
Artificial Intelligence: Automating Jira Requests

CS4991 Capstone Report, 2025

Grant Costello

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

ded5nh@virginia.edu

ABSTRACT

When a problem in the Markel Systems occur,

underwriters create uninformative Jira Tickets.

My team utilized an internal AI tool and the

Jira API to automate this process and add

relevant information. The underwriter prompts

the AI and the AI collects information about

the problem and formats it in a helpful way for

the service desk technician to understand and

solve. This expedites the time need to solve the

issue. The next step is to train the AI to format

the Jira Ticket in an easily readable way.

1. INTRODUCTION

The insurance side of the Markel Group exists

in the specialty insurance space. They once

insured one of the pairs of ruby slippers that

Dorothy wore in the original Wizard of Oz

movie. The slippers ended up being stolen and

an entire investigation had to be undertaken to

verify that no insurance fraud took place.

Markel has insured concert venues, sports

cars, mansions, and pretty much anything that

there is some risk to owning.

Because Markel insures such big unique items,

underwriters rely on underlying systems coded

with complicated rules to determine what the

policy looks like and what forms are attached.

These systems and the rules within them

sometimes break. Currently, there are two

ways for the groups that interact with these

systems to indicate something is broken. The

first group is the underwriters. When they find

a problem, they submit a form on an intranet

website called ServiceNow. The ticket is then

sent to the right people to fix the problem.

They then create a Jira ticket for the problem

and it is put on the backlog. However, when a

developer discovers a problem, they create a

ticket in Jira.

This current workflow for system problems is

not generalized and makes the whole process

slower. When the ticket is received by the

correct team, it is formatted differently and the

description of the problem can be difficult for

the team to understand without reaching back

out to the party that discovered the problem.

This makes solving these problems time-

consuming and less efficient than it could be.

My team decided to tackle this problem and

utilize AI to do so.

2. RELATED WORKS

According to Schmelzer (2025), Artificial

Intelligence can be utilized to help analyze

complex problems built on data. When

determining risk or how much to insure, much

is unknown, so AI can play a part by taking in

all known data and making a more accurate

guess than current models used by insurance

companies. Schmelzer also mentions that

insurance operations can be a place where AI

is utilized. By making the processes more

efficient, those results can be passed to the

customer and make their experience better. My

project aimed to utilize insurance operations

and make that efficiency felt by the customer.

According to Godinho (2025), flexibility is the

key to AI driven development. It allows

software development teams to work smarter.

It is not automating the software development

process but adapting to a new tool that can be

utilized to stay ahead of competition and stay

efficient. My project’s goal was to use AI to

adapt and make the software development,

primarily debugging, process easier for

developers.

3. PROJECT DESIGN

The first step of designing how the Jira Ticket

Automation would work was to research the

current processes showing how a Jira Ticket

was created, claimed and completed. We

looked at the two processes, both ServiceNow

and Jira directly. We emailed and met with

some underwriters to understand how the

ServiceNow process worked and we asked

them about flaws in the current process and

about their ideas for improvement.

Then we looked at the other part of the process

used by the developers, who both create Jira

tickets for developers on other teams and

complete Jira tickets. We talked to the

developers on the Document Solutions team,

who gave us a list of requirements for creating

an automated ticketing process and told us

where to look for certain data.

We were tasked with adding the automated

ticketing functionality to the Insight Hub AI, a

tool being developed by the Document

Solutions Team to assist underwriters and

developers. We had several meetings with the

document solutions team, looking “under the

hood” at the source code of the Insight Hub AI

and how it fit into the overall Insight Hub

website.

We looked at different ways to add this

functionality to the Insight Hub AI. Other

common AIs, ChatGPT, Gemini, and CoPilot

all had similar user interfaces but with some

differences. We liked the way CoPilot had a

list of user prompts and wanted to implement

a similar feature, enabling the user to press a

button and see different prompt options, one of

which could create a Jira ticket.

After my team had all the requirements for

researching and figuring out how to actually

implement our project, we split the project up

into three different parts: first prompting the

Insight Hub AI; then pulling and formatting

the data related to the problem; and finally,

making the API call to Jira.

We decided to start researching the API call

and taking a backend to frontend approach to

the project. The Jira API documentation was

very lengthy and all over the place with what

was needed for our project, though we

ultimately found the correct POST request to

use. My team did not have much experience

with Jira and all of its abilities, since this

internship was the first time we had to use it;

so we had to learn how the Markel IT

Department used Jira. I got in touch with a

director in the IT department that is in charge

of the Markel Jira Standards and she walked

me through the standards needed for a story

versus a bug and the fields we needed to

include in the API call. We took the API call

and found the fields we needed and practiced

the call using Postman. It was difficult to find

all the required fields because Markel had lots

of custom fields in Jira that were not

documented and we had to search for that

information.

After the API call, we looked at ways to pull

data from the Insight Hub AI and include it in

the Jira Ticket, while also formatting it in a

way that the Jira API could handle and

understand. We utilized the Insight Hub AI by

asking for any data related to the user’s prompt

and gave the AI a template showing how we

wanted the response returned to us. This part

was tricky because, like ChatGPT, even with

clear instructions, the system would

sometimes give us information we did not

want or which was formatted in the wrong

way. Another difficulty was having to learn

typescript and C# because the Insight Hub was

written with an Angular frontend and a .NET

backend.

We had the most trouble with the user

interface. While we were working on the Jira

call, the Document Solutions Team was

continuing development on the Insight Hub

AI. We could not create a prompt button

because they had not finished with the overall

look of the AI, so we resorted to creating a

button under the prompt bar. In this way, if the

user pressed it, it would start the Jira ticket

automation process, taking all of the data from

the prior conversation and pulling any related

information. The system did not give the user

a chance to explain the problem well, but we

had to work with what was within our control.

On the day of our presentation, we had to fix

our code because the Document Solutions

team had accidentally deleted a line that we

wrote, making development very difficult.

4. ANTICIPATED RESULTS

We were not able to see the results of the

automated Jira project we implemented into

the Insight Hub AI. However, we expect that it

will decrease the amount of time developers

spend fixing problems instead of developing

new products. Every bug that is found adds

time to both the underwriter who finds a bug

and has to request a fix and the developer who

has to fix it.

Bug are not avoidable, so our new process

should decrease the wasted time dealing with

bugs. Underwriters will save time because

they can just type the problem into the Insight

Hub AI and press a button, creating a Jira

Request Ticket. They can then spend more

time selling insurance, making Markel more

money. We expect that developers will save

time fixing these bugs because of the

formatted data that we included in the Jira

Ticket. The Insight Hub AI is now adding all

information about the problem into the Jira

request, so the developer does not have to

search for the problem, enabling them to focus

on solutions instead.

5. CONCLUSION

The importance of the automated Jira Ticket

creation process lies with the time saved doing

mundane tasks. Underwriters and Developers

both save time by using the Insight Hub AI to

complete the creation process entirely. The AI

has access to all the data related to the

underlying systems and is able to pull from

that data when an error is found, creating a

much better Jira ticket than an underwriter or

developer every could by knowing everything

related to the problem and perhaps in some

cases, the place to look to solve the problem.

6. FUTURE WORK

For future work, the Insight Hub AI needs

some user interface work. When developing

our process, the Insight Hub AI’s UI was being

developed at the same time. Because of those

changes, we had to add a button to start the

process. To improve in the future, we could

add a prompt for the user to type in to start the

process.

In addition, the Insight Hub’s responses need

to be more standardized. When asking the

Insight Hub AI for data, it was sporadic in its

variety of responses and sometimes it didn’t

understand the problem, so we need to take it

and make it respond in a more similar way

each time to make it easier for the developers

to solve the problem.

REFERENCES

Schmelzer, R. (2025, February 13). From

reducing risk to improving operations: The

role of AI in insurance. Forbes.

https://www.forbes.com/sites/ronschmelz

https://www.forbes.com/sites/ronschmelzer/2025/02/13/from-reducing-risk-to-improving-operations-the-role-of-ai-in-insurance/

er/2025/02/13/from-reducing-risk-to-

improving-operations-the-role-of-ai-in-

insurance/

Godinho, N. (2025, February 6). Council post:

AI and flexible team models: Empowering

instead of replacing. Forbes.

https://www.forbes.com/councils/forbeste

chcouncil/2025/02/06/ai-and-flexible-

team-models-empowering-instead-of-

replacing/

https://www.forbes.com/sites/ronschmelzer/2025/02/13/from-reducing-risk-to-improving-operations-the-role-of-ai-in-insurance/
https://www.forbes.com/sites/ronschmelzer/2025/02/13/from-reducing-risk-to-improving-operations-the-role-of-ai-in-insurance/
https://www.forbes.com/sites/ronschmelzer/2025/02/13/from-reducing-risk-to-improving-operations-the-role-of-ai-in-insurance/

