
Contextual Representation
Learning for Text Data

A

Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial fulfillment

of the requirements for the degree

Doctor of Philosophy

by

Guangxu Xun

May 2021



APPROVAL SHEET

This dissertation

is submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Author: Guangxu Xun

The dissertation has been read and approved by the examining committee:

Advisor: Dr. Aidong Zhang

Committee Chair: Dr. Hongning Wang

Committee Member: Dr. Yangfeng Ji

Committee Member: Dr. Jundong Li

Committee Member: Dr. Stefan Bekiranov

Committee Member: Dr. Heng Huang

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, Dean, School of Engineering and Applied Science

May 2021



© Guangxu Xun 2021

ALL RIGHTS RESERVED



Acknowledgements

I would like to thank many people who have helped me along my path of pursuing a

Ph.D. degree in computer science.

First and foremost, I would especially like to thank my advisor Professor Aidong

Zhang, for taking me under her wing, and for running such a great lab where everyone

works on cutting-edge research problems. She has been a role model researcher who

is always passionate about new challenges. She is very knowledgeable and extremely

professional. What makes her an even greater advisor is that she truly cares about her

students. I consider myself very fortunate to have her as my advisor. Her knowledge,

advice, support and encouragement have greatly helped me during my Ph.D. study.

I would like to thank my committee members Professor Hongning Wang, Professor

Yangfeng Ji, Professor Jundong Li, Professor Stefan Bekiranov and Professor Heng

Huang for their valuable suggestions for my research and for shaping my dissertation.

I would also like to thank Professor Jing Gao for providing insightful advice.

I also appreciate the support and help from my collaborators, lab mates and friends.

I would like to thank Kishlay Jha, Xiaowei Jia, Fenglong Ma, Yaqing Wang, Ye Yuan,

Jinduo Liu, Nan Du, Xiaoyi Li, Vishrawas Gopalakrishnan, Yaliang Li, Houping Xiao,

Chuishi Meng, Liuyi Yao, Hongfei Xue, Qiuling Suo, Mengdi Huai, Jianhui Sun, Lionel

S. Lewis and many more whose names are not included here.

I would like to thank my parents, Siyuan Xun and Yuxia Zou, for raising me to

value education. I would like to thank my brother, Guangyu Xun, for his support and

encouragement. I would also like to thank my girlfriend, Millie Lin, for always being

supportive of my decisions.

i



Abstract

Nowadays, text data is being generated at an increasing rate of speed. Text data

is prevalent in various domains, such as social media, newspapers, clinical notes and

online reviews. Text data contains rich information and understanding text data is

important for Artificial Intelligence (AI) tasks, especially for Natural Language Pro-

cessing (NLP) tasks. The key to understanding text data lies in the representation of

the data, as the success of NLP algorithms heavily depends on the quality of the text

representations. For that reason, many conventional NLP systems attempt to design

preprocessing pipelines and data transformations that can provide good representations

of text data. Such feature engineering is useful but requires careful design and prior

knowledge. Therefore, it is desirable to learn representations of text data automatically

and lessen the degree of feature engineering in NLP systems. In this way, the down-

stream NLP applications can be constructed faster and achieve better performances.

Context information of text data, including spatial context, temporal context and

domain context, is naturally a good source to learn representations of text data. Because

the context information not only contains syntactic and semantic information which are

a core requirement for representations of text data, but also is easy and convenient to

collect. I will first introduce how to extract semantic and syntactic features from text

data based on its spatial context information, such as word-word co-occurrences and

document-word co-occurrences, and also how to coordinate both kinds of spatial context

information. Next, I will demonstrate how to learn time-aware representations based on

the temporal context information of text data, for example, temporal representations

that can capture the semantic evolutions of words. Then I will show how to learn

domain-specific representations of text data based on its domain context information,

for example, extracting domain-related features from documents given the task domain.

Extensive evaluations are also conducted and presented to demonstrate the effectiveness

of the proposed contextual representation learning algorithms.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Representation Learning for Text Data

Nowadays, the amount of data generated every day is increasing at a fast speed and text

data takes up a large part of it. Text data can be found everywhere, for example, social

networks where users share their stories, academic conferences where research papers

get published, news media, clinical notes, and online reviews. Text data contains rich

information and Natural Language Processing (NLP) is a subfield of Artificial Intelli-

gence (AI) which aims to build models for computers to understand text data. As with

other machine learning models, building NLP models typically consists of three major

steps: learning representations of data, formulating objective functions and optimizing

model parameters. Data representation determines what information we can extract

from data, for example, encoding a data sample into a feature vector. Therefore the

quality of data representation has a huge impact on the performance of NLP mod-

els. Conventional NLP models adopt careful data preprocessing and transformation to

obtain a representation of the text data. However, such feature engineering requires

prior knowledge and careful design, and it is also time-consuming and labor-intensive.

This heavily limits the ease and scope of applicability of NLP systems. Hence, it is

highly desirable to automate representation learning and lessen the degree of feature

engineering.

Representation learning for text data aims to automatically extract information from

text data which will be subsequently used for further NLP and text mining tasks. Among

1
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various ways to learn representations of text data, this dissertation concentrates on

deep learning methods. Compared with conventional representation learning methods,

deep representation learning can extract more abstract representations and has achieved

huge success in many domains, such as NLP and computer vision. Deep representation

learning methods can greatly reduce the effort of feature engineering and improve final

model performance at the same time. To this end, many NLP researchers are devoted

to deep representation learning for text data and many deep representation learning

methods are proposed, such as Word2Vec [1], GloVe [2], fastText [3], ELMo [4], BERT

[5] and attention [6]. Compared with traditional representations of text data, such

as the one-hot representations, deep representations encode an object, e.g., a word, a

sentence or a document, into a low-dimensional real-valued feature vector, which is also

known as the distributed representation. Moreover, by representing text data as dense

vectors, the distributed representation is able to handle the curse of dimensionality issue

in large-scale data.

1.1.2 Contextual Representation Learning for Text Data

A good representation learning method for text data should have the following proper-

ties:

• Easy to collect data. The success of deep learning models is heavily dependent

on the amount of training data we can collect. The more data, the better perfor-

mance. Hence, to learn good representations, the data collection procedure should

be easy and convenient.

• Syntax and semantics. The ultimate goal of NLP is for computers to understand

human languages. Therefore, it is crucial that the learned representation of text

data captures the syntactic and semantic regularities in languages.

• Efficiency. Text data normally has very high dimensionalities and faces the curse

of dimensionality issue. Thus, efficient representations are desirable for text data.

• Smoothness. This is a basic requirement for most representation learning methods.

We expect words, sentences, documents with similar properties to have similar

representations.

• Coherence. Text data samples close to each other temporally or spatially tend to
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have strong associations. When learning representations of text data, the temporal

and spatial neighbors of a text sample should be carefully considered for coherence.

Learning representations based on the context information of text data can fulfill

the aforementioned requirements. First of all, it is quite easy and convenient to collect

the context information of text data. For example, spatial context can be efficiently

constructed from the word co-occurrence patterns. Two common types of spatial con-

text information are the global document-word co-occurrence patterns and the local

word-word co-occurrence patterns, and they can be used to learn representations of

documents and words. A distinct advantage of such context information is that it re-

quires no human annotation and can be easily constructed from unstructured text data.

Second, according to the distributional hypothesis [7], “words that are used and occur in

the same contexts tend to purport similar meanings”, representation learning based on

context information is able to capture the word-level syntax and semantics. In addition,

words with similar meanings tend to occur in similar contexts, and this context simi-

larity can help us achieve the smoothness of representations. Third, since contextual

representation learning considers various types of context information, e.g., the tempo-

ral context information, the coherence of representations can also be achieved. Lastly,

context information works well with the distributed representations in deep models, and

can further avoid the high dimension issue in text data.

Therefore, this dissertation is focused on learning deep representations of text data

based on the context information. Contextual representation learning models are inves-

tigated based on three types of context information: spatial context, temporal context

and domain context.

1.2 Spatial Context in Text Data

Spatially nearby words form the most commonly used context information in text data.

Based on the scopes of spatial context in text data, there are global context and local

context. Spatial context information typically provides a way to establish language

models, where we can learn representations of the input text data directly or as a

byproduct.
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1.2.1 Global Context

The global context information of a text corpus refers to the document level co-occurrence

information, which contains topical information in language. Contextual representation

learning models based on global spatial context try to model languages and learn rep-

resentations based on the document-word co-occurrences. Most of these models follow

the bag-of-words assumption and can learn representations carrying topic structures.

Topic models typically take the global context as input and can learn topical rep-

resentations of text data. Latent Semantic Analysis (LSA) [8] uses a document-word

matrix to denote the global context information of a text corpus and uses singular value

decomposition (SVD) to find a low-rank approximation of the matrix while obtaining

the latent semantics of documents. The latent semantics represent the topic dimen-

sion of documents. Documents and words can then be represented as dense vectors

in the latent topic space. Probabilistic Latent Semantic Indexing (PLSI), also known

as Probabilistic Latent Semantic Analysis (PLSA), is a classical topic model. It is a

generative model for word and document co-occurrences [9]. The basic idea of this

model is to model the co-occurrences which associate a latent topic variable with the

occurrence of a word in a document. Every document in the corpus corresponds to a

unique distribution of topics and every topic also has a unique distribution of words

in the vocabulary. Though being effective, PLSI suffers from the issue of over-fitting

due to the linear growth in the number of parameters with the number of training

documents. To address this issue, Latent Dirichlet Allocation (LDA) [10] is proposed.

Compared with PLSI, LDA also assumes that each topic is a specific distribution over

words, but LDA tackles the over-fitting issue by generating the topic distribution for

each document from a Dirichlet distribution.

1.2.2 Local Context

The local context information of a text corpus refers to the word level co-occurrence

information, i.e., the neighborhood words of a focus word in a context window. It

contains semantic and syntactic regularities in language. Most contextual representation

learning models based on local context follow the distributional hypothesis and can learn

representations carrying word-level syntax and semantics.

Neural language models typically take the local context as input and can learn dis-

tributed representations of words. Distributed representations of words [11], also known
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as word embeddings and word vectors, are a core technique to introduce neural networks

into contextual representation learning. It is able to address the curse of dimensionality

issue and the lack of semantics issue in conventional one-hot representations. By in-

corporating the distributed representations of words, the neural probabilistic language

model (NPLM) [12] uses a multi-layer neural network to predict words given their local

contexts and learn word embeddings as a byproduct. Inspired by NPLM, many more

deep representation learning models are proposed based on local context. For example,

Word2Vec [1] alleviates the computation burden of the last softmax layer using nega-

tive sampling and hierarchical softmax, and GloVe [2] speeds up the learning process

by calculating the contextual statistics in advance. In recent years, the popularity of

neural language models as a pre-training method continues to grow as they achieve re-

markable success in both academia and industry. Famous examples are ELMo [4] and

BERT [5]. These models adopt deeper architectures, larger corpora, more parameters,

and more importantly they consider more complicated and wider context information.

As a consequence, they are able to dynamically calculate representations of input data,

which is especially useful for complex phrases and polysemes. Moreover, they started

the practice and research of transfer learning in NLP

1.3 Temporal Context in Text Data

Representations of text data can be time-sensitive in many scenarios. For example, a

series of consecutive daily headline news gradually reveal the whole picture of an event.

A more common scenario is the evolution of word meanings, for instance, “apple” was

initially only associated with fruits, but now it also has another meaning as a technology

company. The temporal context can help us learn time-aware representations of text

data and ensure the temporal coherence of representations.

The temporal context can be integrated into representation learning in many ways,

the most commonly used being to minimize the difference between representations at

adjacent time frames. In particular, the temporal context is constructed by splitting

text corpus into multiple time slices. One way to utilize the temporal context is to first

learn static representations of each time slice separately, and then try to find a linear

alignment across different time slices [13, 14]. Another way to utilize the temporal

context is to jointly learn representations of different time slices and circumvent the

additional alignment step [15, 16]. Temporally coherent representations are useful for
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many time-sensitive NLP tasks, such as language evolution analysis and trending topic

tracking.

1.4 Domain Context in Text Data

Text data is generated in a countless number of domains, including but not limited to

social media texts, bioinformatics research papers, machine learning research papers, log

files, news articles, novels and online reviews. Moreover, text data in different languages

can also be viewed as in different domains. Therefore, the quality of representations

largely depends on the task domains. For example, given the same movie review text,

if we are doing sentiment analysis, we would like the representations sensitive to the

sentiment content of the text, such as keywords like “excellent”, “recommended” and

“boring”. However, if we are doing genre detection, we would prefer the representations

that can extract information like “comedy” and “anime”.

Good representations of text data vary largely based on different domains. The

domain context of text data, e.g., prior knowledge, constraints and objectives, usually

comes from the source information, the publisher information and the task descrip-

tions. The domain context information can be integrated into representation learning

as auxiliary modules, such as attention modules [6], to store the domain information.

Contextual representation learning based on domain context enables us to automatically

extract domain-sensitive features from text data.

1.5 Contributions and Dissertation Organization

This dissertation investigates contextual representation learning for text data based on

three types of context information: spatial context, temporal context and domain con-

text. The organization and contributions of the rest of the dissertation are summarized

as follows:

Chapter 2 investigates how supplementary local context information can mitigate

the lack of context information problem and discover topics in short texts. Discovering

topics in short texts, such as news titles and tweets, has become an important task for

many content analysis applications. However, due to the lack of context information

in short texts, the performance of conventional topic models on short texts is usually

unsatisfying. In this chapter, we propose a novel topic model for short text corpus
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using word embeddings. Continuous space word embeddings, which are proven effec-

tive at capturing regularities in language, are incorporated into our model to provide

additional semantics. Thus we model each short document as a Gaussian topic over

word embeddings in the vector space. In addition, considering that background words

in a short text are usually not semantically related, we introduce a discrete background

mode over word types to complement the continuous Gaussian topics. We evaluate our

model on real-world news titles, showing that our model is able to extract more coher-

ent topics from short texts compared with the baseline methods and learn better topic

representation for each short document.

Chapter 3 investigates how supplementary local context information can assist in

discovering topic correlations. Conventional correlated topic models are able to capture

the correlation structure among latent topics by replacing the Dirichlet prior with the

logistic normal distribution. Word embeddings have been proven to be able to capture

semantic regularities in language. Therefore, the semantic relatedness and correlations

between words can be directly calculated in the word embedding space. In this chapter,

we propose a novel correlated topic model using word embeddings. The proposed model

enables us to exploit the additional word-level correlation information in word embed-

dings and directly model topic correlation in the continuous word embedding space. In

the model, words in documents are replaced with meaningful word embeddings, topics

are modeled as multivariate Gaussian distributions over the word embeddings and topic

correlations are learned among the continuous Gaussian topics. A Gibbs sampling so-

lution with data augmentation is given to perform inference. We evaluate our model on

real-world text corpora qualitatively and quantitatively.

Chapter 4 investigates how to coordinate global and local context to achieve bet-

ter representations of text data. A text corpus typically contains two types of spatial

context information – global context and local context. Global context carries topical

information which can be utilized by topic models to discover topic structures from the

text corpus, while local context can train word embeddings to capture semantic regular-

ities reflected in the text corpus. This encourages us to exploit the useful information

in both the global and the local context information. In this chapter, we propose a

unified language model based on matrix factorization techniques which takes the com-

plementary global and local context information into consideration simultaneously, and

models topics and learns word embeddings collaboratively. We empirically show that

by incorporating both global and local context, this collaborative model can not only
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significantly improve the performance of topic discovery over the baseline topic models,

but also learn better word embeddings than the baseline word embedding models.

Chapter 5 studies how to learn dynamic representations of text data based on tem-

poral context and further facilitate the analysis of knowledge evolution. Literature

based discovery (LBD) is a task that aims to uncover hidden associations between non-

interacting scientific concepts by rationally connecting independent nuggets of informa-

tion. In this chapter, we propose a novel dynamic Medical Subject Heading (MeSH)

embedding model which is able to model the evolutionary behavior of medical concepts

to uncover latent associations between them. The proposed model constructs diachronic

literature data, learns dynamic representations of medical concepts and detect informa-

tive concepts. Hence, based on the dynamic MeSH embeddings, meaningful medical

hypotheses can be efficiently generated. To evaluate the efficacy of the proposed model,

we perform both qualitative and quantitative evaluations. The results demonstrate that

leveraging the evolutionary features of MeSH concepts is an effective way of predicting

novel associations.

Chapter 6 investigates how to learn time-aware representations based on the tem-

poral context of sequential data. Epileptic seizures are a serious health problem and

there is a huge population suffering from it every year. Analyzing the scalp EEG is

the most common way to detect the onset of a seizure. In this chapter, we propose the

context-learning based EEG analysis for seizure detection (Context-EEG) algorithm.

The proposed method aims at extracting both the hidden inherent features within EEG

fragments and the temporal features from EEG contexts. First, we segment the EEG

signals into EEG fragments of fixed length. Second, we learn the hidden inherent fea-

tures from each fragment and reduce the dimensionality of the original data. Third, we

translate each EEG fragment to an EEG word so that the EEG context can provide

us with temporal information. And finally, we concatenate the hidden feature and the

temporal feature together to train a binary classifier. The experiment result shows the

proposed model is highly effective in detecting seizures.

Chapter 7 explores how to learn domain-specific representations of text data based

on domain context. MEDLINE is the primary bibliographic database maintained by Na-

tional Library of Medicine (NLM). MEDLINE citations are indexed with MeSH terms.

This greatly facilitates the applications of biomedical research and knowledge discovery.

Currently, MeSH indexing is manually performed by human experts. To reduce the
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time and monetary cost associated with manual annotation, many automatic MeSH in-

dexing systems have been proposed to assist manual annotation. However, the existing

models usually cannot extract domain-specific features and suffer from efficiency issues.

In this chapter, we propose an end-to-end framework, MeSHProbeNet, which utilizes

deep learning and self-attentive MeSH probes to learn domain-specific representations

of biomedical articles. Each MeSH probe enables the model to extract one specific

aspect of biomedical knowledge from an input article, thus comprehensive biomedical

information can be extracted with different MeSH probes and interpretability can be

achieved at word level. MeSH terms are finally recommended with a unified classifier,

making MeSHProbeNet both time efficient and space efficient.

Chapter 8 demonstrates that even more specific representations can be learned given

fine-grained domain context. In this chapter, we propose an end-to-end framework,

MeSHProbeNet-P, which extends MeSHProbeNet with personalizable MeSH probes.

In MeSHProbeNet-P, each MeSH probe carries certain aspects of biomedical knowledge

and extracts related information from input articles. Given fine-grained domain context,

MeSHProbeNet-P is able to automatically personalize/customize its MeSH probes for

different input articles to ensure that the current MeSH probes best fit the current input

article and the most informative features can be extracted from the article. We demon-

strate the effectiveness of MeSHProbeNet-P in a real-world large-scale MeSH indexing

challenge. We also provide ablation studies to show the advantages of personalizable

MeSH probes.

Chapter 9 concludes the dissertation with a discussion of future research directions.
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Chapter 2

Exploiting Supplementary Local

Context for Topic Discovery in

Short Text

2.1 Introduction

With more than five Exabytes of data being generated in less than two days [17], recent

researches in Internet and social media focus on effective ways for data management and

content presentation. Social networks on their part attempt to handle this by trying to

provide a cohesive yet real-time view on a topic by partitioning the data into “Trending

Topics” by hashtag or text mentions. However, such explicit categorization is either not

possible or comes at a high cost in other domains like news titles, text advertisements,

questions/tasks in crowd sourced applications, etc. To this end, topic models have

proven to be a useful tool in unsupervised text analyses and pattern discovery in a

corpus. Extracting meaningful topics helps us better analyze the documents, reduce

the dimensionality of documents (allowing faster analyses) and is also crucial for many

content analysis tasks, e.g. dynamic topic detection and topic expertise discovery [18,

19, 20, 21, 22]. However, the efficacy of conventional topic models is limited by the lack

of rich context in short texts. The limitation stems from the fact that each individual

document, by itself, is too short for effective topic extraction.

Conventional topic models, such as Probabilistic Latent Semantic Analysis (PLSA)

[9] and Latent Dirichlet Allocation (LDA) [10], follow the bag-of-word assumption and

11
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model documents as mixtures of latent topics, where topics are multinomial distributions

over words. Bayesian methods are then employed to learn the topic distribution for

each document based on the document-word frequency matrix of the corpus. However,

compared with regular documents, short texts are suffering from the lack of rich context.

Short texts like news titles or tweets usually span only 10-30 word long, e.g. Twitter

imposes a limit of 140 characters on each tweet. From a statistical point of view, this

problem will heavily limit the quality of topics extracted from short texts by conventional

topic models.

To overcome the lack of context information in short text corpus and exploit external

semantics, we develop a new topic model for short text using word embeddings [23] in

continuous vector space. Word embeddings, also known as word vectors and distributed

representations of words, have proven to be effective at capturing semantic regularities

in language: words with similar semantic and syntactic attributes are projected into the

same area in the vector space. More specifically, first we use Wikipedia as an external

source to train word embeddings upon it. The resulting semantic regularities are then

used as a supplementary information to overcome the limitation of context information

in short texts. Second, in the vector space of word embeddings, we formulate topics

using Gaussian distributions to handle the “continuous” space of word embeddings.

The primary motivation behind this modeling is that since we are now in vector space

and semantically related words are located close to each other, Gaussian distribution

over the word embeddings denotes the semantic centrality. Third, instead of viewing

each short text as a mixture of topics, we assume each such text focuses on only one

Gaussian topic. This assumption is plausible as the size of text is in the range of 10-30

words. Fourth, considering the fact that most background words are not semantically

related, we add the background mode with discrete multinomial distribution of words

to complement the Gaussian topics. Thus, we are able to extract better topics from

short text.

2.2 Methodology

In this section, we discuss the proposed methodology to extract high quality topics from

short texts. An end-to-end framework is shown in Figure 2.1.
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Figure 2.1: Schematic illustration of topic discovery for short texts. Part (a) repre-

sents the word embedding learning process. Part (b) represents the topic modelling in

presence of word embedding for short texts.

2.2.1 Learning Word Embeddings from Wikipedia

In our approach, we learn word embeddings using Wikipedia as the external source.

The motivation of using Wikipedia lies in the sheer range of topics and subjects that

are covered. Extracting word embeddings from Wikipedia allows us to “enrich” the

short text with additional semantics. The part (a) of Figure 2.1 illustrates the training

of Continuous Bag of Words (CBOW) word embeddings using Word2Vec tool [24].

Having learnt the word embeddings, given a word wdn, which is the nth word in dth

document, we can enrich that word by replacing it with the corresponding word embed-

ding (red blocks in Figure 2.1). The following section describes how this enrichment is
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used in a generative process to extract a single topic for a given short document.

2.2.2 Strategies and Generative Process

Wikipedia word embeddings give us useful additional semantics, which is crucial due

to the lack of context information in short texts. However, as the documents are now

sequences of word embeddings instead of sequences of word types, conventional topic

models no longer are applicable. Since the discrete word types are now replaced by

continuous space of word embeddings, and those word vectors are allocated in space

based on their semantics and syntax, we consider them as draws from several Gaussian

distributions. Hence, each topic is characterized as a multivariate Gaussian distribution

in the vector space. The choice of Gaussian distribution is justified by the observa-

tions that Euclidean distances between word embeddings correlate with their semantic

similarities.

Another important observation about short texts is that each short text usually

consists of only one topic instead of a combination of multiple topics. Inspired by

Twitter-LDA [25], we assume each document is about one single Gaussian topic. Thus,

the words in a document either belong to the document’s topic or to the background

mode.

However, it is not accurate to continue using word embeddings for the background

mode. This is because background words are not semantically interrelated and hence,

we cannot find a semantically correspondent Gaussian distribution to their physical

locations in the vector space. Thus, in the background mode, we use discrete word

types rather than continuous word embeddings to represent words.

More formally, a document d is construed to be of a single Gaussian topic, repre-

sented by zd in Figure 2.1 part (b). The corresponding parameter that controls the

latent topic distribution is θ and the hyper-parameter for that distribution is α. Word

wdn can either be a topic word or a background word, we consider both factors. For

a topic, it is represented by a multivariate Gaussian distribution in the word vector

space and µk denotes the mean and Σk denotes the covariance for the kth topic. Ψ is

hyper-parameter covariance matrix and ν is the hyper-parameter denoting the initial

degree of freedom. µ0 is the hyper-parameter for mean. φ represents the multinomial

distribution for background words for which the corresponding hyper-parameter is β.

The fact that whether the word wdn is a background word or not is depicted by an
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indicator variable xdn, whose parameter is ϕ representing the Bernoulli distribution.

The corresponding hyper-parameter for that distribution is η. Variables in bold font

mean they are either vectors or matrices. The generative process is as follows:

1. Draw θ ∼ Dir(α).

2. Draw φ ∼ Dir(β).

3. Draw ϕ ∼ Dir(η).

4. For each topic k = 1, 2, · · · ,K:

(a) Draw topic covariance Σk ∼ W−1(Ψ, ν).

(b) Draw topic mean µk ∼ N (µ0,
1
τΣk).

5. For each text d = 1, 2, · · · , D:

(a) Draw a topic zd ∼Multinomial(θ).

(b) For each word index n = 1, 2, · · · , Nd:

i. Draw a word category xdn ∼ Bernoulli(ϕ).

ii. Draw a word. If xdn = 1, Draw topic word wdn ∼ N (µzd ,Σzd); other-

wise, draw background word wdn ∼Multinomial(φ).

Note that τ in step 4 (b) is a constant factor. We use the following conjugate priors:

a Gaussian distribution N for the mean and an inverse Wishart distribution W−1 for

the covariance.

2.2.3 Model Details

When xdn = 1, the current word wdn is a topic word and it corresponds to a Wikipedia

word embedding; otherwise, the current word wdn is a discrete background word. Hence,

the conditional probability of the current word wdn is:

p(wdn|xdn, zd, φ,µ,Σ) ∝
(
f(wdn|µzd ,Σzd)

)xdn (φwdn
)1−xdn ,

where function f(w|µk,Σk) is the probability density of topic k’s Gaussian distribution.

Thus, for document d of Nd words, the conditional probability is:

p(wd|θ, φ, ϕ,µ,Σ) =
∑
z

p(z|θ)

(
Nd∏
n=1

p(xdn|ϕ)p(wdn|xdn, z, φ,µ,Σ)

)
. (2.1)
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Thus, for the corporaD = {d}D1 , we can obtain the overall probability p(D|α, β, η,Ψ, ν,µ0)

by integrating out the intermediate variables. Furthermore, the objective function to

minimize is the log likelihood of the corpora:

O = − log p(D|α, β, η,Ψ, ν,µ0). (2.2)

2.2.4 Estimation and Parameter Inference

The observed variables are documents consisting of word types and word embeddings,

and our goal is to infer the posterior distributions over the Gaussian topics and back-

ground mode along with topic assignments of words. We use Gibbs-EM to infer the

parameters [26]. We begin by first fixing the other variables and derive a collapsed

Gibbs sampler that samples document topic zd document by document. The probabil-

ity for sampling document topic zd is:

p(zd = k|z−d, D,µ,Σ, α, β,x) ∝ (nk−d + α) ·
Nd∏
n=1

(
Tr(wdn|µk,

τk + 1

τk
Σk)

)xdn
, (2.3)

where nk−d denotes the number of times that topic k is sampled, without counting cur-

rent document d. Tr(w|µ,Σ) is the multivariate Student’s t-distribution for Gaussian

sampling with (r = νk − dim + 1) being its degrees of freedom and dim being the di-

mensionality of word embeddings. (νk = ν + nk) and (τk = τ + nk) are the parameters

of topic k, where nk represents the total number of words that are assigned to topic k.

xdn is the topic/background indicator for word wdn.

Then after the document topic zd is sampled, for each word wdn in document d, we

sample the topic/background indicator xdn according to the Bernoulli distribution:

p(xdn|w,x−w,zd = k,D,µ,Σ, α, β)

∝
(

n−wx=1 + η

n−wx=1 + n−wx=0 + 2η
· Tr(wdn|µk,

τk + 1

τk
Σk)

)xdn
·

(
n−wx=0 + η

n−wx=1 + n−wx=0 + 2η
· nwx=0 + β∑V

w′=1 n
w′
x=0 + V β

)1−xdn

,

(2.4)

where n−wx=1 and n−wx=0 denote the number of topic words and background words respec-

tively, without considering the current word. nwx=0 is the number of times the current
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word sampled as a background word, and V is the vocabulary size. Every time zd or

xdn is re-sampled, the involved Gaussian topics would change and needs to be updated.

Following the idea of [27], we can derive the updates for µk and Σk of the posterior

Gaussian distributions for topic k.

2.3 Experiments

In this section, we conduct experiments on real-world short texts to demonstrate the

effectiveness of our model. This section details the dataset, the evaluation metric,

baselines and the performance of our proposed model.

2.3.1 Dataset and Baselines

The dataset used for topic discovery is crawled from abcnews1 . Based on the news

categories in abcnews website, the documents in this dataset are divided into ten groups:

Entertainment, Health, U.S., International, Law, Money, Politics, Sports, Technology,

and Travel. In each category, there are 1000 news documents. Each document has a

title and an optional description of the corresponding news article. The average length

of the description, when available, is around 20 words - very short as compared to a

regular document.

We use Latent Dirichlet Allocation (LDA) [10] and Gaussian-LDA [28] as the base-

lines to evaluate the performance of our topic discovery. Gaussian-LDA is first proposed

for audio retrieval [27] and then used to leverage another kind of continuous data – word

vectors to incorporate external semantics [28].

2.3.2 Experiment Setup

When learning word embeddings from Wikipedia, we set the dimensionality of word

embeddings to 50, and the context window size to 12. This means when we are pre-

dicting the current word, its previous 6 words and subsequent 6 words contribute to the

prediction. We train word embeddings with an iteration of 100 epochs.

As there are 10 categories in our news dataset, we are interested to see if the extracted

topics can reveal a similar mixture. Hence we set the number of topics K to 10. For

uniformity, all the baseline topic models are implemented with Gibbs sampling as well

1 http://abcnews.go.com/
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Table 2.1: Top 10 words in each topic for LDA.
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

know one new new can year us week look news

clinton america apple years episode hotel see says said abc

police back today time full cruise airline trump first family

need first facebook day best vacation 3 presidential game latest

shooting world video found 15 high ceo debate season big

year obama people past 10 car flight john state star

hillary made 1 birth top report home donald last get

everything said two things 11 satisfaction letter new win ways

life man old now 20 city mom president homes pope

inside around co google travel four plane carson 4 save

Table 2.2: Top 10 words in each topic for Gaussian-LDA.
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

presidential back clinton hotel leading news shooting abc latest president

debate apple family people jobs big made year top america

world full birth abc travel ways bringing week today episode

candidate flight police yaz news report america trump pope presidential

pope time life part homes letter inside airline found house

york control man years latest high colorado obama long game

time plane state kids microsoft case back ceo refugees star

save woman woman video founder things found cruise called season

talks million home women back million dead vacation recently hunter

news car safety rielle top family police hillary remains paris

Table 2.3: Top 10 words in each topic for our model.
Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

presidential apple star year america captain airline episode children flight

clinton world world game infrastructure control hotel full cancer police

campaign officer jenner back taskrabbit birth letter 15 mysterious plane

2016 garrido swift google business wreck satisfaction pope students paris

trump search stars big company yaz complaint star doctors attacks

candidate failed wars family microsoft leading cruise shooting rare woman

president mars williams life jobs pill suite francis brain refugees

debate photo photos win nokia credit vacation 20 price city

hillary shooting bruce abc homeowners identity report 09 disease turn

week latest opens woman myspaces card serving week symptoms attack
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and we perform 100 iterations of Gibbs sampling for all the models. We set η = 20,

β = 0.01, and α = 50/K. For the hyper parameters regarding Gaussian topics, we set

prior µ0 to the sample mean of all the word embeddings, the initial degree of freedom

ν to the dimensionality of word embeddings, and assign an identity matrix to prior Ψ.

As our abcnews dataset and Wikipedia are two different corpora, it’s inevitable to

encounter out-of-vocabulary words when extracting topics for abcnews dataset, i.e., some

words in abcnews do not have corresponding word embeddings learnt from Wikipedia.

We generate their word embeddings using the Gaussian distribution N (µ0,Ψ).

2.3.3 Experimental Results on Topic Coherence

Usually perplexity is used as a measure to evaluate language models. But in our case,

the probability of a word embedding is given by its probability density function rather

than an exact probability. Furthermore, the probability of a background word is given

by the discrete multinomial probability with respect to the background mode, and this

disagreement between continuous probability density and discrete probability makes it

incorrect and in fact infeasible to use perplexity in our analysis. Thus, we list top 10

words in each topic for LDA, Gaussian-LDA and our model on abcnews dataset with

K = 10, as shown in Tables 2.1, 2.2 and 2.3. The words are ranked based on their

frequency in each topic in the last round of sampling.

From Table 2.1, we can see that the topics extracted by LDA are not satisfying, and

this is probably because of the limitation of document length. Only topic 6 and topic 8

are high-quality topics corresponding to Travel and Politics. Topic 1 looks to be loosely

related to Law but with Politics mixed in. The other topics are not at all acceptable.

In Table 2.2, with the help of Wikipedia word embeddings, the extracted topics get

more coherent. This validates the use of word embeddings in topic modelling. However,

one can observe that the topics are still not as crisp as the ones we want. This is because

of the fact that this model still treats the text as a mixture of many topics rather than

a single topic.

Lastly we present the top words for our model - Table 2.3. As one can observe many

news categories, Politics (topic 1), Entertainment (topic 3), Sports (topic 4), Technology

(topic 5), Travel (topic 7), Health (topic 9) and International (topic 10), are success-

fully extracted with high quality keywords. It is worth noticing that Entertainment,

Technology and Health have not been extracted by any of the baseline topic models,
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Table 2.4: Comparison of document-topic distribution.

Model Precision Recall F1

LDA 0.162 0.163 0.163

Gaussian-LDA 0.117 0.140 0.128

Our Model 0.223 0.271 0.244

and that our model even captures the names of entertainers in topic 3. Also we can still

tell that topic 2 is somewhat related to Law, and topic 6 to Money.

2.3.4 Quality of Topic Representation of Documents

We see that the topics extracted by our model are more reasonable and have better

qualities. But are the topics extracted by our model really corresponding to the coherent

news categories? To answer this, we compare the category labels with the document-

topic labels to see if they are consistent. The category label of each news article comes

from the dataset and is used as the ground truth. The document-topic label of each

news article is assigned by the models. More specifically, for LDA and Gaussian-LDA ,

we can assign one single topic to document d according to:

zd = argmaxzp(z|d).

For our model, each document has only one topic according to the model assumptions.

To solve the cluster matching problem, e.g., news category 1 may correspond to topic

9 instead of topic 1, we use pairwise comparison [29] to measure the consistency be-

tween news categories and extracted topic representation of documents. The pairwise

comparison defined as:

precision(E,G) =
||pairE ∩ pairG||
||pairE ||

,

recall(E,G) =
||pairE ∩ pairG||
||pairG||

,

F1(E,G) =
2× precision× recall
precision+ recall

,

where E and G are two clustering results corresponding to ten document-topic groups

and ten ground truth categories respectively in our case, and pairE denotes the set of

pairs in clustering result E. The result of this comparison is reported in Table 2.4. We
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can see that, with respect to the consistency between news categories and extracted

topics, our model outperforms the other baselines significantly.

2.4 Related Works

Topic models have been proposed to reveal the latent semantic structure from text

corpus. Latent Semantic Analysis (LSA) [8] first tries to uncover the latent semantic

information in a corpus by applying singular value decomposition to the document-term

matrix. Probabilistic Latent Semantic Analysis (PLSA) [9] and Latent Dirichlet Allo-

cation (LDA) [10] further use a hidden topic variable to capture the latent semantic

structure and model documents as mixtures of topics, while topics are probability dis-

tributions over words. PLSA, LDA and their variants, such as the author topic model

[30], have achieved huge success in analyzing normal texts. However, for short texts,

such as tweets and news titles, conventional topic models usually don’t work well due

to the lack of rich context.

An intuitive way to handle this problem in short text corpus is to aggregate several

short texts into one normal document based on auxiliary information before extracting

topics. For instance, Weng et al. [31] utilize the user information of Twitter. They

make an assumption similar to the author-topic model [30] that each user has a specific

topic preference and then aggregate the tweets by the same user into one long document.

Such aggregation methods can alleviate the lack of rich context problem and improve the

performance of conventional topic models. However, such heuristic aggregation methods

do not work in the scenarios where auxiliary information is not available. Take news

titles as an example - there is no such auxiliary information as user name to utilize.

Besides the assumption on user topic distribution, making assumption on the data is

another way to tackle this problem. Zhao et al. [25] follow the assumption that a

single tweet is usually about one single topic and further models each tweet as a variant

of mixutre of unigrams. In [32], rather than each short document, they assume each

sentence is about one topic.

However, these aforementioned models fail to leverage external semantics, which is

quite helpful in dealing with the lack of rich context in short text corpus. Das et al. [28]

first tries to combine topic modeling and word embeddings for regular texts, and further

introduces a fast training method for it. Focusing on short texts, our model proposes a

novel generative strategy utilizing word embeddings – modeling each short text as one
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single Gaussian distribution over topic words and complementing continuous Gaussian

topics with discrete multinomial background model. The word embeddings we used in

our model is derived from the language models based on distributed representations

of words. Those language models are mostly built on neural network structures. The

distributed representation of words, i.e., word embedding, is first introduced into natural

language processing by NPLM [23]. Many distributed language models with speed-

up strategies, such as using tree structures, have been proposed to reduce the time

complexity of NPLM [33, 24]. Mikolov et al. [24] proposed a Huffman tree based

hierarchical neural network called Word2Vec, which significantly shortens the training

time and is one of the most popular distributed language models currently in use.

2.5 Conclusions

In this chapter, we have proposed a topic model for short texts using word embed-

dings. Word embeddings learnt from external sources, such as Wikipedia, can bring

supplemental semantics to short texts to overcome its lack of rich context. Hence, we

model each short document as a Gaussian topic in the word embedding vector space. A

short text is composed of not only topic words but also background words, we incorpo-

rate an alternative background mode to complement Gaussian topics. Considering that

background words are not semantically related, background mode is implemented with

discrete multinomial distribution over word types rather than in the word embedding

space. The experiments validate the effectiveness of our model at discovering coherent

topics from short text corpus.



Chapter 3

Exploiting Supplementary Local

Context for Topic Correlations

3.1 Introduction

Conventional topic models, such as Probabilistic Latent Semantic Analysis (PLSA) [9]

and Latent Dirichlet Allocation (LDA) [10], have proven to be a powerful unsupervised

tool for the statistical analysis of document collections. Those methods [34], [35] follow

the bag-of-word assumption and model each document as an admixture of latent topics,

which are multinomial distributions over words.

A limitation of the conventional topic models is the inability to directly model cor-

relations between topics, for instances, a document about autos is more likely to be

related to motorcycles than to politics. In reality, it is natural to expect correlated

latent topics in most text corpora. In order to address this limitation, the Correlated

Topic Model (CTM) [36] replaces the Dirichlet prior with logistic normal distribution

which allows for covariance structure among the topics.

Nowadays, the rapidly developing technique in natural language processing – word

embeddings [12], [1] – provides us with the possibility to model topics and topic correla-

tions in the continuous semantic space. Word embeddings, also known as word vectors

and distributed representations of words, are real-valued continuous vectors for words,

which have proven to be effective at capturing semantic regularities in language. Words

with similar semantic and syntactic properties tend to be projected into nearby area in

the vector space. By replacing the original discrete word types in LDA with continuous

23
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word embeddings, Gaussian-LDA [28] has shown that the additional semantics in word

embeddings can be incorporated into topic models and further enhance the performance.

The main goal of correlated topic models is to model and discover correlation be-

tween topics. And now we know that word embeddings are able to capture semantic

regularities in language, and the correlations between words can be directly measured by

the Euclidean distances or cosine values between the corresponding word embeddings.

Moreover, semantically related words are close to each other in space and should be

more likely to be grouped into the same topic. Since Gaussian distributions depict a

notion of centrality in continuous space, it is a natural choice to model topics as Gaus-

sian distributions over word embeddings in space. Therefore, the motivation of this

chapter is to model topics in the word embedding space, exploit the known correlation

information at word level and further improve the correlation discovery at topic level.

In this chapter, we propose the Correlated Gaussian Topic Model (CGTM) to model

both topics and topic correlations in the word embedding space. More specifically, first

we learn word embeddings with the help of external large unstructured text corpora

to obtain additional word-level correlation information; Second, in the vector space of

word embeddings, we model topics and topic correlations to exploit useful additional

semantics in word embeddings, wherein each topic is represented as a Gaussian distribu-

tion over the word embeddings and topic correlations are learned among those Gaussian

topics. Third, we develop a Gibbs sampling algorithm for CGTM.

To validate the efficacy of our proposed model, we evaluate our model on the 20

Newsgroups dataset and the Reuters-21578 dataset, which are well-known dataset for

experiments in text mining domain. The experimental results show that our model can

discover more reasonable topics and topic correlations than the baseline models.

3.2 Related Work

Correlation is an inherent property in many text corpora, for example, [37] explores

the time evolution of topics and [38] analyzes the locational correlation among topics.

However, due to the use of the Dirichlet prior, traditional topic models are not able to

model the topic correlation directly. CTM [36] proposes to use logistic normal distri-

bution to model the variability among topic proportions and thus learn the covariance

structure of topics.

Word embeddings can capture the semantic meanings of words via low-dimensional
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real-valued vectors [1], for example, vector operation vector(‘king’) - vector(‘man’) +

vector(‘woman’) results in a vector which is very close to vector(‘queen’). The concept

of word embeddings was first introduced into natural language processing by Neural

Probabilistic Language Model (NPLM) [12]. Due to its effectiveness and wide variety

of application domains, word embeddings have garnered a great deal of attention and

development [24], [2], [39], [40], [41], [42].

Since word embeddings carry additional semantics, many researchers have tried to

incorporate them into topic models to improve the performance [28], [43], [44], [45].

[44] proposed Topical Word Embeddings (TWE) which combines word embeddings and

topic models in a simple and effective way to achieve topical embeddings for each word.

[28] uses Gaussian distributions to model topics in the word embedding space.

The aforementioned models either fail to directly model correlation among topics or

fail to leverage the word-level semantics and correlations. We propose to leverage the

word-level semantics and correlations within word embeddings to aid us in learning the

topic-level correlations.

3.3 Learning Word Embeddings

We begin our topic discovery process with learning the word embeddings with semantic

regularities. Unlike the traditional one-hot representations of words which encode each

word as a binary vector of N (the size of vocabulary) digits with only one digit being

1 the others 0, the distributed representations of words encode each word as a unique

real-valued vector. By mapping words into this vector space, word embeddings are

able to overcome several drawbacks of the one-hot representations such as the curse of

dimensionality, the out-of-vocabulary words and the lack of semantics.

In this chapter, we adopt a recently developed, very effective and efficient distributed

representations of words based model called Word2Vec [1] to train word embeddings.

In the learning process of Word2Vec, words with similar meanings gradually converge

to nearby areas in the vector space. In this model, words in the form of word embed-

dings are used as input to a softmax classifier and each word is predicted based on its

neighbourhood words within a certain context window.

Having learnt the word embeddings, given a word wdn, which denotes the nth word

in dth document, we can enrich that word by replacing it with the corresponding word

embedding. The following section describes how this enrichment is used in a generative
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Figure 3.1: Schematic illustration of the CGTM framework.

process to model topics and topic correlations.

3.4 Generative Process

Trained word embeddings give us useful additional semantics, which helps us discover

reasonable topics and topic correlations in the vector space. However, each document

now is a sequence of continuous word embeddings instead of a sequence of discrete word

types. Therefore, conventional topic models no longer are applicable. Since the word

embeddings are located in space based on their semantics and syntax, inspired by [27]

and [28], we consider them as draws from several Gaussian distributions. Hence, each

topic is characterized as a multivariate Gaussian distribution in the vector space. The

choice of Gaussian distribution is justified by the observations that Euclidean distances

between word embeddings are consistent with their semantic similarities.

The graphical model of CGTM is shown in Figure 3.1. More formally, there are

K topics and each topic is represented by a multivariate Gaussian distribution over

the word embeddings in the word vector space. Let µk and Σk denote the mean and

covariance for the kth Gaussian topic. Each document is a admixture of K Gaussian

topics. ηd is a K dimensional vector where each dimension represents the weight of

each topic in document d. Then the document-specific topic distribution θd can be

computed based on ηd. µc is the mean of η and Σc is the covariance of η. By replacing

the Dirichlet priors in conventional LDA with logistic normal priors, the topic correlation

information is integrated into the model. µ0, Σ0, ν0, µ, Σ and ν are hyper parameters

for Gaussian topics and logistic normal priors.

Note that variables in bold font mean they are either vectors or matrices, for example,

wdn. The generative process is as follows:
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1. Draw Σc ∼ W−1(Ψ, ν).

2. Draw µc ∼ N (µ, 1
τc

Σc).

3. For each Gaussian topic k = 1, 2, · · · ,K:

(a) Draw topic covariance Σk ∼ W−1(Ψ0, ν0).

(b) Draw topic mean µk ∼ N (µ0,
1
τΣk).

4. For each document d = 1, 2, · · · , D:

(a) Draw ηd ∼ N (µc,Σc).

(b) For each word index n = 1, 2, · · · , Nd:

i. Draw a topic zdn ∼Multinomial(f(ηd)).

ii. Draw a word wdn ∼ N (µzdn ,Σzdn).

where τ and τc are constant factors; and f(η) is the logistic transformation:

f(ηkd) = θkd =
exp(ηkd)∑
i exp(ηid)

. (3.1)

The following conjugate priors are utilized for topic parameters: a Gaussian distribution

N for the mean and an inverse Wishart distribution W−1 for the covariance. However,

note that there is still a non-conjugacy problem between the logistic normal distribution

and multinomial distribution, and we will solve this with data augmentation technique

in the following section.

3.5 Parameter Inference

The observed variables are documents consisting of word embeddings, and our goal is to

infer the posterior Gaussian distribution of each topic, topic assignment of each word,

and topic correlations. Given D documents and the corresponding word embeddings w,

the joint distribution of topic assignments z and logistic normal parameters η is:

p(z, {ηd}Dd=1|w) ∝ p(w|z)
D∏
d=1

(

Nd∏
n=1

θzdnd )N (ηd|µc,Σc)

∝ p(w|z)

D∏
d=1

(

Nd∏
n=1

exp(ηzdnd )∑K
i exp(ηid)

)N (ηd|µc,Σc),

(3.2)
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where p(w|z) is the Gaussian probability of wordsw under topic assignments z. Because

of the choice of conjugate priors for topic parameters, those variables can be integrated

out and we can efficiently re-sample topic assignment for each word. However, due to

the non-conjugacy between the logistic normal and multinomial distributions, regular

Gibbs sampling scheme doesn’t work for the logistic normal parameters. Thus we adopt

Gibbs sampling with data augmentation technique to solve this non-conjugacy problem.

3.5.1 Sampling Topic Assignments

Since the topic parameters have conjugate priors, the sampling process of topic assign-

ments is similar to the Gibbs sampling scheme for LDA [46]. Given η and z−dn which

is the topic assignment scheme without considering the current word wdn, the topic of

each word is drawn iteratively as:

p(zdn = k|z−dn,w) ∝ p(zdn = k|z−dn)p(wdn|zdn = k)

∝
exp(ηkd)∑
i exp(ηid)

· Tr(wdn|µk,
τk + 1

τk
Σk),

(3.3)

where Tr(w|µ,Σ) is the multivariate Student’s t-distribution for Gaussian sampling

with (r = νk − dim+ 1) being its degrees of freedom and dim being the dimensionality

of word embeddings. (νk = ν + Nk) and (τk = τ + Nk) are the parameters of topic k,

where Nk denotes the total number of words that are assigned to topic k.

3.5.2 Updating Gaussian Topics

Every time we re-sample topic assignment zdn, we need to update the two involved

Gaussian topics because the current word wdn is either leaving or joining this Gaussian

topic. Following [28], we derive the updates for µk and Σk of the posterior Gaussian

distributions for topic k:

µk =
τµ0 +Nkw̄k

τk
,

Σk =
Ψ0 +Ck + τNk(w̄k − µ0)(w̄k − µ0)T /τk

νk − dim+ 1
,

(3.4)

where w̄k is the sample mean of all the word embeddings assigned to topic k, and Ck

is the scaled form of sample covariance of all the word embeddings assigned to topic k.
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These two intermediate variables are calculated as follows:

w̄k =

∑D
d=1

∑Nd
n=1 δ(zdn, k)wdn

Nk
,

Ck =

D∑
d=1

Nd∑
n=1

δ(zdn, k)(wdn − w̄k)(wdn − w̄k)
T ,

(3.5)

where δ(zdn, k) is the Kronecker delta function that δ(zdn, k) = 1 if zdn = k, δ(zdn, k) = 0

otherwise.

3.5.3 Sampling Logistic Normal Parameters

Given topic assignments, directly sampling logistic normal parameters η is difficult due

to non-conjugacy. To address the non-conjugacy problem between the logistic normal

distribution and multinomial distribution, following [47], [48] and [49], we sample the

logistic normal parameters η based on z with auxiliary variables. For document d, the

likelihood for ηkd conditioned on η−kd is:

l(ηkd |η−kd ) =

Nd∏
n=1

(
exp(ηkd)∑
i exp(ηid)

)zkdn (
1−

exp(ηkd)∑
i exp(ηid)

)1−zkdn
=

(exp(ρkd))
Ck

d

(1 + exp(ρkd))
Nd
, (3.6)

where zkdn is the topic indicator that zkdn = 1 if word wdn is assigned to kth topic,

zkdn = 0 otherwise. ρkd = ηkd−ζkd , ζkd = log(
∑

j 6=k exp(ηjd)) and Ckd is the number of words

assigned to topic k in document d. Therefore, we obtain the posterior distribution of

ηkd proportional to multiplying the likelihood by the prior:

p(ηkd |η−kd , z,w) ∝ l(ηkd |η−kd )N (ηkd |µkd, σ2
k). (3.7)

For the prior part, it is a univariate Gaussian distribution conditioned on the other

logistic normal parameters in the current document η−kd . Thus, given η−kd and µc, Σc

of the multivariate Gaussian distribution over η, we have:

µkd = µk −Λ−1
kk Λk−k(η

−k
d − µ−k),

σ2
k = Λ−1

kk ,
(3.8)

where Λ = Σ−1
c is the precision matrix. However, the non-conjugacy makes it difficult

to directly calculate the likelihood l(ηkd |η
−k
d ) and thus unable to directly sample ηkd .
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By introducing auxiliary Polya-Gamma variable λkd [48], we are able to get around

the non-conjugacy problem and the likelihood l(ηkd |η
−k
d ) can now be expressed as:

l(ηkd |η−kd ) =
1

2Nd
exp(κkdρ

k
d)

∫ ∞
0

exp(−
λkd(ρ

k
d)

2

2
)p(λkd|Nd, 0)dλkd, (3.9)

where κkd = Ckd −Nd/2 and p(λkd|Nd, 0) is the Polya-Gamma distribution PG(Nd, 0). As

one can observe, Equation 3.9 implies that p(ηkd |η
−k
d , z,w) is the marginal distribution

of the joint distribution:

p(ηkd , λ
k
d|η−kd , z,w) ∝ 1

2Nd
exp(κkdρ

k
d −

λkd(ρ
k
d)

2

2
)p(λkd|Nd, 0)N (ηkd |µkd, σ2

k). (3.10)

Therefore we can sample ηkd based on the auxiliary variable λkd. The sampling pro-

cedure is as follows:

• Sampling λkd: according to Equation 3.10 and [48], we have the conditional distri-

bution p(λkd|z,w,η) ∝ exp(−λkd(ρkd)2

2 )p(λkd|Nd, 0), which results in a Polya-Gamma

distribution PG(Nd, ρ
k
d). Following the ideas in [48] and [49], Polya-Gamma vari-

ables can be drawn in O(1) time, and so a sample of λkd is obtained.

• Sampling ηkd : according to Equation 3.10, we can sample ηkd with posterior prob-

ability:

p(ηkd |η−kd , z,w, λ) ∝ exp(κkdη
k
d −

λkd(η
k
d)2

2
)N (ηkd |µkd, σ2

k). (3.11)

This results in a univariate Gaussian distribution N (γkd , (τ
k
d )2) conditioned on

the auxiliary variable λkd, where γkd = (τkd )2(σ−2
d µkd + κkd + λkdζ

k
d ) and (τkd )2 =

(σ−2
d + λkd)

−1. Thus, given the auxiliary variable λkd, η
k
d can be easily drawn from

a univariate Gaussian distribution.

3.5.4 Updating Topic Correlation

Given {ηd}Dd=1, the logistic normal parameters µc and Σc are updated as:

µc =
τc

τc +D
µ+

D

τc +D
η̄,

Σc = Ψ +Q+
τcD

τc +D
(η̄ − µ)(η̄ − µ)T ,

(3.12)

where η̄ is the mean of {ηd}Dd=1, and Q = 1
D (ηd − η̄)(ηd − η̄)T .
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3.6 Experiments

In this section, we carry out experiments on two real-world text collections – the 20

Newsgroups dataset1 and the Reuters-21578 dataset2 to demonstrate the efficacy

of our proposed model. 20 Newsgroups contains approximately 20,000 text documents

partitioned evenly across 20 different newsgroups. Reuters contains about 10,000 doc-

uments, but due to the imbalance of each category, only the largest 8 categories are

selected in Reuters, leaving us with 7,674 documents in total. Both datasets have

become popular datasets for experiments in many data mining tasks, such as text clas-

sification. Each document is associated with one single category label. For 20 News-

groups, correlation is exhibited across different newsgroups (e.g. rec.sport.baseball and

rec.sport.hockey), which makes this dataset a suitable choice to verify the effectiveness

of topic correlation discovery for CGTM.

We compare CGTM with three topic modeling methods: LDA [10], CTM [36] and

Gaussian-LDA [28]. CTM replaces the dirichlet prior in LDA with logistic normal

distribution to capture the correlation among topic proportions. Gaussian-LDA was

first proposed for audio retrieval [27] and then used to leverage word embeddings in the

continuous vector space [28].

To learn high quality word embeddings, we combine the current dataset with Wikipedia

as the knowledge source. The motivation of using Wikipedia as the supplemental source

lies in the sheer range of topics and subjects that are covered and it allows us to en-

hance the semantics of word embeddings extracted from 20 Newsgroups and Reuters. In

the experiment, we set the dimensionality of word embeddings to 100, and the context

window size to 12. We train word embeddings for 100 epochs.

We are interested to see if the learned topics can reveal a similar mixture and

correlation with the ground truth text categories. Hence we set the number of topics

K to the number of categories. For uniformity, all the models are implemented with

Gibbs sampling and run for 100 iterations. The Gaussian topic hyper parameter µ0 is

set to the sample mean of all the word vectors, the initial degree of freedom ν0 to the

dimensionality of word embeddings, and Ψ0 to an identity matrix.

1 www.qwone.com/ jason/20Newsgroups/
2 www.daviddlewis.com/resources/testcollections/reuters21578/
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Figure 3.2: Topic words and correlations.

3.6.1 Topic Words and Correlations

To investigate the quality of topics and the topic correlations discovered by CGTM,

we visualize each topic with their top words as well as the topic correlations. To make

the visualization clearer, we select only 6 categories from the 20 Newsgroups dataset

whose topic words and correlations can be easily recognized and defined. The selected

newsgroups are “rec.autos”, “rec.motorcycles”, “rec.sport.baseball”, “rec.sport.hockey”,

“talk.politics.guns”, and “talk.politics.mideast”. Thus, in this experiment, we set the

number of topics K to 6. As Figure 3.2 shows, we display top 10 words for each topic dis-

covered by CGTM and map the corresponding word embeddings into a two-dimensional

space via Principal Component Analysis (PCA). The size of each word varies with its

relative frequency in the corresponding topic. The different colors and shapes of words

indicate they are from 6 different topics. Each circle depicts the Gaussian distribution

for each topic. The detected topic correlation is represented as a dashed line between

topics. As one can observe, all the newsgroups, Hockey (topic 1), Baseball (topic 2),

Mideast (topic 3), Guns (topic 4), Autos (topic 5) and Motorcycles (topic 6), are suc-

cessfully discovered with reasonable topic words.

As the ground truth labels indicate, one can easily figure that Autos is correlated

with Motorcycles, Baseball is correlated with Hockey, and Guns is correlated with
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Table 3.1: Comparison of topic coherence scores.

Top T words 5 10 20 50

LDA -13.86 -64.11 -322.07 -2384.68

CTM -13.77 -64.49 -323.71 -2395.58

Gaussian-LDA -14.83 -66.31 -323.91 -2505.33

CGTM -12.37 -60.48 -317.43 -2362.75

Mideast. The dashed lines in the figure denote the automatically detected topic cor-

relations by CGTM. With the help of word embeddings and Gaussian topics, topic

correlations are also correctly detected, as the dashed lines show. We can see that, since

word embeddings can capture the regularities in language such as synonyms, two topics

tend to be correlated if their topic word embeddings overlap in the continuous vector

space. This demonstrates how the known word-level correlation information can aid us

in discovering the topic-level correlations.

In this subsection, we qualitatively exhibit the effectiveness of discovering topics

and topic correlations of CGTM. In the following subsections, we will quantitatively

evaluate CGTM on topic coherence and topic correlation discovery.

3.6.2 Topic Coherence

In order to quantitatively assess the topic coherence, we adopt a metric called coherence

score of topics proposed by [50] which is able to automatically evaluate the coherence

of each discovered topic. Given a topic z and its top T words V z = {vz1 , vz2 , ..., vzT }, the

coherence score of this topic is defined as:

C(z;V z) =

T∑
t=2

t∑
l=1

log
D(vzt , v

z
l ) + 1

D(vzl )
, (3.13)

where D(vzl ) is the document frequency of word vzl and D(vzt , v
z
l ) is the number of doc-

uments in which words vzt and vzl co-occurred. The coherence score follows the intuition

that words from the same topic tend to co-occur in documents. This topic coherence

score has been proven to be highly consistent with human coherence judgements [50].

The topic coherence result on the 20 Newsgroups dataset is reported in Table 3.1. In

order to investigate the overall quality of all the discovered topics, the average coherence

score is reported, which is calculated as C̄ = 1
K

∑
z C(z;V z). To make this evaluation
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more comprehensive, the number of topic words T ranges from 5 to 50. For all the

models, the topic words are ordered by word counts in each topic. Though for Gaussian-

LDA and CGTM, topic words can also be ordered by word probabilities under each

Gaussian topic, we still order them by word counts, since first, the Gaussian posterior

probability information has already been fully utilized in the training phase and second,

this coherence score is more appropriate to measure frequent words in a topic. The

result shows that the topic words discovered by our model are more coherent than the

topic words discovered by the baseline models.

3.6.3 Document Topics and Topic Correlation

We see that the topics discovered by CGTM qualitatively exhibit good topic words

and reasonable correlations, and CGTM also outperforms the baseline models in terms

of coherence score. But are the topics discovered by our model really corresponding

to the coherent news categories? If yes, it would be very convenient for us to as-

sess the quality of the detected topic correlations, because the correlations among the

ground truth newsgroups labels are well defined. For example, 20 Newsgroups cate-

gories “rec.autos” and “rec.motorcycles” are clearly correlated, and Reuters categories

“money” and “trade” should also exhibit correlations. To answer this question, we

compare the ground truth document labels with the document-topic labels discovered

by the models to see if they are consistent. The label of each document comes from the

dataset and is used as the ground truth. The document-topic label of each document

is assigned by the models. More specifically, for each model, we can assign one single

topic to document d according to:

zd = argmaxzp(z|d).

So this is a clustering evaluation problem where each document is a sample. To

solve the cluster matching problem, e.g., ground truth label 1 may correspond to topic 5

instead of topic 1, we adopt pairwise comparison [29] to measure the consistency between

the ground truth document labels and the learned topic representation of documents.
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Table 3.2: Comparison of document-topic distribution on the 20 Newsgroups dataset.

Model Precision Recall F1

LDA 0.438 0.507 0.470

CTM 0.447 0.634 0.524

Gaussian-LDA 0.438 0.496 0.465

CGTM 0.523 0.623 0.568

Table 3.3: Comparison of document-topic distribution on the Reuters dataset.

Model Precision Recall F1

LDA 0.844 0.392 0.535

CTM 0.796 0.433 0.561

Gaussian-LDA 0.865 0.405 0.552

CGTM 0.870 0.431 0.576

The pairwise comparison is defined as:

precision(E,G) =
||pairE ∩ pairG||
||pairE ||

,

recall(E,G) =
||pairE ∩ pairG||
||pairG||

,

F1(E,G) =
2× precision× recall
precision+ recall

,

where E and G are two clustering solutions corresponding to the document-topic clusters

and the ground truth document labels respectively in our case, and pairE denotes the

set of pairs in clustering result E, and ||pairE || represents the number of instances in

pairE . The experimental results of document clustering on 20 Newsgroups and Reuters

are reported in Table 3.2 and Table 3.3 respectively. We can see that, with respect to

the consistency between ground truth document labels and discovered topics, CGTM

outperforms the other baselines on both datasets.

3.7 Conclusions

In this chapter, we have proposed a correlated topic model using word embeddings.

Word embeddings learnt from large, unstructured corpora, such as Wikipedia, can aid
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us in modeling topics and topic correlation by bringing in additional useful semantics.

The known word-level correlation information in word embeddings is passed to topic-

level correlation discovery via Gaussian topics. In our case, the word embeddings are

trained on the combined collections of Wikipedia and the 20 newsgroups dataset. We

model each topic as a Gaussian distribution over word embeddings and directly learn

topic correlations in the vector space. The experiments qualitatively show CGTM is

able to learn meaningful topics and topic correlation, and quantitatively validate the

effectiveness of our model in terms of topic coherence score and document clustering on

two real-world datasets.



Chapter 4

Coordinating Global and Local

Context

4.1 Introduction

Topic models [8, 9, 10, 25] and word embedding models [23, 51, 1] are two of the

most successful and prevalent language models nowadays. They model languages from

two different but complementary points of view — the global viewpoint and the local

viewpoint. Topic models, such as Probabilistic Latent Semantic Analysis (PLSA) [9]

and Latent Dirichlet Allocation (LDA) [10], are usually built upon the document-level

global context information in a text corpus. Topic models follow the bag-of-word as-

sumption that a document is represented as a bag of its words (disregarding grammar

and even word order, but keeping multiplicity). Documents are modeled as mixtures

of latent topics, where latent topics are formulated as multinomial distributions over

words. Bayesian methods are then employed to infer the topic structures based on

the global document-word frequency matrix of the corpus. In contrast to topic models

utilizing the document-level global context information, most of the word embedding

models, such as Neural Probabilistic Language Model (NPLM) [23] and Skip-Gram [1],

are based on the local context information. Word embedding models follow the dis-

tributional hypothesis [7] that words occurring in similar local contexts tend to have

similar syntactic and semantic properties. Semantically related words ought to be pro-

jected close to each other in the word embedding space. Word embeddings can then

be constructed using internal representations from neural network architectures of local

37
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word sequences.

While local context can help disambiguate word meanings, global context can also

provide useful topical information. Therefore, it is natural to expect more sufficient

input information and better performance if a language model is able to utilize these

two complementary context information collaboratively. In addition, both topic struc-

tures and word embeddings can be discovered from the corpus. However, it is difficult

to develop a unified language model in depth which can absorb both the idea of glob-

ality from topic models and the idea of locality from word embedding models, because

topic models are usually statistical generative models while word embedding models are

mostly based on artificial neural networks.

Instead of developing a unified language model, researchers tend to combine global

and local context by using the pre-trained result based on one type of context in-

formation to assist in modeling language on the other type of context information

[52, 53, 28, 44]. For example, Gaussian-LDA [28] uses pre-trained word embeddings

learned from large external corpora such as Wikipedia and then models topics with

Gaussian distributions in the word embedding space; in contrast, Topical Word Em-

bedding (TWE) [44] uses pre-trained topic structures to learn topic embeddings and

improve word embeddings.

However, there are several limitations in combining topic models and word embed-

ding models in this separate and heuristic manner. The first limitation stems from the

difference of semantics in different datasets. One popular way to model topics upon

word embeddings is to replace discrete word types in the target dataset (e.g. ESPN

sports news) with continuous word embeddings learned from an external corpus (e.g.

Wikipedia). But the difference of semantics in ESPN sports news and Wikipedia would

probably result in poor performance. The second limitation is that external corpus is

not always available. In some research domains such as biomedicine, there are no such

knowledge bases as comprehensive as Wikipedia. However, if we want to directly train

word embeddings on the target dataset and the target dataset is relatively small, we

have to face the third limitation, i.e., the lack of local context information, as training

word embeddings typically requires a large amount of local contexts.

The aforementioned limitations inspire us to develop a unified language model which

is able to make use of both the global and the local context information collaboratively.

We propose to unify the process of modeling topics and learning word embeddings via

matrix factorization, and take advantage of both the idea of globality from topic models
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and the idea of locality from word embedding models. The new model is named Col-

laborative Language Model (CLM). In CLM, the global context information is encoded

in the document-word matrix and the local context information is encoded in the word

co-occurrence matrix. In addition to topic structures and word embeddings, we also

introduce topic embeddings for topics and assume that the importance of a word in a

topic is proportional to the inner product value of the corresponding word embedding

and topic embedding. By fully exploiting the context information in a text corpus, CLM

has the following advantages:

• CLM is able to discover topic structures and learn word embeddings collabora-

tively.

• CLM does not rely on pre-trained topic structures or pre-trained word embeddings

learned from external corpora.

• When the text corpus is not large enough, with the help of global context infor-

mation, CLM can overcome the lack of local context information and learn good

word embeddings.

• With the help of local context information, CLM can discover more coherent latent

topics.

To evaluate how well CLM discovers topics and learns word embeddings, we perform

four quantitative evaluation tasks including two topic structure evaluation tasks and

two word embedding evaluation tasks. We show that by taking both global and local

context information into consideration, CLM outperforms the baselines on both the

topic structure evaluation tasks and the word embedding evaluation tasks. We also

provide qualitative assessment and case studies to explain how topic structures and

word embeddings can collaboratively enhance the quality of each other.

4.2 Related Work

Topic models are a powerful unsupervised tool to reveal the latent semantic structure

from a text corpus based on its global document-word context information. Latent

Semantic Analysis (LSA) [8] is proposed as a dimensionality reduction technique by

projecting the document-word matrix to a linear subspace with Singular Value Decom-

position (SVD). PLSA [9] introduces latent variables which can be viewed as ‘topics’
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between documents and words, where each document is a multinomial distribution over

topics and each topic is also a multinomial distribution over words. LDA [10] fur-

ther extends PLSA to a complete probabilistic model by adding Dirichlet priors at the

document level. Non-negative Matrix Factorization (NMF) [54] is a useful matrix de-

composition technique for multivariate data and its non-negativity makes the resulting

matrices easy to explain in many application domains. Ding et al. [55] have proven the

equivalence between PLSA and NMF as they optimize the same objective function of

the global document-word matrix.

Word embeddings, also known as word vectors and distributed representations of

words, have proven to be able to capture semantic regularities in language by learning

the local word co-occurrence context information. Specifically, NPLM [23] first intro-

duces word embeddings into natural language processing. Many variants have been

proposed since then to improve the efficiency of NPLM [51, 1]. In particular, the pop-

ular Continuous Bag Of Words (CBOW) and Skip-Gram models proposed by Mikolov

et al. [1] are efficient to train and obtain state-of-the-art results on various linguistic

tasks. The training methods of CBOW and Skip-Gram are highly popular, but not well

understood until Levy et al. [56] proved that Skip-Gram with negative sampling train-

ing method is implicitly factorizing the pointwise mutual information (PMI) matrix of

the local word co-occurrence patterns.

In order to make use of both the global context and the local context information,

many composite models have been proposed to combine topic models and word embed-

ding models. One common way is to use pre-trained word embeddings and replace the

multinomial distribution over words with a probability function defined in the word em-

bedding space to generate a focus word given its topic and neighboring words. Among

them, Latent Feature Topic Modeling (LFTM) [57] defines the probability function as

a mixture of the conventional multinomial distribution and a link function between the

embeddings of the focus word and topics. TopicVec [43] adds context word embeddings

to the link function in addition to the focus word embeddings and topic embeddings.

Gaussian-LDA [28] models topics as Gaussian distributions over the continuous word

embeddings. The other common way to combine topic models and word embedding

models is to use pre-trained LDA topic structures to learn topic embeddings and as-

sist in training word embeddings. For example, Topic2Vec [58] treats the pre-trained

topic labels as special words and learns embeddings for topics by including the topic

labels in the neural network architecture. Topical Word Embedding (TWE) [44] further



41

concatenates the topic embedding with the word embedding to form the topical word

embedding for each word.

However, all of these composite models combine topic models and word embedding

models in a separate and heuristic manner – they either utilize pre-trained word em-

beddings or pre-trained topic structures. In contrast, our CLM model proposes to make

the topic model and the word embedding model work collaboratively, and fully exploit

the complementary global and local context information in a text corpus. Huang et al.

[42] and Le et al. [59] propose to incorporate global information to help the learning

of word embeddings by assigning an embedding to each document. Their ideas can be

viewed as special cases of our model, with the number of topics set to the number of

documents.

4.3 Notations and Definitions

Table 4.1 shows the notations used in this chapter. We use bold uppercase letters

such as D to represent matrices, bold lowercase letters such as dn to represent vectors

or embeddings, regular uppercase letters such as V to represent scalar constants, and

regular lowercase letters such as dij to represent scalar variables.

Given a text corpus, its document-level global context information is encoded in

the document-word matrix D and its local context information is encoded in the word

co-occurrence matrix W . The word co-occurrence matrix W is constructed from small

fixed-sized text intervals in the documents. Each text interval is composed of a focus

word and its neighboring context words falling in a fix-sized window centered at the

focus word. The value of entry wij is the number of times that a context word wj

appears in word wi’s contexts.

Given the global context matrix D and the local context matrix W , our goal is

to discover topic structures and learn word embeddings collaboratively based on both

context information.

4.4 Methodology

Our CLM model follows three basic assumptions: (1) each document focuses on only a

small amount of topics and each topic assigns high probability to only a small number

of words; (2) words appearing in similar local context tend to have similar syntactic and
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Table 4.1: Table of notations.

Notation Meaning

V Vocabulary size

N Number of documents

K Number of topics

M Dimensionality of the embedding space

D ∈ RV×N Document-word matrix [d1, ...,dN ]

W ∈ RV×V Word co-occurrence matrix

T ∈ RK×V Topic-word matrix [t1, ..., tV ]

Θ ∈ RK×N Document-topic matrix [θ1, ...,θN ]

A ∈ RM×K Topic embedding matrix [α1, ...,αK ]

B ∈ RM×V Word embedding matrix [β1, ...,βV ]

C ∈ RM×V Context word embedding matrix [c1, ..., cV ]

dn The nth document

θn Topic representation for the nth document

tv Topic distribution for the vth word

αk Topic embedding for the kth topic

βv Word embedding for the vth word

cv Context embedding for the vth word

dij , wij , tij The ijth entry in matrix D,W ,T respectively

semantic properties and should be mapped to nearby areas in the embedding space;

and (3) words close to each other in the embedding space tend to have similar topic

distributions and vice versa.

We will introduce our CLM model according to how CLM is formulated based on

these assumptions as well as how CLM utilizes the global and the local context infor-

mation.

4.4.1 Our Proposed Model

The three aforementioned assumptions correspond to three building blocks of CLM. We

first introduce the three building blocks. Then we describe our proposed model CLM

and its relationship with other existing composite models.

Exploiting global context information. Given the global document-word matrix

D, NMF decomposes it into the product of document-topic matrix Θ and topic-word
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matrix T . The non-negativity of NMF ensures the explainability of document-topic

distribution and topic-word distribution. The objective function to factorize D with

regularization is:

Lglo = ||D − T TΘ||22 + λs||Θ||22 + λs||T ||22,

subject to :

Θ ≥ 0 and T ≥ 0,

(4.1)

where ||Θ||22 denotes the l2 norm regularization we use on document-topic matrix Θ,

||T ||22 denotes the l2 norm regularization we use on topic-word matrix T , and λs is the

parameter to prevent overfitting: the larger value of λs, the larger amount of shrinkage

on Θ and T . In our model, instead of the raw frequency matrix, we use the document-

word matrix with TF-IDF weights as D.

Exploiting local context information. Based on the local context information,

word embedding models can learn a low-dimensional representation for each word. In

the Skip-Gram model [1], the objective of each training step is to predict neighboring

words within a fixed window given a focus word. Stochastic gradient descent with

negative sampling is a regular way to train Skip-Gram. Levy et al. [56] have proven

an equivalence between Skip-Gram trained with negative sampling value of k and the

factorization of the positive PMI word co-occurrence matrix shifted by log k, i.e., the

shifted positive pointwise mutual information matrix (SPPMI). Therefore, in our model,

instead of the raw frequency matrix, we use the SPPMI word co-occurrence matrix as

W .

The PMI value between a pair of discrete outcomes x and y is defined as:

PMI(x, y) = log
P (x, y)

P (x)P (y)
.

Empirically, the PMI value between a word w and its context word c can be estimated

by considering the actual number of their co-occurrence times in the corpus:

PMI(w, c) = log
#(w, c) · E
#(w) ·#(c)

,

where #(w, c) is the number of times words w and c co-occur, #(w) =
∑

c #(w, c),

#(c) =
∑

w #(w, c), and E is the total number of word-context pairs. The SPPMI

matrix is then constructed as:

SPPMIk(w, c) = max(PMI(w, c)− log k, 0).
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Following the similar idea, CLM exploits local context information and learns word

embeddings by factorizing matrix W :

Lloc = ||W −BTC||22 + λs||B||22 + λs||C||22. (4.2)

Collaboration. By exploiting the global context information of a text corpus, we can

discover the topic structures; and by exploiting the local context information, we can

learn the word embeddings. However, these two parts should not be isolated from each

other: semantically related words usually belong to similar topics and they are also close

to each other in the embedding space. Hence we assume that the distances between

word embeddings correlate with their topical similarities. As with exploiting the local

context information, we realize this assumption by factorizing topic-word matrix T into

the product of topic embedding matrix A and context word embedding matrix C:

Lcom = ||T −ATC||22 + λs||A||22 + λs||C||22. (4.3)

Hence the probability of word w being grouped into topic z can be measured by the

inner product of the corresponding topic embedding and word embedding: p(z|w) ∝
tzw = αTz cw. Therefore, besides achieving the topic embeddings, Eq. 4.3 also regulates

words with similar topic distributions to be close in the embedding space and nearby

words to have similar topic distributions.

Unifying the three assumptions. Both the global context information and the

local context information contain useful patterns in a text corpus. We propose to

utilize both types of context information jointly, and to discover topic structures and

learn word embeddings collaboratively:

L =λd||D − T TΘ||22︸ ︷︷ ︸
global

+λw||W −BTC||22︸ ︷︷ ︸
local

+ ||T −ATC||22︸ ︷︷ ︸
joint

+ λs||Θ||22 + λs||T ||22 + λs||A||22 + λs||B||22 + λs||C||22︸ ︷︷ ︸
regularization

,

subject to :

Θ ≥ 0 and T ≥ 0,

(4.4)

where λd and λw are the parameters controlling the weights of the global and local

modeling parts. Eq. 4.4 is the objective function of our model. Topic-word distribution
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matrix T is shared by both the global modeling and the joint modeling parts of the

objective function. Context word embedding matrix C is shared by both the local

modeling and the joint modeling parts of the objective function. Therefore, the topic

structures and word embeddings we obtained must account for both the global and the

local context information of a text corpus.

Relationship with other composite models. As we discussed in Section 4.2, two

popular ways to combine topic models and word embedding models are 1) modeling

topics based on pre-trained word embeddings and 2) learning word embeddings based

on pre-trained topic structures. These models can be viewed as special cases of CLM

that keep either topic structures or word embeddings fixed. More specifically, if we

use pre-trained word embeddings and keep them fixed, then CLM considers only the

combination of Eq. 4.1 and Eq. 4.3. This results in CLM becoming functionally

equivalent to the composite models that discover topic structures with the help of pre-

trained word embeddings, such as Gaussian-LDA [28] and TopicVec [43]. In contrast, if

we use pre-trained topic structures and keep them fixed, then CLM considers only the

combination of Eq. 4.2 and Eq. 4.3. Again CLM becomes functionally equivalent to

the composite models that learn word embeddings and topic embeddings with the help

of pre-trained topic structures, such as TWE [44] and Topic2Vec [58].

4.4.2 Parameter Inference

In this subsection, we will introduce how to do parameter estimation and inference

for our proposed CLM model via collective matrix factorization. First the objective

function of CLM in Eq. 4.4 is expanded as:

L =λd

V,N∑
v=1,n=1

(dvn − tTv θn)2 + λw

V,V∑
v=1,v′=1

(wvv′ − βTv cv′)2

+

K,V∑
k=1,v=1

(tkv −αTk cv)2 + λs

N∑
n=1

(θTnθn) + λs

V∑
v=1

(tTv tv)

+ λs

K∑
k=1

(αTkαk) + λs

V∑
v=1

(βTv βv) + λs

V∑
v=1

(cTv cv),

subject to :

Θ ≥ 0 and T ≥ 0.

(4.5)
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Then we compute the gradient of our objective function Eq. 4.5 with respect to

each vector {θ1:N , t1:V ,α1:K ,β1:V , c1:V }:

∂L

∂θn
=2λd

V∑
v=1

(dvn − tTv θn)(−tv) + 2λsθn

∂L

∂tv
=2λd

N∑
n=1

(dvn − tTv θn)(−θn) + 2(tv −ATcv) + 2λstv

∂L

∂αk
=2

V∑
v=1

(tkv −αTk cv)(−cv) + 2λsαk

∂L

∂βv
=2λw

V∑
v′=1

(wvv′ − βTv cv′)(−cv′) + 2λsβv

∂L

∂cv′
=2λw

V∑
v=1

(wvv′ − βTv cv′)(−βv) + 2λscv′ + 2

K∑
k=1

(tkv′ −αTk cv′)(−αk)

Similar to the Alternating Least Squares (ALS) matrix factorization method, we

obtain the following closed-form updates by iteratively setting the gradient to zero:

θn =(λd

V∑
v=1

tvt
T
v + λsI)−1(λd

V∑
v=1

dvntv)

tv =(λd

N∑
n=1

θnθ
T
n + (1 + λs)I)−1(λd

N∑
n=1

dvnθn +ATcv)

αk =(
V∑
v=1

cvc
T
v + λsI)−1(

V∑
v=1

tkvcv)

βv =(
V∑

v′=1

cv′c
T
v′ + λsI)−1(

V∑
v′=1

wvv′cv′)

cv′ =(λw

V∑
v=1

βvβ
T
v +

K∑
k=1

αkα
T
k + λsI)−1 ∗ (λw

V∑
v=1

wvv′βv +

K∑
k=1

tkv′αk)

(4.6)

Note that this update does not guarantee the non-negativity of θn and tv. Since our

objective function is continuous, the minimum should be either at the points where the

gradient is zero or on the boundary. Hence, if Eq. 4.6 assigns θn and tv negative entries,

we can just set the negative entries to zeros. The main difference between our updates

and ALS is that many variables are associated with more than one matrix factorization

term. For example, context word embeddings cv is associated with both local context

matrix W and topic-word matrix T . Iteratively performing these updates achieves a

stationary point of our model’s objective function L.
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4.5 Experiments

We carry out experiments on two real-world text corpora to demonstrate the efficacy

of our CLM model in two aspects: modeling topics and learning word embeddings.

To investigate the quality of the topic structures discovered by CLM, we compare its

performance with existing topic modeling methods on two topic evaluation tasks, the

topic coherence evaluation task and the document classification task. To investigate

the quality of the word embeddings learned by CLM, we compare its performance with

existing word embedding models on two word embedding evaluation tasks, the word

similarity task and the word analogy task. Moreover, we provide case studies to show

the advantages of exploiting both types of context information.

The 20 Newsgroups dataset1 and the Reuters-21578 dataset2 are used in our

experiments. 20News contains approximately 20,000 newsgroup documents evenly par-

titioned into 20 different categories. Reuters contains about 10,000 documents, but

the numbers of documents in each category are highly imbalanced. We select only the

largest 8 categories in Reuters, leaving us with 7,674 documents in total. In the pre-

processing step, stop words and words with total frequency lower than 10 get removed,

and all words are converted to lowercase. When constructing the local context matrix

W , we set the context window size to 10, i.e., 5 preceding words and 5 following words

are considered as local context words for a focus word. For the parameters controlling

the weights and regularization, we set λd = 1e− 2, λw = 2e− 2, and λs = 1e− 7.

The source code of our implementation is available at https://github.com/XunGuangxu/

2in1.

4.5.1 Evaluation on Topic Coherence

Baselines and experimental settings. The topic modeling methods we use as our

baselines are the vanilla LDA [10], NMF [54], PLSI [9], Gaussian-LDA [28] and LFTM

[57], among which Gaussian-LDA and LFTM are composite topic models that are built

upon pre-trained word embeddings. For 20News and Reuters, we set the number of top-

ics K to 20 and 8, respectively, as there are 20 newsgroups and 8 categories. We set the

number of iterations to 100 for all the methods. For LDA, we set the hyperparameters

alpha to 50/K and beta to 0.01. For the sake of fairness, the word embeddings used in

1 http://qwone.com/ jason/20Newsgroups/
2 http://www.daviddlewis.com/resources/testcollections/reuters21578/

https://github.com/XunGuangxu/2in1
https://github.com/XunGuangxu/2in1
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Table 4.2: Topic coherence scores on 20News.

Top U words 5 10 20 50

NMF -18.051 -85.538 -417.199 -2796.776

PLSI -15.151 -78.597 -365.693 -2684.952

LDA -15.308 -80.482 -368.820 -2694.437

Gaussian-LDA -19.450 -94.523 -435.903 -3407.968

LFTM -16.589 -78.541 -385.734 -2807.011

CLM -11.624 -60.303 -282.799 -2275.523

Table 4.3: Topic coherence scores on Reuters.

Top U words 5 10 20 50

NMF -11.281 -66.412 -335.619 -2705.525

PLSI -13.226 -70.078 -333.570 -2767.808

LDA -12.093 -69.806 -352.296 -2840.746

Gaussian-LDA -24.223 -108.453 -478.433 -3688.172

LFTM -13.268 -71.352 -369.009 -2982.395

CLM -11.483 -63.083 -313.459 -2683.163

Gaussian-LDA and LFTM are trained on the same dataset using word2vec toolkit [1].

And we set the dimensionality of word embeddings to 50 for Gaussian-LDA, LFTM and

CLM.

Evaluation metrics. In order to quantitatively assess the topic coherence, we adopt

an automated metric, called coherence score of topics proposed by [50], which is able

to automatically evaluate the coherence of each topic. Given a topic z and its top U

words V z = {vz1 , vz2 , ..., vzU}, the coherence score of this topic with respect to its top U

words is defined as:

C(z;V z) =

U∑
u=2

u∑
l=1

log
D(vzu, v

z
l ) + 1

D(vzl )
,

where D(vzl ) is the document frequency of word vzl and D(vzu, v
z
l ) is the number of

documents in which words vzu and vzl co-occurred. The coherence score follows the

intuition that top words in the same topic tend to frequently co-occur in documents. A

topic coherence score closer to zero means a higher co-occurrence rate of the topic words,
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indicating a more coherent topic. This topic coherence score shows high consistency with

human judgements on topic qualities [50]. In order to investigate the overall quality of

the discovered topic set, we use the average topic coherence score: C̄ = 1
K

∑
z C(z;V z).

Experimental results. The topic coherence results of each method on 20News and

Reuters are reported in Table 4.2 and Table 4.3, respectively. To make this evaluation

more comprehensive, we vary the number of topic words U = {5, 10, 20, 50}. The

best scores are highlighted in boldface. As generative models, PLSI and LDA achieve

similar topic coherence scores. Gaussian-LDA does not perform well and this is probably

because this topic coherence metric is more appropriate for measuring frequent words

in a topic while Gaussian-LDA ranks words according to their Gaussian probabilities

in each topic. LFTM outperforms Gaussian-LDA because LFTM takes advantage of

both the conventional Dirichlet multinomial and the link function in the embedding

space. As with CLM, NMF also factorizes the document-word matrix to learn topic

structures, but our CLM model is able to utilize the additional semantic information

in word embeddings learned from local context and this semantic information helps

CLM discover more coherent topics. CLM ranks words in each topic according to their

values in the topic-word matrix T . We can see that CLM achieves significantly higher

coherence scores than the baselines.

4.5.2 Evaluation on Document Classification

Baselines and experimental settings. In addition to the baselines used in Sub-

section 4.5.1, we also include TWE [44] and two Doc2Vec models [59]: PV-DBOW and

PV-DM, as they can provide document-level representations for this document classifi-

cation task. TWE is a composite model built upon pre-trained topic structures, so we

feed the output of the vanilla LDA to TWE as the pre-trained topic structures. We

keep the same experimental settings as in Subsection 4.5.1, except that, for 20News we

set the number of topics to 280 for the topic models and the dimensionality of document

embeddings to 280 for TWE, PV-DBOW and PV-DM, and for Reuters we set them to

110.

Evaluation metrics. In the document classification task on 20News, each newsgroup

document is represented as a 280 dimensional vector. Hence, 20,000 newsgroup docu-

ments are classified into 20 classes according to their document-topic distributions or
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Table 4.4: Document classification on 20News.

Precision Recall F1

NMF 0.704 0.701 0.697

PLSI 0.722 0.712 0.709

LDA 0.727 0.722 0.719

Gaussian-LDA 0.309 0.265 0.227

LFTM 0.716 0.714 0.709

TWE 0.525 0.466 0.437

PV-DBOW 0.510 0.491 0.459

PV-DM 0.428 0.386 0.361

CLM 0.825 0.818 0.816

document embeddings. The reason why we change the number of topics from 20 to

280 is that the number of classes is already 20 and the number of features (topics)

should be larger than that. Similarly, we set the number of features (topics) to 110 for

Reuters. In order to evaluate the overall performance across all the document classes, we

adopt the macro-averaged precision, recall and F1 measures as the evaluation metrics,

as macro-averaging gives equal weight to each class.

Experimental results. Table 4.4 and Table 4.5 present the classification performance

of the different methods on 20News and Reuters, respectively. The highest scores are

highlighted in boldface. The document-topic representation used here corresponds to

the document-topic matrix Θ in our model. We can see that CLM outperforms the

baselines significantly. On this task, PLSI, LDA and LFTM still obtain similar and

better scores than the other baselines. As with CLM, NMF is also based on matrix

factorization techniques, but NMF does not achieve as good performance as CLM due

to its inability to utilize both context information. Gaussian-LDA performs considerably

inferior to all other methods. By checking its output variables manually, we find that the

Gaussian distributions for different topics are highly similar and hence its document-

topic representations are not discriminative enough. TWE, PV-DBOW and PV-DM

assign a low-dimensional embedding to each document based on the word embeddings

in it, but the classification results on these document embeddings are inferior to the

results on document topic proportions.
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Table 4.5: Document classification on Reuters.

Precision Recall F1

NMF 0.911 0.877 0.891

PLSI 0.919 0.896 0.906

LDA 0.888 0.870 0.879

Gaussian-LDA 0.462 0.315 0.353

LFTM 0.893 0.591 0.661

TWE 0.794 0.512 0.626

PV-DBOW 0.755 0.505 0.549

PV-DM 0.681 0.434 0.507

CLM 0.944 0.916 0.929

4.5.3 Evaluation on Word Similarity

Having shown the superiority of CLM in topic discovery, we now evaluate the quality

of word embeddings learned from the 20 Newsgroups dataset by CLM in the following

two tasks. As we know, training word embeddings requires a large amount of local

context information to capture language regularities. Hence, Wikipedia, the largest

online encyclopedia, is the most frequently used training dataset for word embeddings

due to its sheer range of topics and ample local context information. However, for

experiment domains involving smaller corpus size such as the 20 Newsgroups dataset,

gathering the local context information is quite a challenge. We will show that our CLM

model is able to overcome the challenge of lacking local context information by taking

the complementary global context information into consideration.

Baselines and experimental settings. The word embedding methods we include as

our baselines are the SPPMI matrix without dimensionality reduction [56], SVD of the

SPPMI matrix [56], GloVe [2], CBOW [1], Skip-Gram [1], PV-DBOW [59], PV-DM [59]

and TWE [44], among which TWE is a composite model that is built upon pre-trained

LDA topic structures, and PV-DBOW and PV-DM take the influence of documents on

word embeddings into consideration. Different from the others, GloVe constructs word

co-occurrence matrix and learns word embeddings purely based on document-level global

context information. For uniformity, we set the number of context window size to 10,
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Table 4.6: Comparison of word similarity results.

WS353 WS Rel WS Sim Men Turk SimLex-999 Rare

SPPMI 0.461 0.444 0.465 0.444 0.551 0.131 0.245

SPPMI + SVD 0.451 0.435 0.449 0.426 0.489 0.166 0.349

GloVe 0.300 0.279 0.320 0.192 0.268 0.049 0.230

Skip-Gram 0.492 0.479 0.473 0.456 0.512 0.155 0.407

CBOW 0.488 0.451 0.494 0.432 0.529 0.151 0.407

PV-DBOW 0.477 0.442 0.486 0.449 0.488 0.139 0.285

PV-DM 0.297 0.304 0.310 0.236 0.339 0.013 0.157

TWE 0.317 0.231 0.407 0.190 0.260 0.084 0.184

CLM 0.526 0.486 0.550 0.477 0.525 0.189 0.411

the number of negative samples to 5, and the dimensionality of the embedding space to

50 for all the methods. And we set the number of topics to 20 for TWE and CLM. We

then perform 100 iterations of training for all the methods.

Evaluation metrics. We use several test datasets to evaluate the word pair simi-

larities calculated by word embeddings: WordSim353 (WS353) [60] (including Word-

Sim Relatedness (WS Sim) and WordSim Similarity (WS Rel)), MEN [61], Turk [62],

SimLex-999 [63], and Rare [64]. These datasets contain word pairs associated with

human-assigned similarity scores. After ranking the word pairs according to their cosine

similarities in the embedding space and human-assigned similarity scores respectively,

the word embeddings are evaluated by measuring the Spearman’s rank correlation with

the human ratings. We exclude word pairs that contain out-of-vocabulary words from

the test datasets. A higher correlation value indicates it is more consistent with human

judgements on word similarities.

Experimental results. The results are summarized in Table 4.6. The highest cor-

relation scores are highlighted in boldface. Similar performances are achieved by the

SPPMI matrix and SVD of SPPMI; however, the dimensionality of SPPMI word rep-

resentations is the vocabulary size – 20,678 – much higher than 50 dimensions for the

other methods. As with CLM, SVD also learns word embeddings by factorizing the

local SPPMI matrix, but its inability to utilize the additional global topical information
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Table 4.7: Comparison of word analogy results.

Google MSR

SPPMI 6.60% 5.40%

SPPMI + SVD 4.93% 7.32%

GloVe 2.67% 3.51%

Skip-Gram 6.62% 10.70%

CBOW 5.61% 12.00%

PV-DBOW 7.12% 11.77%

PV-DM 2.84% 7.55%

TWE 3.76% 5.38%

CLM 8.28% 14.20%

results in inferior performance to ours. Skip-Gram and CBOW yield better results than

SPPMI and SVD of SPPMI. PV-DBOW performs on a par with Word2Vec models.

GloVe performs inferior to the other methods. This may be due to the fact that GloVe

utilizes only global context information but there is inadequate global context infor-

mation to train word embeddings in the 20 Newsgroups dataset. As one can see, the

SPPMI matrix obtains the best correlation score on the Turk test dataset, and CLM

outperforms the baselines on all the other test datasets.

4.5.4 Evaluation on Word Analogy

Baselines and experimental settings. For the second evaluation task on the qual-

ity of word embeddings, we use the same baselines and keep the same experimental

settings as in the previous word similarity task in Subsection 4.5.3.

Evaluation metrics. The word analogy task refers to questions of the form “a is to

a* as b is to b*”, where b* is hidden and needs to be inferred from the vocabulary.

We use two test datasets for the word analogy task: MSR [65], which contains 8000

morphosyntactic analogy questions, such as “good is to better as rich is to richer”, and

Google [1], which contains 19544 questions, about half of the same syntactic type as in

MSR, and the other half of a semantic nature, such as “king is to queen as man is to

woman”. We filter out questions involving out-of-vocabulary words. The hidden words
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Figure 4.1: Two-dimensional PCA projection of the topic embeddings related to reli-

gions and mideast.

b* can be inferred by optimizing 3CosAdd [66]:

arg max
b∗∈V

(cos(b∗, b− a+ a∗)).

The evaluation metric for the word analogy task is the percentage of questions for which

the 3CosAdd result is the correct answer b*.

Experimental results. Table 4.7 shows the results on the word analogy task. As

can be seen, the lack of local context information in the 20 Newsgroups dataset heavily

limits the performance of the different methods on such a difficult task as word analo-

gies. Linguistically speaking, the word analogy task relies more on contextual informa-

tion from common words and auxiliary verbs to correctly infer b*. Word embeddings

learned from larger dataset which provides sufficient local context such as Wikipedia

can achieve better performance on this task. For word embeddings learned from the

20 Newsgroups dataset, SVD of the SPPMI matrix performs on a par with the raw

SPPMI matrix. CBOW, Skip-Gram and PV-DBOW yield better results than SPPMI

and SVD of SPPMI because their training procedures give more influence to frequent
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Table 4.8: Case study 1.

Coherence score Avg cosine distance

10 random words -171.641 0.026

NMF -102.422 0.570

CLM -89.731 0.728

pairs. GloVe does not perform well since it only explores global context information.

TWE does not achieve good results because it is heavily limited by the sparsity issue

and influenced by the pre-trained topic structures. We can still see that, by exploiting

both the global and the local context information, CLM overcomes the lack of local

context information and outperforms the baselines significantly.

4.5.5 Qualitative Assessment of Topic Embeddings

Besides topic structures and word embeddings, CLM can also learn topic embeddings

for each topic, i.e., the topic embedding matrix A. Those topic embeddings are of the

same dimensionality as word embeddings. The relationships between topic embeddings

and word embeddings are modeled in Eq. 4.3: the larger inner product value a word

embedding and a topic embedding get, the more important that word is in the topic.

After convergence, the similarities and correlations among topics are also captured in

the embedding space. Figure 4.1 shows the two-dimensional PCA projection of the

topic embeddings related to religions and Mideast. Each topic embedding is annotated

with its topic name and top 5 words. We can observe that the semantic similarities

between topics correlate with the Euclidean distances between the corresponding topic

embeddings. The correlations among topics can also be captured in this embedding

space. For example, Figure 4.1 illustrates how the topic of Christian transitions to the

topic of Mideast through the topics of Bible and religions.

4.5.6 Case Studies

How local context information assists global context information in discov-

ering topic structures. Having shown the superiority of CLM in discovering topic

structures in Subsections 4.5.1 and 4.5.2, we now take the topic of astronomy as an

example to illustrate how word embeddings can help discover more coherent topics.
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Figure 4.2: Two-dimensional PCA projection of word embedding clusters.

Word embeddings learned from local context information are able to capture semantic

regularities in language: words with similar semantic properties are found to be close

to each other in the embedding space. And we are encouraged to group semantically

related words (words that are geographically close in the embedding space) into same

topics. This intuition is illustrated in Figure 4.2: words belonging to same topics tend

to locate in nearby areas.

To verify our assumption, we quantitatively show that the average cosine distance

of words in a topic is consistent with the topic coherence score. As our closest com-

petitor in topic discovery, NMF is equivalent to our CLM model without considering

word embeddings. The top 10 words in the topic of astronomy discovered by CLM

are {’space’, ’orbit’, ’solar’, ’spacecraft’, ’mission’, ’mars’, ’earth’, ’venus’, ’nasa’, ’or-

biter’} as shown on the bottom left corner in Figure 4.2. The top 10 words in the topic

of astronomy discovered by NMF are {’space’, ’earth’, ’planet’, ’system’, ’spacecraft’,

’solar’, ’venus’, ’surface’, ’moon’, ’kilometers’}. We then calculate the average cosine

distance of words and the topic coherence score for CLM and NMF respectively. Table

4.8 justifies the consistency between the topic coherence score and the average cosine

distance. Therefore, by considering the spatial information of word embeddings, more

coherent topics can be discovered by CLM.
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Table 4.9: Case study 2.

Ground SPPMI Cosine

Word truth +SVD CLM similarity

pairs ranking ranking ranking of p(z|w)

king – queen 13 135 118 0.733

money – currency 7 79 41 0.851

planet – space 42.5 201 143 0.918

mile – kilometer 12 94 62 0.879

man – woman 24 70 44 0.731

How global context information assists local context information in learning

word embeddings. In Subsections 4.5.3 and 4.5.4, we have shown that the word em-

beddings learned by CLM are closer to human judgements in terms of word similarities.

We now take several word pairs in the WS353 test dataset to illustrate how global topi-

cal information can help us learn better word embeddings. We compare our rankings for

these example words with the rankings of our closest competitor SPPMI+SVD which

is equivalent to our CLM model without considering global topical information. As we

can see in Table 4.9, due to the lack of sufficient local context information, these word

pairs are not ranked properly by SPPMI+SVD. With the help of global topical infor-

mation, CLM can improve the similarity ranking as words’ topic distribution regulates.

If two words have similar topic distributions (measured by the cosine similarity between

their p(z|w)), such as planet and space, CLM would adjust the two corresponding word

embeddings closer to each other accordingly and assign them a higher position in the

similarity ranking.

4.6 Conclusions

We present a unified language model CLM based on matrix factorization techniques

which is able to collaboratively discover topic structures and learn word embeddings.

Moreover, building our model on both the global and the local context enables it to make

use of more sufficient information. The proposed CLM model formulates documents

as admixtures of topics, where each topic is a multinomial distribution over words

and is influenced by word embeddings in the way that words close to each other in
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the embedding space should be grouped into same topics. At the same time, CLM

also assumes that words appearing in similar local contexts and having similar topic

distributions tend to get mapped to nearby areas in the embedding space. Topics and

words are jointly trained and embedded in the vector space that preserves semantic

regularities, while sparse and interpretable document-topic distributions are achieved

simultaneously. The experiments on the real-world datasets validate the effectiveness

of CLM.
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Chapter 5

Learning Semantic Evolution

Based on Diachronic Literature

Data

5.1 Introduction

Decades of experimentation and analysis had led to a generation of large-scale datasets

in biological domain. At the same time, the technological advancements in the field of

biomedical engineering have resulted in the development of many tools such as high-

throughput sequencers, diagnostic imaging, etc. With the aid of these tools, researchers

are now able to gather and analyze massive data to understand disease prognosis, pre-

vention and personalized treatment options. The output of these various studies and

findings are shared to the research community through publication of various scientific

journals. As an example of the impact of these developments on the throughput of sci-

entific discovery and research, consider MEDLINE, a premier bibliographic database in

life sciences. With currently more than 23 million references from approximately 5,600

worldwide journals, it has seen a steady growth rate of ∼4% [67].

Despite the technological development that reduces the time for discovery, biomed-

ical researchers still face a daunting task of enumerating various postulates/hypotheses

based on manual inspection of evidence, which are then subsequently verified through ex-

periments. Apart from the monetary cost for performing these experiments, researchers

also have to bear the impact of possible delay in their research and its subsequent impact

60
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(a) Open discovery. The search

starts at C (e.g. disease), and re-

sults in A (drug). The intermedi-

ate B steps may represent (patho)

physiological mechanisms. The

black arrows indicate potentially

interesting pathways of discovery,

the grey ones do not qualify.

(b) Closed discovery. The search

process starts simultaneously from

C (e.g. disease) and A (drug), re-

sulting in overlapping Bs (poten-

tial mechanisms). The black ar-

rows indicate potentially interest-

ing pathways of discovery, the grey

ones spurious links.

Figure 5.1: Open and closed discovery.

on the community as a whole. Consequently, there has been a growing research interest

within the computer science domain in alleviating this situation by leveraging the large

body of published literature to perform text mining tasks with an aim of assisting the

biomedical researchers in their research tasks. One such task is Literature based dis-

covery (LBD), which aims to discover high quality, novel and non-trivial postulates by

leveraging the already known and established scientific facts.

Originally formulated in 1986 [68], where the problem statement was to identify

whether there is any relationship between “Fish Oil” and “Raynaud’s Disease”, over

the time, LBD techniques have grown from manual inspection of causality to more

sophisticated ideas involving association rules, classifiers, graph theoretics and manually

curated knowledge-bases with explicitly defined semantic relationships [69, 70, 71, 72].

Apart from the development in the approaches towards the solution, the original problem

statement of LBD has also evolved from a confirmatory type of problem to discovery
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- often referred to as closed and open discovery respectively [73]. In closed discovery,

the user provides two previously unconnected concepts as an input along with a date

parameter, and the task is to identify high confident evidence (terms) that connects

these inputs using all the documents published before that input date. As opposed to

this, in open discovery, the user provides only one term as the input, and the task is to

search and determine other related concepts that can form an indirect connection with

the input term. E.g.: Given two input concepts ‘Fish Oils’ and ‘Raynaud’s Disease’ and

the date as 1985, closed discovery framework identifies a ranked set of connecting terms

- e.g., Blood Viscosity, Platelet Aggregation, etc., by using all the documents available

until the date mentioned. In the case of open discovery, only one of the two terms is

given as an input - say Raynaud’s Disease, and the task is to identify all the concepts

that are related to it but not yet formally established. A high level view of both open

and closed discovery is shown in Figure 5.1. In this work, for the sake of simplicity,

we discuss our methodology for closed discovery and explain in brief on how it can be

easily extended to open discovery.

Traditionally, both open and closed discovery are performed as a two-step process.

The first step is responsible for enumerating all the different hypotheses and the second

step ranks these hypotheses such that the reliable and novel hypotheses are ranked

higher than frivolous and less confident ones. However, there are two major challenges

in such a two-step approach: (a) The dense interconnection/co-occurrence between

medical terms leads to exponentially large search space. (b) The ranking should not

only be sensitive to the statistical significance but also be semantically meaningful. In

this chapter, we try to overcome the aforementioned challenges with a novel methodology

which is semantically sensitive and able to efficiently rank hypotheses.

Furthermore, it is worthwhile to note that the semantics of terms gradually evolve

over time. For example, “virus” initially only meant an infectious agent that typically

consists of a nucleic acid molecule in a protein coat, then as the time passed, the

semantics of “virus” started getting closer to “computer”. Likewise, as the research

over disparate medical terms progresses their implicit semantics gradually evolves too.

Thus, if we are able to capture this growing association trend between any two terms,

we would then be able to rank the hypotheses based on the terms’ direction of evolution.

Simply put, if over a time period, the evolutionary trend between medical concepts is

towards each other then there is a high likelihood that these concepts will eventually

form a relationship in the future.
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To capture the semantics (medical properties) of medical concepts as well as their

evolutionary behaviors, we propose to formulate this problem in the embedding space.

Word embeddings are well known for their capability of capturing the implicit semantics

of terms [23] and have been used for a variety of association and relatedness measuring

tasks [1]. Moreover, word embeddings have shown promise as a diachronic tool, but

have not been systematically formulated. Thus, in this chapter, we propose the Dy-

namic MeSH Embedding (DME) model which uses the principles of co-occurrence and

temporal smoothening to train and constrain MeSH embeddings that can be used to

capture implicit semantics and track semantic evolution. Furthermore, based on the

evolutionary MeSH embeddings, we are able to generate medical hypotheses that are

both informative and sensitive to the semantic evolution of medical terms. In doing

so, we are able to achieve better Spearman’s rank correlation coefficient in the top-k

confident connecting terms compared with other existing ranking methodologies. Apart

from getting better results in statistical evaluation, we also perform manual verification

of the top-k confident connecting terms.

Our contributions can be summarized as:

• We propose a novel dynamic MeSH embedding model for LBD, capable of model-

ing gradual semantic evolution of MeSH terms over time in the embedding space

and inferring hidden associations.

• Our model allows us to track and visualize the evolutionary trajectories as well as

research trends of various medical concepts, thus achieving fine interpretability for

the generated hypotheses. Our model promotes the terms with increasing shared

semantics, which tend to have a higher likelihood of forming an inter-connection

in future.

• Unlike prior approaches which use complex heuristics to eliminate generic terms

causing dense search space, our model is able to detect them based on their evo-

lutionary behaviors.

• We show the effectiveness of our model in facilitating the rediscovery of five es-

tablished scientific facts.
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5.2 Related Work

The research area of LBD in biomedical domain came into prominence after the sem-

inal work of Don R. Swanson in 1986 [68]. In this work, after manually inspecting

MEDLINE articles pertaining to both Fish oils and Raynaud’s disease respectively,

he postulated that Fish oils could be a potential treatment for Raynaud’s Syndrome.

This was later clinically verified by Digicomo [74]. Through his work, he demonstrated

that implicit “interesting” links can be found by connecting disparate research findings

already present in literature.

While this initial work laid the groundwork for future research works, it needed

extensive manual intervention and domain knowledge to guide the discovery process.

To tackle these initial challenges, subsequent works explored in several directions to

make the process more methodological and automated. Some of the works based their

approach on purely distributional based approaches (term frequency, inverse document

frequency, record frequency and so on) [75, 76, 77, 78, 79]. The underlying assumption

is that discoveries are likely to arise if the logical fragments are either highly or rarely

connected in the knowledge base. However, a critical issue with these approaches is

that a high co-occurrence frequency statistic does not necessarily entail a meaningful

or a novel association. Also these methods did not take into account the temporal

characteristics of terms - which indicates their semantic evolution - a necessary aspect for

capturing plausible hypotheses. In our proposed model, we learn the semantic evolution

of concepts by incorporating their temporal features.

To address the inherent problems in distributional approaches, several relation based

approaches were proposed which relied on explicit relationships (or predicates) between

concepts. One pioneering example is the work of [72], where he developed an LBD sys-

tem using semantic predicates (in the form of subject-verb-object) to discover indirect

associations. These predicates were extracted from articles by using a Natural language

processing (NLP) system known as SemRep [80]. While the relation based approaches

were successful in capturing explicit relations they ignored the implicit semantic asso-

ciation between concepts which evolves over time. To tackle this issue, our proposed

model is formulated in the low-dimensional embedding space wherein implicit semantics

of terms are preserved.

More recent studies have focused on graph theoretic and supervised machine learning

approaches[70, 81, 69, 71]. As graph representation provide a more natural way to
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integrate heterogeneous knowledge sources into a single unified schema, it provides

rich opportunities to perform various analytical tasks. However, they still suffer from

scalability issues. While supervised machine learning approach has the potential to

elucidate novel association, the training data required is too expensive to generate.

Semantic evolution of natural language in the embeddings space has been studied

by several recent works[13, 15, 14]. Most of them train word embeddings separately on

data of different time slices and then align the learned embeddings. While statistical

principles of language evolution can be revealed by these model, they fail to formu-

late the correlation between embeddings at successive time stamps and learn smooth

evolutionary trajectories.

In order to deal with the inherent issues present in prior approaches, in this work, we

formulate the problem as an unsupervised learning task where we use dynamic MeSH

embeddings to model smooth semantic evolution of concepts to perform knowledge

discovery efficiently.

5.3 Definitions and Terminologies

5.3.1 Literature

In LBD, literature refers to a set of articles relevant to a particular subject. For instance,

“Parkinson” literature refers to the set of all articles which discuss “Parkinson disease”.

In this regard, it is worthwhile to mention that MEDLINE is the most comprehensive

source for literature collection in the biomedical domain. As full text articles are avail-

able in limited quantity, most researchers use MEDLINE title, abstract and indexing

terms (MeSH terms) as a surrogate for full text articles [73, 75, 82]. Also, an advantage

of using MEDLINE is that it is openly accessible and can be searched using a powerful

search engine developed by National Library of Medicine (NLM), viz., PubMed1 .

5.3.2 Concepts

Concept refers to a term or a phrase which has some biomedical importance. For

example, consider a topic “Parkinson disease”, the terms representing genes, proteins,

drugs, symptoms and other disease related to this topic are referred to as concepts.

There are many ways of extracting concepts from a text article for the purpose of LBD.

1 https://www.ncbi.nlm.nih.gov/pubmed.

https://www.ncbi.nlm.nih.gov/pubmed
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Some researchers [73, 76] prefer to extract biomedically meaningful concepts from free

text by utilizing a controlled vocabularies such as Unified Medical Language Systems

(UMLS)[80]. Alternatively, some choose to exploit Medical Subject Headings (MeSH)

terms to represent documents [77, 71, 79]. In this work, we use MeSH terms to represent

document. In the next section, we briefly describe MeSH terms.

5.3.3 Medical Subject Headings

Medical Subject Headings (MeSH) terms are NLM controlled thesaurus that are used

to index MEDLINE articles. For instance, if an article discusses the role of fish oil

in treating patients with Raynaud’s disease, then the article could be indexed with

MeSH terms such as “fish oil”,“raynaud disease”,“blood vessels”. As MeSH terms are

annotated manually to these articles by biomedical experts, it is safe to assume that if

a concept is of central importance to an article, it will be assigned to that article.

5.3.4 MeSH Embeddings

MeSH embeddings, or simply MeSH vectors, are d-dimensional real-valued vectors as-

signed to each MeSH term in the corpus such that two vectors close to each other in

the vector space denote a semantic similarity between the corresponding two MeSH

terms. The idea of MeSH embeddings in this chapter is inspired by word embeddings

[23, 1, 2, 52, 83, 53].

5.4 Methodology

We propose the DME model to learn the evolutionary behavior of MeSH semantics

and hence help generate medical hypotheses based on their evolving semantics. DME

is established on sequential text data and in every time slot DME models each MeSH

term as a unique MeSH embedding. MeSH embeddings are trained to capture implicit

semantics. Moreover, as our medical knowledge develops, the DME model finds that

MeSH embeddings continuously drift over time in the embedding space, i.e., dynamic

MeSH embeddings, allowing us to track semantic changes of MeSH terms over short

and long periods of time.

More specifically, DME follows two basic assumptions: (1) The distance between

two MeSH embeddings correlates with their medical similarity; (2) MeSH embeddings



67

Figure 5.2: Framework of DME. T time slices of data are connected via dynamic MeSH

embeddings.

evolve smoothly across time.

5.4.1 Dataset Construction

In order to generate high confident intermediary terms which connects the user input

query terms in a meaningful way, we use a complete dump of MEDLINE (2016)2 as

our dataset. We split this corpus into time slices and create a co-occurrence matrix of

MeSH terms for each period. We use this co-occurrence statistics to learn evolutionary

characteristics of MeSH terms. More specifically, first all the articles are aggregated to

the granularity of five years, e.g., 1900-1904, 1905-1909, 1910-1914 and so on. Then for

each time slot t, a co-occurrence matrix X(t) of MeSH terms is constructed to capture

the co-occurrence patterns, wherein each entry X
(t)
ij denotes the number of times that

the ith MeSH term co-occurs with the jth MeSH term in the same article.

5.4.2 Evolutionary MeSH Embeddings

Given T time-stamped medical co-occurrence matrices {X(1), ...,X(t), ...,X(T )}, the

semantics and evolutionary patterns of each MeSH term are carried implicitly within

those matrices. We describe our model according to how the semantics and evolutionary

patterns of MeSH terms are learned, as well as how the two aforementioned assumptions

are realized.

Static MeSH embeddings. The statistics of term occurrences in a text dataset is the

primary source of information to all unsupervised embedding methods. The semantics

of terms (the medical properties of MeSH terms in our case) are contained in these

2 https://www.nlm.nih.gov/databases/download/pubmed_medline.html.

https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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statistics, and our goal is to learn MeSH embeddings that can represent those medical

properties. We start with learning static MeSH embeddings from an independent term-

term co-occurrence matrix.

Inspired by the word embedding model GloVe [2], we assume that the medical prop-

erty of a MeSH term can be described by its co-occurrence information, i.e., its context

information. As an example, consider two MeSH terms i = male and j = female, their

relationship can be examined by studying the ratio of their co-occurrence probabilities

with other probe terms, k: for terms k like brain or carbon, that are related to both male

and female, or to neither, we expect the co-occurrence probability ratio P (k|i)/P (k|j)
to be close to one; for terms k more related to female than to male, say k = pregnancy,

the probability ratio P (k|i)/P (k|j) should be small; in contrast, for terms more related

to male than to female, the ratio should be large. This assumption suggests that the

probability ratio P (k|i)/P (k|j) depends on two target terms i, j and one probe term

k. By adopting the vector difference and the dot product of the MeSH embeddings, the

linear structures of the embedding space can be captured and modeled via:

F ((w
(t)
i −w

(t)
j )ᵀw̃

(t)
k ) =

P (k|i)
P (k|j)

, (5.1)

where w(t) ∈ Rd are MeSH embeddings at time stamp t and w̃(t) ∈ Rd are context

MeSH embeddings at time stamp t, respectively. w
(t)
i is used when term i works as a

target term, and w̃
(t)
i is used when term i works as a probe term. Given the medical

term-term co-occurrence matrix at time t, X(t), P (k|i) is empirically set as P (k|i) =

X
(t)
ik /X

(t)
i , where X

(t)
i =

∑
mX

(t)
im is the number of times any MeSH terms co-occurred

with term i at time t. Thus, by taking F as the exponential function and adding biases,

a simplification over Equation 5.1 is obtained:

w
(t)ᵀ
i w̃

(t)
k + b

(t)
i + b̃

(t)
k = log(X

(t)
ik ), (5.2)

where b
(t)
i and b̃

(t)
k are biases associated with term i and k at time t. Considering that

the term co-occurrence matrix X(t) is very sparse, static MeSH embeddings for time

stamp t can be learned via a weighted least squares regression:

J (t) =
V∑

i,j=1

f(X
(t)
ij )(w

(t)ᵀ
i w̃

(t)
j + b

(t)
i + b̃

(t)
j − log(X

(t)
ij ))2, (5.3)

where f is a weighting function for each entry in the co-occurrence matrix. As suggested
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in GloVe [2], f is set as:

f(x) =

(x/xmax)α if x < xmax

1 otherwise
. (5.4)

Dynamic MeSH embeddings. The previous subsection introduces learning of static

MeSH embeddings from an independent term co-occurrence matrix. Now given a time

sequence of term co-occurrence matrix {X(1), ...,X(t), ...,X(T )}, we would like to learn

dynamic MeSH embeddings which evolve smoothly as time passes and our medical

knowledge progresses.

Figure 5.2 shows the framework of our DME model. The learned dynamic MeSH

embeddings at time t must account for both their medical properties which are carried

by the current term co-occurrence matrix and their historical evolutionary trajectories.

At each time stamp t, we add a distance constraint to each MeSH term which prevents

the embedding from drifting too far from its historical location:

O(t) =
V∑

i,j=1

f(X
(t)
ij )
(

(w
(t)ᵀ
i w̃

(t)
j + b

(t)
i + b̃

(t)
j − log(X

(t)
ij ))2 +βI(t)(i)l(w

(t)
i ,w

(t−1)
i )

)
,

where β is the parameter controlling the damping to the historical embeddings, I(t)(i) is

a indicator function, and l(w
(t)
i ,w

(t−1)
i ) measures the distance between term i’s current

location in the embedding space w
(t)
i and its historical location w

(t−1)
i . I(t)(i) indicates

if term i has occurred in history:

I(t)(i) =

1 if term i has occurred before time t

0 otherwise
. (5.5)

A large number of distance measurements can be used as l(w
(t)
i ,w

(t−1)
i ), such as

cosine distance, but since we would like to learn smooth evolutionary trajectories of

MeSH embeddings, we adopt the Euclidean distance between the current embeddings

and historical embeddings:

l(w
(t)
i ,w

(t−1)
i ) = ||w(t)

i −w
(t−1)
i ||2. (5.6)

In practice, β is set to a small value, so the damping to the history is very weak.

At time stamp t = 1, we define I(0)(i) = 0. We put the embedding shift constraint

l(w
(t)
i ,w

(t−1)
i ) only on MeSH embeddings, because context MeSH embeddings might
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need to change its scale frequently as the scale of the co-occurrence matrices changes.

Thus, the overall objective function of our DME model is as follows:

O =
T∑
t=1

O(t) =
T∑
t=1

V∑
i,j=1

f(X
(t)
ij )
(

(w
(t)ᵀ
i w̃

(t)
j + b

(t)
i + b̃

(t)
j − log(X

(t)
ij ))2

+βI(t)(i)l(w
(t)
i ,w

(t−1)
i )

)
.

(5.7)

Equation 5.7 enforces that the DME model learns dynamic MeSH embeddings which

vary smoothly over time. On each occurrence of a MeSH term, its corresponding dy-

namic MeSH embedding is regulated not to drift too far from its historical location.

Thus, the higher term frequency, the larger regulation to be stable over time. This is

consistent with the law of conformity of language evolution – “rates of semantic change

scale with a negative power of word frequency” [13]. DME efficiently shares informa-

tion across the time domain, which allows us to feed the time-stamped data sequentially

in steps. Dynamic MeSH embeddings trained by DME can both capture the implicit

medical properties of each MeSH term and track their property changes.

5.4.3 Parameter Inference

We take the gradient of DME objective (Equation 5.7) with respect to each of the

model parameters {w(t)
i , w̃

(t)
j , b

(t)
i , b̃

(t)
j } and then adopt stochastic gradient descent to

update them. Thus, on each co-occurrence record, this gives us the following closed-

form updates:

w
(t)
i ← w

(t)
i − η ∗ 2f(X

(t)
ij )
(

(w
(t)ᵀ
i w̃

(t)
j + b

(t)
i + b̃

(t)
j

− log(X
(t)
ij ))w̃

(t)
j + βI(t)(i)(w

(t)
i −w

(t−1)
i )

)
,

w̃
(t)
j ← w̃

(t)
j − η ∗ 2f(X

(t)
ij )
(

(w
(t)ᵀ
i w̃

(t)
j + b

(t)
i + b̃

(t)
j

− log(X
(t)
ij ))w

(t)
i

)
,

b
(t)
i ← b

(t)
i − η ∗ 2f(X

(t)
ij )(w

(t)ᵀ
i w̃

(t)
j + b

(t)
i + b̃

(t)
j − log(X

(t)
ij )),

b̃
(t)
j ← b̃

(t)
j − η ∗ 2f(X

(t)
ij )(w

(t)ᵀ
i w̃

(t)
j + b

(t)
i + b̃

(t)
j − log(X

(t)
ij )),

where η is the learning rate. In Section 5.5, we will introduce how to solve LBD tasks

with the evolving medical concepts – to be more specific, how to generate and rank

medical hypotheses based on the dynamic MeSH embeddings.
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Figure 5.3: An example of the evolutionary behavior of MeSH embeddings.

5.5 Experiments

Having explained the nuances of our methodology, we now describe the evaluation and

compare the results of our framework with some of the prominent existing ones. In

our experiments, we set the dimensionality of MeSH embeddings d = 200, α = 0.75,

β = 0.01, xmax = 100, η = 0.05 and run DME for 100 iterations on each time slice.3

It should be noted that evaluating LBD systems is not a simple task and remains

an open problem [84]. This is because of the unavailability of a comprehensive and ex-

haustive ground truth results, apart from lack of a systematic comparison methodology.

To overcome this difficulty, replicating existing scientific discoveries has been seen as

an effective evaluation approach by most LBD researchers. The pioneers in this area of

study Swanson and Smalheiser applied their initial model and published several discov-

eries in medical domain, which were subsequently validated. Since then, these proposed

terms in their discoveries have become a gold standard for evaluation. The following

are the de facto gold test-cases that have certain expected results.

1. Fish-oil (FO) and Raynaud’s Disease (RD) (1985)

2. Magnesium (MG) and Migraine Disorder (MIG) (1988)

3. Somatomedin C (IGF1) and Arginine (ARG) (1994)

3 The source code of DME is available at https://github.com/XunGuangxu/DME.

https://github.com/XunGuangxu/DME
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Figure 5.4: Curve of average cosine similarity between Fish Oils - Blood Viscosity -

Raynaud’s Disease at different time.

4. Indomethacin (INN) and Alzheimer Disease (AD) (1989)

5. Schizophrenia (SZ) and Calcium - Independent Phospholipase A2 (CI-PA2) (1997)

To assess the effectiveness of our model, we perform both evidence based as well

as statistical evaluation. The evidence-based evaluation qualitatively determines the

extent to which our approach is capable of rediscovering the known knowledge, while

the statistical evaluation is intended to provide a quantitative understanding of overall

quality of results.

Before we delve into the details of qualitative and quantitative evaluation, we discuss

how our model facilitates in analyzing evolution trajectories of MeSH terms, demoting

generic terms and ranking candidate intermediate terms.

5.5.1 Evolution of Medical Concepts

Evolutionary trajectories. As our medical knowledge develops, the semantics (med-

ical properties) of MeSH terms evolve, for example, the finding of a new treatment or a

new cause to a specific disease would probably result in their medical properties getting

more similar. This semantic evolution is reflected as evolutionary trajectories of MeSH

embeddings in the vector space. Consider the classic example of Fish Oils (FO) – Blood

Viscosity (BV) – Raynaud’s Disease (RD), Figure 5.3 shows the two-dimensional pro-

jection of the MeSH embeddings and their evolutionary trajectories using t-Distributed

Stochastic Neighbor Embedding (t-SNE) [85]. As can be observed, initially in 1953,
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Table 5.1: Comparison of average cosine distance change.

MeSH Terms Average Cosine Distance Change

humans 0.000475

animals 0.000807

female 0.000909

male 0.001940

fish oils 0.350

raynaud disease 0.311

blood viscosity 0.292

epoprostenol 0.345

all three concepts were at different positions, but, as the research over these topics in-

creased in parallel, their implicit semantics started getting closer, making them very

close to each other in 1983. This evolutionary behavior eventually in 1986 led to their

co-occurrence for the first time in a research article. This growing association trend

among the three medical concepts can also be quantitatively measured by the average

cosine similarity in the embedding space: (cos-sim(′FO′,′BV ′)+cos-sim(′RD′,′BV ′))/2,

as shown in Figure 5.4. We can see that the average cosine similarity between them

gradually increased over time (from 1962-1984) and once the association was formed in

1986 the average cosine similarity between these terms reached a plateau.

Detecting generic MeSH terms. As mentioned before, one of the major challenges

in LBD is to detect and differentiate generic terms from informative terms. Generic

terms, such as humans and animals, frequently co-occur with a wide variety of other

terms, and hence tend to have high association score with most of the terms. However,

we would like to demote those generic terms when ranking hypotheses terms as they

are not informative. The conventional approach to tackle this issue is to utilize certain

heuristic rules such as removing the MeSH terms which appeared more than 10,000

times in MEDLINE documents [76]. However, such heuristics lack clear rationale behind

them. Our DME model provides a new insight into the generality of terms. According

to the law of conformity [13], the semantics of generic terms tend to remain stable from

the viewpoint of evolution. This law is also confirmed by our proposed DME model

in bio-medical literature, as shown in Table 5.1. Table 5.1 presents the average cosine
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distance changes of four generic terms and four informative terms over time, where the

average cosine distance change over time for term i till time T is calculated as:

∆(wi, T ) =
1

Ni

T−1∑
t=1

I(t)(i) ∗ cos-dist(w
(t)
i ,w

(t+1)
i ), (5.8)

where Ni is the number of time slices term i occurred. As one can observe, dynamic

MeSH embeddings for generic terms, such as humans, are extremely stable over time.

This helps us in penalizing the ranks of terms which are fairly generic.

Ranking candidate intermediary terms. For a closed discovery task, given two

previously unconnected terms i and j along with a cut-off time-stamp t, we would like

to identify high confident terms k that will connect these inputs terms after t using

all the documents published before t. When ranking intermediary terms k, we take

into consideration three factors: (1) term k’s cosine similarity with i and j at current

time stamp t: k should be close to both input terms to be a bridging term; (2) the

evolutionary trajectories: k is favored if there is a growing association trend between

k and i, j; (3) the generality of term k: we prefer informative terms to generic terms.

Therefore, the intermediary terms k are ranked according to:

s(k|i, j, t) = sim(w
(t)
k ,w

(t)
i ,w

(t)
j )∆(wk, t)trd(wk,wi,wj , t), (5.9)

where sim(w
(t)
k ,w

(t)
i ,w

(t)
j ) denotes k’s cosine similarity with i and j at time t. To

penalize terms which are close to only one input term but far away from the other input

term, we adopt F1 cosine similarity score as sim(w
(t)
k ,w

(t)
i ,w

(t)
j ):

2
cos-sim(w

(t)
k ,w

(t)
i ) ∗ cos-sim(w

(t)
k ,w

(t)
j )

cos-sim(w
(t)
k ,w

(t)
i ) + cos-sim(w

(t)
k ,w

(t)
j )

.

∆(wk, t) reflects the generality of k till time t as defined in Equation 5.8, and trd(wk,wi,wj , t)

is the association trend between k and i, j up untill time t, defined as:

exp
(

acs(w
(t)
k ,w

(t)
i ,w

(t)
j )− acs(w

(a)
k ,w

(a)
i ,w

(a)
j )
)
,

where acs(w
(t)
k ,w

(t)
i ,w

(t)
j ) stands for the average cosine similarity between them, and

a denotes the first time stamp they appeared. Hence, given a closed discovery task,

we can rank the intermediate terms based on dynamic MeSH embeddings according to

Equation 5.9.
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Table 5.2: Top 15 intermediary MeSH terms for FO - RD.
Intermediary MeSH Term Observation

1 erythrocyte deformability PMID: 4031661

2 arteriosclerosis obliterans PMID: 2285650

3 diabetic angiopathies False: No evidence

4 arteritis PMID: 1033318

5 double-blind method False: Too Generic

6 thromboxane a2 PMID: 3797213

7 vascular diseases PMID: 3797213

8 platelet aggregation PMID: 3797213

9 fatty acids, essential PMID:16825676

10 hyperlipidemias False: No evidence

11 vasodilation PMID: 3797213

12 blood viscosity PMID: 3797213

13 platelet aggregation inhibitors PMID: 3797213

14 platelet function tests False: Too Generic

15 vasodilator agents Derivative of vasodilation

5.5.2 Evidence Based Evaluation

In evidence based evaluation, we are interested in finding whether our model can suc-

cessfully rediscover already established knowledge. Also, another aspect is to examine

the validity of certain other higher ranked terms that were unique to our system and

not part previous LBD research. We do this by comparing with the de facto gold results

and manually checking the relationship between the intermediary/bridging terms and

the query terms in the literature. To get the medical journal for manual inspection,

we formulate a boolean query (e.g. fish oils AND epoprostenol AND raynaud’s disease)

in Google and examine top 10 results. Tables 5.2, 5.3, 5.4, 5.5, and 5.6 present a con-

solidated view of our top K=15 ranked results. For each of the valid connection, we

provide its corresponding PubMed identifier (PMID). We assume a connection to be a

valid connection if it co-occurs together with input query terms after the cut-off date.

Fish-oil (FO) and Raynaud’s Disease (RD). To reiterate, in 1986, Swanson[68]

explored the research question of “role of dietary fish oils in treating patients with

Raynaud’s syndrome”. Upon manual inspection of literature belonging to Fish oils and

Raynaud’s disease respectively, he found that Raynaud’s disease is aggravated by high

blood viscosity, high platelet aggregation, Vasoconstriction, and the ingestion of Fish oils
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Table 5.3: Top 15 intermediary MeSH terms for MIG - MG.
Intermediary MeSH Term Observation

1 calcium PMID: 3075738

2 nifedipine PMID: 1071161

3 cerebrovascular disorders PMID: 23674807

4 ischemic attack, transient PMID: 8961243

5 potassium chloride PMID: 4586582

6 potassium PMID: 4586582

7 verapamil PMID: 1071161

8 epilepsy PMID: 3075738

9 ranitidine False: No evidence

10 phosphorus PMID: 2584000

11 propranolol PMID: 3663475

12 lithium False: Too generic

13 bipolar disorder PMID: 2855933

14 homeostasis PMID: 16866716

15 calcium channel blockers PMID: 1071161

reduced these phenomena.

In table 5.2, it can be observed that we find both platelet aggregation and blood

viscosity at rank 8 and 11 respectively. In this context, it is worthwhile to note that

many rediscovery approaches consider it a success if they find platelet aggregation in their

list of intermediates [70]. In addition to these important connections, other terms in our

ranked set such as ‘fattyacids, essential’, ‘vasodilation’ are also meaningful pathways.

Magnesium (MG) and Migraine Disorder(MIG). Swanson[86] proposed eleven

pathways (intermediates) between Magnesium and Migraine Disorder. These connec-

tions are epilepsy, serotonin, prostaglandins, platelet aggregation, calcium antagonist,

type A personality, vascular tone and reactivity, calcium channel blockers, spreading

cortical depression, inflammation, brain hypoxia and substance P. Unlike the previous

case, we are unable to achieve high recall. Nevertheless, we obtained important path-

ways such as epilepsy, calcium channel blockers, adenosine triphosphate, etc, in table

5.3. In this regard, it should be noted that previous research indicates this to be a

difficult test case [77].
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Table 5.4: Top 15 intermediary MeSH terms for IGF1 - ARG.
Intermediary MeSH Term Observation

1 somatotropin PMID: 2406696

2 nitric oxide PMID: 2655363

3 growth hormone-releasing hormone PMID: 18537700

4 fibroblast growth factor 2 PMID:3543345

5 lysine False: No evidence

6 glucagon PMID:24582776

7 nitric oxide synthase Derivative of nitric oxide

8 glucagon PMID:24582776

9 growth disorders PMID:4881955

10 epidermal growth factor PMID:4881584

11 endothelins PMID:4468388

12 somatostatin PMID:18537700

13 glutamine False: No evidence

14 cyclic gmp PMID:11253364

15 neostigmine False: No evidence

Somatomedin C (SMC) and Arginine (ARG). Somatomedin C (SMC) also

known as Insulin-like Growth Factor I (IFG1) is a growth regulating peptide, whereas,

Arginine is an important amino acid. They both were found to related to each other

through the means of growth hormones such as somatotropin and somatostatin. Growth

hormones tend to influence SMC and ARG in turn stimulates the secretion of growth

hormones.

In our results in table 5.4, somatotropin is ranked number 1 and somatostatin is

found in top K. Compared to prior approaches[82] which use ad-hoc semantic types to

get these results, our model finds them in a completely automated way.

Indomethacin (INN) and Alzheimer Disease (AD). A research question of

whether Alzheimer Disease (AD) - a progressive disease that destroys memory and other

important functions, can be treated with an inflammatory agent - Indomethacin (INN)

was explored during 1990’s. Researchers reported that connections such as Acetyl-

choline, Membrane fluidity to be important pathways. In our results in table 5.5, similar

to previous test case, Acetylcholine is ranked 1. Although Membrane fluidity was not

ranked in top K, its derivatives were ranked higher. An interesting observation that

we would like to discuss here is regarding the term nitric oxide (Rank=3). Although
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Table 5.5: Top 15 intermediary MeSH terms for INN - AD.
Intermediary MeSH Term Observation

1 acetylcholine PMID:2644496

2 amyloid PMID:1894844

3 nitric oxide PMID:11080519

4 cerebral cortex PMID:1618710

5 gastric mucosa PMID:3526946

6 cerebrovascular circulation PMID:3656423

7 brain ischemia PMID:4664815

8 nitroprusside False: No evidence

9 brain chemistry False: Too generic

10 neurotransmitter agents PMID:12421115

11 cerebral infarction False: No evidence

12 astrocytes PMID:5098782

13 hippocampus PMID:4033954

14 atropine PMID:20980781

15 aging PMID:12076498

not yet validated, several papers identified nitric oxide as important for understanding

alzheimers [77]. Moreover, during 2000-2001, there were studies[87] showing evidence

of strong influence of nitric oxide in both Alzheimer’s disease and Indomethacin.

Schizophrenia (SZ) and Calcium - Independent Phospholipase A2 (CI-PA2).

Schizophrenia is a disorder that affects person’s ability to think, feel and concentrate.

It is found that CI-PA2 is elevated in SZ patients. After combing independent works

of [88] and [89], Swanson and Smalheiser postulated oxidative stress to be the key

connecting term. In our results in table 5.6, we were able to cover oxidative stress

indirectly through receptors, adrenergic (PMID: 3820966). Also, similar to previous

test case, our top ranked term (glutamates) is found to be heavily investigated for its

influences in treating Schizophrenia (PMID: 20686195) during more recent years.

5.5.3 Statistical Evaluation

In the previous subsection, we discussed how our system is able to predict novel asso-

ciations much ahead of their real discovery time. While this is encouraging, one might

ask, “How about the overall quality of hypotheses generated?”. To measure the overall

quality of ranked set, we need a ground truth. However, as mentioned before, there is
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Table 5.6: Top 15 intermediary MeSH terms for SZ - CI-PA2.
Intermediary MeSH Term Observation

1 glutamates PMID:3782191

2 calcium-binding proteins PMID:2735787

3 mesencephalon PMID:2735787

4 photic stimulation False: Too generic

5 receptors, adrenergic PMID:2836388

6 genes, immediate-early False: Too generic

7 photosensitivity disorders False: Too generic

8 pedigree PMID:2665704

9 prolactin PMID:8898352

10 4-chloromercuribenzenesulfonate False: Inconclusive from literature

11 breast feeding PMID:1853256

12 pituitary hormone-releasing hormones PMID:5395093

13 synapses PMID:22414961

14 myocardial ischemia PMID: 4548770

15 prostaglandins PMID:26160611

Table 5.7: Spearman’s correlation for FO - RD.

Methods Top 1505 Top 500 Top 100 Top 20

Graph 0.236 0.142 0.086 -0.266

Static 0.423 0.429 0.440 0.055

DME 0.430 0.430 0.460 0.066

no standard ground truth available, thus we generate a “supposed” ground truth based

on the documents published after the cut-off date. As an example, consider test case

“MG-MIG” whose cut-off year is 1988, so based on the documents in 1989-2016, the

ground truth intermediate terms k are ranked according to:

gt(k) =
#(k, “MG”) + #(k, “MIG”)

#(k)
, (5.10)

where #(i, j) is the number of times terms i and j co-occur, and #(i) =
∑

j #(i, j).

Hence, the ranked hypotheses can be evaluated by measuring the Spearman’s rank cor-

relation with the ground truth ranked set. We compare our DME model with two

baselines: Static (described in Section 5.4.2) and Graph [71]. Graph is a distribution-

graph theoretic approach and we made our own implementation of it. This methodology
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Table 5.8: Spearman’s correlation for MIG - MG.

Methods Top 3976 Top 1500 Top 300 Top 200

Graph 0.203 0.035 -0.023 0.013

Static 0.351 0.186 0.161 0.152

DME 0.357 0.201 0.178 0.174

Table 5.9: Spearman’s correlation for IGF1 - ARG.

Methods Top 7599 Top 4000 Top 400 Top 300

Graph 0.266 0.185 0.063 0.063

Static 0.307 0.192 0.169 0.172

DME 0.319 0.197 0.196 0.183

uses a combination of graph-based global and local measures to rank the intermedi-

ary/connecting terms between a given pair of input terms. The comparison results on

the 5 test cases are reported in Tables 5.7, 5.8, 5.10, 5.9 and 5.11. The first column

of each table is calculated on the entire ground truth ranked set. As can be observed,

DME consistently outperforms the baselines. For other prior works, as they were per-

formed under different settings and a complete ranked set is difficult to obtain, we

cannot compare our results with them.

5.5.4 Open Discovery

In this subsection, we briefly discuss on the portability of our methodology to open

discovery problem. The difference between the closed discovery and the open discovery

is in the absence of a “grounded” end medical concept in the latter, i.e., for a closed

discovery “Is fish oil connected to Raynaud disease?”, the corresponding open discovery

query would be “What are all the treatments for Raynaud Disease?” It can be seen that

the first query contains two grounded concepts - fish oil and Raynaud disease while the

open discovery query only contains one grounded concept - Raynaud Disease. However,

the open discovery query also contains meta constraint - in this case the semantic label

“treatments”. More formally, in biomedical knowledge the semantic label “treatment”

corresponds to the semantic type Biologically active substance.4 Hence, we first filter

4 The explicit semantic types of MeSH terms can be obtained from UMLS [80].



81

Table 5.10: Spearman’s correlation for INN - AD.

Methods Top 5351 Top 2500 Top 500 Top 100

Graph 0.188 0.036 0.051 0.023

Static 0.163 0.139 0.224 0.230

DME 0.168 0.144 0.239 0.239

Table 5.11: Spearman’s correlation for SZ - CI-PA2.

Methods Top 519 Top 100 Top 50 Top 20

Graph 0.121 -0.244 -0.034 0.058

Static 0.317 0.362 0.176 0.202

DME 0.327 0.412 0.247 0.373

from the collection of all medical concepts to retain only those terms that satisfy the

specified meta constraint. Once we have filtered and retained only relevant candidate

terms, one can repeat the closed discovery process for each of the candidates. In formal

words, given the input term i and a time stamp t, the candidate hypotheses are generated

and ranked based on the same scheme that is used in Equation 5.9 except that the

term j (denoting the end term) is ignored. In the interest of space, we provide only a

summary view of the results (Table 5.12) for the first test case (FO-RD). In terms of

ranking, our framework was able to identify fish oils at rank 27 out of 104. Compared

to many baselines [77, 90], we were able to identify fish oil at much higher rank and that

too with no manual intervention. Furthermore, some of the other terms ranked higher

were also derivatives of fish oils such as ‘docosahexaenoic acids’, ‘eicosapentaenoic acid ’,

‘lipoproteins, ldl ’, etc. Such terms are also deemed to be valid by researchers [82, 90, 91].

Thus, we show that our dynamic MeSH embedding based approach is eminently suitable

not only for closed discovery but also could be adapted for open discovery setting.

5.6 Conclusions

In this chapter, we propose the DME model based on the evolutionary behavior of

medical concepts. DME captures implicit semantic regularities of MeSH terms and

tracks their semantic changes over time in the embedding space. By studying the
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Table 5.12: Spearman’s correlation for open discovery.

Methods Top 1738 Top 1000 Top 800 Top 200

Static 0.127 0.011 0.031 0.027

DME 0.189 0.101 0.081 0.068

evolutionary trajectories of MeSH embeddings, informative terms can be promoted,

basing upon which novel medical hypothesis can then be discovered. The methodology

contributes to LBD research specifically because it uses notion of semantic evolution to

facilitate making discoveries from scientific literature.



Chapter 6

Learning Time-aware

Representations of Sequential

Data

6.1 Introduction

An epileptic seizure is a transient aberration due to abnormally excessive or synchronous

neuronal activities in the brain. The disease epilepsy is defined as an enduring predis-

position in brain which generates epileptic seizures. The symptom of epilepsy can vary

from uncontrolled jerking movement to as subtle as a temporary unconsciousness [92].

Frequent seizures are dangerous in which it may result in serious physical injuries and

even death. According to the study, 5%-10% of the people over 80 years old have ex-

perienced the epileptic seizures for at least once. After the first experience, they would

suffer from another epileptic seizure with a probability of 40%-50%. Currently about

1% of the global population are affected by epileptic seizures and at some point in time

the number used to be 4% at its highest [93].

Considering the large population affected by epileptic seizure and the serious out-

come caused by epileptic seizure for the patients, a device that can quickly detect the

onset of seizure and deliver therapy can be of great help. In recent years, the surge

in brain-computer interface (BCI) technology introduces tremendous opportunities to

applying physiological signals to biomedical applications. According to previous stud-

ies, the electroencephalogram signals (EEG) are closely related to brain activities and

83
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can be used to detect neural diseases [94, 95]. Therefore, learning the EEG signals is

an efficient way to infer the onset of seizures and analyzing the seizures. While we can

collect EEG signals from different parts of body, the scalp EEG is most widely adopted,

which is a non-invasive, multi-channel recording of the brain’s electrical activities.

The condition of seizures has proven to be closely related to the neural electrical

activities which can be reflected on EEG signals. Nevertheless, there still exist several

challenges in the automatic seizure detection task:

First, seizure and non-seizure states have considerable overlap in patients’ EEG

signals.

Second, the EEG of epilepsy patients has more than one states for both the seizure

and non-seizure status and may constantly transition between them.

Third, most conventional learning models directly send all the input to the seizure

classifiers without extracting features and are not able to analyze the correlation between

different input data, which would result in the failure to recognize the temporal signal

patterns [96, 97, 98].

Fourth, as the characteristics of seizures on EEG might vary significantly across

patients, we can hardly design a general seizure detector. Because of this cross-patient

variability in seizure and non-seizure activities, patient non-specific classifiers are usually

not able to obtain a high accuracy and suffer from long delays in detecting the onset of a

seizure. On the contrary, patient specific classifiers can exhibit impressive performance

because they do not need to deal with the cross-patient variability [99].

Fifth, in practice, the automatic seizure detector should be able to detect the onset

of a seizure quickly. Besides, it should also be able to handle the unbalanced training

data, because seizures are rare events which results in the paucity of seizure training

data.

Facing these challenges, we propose an innovative method to capture the temporal

features and context information hidden in EEG data. Since the onset of a seizure is

related to a sequence of EEG signals rather than the values at a certain point, temporal

analysis is necessary and crucial for the seizure detection. More specifically, our model

handles these challenges with the following strategies:

• We segment the EEG into small pieces of fixed length with a sliding window. By

sliding the window with a fixed step length, the EEG is segmented into numerous

small fragments as the “EEG words” for further analysis.
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Figure 6.1: Schematic illustration of the overall framework.

• We extract the hidden inherent features within each EEG fragment. One single

feature corresponds to one “EEG word” in our learned “EEG dictionary”.

• We explore the temporal knowledge by learning the context information of EEG

fragments. After translating the EEG fragments into “EEG words”, we can infer

the context knowledge for an EEG fragment.

• Finally, we combine the hidden features of each EEG fragment and the temporal

knowledge together and subsequently send them to a seizure classifier. In this

chapter we concentrate on the binary classification (seizure or non-seizure states)

while the proposed model can be easily extended to uncover more physiological

classes.

Based on the above strategies, our model is described in Figure 6.1.



86

(a) The scalp EEG of patient A. (b) The scalp EEG of patient B.

Figure 6.2: The scalp EEG of two patients.

6.2 Dataset

The dataset we use is the scalp electroencephalogram collected at the Children’s Hospital

Boston [95]. EEG measures the electrical activities in the brain by attaching multiple

electrodes to the patient’s scalp. Each EEG channel records the voltage change be-

tween a specific pair of electrodes, and therefore reflects the electrical activities in the

corresponding region.

This dataset consists of the EEG recording intractable seizures from pediatric sub-

jects. 23 patients were involved in the dataset, including 5 males and 18 females from

age 2 to age 22, to characterize their seizures and access the necessity of surgery for

them. All the signals were recorded at 256 Hz with 16 − bit resolution. In most files,

there are 23 EEG channels and 24 channels in a few cases.

Following the onset of a seizure, a set of EEG signals show dramatic changes from the

non-seizure states. And this will assist the seizure detector in distinguishing the seizure

and non-seizure states. For example, Figure 6.2a illustrates the onset of a seizure of

patient A. Patient A’s seizure starts at the 6th second as the red bar shows in Figure

6.2a, and then the onset of this seizure comes with the significant changes of EEG

signals.

However, as we mentioned, the characteristics of seizures on EEG might vary sig-

nificantly across patients, and this variability will make the seizure detection problem

even more difficult. Figure 6.2b shows the onset of a seizure of patient B. Patient B’s

seizure also starts at the 6th second as the red bar shows in Figure 6.2b. Significant
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Figure 6.3: An example of EEG segmentation.

changes can still be observed between seizure and non-seizure states, but the structure

of seizures on EEG differs across patients.

Sometimes, EEG signals show some certain kinds of rhythmic activities when people

are excited, which are also different from the calm states. But these EEG fragments

should not be confused with seizures. The ambiguity brought by these activities requires

the seizure detector to learn the features of seizures.

6.3 Methodology

In this section, we propose a novel framework to extract the hidden inherent features

and temporal information in EEG signals. We start by discussing the first step of our

model, segmenting EEG data.

6.3.1 EEG Segmentation

Since EEG signals cannot be explicitly segmented into sub-fragments associated with

physiological meanings, we segment it into several epochs of fixed length. With a sliding

window of length L (for example, 3 seconds), we build our EEG fragment pool by sliding

the window by 1 second at each step.

Figure 6.3 shows an example of how to segment an EEG signal into three fragments,

in which the length of the sliding window is fixed to L = 3 seconds and the step length

is 1 second.

By segmenting the EEG signals into numerous EEG fragments, we obtain an EEG

pool of EEG fragments. Our further analysis and experiments are conducted on these

EEG fragments.
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Figure 6.4: The structure of a simple autoencoder.

6.3.2 EEG Dictionary Learning

After the EEG fragment pool is built, we use a sparse autoencoder (SAE) to extract

features for these fragments. Autoencoder is an unsupervised neural network based

model which aims at discovering interesting structures of data by reconstructing the

input [100].

In its simplest form, an autoencoder consists of two parts, an encoder and a decoder.

Autoencoder can also be viewed as a technique for feature extraction and dimensionality

reduction. The encoder reduces the dimensionality of the input data to obtain principal

features, and the decoder is tuned to reconstruct the input data based on the output

features of the encoder. Hence by minimizing the reconstruction error, we can get the

optimal autoencoder whose encoder extracts features with reduced dimensionality and

decoder reconstructs input data from the extracted features. In particular, when we

select a linear activation function and use less hidden units than the input dimensions,

the encoder works similarly with the principal component analysis (PCA) [101]. How-

ever, when a non-linear activation function is adopted, the autoencoder has proven to

be capable of learning more useful features than PCA [102].

Figure 6.4 depicts the structure of an antoencoder with one hidden layer, where x

is the input data, h is the hidden unit and +1 term is adopted to integrate the bias.

The autoencoder tries to learn a hidden layer that satisfies g(f(x)) ≈ x, where f(x)

extracts features from input s and g(y) reconstructs the original data from the extracted

features. In other words, it aims at learning a model to approximate the output with

the input. The the bottom up structure denotes the process of encoding, as the left

green arrow shows in Figure 6.4. The encoder corresponds to the function f that maps

the input data x to the hidden layer h. The function f is defined as:

h = f(x) = σ(Wx+ bh), (6.1)
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where bh represents the bias, W represents the weight matrix from input data to the

hidden units and σ(x) is the activation function. In our test we adopt the non-linear

logistic sigmoid function, as follows:

σ(x) =
1

1 + e−x
.

The top down structure denotes the process of decoding, as the right green arrow

shows in Figure 6.4. The decoder corresponds to the function g that reconstructs the

input data from the hidden features:

x̃ = g(h) = σ′(W ′h+ bx), (6.2)

where bx is the bias, W ′ is the weight matrix from the hidden features to the reconstruc-

tion and σ′(x) is the activation function of the decoder. Usually the decoder adopts the

same activation as the encoder for simplicity, and thus for the decoder we adopt the

logistic sigmoid function as well.

As the autoencoder aims at reconstructing the input data, the cost function in terms

of parameters θ = {W,W ′, bh, bx} is defined as:

JAE(θ) =
∑
x

L(x, x̃) =
∑
x

L(x, g(f(x))), (6.3)

where L represents the reconstruction error, which is measured by the cross-entropy

loss:

L(x, x̃) = −
∑
x

(x log(x̃) + (1− x)log(1− x̃)).

In our case, given an 3-second EEG fragment, the input size for the autoencoder is

256 Hz × 3 seconds = 768. This may result in the number of hidden units being also

very large. For each input EEG fragment, intuitively it should only activate a few of

the features rather than most of the features. So when the number of hidden units is

large, we can still discover some interesting structure by imposing a sparsity constraint

on the hidden units [103]. Thus, we use a sparse autoencoder to deal with our EEG

dictionary learning task.

A hidden unit is considered of being “inactive” when its output is close to zero, and

of being ’active’ when its output is close to one. Specifically the sparsity constraint

makes one hidden unit inactive most of the times. For hidden unit j, we define its

average activation ρ̂j over all the input data x as:

ρ̂j =
1

N

N∑
i=1

(fj(xi)),
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where N is the size of input data, and fj(xi) is the output of hidden unit j on the

i-th input data. Then the average activation is constrained to the sparsity parameter ρ

which should be quite small (for example ρ = 0.05). To measure the difference between

ρ and ρ̂j , Kullback-Leibler (KL) divergence is adopted [104]:

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

.

This function penalizes the hidden units being active for too many times. Incorpo-

rating the sparsity constraint into the autoencoder cost function in Equation 6.3, we

get the overall cost function for the sparse autoencoder:

JSAE(θ) = JAE(θ) + β
M∑
j=1

KL(ρ‖ρ̂j), (6.4)

where JAE is the cost function defined in Equation 6.3, β is the parameter that controls

the weight of the sparsity constraint and M is the number of hidden units. It is note-

worthy that, the average activation ρ̂j is also a function of θ. We use backpropagation

to update the parameters, and the gradient of the cost function is computed as:

∂JSAE
∂w(k)

=
∂JAE
∂w(k)

+ β(− ρ

ρ̂k
+

1− ρ
1− ρ̂k

). (6.5)

The sparse autoencoder we have discussed above has only one hidden layer, and in

our model, we use a sparse autoencoder with two hidden layers, which is able to capture

more abstract features. Each learned feature corresponds to a vocabulary in the EEG

dictionary. And the EEG dictionary is constructed by decoding all the learned features.

6.3.3 EEG Sequence Translation

As the sparse autoencoder is trained, each EEG word is obtained by decoding each

hidden unit and represents one basic signal type. The EEG dictionary is a set of all the

EEG words, and each EEG fragment can be viewed as a combination of EEG words in

the dictionary. For each EEG fragment, different features have different weights due to

the different proportions of basic signal types in it. Therefore the EEG fragment can

be sampled to a single EEG word according to the normalized feature weights.

Given a continuous EEG signal, we can translate it into a sequence of words by

converting each EEG fragment of it into an EEG word in the dicionary. Translating

continuous signal into discrete words would help us learn the temporal context infor-

mation in further analysis.
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Figure 6.5: An example of EEG sequence translation.

Figure 6.5 shows an example of how to translate an EEG fragment to the corre-

sponding EEG word based on the learned dictionary. More specifically, given an EEG

fragment and the EEG dictionary learned by the sparse autoencoder, the EEG word

in the dictionary corresponding to this EEG fragment is drawn from the multinomial

distribution:

P (εi) =
hi∑M
j=1 hj

,

where εi is the i-th EEG word in the dictionary, hi is the output of the i-th hidden

unit on this EEG fragment input and M is the number of hidden units. Because of

the sparsity constraint, most of the hi should be close to zero, which means each EEG

fragment is basically composed of a few main signal types.

6.3.4 EEG Context Learning

In order to capture the temporal features of seizures on EEG signals, we design an EEG

context learning algorithm to analyze the EEG sentences.

In the previous EEG translation step, every EEG fragment is translated to an EEG

word, so the continuous EEG signals are translated to EEG sentences of EEG words. In

this way, we are able to learn the temporal features hidden in the context information

of the EEG sentences.

The main idea of the EEG context learning algorithm is to infer the current EEG
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Figure 6.6: The framework of the EEG context learning algorithm.

word based on its context words. This intuition is inspired by the Continuous Bag-of-

word (CBOW) model [1], where each word is represented by a vector of fixed length and

words with similar semantics would be mapped to close positions in the vector space by

learning the context information.

In our model, the context of an EEG word is drawn from the EEG sentence with a

window of length 2k + 1, i.e., the previous k words and the following k words form the

context of the current word.

Figure 6.6 shows the framework of this EEG context learning algorithm. Wt is the

current word to predict, and Wt−2 ∼Wt+2 are the context words of Wt. Each EEG word

is mapped to an unique vector, represented by a column in matrix A. The integration of

all the word vectors in context should lead the softmax classifier to choose the current

word Wt.

More formally, our EEG sentence dataset consists of T training EEG words a1, a2, ..., aT .

We are going to predict each EEG word based on its neighborhood. So all the context

EEG word vectors make a contribution to the prediction task about the current word in

the context. Thus the objective of this EEG context learning algorithm is to maximize

the average log probability:

L =
1

T

T−k∑
t=k

log p(at|at−k, at−k+1, ..., at+k), (6.6)

where 2k + 1 is the size of the context window, i.e., when predicting every EEG word,
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only its previous k words and following k words contribute to the prediction about

this word as its context. The other EEG words outside this context window are not

considered.

The p(at|at−k, at−k+1, ..., at+k) in Equation 6.6 is the prediction task for EEG word

at. It is calculated by a multi-class softmax classifier, as follows:

p(at|at−k, at−k+1, ..., at+k) =
eyat∑
i e
yi
, (6.7)

where ex is the exponential function and yi is the unnormalized log probability for each

output EEG word ai. As Figure 6.6 shows, the process of prediction is based on a

two-layer neural network, which means there are three steps for each prediction: first

we need to project all the input words into the vector space, and second we integrate

the vectors, and finally we calculate the output y. So yat can be computed as:

yat = b+ Uh(at−k, at−k+1, ..., at+k;A), (6.8)

where b and U are the parameters of the softmax classifier, and h is the integration of

the context EEG word vectors extracted from matrix A. The integration is typically

implemented as either average function or the concatenation.

In practice, for the sake of fast training, the softmax classifier is usually replaced

by the hierarchical softmax classifier. In our model, the hierarchical softmax classifier

is based on a binary Huffman tree, where the shortest path is assigned to the most

frequent EEG word.

Applying hierarchical softmax classifier accelerates our model in three ways: first,

according to the strategy of building the Huffman tree, frequent EEG words are assigned

short codes, which means the overall accessing time is shorter; second, by representing

the vocabulary with a binary tree structure, the average seeking time reduces from

O(N) to O(log(N)), where N is the size of the vocabulary and log(N) is the height of

the Huffman tree; third, by storing the EEG words in a tree structure, in each round of

update, we only need to access and update the nodes on the path rather than accessing

all the words in the vocabulary.

Similar with the other neural network models, the EEG context learning algorithm

is trained with backpropagation. After learning EEG contexts, the EEG words with

similar properties are mapped to close positions in the vector space [105]. These vectors

can be used as the temporal features because in the EEG context learning process,
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the order of the EEG words in an EEG sentence is considered as part of the context

information.

6.3.5 Seizure Detection

The final features we use are the combination of the hidden inherent features within

the EEG fragments extracted in the EEG dictionary learning process and the temporal

features extracted in the EEG context learning process.

After concatenating the hidden inherent features and the temporal features, we

use them together with the labels to train a support vector machine (SVM) classifier

[106]. And we name our model the Context-Learning Based EEG Analysis for Seizure

Detection (Context-EEG).

By incorporating the hidden inherent features and temporal features into the clas-

sifier, SVM is able to find a more distinct hyperplane between the seizure and the

non-seizure EEG fragments.

6.4 Experiments

We conduct computational experiments to show the effectiveness of our model Context-

EEG for detecting the onset of an epileptic seizure. To achieve this, we benchmark our

model on the CHB-MIT scalp EEG dataset mentioned in Section 6.2.

6.4.1 Seizure Detection

Task and baselines. In order to design a general seizure detecting algorithm, i.e.,

a non-patient specific seizure detecting algorithm, we combine 4302 EEG fragments

from four different patients as our experiment dataset, and randomly choose 3500 EEG

fragments out of it as the training set and use the other EEG fragments as the test

set. Given a piece of EEG fragment, it’s a two-way classification task where the class

labels are {seizure, non-seizure}. We measure the performance of each algorithm by the

classification error rate, the receiver operating characteristic (ROC curve) and the area

under curve (AUC).

Since it is a classification task, we apply several widely used classification algorithms

as the baseline algorithms, including SVM and neural network (NN) [107]. For the sake
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Table 6.1: The error rates of each method.

Methods Error rate

SVM 23.43%

NN 26.22%

DSVM 29.71%

DNN 30.21%

PSVM 28.71%

PNN 26.82%

Context-EEG 22.93%

of fairness and to avoid the curse of dimensionality, it is necessary to reduce the dimen-

sionality of the data before we send it to SVM and NN. So we employ the decimation

process by downsampling the EEG signals, and we call the SVM with downsampling

DSVM, the NN with downsampling DNN. Also, we use the principal component analy-

sis (PCA) [108] as the data preprocessing mechanism, and we call the SVM with PCA

as PSVM, the NN with PCA as PNN.

Experiment protocols. In our dataset, a seizure is usually 30∼100 seconds long and

surrounded by one hour long non-seizure signals, which means seizures are rare events.

Considering the rarity of seizure events, we trim our test set to balance the number

of seizure fragments and non-seizure fragments to around 50-50. Otherwise, simply by

labeling all the test samples as non-seizure state, a classifier can obtain an error rate as

low as 30s/3600s = 0.8333%.

Since the original sampling rate is 256 Hz and each file contains 23 channels of EEG

signals, a 3-second long EEG fragment consists of 256 Hz× 3 seconds× 23 channels =

17664 data points. This high dimensionality problem would not only put the classifiers

at the risk of the curse of dimensionality, but also consume a lot of time and space. So

for the baseline methods with decimation process, we reduce their dimensions of the

input data to the same dimensions as Context-EEG by PCA and downsampling.

Results. The error rates of different methods are reported in Table 6.1. We can see

that our model Context-EEG outperforms the other methods by averagely 5 percent.

It is worth noticing that the performances of SVM and NN decrease quite a lot as the
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Figure 6.7: The ROC curves of the proposed model and the baselines.

dimensionality of their input data decreases. The original SVM performs well at the

cost of acceptable dimensionality. However, after reducing its dimensionality to the same

dimensionality as ours, PSVM and DSVM perform much worse. And the comparison

result between two different decimation approaches also shows that using PCA is a

better way to extract principal components of data than just simply downsampling.

Figure 6.7 and Table 6.2 show the ROC curve and the AUC of each method respec-

tively. We can see that our model performs much better than the other methods.

In the ROC curve figure, among all the baseline methods, SVM performs the best.

However, even though the dimensionality of SVM is 64 times as high as the dimensional-

ity of the Context-EEG model, SVM still performs much worse than the Context-EEG

model. And we can see that, the true positive rate of the Context-EEG model increases

at a very fast speed in the beginning when the false positive rate is still close to zero,

which means Context-EEG is able to capture the important features to represent and

separate seizure and non-seizure data points effectively.

As shown in Table 6.2, the AUC of the Context-EEG model is higher than the other

methods’ AUCs by 14 percent averagely even though it has the lowest dimensionality

among all the methods. As with the error rate results and the ROC curves, reducing

the dimensionality of input data for SVM by downsampling and PCA has a rather big

impact on the AUC, and using PCA to extract principal components is a little bit better

than just simply downsampling the data.

It is worth noticing that the Context-EEG model is slow at learning but extremely
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Table 6.2: The AUC of each method.

Methods AUC

SVM 0.7764

DSVM 0.7208

PSVM 0.7232

Context-EEG 0.8880

fast at prediction, because once the training step is finished, the parameters will be

stored and will not change anymore. When a new EEG fragment comes, the clas-

sification will be done in O(N) time. So as a real-time seizure detecting algorithm,

Context-EEG would be of great help for the patients in practice.

6.4.2 EEG Dictionary Learning and EEG Signal Reconstruction

The first step of our feature extraction process is to learn the hidden inherent features

within each EEG fragment. In this step, we learn the hidden inherent features by setting

the output of the sparse autoencoder equal to the input. Hence we can claim that the

features are well learned if the features are able to precisely reconstruct the input data.

Because only if the learned features contain all the crucial information of the input data,

we can reconstruct the data based on the learned features.

Usually the dimensionality of the features is much lower than the dimensionality of

the original data, so as we are extracting the hidden inherent features of EEG fragments,

we are also reducing the dimensionality.

Figure 6.8 illustrates the EEG data reconstruction process. We can see that the

reconstructed data (the red lines in the figure) is quite similar with the original data

(the blue lines in the figure). The upper figure is an EEG fragment of a non-seizure

state, where the EEG signal is regular and clean. And in this case, the learned features

successfully reconstruct every peak and every valley of the original EEG signal, and the

rebuilt value is almost the same. The lower figure is an EEG fragment of the onset of a

seizure, where the second half of the EEG signal is quite intense and irregular. Despite

this intensity and irregularity of seizure fragment, the original EEG signal can still be

reconstructed from the learned features as the red line shows.
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Figure 6.8: Two examples of EEG data reconstruction.

6.4.3 Parameter Sensitivity

In this part, we show the performance of the proposed method in various learning

scenarios by tuning the number of hidden units M of the sparse autoencoder. In the

EEG dictionary learning step, the output of the hidden layer denotes the extracted

features of an EEG fragment, and each hidden unit is directly associated with each EEG

word in the EEG dictionary. In practice, the number of hidden units M of the sparse

autoencoder not only affects the training speed to a great extent, but also determines

the dimensionality of the feature space in the classification step. Hence we conduct the

parameter sensitivity experiment on the number of hidden units M .

As the input size of the sparse autoencoder is 256 Hz×3 seconds = 768, the number

of hidden units M varies in the range of 0 and 768. So we set the number of hidden

units M = 50, 150, 250, 400, 500, and measure the performance of Context-EEG

respectively.

Figure 6.9 shows the ROC curves with different parameter settings. The proposed

model gets the best performance when M is 250. Comparing to the input size 768,

the dimensions are reduced effectively and 250 hidden units are enough to capture the
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Figure 6.9: The ROC curve for the parameter sensitivity experiment.

important information of the original data. While too few hidden units might result

in the proposed model being unable to extract enough features, such as M = 50, and

too many hidden units might also put the proposed model at the risk of the curse of

dimensionality, such as M = 500. The AUC and error rate of parameter settings also

affirms this conclusion as shown in Figure 6.10. When the number of hidden units is

too large or too small, the performance of Context-EEG decreases somewhat, but we

can observe that it still outperforms the baseline methods.

6.5 Conclusions

In this chapter, we design and evaluate the context-learning based EEG analysis for

seizure detection model (Context-EEG) that utilizes the scalp EEG to detect the onset

of a seizure. The proposed model is a general, non-patient specific model which is

capable of extracting both the hidden inherent features and the temporal features for

the EEG signals. The hidden inherent features are extracted from each EEG fragment

internally by a sparse autoencoder and the temporal features of an EEG fragment are

extracted in its EEG context by the EEG context learning method. When detecting

seizure with respect to a given EEG fragment, not only its internal hidden features but

also the temporal features make a contribution to the classification task.

The proposed method has been tested on the CHB-MIT scalp EEG dataset and

compared with several baseline methods. In general, the results show the effectiveness
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Figure 6.10: The AUC and error rate of Context-EEG with different parameter settings.

and superiority of the proposed model in detecting epileptic seizures. Since the proposed

model is very fast at testing, once we obtain the trained model, we can detect the onset

of a seizure in real time.
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Chapter 7

Extracting Biomedical Features

Using Domain Attentions

7.1 Introduction

MEDLINE1 , the primary component of PubMed2 , is a bibliographic database main-

tained by U.S. National Library of Medicine (NLM). As the online counterpart to MED-

LARS (MEDical Literature Analysis and Retrieval System), MEDLINE currently covers

more than 5,200 worldwide journals, and contains more than 24 million references to

journal articles in life sciences with a concentration on biomedicine. A distinctive feature

of MEDLINE citations is that they are indexed with NLM Medical Subject Headings

(MeSH)3 . The MeSH thesaurus is a controlled vocabulary curated by the NLM experts

and used for indexing, cataloging and searching for biomedical articles and information

[109, 110]. Thus accurate MeSH indexing greatly facilitates biomedical research and

knowledge discovery [111, 112, 113].

Currently, MeSH indexing for MEDLINE is mainly performed by the human experts

in NLM. They have to go through the full text of each biomedical article to assign

suitable MeSH terms. This ensures high accuracy of MeSH indexing but inevitably

renders it very expensive. It is estimated that the average cost of annotating one

biomedical article is around $9.4 [114]. More than 813,500 citations were added to

MEDLINE in the year of 2017, and this number is rapidly increasing by the year. Apart

1 https://www.nlm.nih.gov/bsd/medline.html
2 https://www.ncbi.nlm.nih.gov/pubmed/
3 https://www.nlm.nih.gov/mesh/meshhome.html

102



103

from the huge monetary cost, manual MeSH indexing could also cause a possible delay

before a newly published biomedical article gets annotated. This presents a challenge

to the NLM experts to annotate biomedical articles efficiently and promptly.

Therefore, a system that can automatically annotate biomedical articles with rele-

vant MeSH terms or assist human experts could be of great help. To this end, NLM

has developed Medical Text Indexer (MTI) [115, 114, 116]. MTI takes the title and

abstract of an article as the input and outputs relevant MeSH terms. MTI mainly con-

sists of two modules: MetaMap Indexing (MMI) and PubMed-Related Citations (PRC).

MetaMap [117] is a software tool to extract biomedical concepts from the text. MMI

recommends MeSH terms based on the biomedical concepts discovered by MetaMap.

PRC recommends MeSH terms by looking at the MeSH annotations of similar citations

in MEDLINE found by the PubMed-Related Articles (PRA) algorithm [118]. The two

sets of MeSH terms are combined to generate the final list of MeSH recommendations.

In order to continue to advance the development of MeSH indexing systems, the

BioASQ challenge4 on biomedical semantic indexing and question answering is held

every year since 2013 [119]. One of the two BioASQ tasks is to annotate new MED-

LINE documents with relevant MeSH terms before MEDLINE curators annotate them

manually. As new manual annotations become available, they are used to evaluate the

performance of participating systems. Many new MeSH indexing systems have been

proposed since then, e.g., MetaLabeler [120], MeSHLabeler [121] and DeepMeSH [122].

MetaLabeler trains an independent binary classifier for each MeSH term; MeSHLabeler

proposes to integrate MetaLabeler with multiple evidence such as similar publications

and term frequencies; and DeepMeSH is an improved version of MeSHLabeler by in-

corporating deep semantics in the word embedding space [1, 123, 124]. They also have

another classifier to determine the number of MeSH terms to recommend.

Formally speaking, MeSH indexing is a multi-label classification task, where each

MeSH term can be regarded as a class label and each article can be labeled with multi-

ple MeSH terms. Compared with regular multi-label classification problems, the large

size of MeSH vocabulary and the imbalanced nature of different MeSH terms pose more

challenges to the MeSH indexing problem. Currently there are more than 28,000 dis-

tinct MeSH terms and new MeSH terms are added to the vocabulary every year. The

most frequent MeSH term “humans” appears around 8,000,000 times in MEDLINE ci-

tations, while there are hundreds of infrequent terms that appear less than 10 times.

4 http://bioasq.org/
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These challenges have been taken into consideration by the previous researchers when

designing their MeSH indexing systems. However, there are some other challenges and

limitations that previous systems seem to have overlooked. First, the biomedical articles

are sequences in nature, but most previous systems are based on models that cannot

be easily used for sequential modeling in an end-to-end fashion, such as K-Nearest-

Neighbors (KNN) and Support Vector Machine (SVM). Second, most previous systems

train independent classifiers for each MeSH term, resulting in extremely long training

time, high disk usage and inability to collaboratively train the classifier and exploit the

correlation between different MeSH terms at the same time. Third, every time a new

biomedical article is added, the previous MeSH indexing systems need to find similar ar-

ticles from the MEDLINE database. In other words, millions of MEDLINE articles have

to be stored with the system and a thorough search has to be done for each indexing.

This further exacerbates the time and space consumption for the existing systems.

Deep learning is a family of machine learning methods that employ multiple pro-

cessing layers to learn representations of data with multiple levels of abstraction [125].

Attention mechanism [126, 127] including self-attention [6] enables deep learning models

to selectively pay attention to different parts of the input and provides interpretabil-

ity. Deep learning and attention mechanism have improved the state-of-the-art in many

research fields such as machine translation [126] and text classification [6].

Inspired by the aforementioned challenges and the rapid development of deep learn-

ing techniques, we propose an end-to-end deep framework for this multi-label classi-

fication task. We propose to train a unified classifier instead of a large number of

independent classifiers, thus the efficiency is improved and the correlation between dif-

ferent MeSH terms can be learned simultaneously. More specifically, the new framework

is a self-attentive deep neural network classifier. The proposed model contains three

major components: a bidirectional Recurrent Neural Network (RNN), a number of self-

attentive MeSH probes and a multi-view neural classifier. The proposed model is able

to extract different aspects of biomedical knowledge from an input article. RNNs are

naturally suitable for sequential text data, and by mapping the input text into the em-

bedding space, RNNs can benefit from word embeddings that carry semantic regularities

[23, 1, 53, 83]. By feeding RNN hidden states to self-attentive MeSH probes, each article

can be converted into a fixed-dimension domain-specific feature matrix. The multi-view

neural classifier is a unified multi-label classifier that considers the extracted feature
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from the input text, the journal information as well as the correlation between differ-

ent MeSH terms. The new framework is named MeSHProbeNet (in the 2018 BioASQ

challenge, we used the name xgx for our system). To sum up, MeSHProbeNet has the

following advantages:

• MeSHProbeNet is an end-to-end framework that does not rely on any other ex-

isting MeSH indexing systems or software tools.

• MeSHProbeNet is a unified multi-label classifier, thus very efficient in terms of

training time consumption and disk usage for this large-scale MeSH indexing task.

• The bidirectional RNN of MeSHProbeNet is able to make use of the word em-

bedding semantics and capture the context-dependent information via sequence

modeling.

• The MeSH probes on top of the RNN allow us to extract different aspects of

biomedical knowledge from the input article and represent it as a fixed-dimension

feature matrix.

• The multi-view classifier considers both the extracted features and the journal

information.

• MeSHProbeNet, as a unified multi-label classifier, simultaneously exploits the cor-

relation between different MeSH terms as it is being trained.

The efficacy of MeSHProbeNet was demonstrated in Task A of the 2018 BioASQ

challenge. We also provide an interpretability visualization of the MeSH probes to show

how the proposed model selectively pays attention to different parts of the input article

and how different aspects of biomedical knowledge are extracted by the MeSH probes.

We also perform an ablation study of MeSHProbe to show the importance of MeSH

probes.

7.2 Methodology

The overview of our proposed MeSHProbeNet model is shown in Figure 7.1. MeSH-

ProbeNet is a self-attentive deep neural network, which is able to predict a set of MeSH

terms for a biomedical article based on its textual content and journal information.
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Figure 7.1: The framework of MeSHProbeNet.

The textual content of a biomedical article includes the title, abstract and body (in the

challenge dataset, only the title and abstract are available). The journal information

refers to the name of the journal it was published in.

Briefly speaking, MeSHProbeNet consists of three main components. The first com-

ponent is a bidirectional RNN on the textual contents of biomedical articles. The second

component is a set of self-attentive MeSH probes, which are responsible for extracting

useful information from the RNN hidden states and converting articles of various lengths

into fixed-dimension feature matrices. The third component is a multi-view neural clas-

sifier which combines the extracted textual information with the journal information,

and generates a set of relevant MeSH terms.

We will introduce our model according to how to convert the textual contents into

fixed-dimension matrices and how to recommend MeSH terms based on the combined

information.

7.2.1 Bidirectional RNN

The bidirectional RNN reads the textual contents of a biomedical article, i.e., the con-

catenation of the title and the abstract, and generates a hidden state for each word in
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the textual contents, as shown in the bottom left part of Figure 7.1. RNNs model texts

in a sequential fashion and are able to capture the dependency between adjacent words.

Long Short-Term Memory (LSTM) [128] and Gated Recurrent Unit (GRU) [129] have

proven to be more effective in modeling long sequences than the vanilla RNN [130]. In

MeSHProbeNet, we use a bidirectional GRU, as GRUs are simpler and perform on par

with LSTMs. Suppose we have a sequential text which has T words as the input, i.e.,

the concatenation of the title and the abstract in our case. The first step is to represent

the text as a sequence of T word embeddings:

X = {x1,x2, ...,xt, ...,xT },

where xt is a Dw dimensional real-valued vector, denoting the embedding for the tth

word in the input article. Thus a biomedical article can be represented as a T -by-Dw

matrix, which is the concatenation of all the word embeddings in it. Then we feed

article embedding matrix X to the bidirectional GRU:

−→
ht =

−−−→
GRU(xt,

−−→
ht−1),

←−
ht =

←−−−
GRU(xt,

←−−
ht+1),

where
−→
ht and

←−
ht are two U dimensional real-valued vectors, standing for the hidden

states for the tth word in normal direction and reverse direction, respectively. By con-

catenating
−→
ht and

←−
ht, we derive a 2U dimensional hidden state ht = [

−→
ht,
←−
ht] which

includes both the normal direction sequential information and the reverse direction se-

quential information at time stamp t. Hence, the hidden states of the input article can

be represented as a T -by-2U matrix:

H = [h1;h2; ...;ht; ...;hT ].

7.2.2 Self-attentive MeSH Probes

One simple way to obtain the summary of the input article is to use the last hidden states

of the bidirectional GRU: [
−→
ht;
←−
h1]. Although GRUs have proven to be more effective

at modeling long sequences than the vanilla RNNs, their performances on really long

sequences are still limited, such as the entire title and abstract text in our case. Hence,

we propose to use a self-attentive MeSH probe mechanism to extract comprehensive
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aspects of biomedical information from the input article. Each MeSH probe carries one

aspect of biomedical knowledge, and only pays attention to the RNN hidden states that

contain related information. For instance, a MeSH probe that carries disease related

knowledge is able to selectively extract the RNN hidden states that are related to disease.

Specifically, one MeSH probe generates a weight vector for the RNN hidden states

and multiply the RNN hidden states with the weight vector. Therefore, the resulting

weighted RNN hidden state can be regarded as a summation of the input biomedical

article with respect to the biomedical knowledge carried by the MeSH probe. With

the help of the MeSH probe, biomedical articles of different lengths can be represented

as a fixed-length vector containing related information. In fact, we can have multiple

MeSH probes to cover multiple aspects of biomedical knowledge. Hence, given a certain

number of MeSH probes, we can obtain a fixed-dimension output matrix that carries

corresponding biomedical knowledge extracted from the input article.

More specifically, a MeSH probe is an inherent vector of MeSHProbeNet, which is

associated with one specific aspect of biomedical knowledge. As with the GRU hidden

state, the dimension of a MeSH probe is also 2U . The goal of a MeSH probe is to

extract related biomedical information from the input article and output a fixed-length

vector. We achieve that by calculating a weighted combination of the T GRU hidden

states. In particular, given MeSH probe pn, we first take all the GRU hidden states H

as the input and then compute a normalized weight vector αn:

αn = softmax(pnH
T ).

Hence, αn is a 1-by-T vector where element αnt indicates the weight for the tth GRU

hidden state and all the weights sum up to 1:

αnt =
exp(pn · ht)∑T
t′=1 exp(pn · ht′)

.

By taking the inner product between MeSH probe pn and each GRU hidden state,

MeSH probe pn assigns higher weights and pays more attention to the hidden states

that carry related biomedical knowledge. Then we can use the weighted summation of

the GRU hidden states according to the weights in αn to represent the input article,

denoted as context vector cn:
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cn = αnH =
T∑
t=1

αnt · ht.

Context vector cn is a 2U dimensional vector, which pays attention only to the

parts of the input article related to MeSH probe pn. However, for a research article,

one MeSH probe is normally insufficient as there are multiple aspects in it. For exam-

ple, a research article about Alzheimer’s disease is probably also related to aging and

treatments. Therefore, to get a more comprehensive representation of the input article,

we need multiple MeSH probes to pay attention to different aspects of the article, for

instance, one probe for disease, one probe for treatments, another probe for anatomy,

and so on. As illustrated by the top left part of Figure 7.1, if we want to examine N

different aspects of the input article, N MeSH probes are required:

P = [p1;p2; ...;pN ],

where P is a N -by-2U matrix composed of N different MeSH probes. Accordingly, we

can obtain a N -by-T weight matrix A, where each row αn denotes the weight vector

with respect to each MeSH probe pn:

A = softmax(PHT ),

where the softmax function is performed along the second dimension of the input. Hence,

with the help of multiple MeSH probes, we are able to extract different aspects of

biomedical knowledge from the input article, and represent it with a N -by-2U context

matrix C:

C = AH.

7.2.3 Multi-view Neural Classifier

With the help of the bidirectional RNN and the MeSH probes, now we are able to convert

a biomedical article of arbitrary length to a fixed-dimension context matrix, where each

row represents one particular aspect of the input article. In fact, for each input article,

we also have its journal information in addition to the textual content. This journal

information is quite useful, as biomedical journals typically have a definite research topic

and focus on a specific research domain. Therefore, it is natural to expect that research
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papers published in the same journal tend to be annotated with MeSH terms related

to the journal’s research focus. To take the journal information into consideration, our

multi-view neural classifier has a journal embedding module, where each journal name

can be converted to a unique vector of length Dj . Thus, by reshaping the extracted

context matrix C to a vector and concatenating it with the journal embedding, we are

able to obtain a context vector of length N ∗ 2U + Dj that carries all the available

information of the input article: the title, the abstract and the journal information. We

denote this comprehensive context vector by E.

Our task is to annotate a biomedical article with suitable MeSH terms. Hence,

having extracted comprehensive context vectorE from the input article, what we need to

do next is to learn a function f that maps context vector E to V conditional probability

distributions, where V is the size of the MeSH vocabulary. The output of f is a vector

whose ith element estimates the probability that the ith MeSH term should be assigned

to the current article:

P (mi = 1|E) = f(i,E),

where mi denotes the ith MeSH term in the MeSH vocabulary. Function f could be

implemented by a feed forward neural network. We employ a three layer neural net-

work, whose first layer is the input context vector E, second layer is the hidden layer

with ReLU activation and third layer is the output layer. More precisely, the multi-

layer neural network calculates the following function, with a sigmoid output layer to

guarantee each output neuron being a probability in the range of [0, 1]:

f(E) = σ(W 2ReLU(W 1E + b1) + b2), (7.1)

where σ(·) is the element-wise sigmoid function, W 1 and W 2 are the weight matrices

for each layer, and b1, b2 are the biases. During training, each biomedical article comes

with several manually annotated MeSH terms. So it can be regarded as a multi-label

classification task, where the ground truth label is a V -length binary vector whose ith

element is set to 1 if the ith MeSH term is assigned to the current article and set to 0

otherwise. We represent this ground truth vector by g. Therefore, given a biomedical

article k, the objective is to minimize the following binary cross entropy loss:

Lk = −
V∑
i=1

(g[i] · log(f(i,E)) + (1− g[i]) · log(1− f(i,E))).
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Let K be the total number of articles in the training dataset, then the overall training

objective is:

L =
K∑
k=1

Lk. (7.2)

Note that unlike most previous works that train a binary classifier for each MeSH

term separately, we train a unified multi-label classifier that considers all the MeSH

terms simultaneously. The advantages of training a unified multi-label classifier are

manifold. First, the efficiency for both training and predicting can be drastically im-

proved by learning a unified classifier as there are more than 28,000 distinct MeSH

terms. Second, by learning a unified classifier, the semantics of the word embeddings

and journal embeddings can be shared by all MeSH terms. Third, the correlation be-

tween different MeSH terms is automatically exploited and carried by neural network

weights W 1 and W 2. If one MeSH term frequently co-occurs with other MeSH terms,

for example, “Alzheimer disease” is often accompanied by “aged, 80 and over”, this

co-occurrence will influence the corresponding neurons in W 1 and W 2 simultaneously,

and thus the correlation and dependency relationship can be captured.

Infrequent MeSH terms also benefit from this unified architecture. Hundreds of

infrequent terms appear in less than 10 articles. Therefore, if an independent classifier

is trained for each infrequent term, the classifier inevitably suffers from the lack of

training data and would encounter tons of out-of-vocabulary words during prediction.

By sharing parameters across all MeSH terms, such as word embeddings and weight

matrices, the unified classifier is able to tackle the problem of lacking training data

and the out-of-vocabulary problem for infrequent MeSH terms. In addition, infrequent

terms can further take advantages of the correlation information in the unified classifier,

especially if an infrequent term always co-occurs with some specific frequent terms.

The free parameters of the whole model are the word embeddings, the GRU weight

matrix, the GRU bias, the MeSH probes, the journal embeddings, the fully connected

neural network weight matrices and biases. Let θ denote the overall free parameter

set. Then training can be achieved by looking for θ that minimizes the training corpus

binary cross entropy loss in Eq. 7.2 via stochastic gradient descent. Stochastic gradient

descent iteratively updates the free parameters after feeding the kth article of the training

corpus:



112

θ ← θ − η∂Lk
∂θ

,

where η is the learning rate.

In the prediction phase, there are two approaches to determine the final MeSH

terms based on the output of function f in Eq. 7.1. One approach is to find the optimal

thresholds for each MeSH term on a held-out validation set. The other approach is

to learn another neural network to predict the number of related MeSH terms given a

biomedical article. In practice, we adopt the first approach in the prediction phase, as

it is more efficient and intuitive.

7.3 Experiments

We carry out experiments on the large-scale MeSH indexing task to demonstrate the

efficacy of our MeSHProbeNet model. To illustrate how MeSHProbeNet extracts differ-

ent aspects of biomedical knowledge from the input articles, we visualize MeSH probes

and their attentions on different parts of the input sequence. To investigate the qual-

ity of the MeSH terms recommended by MeSHProbeNet, we participated in the 2018

BioASQ challenge and compare its performance with several state-of-the-art MeSH in-

dexing systems, including MTI and DeepMeSH. Our system won the first place in the

third batch of the challenge.5

7.3.1 Dataset and Experimental Settings

The training dataset is downloaded from the challenge webpage6 . It contains 13,486,072

biomedical articles which are annotated with relevant MeSH terms by the PubMed

human experts. On average, 12.69 MeSH terms are assigned to each article. In total,

28,340 distinct MeSH terms are covered by the training dataset. For each article in the

training dataset, we have the unique identifier of the article (PMID), the title of the

article, the abstract of the article, the year the article was published, the journal the

article was published in and a set of MeSH terms assigned to the article.

In the preprocessing step, all non-alphanumeric characters, stop words and words

5 The source code of MeSHProbeNet is available at https://github.com/XunGuangxu/

MeSHProbeNet.
6 http://participants-area.bioasq.org/general information/Task6a/

https://github.com/XunGuangxu/MeSHProbeNet
https://github.com/XunGuangxu/MeSHProbeNet
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(a) MeSH probe No.2 extracts disease related information from article 29439706.

(b) MeSH probe No.2 extracts disease related information from article 27130306.

(c) MeSH probe No.11 extracts Alzheimer’s related information from article 27130306.

Figure 7.2: MeSH probe interpretability visualization.

with a total frequency lower than 10 are removed, and all words are converted to lower-

case. The dimensionalities of word embeddings and journal embeddings are set to 250

and 100, respectively. The number of GRU layers is set to 2. The size of the GRU

hidden unit is set to 200 per direction, thus 400 for a bidirectional unit. The dimen-

sionality of MeSH probes is also set to 400 accordingly. The number of different MeSH

probes that the model contains is 25. The multi-view neural classifier has a hidden layer

of 10000 units. We deploy 0.5 dropout, 5e-10 L2 regularization and snapshot ensemble

[131] to prevent over-fitting. The learning rate for stochastic gradient descent is set to

0.0005 and we also clip the gradients whose values are larger than 5.
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7.3.2 MeSH Probe Visualization

Interpretability is one of the advantages of MeSHProbeNet. For the users of automatic

MeSH indexing models, a good model should not only be accurate, but also be able to tell

them which parts of the input support the recommended MeSH terms. For instance, the

human indexers can achieve higher annotation efficiency with the help of interpretable

MeSH indexing models, as this interpretability of automatic MeSH indexing models can

provide them with evidence for adding or deleting a recommended MeSH term.

The interpretability of MeSHProbeNet can be achieved through examining the at-

tention weight matrix A. Each row an in attention weight matrix A represents the

weight vector with respect to MeSH probe pn. Each element in weight vector an cor-

responds to how much attention MeSH probe pn pays to each GRU hidden state and

each word. Thus we can visualize the attention by drawing a heat map of the weight

vector.

It is worth mentioning that another advantage of MeSHProbeNet is its unsuper-

vised nature: the MeSH probes are learned in a completely unsupervised fashion. The

training objective function drives the MeSH probes to extract comprehensive aspects of

biomedical knowledge with each probe focusing on one specific aspect. In other words,

we do not need any prior knowledge, external knowledge or human guidance for the

MeSH probes. The probes are automatically learned and are able to capture biomedical

semantics during training and provide interpretability.

We select two articles from the last test set of the 2018 BioASQ challenge, whose

PMIDs are “29439706” and “27130306”, to visualize MeSH probes and show the in-

terpretability in Figure 7.2. For article 29439706, the ground truth MeSH terms as-

signed by human curators are “biomedical research”, “disease eradication”, “HIV infec-

tions”, “humans”, “public health”, and “terminology as topic”; and the MeSH terms

assigned by MeSHProbeNet are “humans”, “HIV infections”, “research”, “disease erad-

ication”, “public health”, “AIDS vaccines”, “HIV-1” and “anti-HIV agents”. For article

27130306, the ground truth MeSH terms assigned by human curators are “Alzheimer

disease”, “Bayes theorem”, “Europe”, “humans”, “incidence” and “prevalence”; and

the MeSH terms assigned by MeSHProbeNet are “prevalence”, “humans”, “male”, “fe-

male”, “Alzheimer disease”, “aged”, “aged, 80 and over”, “incidence”, “Bayes theorem”

and “Europe”.

We first demonstrate how MeSH probe No.2 extracts disease related information



115

from different articles in Figures 7.2a and 7.2b. The values below each word denote the

normalized weights. We can see that MeSH probe No.2 pays more attention to words

like “HIV”, “virus” and “disease”. Some words such as “incidence” and “background”

also have high attention weights. This is because of the sequential nature of RNNs and

the system recognizes those words as related words in the context of “disease”. Then

in Figures 7.2b and 7.2c, we demonstrate how two different MeSH probes extract two

different aspects of biomedical knowledge from the same article. As we just mentioned,

in Figure 7.2b MeSH probe No.2 extracts disease related information. While in Figure

7.2c, MeSH probe No.11 extracts Alzheimer’s related information. One can observe that

in this article, MeSH probe No.2 is sensitive to words like “disease” and “epidemiology”,

while MeSH probe No.11 is sensitive to words like “Alzheimer’s” and “elderly”.

7.3.3 Evaluation Metrics

In order to evaluate MeSH indexing performance, two sets of measures are used, one

flat and one hierarchical.

The flat measures consist of accuracy and two sets of F-measure based metrics:

Macro F-Measure (MaF) and Micro F-Measure (MiF). Accuracy represents the fraction

of correct predictions. MaF, Macro Precision (MaP) and Macro Recall (MaR) give

equal weight to each MeSH class. Frequent MeSH terms and infrequent MeSH terms

are equally important. Thus MaP and MaR are calculated as the average precision

and recall over all the MeSH classes. MiF, Micro Precision (MiP) and Micro Recall

(MiR) aggregate the contributions of all MeSH classes to compute the average metric.

Frequent MeSH terms therefore have higher weights than infrequent MeSH terms. We

can see that different F-Measures have different focus, for example, MiF focuses more

on the frequent MeSH terms, while MaF treats all MeSH terms equally regardless of

their frequencies. Since the BioASQ challenge evaluates the systems based on MiF, we

will also take MiF as our major measure.

The MeSH vocabulary is organized in a hierarchical structure. Thus hierarchical

measures are also used to evaluate the performance, including Hierarchical Precision

(HiP), Hierarchical Recall (HiR), Hierarchical F-Measure (HiF), Lowest Common An-

cestor Precision (LCA-P), Lowest Common Ancestor Recall (LCA-R) and Lowest Com-

mon Ancestor F-measure (LCA-F) [132].
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Table 7.1: Comparison results based on the flat measures.

Models MiP MiR MiF MaP MaR MaF Acc

Access Inn MAIstro 0.2351 0.3423 0.2788 0.3942 0.4641 0.3905 0.1669

MeSHmallow 0.3798 0.2707 0.3161 0.1333 0.0049 0.0037 0.1915

UMass Amherst T2T 0.5239 0.4759 0.4988 0.4179 0.2526 0.2481 0.3392

iria 0.4654 0.5792 0.5161 0.4271 0.4658 0.4147 0.3525

MTIFL 0.6730 0.5977 0.6332 0.6377 0.5622 0.5408 0.4759

MTI 0.6475 0.6473 0.6474 0.6086 0.6084 0.5667 0.4911

AttentionMeSH 0.6833 0.6447 0.6635 0.6178 0.4943 0.4827 0.4982

DeepMeSH 0.6761 0.6517 0.6637 0.6352 0.5455 0.5281 0.5020

MeSHProbeNet 0.7172 0.6611 0.6880 0.6782 0.5804 0.5671 0.5310

7.3.4 Experimental Results

We show the comparison result of the proposed MeSHProbeNet model with the default

MTI, MTI First Line indexing (MTIFL) [115], DeepMeSH [122], AttentionMeSH [133],

iria [134], UMass Amherst T2T, MeSHmallow and Access Inn MAIstro on the last test

set of the 2018 BioASQ challenge. There are 15 test sets in total (one test set per week

during the challenge) and the complete results are available on the challenge webpage7

(please note that we used the name xgx in the challenge). The main difference between

MTI and MTIFL is that MTIFL has higher precision by limiting its recommendation to

a smaller number of MeSH terms, while MTI balances precision and recall, and achieves

better F-measure.

The comparison results based on the flat measures of each model are reported in

Table 7.1. The challenge allows each model to make at most 5 attempts to try out

different settings, such as different initializations and parameters, as a significance test.

Our model consistently achieves the best performance. To conserve space, we only

show the best performance score of each model here. Interested readers may refer

to the complete result on the challenge website. The best scores are highlighted in

boldface in Table 7.1. Compared with MTI, MTIFL has higher precision but lower

recall, resulting in low F-measures. DeepMeSH outperforms MTI in terms of MiF score

but its MaF score is not as good as MTI’s, which means DeepMeSH pays more attention

to the frequent MeSH terms such as “humans”, “animals”, “male” and “female”. We can

7 http://participants-area.bioasq.org/results/6a/
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Table 7.2: Comparison results based on the hierarchical measures.

Models LCA-P LCA-R LCA-F HiP HiR HiF

Access Inn MAIstro 0.2722 0.3615 0.2964 0.4696 0.5921 0.5043

MeSHmallow 0.4000 0.2369 0.2871 0.5633 0.3287 0.3967

UMass Amherst T2T 0.4818 0.4087 0.4276 0.7094 0.5961 0.6262

iria 0.4251 0.4902 0.4443 0.6174 0.7290 0.6536

MTIFL 0.5662 0.5014 0.5172 0.7964 0.7186 0.7373

MTI 0.5510 0.5415 0.5325 0.7703 0.7647 0.7514

AttentionMesh 0.5627 0.5235 0.5290 0.7902 0.7396 0.7472

DeepMeSH 0.5643 0.5364 0.5366 0.7899 0.7555 0.7560

MeSHProbeNet 0.5901 0.5561 0.5596 0.8123 0.7714 0.7760

observe that MeSHProbeNet achieves the highest scores in all F-Measures and accuracy.

Since MeSHProbeNet is able to capture the correlation between different MeSH terms

and MeSH indexing for infrequent terms can benefit from this correlation information,

MeSHProbeNet gains both the best MiF and the best MaF scores.

The comparison results based on the hierarchical measures of each model are re-

ported in Table 7.2. As with the flat measure result, we also only show the best perfor-

mance score of each MeSH indexing model. The best scores are highlighted in boldface.

The hierarchical measures are calculated based on the hierarchical structure of the MeSH

vocabulary, thus the semantic distance between MeSH terms is under consideration. As

with their performances on the flat measures, MTI achieves higher F-Measures than

MTIFL and DeepMeSH outperforms both of them. We can see that MeSHProbeNet

obtains the highest scores in all measures.

7.3.5 Ablation Studies on MeSH Probes

We have demonstrated strong empirical results of MeSHProbeNet. Now we perform

ablation experiments in order to better understand the importance of the self-attentive

MeSH probes. Since the 2018 BioASQ challenge is closed and the challenge test sets

are currently not available, we split the dataset into training and test sets. The test set

contains 7,000 articles and is used to evaluate the ablation models. All the models are

trained on this new training set.
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Table 7.3: Ablation results based on the flat measures.

Models MiP MiR MiF MaP MaR MaF Acc

bi-GRU 0.6691 0.6243 0.6459 0.6228 0.4997 0.4937 0.4801

MeSHProbeNet-5 0.6978 0.6511 0.6736 0.6500 0.5609 0.5485 0.5124

MeSHProbeNet-15 0.7072 0.6617 0.6837 0.6675 0.5792 0.5670 0.5243

MeSHProbeNet-25 0.7094 0.6643 0.6861 0.6732 0.5846 0.5706 0.5276

Table 7.4: Ablation results based on the hierarchical measures.

Models LCA-P LCA-R LCA-F HiP HiR HiF

bi-GRU 0.5610 0.5111 0.5200 0.7935 0.7250 0.7380

MeSHProbeNet-5 0.5767 0.5341 0.5400 0.8064 0.7487 0.7583

MeSHProbeNet-15 0.5844 0.5434 0.5487 0.8118 0.7575 0.7660

MeSHProbeNet-25 0.5859 0.5465 0.5511 0.8129 0.7606 0.7681

To show the effect of MeSH probes, we include in the comparison bi-GRU, which

directly feeds the GRU output to the multi-view neural classifier and uses no MeSH

probes. To show the influence of different numbers of MeSH probes, MeSHProbeNet

models with 5, 15 and 25 MeSH probes are also included in the comparison, among

which the MeSHProbeNet-25 model has the same amount of MeSH probes as the model

we used in the challenge. All the other parameters, such as the embedding dimension

and the number of GRU layers, are the same as the challenge model for each model.

The ablation results based on the flat measures and the hierarchical measures are

reported in Table 7.3 and Table 7.4, respectively. The best scores are highlighted in

boldface. One can observe that the self-attentive MeSH probe mechanism significantly

improves the performance. Adding more MeSH probes is also helpful, although the

improvement per added MeSH probe becomes less and less significant as the number of

MeSH probes gets higher. Adding more probes will also increase the computation cost

and disk usage of the model.

7.3.6 Computational Efficiency

The training of MeSHProbeNet on the entire MEDLINE database can be finished within

24 hours with one NVIDIA TITAN Xp GPU. Given a new test set of 10,000 articles,
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the prediction takes less than 1 minute. Compared with other state-of-the-art MeSH

indexing models, for example, DeepMeSH needs 1 week to train on 1 million articles and

AttentionMeSH needs 4 days to train on 3 million articles with 2 GPUs, this improved

training efficiency of MeSHProbeNet allows us to exploit the entire database of more

than 13 million annotated articles. Moreover, since MeSHProbeNet does not need to

store any article information to perform KNN to find similar articles in the database,

nor does it need to train separate classifiers for more than 28,000 MeSH terms, the disk

usage of MeSHProbeNet is just about 1 GB.

7.4 Conclusions

We present an end-to-end MeSH indexing model MeSHProbeNet. MeSHProbeNet par-

ticipated in the 2018 BioASQ challenge and achieved the best performance in the latest

batch. MeSHProbeNet is a self-attentive deep neural network classifier, which is able

to extract different aspects of biomedical knowledge from an input article with different

MeSH probes, and generate MeSH recommendations based on the extracted features,

journal information and MeSH correlations. The experimental results demonstrate the

effectiveness of MeSHProbeNet on both frequent and infrequent MeSH terms.



Chapter 8

Customizable Domain Attentions

for Accurate Feature Extraction

8.1 Introduction

Centuries of research and experimentation have led to a generation of large-scale liter-

ature in the biomedical domain. For example, MEDLINE/PubMed1 is a biomedical

database maintained by U.S. National Library of Medicine (NLM). It currently contains

more than 24 million biomedical journal citations from more than 5,200 worldwide jour-

nals. To improve large-scale biomedical text retrieval and facilitate biomedical research

[135, 111, 112, 113], MEDLINE articles are indexed with the Medical Subject Headings

(MeSH) vocabulary, a vocabulary curated by the NLM experts.

Currently, MeSH indexing is performed manually by human experts. They examine

the full body of each biomedical article and annotate it with suitable MeSH terms. This

manual MeSH indexing has high accuracy but inevitably comes at a high price. It is

estimated that on average annotating one article in MEDLINE costs around $9.4 [114]

and in 2017 more than 813,500 citations were added to MEDLINE. In addition to the

monetary cost, it is also time consuming for the human experts to annotate a newly

published article. Thus, it would be very helpful to develop an automatic system capable

of annotating biomedical articles with MeSH terms or assisting the human indexers in

doing so. From the viewpoint of machine learning, automatic MeSH indexing is a large-

scale multi-label classification problem with extremely imbalanced classes. The MeSH

1 https://www.nlm.nih.gov/bsd/medline.html

120



121

vocabulary is large in order to cover all possible aspects of domain knowledge, and the

frequency of different terms vary drastically.

Many automatic MeSH indexing systems have been proposed for this imbalanced

large-scale multi-label classification task, such as Medical Text Indexer system (MTI)

[115, 114], MeSHLabeler [121], DeepMeSH [122], AttentionMeSH [133] and MeSH-

ProbeNet [136]. MeSHLabeler, DeepMeSH and AttentionMeSH train an independent

binary classifier for each MeSH term, making the whole system large and inefficient.

This further results in the inability of the system to make use of all the annotated ar-

ticles, for instance, MEDLINE contains more than 12 million annotated articles, while

DeepMeSH is only trained on 1 million articles. In addition, these systems rely on the

results of other existing systems, for examples, K-Nearest-Neighbors (KNN) is utilized

to find similar articles from literature and generate a candidate list of MeSH recommen-

dations. This further exacerbates the time and space consumption for the system, as

KNN has to go through the entire biomedical literature for each training and test article.

Moreover, this independent training process also heavily limits the power of the system

to exploit the correlation between different MeSH terms. Although, MeSHProbeNet

is an end-to-end model and achieves high training efficiency using self-attentive MeSH

probes, it can only extract general information from input articles as those probes are

universal, leaving the informative topic specific information underexploited.

The aforementioned challenges and limitations inspire us to develop a new end-to-

end model for this imbalanced large-scale multi-label classification task. The proposed

model extends our previous MeSHProbeNet model with personalizable/cusomizable

MeSH probes, and is named MeSHProbeNet-P, where P stands for personalization. As

with MeSHProbeNet, it is also a unified self-contained classifier, but the personalizable

MeSH probes enable it to extract both general and topic-related biomedical knowledge

from biomedical articles. Specifically, MeSHProbeNet-P utilizes deep learning and at-

tention mechanism to label biomedical articles. In MeSHProbeNet-P, different aspects

of biomedical information are extracted from the input article with different MeSH

probes. Each MeSH probe only pays attention to certain aspects of biomedical informa-

tion. In general, we have three types of MeSH probes in MeSHProbeNet-P: one type of

general MeSH probes and two types of topic-specific MeSH probes. The general MeSH

probes are responsible for extracting general biomedical information, such as diseases

and treatment, and are used in the same way for all input articles, whereas the topic-

specific MeSH probes are responsible for extracting biomedical information related to
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the topic of the current input article, and are tailor-made for each input article, for

example, the diabetes topic-specific MeSH probe is suitable for articles about diabetes.

MeSHProbeNet-P automatically customizes MeSH probes for different input articles. In

practice, we use a combination of general MeSH probes and topic-specific MeSH probes

in order to extract both general and specific biomedical information from the input

articles. As a unified classifier, MeSHProbeNet-P is able to annotate all MeSH terms at

once and exploit the correlation between different terms. In addition, MeSHProbeNet-P

has high efficiency, allowing it to be trained on all of the annotated biomedical articles.

We demonstrate the effectiveness of our proposed model on the BioASQ2 MeSH

indexing challenge benchmark, in comparison with the state-of-the-art models. To sum

up, the main advantages of MeSHProbeNet-P are as follows:

• MeSHProbeNet-P achieves the best performance on the challenge test set.

• MeSHProbeNet-P is an end-to-end model that does not need any intermediary

results from other algorithms and trains efficiently on GPUs.

• MeSHProbeNet-P contains general MeSH probes and topic-specific MeSH probes,

which are able to automatically extract general and topic-specific biomedical in-

formation from the input articles.

• MeSHProbeNet-P can automatically customize the MeSH probes to make the

model best fit each different input article.

• MeSHProbeNet-P is a unified multi-label classifier, which facilitates the learning

of term correlations and improves model efficiency.

8.2 Related Work

MeSH indexing greatly facilitates information retrieval and research in the domain of

biomedicine. To this end, NLM has developed MTI [115, 114], a software tool to an-

notate biomedical articles with MeSH terms, and has been aiding the NLM human

MeSH indexers since 2002. MTI takes the title and abstract of a biomedical article, and

combines MetaMap Indexing (MMI) and PubMed-Related Citations (PRC) to make

MeSH recommendations. MMI recommends MeSH terms based on the UMLS concepts

2 http://bioasq.org/
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extracted by MetaMap. PRC recommends MeSH terms by integrating the MeSH an-

notations of similar articles in MEDLINE found by PubMed-Related Articles (PRA)

[118].

To encourage worldwide researchers to design new effective MeSH indexing models

and advance this research domain, the BioASQ challenge is held every year since 2013

[119], presenting a real-world large-scale MeSH indexing benchmark. In the MeSH

indexing task of BioASQ, participating models are required to annotate new MEDLINE

articles with relevant MeSH terms, before human indexers annotate them manually. As

the manual annotations for the new articles become available, they are used as ground

truth to evaluate the performance of participating models. Many efficacious systems

have emerged from the challenge, for example, MetaLabeler [120], MeSHLabeler [121],

DeepMeSH [122] and MeSHProbeNet [136] are the challenge winners in recent years.

MetaLabeler views the challenge as a classification problem and trains an indepen-

dent binary classifier for each MeSH term. MeSHLabeler integrates MetaLabeler with

other evidence, such as similar publications found by KNN and term frequencies, to

generate a ranked list of candidate MeSH terms. DeepMeSH further introduces word

embeddings [23, 1] and the deep semantics carried by word embeddings to MeSHLa-

beler. Inspired by the rapid development of deep learning and attention techniques

[125, 137, 53, 83, 6, 138, 126, 127, 123], MeSHProbeNet is proposed to extract biomed-

ical information from input articles with self-attentive MeSH probes.

However, these models either suffer from low model efficiency or can only extract

general biomedical information. In this chapter, we design an efficient end-to-end deep

MeSH indexing model with personalizable MeSH probes. The MeSH probes can be cus-

tomized for different biomedical articles based on the topics of the articles. Therefore,

both general and topic-related biomedical knowledge can be extracted. Subsequently, a

multi-view classifier is utilized to make use of both the textual content and the journal

information of a given article. Multi-view classifiers have proven to be effective at im-

proving model performance and generality [139, 140, 141]. In addition, MeSHProbeNet-

P is also able to exploit the correlation between biomedical labels at the same time as

the classifier is being trained.
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Figure 8.1: The framework of MeSHProbeNet-P.

8.3 Methodology

Figure 8.1 shows the overview of our proposed model MeSHProbeNet-P. MeSHProbeNet-

P is a unified deep classifier with personalizable MeSH probes. As with the format of

most biomedical articles, the input of MeSHProbeNet-P consists of the textual content

of the article and the name of the journal or conference it is published in. The output

is a set of MeSH recommendations for this article.

The textual content of a biomedical article refers to its title, abstract and main

body, and carries the major information of the article, whereas the journal name of a

biomedical article indicates the topic information of the article, as every journal has

a definite focus, for example, Brain Research is an international journal devoted to

fundamental research in the brain sciences. This topic information of each biomedical

article helps MeSHProbeNet-P personalize the MeSH probes accordingly.

Briefly speaking, the proposed MeSHProbeNet-P model consists of three major com-

ponents: a bidirectional Recurrent Neural Network (RNN), a set of personalizable MeSH

probes and a multi-view neural classifier. The bidirectional RNN takes the article tex-

tual content as its input. The personalizable MeSH probes extracts useful information
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from the RNN hidden states.A biomedical article of arbitrary length can be converted

to a set of fixed-length feature vectors by the RNN and MeSH probes. The multi-view

classifier takes the extracted feature vectors and recommends a set of MeSH terms.

8.3.1 Bidirectional RNN

The bidirectional RNN reads the textual content of a biomedical article and generates

a hidden state for each word in the textual contents, as shown in the bottom left part

of Figure 8.1. RNNs take words in textual content in sequential order and are able to

capture the dependency between adjacent words. Specifically, MeSHProbeNet-P uses

a bidirectional GRU (Gated Recurrent Unit) [129] instead of a vanilla RNN, as GRU

has proven to be more effective in modeling long sequences than vanilla RNN [130].

Thus, given the textual content of an article containing T words, MeSHProbeNet-P

first represents the text as a sequence of T word embeddings through a lookup table:

X = {x1,x2, ...,xt, ...,xT },

where xt is a Dw dimensional real-valued vector, denoting the embedding for the tth

word in the input article. Thus an article can be represented as a T -by-Dw matrix, which

is the concatenation of all the word embeddings in it. Then we feed article embedding

matrix X to the bidirectional GRU:

−→
ht =

−−−→
GRU(xt,

−−→
ht−1),

←−
ht =

←−−−
GRU(xt,

←−−
ht+1),

where
−→
ht and

←−
ht are two U dimensional real-valued vectors, standing for the hidden

states for the tth word in normal direction and reverse direction, respectively. By con-

catenating
−→
ht and

←−
ht, we derive a 2U dimensional hidden state ht = [

−→
ht,
←−
ht] which

includes both the normal direction sequential information and the reverse direction se-

quential information at time stamp t. Hence, the hidden states of the input article can

be represented as a T -by-2U matrix:

H = [h1;h2; ...;ht; ...;hT ].
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8.3.2 Personalizable MeSH Probes

One simple way to obtain the summary of the input article is to use the last hidden

states of the bidirectional GRU: [
−→
hT ;
←−
h1]. Although GRUs have proven to be more

effective in modeling long sequences than the vanilla RNNs, their performances on

really long sequences are still limited, such as the entire textual content of an article

in our case. Hence, we propose to use personalizable MeSH probes to extract useful

biomedical information from the input article. Each MeSH probe carries certain aspects

of biomedical knowledge, and only pays attention to the RNN hidden states that contain

related information.Technically, a MeSH probe generates a weight vector whose elements

sum up to 1 for the RNN hidden states. The higher the weight value, the more related

the RNN hidden state is to the MeSH probe, and the more attention is paid to the hidden

state. Then, based on the weight vector, a MeSH probe can output a weighted RNN

hidden state which can be viewed as a summation of the input biomedical article with

respect to the biomedical knowledge carried by the MeSH probe. At the same time,

this MeSH probe allows MeSHProbeNet-P to represent an input article of arbitrary

length with one fixed-length vector. In fact, we can have multiple MeSH probes to

cover multiple aspects of biomedical knowledge. Hence, given a set of personalizable

MeSH probes, a set of fixed-length context vectors that carry corresponding biomedical

information of the input article can be obtained.

MeSHProbeNet-P has three types of MeSH probes: one type of general MeSH

probes which are sensitive to general biomedical knowledge and two types of topic-

specific MeSH probes which are sensitive to the topic of the current input article.

MeSHProbeNet-P is called personalizable because it is able to automatically gener-

ate the most suitable set of MeSH probes for each input article based on its topic. The

different types of MeSH probes are presented in details below.

General MeSH Probes. General MeSH probes carry general biomedical information

and work in the same self-attentive way for all articles. They are inherent vectors of

the model parameters, each carrying one general aspect of biomedical knowledge. As

with the GRU hidden state, the dimension of a general MeSH probe is also 2U . Given

general MeSH probe pgn, where superscript g stands for general and subscript n is the

MeSH probe index, we first take all the GRU hidden states H and then compute a

normalized weight vector αgn:
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αgn = softmax(pgnH
T ),

where αgn is a 1-by-T vector where element αgnt indicates the weight for the tth GRU

hidden state and all the weights sum up to 1:

αgnt =
exp(pgn · ht)∑T
t′=1 exp(pgn · ht′)

.

By taking the inner product between MeSH probe pgn and each GRU hidden state,

MeSH probe pgn assigns higher weights and pays more attention to the hidden states

that carry related biomedical knowledge. Then we can use the weighted summation of

the GRU hidden states according to the weights in αgn to represent the input article,

denoted as general context vector cgn:

cgn = αgnH =
T∑
t=1

αgnt · ht.

General context vector cgn is a 2U dimensional vector, which consists of only the

parts of the input article related to general MeSH probe pgn. In fact, a research article

can be associated with multiple general aspects of biomedical knowledge. For example, a

research article about some disease probably also talks about its treatment. Therefore,

in order to extract multiple general aspects of biomedical information from an input

article, we need multiple general MeSH probes, for instance, one MeSH probe for disease,

another for treatment, and so on. Thus, with N general MeSH probes {pg1,p
g
2, ...,p

g
N},

we can obtain N general context vectors as an N -by-2U matrix:

{cg1, c
g
2, ..., c

g
N}. (8.1)

Static Topic-specific MeSH Probes. In practice, rather than general biomedical

knowledge, such as disease and treatment, research articles are usually more focused on

specific biomedical knowledge, such as diabetes and brain research. However, limited

by the model size, we can only have a handful of general MeSH probes that carry

the most general biomedical knowledge shared by all training articles. Considering the

sheer range of specific biomedical knowledge, it is impossible for MeSHProbeNet-P to

have one general MeSH probe for every specific aspect of biomedical knowledge. Thus,
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we propose two types of topic-specific MeSH probes for specific biomedical knowledge:

static topic-specific MeSH probes and dynamic topic-specific MeSH probes.

Static topic-specific MeSH probes are a large set of vectors of the model parameters,

each carrying one specific aspect of biomedical knowledge. But only one static topic-

specific MeSH probe is activated at a time based on the topic of the input article. The

topic of the input article is indicated by the journal name it is published in, as every

biomedical journal has a definite research topic. For example, the international journal

Brain Research is focused on the brain sciences. Hence, given a dataset containing

articles from Nj journals, MeSHProbeNet-P has Nj corresponding static topic-specific

MeSH probes {ps1,ps2, ...,psNj
}, whose dimension is also 2U like general MeSH probes

and superscript s stands for static. Thus, given a biomedical article published in journal

j, MeSHProbeNet-P will select a static topic-specific MeSH probe for the input article

based on the journal information:

ps = psj .

Accordingly, we can obtain a normalized weight vector αs over the GRU hidden

states with respect to static topic-specific MeSH probe ps:

αs = softmax(psHT ).

This allows MeSHProbeNet-P to output a topic-specific context vector cs, by cal-

culating the weighted summation of the GRU hidden states according to the weights in

αs:

cs = αsH. (8.2)

Different from general context vectors, cs is a single vector that contains the specific

aspect of biomedical knowledge related to the topic of the input article.

Dynamic Topic-specific MeSH Probes. Static topic-specific MeSH probes assume

each research journal has a distinct research topic and model the journal topic attention

at phrase level. Sometimes it is also helpful to model the journal topic attention at

word level. For example, different journals may have similar or overlapped research

topics, such as Brain Research, Experimental Brain Research and Behavioural Brain

Research. Modeling the topic-specific attentions at word level can help us discover
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similar research topics among similar journals. Therefore, MeSHProbeNet-P also has

dynamic topic-specific MeSH probes, which are personalized at journal word level to

incorporate semantics in journal names and dynamically calculate the attention weights.

Specifically, dynamic topic-specific MeSH probes take the journal name j of an input

article as a text sequence. Suppose the journal name is M word long. Then journal

name j can be represented as a sequence of M word embeddings:

Xj = {xj1,x
j
2, ...,x

j
m, ...,x

j
M}.

As with the textual content of the input article, a bidirectional GRU is used to

capture the dependency between adjacent journal name words:

−→
hjm =

−−−→
GRU(xjm,

−−−→
hjm−1),

←−
hjm =

←−−−
GRU(xjm,

←−−−
hjm+1).

In order to take advantage of shared semantics, dynamic topic-specific MeSH probes

use the same word embeddings and GRU as the textual context in Section 8.3.1. There-

fore, the dimension of xjm is also Dw. The GRU hidden state for the mth word in journal

name j is denoted as hjm = [
−→
hjm,
←−
hjm]. Hence, the hidden states of journal name j can

be represented as a M -by-2U matrix Hj = [hj1;hj2; ...;hjm; ...;hjM ].

Then we can obtain an M -by-T relatedness matrix between the journal name GRU

hidden states and the textual content GRU hidden states:

R = HjHT ,

where each element rmt = hjm · ht is the inner product between journal name hidden

state hjm and textual content hidden state ht, indicating the relatedness between the

mth journal name word and the tth content word. Next, a max operation is applied to

R along its first dimension, so that a content word is considered topic related as long

as it is related to one of the journal name words:

zt = max
1≤m≤M

rmt.

Hence, we get a 1-by-T dynamic relatedness vector z. After that, we normalize z

to obtain dynamic attention weight vector αd, where superscript d stands for dynamic:
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αd = softmax(z).

Accordingly, MeSHProbeNet-P can output a dynamic topic-specific context vector

cd based on attention weight αd and the textual content GRU hidden states:

cd = αdH. (8.3)

The static topic-specific MeSH probes are personalized at phrase level, while the

dynamic topic-specific MeSH probes are personalized at word level. The former is more

straightforward, while the latter is more fine-grained. It is helpful for MeSHProbeNet-P

to contain both types of topic-specific probes.

8.3.3 Multi-view Neural Classifier

Given a biomedical article, MeSHProbeNet-P first generates a set of personalized MeSH

probes based on the research topic of its journal: N general MeSH probes, one static

topic-specific MeSH probe and one dynamic topic-specific MeSH probe. Then the input

article is converted to a set of fixed-length context vectors regardless of the article length.

These context vectors are then fed to the multi-view neural classifier. In addition,

in order to directly utilize the journal information of each input article, the multi-

view neural classifier also has a journal embedding module, where each journal name is

represented as a unique vector of length Dj . Hence, the input to the multi-view neural

classifier is the concatenation of journal embedding y and the context vectors derived

in Eq. 8.1, 8.2 and 8.3, denoted by comprehensive context vector E:

E = concat(cg1, c
g
2, ..., c

g
N , c

s, cd,y).

E is a (N + 2) ∗ 2U + Dj dimensional vector that carries all extracted features of

an input article. The multi-view neural classifier implements a function f that maps

comprehensive context vector E to V conditional probability distributions, where V is

the size of the MeSH vocabulary. The output of f is a vector whose ith element f(i,E)

estimates the probability that the ith MeSH term should be assigned to the current

article:

P (MeSHi = 1|E) = f(i,E),



131

where MeSHi denotes the ith MeSH term in the MeSH vocabulary. In practice, a three

layer neural network is adopted as function f :

f(E) = σ(W 2ReLU(W 1E + b1) + b2), (8.4)

where σ(·) is the element-wise sigmoid function to ensure that each output neuron is a

probability in the range of [0, 1], W 1, W 2 are the weight matrices for each layer, and b1,

b2 are the biases. Thus, the training objective is to minimize the binary cross entropy

loss between the ground truth labels and the labeling probabilities in Eq. 8.4.

Unlike most previous large-scale biomedical text labeling models with separate bi-

nary classifiers for MeSH terms, MeSHProbeNet-P has a unified multi-label classifier

for all the MeSH terms. This not only greatly improves the model efficiency as the size

V of MeSH terms are huge, but also allows the semantics of the word embeddings and

MeSH probes to be shared across all MeSH terms. Moreover, the correlation between

different MeSH terms can be captured by classifier weight matrices.

In the prediction phase, we can obtain the final labeling recommendations based on

the output of function f in Eq. 8.4 by learning the optimal thresholds for each MeSH

term on a held-out validation set.

8.4 Experiments

We demonstrate the effectiveness of our MeSHProbeNet-P model on a real-world MeSH

indexing task. We participated in the 2019 BioASQ challenge and compare its per-

formance with several state-of-the-art MeSH indexing systems, including MTI and

DeepMeSH. Our system won the first place in the first batch of the challenge. To

illustrate how the personalization of MeSH probes affects the performance, we also

provide ablation studies on the personalizable MeSH probes.

8.4.1 Dataset and Experimental Settings

The training dataset is downloadable on the challenge webpage3 . It contains 14,200,259

biomedical articles which are annotated manually by the NLM human experts. On

average, 12.69 MeSH terms are assigned to each article. In total, 28,863 distinct MeSH

terms are covered by the training dataset. For each article in the training dataset, we

3 http://participants-area.bioasq.org/general information/
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have the unique identifier of the article (PMID), the title of the article, the abstract of

the article, the year the article was published, the journal name the article was published

in and a set of MeSH terms assigned to the article. Hence, in here the textual content

of a biomedical article refers to the concatenation of its title and abstract.

In the preprocessing step, all non-alphanumeric characters, stop words and words

with a total frequency lower than 10 are removed, and all words are converted to lower-

case. The dimensionalities of word embeddings and journal embeddings are set to 350

and 100, respectively. The number of GRU layers is set to 2. The size of the GRU

hidden unit is set to 350 per direction, thus 700 for a bidirectional unit. The dimen-

sionality of MeSH probes is also set to 700 accordingly. The default MeSHProbeNet-P

is equipped with 5 general MeSH probes, 1 static topic-specific MeSH probe and 1 dy-

namic topic specific MeSH probe. The multi-view neural classifier has a hidden layer

of 10000 units. We deploy 0.1 dropout, 5e-10 L2 regularization and snapshot ensemble

[131] to prevent over-fitting. The learning rate for stochastic gradient descent is set to

0.0005 and we also clip the gradients whose values are larger than 1. All parameters

including embeddings are randomly initialized.

8.4.2 Evaluation Metrics

Two sets of evaluations metrics are used to evaluate the MeSH indexing performance:

the flat measures and the hierarchical measures.

The flat measures consist of accuracy and two sets of F-measure based metrics:

Macro F-Measure (MaF) and Micro F-Measure (MiF). Accuracy represents the fraction

of correct predictions. Macro measures give equal weight to all MeSH classes. Frequent

MeSH terms and infrequent MeSH terms are equally important. Thus Macro Precision

(MaP) and Macro Recall (MaR) are calculated as the average precision and recall over

all MeSH classes. MaF is then computed as the harmonic mean of MaP and MaR. Micro

measures aggregate all test cases and treat each test case equally. Frequent MeSH terms

therefore have higher weights than infrequent MeSH terms. We can see that different F-

Measures have different focuses, for example, MiF focuses more on the frequent MeSH

terms, while MaF treats all MeSH classes equally regardless of their frequencies. As

with the BioASQ challenge evaluation, we will also take MiF as our major measure.
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Table 8.1: Comparison results based on the flat measures.

Models MiP MiR MiF MaP MaR MaF Acc

MTIFL 0.6610 0.5960 0.6268 0.6284 0.5552 0.5320 0.4640

MTI 0.6328 0.6468 0.6397 0.5937 0.5953 0.5524 0.4797

ceb 0.6768 0.6280 0.6515 0.6125 0.5045 0.4967 0.4873

DeepMeSH 0.7319 0.6056 0.6628 0.6886 0.5137 0.5139 0.5053

MeSHProbeNet-P 0.7090 0.6624 0.6849 0.6728 0.5670 0.5556 0.5264

Table 8.2: Comparison results based on the hierarchical measures.

Models LCA-P LCA-R LCA-F HiP HiR HiF

MTIFL 0.5508 0.4909 0.5035 0.7889 0.7105 0.7277

MTI 0.5358 0.5333 0.5207 0.7601 0.7567 0.7408

ceb 0.5624 0.5130 0.5228 0.8013 0.7231 0.7420

DeepMeSH 0.5905 0.5015 0.5298 0.8304 0.7120 0.7507

MeSHProbeNet-P 0.5746 0.5587 0.5535 0.8011 0.7761 0.7725

Since the MeSH vocabulary is organized in a hierarchical structure, the hierarchi-

cal measures are also used to evaluate the performance, including Hierarchical Preci-

sion (HiP), Hierarchical Recall (HiR), Hierarchical F-Measure (HiF), Lowest Common

Ancestor Precision (LCA-P), Lowest Common Ancestor Recall (LCA-R) and Lowest

Common Ancestor F-measure (LCA-F) [132].

8.4.3 Experimental Results

We show the comparison results of our model with the state-of-the-art models, including

ceb, the NLM default MTI, MTI First Line indexing (MTIFL) [115] and DeepMeSH

[122] on the first test set which contains 7194 articles and the complete results are

available on the challenge webpage4 .

The comparison results of each model are reported in Table 8.1. The best scores are

highlighted in boldface. Between the NLM official baselines, MTIFL focuses more on

the precision score than the recall, resulting in lower F-measures than MTI. DeepMeSH

utilizes the deep doc2vec technique [59] and the tf-idf representations. It achieves higher

4 http://participants-area.bioasq.org/results/7a/
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MiF scores than MTI, but its MaF score is lower than MTI, which means it pays more

attention to frequent MeSH terms such as “humans” and “animals”. It can be ob-

served that MeSHProbeNet-P achieves the highest scores in all F-measures. The MeSH

probes are able to extract comprehensive feature vectors to improve MeSH indexing

performance. It is worth mentioning that, compared with the best performing base-

line DeepMeSH, MeSHProbeNet-P achieves a 3.3% improvement in MiF and an 8.1%

improvement in MaF, indicating that MeSHProbeNet-P achieves a much larger im-

provement on infrequent MeSH terms. That is because the personalizable MeSH probes

are able to extract topic specific features for more specific and less frequent terms. In

addition, the multi-view classifier of MeSHProbeNet-P contains the MeSH correlation

information which can further benefit the labeling performance for infrequent MeSH

terms, therefore MeSHProbeNet-P also gains the best MaF score.

The comparison results based on the hierarchical measures of each model are re-

ported in Table 8.2. As with the flat measure result, the best scores are also highlighted

in boldface. The hierarchical measures are calculated based on the hierarchical structure

of the MeSH thesaurus and MeSH terms are not treated as independent from each other,

thus the hierarchical measures consider the semantic distance between MeSH terms. The

performances of each model in terms of the hierarchical measures are similar with their

flat measure performances: MTI achieves higher F-Measures than MTIFL; ceb and

DeepMeSH outperform both of the official MTIFL and MTI; and MeSHProbeNet-P

still obtains the highest scores in all F-measures.

Another advantage of MeSHProbeNet-P is its end-to-end nature: it does not need

any prior knowledge, external knowledge or human guidance for the training of the

MeSH probes. The probes are able to automatically learn biomedical semantics during

training.

8.4.4 Ablation Studies on Personalizable MeSH Probes

We have demonstrated strong empirical results of MeSHProbeNet-P on the challenge

test set. In order to further investigate the importance of the personalizable MeSH

probes and the effect of different types of MeSH probes, we perform ablation studies of

MeSHProbeNet-P. Since the 2019 challenge test set is not publicly available yet, the ab-

lation study is conducted on the 2017 challenge test set of 6661 articles, and accordingly

the training set is also changed to the 2017 version, which contains 12,834,585 articles.
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Table 8.3: Ablation results based on the flat measures.

MeSHProbeNet-P MiP MiR MiF MaP MaR MaF Acc

No Attn 0.6728 0.6216 0.6462 0.6180 0.5002 0.4951 0.4809

1 General Attn 0.6759 0.6221 0.6479 0.6302 0.4987 0.4940 0.4829

1 Static Attn 0.6763 0.6291 0.6519 0.6327 0.5057 0.5027 0.4868

1 Dynamic Attn 0.6819 0.6284 0.6541 0.6346 0.5071 0.5030 0.4887

5 General Attns 0.7075 0.6544 0.6799 0.6993 0.5707 0.5693 0.5188

7 General Attns 0.7034 0.6638 0.6830 0.6648 0.5856 0.5710 0.5234

Default 0.7147 0.6691 0.6911 0.6814 0.5931 0.5782 0.5338

Table 8.4: Ablation study results based on the hierarchical measures.

MeSHProbeNet-P LCA-P LCA-R LCA-F HiP HiR HiF

No Attn 0.5632 0.5125 0.5217 0.7971 0.7255 0.7399

1 General Attn 0.5658 0.5141 0.5239 0.7985 0.7276 0.7419

1 Static Attn 0.5663 0.5174 0.5267 0.7958 0.7315 0.7440

1 Dynamic Attn 0.5666 0.5149 0.5250 0.8007 0.7264 0.7426

5 General Attns 0.5877 0.5382 0.5484 0.8176 0.7504 0.7655

7 General Attns 0.5798 0.5458 0.5480 0.8081 0.7610 0.7661

Default 0.5898 0.5512 0.5555 0.8168 0.7649 0.7724

One of our core claims is that the MeSH probes can extract comprehensive features

from an input article, and this is crucial for MeSH indexing. To give evidence for this

claim, we include in comparison the MeSHProbeNet-P model without attentions, which

directly feeds the GRU output to the multi-view classifier and uses no MeSH probes,

denoted by MeSHProbeNet-P (No Attn).

To study the difference between the three types of MeSH probes, we include in com-

parison three single attention models: MeSHProbeNet-P with 1 general MeSH probe,

denoted by MeSHProbeNet-P (1 General Attn); MeSHProbeNet-P with 1 static topic-

specific MeSH probe, denoted by MeSHProbeNet-P (1 Static Attn); and MeSHProbeNet-

P with 1 dynamic topic-specific MeSH probe, denoted by MeSHProbeNet-P (1 Dynamic

Attn).

We also emphasize that the personalizability of MeSH probes can improve the

model performance. Thus, we compare the performance of MeSHProbeNet-P with
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non-personalized MeSH probes and the performance of MeSHProbeNet-P with per-

sonalized MeSH probes. Please note that, MeSHProbeNet-P with non-personalized

MeSH probes falls back to the vanilla MeSHProbeNet [136]. For the sake of fair com-

parison, both models have 7 MeSH probes: MeSHProbeNet-P with non-personalized

MeSH probes contains 7 general MeSH probes, denoted by MeSHProbeNet-P (7 Gen-

eral Attns); MeSHProbeNet-P with personalized MeSH probes contains 5 general MeSH

probes, 1 static topic-specific MeSH probe and 1 dynamic topic-specific MeSH probe,

denoted by MeSHProbeNet-P (Default). We call it default because MeSHProbeNet-P

(Default) is the same model as used in Section 8.4.3.

In addition, to inspect the influence of different numbers of MeSH probes, MeSHProbeNet-

P with 1, 5 and 7 general MeSH probes are also included in the comparison, de-

noted by MeSHProbeNet-P (1 General Attn), MeSHProbeNet-P (5 General Attns) and

MeSHProbeNet-P (7 General Attns). All the other parameters, such as the embed-

ding dimension and the number of GRU layers, are the same as the challenge model in

Section 8.4.3 for each model.

The analysis results based on the flat measures and the hierarchical measures are

reported in Table 8.3 and Table 8.4, respectively. The best scores are highlighted in

boldface. The importance of MeSH probes is shown in the comparison between the

MeSHProbeNet-P models with and without MeSH probes. The performance is sig-

nificantly improved by the attentive MeSH probes, especially by the MeSHProbeNet-P

models with multiple MeSH probes. MeSHProbeNet-P (1 General Attn) and MeSHProbeNet-

P (No Attn) have similar performance, as they both try to use a 2U dimensional

vector to represent the entire input article. In the comparison among single probe

models, MeSHProbeNet-P (1 General Attn), MeSHProbeNet-P (1 Static Attn) and

MeSHProbeNet-P (1 Dynamic Attn), we can observe that topic-specific MeSH probes

outperform general MeSH probes, as they directly extract the information related to

the topic of the input article. The comparison between MeSHProbeNet-P (7 General

Attns) and MeSHProbeNet-P (Default) demonstrates the effectiveness of personalizable

MeSH probes. With personalized MeSH probes, MeSHProbeNet-P (Default) can ex-

tract both general and specific biomedical knowledge, and the performance is further

improved. In addition, based on the comparison between MeSHProbeNet-P (1 General

Attn), MeSHProbeNet-P (5 General Attns) and MeSHProbeNet-P (7 General Attns),

we can observe that increasing the number of MeSH probes is also helpful, although the

improvement per added MeSH probe becomes less and less significant as the number of
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MeSH probes gets larger. However, increasing the number of general probes will also

increase the model size and time consumption. Therefore, in the experiments, we use 5

as the default setting for the number of general probes, which is a good trade-off point

between efficiency and effectiveness. It is also worth mentioning that an ensemble of

MeSHProbeNet-P and MTI can further improve the MiF score to 0.6965.

8.5 Conclusions

We present a novel end-to-end large-scale MeSH indexing model MeSHProbeNet-P.

MeSHProbeNet-P is a deep neural network classifier with personalizable MeSH probes,

which is able to customize its MeSH probes for every different input article automati-

cally. With customized MeSH probes, both general and specific biomedical knowledge

can be extracted from an input article, and MeSH terms are then labeled by a unified

multi-view neural classifier. The experimental results on the BioASQ challenge dataset

demonstrate the effectiveness of MeSHProbeNet-P.



Chapter 9

Conclusions and Future

Directions

In this dissertation, three types of context information in text data and their corre-

sponding contextual representation learning models are studied. Context information

not only allows us to learn representations with coherent syntax and semantics from

text data, but also is easy and convenient to collect.

For contextual representation learning methods based on spatial context, we propose

a series of models that utilize global context and local context to learn topic structures

and word embeddings. In those models, we focus on exploiting global context and local

context collaboratively, and further enhance the quality of representations that were

originally learned on a single type of spatial context information.

For contextual representation learning methods based on temporal context, we pro-

pose two models on diachronic literary data and time series data, respectively. The

former constructs temporal context by splitting literary data into time slices and learns

coherent dynamic representations of text objects, which further enables us to study lan-

guage and knowledge evolution. The latter learns temporal features of EEG time series

using contextual representation learning, allowing us to detect the onset of seizures in

real time.

For contextual representation learning methods based on domain context, we pro-

pose to learn representations of text data based on its domain context. We first propose

to extract features from input documents using self-attentive probes. The self-attentive

probes are essentially memory cells that memorize the domain information of the task.
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Thus, the learned representations are guaranteed to be domain-specific. We further

propose to customize the self-attentive probe if given more fine-grained domain context

information. The customized probes are more domain-specific and space-efficient.

Among all the advantages of using context information to learn representations of

text data, the most outstanding one is the ease to collect and construct the context data.

We are in the era of big data and text data is being generated at an increasing speed.

Invaluable knowledge and language regularities are contained in the innumerable text

data, but it is infeasible to manually label all the data. Being easy and convenient to

construct, context information provides a way to learn representations from large-scale

text data with zero or very little human supervision. Therefore, one future research

direction for text-based contextual representation learning is about new ways to con-

struct the context information, i.e., what assumptions we can make about the context

information to reflect human language regularities. A good example of contextual as-

sumptions is the distributional hypothesis [7] which makes the assumption that “words

that are used and occur in the same contexts tend to purport similar meanings”. It

allows us to establish language models based on the local spatial context of text data

and further learn the distributed representations of words. It would be exciting to see

new contextual representation learning assumptions narrowing the gap between human

understandings and computer understandings of languages. Another future research

direction is to devise more sophisticated and effective model architectures to realize the

contextual assumptions. For example, although NPLM [12], Word2Vec [1] and BERT

[5] are all based on the distributional hypothesis, each of the models was able to signifi-

cantly advance the research domain with a different architecture. A more sophisticated

architecture also means that more complicated assumptions can be made about the

context information of text data.
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