3 The Verification

In the previous section we developed a formal specification of the system that enforces the

MLS policy. In order to increase our confidence in the above specification, we need to

formally prove that it correctly enforces the policy. In this section we develop such a proof.

Theorem: The system described as (mtg-model, Init, {mtake-rule, mtake-rule, mgrant-rule,

mcreate-rule}) enforces the Multi-Level security policy i.e.,

Proof:

a b(t, r)
(s, v)

s η a( )= and v l C∈ η b( ) l≤( ){ }=( )

η a( ) η b( )≥

a
g, w

b
(s, v)

s η b( )= and v l C∈ l η b( )≤( ){ }=( )

η b( ) η a( )≥

Init C mtake rule– mgrant rule– mcreate rule–, ,( )∧( )
⇒

A l1∀ l2, l1 l2→( ) l1 l2≤( )⇒( )•( )
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In order to prove the theorem, rule 3 of Section 5.2 can be used which is

Here select the condition Inv to be the statement shown below:

Case 1: Prove that

It is easy to see that the conditions in the body of the Init schema imply the conditions in Inv

Case 2: Prove that

By rule 1 this reduces to

Expanding mtake-rule gives the following expressions:

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

Init Inv⇒( )
Inv X1∧( ) A Inv( )⇒( ) … Inv Xn∧( ) A Inv( )⇒( )∧ ∧

Inv P⇒( )
Init C X1 … Xn, ,( )∧( ) A P⇒

--------------------------------------------------------------------------------------------------------------------------------------------------------------

x y a b, , ,

a b t, ,( ) AM x y,( )∈( ) η x( ) η y( )≥( ) a η x( )=( )∧( )⇒( ) ∧
a b r, ,( ) AM x y,( )∈( ) η x( ) η y( )≥( ) a η x( )=( )∧( )⇒( ) ∧
a b g, ,( ) AM x y,( )∈( ) η x( ) η y( )≤( ) a η y( )=( )∧( )⇒( ) ∧

a b w, ,( ) AM x y,( )∈( ) η x( ) η y( )≤( ) a η y( )=( )∧( )⇒( ) 
 ÷
 ÷
 ÷
 ÷
 

•∀

Init Inv⇒( )

Inv mtake rule–∧( ) A Inv( )⇒( )

Inv mtake rule–∧( ) Inv′⇒( )

s1 v1 ′t′, ,( ) AM Invoker# From?,( )∈( )

r? s v x, ,( )=( )

s1 v2∈( )

s2 v2 x, ,( ) AM From? To?,( )∈( )

s max s1 s2,( )=( )

v v2⊆( )

AM′ AM
Invoker# To?,( ) →

AM Invoker# To?,( ) r?{ }∪( ) 
 ⊕=
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Now consider Inv’ that is as shown below

We can prove each of the conjuncts individually.

case 21: Prove that

Replacing the value of AM’ from equation 5.7 transforms the above equation into:

From the definition of function override operator the above expression can be

transformed into:

The above expression can again be split into two parts.

case 211:

This is true since the invariant Inv implies it.

x y a b, , ,

a b ′t′, ,( ) AM′ x y,( )∈( ) η y( ) η x( )≤( ) a η x( )=( )∧( )⇒( ) ∧
a b ′r′, ,( ) AM′ x y,( )∈( ) η y( ) η x( )≤( ) a η x( )=( )∧( )⇒( ) ∧
a b ′g′, ,( ) AM′ x y,( )∈( ) η x( ) η y( )≤( ) a η y( )=( )∧( )⇒( ) ∧

a b ′w′, ,( ) AM′ x y,( )∈( ) η x( ) η y( )≤( ) a η y( )=( )∧( )⇒( ) 
 ÷
 ÷
 ÷
 ÷
 

•∀

x y a b, , , a b ′t′, ,( ) AM′ x y,( )∈( ) η y( ) η x( )≤( ) a η x( )=( )∧( )⇒( )( )•∀

x y a b, , ,
a b ′t′, ,( ) AM

Invoker# To?,( ) →
AM Invoker# To?,( ) r?{ }∪( ) 

 ⊕ 
  x y,( )∈ 

 

⇒
η y( ) η x( )≤( ) a η x( )=( )∧( ) 

 ÷
 ÷
 ÷
 ÷
 

•∀

x y a b, , ,

a b ′t′, ,( ) AM x y,( )∈( ) x Invoker#≠( ) y To?≠( )∨( )∧( ) ∨

a b ′t′, ,( )
Invoker# To?,( ) →

AM Invoker# To?,( ) r?{ }∪( ) 
  x y,( )∈ 

 
 
 ÷
 ÷
 

⇒
η y( ) η x( )≤( ) a η x( )=( )∧( ) 

 ÷
 ÷
 ÷
 ÷
 ÷
 

•∀

x y a b, , ,
a b ′t′, ,( ) AM x y,( )∈( ) x Invoker#≠( ) y To?≠( )∨( )∧( )

⇒
η y( ) η x( )≤( ) a η x( )=( )∧( ) 

 ÷
 ÷
 

•∀
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case 212:

From the definition of mapping construction the above expression can be

transformed into:

Again by algebraic simplification, the above statement can be transformed into:

Again this can be split into two parts.

case 2121: Prove that

This follows from Inv.

case 2122: Prove that

skolemizing the above expression with (a = s), (b = v) results in:

x y a b, , ,
a b ′t′, ,( )

Invoker# To?,( ) →
AM Invoker# To?,( ) r?{ }∪( ) 

  x y,( )∈

⇒
η y( ) η x( )≤( ) a η x( )=( )∧( ) 

 ÷
 ÷
 ÷
 ÷
 

•∀

a b,
a b ′t′, ,( ) AM Invoker# To?,( ) r?{ }∪( )( )∈

⇒
η To?( ) η Invoker#( )≤( ) a η Invoker#( )=( )∧( ) 

 ÷
 ÷
 

•∀

a b,
a b ′t′, ,( ) AM Invoker# To?,( )∈( ) a b t, ,( ) r?=( )∨

⇒
η To?( ) η Invoker#( )≤( ) a η Invoker#( )=( )∧( ) 

 ÷
 ÷
 

•∀

a b,
a b ′t′, ,( ) AM Invoker# To?,( )∈( )

⇒
η To?( ) η Invoker#( )≤( ) a η Invoker#( )=( )∧( ) 

 ÷
 ÷
 

•∀

a b, a b ′t′, ,( ) r?=( )
η To?( ) η Invoker#( )≤( ) ∧

a η Invoker#( )=( ) 
 ⇒ 

 •∀

s v ′t′, ,( ) r?=( ) η To?( ) η Invoker#( )≤( ) s η Invoker#( )=( )∧( )⇒
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From equation 5.4, with (x = t), we get:

Now from 5.4 and Inv we can conclude that  and

from 5.7 and Inv we can conclude that  which in turn from the

transitivity of ≤ means that .

Also from 5.1 and Inv,  and also from 5.4 and Inv,

 which means that  and is equal to

which completes proof of case 122.

This completes the proof of the first conjunct of Inv’.

All the other conjuncts from Inv’ can be proved similarly.

Case 3: Prove that

The proof is similar to the proof in case 2.

Case 4: Prove that

Again the proof is similar to the proof in case 2.

Case 5: Prove that

This follows directly from the definition of the interpretation function π and the

definition of the information flow relation.

Hence we can conclude that .

■

η To?( ) η Invoker#( )≤( ) s η Invoker#( )=( )∧( )

η From?( ) η Invoker#( )≤( )

η To?( ) η From?( )≤( )

η To?( ) η Invoker#( )≤( )

s1 η Invoker#( )=( )

s2 η From?( )=( ) s max s1 s2,( )=( ) η Invoker#( )

Inv mgrant rule–∧( ) A Inv( )⇒( )

Inv mcreate rule–∧( ) A Inv( )⇒( )

Inv l1∀ l2, l1 l2→( ) l1 l2≤( )⇒( )•( )⇒( )

A l1∀ l2, l1 l2→( ) l1 l2≤( )⇒( )•( )( )
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In this section we showed that a formal description of an information system

enforces the MLS policy. It should be noted that the proof process is fairly mechanical in

nature.

5.5 Label Based Enforcement of Information Flow Policies

In previous sections we developed a framework for proving that a specification enforces a

security policy. But this proof process does not give a constructive way of developing the

specifications that enforce a given policy. In this section we show how information flow

policies can be enforced by explicitly labeling the entities in the system and controlling the

validity of operations that cause information flows based on these labels, among other

things. We use the taxonomy of the information flow policies that was first investigated in

[FOL89b] to develop these labeling mechanisms.

Information flow security policies are specified as restrictions on the information

flows that can occur between different information classes. These policies can be enforced

by a lattice model of information flow which is defined below.

Definition: A Lattice model of information flow [DEN76]

• consists of a set of labels with an ordering relation that forms a lattice (hence the

name) and

• information is allowed to flow from an entity labeled A to an entity labeled B if the

label A is less than label B in the ordering relation of the lattice.

All the entities in a system are assigned labels from the lattice such that if

information is allowed to flow from entity a to entity b, then the label on the entity a is less

than the label on entity b in the lattice ordering relation.

In some cases, like MLS policy, the information classes themselves form a lattice

structure and therefore can be directly used to label the entities. But in many cases, such a
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lattice structure has to be derived from the statements of the security policy. For example,

consider a security policy defined as follows:

• The information classes are {A, B, C}.

• The policy statements are {A❑(¬ (C → A)) and A❑(¬ (C → B)) and

A❑(¬ (A → B)) and A❑(¬ (B → A)). That is, information cannot flow from C to

A, from C to B, from A to B and from B to A.

The above policy can be enforced by the lattice shown in the following figure where

the ordering relation for the lattice is the subset relation.

Figure 5.7 : Lattice to enforce an Information flow Policy

In a lattice model, the number of labels is finite and is decided at the system design

time. But the assignment of labels to the entities can be [DEN83]

• static — which means that the labels associated with the entities do not change as a

result of state changes in the system, or

• dynamic — which means that the labels can change as a result of state changes in

the system.

It should be noted that the static labeling policies are more restrictive — they may

have to reduce the functionality of the system in some cases to enforce the security policy

whereas dynamic labeling mechanisms provide more flexibility for enforcing the policy.

2(B)

{1, 2} (C)

1(A)
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5.5.1 Static Labeling Mechanism

In static labeling mechanism, the entities in the system are labeled by the information

classes and the state changing operations use these labels for affecting changes to the states.

An important thing to be noticed is that, in these models, the state changing operations do

not modify the labels associated with the entities (hence the name). Since the state changing

operations do not involve any modifications to the labels of entities, they are more efficient

than the corresponding operations in a dynamic labeling mechanism.

A drawback of the static labeling mechanism is that the enforcement of the security

policy might restrict the functionality of the system more than actually required. For

example, consider the Chinese Wall policy that has a conflict of interest set {Bank1,

Bank2} and another set {Consultant}. The information flow restrictions of this policy state

that information can flow from Bank1 to the Consultant or from Bank2 to the Consultant

but not both. A system that enforces this policy using a static labeling mechanism will have

to make the choice a priori of the set of allowed information flows. This choice is made by

associating same label to one of the banks and the consultant (to facilitate information flow

between them) and a different unrelated label to the other bank (to preclude the information

flow). Although such a labeling does enforce the security policy, it unnecessarily restricts

the functionality of the system.

5.5.2 Dynamic Labeling Mechanisms

In dynamic labeling mechanisms, the security labels associated with the entities in the

system can change as a result of state changing operations that take place in it. These

mechanisms can enforce some security policies with more functionality than the static

labeling mechanisms. In the following sections different types of information flow policies

are identified and a dynamic labeling mechanism for their enforcement is presented.
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5.5.2.1 Separation Policy

A security policy whose information flow requirements are of the form

where A and B are information classes is called a separation policy.

The fact that information flow is transitive makes these kind of policies difficult to

enforce. For example, consider a policy defined as follows:

• The information classes are {A, B, C}.

• The policy statement is A❑(¬ (A → C)). This states that information cannot flow

from A to C.

A system that enforces the above policy, should ideally allow all the information

flows which are not precluded by the policy. It means that the flows (A → B) and (B → C)

should be allowed to occur from the initial state — but since information flow is transitive,

the flow (B → C) should be disallowed once the flow (A → B) occurs.

A general method for enforcing such information flow policies by dynamic labeling

can be defined as follows:

• Construct an access matrix AM: Class → P Class with the property

• Every entity is assigned a label, referred to as Hwm (High-Water mark), of type

(P Class) and it is initialized to be {A}, where A is the information class associated

with the entity.

• Information is allowed to flow from an entity a of class A to another entity b of

class B, if

• If the information is allowed to flow from entity a to entity b then Hwm of b is

A A B→( )¬( )

A B,∀ A B→( )¬ A AM B( )∈( )⇒( )•

Hwm a( ) AM B( )∩( ) ∅=
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updated with the Hwm of a i.e.,

Example 5.1: Consider a messaging system consisting of a set of Entities that can

communicate with each other by sending messages. The state description of such a system

is shown below:

Here Entities, Class and η have the usual meaning. The Hwm at any instant records

the informations flows that have occurred in the past and AM records the information about

the security policy. MsgArea contains the message received by an entity at any instant.

The single operation in this system is Msg-Send where an entity can send a message

to another entity. This operation can be described in Z as follows:

Hwm b( ) Hwm a( ) Hwm b( )∪( )=

Msg �Model

Entities : PNAME

Class : PNAME

Hwm : NAME 7! PNAME

� : NAME 7! NAME

MsgArea : NAME 7! (NAME � seqCHAR)
AM : NAME 7! PNAME

Entities \ Class = �

Entities \ Hwm = �

Hwm \ Class = �

dom � = Entities

domAM = Entities

domHwm = Entities

domMsgArea = Entities

ran � = Class

ranAM = PClass
ranHwm = PClass
8 x ; y � (((x ; y) 2 ranMsgArea)) (x 2 Entities))

1
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The above specification, allows all the accesses allowed by the security policy —

but it is expensive since every operation that causes an information flow involves updating

the Hwm label and a comparison to decide the validity of the operation. Moreover, the cost

of maintaining the Hwm labels of the entities is quite high — exponential in the total

number of classes in the system.

Under certain conditions, the separation policies can be enforced by a simple static

labeling mechanism. Given the set of policy statements where every statement is of the

form  build a flow graph FG = (V, X) where

• V is the set of vertices where each vertex represents an information class, and

• X is the set of arcs and a directed arc from a node representing class A to a node

representing class B if there is no policy statement of the form

.

If this flow graph is transitive then the security policy can be simply enforced by

labeling the entities and using these labels to validate the operations that cause information

flows. It should be noted that the updating of Hwm’s as a result of information flow

operations is not required. The reason for this is that if information can flow from A to B,

Msg � Send

�Msg �Model

Invoker#;To? : NAME

Msg? : seqCHAR

Invoker# 2 Entities

To? 2 Entities

Hwm(Invoker#) \ AM (To?) = �

Hwm 0= Hwm �

(To? 7! (Hwm(Invoker#) [ Hwm(To?))
MsgArea 0 = MsgArea � (To? 7! (Invoker#;Msg?))

1

A A B→( )¬( )( )

A A B→( )¬( )( )
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then the transitive nature of the graph implies that if information cannot flow from A to X

then information will not be able to flow from B to X. This makes updating the HWM of B

with the HWM of A unnecessary.

A flow graph of a security policy, which is not transitive, can be made transitive by

deleting some arcs from it. It should be noted that this deletion of arcs from the flow-graph

does not violate the security policy in any way, but it reduces the functionality of the

system. Therefore, to maintain the functionality as high as possible, the number of arcs

deleted from the flow-graph to make it transitive should be the minimum. It means that we

need to find a graph G’ = (V, X’) where X’ ⊆ X such that G’ is transitive. This problem has

been shown to be NP-Complete [GJ79]. But since the total number of information classes

is fairly small this is not a great concern in the system design.

5.5.2.2 Intransitive Policies

An information flow policy whose policy statements are of the form

where A, B and C are the information classes is called an intransitive policy. In these

policies, if information flows from A to B then from that instant information flow from B

to C cannot occur. These policies are special forms of separation policies specified in the

previous section. These are called Intransitive policies since they specifically disallow

indirect flow of information through transitive nature of information flow. A dynamic

labeling model similar to the one in the previous section can be used to enforce these

policies.

• Construct an access matrix AM: Class → P (Class × Class) with the property that

for any class B, ((A, C) ∈ AM(B)) means that there is a policy axiom of the form

• Every entity is assigned a label, referred to as Hwm (High-water mark), of type

(P Class) and it is initialized to be {A}, where A is the information class associated

A A B→( ) A B C→( )( )¬⇒( )

A A B→( ) A B C→( )( )¬⇒( )
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with the entity.

• Information is allowed to flow from an entity a of class A to another entity b of

class B, if

• If the information is allowed to flow from entity a to entity b then Hwm of b is

updated with the Hwm of a i.e.,

Example 5.2: The state description of the messaging system described in the earlier

example that enforces a given Intransitive information flow policy is as shown below:

The explanation about the state variables are same as defined in example 5.1. Note

that the definition of the variables AM and Hwm is different since the security policy that

needs to be enforced is different.

X∃ X Hwm a( )∈( ) X B,( ) AM A( )∈( )⇒( )•( )¬

Hwm b( ) Hwm a( ) Hwm b( )∪( )=

Msg �Model

Entities : PNAME

Class : PNAME

Hwm : NAME 7! PNAME

� : NAME 7! NAME

MsgArea : NAME 7! (NAME � seqCHAR)
AM : NAME 7! P(NAME �NAME )

Entities \ Class = �

Entities \ Hwm = �

Hwm \ Class = �

dom � = Entities

domAM = Entities

domHwm = Entities

domMsgArea = Entities

ran � = Class

ranHwm = PClass
8 x ; y � (((x ; y) 2 ranMsgArea)) (x 2 Entities))
8 x ; y � (((x ; y) 2 ranAM )

) ((x 2 Class)^ (y 2 Class))

1
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The message send operation is as follows:

The above specification checks the validity of operation by examining whether the

information flow that can occur violates the security policy as recorded in the state variable

AM. If the information flow is valid then it updates the Hwm variable of the appropriate

entity to reflect that the information flow has occurred.

5.5.3 Aggregation Policies

An information flow policy whose policy statements are of the form

is called an aggregation policy since the policy statements disallow aggregation of different

classes of information at certain classes. The above policy statement means that

information from A and B cannot aggregate at C. For example, the Chinese wall policy is

an aggregation policy. These kinds of policies can be enforced using a dynamic labeling

model as shown below.

• Construct an access matrix AM: Class → P (Class × Class) with the property for

any class C, ((A, B) ∈ AM(C)) means that there is a policy axiom of the form

• Every entity is assigned a label, referred to as Hwm (High-water mark), of type

(P Class) and it is initialized to be {A}, where A is the information class associated

Msg � Send

�Msg �Model

Invoker#;To? : NAME

Msg? : seqCHAR

Invoker# 2 Entities

To? 2 Entities

8 x� (x 2 Hwm(Invoker#))
) (x ;To?) 62 AM (Invoker#)

Hwm 0= Hwm �

(To? 7! (Hwm(Invoker#) [ Hwm(To?))
MsgArea 0 = MsgArea � (To? 7! (Invoker#;Msg?))

1

A A C→( ) A B C→( )( )¬⇒( )

A A C→( ) A B C→( )( )¬⇒( )
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with the entity.

• Information is allowed to flow from an entity a of class A to another entity b of

class B, if

• If the information is allowed to flow from entity a to entity b then Hwm of b is

updated with the Hwm of a i.e.,

Example 5.3: The state description of the messaging system described in the earlier

example that enforces a given aggregation policy is as shown below.

The explanation about the state variables are same as defined in example 5.1. Note

that the definition of the variables AM and Hwm is different since the security policy that

needs to be enforced is different.

X Y, X Hwm a( )∈( ) Y Hwm b( )∈( ) X Y,( ) AM B( )∈( )∧ ∧( )×∃( )¬

Hwm b( ) Hwm a( ) Hwm b( )∪( )=

Msg �Model

Entities : PNAME

Class : PNAME

Hwm : NAME 7! PNAME

� : NAME 7! NAME

MsgArea : NAME 7! (NAME � seqCHAR)
AM : NAME 7! P(NAME �NAME )

Entities \ Class = �

Entities \ Hwm = �

Hwm \ Class = �

dom � = Entities

domAM = Entities

domHwm = Entities

domMsgArea = Entities

ran � = Class

ranHwm = PClass
8 x ; y � (((x ; y) 2 ranMsgArea)) (x 2 Entities))

8 x ; y � (((x ; y) 2 ranAM )) ((x 2 Class)^ (y 2 Class))

1
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The message send operation is as follows:

The above specification checks the validity of operation by examining whether the

information flow that occurs violates the security policy as recorded in the state variable

AM. If the information flow is valid then it updates the Hwm variable of the appropriate

entity to reflect that this flow has occurred.

5.5.4 Dissemination Policies

An information flow policy whose policy statements are of the form

is called a dissemination policy. These policies are duals of aggregation policies and are

used to restrict the dissemination of information and hence the name. These policies can be

enforced using a dynamic labeling method as shown below.

• Construct an access matrix AM: Class → P (Class × Class) with the property for

any class A, ((B, C) ∈ AM(A)) means that there is a policy axiom of the form

• There are two labels associated with each entity called ClsDst: Entity → P Class

and EntDst: Entity → P Entity. The label ClsDst keeps track of the classes to

which the information from an entity is distributed to and the label EntDst keeps

track of the entities whose information is present at the current entity. An entity a

Msg � Send

�Msg �Model

Invoker#;To? : NAME

Msg? : seqCHAR

Invoker# 2 Entities

To? 2 Entities

Hwm(Invoker#) \ AM (To?) = �

Hwm 0= Hwm �

(To? 7! (Hwm(Invoker#) [ Hwm(To?))
MsgArea 0 = MsgArea � (To? 7! (Invoker#;Msg?))

1

A A B→( ) A A C→( )( )¬⇒( )

A A B→( ) A A C→( )( )¬⇒( )
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of class A is initialized such that EntDst(a) = {a} and ClsDst(a) = {A}.

• Information is allowed to flow from an entity a of class A to another entity b of

class B, if

• If the information is allowed to flow between entity a of class A and entity b of

class B then the following changes are made to the labels.

Example 5.4: The state description of the messaging system described in the earlier

example that enforces a given dissemination policy is as shown below.

The explanation about the state variables are same as defined in example 5.1. Note

that the definition of the variables AM and Hwm is different since the security policy that

needs to be enforced is different.

X Y,∃ X EntDst a( )∈( ) Y ClsDst X( )∈( )∧( )• Y B,( ) AM A( )∈( )∧( )¬

EntDst b( ) EntDst b( ) EntDst a( )∪=
x x EntDst b( )∈( ) ClsDst x( ) ClsDst x( ) B{ }∪( )=( )⇒( )•∀

Msg �Model

Entities : PNAME

Class : PNAME

ClsDst : NAME 7! PNAME

EntDst : PNAME

� : NAME 7! NAME

MsgArea : NAME 7! (NAME � seqCHAR)
AM : NAME 7! P(NAME �NAME )

Entities \ Class = �

domClsDst = Entities

domEntDst = Entities

ranClsDst = PClass
ranEntDst = PEntities
dom � = Entities

domAM = Entities

domMsgArea = Entities

ran � = Class

8 x ; y � (((x ; y) 2 ranMsgArea)) (x 2 Entities))
8 x ; y � (((x ; y) 2 ranAM )) ((x 2 Class) ^ (y 2 Class))

1



Chapter 5:  Security Policy Verification 127

The message send operation is as follows.

The above specification checks the validity of the message send operation by

examining whether the information flow that occurs violates the security policy as recorded

in the state variable AM. If this information flow is valid then it updates the Hwm variable

of the appropriate entity to reflect that this flow has occurred.

5.6 Conclusions

In this chapter a framework for verifying the access control policies and information flow

policies of systems described using the specification language Z has been developed. This

framework has been demonstrated for access control policies by verifying the access

control restrictions for can-share predicate of take-grant model. This framework was also

used for verifying the MLS policy, which is an information flow policy, in a system similar

to the take-grant model. We also identified some common kinds of information flow

statements that can be constructed using temporal logic and gave a generic labeling

mechanism for enforcing the policies that contain these statements.

Msg � Send

�Msg �Model

Invoker#;To? : NAME

Msg? : seqCHAR

Invoker# 2 Entities

To? 2 Entities

: (9 x ; y� ((x 2 EntDst(Invoker#) ^ (y 2 ClsDst(x )))
) ((y; �(To?)) 2 AM (�(Invoker#)))))

EntDst 0 = EntDst �

((�(To?)) 7! (EntDst(�(Invoker#)) [ EntDst(�(To?))))
8 x � ((x 2 EntDst(Invoker#))

) (ClassDst 0(x ) = (ClassDst(x ) [ f�(To?)g)))
8 x � ((x 2 EntDst(To?))

) (ClassDst 0(x ) = (ClassDst(x ) [ f�(To?)g)))
8 x � (((x 62 EntDst(Invoker#)) ^ (x 62 EntDst(To?)))

) (ClassDst 0(x ) = ClassDst(x )))
MsgArea 0 = MsgArea � (To? 7! (Invoker#;Msg?))

1
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Chapter 6

Functionality vs. Enforcement of
Security Policy

Security policies are usually safety requirements; they specify that something bad doesn’t

happen. Therefore, by default, a system that does nothing satisfies such a policy. This is not

a major problem since it is easy to detect that a system does not do anything useful, but a

more subtle problem is to detect that the functionality of the system is reduced more than

what is required for enforcing a policy. In this chapter we characterize the problem of

maximizing the functionality of a system that enforces a security policy, and develop a

framework for verifying that a given specification is no more restrictive than necessary.

6.1 Introduction

One of the major problems in the design and implementation of complex systems is

communicating requirements between the user and implementor. The use of formal

specification languages mitigate this problem to some extent, but due to the size and

complexity of formal specifications there is always a possibility that some details might be

overlooked. One way of addressing this problem is to develop the specification in stages,

Remember that the most beautiful things in the world are the most useless;
peacocks and lilies for instance

- John Ruskin
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where each stage concentrates on some particular aspect of the system. One such

decomposition is between the functionality and security of a system, where a functional

specification is modified to produce one that satisfies the security policy. One of the

problems with such an approach is that the refinement may restrict the functionality more

than what is necessary to enforce the security policy. The over-restrictive enforcement of

security policies are all too common is real world systems. For instance, in most of the Unix

systems, the suid (set user identification) operation that is used in many system break-in’s,

is completely disabled, instead of fixing the actual security holes.

In Section 6.2 we motivate the problem by developing two specifications from the

functional specification of take-grant model, both of which enforce the MLS policy, but one

is less restrictive than the other. Section 6.3 gives a formal definition of refinement as

applied to the specification framework of chapter 4. Section 6.4 gives a framework for

verifying that the refinement of a functional specification that enforces a security policy is

not more restrictive than necessary and Section 6.5 gives our conclusions.

6.2 Motivation

Consider the task of enforcing MLS in a system whose functional description is given by

tg-system defined in Section 4.3.2. In this system, protection state is represented as a graph

where nodes represent the entities in the system and arcs represent the rights between

entities. The protection state can be changed by applying the operations take-rule, grant-

rule and create-rule that can potentially cause information flows. The task of enforcing

MLS policy in such a system can be accomplished by suitably restricting the state changing

operations so that information flows that violate MLS policy cannot take place.

One way of enforcing the MLS policy is to change the description of the system to

Mtg-system specified as (Mtg-model, MInit, {Mtake-rule, Mgrant-rule, Mcreate-Rule}),

where the schemas are defined as shown below.
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The state description is:

This schema specifies that the state of the system consists of the state variables

Entities that is the set of users in the system, Class that is the set of information classes, η

assigns an information class to every entity and AM is the structure that contains the rights

that an entity has to another entity.

The state changing rules are as shown below:

This is similar to the take-rule defined in chapter 4 except for two additional

conditions which ensure that

Mtg �model

Entities : PNAME

Class : PNAME

� : NAME 7! NAME

AM : NAME �NAME 7! PRIGHT

Entities \ Class = �

dom � = Entities

ran � = Class

8 x ; y : NAME

� ((x ; y) 2 dom(AM )) ((x 2 Entities) ^ (y 2 Entities))

1

Mtake � rule

�tg �model

Invoker#;From?;To? : NAME

r? : RIGHT

Invoker# 2 Entities

From? 2 Entities

To? 2 Entities
0t 0 2 AM ((Invoker#;From?))
r? 2 AM ((From?;To?))
(((r? =0 t 0)_ (r? =0 r 0))) (�(Invoker#) � �(To?)))

(((r? =0 g 0)_ (r? =0 w 0))) (�(Invoker#) � �(To?)))
AM 0= AM �

((Invoker#;To?) 7! AM ((Invoker#;To?)) [ fr?g)

1
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• If the copied right is a ‘t’ or a ‘r’ between the entities Invoker# and To? then the

Class of Invoker# is greater than or equal to the Class of To?.

• If the copied right is a ‘g’ or a ‘w’ between the entities Invoker# and To? then the

Class of Invoker# is less than or equal to the Class of To?.

This is similar to the grant-rule defined in chapter 4 except for two additional

conditions which ensure that

• If the copied right is a ‘t’ or a ‘r’ between the entities To? and For? then the Class

of To? is greater than or equal to the Class of For?.

• If the copied right is a ‘g’ or a ‘w’ between the entities To? and For? then the Class

of To? is less than or equal to the Class of For?.

Mgrant � rule

�tg �model

Invoker#;To?;For? : NAME

r? : RIGHT

Invoker# 2 Entities

For? 2 Entities

To? 2 Entities
0g 0 2 AM ((Invoker#;To?))

(((r? =0 t 0)_ (r? =0 r 0))) (�(To?) � �(For?)))

(((r? =0 g 0)_ (r? =0 w 0))) (�(To?) � �(For?)))
r? 2 AM ((Invoker#;For?))
AM 0 = AM � ((To?;For?) 7! (AM ((To?;For?)) [ fr?g)

1
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This schema is similar to the create-rule, with the new condition which specifies

that the Class of the newly created entity is same as the Class of the entity that creates it.

The initial state is then described by the following schema.

This schema states that

• a ‘r’ right can exist from an entity to another entity of a equal or greater class.

• a ‘w’ right can exists from an entity to another entity of a equal or lesser class.

• there are no ‘t’ or ‘g’ rights between any of the entities.

MLS is enforced in the above system by requiring that there be no read-up and no

write-down and that the take and grant rules cannot be applied by requiring that there be no

Mcreate � rule

�tg �model

Invoker#;New? : NAME

r? : PRIGHT

Invoker# 2 Entities

New? 62 Entities

Entities 0 = Entities [ fNew?g
�

0 = � � (New? 7! �(Invoker#))
AM 0 = AM � ((Invoker#;New?) 7! r?)

1

MInit

�tg �model

8 x ; y � ((0r 0 2 AM (x ; y))) (�(x ) � �(y)))
8 x ; y � ((0w 0 2 AM (x ; y))) (�(y) � �(x )))
8 x ; y � (0t 0 62 AM (x ; y))
8 x ; y � (0g 0 62 AM (x ; y))

1
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take or grant rights in the initial state of the system i.e., the above system satisfies the

following statement

This statement asserts that a ‘r’ right can exist from an entity to an entity of same

or greater class, a ‘w’ right can exist from an entity to another entity of same or lesser class

and a ‘t’ or a ‘g’ right can exist between entities belonging to the same class. The proof of

this can be easily carried out in the framework developed in chapter 5. It can be seen that

this condition implies the condition for MLS and therefore we can conclude that the above

specification enforces MLS.

This enforcement of MLS by the Mtg-system specification is overly restrictive; it

reduces the functionality of the system more than actually required. For example, in the

above system a take right can never exist between entities that belong to different classes

although such a state does not violate the policy.

The Mtg-system enforces MLS by requiring that the take and grant rights be

completely absent between entities of different levels. Instead MLS can be enforced by

carrying out additional checks in the take-rule and the grant-rule so that they do not lead to

a state where MLS policy requirements are violated. This is enforced by the specification

Rtg-system which is (Rtg-model, RInit, {Rtake-rule, Rgrant-rule, Rcreate-rule}) where the

schemas are defined below. Here, it should be noted that the state description of the system

Rtg-model and the operations Rtake-rule, Rgrant-rule are same as Mtg-model and Mtake-

rule and Mgrant-rule.

A x y,
′r′ AM x y,( )∈ η x( ) η y( )≥( )⇒( )( ) ∧
′w′ AM x y,( )∈ η x( ) η y( )≤( )⇒( )( ) ∧

′t′ AM x y,( )∈( ) ′g′ AM x y,( )∈( )∨ η x( ) η y( )=( )⇒( )( ) 
 ÷
 ÷
 

×∀
 
 ÷
 ÷
 
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The state description is

This schema is same as the schema for the Mtg-model specified earlier in this

section.

The state changing commands are:

This schema is same as the schema for the Mtake-rule specified earlier in this

section.

Rtg �model

Entities : PNAME

Class : PNAME

� : NAME 7! NAME

AM : NAME �NAME 7! PRIGHT

Entities \ Class = �

dom � = Entities

ran � = Class

8 x ; y : NAME

� ((x ; y) 2 dom(AM )) ((x 2 Entities) ^ (y 2 Entities))

1

Rtake � rule

�tg �model

Invoker#;From?;To? : NAME

r? : RIGHT

Invoker# 2 Entities

From? 2 Entities

To? 2 Entities
0t 0 2 AM ((Invoker#;From?))
r? 2 AM ((From?;To?))
(((r? =0 t 0)_ (r? =0 r 0))) (�(Invoker#) � �(To?)))

(((r? =0 g 0)_ (r? =0 w 0))) (�(Invoker#) � �(To?)))
AM 0= AM �

((Invoker#;To?) 7! AM ((Invoker#;To?)) [ fr?g)

1
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This schema is same as the schema for the Mgrant-rule specified earlier in this

section.

Rgrant � rule

�tg �model

Invoker#;To?;For? : NAME

r? : RIGHT

Invoker# 2 Entities

For? 2 Entities

To? 2 Entities

(((r? =0 t 0)_ (r? =0 r 0))) (�(To?) � �(For?)))

(((r? =0 g 0)_ (r? =0 w 0))) (�(To?) � �(For?)))
0g 0 2 AM ((Invoker#;To?))
r? 2 AM ((Invoker#;For?))
AM 0 = AM � ((To?;For?) 7! (AM ((To?;For?)) [ fr?g)

1

Rcreate � rule

�tg �model

Invoker#;New? : NAME

r? : PRIGHT
c? : NAME

Invoker# 2 Entities

New? 62 Entities

c? 2 Class

Entities 0 = Entities [ fNew?g
((0t 0 2 r?)_ (0r 0 2 r?))) (c? � �(Invoker#))

((0g 0 2 r?)_ (0w 0 2 r?))) (c? � �(Invoker#))
�0 = � � (New? 7! c?))
8 x ; y� ((((x ; y) 2 dom(AM ))^

(x 6= Invoker#)^ (y 6= New?))
) (AM 0((x ; y)) = AM ((x ; y))))

8 x� (((x 2 Entities)^ (x 6= Invoker#))
) (AM 0((x ;New?)) = �))

AM 0((Invoker#;New?)) = r?

1
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Here, unlike the Mcreate-rule, an entity can create another entity belonging to any

class and get:

• a ‘r’ or a ‘t’ right if the class of the new entity is less than or equal to its class and

• a ‘g’ or a ‘w’ right if the class of the new entity is greater than or equal to its class.

The initial state is

This schema states that:

• a ‘r’ or a ‘t’ right can exist from an entity to another entity of a equal or greater

class.

• a ‘w’ or a ‘g’ right can exists from an entity to another entity of a equal or lesser

class.

The state changing operations in the above specification enforce the condition that

a ‘t’ or a ‘r’ right can exist from an entity at a higher level to an entity at a lower level and

the grant or a write right can exist from an entity at a lower level to an entity at a higher

level i.e., the specification enforces the following property.

Thus information can flow from a lower-level entity to a higher-level entity and not

vice-versa — which is the MLS policy. The proof that the above statement is true in the set

RInit

�tg �model

8 x ; y � ((0r 0 2 AM (y; x ))) (�(x ) � �(y)))
8 x ; y � ((0w 0 2 AM (x ; y))) (�(y) � �(x )))
8 x ; y � ((0t 0 2 AM (y; x ))) (�(x ) � �(y)))
8 x ; y � ((0g 0 2 AM (x ; y))) (�(y) � �(x )))

1

A x y,
′t′ AM x y,( )∈( ) ′r′ AM x y,( )∈( )∨( ) η x( ) η y( )≥( )⇒( ) ∧
′g′ AM x y,( )∈( ) ′w′ AM x y,( )∈( )∨( ) η x( ) η y( )≤( )⇒( ) 

 ×∀ 
 
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of traces generated by the Rtg-system can be carried out easily in the framework developed

in Chapter 5.

It should be noted that both Mtg-system and the Rtg-system specifications, which

enforce MLS policy, are refinements of the take-grant model. The difference between these

two specifications is that Rtg-model is more expressive since, unlike Mtg-model, it allows

the ‘t’ and ‘g’ rights to exist between entities belonging to different classes.

6.3 Refinement and Redundancy of System Specifications

In this section we characterize the process of developing a specification that enforces a

security policy from the functional specification of the system. We also develop the notion

of Nonredundant specifications, and show how a given specification can be proved

Nonredundant.

6.3.1 Refinement of a Specification

The functional description of a system is modeled in Z as a state transition machine

S = (s, I, {Op1, Op2, ..., Opn}) where

• s is a schema that gives the state description,

• I is the schema that gives the initial state, and

• Opi is a schema that describes a state transition operation.

The state description of the system contains information about the state variables,

their types, and the conditions that are satisfied by these variables. The schema for the

initial state describes the initial values of the state variables and the schemas of the

operations describe the conditions under which an operation can take place and its affects

on the state of the system. For example, in the take-grant model defined in chapter 4, the

schema tg-model gives the state description, the schema Init gives the initial state and the

schemas take-rule, grant-rule and create-rule give the operation descriptions.
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As specified in chapter 4, an information system is considered as a generator of a

set of traces. The traces generated by a system S whose specification is given by

(s, I, {Op1, Op2, ..., Opn}) is denoted as TS and is expressed as:

The specification of a system that enforces a security policy is developed in two

stages. In the first stage, a functional specification is developed that just describes the

functionality of the system without considering the policy that is to be enforced. An

implication of this is — the set of traces generated by the functional specification do not

satisfy the properties of the security policy. In the next stage, this functional specification

is modified suitably so that the set of traces generated by the new specification possess the

required properties. These modifications to the functional specification consist of:

• additions to the state description that incorporate the information relevant to the

security policy, and

• changes to the initial state and the operation descriptions to preclude the traces that

do not satisfy the policy.

This new specification is said to be a refinement of the functional specification.

Formally refinement can be defined as shown below.

Definition: A system (Rs, RI, {ROp1, ROp2, ..., ROpn}) is said to be a refinement of

(s, I, {Op1, Op2, ..., Opn}) if

• every state variable of s is in Rs,

• (RI ⇒ I), and

• (ROp1 ⇒ Op1), (ROp2 ⇒ Op2) ..., (ROpn ⇒ Opn).

I C Op1 Op2 … Opn, , ,( )∧
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It should be noted that the set of traces, TRS generated by a system RS which is a

refinement of a system S is such that .

6.3.2 Nonredundant Specifications

In the previous section we stated that the refinement of a specification is developed by

incorporating additional conditions into the specification of the operations that try to

enforce the security policy. Since this checking of additional conditions can be expensive,

they must be as weak as possible. In this section we develop the notion of Nonredundant

specification which captures this aspect.

Definition: Let S be a system and let RS be its refinement. The specification RS is said to

be Nonredundant if there is no system RRS, which is a refinement of RS, such that

.

Thus a refinement is Nonredundant if the set of traces that it generates cannot be

produced by a weaker specification, i.e., a refinement of itself. Nonredundancy is a

desirable property for a specification because it places least amount of restriction on the

functionality of the system.

For example, consider the Mtg-model specified in Section 6.2 that is a refinement

of the tg-model specified in Section 4.3.2. This specification is not Nonredundant since

there is no need to check for the information class of the entities involved in take-rule and

grant-rule. In this system, a ‘t’ right or a ‘g’ right can only exist between entities of the same

class i.e., it can be proved that the following statement is true

which makes the checking for the class of entities in the take-rule and the grant-rule

redundant.

TRS TS⊆

TRRS TRS=( )

A x y, ′t′ AM x y,( )∈( ) ′g′ AM x y,( )∈( )∨( ) η x( ) η y( )=( )⇒( )×∀( )
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In fact the MMtg-system whose specification is (Mtg-model, MInit, {MMtake-rule,

MMgrant-rule, Mcreate-rule}) where the schemas MMtake-rule and MMgrant-rule are

given below enforce the MLS policy.

This is similar to the Mtake-rule of Section 6.2 except that the class of the entities

is not checked when the right to be copied is either a ‘t’ or a ‘g’.

This is similar to the Mgrant-rule of Section 6.2 except that the class of the entities

is not checked when the right to be copied is either a ‘t’ or a ‘g’.

MMtake � rule

�tg �model

Invoker#;From?;To? : NAME

r? : RIGHT

Invoker# 2 Entities

From? 2 Entities

To? 2 Entities

((r? =0 r 0)) (�(Invoker#) � �(To?)))
((r? =0 w 0)) (�(Invoker#) � �(To?)))
0t 0 2 AM ((Invoker#;From?))
r? 2 AM ((From?;To?))
AM 0= AM �

((Invoker#;To?) 7! AM ((Invoker#;To?)) [ fr?g)

1

MMgrant � rule

�tg �model

Invoker#;To?;For? : NAME

r? : RIGHT

Invoker# 2 Entities

For? 2 Entities

To? 2 Entities

((r? =0 r 0)) (�(To?) � �(For?)))
((r? =0 w 0)) (�(To?) � �(For?)))
0g 0 2 AM ((Invoker#;To?))
r? 2 AM ((Invoker#;For?))
AM 0 = AM � ((To?;For?) 7! (AM ((To?;For?)) [ fr?g)

1
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In fact the Mtg-system and the MMtg-system produce same set of traces but

MMtg-system is Nonredundant whereas Mtg-system is not Nonredundant.

6.3.3 Proving a Specification Nonredundant

In this section we will develop a procedural framework for verifying that a given

specification is Nonredundant and show that the MMtg-system specification of the

previous section is Nonredundant.

In order to prove that a specification (s, I, {Op1, Op2, ..., Opn}) is Nonredundant,

one must prove that all the pre-conditions associated with every operation Opi are indeed

used to decide the validity of that operation in some state that is reachable from the initial

state. This can be done by showing that the following statement is true for every pre-

condition C in all the schemas that describe the state changing operations.

That is, a state where the condition C is false is reachable from the initial state by

the application of the state transition operations of the system.

In order to show that the MMtg-system is Nonredundant, prove that the set of all

the traces generated by it, which is described by the expression,

possess the following properties. (These are obtained by considering each pre-condition of

the operations of the MMtg-model and substituting them in the condition given at the

beginning of this section)

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

Init C Op1 … Opn, ,( )∧ E C′¬( )◊⇒

MInit C MMtake rule– MMgrant rule– Mcretae rule–, ,( )∧

E Invoker# Entities′∉( )◊

E From? Entities′∉( )◊

E To? Entities′∉( )◊

E ′t′ AM′ Invoker# From?,( )∉( )◊

E r? AM′ From? To?,( )∉( )◊
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(6.6)

(6.7)

(6.8)

(6.9)

It can be easily seen that all the above conditions are true in the initial state itself

since the conditions in the schema given for the initial state do not contradict any of the

statements. Hence it can be concluded that the specification of the MMtg-model is

Nonredundant.

6.4 Enforcing Security Policies with Maximum Functionality

In the previous section, we showed that the specification of a system that satisfies a security

policy needs to be the Nonredundant i.e., weakest possible one to generate the required set

of traces. Unfortunately, a Nonredundant specification does not mean that the set of traces

generated by it is the largest possible under the policy constraints. In this section we give a

procedure for showing that the set of traces generated by a refinement specification is the

largest allowed by the policy.

Ideally, a refinement specification should allow any finite trace of the functional

specification that does not violate the given security policy. We can prove that a refinement

satisfies this property by applying the induction principle on the length of the traces. The

basis step is on a trace of length one i.e., any initial state of the specification that does not

violate the security policy is also a valid initial state in the refinement specification. For the

induction step, we prove that a trace t of length (n+1) can be generated by the refinement

where

• the trace t satisfies the security policy and

• trace t is derived from a trace t’ of length n by the application of a single transition

operation where t’ also satisfies the security policy that is generated by both the

E For? Entities′∉( )◊

E ′g′ AM′ Invoker# To?,( )∉( )◊

E r? AM′ Invoker? For?,( )∉( )◊

E New? Entities′∈( )◊
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functional and the refinement specifications.

In order to carry out the above proof we first need to characterize the set of all initial

states that do not violate the security policy. The normal form of a temporal formula helps

in characterizing these set of states.

Definition: A temporal formula X is said to be in normal form if

• X does not contain any temporal operators or

• X is of the form  or  or  or  and Y is in normal

form or

• X is of the form  or  and Y and Z are in normal form.

Definition: A temporal formula P can be reduced to its normal form by the following

actions.

• If P is a formula that does not contain any temporal operators then it is already in

normal form.

• If P is of the form  then replace it with  where  is the

normal form of  and  is the normal form of .

• If P is of the form  then replace it with  where  is the

normal form of  and  is the normal form of .

• If P is of the form  then replace it with  where  is the

normal form of .

• If P is of the form  then replace it with  where  is

the normal form of .

A Y( ) E Y( ) A Y◊( ) E Y◊( )

Y Z∨( ) Y Z∧( )

X Y∧( )¬( ) X′ Y′∨( ) X′

X¬( ) Y′ Y¬( )

X Y∨( )¬( ) X′ Y′∧( ) X′

X¬( ) Y′ Y¬( )

A X( )¬( ) E X′( )◊( ) X′

X¬( )

E X( )¬( ) A X′¬( )◊( ) X′

X¬( )
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• If P is of the form  then replace it with  where  is the

normal form of .

• If P is of the form  then replace it with  where  is the

normal form of .

• If P is of the form (¬(❑X)) then replace it with (◊X’) where X’ is the normal form

of .

• If P is of the form (¬(◊X)) then replace it with (❑X’) where X’ is the normal form

of .

• If P is of the form  where X is one of the operators {A◊, A❑, E◊, E❑, ◊, ❑}

then replace it with  where X’ is the normal form of X.

It can be seen that any temporal formula can be reduced to a normal form since any

formula that is not in normal form can be reduced to normal form by the application of the

above rules (note that the above list is complete in that it gives the actions to be performed

for any form of temporal formula).

Definition: Given a security policy SP = (C, Op, P, A), the set of all initial states that do not

violate the requirements of the security policy are characterized by the expression denoted

by  and it is obtained from the normal form of the policy statement by the following

actions.

• replace any subformula of the form  or  or (❑X) or (◊X) with X

and

• replace any subformula of the form  or  with true.

E X◊( )¬( ) A X′( )( ) X′

X¬( )

A X◊( )¬( ) E X′( )( ) X′

X¬( )

X¬( )

X¬( )

XX( )

XX′( )

ISP

A X( ) E X( )

A X◊( ) E X◊( )
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For example, in the case of MLS security policy and the mtg-model specified in

Section 5.4.1,  is as shown below

Definition: Given a security policy SP and a system S,  denotes the set of states of S

where the policy expression  is true.

For example, in the case of MLS security policy and the tg-model specified in

chapter 4,  is the expression

For a security policy SP and a system S, the set of states  characterizes all

possible initial states of S which can potentially generate trace sequences that satisfy the

policy statements of SP. Therefore, a refinement of S that needs to have maximum

functionality while enforcing the policy SP needs to have its set of initial states described

by the expression . Also, this refinement should be such that it can generate any trace

of S that starts with a state described by  that satisfies the security policy statements.

Now, to prove that a refinement RS = (Rs, RI, {ROp1, ROp2, .., ROpn}) of a system S = (s,

I, {Op1, Op2, ..., Opn}) that enforces the security policy SP, has maximum functionality, it

is sufficient to prove that

• Basis Step: (  ⇒ RI) (note that the fact RS enforces SP means that RI ⇒ )

• Induction Step: For every operation ROpi that is a refinement of the operation Opi

and for every pre-condition Cj of (ROpi - Opi) prove that there exists a policy

statement from the set of policy statements (a1, a2, ..., am) such that the following

IMLS

X Y,∀ X Y→( ) X Y≤( )⇒( )×

ISP
S

ISP

I MLS
tg model–

X Y x y, , ,∀
′r′ AM y x,( )∈( ) ′t′ AM y x,( )∈( )∨ ∨
′g′ AM x y,( )∈( ) ′w′ AM x y,( )∈( )∨ 

  ∧

η x( ) X=( ) η y( ) Y=( )∧( ) 
 ÷
 ÷
 

X Y≤( )⇒
 
 ÷
 ÷
 

×

ISP
S

ISP
S

ISP
S

ISP
S

ISP
S
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condition is satisfied.

That is, the refinement RS should be such that for every state reachable from the

initial state where a pre-condition (present only in the refined operation) is false,

execution of that operation without the pre-condition violates at least one statement

of the security policy.

Theorem: Given the system RS = (Rtg-model, RInit, {Rtake-rule, Rgrant-rule, Rcreate-

rule}) given in Section 6.2 that enforces Multi-Level Security Policy, which is a refinement

of the system S = (tg-model, Init, {take-rule, grant-rule, create-rule}) defined in Section

4.3.2, prove that it has maximum functionality allowed by the security policy.

Proof:

Step 1:

The set of initial states  is described by the following expression

It can be easily seen that the .

Step 2:

Prove that the following statement is true

where

• ROpi is an operation in the set {Rtake-rule, Rgrant-rule, Rcreate-rule}

RInit D C Op1 … Opn, ,( ) Cj¬ ROpi Cj–( )∧( ),( )∧( ) A a¬( )◊⇒

I MLS
tg model–

X Y x y, , ,∀
′r′ AM y x,( )∈( ) ′t′ AM y x,( )∈( )∨ ∨
′g′ AM x y,( )∈( ) ′w′ AM x y,( )∈( )∨ 

  ∧

η x( ) X=( ) η y( ) Y=( )∧( ) 
 ÷
 ÷
 

X Y≤( )⇒
 
 ÷
 ÷
 

×

I MLS
tg model–

Init⇒ 
 

RInit D C Op1 … Opn, ,( ) Cj¬ ROpi Cj–( )∧( ),( )∧( ) A a( )¬( )◊⇒
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• Opi is an operation from the set {take-rule, grant-rule, create-rule} such that ROpi

is a refinement of Opi,

• Cj is a pre-condition in (ROpi - Opi) and

• a is the MLS policy statement

Now consider the take-rule to be Opi and the pre-condition Cj to be the condition

from the body of the schema describing the Rtake-rule

By Rule 10 of Section 5.2 which states that,

it is sufficient to prove the following statements in order to prove the theorem.

(6.1)

(6.2)

(6.3)

where Rtake-rule-mod is described by the schema similar to the schema for the

Rtake-rule given in Section 6.2 except that the pre-condition that checks for the

copying of the ‘t’ and ‘r’ rights is removed.

r? ′t′=( ) r? ′r′=( )∨( ) η Invoker#( ) η To?( )≥( )⇒( )

I I1⇒( )

I1 X1∧( ) A I2( )◊⇒( ) … In Xn∧( ) A In 1+( )◊⇒( )∧ ∧

In 1+ P⇒( )
I D X1 … Xn, ,( )∧ A P◊⇒

-----------------------------------------------------------------------------------------------------------------------------------------------------

RInit I1⇒( )

I1 C take rule– grant rule– create rule–, ,( )∧( ) A I2( )◊⇒

r? ′t′=( ) ∨
r? ′r′=( ) 

  η Invoker#( ) η To?( )≥( )⇒ 
 

 
 ¬

Rtake rule– mod–( ) I2∧ ∧ 
 ÷
 ÷
 

A a¬( )◊⇒
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and some conditions I1 and I2 where I1 is

and I2 to be true.

case 1: Prove that .

It is easy to see from the definitions of Init and I1 the above statement is true.

case 2: Prove that

This is again trivially true.

case 3: Prove that

Rtake � rule �mod

�tg �model

Invoker#;From?;To? : NAME

r? : RIGHT

Invoker# 2 Entities

From? 2 Entities

To? 2 Entities
0t 0 2 AM ((Invoker#;From?))
r? 2 AM ((From?;To?))
(((r? =0 g 0)_ (r? =0 w 0))) (�(Invoker#) � �(To?)))
AM 0= AM �

((Invoker#;To?) 7! AM ((Invoker#;To?)) [ fr?g)

1

x y,∀ ′r′ AM x y,( )∈( ) η x( ) η y( )≥( )⇒( )× ∧
x y,∀ ′t′ AM x y,( )∈( ) η x( ) η y( )≥( )⇒( )× ∧
x y,∀ ′g′ AM x y,( )∈( ) η x( ) η y( )≤( )⇒( )× ∧

x y,∀ ′w′ AM x y,( )∈( ) η x( ) η y( )≤( )⇒( )×

RInit I1⇒( )

I1 C Rtake rule– Rgrant rule– Rcreate rule–, ,( )∧( ) A true( )◊⇒

r? ′t′=( ) r? ′r′=( )∨( ) η Invoker#( ) η To?( )≥( )⇒( )( )¬
Rtake rule– mod–( ) I2∧ ∧ 

 ÷
 

A a¬( )◊⇒
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From the statement of the MLS policy and since the antecedent does not contain any

trace operators, the above statement can be simplified to

Expanding the antecedent and simplifying the terms we get

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

Now Instantiating the consequent of the above implication with (x = To?) and

(y = Invoker#) we get

r? ′t′=( ) r? ′r′=( )∨( ) η Invoker#( ) η To?( )≥( )⇒( )( )¬ ∧
Rtake rule– mod–( ) 

 

⇒

x∃ y,
′r′ AM′ y x,( )∈( ) ′t′ AM′ y x,( )∈( )∨ ∨
′g′ AM′ x y,( )∈( ) ′w′ AM′ x y,( )∈( )∨ 

  η x( ) η y( )>( )∧ 
 ×

x y,∀ ′r′ AM x y,( )∈( ) η x( ) η y( )≥( )⇒( )×

x y,∀ ′t′ AM x y,( )∈( ) η x( ) η y( )≥( )⇒( )×

x y,∀ ′g′ AM x y,( )∈( ) η x( ) η y( )≤( )⇒( )×

x y,∀ ′w′ AM x y,( )∈( ) η x( ) η y( )≤( )⇒( )×

r? ′g′=( ) r? ′w′=( )∨( ) η Invoker#( ) η To?( )≤( )⇒

r? ′t′=( ) r? ′r′=( )∨( )

η Invoker#( ) η To?( )≥( )¬

Invoker# Subjects∈

From? Entities∈

To? Entities∈

′t′ AM Invoker# From?,( )∈

r? AM From? To?,( )∈

AM′ AM
Invoker# To?,( ) →

AM Invoker# To?,( ) r?{ }∪( ) 
 ⊕=

′r′ AM′ Invoker# To?,( )∈( ) ′t′ AM′ Invoker# To?,( )∈( )∨ ∨
′g′ AM′ To? Invoker#,( )∈( ) ′w′ AM′ To? Invoker#,( )∈( )∨ 

 

∧
η To?( ) η Invoker#( )>( )
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Dropping some terms in the antecedent of the above expression we get

Substituting for AM’ from equation 6.32 we get

From the definition of the override operator, the above statement can be

transformed into:

Now from the properties of sets and the definition of ‘>’ operator, the above

statement can be transformed into:

The above statement is true from equations 6.25 and 6.26.

A similar approach can be used to prove that the other conditions and other

operations also satisfy the requirements specified in the framework for proving that a

system enforces a security policy with maximum functionality.

■

In this section we characterized the notion of a specification enforcing a security

policy with maximum functionality and developed a framework for verifying it. We also

′r′ AM′ Invoker# To?,( )∈( ) ′t′ AM′ Invoker# To?,( )∈( )∨
∧

η To?( ) η Invoker#( )>( )

′r′ AM
Invoker# To?,( ) →

AM Invoker# To?,( ) r?{ }∪( ) 
 ⊕ 

  Invoker# To?,( )∈ 
  ∨

′t′ AM
Invoker# To?,( ) →

AM Invoker# To?,( ) r?{ }∪( ) 
 ⊕ 

  Invoker# To?,( )∈ 
 

 
 ÷
 ÷
 ÷
 ÷
 

∧
η To?( ) η Invoker#( )>( )

′r′ AM Invoker# To?,( ) r?{ }∪( )( )∈( ) ′t′ AM Invoker# To?,( ) r?{ }∪( )∈( )∨
∧

η To?( ) η Invoker#( )>( )

′r′ r?=( ) ′t′ r?=( )∨( ) η Invoker#( ) η To?( )≥( )¬∧
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demonstrated this framework by verifying that the a given refinement specification of the

take-grant model enforces the MLS policy with maximum functionality.

6.5 Conclusions

In this chapter we showed that the functionality of a system can be reduced more than

required while enforcing a security policy. We developed a framework to verify that the

specification of a system that must enforce a security policy does so without reducing the

functionality more than what is absolutely necessary using the verification framework

Chapter 5.
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Chapter 7

Conclusions

An important method of increasing the confidence in the security of a system is by verifying

that it satisfies the required security properties. In this thesis we developed a comprehensive

framework for specifying the security policies and protection features of information

systems and used them to develop a framework to verify that the system specification

enforces the policy correctly. This framework has the advantage that it is simple and fairly

mechanical so that automatic theorem provers can be used in the verification process.

We developed a many-sorted predicate logic based language for specifying the

information flow properties of security critical systems. This language can be used for

specifying both the information flow predicates and their composition constructs. We

developed a framework for proving the composition properties of different information

flow predicates. The most important advantage of this formalism is that it can be automated

easily. We showed that the composition properties can be proved using a theorem prover

such as PVS.

Life is an art of drawing sufficient conclusions from insufficient premises

- Samuel Butler



Chapter 7:  Conclusions 153

We developed a temporal logic based language for specifying the security policies.

We showed that this language can be used to specify different kinds of security policies in

an unambiguous and succinct fashion. The formal semantics of this language are given with

respect to a state machine that enables one to clearly interpret the security policy without

any ambiguity.

We proposed that information systems can be described as state transition machines

using the formal specification language Z. We also developed a trace specification language

that can be used to specify the set of traces in a compact way about which security

properties need to be proved.

We developed a framework for proving the enforcement of security policies of

information systems. In this framework

• the information system is characterized by the set of traces generated by its specifi-

cation that are compactly specified using the trace expression operators and

• the security policy is specified as set of temporal properties that must be satisfied

by these traces.

Our framework for proving that a system enforces a given security policy consists of a set

of rules that depend on the structure of the trace expressions and the temporal property in

the policy. Our experience in proving the security properties is that the design of secure

systems is an iterative process where verification brings out problems that are fixed in the

next step of the design process. Also, we feel that the proof framework developed in this

thesis can be automated and we intend to pursue this line of research in the future.

We observed that system specifications are developed in different stages where each

stage tries to specify some aspect of the system. In the case of security policy enforcement,

it was observed that the functional specification of the system is developed initially and
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then it is refined by adding security relevant information to suitably restrict its behavior so

that the security policy is enforced. One of the problems with this approach is that one has

to be careful so as not to restrict the functionality of the system more than what is actually

required. We developed a framework for proving that a specification of a system is not

over-restrictive with respect to a given security policy using the proof rules developed for

security property verification. This suggests that the framework that we proposed is general

enough to handle an interesting class of verification problems. We intend to investigate the

applicability of this framework to other kinds of system properties like safety and fault-

tolerance.
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Appendix A

PVS and Information Flow Predicates

In this appendix we develop the proof that generalized Non-Interference is preserved under

cascade operation using the PVS theorem prover by applying the framework that was

developed in chapter 2.

A.1 Generalized NonInterference and Cascade operation in PVS

In this section we give a specification of the cascade operation and the definition of

Generalized Non-Interference in the form suitable for PVS system.

secprop: THEORY
BEGIN

TRACE: TYPE
VALSEQ: TYPE
HIN: [TRACE -> VALSEQ]
HOUT: [TRACE -> VALSEQ]
LIN: [TRACE -> VALSEQ]
LOUT: [TRACE -> VALSEQ]
PL: [VALSEQ, VALSEQ -> VALSEQ]
MUL: [VALSEQ, VALSEQ -> VALSEQ]

S1: [TRACE -> boolean]
S2: [TRACE -> boolean]

% S is the composition of S1 and S2 under some composition construct

S: [TRACE ->  boolean]

% Statement that S1 satisfies Generalized Non-Interference
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S1ax:
AXIOM

FORALL (x, y: TRACE):
((S1(x) AND S1(y))

IMPLIES
((EXISTS (p: TRACE):

((S1(p) AND (HIN(p) = HIN(y)) AND (LIN(p) = LIN(x))
AND (LOUT(p) = LOUT(x)))))

AND
((EXISTS (q: TRACE):

((S1(q) AND (HIN(q) = HIN(x)) AND (LIN(q) = LIN(y))
AND (LOUT(q) = LOUT(y))))))))

% Statement that S2 satisfies Generalized Non-Interference

S2ax:
AXIOM

FORALL (x, y: TRACE):
((S2(x) AND S2(y))

IMPLIES
((EXISTS (p: TRACE):

((S2(p) AND (HIN(p) = HIN(y))
AND (LIN(p) = LIN(x)) AND (LOUT(p) = LOUT(x))))))

AND
((EXISTS (q: TRACE):

((S2(q) AND (HIN(q) = HIN(x))
AND (LIN(q) = LIN(y)) AND (LOUT(q) = LOUT(y)))))))

S1S2Prop:
AXIOM

FORALL (x, y: TRACE):
((S1(x) AND S2(y))

IMPLIES
(EXISTS (z : TRACE):

(S2(z) AND (HIN(z) = HOUT(x))
AND (LIN(z) = LOUT(x)) AND (LOUT(z) = LOUT(y)))))

% Definitions of cascade operation

Sax:
AXIOM

FORALL (x: TRACE):
(S(x)

IMPLIES
(EXISTS (y, z: TRACE):

(S1(y) AND (LIN(y) = LIN(x)) AND (HIN(y) = HIN(x)) AND S2(z)
AND (LOUT(z) = LOUT(x)) AND (HOUT(z) = HOUT(x))
AND (HIN(z) = HOUT(y)) AND (LIN(z) = LOUT(y)))))

S1S2ax:
AXIOM

FORALL (x, y: TRACE):
((S1(x) AND S2(y) AND (LIN(y) = LOUT(x)) AND (HIN(y) = HOUT(x)))

IMPLIES
(EXISTS (z: TRACE):

(S(z)
AND (LIN(z) = LIN(x)) AND (HIN(z) = HIN(x))
AND (LOUT(z) = LOUT(y)) AND (HOUT(z) = HOUT(y)))))

% The theorem that the system S satisfies Generalized Non-Interference
% This is the theorem that needs to be proved

Sprop:
CONJECTURE
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FORALL (x, y: TRACE):
((S(x) AND S(y))

IMPLIES
((EXISTS (p: TRACE):

((S(p) AND (HIN(p) = HIN(y))
AND (LIN(p) = LIN(x)) AND (LOUT(p) = LOUT(x))))))

AND
((EXISTS (q: TRACE):

((S(q) AND (HIN(q) = HIN(x))
AND (LIN(q) = LIN(y)) AND (LOUT(q) = LOUT(y)))))))

END secprop

A.2 Proof of the composition property in PVS

This is the set of PVS commands that are used to prove the proposition Sprop given in the

above specification.

(|secprop|
 (|Sprop| ““ (SKOLEM!)
  ((““ (FLATTEN)
    ((““ (LEMMA “Sax” (“x” “x!1”))
      ((““ (SPLIT)
        ((“1” (SKOLEM!)
          ((“1” (FLATTEN)
            ((“1” (LEMMA “Sax” (“x” “y!1”))
              ((“1” (SPLIT)
                ((“1” (SKOLEM!)
                  ((“1” (FLATTEN)
                    ((“1” (LEMMA “S1ax” (“x” “y!2” “y” “y!3”))
                      ((“1” (SPLIT)
                        ((“1” (FLATTEN)
                          ((“1” (SKOLEM!)
                            ((“1” (SKOLEM!)
                              ((“1” (FLATTEN)
                                ((“1” (LEMMA “S1S2Prop” (“x” “p!1” “y” “z!1”))
                                  ((“1” (SPLIT)
                                    ((“1” (SKOLEM!)
                                      ((“1” (FLATTEN)
                                        ((“1” (LEMMA “S1S2Prop” (“x” “q!1” “y” “z!2”))
                                          ((“1” (SPLIT)
                                            ((“1” (SKOLEM!)
                                              ((“1” (FLATTEN)
                                                ((“1” (LEMMA “S1S2ax” (“x” “p!1” “y” “z!3”))
                                                  ((“1” (SPLIT)
                                                    ((“1” (SKOLEM!)
                                                      ((“1” (FLATTEN)
                                                        ((“1” (LEMMA “S1S2ax” (“x” “q!1” “y” “z!4”))
                                                          ((“1” (SPLIT)
                                                            ((“1” (SKOLEM!)
                                                              ((“1” (FLATTEN)
                                                                ((“1” (SPLIT)
                                                                  ((“1” (QUANT * (“z!5”))
                                                                    ((“1” (SPLIT)
                                                                      ((“1” (PROPAX) NIL)
                                                                       (“2” (REPLACE -8 (1))
                                                                        ((“2” (REPLACE -20 (1))
                                                                          ((“2” (PROPAX) NIL)))))
                                                                       (“3” (REPLACE -7 (1))
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                                                                        ((“3” (REPLACE -21 (1))
                                                                          ((“3” (PROPAX) NIL)))))
                                                                       (“4” (REPLACE -9 (1))
                                                                        ((“4” (REPLACE -18 (1))
                                                                        ((“4” (PROPAX) NIL)))))))))
                                                                   (“2” (QUANT * (“z!6”))
                                                                    ((“2” (SPLIT)
                                                                      ((“1” (PROPAX) NIL)
                                                                       (“2” (REPLACE -3 (1))
                                                                        ((“2” (REPLACE -24 (1))
                                                                        ((“2” (PROPAX) NIL)))))
                                                                       (“3” (REPLACE -2 (1))
                                                                        ((“3” (REPLACE -25 (1))
                                                                          ((“3” (PROPAX) NIL)))))
                                                                       (“4” (REPLACE -4 (1))
                                                                        ((“4” (REPLACE -14 (1))
                                                                          ((“4” (PROPAX) NIL)))))))))))))))
                                                             (“2” (PROPAX) NIL)
                                                             (“3” (PROPAX) NIL)
                                                             (“4” (PROPAX) NIL)
                                                             (“5” (PROPAX) NIL)))))))))
                                                     (“2” (PROPAX) NIL)
                                                     (“3” (PROPAX) NIL)
                                                     (“4” (PROPAX) NIL)
                                                     (“5” (PROPAX) NIL)))))))))
                                             (“2” (PROPAX) NIL)
                                             (“3” (PROPAX) NIL)))))))))
                                     (“2” (PROPAX) NIL)
                                     (“3” (PROPAX) NIL)))))))))))))
                         (“2” (PROPAX) NIL) (“3” (PROPAX) NIL)))))))))
                 (“2” (PROPAX) NIL)))))))))
         (“2” (PROPAX) NIL))))))))))
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Appendix B

An Introduction to Z

Z, pronounced as zed, is a specification language based on first order predicate logic and

set theory. We chose Z to specify the protection features of information systems because of

its growing popularity and wide spread acceptance in the formal methods community. In

this Appendix we give a brief overview of the features of Z that are used in this dissertation.

More details can be found in [DIL90].

B.1 System Specification in Z

Systems that are modeled as state transition machines are specified in Z by means of a state

description and a description of the transition relations. The basic building block of a Z

specification is a schema that is a collection of variable declarations and some predicates

involving these variables. A schema can be named so that it can be referenced later. The

schemas are represented as two dimensional graphical constructs in Z as shown below:

X

D

P

1



Appendix B:  An Introduction to Z 165

Here X is the name of the schema, D is the set of variable declarations and P, usually

referred to as the body of the schema, is the set of conditions that are required to be satisfied.

Z defines some operations on schemas for modularizing the specifications. These

operations are defined later.

The other important construct in Z is an axiomatic definition that is used to define

functions. The form of an axiomatic definition is as shown below.

Here <Name> is the name of the function, <Signature> specifies the types of inputs

and the outputs of the function and <Body> is the definition of the function.

B.2 State Description

States in Z are defined by means of state variables where every variable is associated with

a type. A state variable can be introduced into the specification by a statement of the form

. Types are modeled as sets in Z which include some pre-defined sets and

facilities to build new sets from the existing ones.

B.2.1 Basic Sets

A basic set is introduced by the declaration [NAME] where NAME is a type. Operations

on these basic types can be introduced by means of axiomatic definitions. Z includes some

predefined sets like Integers with some predefined operations like addition and subtraction.

B.2.2 Set Constructors

Z provides constructors that can be used to construct sets having special properties. These

new sets can be used to model arbitrary structures that occur in real world systems.

B.2.2.1 Enumeration

< Name >:< Signature >

< Body >

1

var : Type( )
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Sets can be created by enumerating all the elements in it. For example,

is the set of weekdays.

B.2.2.2 Set Comprehension

Sets can be created from already existing sets by set comprehension. For example, the set

of all integers, which are prefect squares, can be created from the set of Integers as shown

below:

B.2.2.3 Power Set

The set of all subsets of a given set is called the power set. Given a set X, its power set is

represented as . For example,  represents the set.

where  is the empty set.

B.2.2.4 Cross-Product

Given two sets X and Y, their cross-product represented as  is a set of ordered pairs

where each ordered pair is such that the first element is from the set X and the second

element is from the set Y. For example,  represents the set

An ordered pair (a, b) is also written as .

B.2.2.5 Relations

Given two sets X and Y, a relation from X to Y represented as  is the set

.

B.2.2.6 Functions

Mon Tue Wed Thurs Fri Sat Sun, , , , , ,{ }

n : N n n×•{ }

P X( ) P 1 2,{ }( )
∅ 1{ } 2{ } 1 2,{ }, , ,{ }

∅

X Y×( )

1 2,{ } a b,{ }×( )

1 a,( ) 1 b,( ) 2 a,( ) 2 b,( ), , ,{ }

a b→( )

X Y↔( )

P X Y×( )( )
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Given two sets X and Y, a function from X to Y represented as  is a subset of

 that satisfies the following property

The above statement means that F maps an element of X to a unique element of Y.

B.2.2.7 Sequences

Sequences are written enclosed in angle brackets with their elements separated by commas

as in <x1, x2, ..., xn>. An empty sequence is written as < >.

Given a set X, all the finite sequences of elements drawn from X is denoted as

. For example,  represents a set whose elements include <1>, <2>,

<1, 2> etc.

B.2.3 Operations

Z provides a number of operations on sets. These operations can be classified depending on

the type of the sets that they operate on. These are:

• Set Operations,

• Relation Operations, and

• Sequence Operations.

Each of the above operations are described in more detail in the following sections.

B.2.3.8 Set Operations

These are the common operations like equality ( = ), membership ( ∈ ),

subset ( ⊆ ), union ( ∪ ), intersection ( ∩ ), set difference ( - ) whose semantics are well

known.

B.2.3.9 Relation Operations

X Y→( )

P X Y×( )( )

F : X Y↔( )( ) x : X; y : Y x y,( ) F∈( ) x z,( ) F∈( )∧( ) y z=( )⇒•∀∀{ }

seq X( ) seq 1 2,{ }( )
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These operations are specific to sets that are relations. They are:

• Composition — Given two relations  and , their

composition is denoted as  and it is defined as:

• Domain — Given a relation , the domain of F is a set denoted as

 that satisfies the following property:

• Range — Given a relation , the range of F is a set denoted as

 that satisfies the following property:

• Override — Given the functions , then  is denotes

the overriding of F with G which is defined as below:

• Domain Restriction Operators — Given a relation  and

,

• the domain restriction of F is a relation of type  which is defined as

below:

• the domain co-restriction of F is a relation of type  which is defined

as below:

F : X Y↔( )( ) G : Y Z↔( )( )

F ; G( )

x z,( ) F ; G( )∈( ) y :Y x y,( ) F∈( ) y z,( ) G∈( )∧( )•∃( )⇔

F : X Y↔( )( )

dom F( )
x dom F∈( ) y : Y x y,( ) F∈( )•∃⇔

F : X Y↔( )( )

ran F( )
y ran F∈( ) x : X x y,( ) F∈( )•∃⇔

F G : X Y↔( ),( ) F G⊕( )

F G⊕( ) x
g x if x dom g∈( )
f x Otherwise

=

F : X Y↔( )( )

U : PX( )

X Y↔( )

((a; b) 2 (U C F )), (((a; b) 2 F )^ (a 2 U ))

1

X Y↔( )

((a; b) 2 (U �C F )), (((a; b) 2 F )^ (a 62 U ))

1
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• Range Restriction Operators — Given a relation  and ,

• the range restriction of F is a relation of type  which is defined as

below:

• the range co-restriction of F is a relation of type  which is defined as

below:

B.2.3.10 Sequence Operations

The operators for concatenation ( ^ ), head (head), tail (tail), last (last), front (front) are

defined on sequences whose semantics are well known.

B.3 Constraints on States

The body of a schema contains a set of conditions that are required to be satisfied by the

system. These conditions are statements of the propositional calculus or predicate calculus

where the propositions or the predicates are defined in terms of the state variables described

in the declaration part of the schema.

B.3.4 Propositional Calculus

Z uses propositional calculus for describing the information systems. A system is modeled

by selecting a set of primitive propositions that can be either true or false and using the

logical operators to build more complicated propositions that describe the system. These

logical operators are negation ( ¬ ), conjunction ( ∧ ), disjunction ( ∨ ), Implication ( ⇒ )

and Equivalence ( ≡ ). The semantics of these logical operators is well known.

F : X Y↔( )( ) U : PY( )

X Y↔( )

((a; b) 2 (F B U )), (((a; b) 2 F )^ (b 2 U ))

1

X Y↔( )

((a; b) 2 (F �B U )), (((a; b) 2 F )^ (b 62 U ))

1
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The propositions can be simplified by a set of rules that can be used to reason about

the properties of systems. The properties of a system can be proved by applying the

simplification rules to the description of the system.

B.3.5 Predicate Calculus

Predicate calculus with its quantifiers, in Z, facilitates the specification of the properties of

classes of objects that is tedious in propositional calculus. Predicates are boolean valued

expressions that evaluate to either true or false and compound expressions are built using

the propositional operators mentioned earlier. The two kinds of quantifiers are:

• existential quantifier ( ∃ ) which specifies that a property is true for at least one

member of a class, and

• universal quantifier ( ∀ ) which specifies that a property is true for every member

of the class.

B.4 The Specification Methodology

An information system, in Z, is specified as a state machine consisting of a set of states and

a set of operations. The states are described by means of a schema that describes the set of

state variables and any conditions that are universally true in the system. The operations are

also described by schemas that specify the conditions under which an operation can take

place called the pre-conditions and their affect on the state of the system called the post-

conditions. In a schema, all un-primed variables refer to the state of the system before the

operation and all primed variables refer to the state of the system after the operation.

Therefore an expression that does not contain any primed variables is a pre-condition and

an expression which has at least one primed variable is a post-condition.

In order to facilitate modular specifications, Z provides some operations on

schemas. These schema operations are:
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• Schema inclusion — A schema X can be included in the declaration part of

another schema Y. The effect of this is that all the declarations of X become part of

declarations of Y and the predicates of Y is a conjunction of the predicates of X

and Y. If a variable is declared in both X and Y then it should be of the same type.

For example, consider the following two schemas:

The schema Y is equivalent to:

• The ∆ and Ξ conventions - The ∆State is the schema obtained by combining the

before and after specifications of state i.e., it is equivalent to:

The ΞState is equivalent to ∆State along with the conditions that each primed state

variable is equal to its un-primed counterpart — it means that the state does not

change. This is used in specifications of operations that do not change the state.

For more details on Z see [DIL90].

X

x : type1
y : type2

P(x )
Q(y)

Y

X

x : type1

R(x )
S (y)

1

Y

x : type1
y : type2

P(x )
Q(y)
R(x )
S (y)

1

�State

State

State 0

1
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Appendix C

Protection features of Unix File
System in Z

In this Appendix we give a formal specification of the Unix file system protection

mechanisms in Z.

C.1 Type Definitions

In this specifications we use the following types.

• NAME which is the set of all strings of characters

• PRIVLVLS is {priv, unpriv}

• INTEGER is the set of all positive integers

• RIGHT is the set {‘r’, ‘w’, ‘x’}

• CHAR is the set of all characters

• FILTYPE is {File, Dir} where File denotes that the object is a file and Dir denotes

that the object is a directory.



Appendix C:  Protection features of Unix File System in Z 173

• PATH is a set of sequence of names where each sequence denotes a path name.

C.2 The State Description

The state description of the unix file system consists of a set of state variables whose values

give the information about the files and directories. These are

• Entities - The names of the users in the system.

• PrivStatus - Specifies whether a user a privileged or not.

• Pwd - It is the current directory of each user.

• InodeList - It is the list of Inodes [BAC86] which contain all the information about

files.

• OwnInode - Gives the name of the owner of each Inode.

• ORtInode - Gives the rights of owner to the object pointed to by this Inode.

• GRtInode - Gives the rights of a user who belongs to the same group as the owner

of the Inode.

• WRtInode - Gives the rights of user who is not the owner or does not belong to the

group of the owner of the Inode.

• DCInode - If the object represented by an Inode is a directory, this gives the con-

tents of that directory which is a list of names and Inode numbers.

• DatCInode - If the object represented by an Inode is a file, this gives the contents

of that file which is a sequence of characters.

• TypInode - This gives the type of an Inode which can be either a file or a directory.

• NoLinks - This gives the number of references to an Inode in all the directories.

• Root - This is the Inode number of the root directory.

• GList - This is the list of all groups.
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• EntGrps - This gives list of all groups that an entity belongs to.

The specification in Z of this state is as shown below.

Here the body of the above schema gives the constraints on the various state

variables in the system which are self explanatory.

C.3 Definition of Functions

Unix � File � System

Entities : PNAME
GList : PNAME
EntGrps : NAME 7! PNAME

PrivStatus : NAME 7! PRIVLVLS

Pwd : NAME 7! INTEGER

InodeList : PINTEGER
OwnInode : INTEGER 7! NAME

ORtInode : INTEGER 7! PRIGHT

GRtInode : INTEGER 7! PRIGHT

WRtInode : INTEGER 7! PRIGHT

DCInode : INTEGER 7! P(NAME � INTEGER)
DatCInode : INTEGER 7! seqCHAR
TypInode : INTEGER 7! FILTYPE

NoLinks : INTEGER 7! INTEGER

Root : INTEGER

Entities \GList = �

InodeList= domORtInode = domGRtInode

= domWRtInode = domTypInode

= domNoLinks = domOwnInode

= domDCInode [ domDatCInode

domDCInode \ dom datCInode = �

ranOwnInode � Entities

Root 2 InodeList

8x : NAME j (x 2 ranEntGrps)
� (x � GList))

domPwd = domPrivStatus = Entities

8x : NAME ; y : INTEGER j ((x ; y) 2 (ranDCInode))
� (y 2 InodeList)

TypInode(Root) = Dir

domEntGrps = Entities

8x : PNAME j (x 2 ranEntGrps)
� (x � GList)

1
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Here we give the definitions of some functions that are used in the specification of

operations which can change the protection state of the system.

The PIList function takes a path name, an entity name and a starting Inode number

and gives a sequence of Inode numbers corresponding to each directory in the given path

name. This sequence is obtained by traversing the path name in order and looking up the

next name of the path in the Inode contents of the current directory. This can be specified

as shown below:

The ChkPerms function takes a path name, an entity name and a starting Inode

number and tells whether the user has appropriate permissions to traverse the path or not.

PIList : PATH � NAME � INTEGER! seq INTEGER

8path : PATH ; user : NAME ; start : INTEGER;
SR : seq INTEGER

j PIList(path; user ; start) = SR

� (#path = #SR) ^
(�rst(SR) = start) ^
(8x : INTEGER j (x 2 ran SR)
� (x 2 InodeList) ^
((TypInode(x) = Dir) _ (x = last(SR)))) ^

(8 i : 2::#SR
� ((path(i); SR(i))2 DirConInode(SR(i � 1))))

1
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This is decided by checking whether the user has read permissions to all the directories

specified in the given path. The specification of this function in Z is as shown below.

C.4 The State Changing Operations

A number of operations exist in Unix file system that either check the protection state of

the system or change the protection state of the system. Here we give a few operations of

each kind.

A common operation in Unix is the file copy. This operation takes as input two paths

that are

• the source path including the name of the file to be copied and

• the destination path, which is a directory, where the copy has to be created.

It also takes as input a name that is the name of the copy. This operation checks the

rights of the user for the source path and the destination path and makes a new copy of the

file by creating a new Inode whose data contents are copied from the Inode of the source

ChkPerms : PATH � NAME � INTEGER! BOOLEAN

8path : PATH ; user : NAME ; start : INTEGER;
SR : seq INTEGER

j ((ChkPerms(path; user ; start) = TRUE) ^
(SR = PIList(path; user ; start)))

� ((#path = #SR) ^
(�rst(SR) = start) ^
(8x : INTEGER j (x 2 ranSR)
� (x 2 InodeList)^
((TypInode(x) = Dir) _ (x = last(SR))))

(8 i : 2::#SR
� (((path(i); SR(i))2 DirConInode(SR(i � 1))) ^

(((OwnInode(SR(i � 1)) = user) ^
(0r 0 2 ORtInode(SR(i � 1)))) _

((EntGrps(OwnInode(SR(i � 1))) \
EntGrps(user) 6= �) ^

(0r 0 2 GRtInode(SR(i � 1)))) _
(0r 0 2WRtInode(SR(i � 1)))))))

1
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file. The permissions of the new file are set so that the user who copies it will be the owner

and gets the read, write and execute accesses to it. The formal specification of this operation

is shown below:

Another operation in unix is the link operation that creates an entry in a directory

for a given Inode instead of actually copying the contents of the Inode. The effect of this

CopyFile

�Unix � File � System

Invoker# : NAME

src?;Dst? : PATH
NewName? : NAME

Invoker# 2 Entities

(�rst(src?) =0 =0))
ChkPerms(src?; Invoker#;ROOT ) = TRUE

(not(�rst(src?) =0 =0)))
ChkPerms(src?; Invoker#;Pwd(Invoker#)) = TRUE

TypInode(last(PIList(src?))) = File

(�rst(Dst?) =0 =0))
ChkPerms(Dst?; Invoker#;ROOT) = TRUE

(not(�rst(Dst?) =0 =0)))
ChkPerms(src?; Invoker#;Pwd(Invoker#)) = TRUE

TypInode(last(PIList(src?))) = Dir

8x : NAME ; y : INTEGER
j ((x ; y) 2 DirConInode(last(Dst?)))
� (x 6= NewName?)

9NewInode : INTEGER
� (NewInode 62 InodeList) ^
(DirConInode0 = DirConInode �

(last(PIList(Dst?));DirConInode(PIList(Dst?)) [
f(NewName?;NewInode)g))^

(InodeList 0 = InodeList [ fNewInodeg) ^
(TypInode0 = TypInode [ f(NewInode;File)g) ^
(DatConInode0 = DatConInode [

f(NewInode;DatConInode(last(PIList(Src?))))g) ^
(NoLinks 0 = NoLinks � f(NewInode; 1)g)
(WRtInode0 =WRtInode [ f(NewInode; f0r 0g)g) ^
(GRtInode0 = GRtInode [ f(NewInode; f0r 0g)g) ^
(ORtInode0 = ORtInode [ f(NewInode; f0r 0;0w 0;0 x 0g)g)

1
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operation is similar to the copy file operation but it differs in some important details. The

formal specification of this operation is shown below:

An operation that changes the current working directory can be specified as shown

below:

MakeHardLink

�Unix � File � System

Invoker# : NAME

src?;Dst? : PATH
NewName? : NAME

Invoker# 2 Entities

(�rst(src?) =0 =0))
ChkPerms(src?; Invoker#;ROOT ) = TRUE

(not(�rst(src?) =0 =0)))
ChkPerms(src?; Invoker#;Pwd(Invoker#)) = TRUE

(�rst(Dst?) =0 =0))
ChkPerms(Dst?; Invoker#;ROOT) = TRUE

(not(�rst(Dst?) =0 =0)))
ChkPerms(src?; Invoker#;Pwd(Invoker#)) = TRUE

TypInode(last(PIList(src?))) = Dir

8x : NAME ; y : INTEGER
j ((x ; y) 2 DirConInode(last(PIList(Dst?)))
� (x 6= NewName?)

DirConInode0 = DirConInode �
(last(PIList(Dst?));DirConInode(last(PIList(Dst?))) [

f(NewName?; last(PIList(Src?))g))

1

ChangeDir

�Unix � File � System

ndir? : PATH
Invoker# : NAME

Invoker# 2 Entities

(f irst(ndir?) =0 =0))
(ChkPerms(ndir?; Invoker#;Root) = TRUE ^

Pwd 0 = last(PIList(ndir?; Invoker#;Root)))
(not(�rst(ndir?) =0 =0)))
(ChkPerms(ndir?; Invoker#;Pwd(Invoker#)) = TRUE ^

Pwd 0 = last(PIList(ndir?; Invoker#;Pwd(Invoker#))))

1
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The operation that changes the protection state of the system is the chmod

command. This changes the rights associated with an object (either file or a directory) for

the owner, group and world under some conditions. This operation is specified as shown

below:

C.5 Conclusions

In this appendix we developed the formal specification of the protection mechanisms of

Unix file system in Z. This demonstrates that Z can be used to develop the specification of

protection mechanisms of large systems in a concise and unambiguous manner. These

specifications can be used both for understanding the features of the system and also for

proving the security properties of such systems.

ChangePermissions

�Unix � File � System

ORts?;GRts?;WRts? : RIGHT
src? : PATH
Invoker# : NAME

Invoker# 2 Entities
OwnInode(last(PIList(src?)) = Invoker#
(�rst(src?) =0 =0))

ChkPerms(src?; Invoker#;ROOT ) = TRUE

(not(�rst(src?) =0 =0)))
ChkPerms(src?; Invoker#;Pwd(Invoker#)) = TRUE

ORtInode0 = ORtInode � (last(PIList(src?));ORts?)
GRtInode0 = GRtInode � (last(PIList(src?));GRts?)
WRtInode0 =WRtInode � (last(PIList(src?));WRts?)

1


