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Abstract 

Alterations in cardiomyocyte shape and function are critical to the heart’s adaptive capability. 

Physiological stresses such as exercise can induce beneficial growth of the myocardium, but pathological 

stresses such as hypertension or myocardial infarction can launch a downward spiral of hypertrophic 

remodeling. This remodeling of the heart walls results in decompensation due to abnormal chamber 

geometry and excessive wall thickening or thinning. While many biochemical and mechanical processes 

influencing cardiac hypertrophy have been isolated, the precise signaling mechanisms separating adaptive 

and maladaptive responses have remained uncertain. Given the complexity of the cardiac signaling 

network, a systems-level approach is necessary to tackle this challenge. The overall goal of this 

dissertation is to integrate high-content image analysis and computational network modeling to identify 

novel control structures and pathways underlying cardiomyocyte growth and remodeling. 

We first examine how cardiomyocytes integrate remodeling signals caused by mechanical stretch, a 

potent stimulus for growth and remodeling in cells. Although many pathways have been implicated in 

stretch-induced remodeling, the control structures by which signals from distinct mechano-sensors are 

integrated to modulate hypertrophy and gene expression in cardiomyocytes remain unclear. We 

constructed and validated a predictive computational model of the cardiac mechano-signaling network in 

order to elucidate the mechanisms underlying signal integration. The model identifies calcium, actin, Ras, 

Raf1, PI3K, and JAK as key regulators of cardiac mechano-signaling and characterizes crosstalk logic 

imparting differential control of transcription by AT1R, integrins, and calcium channels. We find that 

while these regulators maintain mostly independent control over distinct groups of transcription factors, 

synergy between multiple pathways is necessary to activate all the transcription factors necessary for gene 

transcription and hypertrophy. We also identify a PKG-dependent mechanism by which 
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valsartan/sacubitril, a combination drug recently approved for treating heart failure, inhibits stretch-

induced hypertrophy, and predict further efficacious pairs of drug targets in the network through a 

networkwide combinatorial search. 

Next, we expand the focus to multiple stimuli and investigate which pathways control variant 

remodeling outcomes in cardiomyocytes. Although previous studies have mapped out the hypertrophy 

signaling network and have matched network inputs to a variety of morphological phenotypes, the 

contribution of individual signaling pathways to distinct hypertrophic morphologies, such as area versus 

elongation, remains relatively unknown. We measured protein expression and activity in response to 

angiotensin II, endothelin-1 (ET), insulin growth factor-1, and neuregulin-1 (Nrg), and integrated this data 

with a previously published phenotypic screen in a partial least squares regression model. The model 

identifies two axes of signaling activity corresponding to growth and eccentricity. Nrg, which produces 

myocyte elongation, was found to highly activate members of the MAPK and PI3K signaling pathways, 

whereas Nrg and ET both downregulate apoptotic signaling. Follow-up experiments validated the role of 

MEK1, PI3K, and Src in mediating Nrg-induced myocyte elongation, whereas MEK5 and p38 were not 

found to be involved in this process. Our results illuminate the cell-level decisions driving concentric 

versus eccentric ventricular remodeling. 

Finally, we broaden the scope to a genome-wide search and identify novel targets not previously 

implicated in myocyte growth and remodeling. Although large phenotypic screens have the potential to 

elucidate novel biological discoveries, they present unique obstacles and challenges to analysis due to the 

scale of the data. We develop automated image processing algorithms to process a myocyte screen 

comprising 10 million images and 97,500 shRNAs targeting 15,000 genes. To correct for artifacts 

common to large screens, such as varying cell health and image quality, we introduce a robust filtering 

and normalization procedure. We also generate a binomial model and perform a randomized analysis, 

which indicate that at least two shRNA hits per gene are necessary to avoid high false positive rates. 

Implementing this workflow, we locate 294 genes regulating myocyte area, 360 genes regulating 
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elongation, and 345 genes regulating spikiness. Each gene set is highly enriched for cytoskeletal 

remodeling and for cardiac disease terms, such as congestive heart failure, hypertrophic cardiomyopathy, 

and dilated cardiomyopathy. Our results not only identify hundreds of candidates for future study, but 

also validate a comprehensive analysis pipeline for use on other large-scale screens. 

Together, the work encompassed in these aims (Fig. 0.1) accomplishes three goals. First, we have 

identified signaling pathways driving variant myocyte phenotypes. Second, we have discovered new 

biochemical targets for modulating cardiac remodeling. Third, we have developed innovative image 

processing algorithms for assessing myocyte form and function. In summary, our systems approach 

illuminates the complex signaling driving heart failure and contributes to the accelerated development of 

novel therapies. 

 

 

 

Figure 0.1. Schematic of research plan. The three aims listed correspond to chapters 2, 

3, and 4 of this work. 
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1.1. Foreword 

Dozens of signaling pathways are implicated in heart failure, a costly and often fatal condition, but 

much remains unclear about how they regulate the growth and remodeling of cardiomyocytes. In this 

chapter, we discuss the increasing burden of heart failure and the need for targeted therapies that promote 

beneficial remodeling and myocardial recovery. We review existing knowledge of hypertrophic signaling 

pathways in cardiac myocytes, and consider the strengths and limitations of existing approaches to 

studying cellular remodeling. Finally, we summarize the most crucial areas where further work needs to 

be concentrated. 

1.2. Introduction 

Heart failure, a leading cause of death in developed societies, afflicts over 25 million people 

worldwide [1]. More than half of heart failure patients die within 5 years [2], and the annual burden in 

healthcare costs is over $30 billion in the United States alone [3]. Triggered by many common stresses, 

heart failure usually involves dramatic growth of ventricular myocytes as the heart attempts to 

compensate for its increased burden. While hypertrophic remodeling can function as a beneficial 

compensatory response to extra workload, dramatic ventricular growth can ultimately engender cardiac 

deterioration [4]. 

Because normalization of ventricular size and shape typically accompanies myocardial recovery [5], 

[6], identifying pharmaceutical and device therapies that control and reverse hypertrophy is a high 

priority. Although anti-adrenergic strategies such as β-blockers have achieved clinical success, many 

patients become refractory to neurohormonal inhibition and continue to worsen, albeit more slowly [7]. 

Since ventricular remodeling can contribute independently to heart failure by increasing myocyte strain 

and thus stretch-induced hypertrophic signaling [8], mechanical interventions such as left ventricular 

assist devices (LVADs) can promote cardiac recovery by reducing wall stress [9]. Complications of 

surgery, such as bleeding or infection, may render device implantation less preferable for some patients, 
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however [10]. Given that maximally effective strategies will likely complement ventricular assistance 

with pharmacological therapy, continued drug development is essential [11], [12]. 

Recent success with combination drug therapies inhibiting multiple nodes in the hypertrophy 

signaling network underscores the need to understand the network as a whole, and not just target one 

individual pathway in isolation [13], [14]. Distinct forms of cardiac remodeling have been associated not 

only with different hemodynamic origins [15], but also with varying clinical outcomes. For example, 

eccentric hypertrophy, characterized by myocyte elongation and ventricular dilation, poses greater risks 

than concentric hypertrophy, characterized by ventricular thickening [16]. Although certain hypertrophic 

ligands have been correlated with different hypertrophic phenotypes [17], less is known about the unique 

roles of individual signaling pathways in modulating remodeling. Likewise, although researchers have 

discovered many mechano-sensors contributing to stretch-induced hypertrophy, the control structures 

integrating mechanical signals remain unclear [18], [19]. A better understanding of which signaling 

pathways drive distinct remodeling patterns would enable development of more targeted and personalized 

therapies for patients from a wide range of etiologies and genetic backgrounds. 

1.3. The complex signaling network governing cardiac remodeling 

1.3.1. Overview of hypertrophic signaling in cardiomyocytes 

Initiation of cardiac hypertrophy falls into two general categories of neurohormonal and 

biomechanical mechanisms [4]. The former have been characterized more fully, while the latter will be 

discussed in section 1.3.3. Among the most important cytokines stimulating hypertrophy are epinephrine, 

norepinephrine, angiotensin II, endothelin-1, neuregulin, and insulin growth factor-1 [20]. Although a 

host of proteins are activated in response to these ligands, the most prominent pathways include the Ca2+–

calcineurin–NFAT cascade [21], the PI3K–Akt cascade [22], and the three major families of MAPK 

signaling: ERK1/2 [23], p38 [24], and JNK [25]. These pathways govern a host of transcription factors, 

which in turn control the expression of numerous cardiac genes. Of particular note in the context of 
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hemodynamic or metabolic is the downregulation of several post-natal genes and the prominence of 

several fetal genes, including important clinical markers such as ANP and BNP [26]. 

Previously, our lab has constructed a predictive model of the hypertrophic signaling cascades 

downstream of 14 receptors, identifying key network hubs [27]. The outputs of the model were limited to 

the members of the fetal cardiac gene program and a generic node for “cell area”, and did not reflect the 

full diversity of gene expression and morphological features. Subsequent work examined 15 receptor 

agonists largely corresponding to the 14 receptors mentioned above, and quantified their influence on a 

wider array of phenotypes including elongation, spikiness, fibrosis, inflammation, proliferation, and cell 

death, in addition to the fetal gene program [17]. However, this work did not characterize the role of 

individual signaling pathways in transmitting these signals. After connecting stimuli to pathways and 

stimuli to phenotypes, the missing link of connecting pathways to phenotype remains. 

1.3.2. The molecular basis for eccentric hypertrophy 

Pathological cardiac hypertrophy is often classified as concentric or eccentric [15]. Concentric 

hypertrophy, usually associated with pressure overload caused by hypertension or aortic stenosis, involves 

thickening of the ventricular walls and decreased chamber volume. Eccentric hypertrophy, associated 

with volume overload caused by conditions such as chronic myocardial infarction or dilated 

cardiomyopathy, involves dramatic increases in chamber volume. Among the cellular phenotypes 

mentioned above, myocyte elongation involving serial (as opposed to parallel) addition of sarcomeres 

stands out because of its contribution to eccentric hypertrophy [28]. Here we briefly review the several 

signaling pathways regulating elongation in the heart (Fig. 1.1). 

Several cytokines promote elongation through the gp130 receptor, which activates both the 

JAK/STAT and the MEK5/ERK5 pathways [29]. LIF strongly induced elongation in cultured myocytes, 

an effect that was abrogated in cells with dominant-negative MEK5 [30]. The same study produced severe 

dilated cardiomyopathy in transgenic mice overexpressing activated MEK5. LIF-induced elongation 
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through gp130 was later additionally shown to be dependent on SHP2, which binds with Gab1 

downstream of gp130 and is necessary for ERK5 activation [31]. Elsewhere, IL-11, another cytokine 

binding to gp130, activated STAT3 and lengthened myocytes, while also exhibiting cardioprotective 

effects against ischemia [32]. In like fashion, CT-1-induced myocyte lengthening through gp130 in adult 

cardiomyocytes requires STAT3 and MEK5 participation; paradoxically, CT-1 overexpression was 

correlated with myocyte widening in spontaneously hypertensive rats [33]. Leptin is an adipocyte-derived 

peptide that signals through the Ob-Rb receptor, which is similar to gp130. Interestingly, leptin also 

induced STAT3 phosphorylation, myocyte elongation, and eccentric left ventricular dilation, an effect 

that was inhibited by blocking JAK2 [34]. 

 

Figure 1.1. Signaling pathways regulating elongation in cardiac myocytes. The model 

depicted was reconstructed from prior studies in the literature. 
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The Src/FAK pathway is also important to lengthening myocytes. Nrg stimulation induced 

lamellipodium formation, elongation, and synchronous beating in myocytes, effects that were prevented 

by a Src inhibitor or by an antibody to erbB2 [35]. There, the extension of lamellipodia appeared to be 

dependent on formation of a complex between erbB2, FAK, p130CAS, and paxillin. One possibly related 

mechanism for control of myocyte lengthening by FAK and paxillin is regulation of actin capping by 

CapZ through the mediation of Rho, PKCε, and PIP2 [36], [37]. The role of Rho in elongation remains 

controversial. Its role in promoting elongation during development and cytokinesis, particularly through 

activation of myosin II, is well established [38], [39]. However, some have observed both RhoA and Rac1 

to be uninvolved in sarcomere assembly in series [40], while others claim that RhoA actually inhibits 

elongation [31]. 

Several other miscellaneous signaling molecules have been implicated in influencing myocyte 

elongation. C2C12 cells lacking kindlin-2, an integrin-associated protein required for muscle 

development, were unable to elongate or fuse into myotubes [41]. Overexpression of FHL1, another 

integrin-binding protein, induced hyperelongation in C2C12 cells; this process specifically depended on 

α5β1- but not the α4β1-integrins [42]. Transgenic Cdk8 overexpression resulted in myocyte lengthening 

and progressive dilated cardiomyopathy in mice [43]. In neonatal rat cardiomyocytes, electrical field 

stimulation promoted myocyte reorientation and elongation; this response displayed complete dependence 

on actin polymerization and partial dependence on PI3K activity [44]. Constitutively active MEK3b 

resulted in elongation and higher sarcomere organization within hESC cardiomyocytes, suggesting a role 

for p38 [45]. Finally, in contrast to the pro-elongation pathways discussed here, ERK1/2 signaling 

promotes width increases in myocytes, and myocytes from mouse hearts lacking ERK1/2 demonstrated 

eccentric growth [46]. It seems unlikely that all these pathways are operating independently; although 

much overlap and crosstalk likely exists, more work is necessary to determine the overall structure of this 

network. Furthermore, many of the mechanisms by which these pathways ultimately prompt serial 

addition of sarcomeres remains unclear. 
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1.3.3. Mechano-sensitive hypertrophic pathways 

Myocyte lengthening and thickening is driven not only by neurohormonal stimulation, but also by 

increased hemodynamic load [47], [48]. Myocyte growth drives changes in overall ventricular chamber 

geometry, which can in turn exacerbate the mechanical burden on the heart [8]. Although cells possess 

myriad mechanisms for sensing mechanical stress [49], cardiomyocytes detect pressure or volume 

overload primarily through three major groups of mechano-sensors: calcium channels, cytoskeletal 

proteins, and the angiotensin type 1 receptor (AT1R) [50], [51]. 

AT1R was one of the first molecules implicated in cardiac mechano-signaling [52], [53]. In response 

to stretch, AT1R increases MAPK phosphorylation [54], [55], JAK–STAT signaling [56], [57], and 

expression of several hypertrophic markers [52], [58]. Not until much later, however, was AT1R proved 

to be directly stretch-sensitive apart from the involvement of angiotensin II (Ang II) [59]. Subsequent 

studies showed that stretch-induced AT1R signaling depends on β-arrestin [60], [61], and pinpointed the 

specific amino residues responsible for activation of the receptor [62]. Interestingly, β-arrestin activity in 

coordination with AT1R was subsequently shown to mediate the Frank–Starling mechanism of cardiac 

contractility [63]. Although myocytes do release Ang II in response to stretch [52]–[54], [58], [64], [65], 

both the mechanism behind Ang II release and its specific effect on myocyte remodeling remain unclear 

[19]. Nonetheless, the importance of AT1R in cardiomyocyte mechano-sensing is firmly established, 

especially given the prevalence of AT1R blockers for treating cardiovascular disease [66]. 

Intracellular calcium release was reported in several of the earliest studies stretching myocytes [67]–

[69], but it has taken many years to identify the channels responsible. Among the ion channels claimed to 

be stretch-sensitive, the L-type calcium channel (LTCC) [32], [70]–[75] and members of the transient 

receptor potential (TRP) channel family [76]–[80] have the most support. As is the case with AT1R 

activation, calcium release triggers the upregulation of a wide range of hypertrophic factors [74], [81]. 

Many of these calcium-dependent effects are mediated by the calcineurin–NFAT pathway [82]–[84]. 

Importantly, the mechano-sensing ability of cardiac ion channels has electrophysiological as well as 
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hypertrophic significance [85]. As further studies clarify the role of LTCC and TRP channels in the heart, 

their pharmacological significance will continue to increase [86], [87]. 

The third major group of mechano-sensors, cytoskeletal proteins, was initially popularized through 

the tensegrity model of the cytoskeleton [88]. Whether or not this model is helpful in understanding cell 

mechanics, several cytoskeletal structures are crucial to enabling myocytes to modify their architecture 

and initiate signaling in response to mechanical forces [89]. Two important proteins propagating signals 

from the extracellular matrix to the cell interior are integrin and dystroglycan. Exerting tension on 

integrins not only causes overall deformation of the cell [88], but also induces activation of proteins such 

as FAK, Src, and RhoA [90], [91]. Dystroglycan, a membrane protein binding to laminin, connects 

internally to dystrophin, which links to the actin cytoskeleton [92]. Disruption of the dystrophin–

dystroglycan complex, a hallmark of Duchenne muscular dystrophy, impairs the ability of the 

cardiomyocyte to produce NO and to reduce myocyte slippage in response to stretch [93], [94]. 

In light of the abundant literature detailing protein activation and gene expression in response to 

stretch, surprisingly little is known about other stretch-induced phenotypes in cardiomyocytes, such as 

cell orientation and elongation. Although it is agreed that cardiomyocytes realign in response to uniaxial 

stretch, some have found them to orient parallel to the stretch direction [95], while others have found 

them to orient transverse to the stretch direction [80], [96]. This discrepancy does not seem to be 

discussed in any of the relevant literature. Furthermore, almost no studies have examined the differences 

between stretching in a uniaxial versus a biaxial direction. One study in diaphragm muscle reported that 

longitudinal stress differentially activates PI3K, PKC, and MEK1/2, whereas cyclic AMP–dependent 

PKA was activated only in response to transverse stress [97]. In another study in NRVMs, transverse 

stress induced greater levels of FAK and ERK phosphorylation than longitudinal stress [98]. This same 

study reported that FAK and ERK phosphorylation increased with higher frequencies of cyclic stretch, 

but beyond this little is known about the difference between static and cyclic stretch, or between different 

patterns of cyclic stretch. Other areas deserving further attention are the role of feedback loops in the 
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mechano-signaling network, and the function of paracrine signaling between cardiac fibroblasts and 

myocytes [99]–[102]. 

1.4. A systems biology approach to cardiac signaling 

1.4.1. Network modeling 

By complementing data generation with engineering tools, such as predictive modeling and 

quantitative analysis, systems biologists can penetrate large-scale datasets with greater insight [103]. For 

example, computational models help reveal mechanisms regulating complex signaling networks by 

synthesizing large bodies of experimental data into a quantitative, predictive framework [104]. In the case 

of the cardiac hypertrophy signaling network, a logic-based differential equation (LDE) modeling 

approach [105] successfully interrogated a network whose size rendered kinetic models infeasible, 

identifying key hubs and global functional relationships [27]. The insights afforded into the distinct roles 

of various hypertrophic signaling pathways, however, has been limited by gaps in the experimental 

literature on which previous models have been based. In order to reconstruct pathways differentially 

controlling remodeling outcomes, approaches need to be developed that can incorporate a wide range of 

proteomic and phenotypic metrics and that can quantitatively compare the roles of multiple hypertrophic 

signaling hubs. 

1.4.2. High-content automated image analysis 

As robotic cell culture and automated microscopy systems improve, it is often difficult for researchers 

to keep pace with the wealth of data such technologies generate. In order to translate the massive influx of 

experimental outputs into actual mechanistic insights, novel methods for image analysis are increasingly 

vital [106]. Previous studies have developed innovative image processing algorithms to reveal distinct 

morphological signatures and to discriminate between levels of sarcomere organization [17], [107], but 

such techniques have not yet been used to study myocyte growth and remodeling on a large scale. 
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Unlike analysis of smaller image collections, for which algorithms can be manually adjusted for 

individual batches of images, processing millions of images at a time requires a highly generalizable 

segmentation and sorting strategy. In addition, the unavoidable variation in cell health and staining and 

image quality across large screens requires development of new protocols for background subtraction and 

data normalization. To successfully perform unbiased phenotypic screens on cardiomyocytes at a 

genome-wide scale, it will be necessary to combine advanced image processing algorithms with 

innovative normalization techniques. 

1.5. Conclusions 

Ventricular remodeling plays a critical role as an independent driver of heart failure. Given the 

complexity of the molecular signaling networks driving remodeling, modeling has become an essential 

tool for synthesizing large data sets and indicating optimal directions for further experimentation. Recent 

computational models have identified context-dependent roles of network hubs, determined relationships 

between network structure and function, and screened for optimal drug therapies. In the future, data-

driven modeling approaches will remain crucial for revealing novel signaling mechanisms and for 

generating testable predictions of how myocytes control growth and remodeling. In this work, we 

integrate such modeling and experimental methods to identify the control structures and pathways 

underlying cardiomyocyte growth and remodeling. 

In the first aim (chapter 2), we focus on mechanically-induced myocyte remodeling. By constructing, 

validating, and analyzing the first computational model of the cardiac mechano-signaling network, we 

locate the control structures governing the hypertrophic response and identify patterns of crosstalk 

between the several mechano-sensitive pathways operating in parallel. In addition, we use the model to 

predict drug targets for development of combination therapies. Our second aim (chapter 3) then expands 

the focus from a single stimulus (stretch) to multiple stimuli, investigating how multiple pathways 

differentially regulate distinct hypertrophic phenotypes such as area, elongation, and fetal gene 
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expression. In order to identify and validate targets that uniquely govern variant remodeling outcomes, we 

combine high-content imaging, RPPA, and gene expression in a data-driven modeling framework. 

Finally, in the third aim (chapter 4), we expand the focus still further to the entire genome in order to 

identify drivers of myocyte growth and remodeling that have not been previously implicated. We develop 

a complete workflow for automated cell segmentation, morphological measurement, normalization, 

statistical validation, and pathway enrichment of an shRNA screen encompassing 97,500 conditions. 

Using this workflow, we discover hundreds of candidate genes regulating area, elongation, and spikiness 

in cardiomyocytes. Together, these aims accomplish three goals: Identification of signaling pathways 

driving variant myocyte phenotypes; discovery of new biochemical targets for modulating cardiac 

remodeling; and development of innovative image processing algorithms for assessing myocyte form and 

function. 
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2.1. Foreword 

In chapter 1, we considered the diverse array of stimuli contributing to cardiac hypertrophy and 

remodeling. We now restrict our scope to consider remodeling signals caused by a single stimulus, 

mechanical stretch. While a plethora of mechano-sensitive proteins have been discovered in 

cardiomyocytes, the mechanisms whereby the downstream signaling cascades are integrated into the 

cell’s hypertrophic response remain unknown. In this chapter, we reconstruct cardiac mechano-signaling 

pathways in a computational model that identifies top network hubs and predicts effective combination 

mechano-therapies controlling remodeling. 

2.2. Introduction 

Cardiac mechano-signaling, the ability of the heart to sense and respond to mechanical cues, 

plays an integral role in driving ventricular hypertrophy and remodeling [108], [109]. Although 

hypertrophic remodeling initially functions as a compensatory response to extra workload, the dramatic 

growth of the ventricles ultimately engenders further cardiac deterioration [4]. Current therapies such as 

beta blockers and angiotensin II receptor blockers (ARBs) seek to block the chemical ligands initiating 

hypertrophy in addition to their direct hemodynamic effects [7].  As heart failure worsens, however, many 

patients become refractory to neurohormonal inhibition, and increased mechanical stretch of the myocytes 

can stimulate cardiac remodeling independently of the patient’s biochemical status [8], [110]. Abnormal 

ventricular geometry in turn increases the mechanical burden, further heightening wall stress. A better 

understanding of cardiac mechano-signaling is crucial for identifying therapies that can interrupt this 

downward spiral [111]. 

While many mechano-sensitive proteins have been identified in cardiomyocytes [59], [76], the 

mechanisms whereby the downstream signaling cascades are integrated into the hypertrophic response 

remain unknown [18], [19]. Computational models can accelerate insight into complex signaling 

networks [104], and influential network hubs have previously been identified using logic-based models of 
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biochemically-initiated hypertrophy signaling [27], [112]. Past studies of mechano-sensing have used 

finite element or force dipole models to predict concentric or eccentric cardiac growth [113], to identify 

the mechanisms coordinating beating between adjacent myocytes [114], [115], and to gain insights into 

force transmission between contracting cells [116]. Others have developed mass-action kinetic models of 

individual stretch-sensitive pathways to study calcium dynamics [117], or to study TGF-β release in 

response to substrate stiffness [118]. These approaches, however, have not been used to examine systems-

level properties of the signaling network itself. 

In this study, we constructed and validated the first computational model of the cardiac mechano-

signaling network in order to predict key signaling regulators integrating the stretch-induced hypertrophic 

response. Synthesizing the current understanding of mechanically driven signaling cascades, the model 

identifies signaling motifs and crosstalk logic crucial to network function. In particular, coordination 

between AT1R, integrins, and calcium channels was found to be essential for increased cell size, protein 

synthesis, and upregulation of the fetal gene program in response to mechanical stress. Rather than 

converging on a common set of nodes, each mechano-responsive pathway contributes to the cellular 

response through a distinct group of transcription factors. The model also elucidates cGMP-dependent 

cooperative mechanisms underlying valsartan/sacubitril, the combination angiotensin receptor–neprilysin 

inhibitor recently approved for treating heart failure. Combined responses to inhibition or activation of 

every pair of nodes in the network are then calculated, predicting additional combinations of drug targets 

with maximal influence over stretch-induced remodeling. 

2.3. Methods 

2.3.1. Model construction  

A predictive computational model of the mechano-signaling network in cardiac myocytes was 

manually reconstructed from experimental studies described in published literature. To reconstruct the 

cardiomyocyte mechano-signaling network, experimental observations were synthesized from over 170 
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peer-reviewed papers. The literature search began by identifying papers that indicated a role for certain 

proteins in cardiac mechanotransduction, whether in the context of in vivo pressure overload or in vitro 

cardiomyocyte stretching. Individual reactions between mechano-responsive proteins were then included 

if other papers could be found (not necessarily in a mechanotransduction context) confirming a direct 

molecular interaction between them. During literature review, all papers involving in vitro cell-stretching 

experiments performed in rat cardiomyocytes were set aside for validation. Primary mechano-sensors 

were included only if evidence from at least three separate studies existed in which either that particular 

mechano-sensor alone was stretched, or if the mechano-sensor was reconstituted in a cell type previously 

unresponsive to stretch. Other nodes were only included if identified as mechano-responsive, or if 

necessarily inferred between other nodes. Outputs were selected for frequency of measurement across the 

literature and relevance to cardiac function. The full database of literature used in model construction or 

validation is provided in Appendix A. 

Signaling dynamics were predicted with a logic-based differential equation (LDE) approach, in 

which activation of one node by another is modeled using a normalized Hill function. Logical AND or 

OR operations were used to represent pathway crosstalk, using the equation 𝑓(𝑥)𝑓(𝑦) for AND gating 

and 𝑓(𝑥) + 𝑓(𝑦) − 𝑓(𝑥)𝑓(𝑦) for OR gating [105]. In general, OR gating is used when each input to a 

node is sufficient but not necessary for activation, whereas AND gating is used when each input is 

necessary. Default reaction parameters included Hill coefficient n = 1.4 and half-maximal effective 

concentration EC50 = 0.5. Default node parameters included initial activation Yinit = 0, maximal activation 

Ymax = 1, and time constant τ = 1. Logic decisions were primarily made using known biochemical 

mechanisms, but sometimes inferred from comparing experiments in the literature. The system of LDEs 

was generated in Netflux (available at https://github.com/saucermanlab/Netflux) and implemented in 

MATLAB. The input value of 0.7 weight and the weight w = 0.9 for other nodes was chosen to maximize 

the number of nodes activated between 50 and 95%, thus preventing undersaturation or oversaturation in 
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order to obtain the most information from the sensitivity analysis. The full databases of model species and 

reactions are provided in Appendices B and C, respectively. 

2.3.2. Model validation 

Qualitative activity changes of network nodes were predicted by simulating the response to 

stretch alone or to stretch together with inhibition of various nodes, and then comparing with published 

experimental observations of in vitro rat cardiomyocytes. Observations used for validation were 

exclusively from literature not used for model construction and only included mechano-signaling 

experiments performed in rat cardiomyocytes (mostly neonatal ventricular myocytes, with a few studies 

using adult ventricular or neonatal atrial myocytes). Input-output and input-intermediate activity changes 

were defined relative to no stretch, while inhibition activity changes were defined relative to steady-state 

stretch. Observations were encoded as increase, decrease, or no change and were compared with model 

predictions using a threshold of 5% absolute change, a more robust threshold than that used in previous 

studies[27], [112]. The full database of validation relationships is provided in Appendix D. 

2.3.3. Parameter robustness 

Network robustness to variation in model parameters was tested, using a validation threshold of 

5% absolute change. For each parameter shown (Ymax, w, n, and EC50), new values for every instance of 

that parameter were generated by sampling from a uniform random distribution with indicated half-width 

about the original parameter value. 100 new parameter sets were created for each distribution range for 

each parameter, and simulations were run to compare model predictions with literature observations. No 

changes in validation accuracy resulted from varying τ or Yinit. Robustness to simultaneous changes in 

overall reaction weight and weight of initial stretch input were also simulated across the ranges shown. 
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2.3.4. Sensitivity analysis 

Sensitivity analysis was performed with knockdown simulations run in MATLAB by setting each 

Ymax to 50% of the default value and measuring the resulting change in activity of every other node 

compared to steady state activation. Included in the top 12 most influential nodes are the 9 with the 

highest influence over the transcription factors (Akt, AT1R, Ca2+, Gαq/11, JAK, PDK1, PI3K, Raf1, and 

Ras) and the 9 with the highest influence over the outputs (α-actinin, actin, Akt, AP1, Ca2+, calmodulin, 

PDK1, PI3K, and Ras). Hierarchical clustering of this subset of the sensitivity matrix (columns with 12 

most influential nodes versus rows with transcription factors and outputs) was performed in MATLAB 

using Euclidean distance metrics and the unweighted average distance algorithm using a distance criterion 

of 0.3 to separate clusters. The topologically highest node from each cluster was identified, and grouping 

of transcription factors was performed by hierarchical clustering of the subset of the sensitivity matrix 

comprising columns with the 12 most influential nodes and rows with the transcription factors, using the 

same settings as before. 

Double sensitivity analysis was run by measuring the network response to all pairwise 

combinations of decreasing or increasing Ymax by 50% of its original value. Additional effects of pairs of 

nodes were measured by subtracting the higher sensitivity value due to decrease (or increase) of either 

node individually from the sensitivity due to decrease (or increase) of both nodes simultaneously. 

 

2.4. Results 

2.4.1. A predictive computational model of the cardiomyocyte mechano-signaling network 

To reconstruct the cardiomyocyte mechano-signaling network (Fig. 2.1), experimental 

observations were collected from published literature. During literature review, papers involving in vitro 

cell stretching experiments performed in rat cardiomyocytes were set aside for validation, while 

remaining papers were used to reconstruct the signaling network. In all, a group of 172 papers designated  
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Figure 2.1. Reconstruction of the mechano-signaling network in cardiac myocytes. 
The model comprises 125 activating or inhibitory reactions linking 94 nodes, beginning 

with 9 mechano-sensors (NHE, LTCC, TRP, ET1, AT1R, AngII, gp130, Integrin, and 

Dysgl) and proceeding through multiple signaling cascades and transcription factors 

(penultimate row) to 10 hypertrophy-related gene products or phenotypes (final row). 

Complete lists of model reactions and of abbreviations for node names are provided in 

Appendices B and C.   
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for model construction was used to define network architecture (Appendices B and C), and a separate 

group of 55 papers designated for model validation was used to validate model predictions of network 

activity (Appendix D), an approach used in previous network reconstructions [27], [112]. 

The network incorporates five mechano-sensors each shown to be directly responsive to physical 

stretch: AT1R (angiotensin type 1 receptor) [59], LTCC (L-type calcium channel) [70], TRP (transient 

receptor potential channel) [77], integrin [119], and dystroglycan [120]. Also represented are four proteins 

known to be mechano-responsive, but whose mechanism of stretch-induced activation or release is 

unknown or disputed: gp130 (glycoprotein 130) [57], NHE (sodium–hydrogen exchanger) [121], Ang II 

(angiotensin II) [52], and ET-1 (endothelin 1) [122]. Signal propagation continues through downstream 

mechano-responsive proteins known to be regulated by these mechano-sensors, such as MAPKs 

(mitogen-activated protein kinases), Akt (protein kinase B), CaN (calcineurin), and FAK (focal adhesion 

kinase). These proteins in turn activate various transcription factors regulating the 10 phenotypic outputs 

most commonly reported in the literature, including protein synthesis, cell area, and expression of eight 

genes: ANP (atrial natriuretic peptide), BNP (brain natriuretic peptide), SERCA (sarcoplasmic reticulum 

Ca2+ ATPase), α-MHC (α-myosin heavy chain), β-MHC (β-myosin heavy chain), sACT (skeletal α-actin), 

Cx43 (connexin 43), and Ao (angiotensinogen). Activation of the fetal gene program, a hallmark of 

cardiac stress, encompasses upregulation of ANP, BNP, β-MHC, and sACT, and downregulation of 

SERCA and α-MHC [123]. In all, the reconstructed network of cardiomyocyte mechano-signaling 

includes 94 nodes (cytokines, proteins, mRNA, and cell processes), connected by 125 reactions. Further 

details of network reconstruction are included in the methods. 

To convert the network into a predictive computational tool, we modeled reactions with logic-

based differential equations (LDEs), a strategy previously used to combine the strengths of mass action 

kinetic and Boolean models for large-scale networks [105], [27], [112]. In this approach, the normalized 

activation of each node (such as phosphorylation for proteins, or expression for mRNAs) is represented 

by ordinary differential equations with saturating Hill functions, and continuous logical AND or OR logic 
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gates are used to represent pathway crosstalk. In general, OR gating is used when each input to a node is 

sufficient but not necessary for activation, whereas AND gating is used when each input is necessary. As 

in previously published models [27], [105], [112], uniform default values were used for all network 

parameters. Preservation of network predictions to these constraints has been previously demonstrated 

 

Figure 2.2. Simulated activation of the cardiac mechano-signaling network. The 

steady-state response to a stretch input of 0.7 is displayed. 
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[27], [112], [124], although individual parameters can be tuned when necessary by fitting to experimental 

measurements [125]. 

Based on the network structure in Appendix A, the system of LDEs was automatically generated 

in Netflux and implemented in MATLAB, as detailed in the Methods. A baseline condition of no external 

stretch is simulated by setting the stretch input at zero, and the response of the network to a high level of 

stretch can be predicted by increasing the input to 0.7, corresponding to applying approximately a 20% 

strain to myocytes cultured on a flexible membrane (Fig. 2.2). In addition, the model can predict the 

effects on stretch-induced signaling caused by adding an inhibitor against any node in the network. For 

example, stretch-induced increases in BNP, cell area, and other model outputs are predicted to be partially 

reduced with the AT1R antagonist valsartan (Fig. 2.3), consistent with previously published results [64], 

[126], [127]. 

 

Figure 2.3. Model predicts dynamics of hypertrophic outputs. Gene expression and 

phenotype levels are shown for 10 model outputs in response in response to cell 

stretching (starting at 20 min.) and valsartan (starting at 4 hrs.). 
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2.4.2. Model validation and importance of reaction logic 

To assess the accuracy of model predictions, we simulated activity changes of network nodes in 

response to stretch alone or to stretch together with inhibition of various nodes, and then compared them 

with published experimental observations of in vitro rat cardiomyocytes. Observations used for validation 

(Appendix D) included only mechano-signaling experiments performed in rat cardiomyocytes, and were 

gathered exclusively from literature not used for model construction. Simulated input-output and input-

intermediate activity changes were defined relative to no stretch, while inhibition activity changes were 

defined relative to steady-state stretch. After encoding observations from literature as increase, decrease, 

or no change, they were compared with model predictions using a 5% threshold for defining change, a 

more stringent threshold than that of previously published network validations [27], [112]. Overall, the 

model correctly predicts 78% (134/172) of observations from papers not used to construct the model, 

including 100% (9/9) of input–output predictions, 100% (43/43) of input–intermediate predictions, and 

68% (82/120) of inhibition predictions (Fig. 2.4, Appendix D).  

To evaluate model robustness to variations in parameters, simulations were tested against 

parameter sets sampled from uniform random distributions. Consistent with studies of other networks 

[112], [124], validation accuracy is highly robust (>70%) to variation in model parameters over a uniform 

random distribution of up to ±20% for Ymax, and up to ±30% or more for all other parameters (Fig. 2.5). 

In addition, validation accuracy remains high (>70%) with up to ±30% changes in baseline input levels 

(Fig. 2.6).  

We also examined whether correct reaction logic is necessary for model accuracy. For example, 

AND logic was used to model the reaction for BNP, since multiple transcription factors are each 

necessary (though not individually sufficient) to drive gene expression [128]. In a variation of the model 

identical to the original but without AND gates (all logic gates set to OR), validation accuracy drops to 

51% at the original reaction weight and input levels. Even with reduced reaction weights, the version  
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lacking AND logic cannot validate higher than 70%, and robustness to changes in input level also 

decreases (Fig. 2.6), suggesting that logic gating is crucial to proper network function. 

 

Figure 2.4. Model predictions validate against experimental observations not used 

for model reconstruction. Qualitative activity changes of network nodes were predicted 

by simulating the response to stretch alone or to stretch together with inhibition of 

various nodes (first column), and then compared with published experimental 

observations of in vitro rat cardiomyocytes (second column). A validation threshold of 

5% relative change was used. Input-output and input-intermediate activity changes are 

defined relative to no stretch activity, while inhibition activity changes are defined 

relative to steady-state stretch activation. 
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2.4.3. Identification of key network regulators 

After validating the model’s predictive capability, we performed a network-wide sensitivity 

analysis in order to determine quantitative functional relationships across the network. We hypothesized 

that the structure of the resulting sensitivity matrix would enable identification of key hubs regulating 

transcriptional activity. Knockdown of individual nodes was simulated by reducing Ymax for that node, 

and the resulting change in activity of every other node was measured, thus predicting the response of the  

 

Figure 2.5. Network displays robustness to variation in model parameters. 100 new 

parameter sets were created for each distribution range for each parameter, and 

simulations were run to compare model predictions with literature observations, using a 

validation threshold of 5% absolute change. For each parameter tested (Ymax, w, n, and 

EC50), new values for every instance of that parameter were generated by sampling from 

a uniform random distribution with indicated half-width about the original parameter 

value. (No changes in validation accuracy occurred in response to varying tau or y0.) 
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Figure 2.6. Model logic influences prediction accuracy. (A) Prediction accuracy of the 

original model. (B) Prediction accuracy of a model version with all activating AND 

reactions converted to OR reactions. For each version, network validation was tested 

across a range of initial stretch inputs (from 0.10 to 1.0) and default reaction weights 

(from 0.7 to 1.0), using a validation threshold of 5% absolute change. 
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network to inhibition of specific receptors, kinases, or genes. Influential nodes were defined as those 

whose knockdown causes the greatest activity changes across a given portion of the network. Based on 

the network-wide sensitivity analysis (Fig. 2.7), we identified the 15 nodes with the highest influence 

over transcriptional activity and over the gene expression outputs (Fig. 2.8A).  These most influential 

nodes encompass proteins mediating signals from each of the primary mechano-sensors: Ca2+ and 

calmodulin, downstream of the stretch-sensitive ion channels; Gαq/11, which transmits signals from AT1R; 

and actin and α-actinin, which relay forces from integrins and the dystrophin–dystroglycan complex. Also 

highly included are previously identified central network hubs for biochemically-stimulated hypertrophy, 

such as Ras and PI3K. Rather than being controlled by one specific mechano-sensor, most of the 

hypertrophic outputs display sensitivity to all the stretch-responsive pathways (Fig. 2.8A, lower panel).  

 In contrast to the outputs, which tend to be broadly sensitive to perturbations in many different 

parts of the network, most of the transcription factors display sensitivity only to certain mechano-

signaling pathways (Fig. 2.8A, upper panel). For example, CREB, FoxO, and GATA4 are primarily 

regulated by AT1R through the PI3K/Akt pathway, while cFos activity is specific to Raf1 signaling 

through MEK1/2. To systematically determine the control structure underlying differential control of 

transcriptional activity, we performed hierarchical clustering on the reduced sensitivity matrix shown in 

Fig. 2.8A. Using a distance criterion of 0.3 to form groups revealed six clusters, each of which regulates a 

distinct set of transcription factors. We identified the topologically highest node from each cluster, and 

then used this to create a simplified network schematic demonstrating how these key hubs—calcium, 

actin, Ras, Raf1, PI3K, and JAK—link the mechano-sensors to the transcription factors (Fig. 2.8B). Of 

these six hubs, two are influenced by the mechano-sensitive calcium channels (TRP and LTCC), two are 

influenced by the cytoskeletal mechano-sensors (integrin and dystroglycan), and five are influenced by 

AT1R. 
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Figure 2.7. Network-wide sensitivity matrix. The matrix displays the sensitivity of each 

node to all other nodes in the context of steady-state stretch activation. Each column of 

the matrix represents a simulation in which one node was knocked down 50% and the 

change in activation of every other node in the network was measured. 
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Figure 2.8. Sensitivity analysis reveals modular network structure. (A) Network 

sensitivity to most highly influential hubs. Subset of the sensitivity matrix showing the 

response of each of the transcription factors and outputs to half-knockdown of each of the 

12 nodes causing the highest average response across the transcription factors and 

outputs, as well as integrin. (B) Simplified network schematic showing control of 

transcription factors by 6 key hubs. 
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2.4.4. Screen for combination mechano-therapies  

While we predicted several individual regulators whose inhibition could reduce stretch-induced 

gene expression, combination therapies may outperform individual perturbations administered in isolation 

[129]. For example, the FDA recently approved valsartan/sacubitril (initially known as LCZ696 and 

branded as Entresto) for treating heart failure [13], [14]. Both components of this combination drug affect 

pathways known to be mechano-sensitive: valsartan inhibits AT1R, and sacubitril increases cGMP by 

inhibiting neprilysin and thus reducing natriuretic peptide degradation. However, neither the combined 

effects of these two components on stretch-induced signaling, nor the effect of sacubitril alone, have been 

assessed to date. To examine valsartan/sacubitril’s influence on cardiac mechano-signaling, we simulated 

the response to varying levels of valsartan and sacubitril both separately and together. Sacubitril’s anti-

hypertrophic effects result from cGMP activating PKG1, which inhibits several different calcium 

channels and the downstream calcineurin/NFAT pathway (Fig. 2.9). The model predicts that 

valsartan/sacubitril will attenuate stretch-induced hypertrophy in myocytes at lower concentrations than 

either of its individual components (Fig. 2.10).  

Given the predicted benefits of valsartan/sacubitril, as well as the power of systems analysis of 

drug interactions to uncover network function [130], we were interested in exploring the potential for 

other drug pairs to reduce mechanically driven hypertrophy. To identify other mutualistic combinations, 

we ran a sensitivity analysis simulating all pairwise combinations of inhibiting or activating every node in 

the network, and compared their inhibitory power to that of targeting single nodes (results for BNP shown 

in Fig. 2.11). Many of these combinations have additional benefit over single perturbations, including 

several other combinations with angiotensin receptor blockers. These include inhibiting ET1R, Ras, or 

integrin signaling simultaneously with AT1R inhibition. The highest-scoring combinations also include 

several pairings with drugs increasing cGMP, such as those inhibiting NHE or NCX (sodium–calcium 

exchanger). Other upregulated members of the fetal gene program followed similar patterns to those for 

BNP, each sharing at least 72% of the top 50 combinations with highest additional benefit.  
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Figure 2.9. Network displays higher response to valsartan and sacubitril combined 

than individually. Response of network to valsartan (simulated by progressive inhibition 

of AT1R), sacubitril (simulated by progressive activation of cGMP through sGC), and the 

combination of valsartan and sacubitril, all in the context of steady-state stretch 

activation. 

 

 

Figure 2.10. Model predicts higher efficacy of combined valsartan and sacubitril 

treatment. Response of BNP to increasing doses of valsartan (simulated by progressive 

inhibition of AT1R) and sacubitril (simulated by progressive activation of cGMP though 

sGC) in the context of steady-state stretch activation. 
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2.5. Discussion 

2.5.1. Cardiac mechano-signaling model 

The high degree of redundancy and crosstalk [111] between stretch-sensitive pathways in the 

heart renders a systems approach invaluable for identifying mechanisms of signal integration. By 

developing and validating a comprehensive literature-based reconstruction of the cardiac mechano-

 

Figure 2.11. Model predicts efficacy of other combination mechano-therapies. All 

pairwise combinations of reducing or increasing Ymax that lowered BNP expression. The 

x-axis shows the change in BNP relative to steady-state stretch activation, and the y-axis 

shows the difference between this change and the larger of those caused by targeting 

either node independently. 
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signaling network, we demonstrated how network logic and crosstalk between signaling pathways enable 

cardiomyocytes to integrate distinct mechanical stimuli into a coherent response. Our model, which 

incorporates five primary mechano-sensors and 94 mechano-responsive nodes connected by 125 

reactions, identified calcium, actin, Ras, Raf1, PI3K, and JAK as key regulators of mechanical cues. 

Although each of these hubs operates through distinct sets of transcription factors, all are crucial for 

stretch-induced cellular remodeling and activation of the fetal gene program. We also revealed a PKG-

dependent mechanism contributing to the mutualistic action of the combination drug valsartan/sacubitril, 

and predicted further pairs of drug targets with maximum effects on mechano-signaling. 

2.5.2. Model validation 

Observations from literature not used in network construction confirmed 78% of model 

predictions, and the validation rate remained high across wide range of random variation in multiple 

model parameters. Of the 38 disagreements, the most common (18 instances) were due to the model 

correctly predicting a change in response to inhibition that was observed in the literature (e.g., a decrease 

in stretch-induced ANP expression caused by LTCC blockade), but at a magnitude below the 5% 

threshold. In these cases, more influence could be given to LTCC by modulating the relative weights of 

downstream reactions within the model to bring the response magnitude above the threshold. Other 

discrepancies involved inhibitory effects observed in the literature where no connection exists in the 

model (9 instances), such as lowered stretch-induced Ras phosphorylation in response to PI3K inhibition, 

or inhibitory effects predicted in the model that were not observed in the literature (7 instances), such as 

lowered stretch-induced ERK1/2 activity after Ras inhibition. These points of disagreement highlight 

specific areas where future model revision or further experiments are necessary. 

2.5.3. Key hubs integrating mechano-signals 

A longstanding question in cardiac mechanotransduction has been whether the diverse array of 

stretch-induced signaling pathways function independently or synergistically [131]. Our sensitivity 



Chapter 2: Predictive model identifies key network regulators of cardiomyocyte mechano-signaling 33 

analysis found that while the various pathways maintain mostly independent control over distinct groups 

of transcription factors, synergy between multiple pathways is necessary to activate all the transcription 

factors necessary for gene transcription and hypertrophy. Hierarchical clustering based on our sensitivity 

analysis identified calcium, actin, Ras, Raf1, PI3K, and JAK as the key network hubs integrating signals 

from the mechano-sensors. Rather than being concentrated in a single pathway, these most influential 

nodes are distributed across the network and integrate stretch signals from all five primary mechano-

sensors. These results help explain why modeling network connectivity and logic correctly is essential for 

successfully predicting myocyte sensitivity to modulation of a diverse array of stretch-activated pathways. 

2.5.4. Synergistic targets regulate stretch-induced hypertrophy and gene expression 

Inhibiting neprilysin counters wide-ranging effects of neurohormonal overactivation, such as 

vasoconstriction and sodium retention, and angiotensin receptor blockers (ARBs) can reduce blood 

pressure without the angioedemic effects of angiotensin-converting–enzyme (ACE) inhibitors [13]. Here, 

however, we were particularly interested in how these two interventions could modulate mechano-

signaling in cardiomyocytes. Multiple studies have shown that ARBs can attenuate stretch-induced 

signaling in cardiomyocytes [64], [132], [133], but a corresponding function for neprilysin inhibition has 

not been examined either by itself or together with ARBs. We identified a mechano-inhibitory role of the 

neprilysin inhibitor sacubitril in blocking stretch-sensitive calcium channels with PKG1 by increasing 

cGMP levels through increased natriuretic peptide receptor stimulation. Our model also predicts that the 

valsartan and sacubitril reduce hypertrophy more in combination than on their own. 

Analysis of all pairs of targets in the network revealed hundreds of potential combinations that 

inhibit mechano-signaling more significantly in tandem than individually. The high levels of additional 

inhibition predicted from targeting two nodes simultaneously underscore the importance of a systems 

pharmacology perspective for crafting new therapies, rather than merely attempting to target the single 

most important mechano-sensor [134]. Although few of these combinatorial perturbations have 



Chapter 2: Predictive model identifies key network regulators of cardiomyocyte mechano-signaling 34 

previously been tested in the context of cardiac mechano-signaling, the available evidence concurs with 

our results. For example, the model predicts that inhibiting AT1R and ET1R together should reduce BNP 

secretion more than inhibiting either individually, and this outcome has been confirmed both in stretched 

cardiomyocytes [122] and in rats induced with volume overload [133]. Many of the highest changes 

predicted involve other pairs targeting AT1R or cGMP, suggesting that other drug combinations 

involving valsartan or sacubitril would be worth pursuing experimentally.  

2.5.5. Limitations and future directions 

While the scope of the network reconstruction necessitated the use of default parameters, 

refinement of parameter weighting as more data becomes available can increase model accuracy. To 

further enrich the model, future curation could incorporate paracrine signaling from mechanically 

activated fibroblasts [112], juxtacrine signaling through cadherins [135], more complex autocrine 

feedback [58], and interaction with related signaling cascades, such as the beta-adrenergic network [105]. 

Integrating biophysical mechanisms such as force propagation, diffusion, and electrophysiology, which 

are not directly represented in the current model, could also prove fruitful [113], [115], [117], [136]. 

Our work also highlights critical gaps in the current understanding of cardiac mechano-signaling. 

Although the five primary mechano-sensors in the model have each been verified as immediately 

responsive to mechanical strain, it is unclear whether the activation of several other “stretch receptors” is 

direct or indirect. For example, there is broad agreement that NHE mediates stretch-dependent signals 

[121], but it remains controversial whether the role of NHE is dependent on both AT1R and ET1R [132], 

[137], on ET1R alone [138], or on neither [139], [140]. Likewise, activation of gp130 and autocrine 

release of Ang II and ET-1 have all been implicated as contributors to stretch-induced signaling [52], 

[57], [122], but the direct cause of each of these effects remains unknown. As others have noted [19], 

more work is needed to discern which “stretch receptors” are indeed directly responsive to mechanical 

strain, and which are activated indirectly. 
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2.5.6. Conclusions 

In this chapter, we developed a large-scale predictive model of cardiac mechano-signaling that 

identifies the nodes and network structures regulating the response to stretch in cardiomyocytes. 

Sensitivity analysis of our manually curated network showed that rather than a single stretch sensor 

governing the response to mechanotransduction, coordination is likely necessary between AT1R, 

cytoskeletal proteins, and stretch-sensitive ion channels to induce gene expression and hypertrophy. The 

model also predicts that calcium, actin, Ras, Raf1, PI3K, and JAK are each key hubs with distinct 

signatures of transcriptional regulation. In addition, we found that network logic is essential for allowing 

gene expression to be sensitive to a diverse array of mechano-sensors. Our approach integrates results 

from hundreds of past studies into a coherent model, revealing network interactions unapparent from 

studying any one pathway in isolation. 
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3.1. Foreword 

In the previous chapter, we determine key network drivers of cardiomyocyte remodeling in response 

to a single stimulus, mechanical stretch. We now expand the focus to multiple stimuli, investigating 

which signaling pathways control variant remodeling outcomes in cardiomyocytes. The divergent 

response of the heart to physiological versus pathological stresses has been well characterized. However, 

less is known about which signaling pathways govern distinct features of hypertrophy, such as area, 

elongation, and fetal gene expression. By combining high-content imaging, RPPA, and gene expression in 

a data-driven modeling framework, we identify and validate targets that differentially regulate 

hypertrophic phenotypes. 

3.2. Introduction 

Hypertrophic remodeling is associated with a wide range of clinical outcomes. Remodeling induced 

by physiological stresses such as athletic training occurs without cardiac dysfunction, but heart growth 

that occurs in a disease setting places patients at high risk of heart failure [141]. The distinct trajectories 

of cardiac remodeling associated with varying clinical outcomes are driven at the cellular level by 

different forms of myocyte growth [46]. For example, myocyte elongation, caused by assembly of 

contractile protein units in series, characterizes hearts undergoing eccentric hypertrophy with ventricular 

dilation. In contrast, increased cross-sectional area, caused by assembly of contractile units in parallel, 

characterizes hearts undergoing concentric hypertrophy with ventricular thickening [142], [143]. Since 

eccentric remodeling poses a particular risk to patients [16], identifying the molecular networks governing 

shape changes in myocytes is important to developing more effective therapies. 

Previous work has reconstructed the signaling cascades launched by a wide array of hypertrophic 

stimuli and located the most influential hubs governing the network [27]. In addition, these hypertrophic 

stimuli have been found to differentially regulate varying responses in myocytes in vitro [17]. 

Phenylephrine and endothelin-1, for instance, strongly induce increased area; neuregulin-1 (Nrg), on the 
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other hand, is associated with CITED4 expression and myocyte elongation. However, given the high 

degree of crosstalk and feedback in the system, it remains unclear which specific pathways in the 

hypertrophy signaling network govern these inputs and outputs. 

Here, we integrate biochemical and image data to identify signaling pathways differentially 

controlling distinct types of cardiomyocyte remodeling. We quantified the response of 172 proteins and 

phospho-proteins to four hypertrophic agonists, and developed a partial least squares regression model to 

correlate this activity with changes in gene expression and myocyte shape. The model revealed two 

primary axes of signaling activity, corresponding to growth and eccentricity. Members of the MAPK and 

PI3K cascades were strongly associated with Nrg stimulation, suggesting that Nrg-induced elongation is 

dependent on these pathways. In addition, pro-apoptotic proteins were highly anti-correlated with ET and 

Nrg stimulation. Follow-up experiments validated a role for MEK1 and PI3K in Nrg-induced myocyte 

elongation, and implicated Src involvement as well. 

3.3. Methods 

Note: All portions of sections 3.3.1 through 3.3.3 involving the phenotypic screen have been 

published as Karen A. Ryall, Vassilios J. Bezzerides, Anthony Rosenzweig, and Jeffrey J. Saucerman, 

“Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 

regulation of myocyte elongation,” J. Molec. Cell. Cardiol., vol. 72, p. 74–84, Jul. 2014. 

3.3.1. Cell culture 

Cardiac myocytes were isolated from 1–2-day-old Sprague Dawley rats using the Neomyts 

isolation kit (Cellutron, Baltimore, MD). Myocytes were cultured on dishes coated with SureCoat (a 

combination of collagen and laminin; Cellutron) and in plating medium (Dulbecco’s modified Eagle 

medium, 17% M199, 10% horse serum, 5% fetal bovine serum, 100 U/mL penicillin, and 50 mg/mL 

streptomycin). All procedures were performed in accordance with the Guide for the Care and Use of 
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Laboratory Animals published by the US National Institutes of Health and approved by the University of 

Virginia Institutional Animal Care and Use Committee. 

Cardiac myocytes were harvested from 1 to 2 day old Sprague Dawley rats using the Neomyts 

isolation kit (Cellutron, Baltimore, MD). Myocytes were cultured in plating media (Dulbecco's modified 

Eagle media, 17% M199, 10% horse serum, 5% fetal bovine serum, 100 U/mL penicillin, and 50 mg/mL: 

streptomycin) at a density of 100,000 cells per well of a 96-well plate coated with SureCoat (a 

combination of collagen and laminin, Cellutron). All procedures were performed in accordance with the 

Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health and 

approved by the University of Virginia Institutional Animal Care and Use Committee. Two days after 

isolation, myocytes were transfected with GFP under a cardiac myocyte specific troponin T promoter [17] 

using Lipofectamine 2000 (Invitrogen, Carlsbad, California; transfection efficiency: 10–15%). Two days 

after transfection, myocytes were imaged using automated image acquisition scripts, which collect a 5×5 

grid of images in each well of interest in the 96-well plate [18]. Images were collected using an Olympus 

IX81 inverted microscope with 10× UPlanSApo 0.40 NA objective, Orca-AG CCD camera (Hamamatsu, 

Bridgewater, NJ), automated stage (Prior Scientific, Rockland, MA), and IPLab (Scanalytics, Fairfax, 

VA) or MetaMorph (Molecular Devices, San Jose, CA) software. 

3.3.2. Quantifying changes in shape 

After initial images were collected, myocytes were rinsed and cultured in serum-free medium. 

For the phenotypic screen, each well contained a hypertrophic agonist: 1 μM angiotensin II (Ang), 

100 nM endothelin-1 (ET), 10 nM insulin growth factor-1 (IGF), or 10 ng/mL neuregulin-1 (Nrg). For the 

validation experiments, 100 ng/mL Nrg was used, and each well contained one of two concentrations 

(0.1 µM or 10 µM) of an inhibitor: PD0325901 (against MEK1); BIX-02189 (against MEK5); SB203580 

(against p38); GDC-0941 (against PI3K); or WH-4-023 (against Src). 
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After 48 hr post-treatment, myocytes were imaged again. 48-hr stimulation allowed for robust 

changes in cell size and shape to be measured while maintaining cell health in serum free conditions. 

Changes in myocyte area, perimeter, form factor, elongation, and integrated fluorescence intensity were 

calculated using automated custom MATLAB image analysis algorithms. The elongation of a cell body is 

similar to but distinct from its eccentricity; it is defined as the major axis divided by the major axis, where 

the major and minor axes are those of an ellipse with the same normalized second central moments as the 

cell body. A perfectly circular cell thus has the minimum possible elongation of 1. The form factor, in 

turn, is a measure of the compactness of a cell body given its size, and equals 4𝜋𝐴/𝑃2, where 𝐴 is the 

area and 𝑃 is the perimeter. For the phenotypic screen, shape measurements were recorded from two 

wells from three independent myocyte isolations, taking the median value for each change in a 

morphological metric across the cells within each isolation. For the validation experiments, shape 

measurements were recorded from four wells, taking the median value for each change in a 

morphological metric across the cells within each well. 

3.3.3. Quantifying changes in transcript abundance 

48 hr after stimulation with the hypertrophic agonists, total RNA was purified from myocytes using 

the RNeasyMini kit (Qiagen, Valencia, CA). Complementary DNA was synthesized from 85.5 ng of total 

RNA using the iScript cDNA synthesis kit (Bio-Rad). mRNA levels of twelve genes (Bcl-2, Bax, 

C/EBPβ, CITED4, VEGF, Serca2a, BNP, skeletal α-actin, IκB, TNFα, CTGF, and GAPDH) were 

measured using qPCR (BioRad CFX Connect) using iTaq Universal SYBR Green Supermix (Bio-Rad), 

2 ng of cDNA, and 400 nM of each primer set. GAPDH served as internal control. Gene-specific primers 

were designed on PrimerQuest (Integrated DNA Technologies, Inc.) A list of primers used is shown in 

Supplementary Table S2 of the original publication [17]. Data were analyzed using the comparative CT 

method with efficiency correction [144]. Measurements were collected from three independent myocyte 

isolations. 
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3.3.4. RPPA proteomics analysis 

For the reverse phase protein array (RPPA), neonatal rat ventricular myocytes were cultured in 24-

well plates (500,000 myocytes/well). Four days after isolation, myocytes were rinsed and cultured in 

serum-free media containing 10 ng/mL Nrg, 10 nM ET, 1 µM Ang, 10 nM IGF, or serum (10% horse 

serum and 5% fetal bovine serum). Myocyte protein was isolated at two time points (1 hr and 48 hr) 

following administration of the agonists, according to the protocol on the MD Anderson Cancer Center 

RPPA Core Facility website. Protein concentration was quantified using the Pierce 660 nM Protein Assay 

Kit (Thermo Scientific). Cell lysates were submitted to the MD Anderson Cancer Center RPPA Core 

Facility for analysis of 172 proteins and phospho-proteins. Data was collected from two independent 

myocyte isolations per condition, and all data points were normalized for protein loading. 

3.3.5. Partial least squares regression 

Partial least squares regression (PLSR) was performed in MATLAB, using the RPPA data (protein 

expression) as the predictor block and the phenotypic screen data (gene expression and morphology) as 

the response block. The predictor block contained 4 ligands versus 172 proteins, and the response block 

contained 4 ligands versus 15 phenotypes (11 mRNAs and 4 morphology metrics). For each block, data 

for each output were centered and scaled beforehand by taking the z-score across the ligands. To calculate 

the calibration root mean-squared errors (RMSE), the data from all four ligands were used to build a 

PLSR model, which was then evaluated using the same data. To calculate the validation RMSE, four 

different PLSR models were built, each using the data from only three of the ligands. Each model was 

then evaluated using data from the one ligand that had been held out, and the mean of the resulting errors 

was taken. 
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3.4. Results 

3.4.1. Ligands differentially induce diverse protein signaling pathways 

In the phenotypic screen previously published [17], we measured protein activity from four ligands—

Ang, ET, IGF, and Nrg—using a reverse phase protein array. The ligands tested induced a diverse array 

of responses among the 172 proteins and phospho-proteins measured (Fig. 3.1). Among the most intense 

responses were members of the PI3K signaling pathway. PI3K, a key hub in the cardiomyocyte 

hypertrophy signaling network [27], binds to PDK1 and enables it to phosphorylate Akt [145], [146]. Akt 

in turn phosphorylates GSK3β and mTOR [147], and mTOR catalyzes phosphorylation of S6 kinases 

such as p70S6K [148]. From this pathway, several proteins showed strong phosphorylation in response to 

Nrg-1, including Akt (at T308 and S473), GSK3 (at S9), GSK3α/β (at S9/S21), mTOR (at S2448), 

p70S6K (at T389), and S6 (at S235/S236 and S240/244). Some of these proteins also showed 

phosphorylation in response to Ang or ET, though to a lesser degree. In contrast, a slew of pro-apoptotic 

proteins, such as Bim, Beclin, and caspase 8 [149], were all downregulated by both ET and Nrg.  

As with the PI3K pathway, proteins within the MAPK pathway also showed strong activation in 

response to Nrg, including phosphorylation of C-Raf (at S338) and MAPK (at T202/Y204). Ang strongly 

increased expression of YAP and TAZ, the main effectors of the Hippo pathway [150], as well as ERCC1 

(an excision repair protein), phospho-PEA15 (a death effector domain-containing protein), Bax, and 

paxillin. Fewer proteins increased specifically in response to ET, but among these were c-Myc, FASN 

(fatty acid synthase), PR (progesterone receptor), and CDK1 (cyclin-dependent kinase 1). Likewise, not 

many proteins increased specifically in response to IGF. Notably, GAPDH, which is often used as a 

housekeeping protein for normalization [151], varied widely among the four conditions, being expressed 

most abundantly under Ang and least abundantly under Nrg. 

It should be noted that the correlation between the two biological replicates for the RPPA was fairly 

low, with a median Pearson’s correlation coefficient of r = 0.24 and a median p-value of 0.45 across the 
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Figure 3.1. Hypertrophic ligands induce diverse changes in protein expression and 

phosphorylation. Hierarchical clustering of the subset of RPPA data with a total log2 

fold change of at least 0.2 across conditions. Protein levels were measured after 48 hours 

of treatment. Values shown are averages of two biological replicates, normalized against 

a serum-free condition. 
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172 proteins. Only 21% of the proteins had an r-value of more than 0.50, and only 15% of them had a 

p-value of less than 0.05. However, when we restricted the RPPA proteins in the predictor block to those 

with high (>0.5) correlation values, the overall structure of the resulting projection did not change, 

confirming that the model was robust to involving the entire dataset. Moreover, the internal consistency 

of phosphorylation activity within individual signaling pathways and the consistency of the observations 

with prior knowledge suggested that the dynamics observed were biologically significant. In particular, 

we sought to educe the links in cardiac myocytes between protein phosphorylation and the resulting 

downstream phenotypes. 

3.4.2. PLSR clusters families of protein activity and links them to distinct morphologies 

In our previously published phenotypic screen [17], ET was shown to increase myocyte area strongly, 

and Nrg was identified as a potent regulator of myocyte elongation. To link these experiments on shape 

and transcript abundance to our proteomic data, we developed a partial least squares regression (PLSR) 

model encompassing both datasets. PLSR is a powerful tool for reducing dimensionality and visualizing 

correlations in order to gain insight into signaling network design [152]. Our model uses protein 

expression as the predictor block and uses gene expression and morphology as the response block, 

condensing the 172-axis RPPA space and mapping it onto the 15-axis space from the phenotypic screen 

(Fig. 3.2). The model visualizes the two datasets on a single pair of axis that together capture 93% of the 

variance across the four ligands (Fig. 3.3). 

As expected from examining the RPPA data alone, the four ligands each drive distinct clusters of 

protein signaling activity, as seen by superimposing the PLSR scores of the ligand inputs over the 

loadings of the RPPA and phenotypic outputs. Several of the patterns that had been noted earlier now 

appear more starkly. For example, many members of the PI3K pathway cluster together tightly and in 

close association with elongation, such as phospho-PI3K, phospho-Akt, phospho-PDK1, phospho-GSK3, 

phospho-mTOR, and phospho-p70S6K. A similar cluster emerges for participants in MEK signaling, such  
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as phospho-C-Raf, phospho-MEK1, phospho-MAPK, and phospho-p90RSK. The absolute abundance of 

some of these proteins, such as C-Raf and MEK1, displays a similar trend, and phospho-p38 appears  

 

Figure 3.2. Protein expression, gene expression, and morphological changes induced 

by four hypertrophic ligands. Overview of experimental design for PLSR model, in 

which the goal is to identify fundamental relationships between protein and phospho-

protein expression (predictor block) and gene expression and morphological changes 

(response block). Protein levels were measured by RPPA 48 hours after treatment, gene 

expression was measured by qPCR 48 hours after treatment, and morphology of 

individual cells was tracked by fluorescent microscopy from before treatment to 48 hours 

after treatment. Values shown are averages of two biological replicates for RPPA, and of 

three biological replicates for qPCR and fluorescent imaging (average of 347 cells 

tracked for each replicate). All values are normalized against serum-free controls. Data 

from phenotypic screen previously published in Ryall J. Molec. Cell. Cardiol. 72, 2014.  
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nearby. In contrast, pro-apoptotic proteins are projected to the opposite end of the PLSR space, in the 

direction of form factor and the Ang direction: In this region are located Bax, Bak, Bim, Bcl-xL, Beclin, 

Smac, Caspase 8, and (to a lesser extent) Bcl-2, cleaved PARP, and cleaved caspase 7. 

 

Figure 3.3. Individual signaling pathways correlate with distinct hypertrophic 

phenotypes. PLSR loadings are plotted for protein expression (predictor block; black) 

and for gene expression and morphology (response block; red). Members of MEK, PI3K, 

and apoptotic signaling pathways tend to cluster together as emphasized by highlighting, 

which was applied manually based on canonical groupings in the literature. Grey arrows 

show orientation and relative magnitude of PLSR scores for ligand inputs. Percentages 

indicate variance explained by each principal component. 
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While area and perimeter are projected to the far right of the space, form factor (a measure of cell 

roundedness), which would be expected to be higher in apoptotic cells, appears on the far left, close to the 

pro-apoptotic signaling cluster. Based on this observation, we interpreted the first principal component of 

the model as a “growth axis”. Similarly, since elongation appears toward the right side of the space but at 

the very bottom, we interpreted the second principal component as an orthogonal “eccentricity” axis. Nrg 

strongly drives the eccentricity axis, whereas ET, with some contribution from Nrg, is primarily 

responsible for the growth axis. 

While this model is useful for visualizing trends and inferring correlations between protein activity 

and downstream remodeling, it has no ability to predict one condition solely based on the other three, 

indicating that each governs relatively distinct regions of the signaling space (Fig. 3.4). This is not 

surprising, given that it was built using only four conditions (corresponding to the four ligands) from each 

block. In essence, this approach is conceptually similar to running principal components analysis (PCA) 

on each of the two data blocks separately and then superimposing the results, but has the added benefit of 

 

Figure 3.4. PLSR model provides descriptive but not predictive value. Increasing the 

number of principal components captures more variance and decreases root mean-

squared errors (RMSE) when resubstituting original data, but does not decrease RMSE of 

validation by holdout. 
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maximizing covariance between the two blocks to gain correlative insight between proteomics and 

phenotype. Indeed, when we reduced each block to two dimensions using PCA, the resulting structure of 

the outputs for each block was very similar to that observed within the PLSR (data not shown). 

3.4.3. MEK1, PI3K, and Src mediate Nrg-induced elongation 

Given the close association of the MEK1, PI3K, and p38 signaling pathways with Nrg and elongation 

in the PLSR model, we hypothesized that one or more of these could be responsible for mediating Nrg-

induced elongation. To evaluate this possibility, we tested inhibitors against MEK1, PI3K, and p38 in 

myocytes exposed to Nrg. We also included inhibitors against Src and against MEK5; Src has been 

identified as a modulator of Nrg-induced elongation in myocytes [35], whereas MEK5 has been 

implicated in myocyte elongation downstream of gp130 in response to CT-1 [33] and LIF [30], [31]. 

As observed in the phenotypic screen, myocytes displayed a robust lengthening response to Nrg, with 

median increase in elongation over the course of 48 hr exceeding 20% (Fig. 3.5). The average of the 

median elongation values in the Nrg-treated wells was 2.37 as opposed to 1.81 in the control wells. 

Examination of the original images, however, shows individual cells with elongation values above 4 or 5. 

As predicted, the MEK inhibitor completely abrogated Nrg-induced elongation. Importantly, when Nrg 

was not added, the MEK inhibitor had no effect on elongation. At higher doses, the PI3K and Src 

inhibitors likewise prevented Nrg-induced elongation. Although each of these inhibitors did reduce 

elongation when tested alone, these effects were much smaller than those observed when used with Nrg. 

In contrast, inhibiting MEK5 only partially decreased the elongation response to Nrg, and inhibiting p38 

actually enhanced this response.  
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Figure 3.5. MEK1, PI3K, and Src mediate Nrg-induced elongation. Individual cells 

expressing GFP were tracked from before treatment to 48 hr post-treatment with Nrg 

and/or specified dose of indicated inhibitor. Within each well, the median change in 

elongation was calculated across all tracked cells (approximately 50 cells tracked per 

well). Values shown are averages of at least four wells for each condition, with bars 

showing standard error. Representative images shown (high inhibitor dose). Scale bar = 

200 µm. 
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3.5. Discussion 

3.5.1. Observed protein activity concurs with prior studies 

The groups of proteins and phenotypes activated in response to the four ligands tested display internal 

consistency matching the canonical pathways associated with PI3K, MAPK, and pro-apoptotic signaling. 

Furthermore, the association of groups of proteins with specific stimuli accords with previous 

observations. Apoptotic proteins and PI3K-related proteins clustered toward opposite poles of the PLSR 

space, which made sense in light of the well-established cardioprotective role of the PI3K–Akt family 

[153], [154]. Likewise, CITED4, which promotes post-ischemic recovery and activates the mTOR 

pathway [155], projected close to phospho-mTOR and opposite the pro-apoptotic group. Both CITED4 

and mTOR were strongly induced by Nrg. 

Ang, which increased Bim and Bax in our myocytes, plays a key role in activating the apooptosis 

program of myocytes [156]. Clinical studies with losartan, an AT1R blocker, suggested that this pro-death 

behavior contributes toward cardiac apoptosis observed in the context of essential hypertension [157]. 

Interestingly, IGF was not observed to induce strong phosphorylation within the PI3K cascade, although 

IGF signaling through PI3K, PDK1, Akt, and GSK3β is one of the most important initiators of 

physiological growth signaling in the heart [158]. This lack of response could merely be part of the 

attenuated response overall of our myocytes to IGF across the entire RPPA assay. Finally, the wide 

variation in GAPDH levels across conditions confirms previous observations that many common 

“housekeeping” proteins have limitations in their use as normalization controls [151].  

3.5.2. Regulation of Nrg-induced elongation by MEK1, PI3K, and Src 

Follow-up experiments validated our inference from the PLSR model that MEK1, PI3K, and Src each 

play a role in mediating Nrg-induced elongation. Our results agree with previous work finding that Nrg-

induced elongation and formation of lamellipodia depends on Src and FAK activation downstream of 

erbB2 [35]. However, the elongation we observe is more unidimensional and creates an overall 
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lengthening of the cell, as opposed to the elongation of individual lamellipodia on all sides of the cell. 

Although the MEK1 inhibitor used alone exhibited no effect on cell elongation, both the PI3K and Src 

inhibitors caused mild decreases in elongation when tested alone. This behavior suggests the existence of 

some constitutively active process promoting elongation that acts both through PI3K and through Src. 

Although the study linking Nrg, FAK, and lamellipodia found FAK activation to be independent of the 

PI3K/Akt pathway, they do not report whether or not elongation was likewise independent. Previously, 

PI3K has been implicated in electrically-induced elongation [44], but this is the first time its influence 

over elongation in response to Nrg has been tested. 

Past studies have found an important role for MEK5 in governing elongation induced through the 

gp130 receptor in response to LIF, IL-11, and CT-1 [30]–[33]. Since we observed little to no dependence 

on MEK5 for elongation in the context of Nrg, this suggests that the gp130–MEK5 pathway operates by a 

separate process from that downstream of Nrg. This independence makes sense in light of the implication 

of gp130 in inflammation, adverse remodeling, and ventricular rupture [159], in contrast with the 

importance of Nrg for maintenance of heart function and its mediation of reverse remodeling [160]. 

Interestingly, although we found MEK1 to promote eccentric growth, studies in adult mice and 

engineered heart tissue found MEK1 overexpression to govern concentric growth, and simultaneously 

noted ERK1/2 deletions to promote myocyte eccentricity [46]. These observations, however, were not 

made in the context of Nrg stimulation, which governs many other pathways operating in coordination 

with the MAPK cascade. It is also possible that in overexpression experiments, MEK1 could prompt 

phenotypes conflicting with its typical role at-physiological levels of expression. More work is needed to 

delineate the difference between MEK1 activity in these two contexts. 

3.5.2. Limitations and future directions 

Despite the identification of several proteins governing elongation in cardiomyocytes, the precise 

molecular mechanisms by which many of them promote concentric versus eccentric growth remain 
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unidentified [46]. More work needs to be done to connect individual stimuli and pathways to the 

intracellular regulatory units that control sarcomeric assembly. Furthermore, the role of crosstalk and 

feedback between the various elongation pathways remains unclear. The gp130–MEK5–ERK5 axis 

appears to be independent of Nrg–erbB2–FAK signaling, but other proteins, such as PKCε, seem to be 

involved upstream of FAK as well [36]. 

Although some studies remove antibodies with a Pearson correlation coefficient of less than 0.5 

between biological replicates [161], [162], we found that the PLSR was robust to inclusion of the full 

antibody set. Even antibodies with moderately low correlation coefficients grouped together, suggesting 

that noise in the data was reduced by averaging replicates. Nevertheless, further experiments could help 

clarify the role of proteins that displayed unexpected behavior, such as Bid and phospho-Bad appearing 

across from the main pro-apoptotic group. In addition, a larger RPPA panel would help illuminate the role 

of proteins, such as MEK5, that were not among the 172 tested here. 

3.5.3. Conclusions 

In this chapter, we integrated proteomic activity with downstream phenotypes to construct a model 

that connects hypertrophic stimuli, signaling cascades, and ultimate myocyte shape. MAPK and PI3K 

signaling activity downstream of Nrg was highly correlated with elongation, an association that was 

confirmed in additional experiments demonstrating that Nrg-induced elongation depends on MEK1 and 

on PI3K, as well as on Src. These results suggest an important role for these signaling hubs in mediating 

eccentric versus concentric forms of ventricular remodeling. More work is needed to identify the precise 

mechanisms by which these pathways regulate myocyte elongation. 
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4.1. Foreword 

In chapters 2 and 3, we determined key regulators of stretch-induced hypertrophy, and identified 

signaling pathways differentially controlling distinct forms of remodeling. However, the scope of our 

discoveries was necessarily restricted to those genes and proteins included in our assays or examined in 

prior literature. We now broaden our focus to encompass the entire genome, identifying targets not 

previously implicated in myocyte growth and remodeling. Using automated image analysis on a shRNA 

screen comprising 97,500 conditions and millions of images, we discover hundreds of candidate genes 

that regulate area, elongation, and spikiness in cardiomyocytes. 

4.2. Introduction 

Although the heart displays a capacity to compensate by growing in response to stress, these changes 

are often insufficient to prevent subsequent cardiac events [163]. Patients suffering from heart failure 

need targeted therapies that promote beneficial remodeling and myocardial recovery. Current drugs aimed 

at suppressing or reversing hypertrophy block numerous signaling nodes within the cardiomyocyte, but 

pathway redundancy and side effects limit the effectiveness of existing therapies [164]. Moreover, our 

knowledge of the proteins and genes composing these pathways is far from complete. The discovery of 

novel regulators of myocyte size and shape could supply missing links in our efforts to map the signaling 

network in the heart, and would expand the range of potential therapeutic targets. 

Recent developments in robotic cell culture and automated microscopy systems make it possible to 

test tens or hundreds of thousands of conditions in parallel [165]. However, the wealth of data such 

technologies generate far outstrip the capacity of researchers to process it, let alone glean insights from it, 

using manual techniques alone. Consequently, computational methods for image analysis have become 

increasingly vital [166]. Past studies have developed automated approaches for objectively quantifying 

multiple myocyte morphologies from immunofluorescence images [17], [107]. However, these efforts 

were limited to fewer than a hundred conditions, a scale at which manual inspection (if not quantification) 
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of the data is still feasible. The benefits of massive screens are accompanied by inevitable sources of 

variability due to the lack of direct human oversight and the need to break larger experiments into several 

separate batches. Furthermore, genome-scale experiments often test only a single replicate of each 

condition, making them more prone to false positives and thus necessitating secondary assays. Novel 

processing methods are necessary for translating terabyte-level raw data into meaningful conclusions with 

a high potential for replication. 

Here, we developed a complete workflow for detecting conditions modulating cell size and shape in a 

genome-wide shRNA screen comprising 97,500 shRNAs targeting 15,000 different genes. Our image 

analysis pipeline identifies cell nuclei, separates myocytes from fibroblasts, distinguishes binucleated 

cells, determines cytoskeletal boundaries, and locates proliferating cells. In addition, we developed a 

robust filtering and normalization procedure to mitigate several types of artifacts. Implementing our 

workflow across 7 million images, we detected over 900 genes specifically regulating myocyte area, 

elongation, or spikiness. These included known drivers of cardiomyopathies, such as Mybpc3 and Dsp, as 

well as scores of novel genes. By accomplishing in hours what would take years of manual work, our 

image analysis techniques accelerate the identification of prime targets for influencing cardiomyocyte 

morphology. 

4.3. Methods 

4.3.1. Cell culture 

Timed mating was used in CD1 mice, and embryos were harvested with Worthington enzymes for 

cardiomyocyte isolation at E17.5. Enzymes were blocked with 15% FCS and cell culture was transitioned 

to 2% FCS afterwards. Isolated cells were pre-plated for one hour to enrich for cardiomyocytes. Cells 

were plated at a target density of 400 cells per well in 2% FCS on gelatin coated 384-well plates. 

Cardiomyocytes were treated with a lentivirus encoding either a mouse shRNA or a human cDNA 

targeting an individual gene in each well. shRNA knockdown was performed on over 15,000 genes and 
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cDNA over-expression was performed on over 11,000 genes. Within each plate, Myc adenovirus, sh002 

lentivirus (scrambled shRNA), GATA adenovirus, and 10% FCS were included in fixed positons (O13–

24 and P13–24) as control wells. All viruses were added immediately when cells were plated, and plates 

were allowed to settle at room temperature for one hour. Plates were then cultured using standard 

incubation conditions. Media was changed at 24 hours, and EdU (10µM) was added at 48 hours. At 72 

hours, the cells were fixed in 4% PFA. 

4.3.2. Microscopy 

Images were taken with a Molecular Devices ImageXpress microscope using a 20x objective, with 

eighteen sites being imaged in each well. Channels included brightfield, DAPI, EdU (stained with Alexa 

488), and troponin T (stained with Alexa 647). Image sizes were 1392×1040, corresponding to 

dimensions of 0.449×0.335 mm (0.323 µm/pixel). Pixels were not binned. 

4.3.3. Image processing 

Image processing was performed using CellProfiler 2.1 [167], [168] and was implemented on 

Rivanna, the High-Performance Computing (HPC) system at the University of Virginia. The complete 

CellProfiler processing files are available upon request. Processing involved the following steps: 

1. Image quality metrics were measured. 

2. Background subtraction was performed based on the median percentile (for DAPI and EDU) or 

lower-quartile percentile (for troponin T) of each image. 

3. To remove autofluorescing dead cells from the troponin T channel, pixels above the intensity of 

0.8, together with a 15-pixel border surrounding them, were set to zero. 

4. A complete nuclear image was obtained by adding DAPI and EdU channels (in the ratio 1.5:1), 

since some of the EdU-expressing cells were very faint in the DAPI channel. 
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5. Nuclei were identified using two-class adaptive Otsu thresholding with weighted variance 

minimization, shape-based division and an expected diameter of 20–80 pixels. An aggressive 

threshold correction factor of 5 was used in order to properly segment clumped nuclei. (Versions 

3.0 and later of CellProfiler have a corrected Otsu algorithm that does not require the high 

correction factor.) 

6. Nuclei were binned into myocytes or non-myocytes based on the lower-quartile intensity of the 

troponin T channel behind them, using a threshold of 0.002. 

7. Adjoining myocyte nuclei were merged in order to unify binucleated cells. 

8. Both myocytes and non-myocytes were binned into EdU+ or EdU- based on the upper-quartile 

intensity of the EdU channel behind them, using a threshold of 0.03. 

9. Myocyte cell bodies were identified by propagating from the myocyte nuclei with the watershed 

propagation method using two-class global Otsu thresholding with weighted variance 

minimization. 

10. Object intensity and morphological features, such as area, elongation, and form factor, were 

measured and exported. The elongation of a cell body is similar to but distinct from its 

eccentricity; it is defined as the major axis divided by the major axis, where the major and minor 

axes are those of an ellipse with the same normalized second central moments as the cell body. A 

perfectly circular cell thus has the minimum possible elongation of 1. The form factor, in turn, is 

a measure of the compactness of a cell body given its size, and equals 4𝜋𝐴/𝑃2, where 𝐴 is the 

area and 𝑃 is the perimeter. Since form factor is a relatively unintuitive descriptor, after 

normalization we will deal with its inverse, which we refer to as the spikiness, 𝑆: 

𝑆 =
𝑃2

4𝜋𝐴
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Cells with greater numbers of protrusions or with ruffled edged have a higher spikiness, whereas 

a perfectly circular cell has the minimum possible elongation of 1. Multiple replicates of a distinct 

shRNA for a given gene were averaged after filtering and normalization (see below) but before 

selecting hits. 

4.3.4. Filtering and normalization 

Wells generally displayed poor cell health or severe imaging artifacts if they had a total myocyte 

quantity of less than 100, or a correlation value of less than 0.1 in the troponin T channel. These wells 

were removed from consideration for all downstream steps. 

Normalization occurred in two steps. First, we multiplied areas within each plate by a constant such 

that the median of all the wells within a plate was equivalent to the screen-wide median area (plate-level 

normalization). When calculating these medians, the 24 control wells on each plate were ignored. Next, 

for each batch of plates, we divided the areas of each well by the median area of all other wells within that 

batch occupying the same position on the plate (batch-level normalization). This procedure was 

completed in like fashion for each of the other metrics of interest, elongation and form factor. 

4.3.5. Binomial model of off-target effects 

The following model was developed from a version published by Sigoillot and King [169]. Consider 

a screen that comprises 𝑁 genes, in which each gene is represented by 𝐴 independent shRNAs. We 

assume that a given shRNA has on average 𝑀 off-target mRNAs, and that these off-targets are random. 

Futhermore, we assume that the efficiency of the shRNA expression is 𝐸, such that in a fraction of the 

conditions equal to 1 − 𝐸 no knockdown occurs. Last, let us assume that 𝐾 is the number of genes in our 

pathway of interest—that is, the number of genes which when knocked down produce a phenotype 

interpreted as a positive result. 
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The probability that a given shRNA has a match that results in off-targeting for a specific mRNA out 

of 𝑁 genes can then be defined as 𝑚 = 𝐸 ×𝑀 ÷𝑁. Now for each shRNA, let 𝑌 denote the number of 

genes out of the 𝐾 genes in our pathway that have a match to that shRNA. If each of these K genes is 

independent of each other, then 𝑃(𝑌) will follow the binomial distribution 𝐵(𝐾,𝑚). Thus, the probability 

that a given shRNA does not match any of these 𝐾 genes is given by 

𝑃(𝑌 = 0) = 𝐶𝐾,0𝑚
0(1 − 𝑚)𝐾−0 

and thus the probability that a given shRNA matches at least one of these K genes is 𝑝 = 1 − 𝑃(𝑌 = 0). 

We may then conclude that the probability that exactly 𝑎 = {1: 𝐴} shRNAs out of 𝐴 independent 

shRNAs tested for a given gene in the overall screen will produce the phenotype due to off-target effects 

follows the binomial distribution 

𝑃(𝑎𝑓) = 𝐶𝐴,𝑎𝑝
𝑎(1 − 𝑝)𝐴−𝑎 

This implies that 𝐹𝑎, the estimated number of genes with exactly 𝑎 out of 𝐴 shRNAs giving the phenotype 

as a false positive (due to off-target effects), is 𝐹𝑎 = 𝑎𝑓 × 𝑁. Likewise, the probability that exactly 𝑎 =

{1: 𝐴} shRNAs for a given gene in the pathway will produce the phenotype due to knockdown of the 

correct mRNA follows the binomial distribution 

𝑃(𝑎𝑡) = 𝐶𝐴,𝑎𝐸
𝑎(1 − 𝐸)𝐴−𝑎 

This implies that 𝑇𝑎, the estimated number of genes with exactly 𝑎 out of 𝐴 shRNAs giving the phenotype 

as a true positive, is 𝑇𝑎 = 𝑎𝑡 × 𝐾. The likelihood that a gene is a true positive, if exactly 𝑎 out of its 𝐴 

shRNAs give the phenotype, must then be 

𝑇𝑎
𝑇𝑎 + 𝐹𝑎

 

To generate our predictions for parameter fitting, we set 𝑁 = 15000 total genes, 𝐴 = 5 independent 

shRNAs per gene, and 𝐸 = 0.4 efficiency. Our estimate for 𝐸 was based on examining EdU+ rates for 
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replicates of shRNAs targeting known inducers of proliferation: 41% (7 out of 17) of replicates across 10 

distinct shRNAs targeting Cdkn1a and 40% (2 out of 5) of replicates across 5 distinct shRNAs targeting 

Rbl1 had ≥ 5% EdU+ myocytes. We then investigated values between 1 and 100 for 𝑀, the number of off-

target mRNAs per shRNA, and for 𝐾, the total number of genes whose knockdown produces the 

phenotype of interest (in this case, high area). Predicted numbers of genes with 𝑎 = {1: 3} positive 

shRNAs were compared with 𝑅𝑎, the actual number of observed hits, and mean relative error was 

calculated as  

𝜀 =
1

3
∑

𝑇𝑎 + 𝐹𝑎 − 𝑅𝑎
𝑅𝑎

3

𝑎=1

 

For the final predictions, we used values of 𝑀 = 50 off-target mRNAs per shRNA and 𝐾 = 32 genes in 

the pathway. 

4.3.6. Gene set enrichment 

For each metric of interest, the set of genes with two or more distinct shRNAs above threshold for 

was compared against five databases in Enrichr: KEGG 2017, WikiPathways 2017, GO Biological 

Process 2017, Human Phenotype Ontology, and OMIM Disease. For each database, the top 10 results 

were collected, and entries related to heart, muscle, or cytoskeleton were saved. Full results from Enrichr 

are available at the following locations: 

Area: http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=3re0g 

Elongation: http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=3re0k 

Form factor: http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=3re0m 

http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=3re0g
http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=3re0k
http://amp.pharm.mssm.edu/Enrichr/enrich?dataset=3re0m
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4.4. Results 

4.4.1. Image processing algorithms identify distinct myocyte morphologies 

We previously developed automated methods for morphological analysis of neonatal rat 

cardiomyocytes [107]. Here, we extended these techniques (Fig. 4.1) and applied them to a genome-wide 

shRNA screen that tested 97,500 shRNAs targeting 21,000 different genes in mouse embryonic 

cardiomyocytes. First, we performed background subtraction based on the median percentile (for DAPI 

and EDU) or first-quartile percentile (for troponin T) of each image. We eliminated autofluorescing dead 

cells from the troponin T channel by setting pixels at an extremely high intensity to zero, together with a 

15-pixel border surrounding them. A complete nuclear image was obtained by adding DAPI and EdU 

channels, since some of the EdU-expressing cells were very faint in the DAPI channel. Nuclei were 

identified with two-class adaptive Otsu thresholding, using an aggressive threshold correction factor in 

order to properly segment clumped nuclei (Fig. 4.2A). Nuclei were binned into myocytes or non-

myocytes based on the lower-quartile intensity of the troponin T channel behind them (Fig. 4.2B), and 

adjoining myocyte nuclei were merged in order to unify binucleated cells (Fig. 4.2C). Both myocytes and 

non-myocytes were then binned into EdU+ or EdU- based on the upper-quartile intensity of the EdU 

channel behind them. Finally, myocyte cell bodies were identified by propagating from the myocyte 

nuclei with the watershed propagation method using two-class global Otsu thresholding (Fig. 4.2D). 

4.4.2. Myocyte quantity and image correlation provide quality control metrics 

Due to the massive scope of the screen, it was essential to develop automated methods for filtering 

out conditions with subpar cell health or poor image quality. We hypothesized that myocyte quantity 

would serve as a simple proxy for overall cell health; moreover, morphological measurements from wells 

with fewer myocytes would be less reliable in the first place due to small sample size. Indeed, sorting 

conditions by the total number of myocytes present revealed much higher variance and a steep overall 

dropoff in cell area at myocyte counts below 100 (Fig. 4.3A, left). 
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We also needed an objective criterion for discarding wells with failed staining in the troponin T 

channel or with shutter problems causing other channels (especially brightfield) to appear overlaid with 

the troponin T channel. One common feature uniting these problematic images was their grainy texture, 

whether due to scattered antibody particles or to erroneously overlapping channels. To filter out these 

images, we used the “correlation” feature developed by Haralick from the co-occurrence metric [170], 

which measures local self-similarity. As with myocyte quantity, sorting conditions by image correlation 

in the troponin T channel showed a sharp decline in calculated cell area at correlation values below 0.1 

(Fig. 4.3A, right). 

 

Figure 4.1. Schematic of image processing algorithm for myocyte identification. 
First, background subtraction is performed based on a median or first-quartile percentile 

for each image. Autofluorescing dead cells are eliminated from the troponin T channel by 

setting blocking out regions with extremely high intensities. The DAPI and EdU channels 

are then combined, since some cells are only visible in one or the other, and nuclei are 

identified by Otsu thresholding. Nuclei are binned into myocytes or non-myocytes based 

on the troponin T channel behind them, and adjoining myocyte nuclei are merged in 

order to unify binucleated cells. Finally, myocyte cell bodies are identified by 

propagating from the myocyte nuclei with the watershed method using Otsu thresholding. 
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Importantly, while subsequent normalization steps (see section 4.4.3) stabilized cell areas across most 

values, areas remained dramatically lower within wells with low cell quantity or low troponin T 

correlation (Fig. 4.2B). To confirm our subjective impression that these were appropriate quality control 

thresholds, we returned to the original pre-normalized areas and performed a two-sample t-test for each 

bin, evaluating the null hypothesis that the areas in each bin and the areas from the entire screen come 

from distributions with equal means (Fig. 4.3C). As expected, p-values remained relatively large across 

most values, but declined precipitously below the quality control thresholds. Given these results, we 

eliminated all wells with fewer than 100 myocytes or with a troponin T correlation below 0.1, and 

proceeded to data normalization.  

4.4.3. Two-step normalization corrects plate-level variation and eliminates regional artifacts 

Because cell culture and imaging for the screen was carried out in several batches over multiple 

weeks, small variations in cell size occurred from one batch to the next. Ideally, wells with the control  

 

Figure 4.2. Automated image analysis identifies myocytes and quantifies cell 

boundaries. (A) Identification of nuclei in DAPI channel. (B) Sorting of nuclei into 

myocytes (MC) and fibroblasts (FB) based on intensity of troponin T behind them. (C) 

Merging of adjoining myocyte nuclei in order to unify binucleated cells. (D) 

Identification of myocyte cell bodies by propagating from the myocyte nuclei in the 

troponin T channel. From Plate 30, well F11, site 9. 
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Figure 4.3. Filtering by myocyte quantity and image noise removes conditions with 

abnormal cell health or imaging errors. (A) Measured myocyte cell areas (pre-

normalized values) decline with low cell counts or low image correlation (a measure of 

regional self-similarity) in the troponin T channel. Bin width = 2 for myocyte quantity 

and 0.005 for image correlation. For each bin, box plots show 25th, 50th, and 75th 

percentile values for wells within the bin, along with whiskers extending up to 1.5 times 

beyond the width of the interquartile range, and outliers. Dashed lines indicate threshold 

below which wells are eliminated. (B) Same as (A), but with normalized values. 

Normalization is insufficient to stabilize wells below thresholds. (C) Significance of two-

sample t-tests for each bin (pre-normalized values) evaluating the null hypothesis that the 

areas in each bin and the areas from the entire screen come from distributions with equal 

means. 
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conditions could be used for normalization. However, these control wells were always located along the 

edge of each plate, and thus were highly susceptible to edge artifacts. In addition, within each batch, 

plates often displayed regional variation in area from one side of the plate to the other, presumably due to 

minor differences in temperature or air composition within the incubators. In other batches, plates 

displayed a “checkerboarding” effect with variations in area in every other well, caused by blockages or 

inadequate mixing in the robotic liquid handling and imaging system, coupled with its pattern of 

traversing the plate. 

To correct for these artifacts, we developed a robust two-stage normalization scheme (Fig. 4.4). First, 

we multiplied areas within each plate by a constant such that the median of all the wells within a plate 

was equivalent to the screen-wide median area (plate-level normalization). This step ensured that plates 

with higher overall cell health were not given an unfair advantage. Next, for each batch of plates, we 

normalized the areas of each well against the median area of all other wells within that batch occupying 

the same position on the plate (batch-level normalization). This step mitigated edge effects, gradients 

across plates, and checkerboarding within each batch. The entire normalization process was repeated for 

each of the other metrics under consideration, elongation and form factor. 

Visualizing values for each morphological metric across all plates in the screen before and after 

normalization confirmed relative uniformity not only in medians, but also in lower and upper quartiles 

(Figs. 4.5–4.7). Significantly, hits identified in subsequent steps (see section 4.4.4) were evenly dispersed 

across the screen, rather than biased toward a small number of plates and batches as they would have been 

before normalization. Having normalized the data, we established a threshold at the 95th percentile for 

area and elongation, and at the 5th percentile for form factor (that is, the 95th percentile for spikiness). Of 

the three metrics, elongation displayed the lowest range: the ratios of the 95th percentile to the median for 

area (1,579 µm2 to 1,253 µm2 = 1.26) and for spikiness (7.86 to 6.13 = 1.28) were much higher than that 

for elongation (2.12 to 1.99 = 1.07). When more than one replicate of a distinct shRNA for a given gene  
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Figure 4.4. Two-step normalization corrects for plate-level variation and eliminates 

regional artifacts. In step 1, each plate is multiplied by a constant so that the median of 

all the wells on that plate is identical to the overall screen median. In step 2, for each 

batch of plates, each well is normalized against the median of all other wells within the 

batch occupying the same position on the plate in order to correct for regional variation. 

Simulated data used to facilitate comparison. 

 

Figure 4.5. Two-step normalization stabilizes area values across screen. The 289 

shRNA plates from the screen are ordered by plate ID. For each 384-well plate, box plots 

show 25th, 50th, and 75th percentile values of median cell area for wells within the plate, 

along with whiskers extending up to 1.5 times beyond the width of the interquartile 

range, and outliers. Dashed line indicates the 95th percentile for the overall screen, the 

threshold for identifying shRNAs as hits. Red markers indicate wells from genes with 

two or more shRNAs above threshold (1,579 µm2 after normalization). Plate medians in 

lower plot vary slightly from each other due to presence of control wells, which were 

ignored during normalization. 

 

Figure 4.6. Two-step normalization stabilizes elongation values across screen. Mean 

elongation within wells is displayed. Dashed line indicates the 95th percentile threshold 

(2.12 after normalization).  

 

Figure 4.7. Two-step normalization stabilizes form factor values across screen. Mean 

form factor within wells is displayed. Dashed line indicates the 5th percentile threshold 

(0.127 after normalization, equivalent to a spikiness of 7.86).  
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occurred, we averaged the morphological values for those replicates before determining which shRNAs 

were above threshold.  

4.4.4. Multiple shRNAs above threshold per gene are necessary to identify hits 

A major concern when using RNA interference is the possibility of off-target effects [171]. It is 

highly common for the majority of the top hits in a screen to act not by knocking down their intended 

targets, but rather by nonspecific targeting of other mRNAs, including those already known to be 

regulating the phenotype of interest [172], [173]. Indeed, when this screen was evaluated for its original 

purpose—identifying regulators of proliferations—the shRNA causing the highest rates of EdU+ 

myocytes was found to be achieving this through nonspecific targeting (unpublished data, Molkentin lab). 

Moreover, since a certain level of heterogeneity in myocyte morphology between conditions will occur 
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even without any perturbations, it is possible that the top hits from a screen could represent nothing more 

than natural variability without any biological significance. 

These concerns prompted us to assess whether the lists of top shRNAs for each morphology displayed 

any differences from those expected from an equivalent but randomly structured data set. If a specific 

gene negatively regulates hypertrophy, for example, we would expect each of the shRNAs targeting that 

gene to produce myocytes with higher area. In contrast, in the case of a single gene having nothing to do 

with hypertrophy, it would be highly unlikely for multiple distinct shRNAs from this gene to all have off-

target effects producing higher area. In other words, if our screen has identified true regulators of 

hypertrophy, we expect a higher number of genes to have multiple shRNAs above threshold than if the 

results observed were solely due to natural variation or to off-target effects. As hoped, upon randomly 

shuffling the identifying shRNA labels among all the wells in the screen, we find significantly fewer 

genes with 2 or more shRNAs above threshold for area than were actually observed in the screen 

(Fig. 4.8A). This enrichment of replicating shRNAs is even more pronounced when evaluating the results 

for elongation or for spikiness (data not shown). These comparisons lend confidence that for many of the 

genes with multiple clones above threshold, the exaggerated morphologies observed are actually due to 

on-target effects. 

To obtain an alternative estimate of the true positive rates in our screen, we adapted a previously 

published binomial model by Sigoillot and King that calculates the frequency of on-target and off-target 

genes that would be discovered in a screen [169]. Our model included the following parameters: 𝑁, the 

total number of genes in the screen; 𝐴, the number of distinct shRNAs per gene; 𝑀, the number of off-

target mRNAs per shRNA, and 𝐾, the actual number of genes in the pathway of interest. We also added a 

new variable 𝐸, the likelihood that the desired shRNA is actually produced in the first place, to account 

for less-than-perfect efficiency in shRNA expression. Among these variables, 𝑀 (the off-target rate) and 

𝐾 (the pathway size) are the hardest to directly measure. Sigoillot and King test several values for 𝐾, and 

estimate 𝑀 = 50 based on several prior studies that observed values between 30 and 100 [174]–[178]. In 
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our model, we set constant values for 𝑁, 𝐴, and 𝐸, and tested a broad range of values for 𝐾 and 𝑀 against 

our observed results (Fig. 4.9). Although parameter fitting narrowed the possible range of values for 𝐾 

and 𝑀, there was not a unique optimum for 𝐾 and 𝑀, as a high number of pairs produced a good fit. 

Ultimately, we used Sigoillot and King’s estimate of 𝑀 = 50 off-target mRNAs per shRNA, and selected 

the corresponding value of 𝐾 = 32 genes in the pathway that best minimized the error. 

The model’s prediction of the occurrence of true versus false positives in our screen confirmed that 

multiple distinct shRNAs above threshold are necessary to obtain confidence in a reported hit (Fig. 4.8B). 

When a gene has at least two shRNAs above threshold, the model predicts a 5% likelihood of its being a 

true positive; this probability rises to close to 50% when there are at least three shRNAs, and becomes 

 

Figure 4.8. Significantly high numbers of genes have multiple shRNAs above 

threshold. (A) Screen contains more genes with multiple shRNAs above area threshold 

than would be expected in a screen with equivalent data but with shRNA IDs randomly 

shuffled among the wells. Bars for randomized data show mean and standard deviation of 

10 iterations of random shuffling; ***, t-test gives p<0.0001. (B) Predictions by the 

binomial model of what percentage of genes in each category are true positives, as 

opposed to the result of off-target effects. 

 

A 

B 
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virtually certain with four or five clones. In contrast, when only one shRNA scores above threshold, the 

model predicts the likelihood of a true positive being less than one-third of one percent. Testing a broader 

range of 𝐾 and 𝑀 values did not change this overall pattern (data not shown). Thus, for each 

morphological characteristic under consideration, we narrowed all subsequent analysis to consider only 

those genes with at least 2 out of 5 shRNAs above the 95th percentile threshold. 

4.4.5. Manual verification confirms identification of distinct hypertrophic morphologies 

After narrowing the lists of candidate genes to those with multiple shRNAs above threshold, the 

resulting gene sets represented a manageable 10–15% of the full list of hits: 294 out of 2,547 genes for 

high area, 360 out of 3,035 genes for high elongation, and 345 out of 2,391 genes for high spikiness. 

Several genes scored positively for more than one metric (Fig. 4.10): 10 for area and elongation, 11 for 

 

Figure 4.9. Parameter fitting for off-target rate and pathway size in binomial model. 
Model predictions of how many genes with 0 to 5 shRNAs above area threshold were 

compared with actual results from screen. Band with low error continues indefinitely off 

the right side of the plot. Red box indicates values used in final model (off-target rate 

= 50; pathway size = 32 genes). 
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elongation and spikiness, and 24 for area and spikiness. In addition, two genes, Acta1 and Polr3b, scored 

positive for all three metrics. Though not extremely large, this overlap is more than would be expected 

from a random distribution of hits, which would be expected to produce 5–7 overlapping genes between 

each pair of categories. The complete gene sets for area, elongation, and spikiness are reported in 

Appendices E, F, and G, respectively. 

Manual inspection of images from shRNA treatments confirmed the expected morphological 

phenotypes (Fig. 4.11). For all three categories, individual cells often displayed morphologies many times 

more extreme than the 95th percentile threshold or even than the mean or median for their well. For 

example, none of the Ttn clones produced wells with median cell areas greater than 2,000 µm2, but  

 

 

Figure 4.10. Overlap between top genes for area, elongation, and spikiness. Number 

of genes with two or more distinct shRNAs above threshold for one or more 

morphological metrics are listed. 
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several individual cells were over 5,000 µm2 in size, more than three times above the screen-wide 

threshold. Likewise, although the mean cell elongation for a well rarely exceeded 2.2 even among the 

hits, individual cells displayed dramatic major to minor axis ratios exceeding 12. Perimeter to area ratios 

were just as extreme, with cells possessing spikiness values in excess of 30, four times greater than the 

screen-wide threshold. 

Within the genes identified as hits for each morphology, the actual phenotypes were by no means 

uniform. For example, although the Ttn and Mybpc3 knockdowns produced comparably high cell area, 

the Ttn shRNA-treated myocytes display unusually prominent focal adhesions that are absent from 

Mybpc3, where the cells have much less pronounced ends. Among the Ttn myocytes are also an unusually 

high number of binucleated cells, which is not the case with Mybpc3. Similar variation appears among 

highly elongated cells: Some appear to be long due to concentrated growth at the poles, while others seem 

merely emaciated. When considering genes inducing high spikiness, it is evident that completely different 

processes are at work even in cells with very similar morphological scores. In the case of Nckap1, for 

instance, the increased perimeter is clearly due to intense lamellipodium formation on all sides of the cell. 

Sarcomeres are highly organized and are oriented perpendicularly within each individual projection. With 

the Tnnt2 cells, on the other hand, the spikiness seems to be caused not by growth, but rather due to a 

general collapse of the cytoskeleton. Rows of sarcomeres appear jumbled, often crossing each other at 

right angles. 

Figure 4.11. Hits identified display expected morphologies. Representative images are 

shown for conditions with high area (Ttn and Mybpc3), high elongation (Eps8 and Dsp), 

high spikiness (Tnnt2 and Nckap1), or all three (Acta1 and Polr3b). Morphological 

values are listed for individual cells, with the morphologies of interest underlined; 

customized versions of the analysis pipeline were used to ensure high accuracy. Cells are 

stained for DAPI (blue) and troponin T (red). Scale bar = 25µm. Original image 

locations: Ttn—Plate 93, well A15, site 4. Mybpc3—Plate 145, well C22, site 17. Eps8—

Plate 233, well F10, site 4. Dsp—Plate 249, well N21, site 7. Tnnt2—Plate 165, well 

E13, site 4. Nckap1—Plate 153, well E03, site 7. Acta1—Plate 229, well A23, site 18. 

Polr3b—Plate 150, well F04, site 5. 
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4.4.6. Enrichment analysis identifies overrepresented signaling pathways 

Gene set enrichment analysis is a powerful tool for extracting biological insight from lists of genes 

[179]. Having manually confirmed the presence of high area, elongation, and spikiness in response to 

knockdown of individual genes, we pursued a systems-level perspective on our finding using Enrichr, a 

comprehensive search engine encompassing signaling pathways, gene ontologies, and diseases, among 

other gene set libraries [180], [181]. The top ten enriched terms from five databases were investigated: 

KEGG, WikiPathways, GO Biological Process, Human Phenotype Ontology, and OMIM Disease. Gene 

sets for all three morphologies were highly enriched for multiple terms associated with cardiac 

development, structure, and disease (Tables 4.1–4.3). 

Table 4.1. Cardiac function and disease are highly enriched in conditions with high 

area. The set of genes with two or more distinct shRNAs above threshold for area was 

compared against five databases in Enrichr. Terms from the top 10 results from each 

database related to heart, muscle, or cytoskeleton are listed along with significance and 

the overlapping genes. 

 

Table 4.2. Cardiac function and disease are highly enriched in conditions with high 

elongation. Enriched terms from the set of genes with two or more distinct shRNAs 

above threshold for elongation. 

 

Table 4.3. Cardiac function and disease are highly enriched in conditions with high 

spikiness. Enriched terms from the set of genes with two or more distinct shRNAs above 

threshold for spikiness. 
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Some terms, such as “myopathy”, “cardiomyopathy”, and “dilated cardiomyopathy” appeared for all 

three morphologies and across multiple databases, though in each case thanks to different genes. Other 

terms were only associated at high significance with a single phenotype, such as “centrally nucleated 

skeletal muscle fibers” (area), “regulation of ventricular cardiac muscle cell action potential” (elongation), 

or “adrenergic signaling in cardiomyocytes” (spikiness). Of the three morphologies, elongation received 

fewer cardiac-related matching terms, which generally appeared with a lower significance. This may be 

due to the lower overall variation in elongation as a metric, as was previously noted. 

4.5. Discussion 

4.5.1. A genome-wide index of myocyte morphologies 

Our analysis pipeline successfully characterizes genetic influence on myocyte shape across the entire 

genome. The prevalence of terms related to heart failure in the gene set enrichment analysis, such as 

congestive heart failure, hypertrophic cardiomyopathy, and dilated cardiomyopathy, confirms that the 

heightened phenotypes observed bear clinical relevance. Importantly, enrichment of gene lists from 

slightly varying analysis workflows indicated that many other relevant genes are just below the 95th 

percentile threshold chosen. For example, if the median elongation per well is examined instead of the 

mean elongation, or if elongation is calculated at the well level instead of at the cell level—that is, 

dividing the mean major axis by the mean minor axis for the well—a host of other genes appears with 

membership in the same enriched categories. 

Importantly, we observed that when performing gene enrichment with the full sets of genes with as 

few as one shRNA above threshold, dramatically fewer terms appeared relevant to the myocardium or 

cytoskeleton. This difference provided a qualitative validation of our model prediction that multiple 

distinct shRNAs are necessary to achieve a high true positive rate among the selected genes. Likewise, 

performing gene enrichment without the indicated filtering and normalization procedures produced 

similarly desultory enrichment results, highlighting the importance of these steps to proper analysis. 
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4.5.2. Clinical significance of genes influencing myocyte remodeling 

Many of the morphological patterns observed concord with the published literature on individual 

genes. Nckap1 (also known as Nap1), for instance, encodes Nck-associated protein 1, a regulatory 

component of the WAVE complex mediating actin remodeling and particularly formation of lamellipodia 

[182], [183]. Nckap1 mutants have been linked to specific cardiac morphogenetic defects such as cardia 

bifida, the failure to form a single heart tube [184]. Curiously, although each of these studies have 

indicated that lamellipodia activity requires Nckap1, here we observe its knockdown to produce the same 

result. Tnnt2, which encodes cardiac troponin T, is crucial for muscle contraction, and Tnnt2 mutations 

are a frequent cause of dilated or hypertrophic cardiomyopathies [185], [186]. As an integral component 

of the thin filament, its disruption is disastrous to sarcomere maintenance [187]. Of course, since we used 

troponin T as our cytoskeletal stain in this screen in the first place, it is unsurprising that its deletion 

would stand out—though the presence of some staining may indicate that the knockdown was partial. 

Although both Nckap1 and Tnnt2 stood out because of high spikiness, the underlying cellular processes 

driving their phenotypes are obviously quite different. Integrating algorithms for measuring sarcomere 

organization could enable automated differentiation of whether the spikiness is being caused by organized 

growth or by cytoskeletal collapse [188]. 

Among the genes identified regulating cellular elongation, Dsp, encoding the protein desmoplakin, 

has been found to play an important role in linking the cytoskeletal network to the plasma membrane in 

the heart [189]. In transgenic mice with subjected to exercise, desmoplakin mutants displayed disruption 

of the intercalated disks, intermediate filaments, and microtubules, and wall thinning and dilation of the 

right ventricles was observed [190]. Eps8, which encodes epidermal growth factor receptor pathway 

substrate 8, is known as an actin bundling and capping protein that mediates bleb formation [191]. The 

protein, which interacts with the ankyrin repeat protein VAB-19, has been shown to be essential for C. 

elegans epidermal elongation [192]. As with Nckap1, so with Eps8 we note paradoxical activity in which 

gene knockdown accomplishes the phenotype for which the gene is previously reported to be essential.  
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Similarly, Ttn (titin) and Mybpc3 (cardiac myosin-binding protein C), which were associated with 

dramatic area changes in our screen, are both known as critical players in cardiac pathophysiology [193], 

[194]. Mutations truncating titin are the most frequent genetic cause of dilated cardiomyopathy [195], and 

mutant titin produces cardiomyocytes with impaired contractile performance and disrupted responses to 

mechanical and β-adrenergic stress [196]. In response to transverse aortic constriction, mice with a 

heterozygous Mybpc3 mutation showed increased hypertrophy and reduced ejection fraction compared to 

wild-type mice [197]. In fact, Mybpc3 mutations are responsible for about 40% of cases of hypertrophic 

cardiomyopathy [198]. The ability of our pipeline to isolate these genes with a known role in cardiac 

disease lends confidence that the others identified may have similar clinical relevance. 

4.5.3. Advantages and shortcomings of segmentation-based image analysis 

Recent years have witnessed impressive performance by machine learning approaches to analysis of 

microscopy data [199]. However, their algorithms often constitute a “black box”, as opposed to the more 

easily interpretable steps used here to isolate myocytes and quantify their morphological metrics [200]. 

When the algorithms described here fail, it is generally simple to determine what went wrong and what 

needs to be changed, whether by adjusting the expected size of nuclei, or by raising the troponin T 

threshold for classifying cells as myocytes. Interestingly, in the first round of analysis, a random forest 

algorithm applied to this screen failed to capture any conditions of interest (personal communication). 

Such strategies could ultimately prove fruitful, but they require more than blind execution. 

Nonetheless, our algorithm possesses many disadvantages that a machine learning approach could 

help overcome. For example, while Otsu segmentation does a reasonably good job of defining cell 

boundaries, the watershed algorithm struggles to accurately determine borders between abutting cells 

(Fig. 4.2). This is not problematic when examining cell area, as the results of certain cells claiming too 

much or too little area tend to average out. However, when measuring elongation, this tendency can be 

deleterious, since this metric has a much smaller range of variation. When one elongated cell appropriates 
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cytoplasm from a cell alongside its long border during segmentation, it will raise the calculated minor 

axis, diminishing the apparent elongation. 

Another weakness in the current algorithm is its inability to discriminate between myocyte nuclei and 

fibroblast nuclei that lie directly behind myocytes, given that it is classifying solely based on the lower 

quartile intensity of the troponin T stain behind each nucleus. In general, the cytoskeleton appears slightly 

more intense in the circular region surrounding true nuclei, while in the region behind the nucleus itself, 

the cytoskeleton should appear fainter. In contrast, a fibroblast nucleus causes no visible changes in the 

cytoskeletal staining pattern of a myocyte above or underneath it. A more sophisticated algorithm could 

use this information to eliminate fibroblast nuclei falsely identified as myocytes. 

4.5.4. Principles for optimal design of phenotypic screens 

The strengths and limitations of our workflow suggest several design principles for maximizing the 

effectiveness of future large-scale screens. Spatial arrangement of conditions within and across plates is 

key to reducing and correcting for artifacts. For example, the wells along the edges of plates are 

particularly susceptible to abnormal cell growth. Although techniques for reducing edge effects have been 

proposed [201], it is safest to avoid using the edges altogether for test conditions, simply filling them with 

water or medium instead. 

Another important feature of special arrangement is to disperse control wells across the plate, rather 

than grouping them all in one region, especially a region near the edge. Likewise, there are several 

benefits of dispersing the several shRNAs targeting a given gene across multiple plates, rather than 

grouping them on a single plate (or worse yet, in the same region of a single plate). For one thing, if a 

plate or a portion of a plate has cells with a particularly high area (for instance), a gene with all its 

shRNAs there will be given an unfair amplification compared with the overall screen. For another thing, 

if a plate or a portion of a plate yields low-quality data due to poor cell health, poor antibody staining, or 

microscopy artifacts, you lose all data for a gene whose shRNAs are clustered there. 
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Finally, we note that consistent naming and formatting practices during data collection are critical to 

ease of processing. Although the methodology for generating file names, for instance, is rarely if ever 

apparent at the point of publication, deciding in advance on a schema that integrates well with an 

automated pipeline can save countless hours of frustration while preparing data for analysis. 

4.5.5. Limitations and future directions 

Although our normalization method performed well overall, it is unable to correct for artifacts 

causing regional variation within a single plate. Moreover, as noted above, our measurements are 

somewhat biased by the nonrandom special locations of genes within and across plates. Given that 

shRNAs for a given gene were generally spaced in every other well along a single row of a single plate, 

the myocyte morphologies induced by each shRNA were not truly independent. Our normalization 

method could also be enhanced by standardizing variance of wells within each plate, in addition to 

ensuring equal median values of wells within a plate. One simple method of achieving this would be to 

scale values linearly on either side of the median such that the first and third quartiles of the wells within 

a plate, in addition to the median, were equal. 

In this work, we examined shRNAs from the top percentiles for each morphology, which would 

presumably identify genes that negatively regulate those phenotypes. We considered the possibility of 

identify positive regulators for each morphology by looking at the corresponding bottom percentiles. In 

the case of area, however, this strategy is infeasible because conditions with the smallest cells are 

dominated simply by apoptosis or general poor cell health, which is difficult to differentiate from cells 

that are small specifically because of knockdown of a pro-hypertrophic gene. This strategy could be worth 

pursuing in the case of elongation and spikiness, as long as a minimum threshold for area was established. 

More testing is needed to validate the roles of the genes identified in this work. Although we have 

reduced the false positive rate by restricting our focus to genes with multiple shRNAs scoring above 

threshold, a significant fraction of the remaining genes is likely still the result of non-specific targeting. 
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We plan a first round of validation in the near future that repurposes images from a genome-wide screen 

originally designed to measure aggregate accumulations in cardiomyocytes [165]. Using the same 

workflow presented here on that dataset and comparing results will enable higher confidence in our 

predictions. Further work will need to extend testing to other cell types and to in vivo experiments. 

A final limitation of this screen is the high false negative rate. Given our estimate of 40% efficiency 

in expression of each of the 5 shRNAs of a given gene, we calculate that (1 – 0.4)5 = 7.8% of the 15,000 

genes in the screen were not knocked down a single time. An even larger percentage of genes was only 

knocked down once, eliminating their chances of producing two clones above threshold by specific 

targeting. Moreover, some gene knockdowns may be more effective in a neonatal or adult (rather than 

embryonic) context. Thus, the absence of a gene from the final lists of hits should not imply a lack of 

involvement in mediating myocyte size and shape. 

4.5.6. Conclusions 

In this chapter, we define a workflow for processing image-based phenotypic screens, extending from 

image interpretation through filtering and normalization to interpretation. The majority of these steps are 

highly generalizable to other screens outside the context of cardiac studies or immunofluorescence assays. 

We especially emphasize the importance of statistical evaluation to determine the minimum number of 

shRNAs per gene necessary for a desired false positive level. Among the hundreds of genes identified 

regulating area, elongation, and spikiness, several have already been implicated in cytoskeletal 

remodeling and cardiac disease, while many others pose ideal candidates for future study in vivo. In 

addition, we delineate principles for designing future screens with the goal of minimal data loss and 

maximal interpretability. As data generation continues its exponential acceleration over the coming years, 

expanding and refining techniques for automated analysis will grow increasingly vital. 
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5.1. Novel contributions 

The overall goal of this project was to develop and apply systems-level techniques for the purpose of 

reconstructing cardiomyocyte growth and remodeling networks. In this work, we harnessed 

computational modeling and automated image analysis to further existing knowledge of the molecular 

networks driving heart function and failure. Specifically, we have: 

 Developed and validated a comprehensive literature-based predictive model of the cardiac 

mechano-signaling network. 

 Used the model to identify key regulators of mechanical cues, to illuminate the mechanism of 

action of a combination therapy, and to predict further pairs of drug targets with maximum effects 

on mechano-signaling. 

 Identified clusters correlating with differential forms of hypertrophy from RPPA and phenotypic 

screens. 

 Pioneered and implemented a complete pipeline for analysis, filtering, normalization, and 

interpretation of genome-scale imaging screens. 

 Discovered hundreds of novel regulators of cardiomyocyte morphology. 

While previous studies have used RPPA data, high-content imaging, and protein–protein interaction 

networks, this is the first to combine them with computational modeling to study cardiac remodeling. In 

addition, this is the first study to identify novel drivers of cardiac growth in a genome-wide imaging 

screen. Our data-driven modeling framework has revealed novel signaling mechanisms and generated 

testable predictions for how myocytes control growth and remodeling in the heart. 

5.2. Future directions 

Although this work has identified several proteins, genes, and control structures central to cardiac 

remodeling, much work remains in order to develop a comprehensive understanding of the hypertrophy 



Chapter 5: Summary and outlook 85 

signaling network. Ideally, we want to obtain a complete vision of how cardiomyocytes grow, one that 

encompasses neurohormonal and biochemical stimuli, protein activation, gene expression, cellular 

morphologies, and clinical outcomes. The methods and insights generated in this work suggest several 

potential routes toward this goal. 

One promising direction involves applying methods inspired by work from chapter 2 to the genes and 

network structures identified in chapters 3 and 4. Recently, we developed a logic-based gene regulatory 

network that extended the mechano-signaling model in chapter 2 to incorporate whole genomic gene 

expression changes in response to acute myocyte stretch [202]. Network analysis predicted that the 

transcription factor SRF is critical to regulating gene changes in response to stretch in the longitudinal (as 

opposed to transverse) direction. Upstream Regulator Analysis using Ingenuity Pathway Analysis 

identified additional transcription factors, including PPAR-alpha, Klf15, and E2F1, with a potential role 

in governing stretch-induced gene changes. In short, this work demonstrated the ability to use 

transcription factor binding information to connect models of protein regulatory networks to downstream 

gene sets. 

We propose a similar approach to integrating the signaling cascades modulating myocyte elongation, 

identified in chapter 3, with the individual genes identified in chapter 4 that also influence elongation and 

likely operate further downstream. Currently, the mechanistic links connecting these processes are 

lacking. Such an approach would begin by expanding the nascent myocyte elongation network (Fig. 1.1) 

into a full-fledged logic-based ODE model, including the pathways identified in chapter 3. The model 

would begin with ligand and receptors and proceed through individual signaling cascades down to 

transcription factors. 

Next, for each transcription factor, a list of target genes and the direction of expression by that 

transcription factor would be compiled based on the genes identified in chapter 4. Reactions would be 

substantiated both by co-expression evidence and by DNA binding evidence. After assembling this list, 

reactions would be adding to the model, enabling prediction of gene transcription. Fitting the model to the 
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observed data would enable matching of individual pathways and transcription factors with distinct genes. 

Furthermore, sensitivity analyses would help illuminate the control structures governing the elongation 

network. At the detailed level of modeling the effector machinery producing elongation of actual 

sarcomeres, such as PKCε and PIP regulation of actin capping by CapZ, smaller-scale approaches might 

be more beneficial. Ultimately, the reconstructed networks would be integrated back into the master 

cardiac hypertrophy signaling model. 

5.3. Conclusions and ongoing challenges 

The prognosis for patients with heart failure is grave, and the diverse pathobiology of individual heart 

failure patients requires an equally diverse array of personalized therapeutic strategies. In order to 

incorporate the burgeoning wealth of individual genetic and environmental data into treatment decisions, 

a systems pharmacology approach toward drug evaluation is crucial. To strengthen the clinical relevance 

of the models developed in this work, drug–protein interaction data should be incorporated with the novel 

molecular targets identified. Computational network analysis on global drug–protein datasets would 

enable rapid prediction of the context-dependent actions and side effects of novel drugs and drug 

combinations. 

Another outstanding challenge to the field is predicting and explaining the varying forms of 

remodeling of the ventricular chambers. Here, we identified multiple proteins and genes governing 

remodeling of individual myocytes. Do these regulatory patterns extend to the whole-organ level? More 

work is needed to assess the clinical importance of these potential therapeutic targets. One initial step 

would be to mine previously published proteomic and genetic data from heart failure patients to assess 

correlations between the targets identified in this work and differential clinical outcomes. As noted 

earlier, many of the molecular regulators uncovered in the RPPA and shRNA screens already have known 

in vivo significance.  
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The signaling pathways governing heart failure display complex and often seemingly contradictory 

behavior. In this work, we demonstrate that combining computational tools and a systems perspective can 

contribute to untangling these complex networks. Often, the most revealing contribution from a model is 

not in direct identification of a novel mechanism, but rather in pinpointing what is unknown and which 

experiments need to be performed most urgently, or in highlighting conflicts between existing studies. 

Continued innovation in modeling methods is necessary to integrating diverse datasets and making their 

interpretation more tractable. 

 



Appendix A 

Appe ndix A: Experimental parameters 

This database summarizes parameters for the cell stretching experiments from the literature used for 

model construction or validation. 

 

Papers used for model construction: 

PMID author species stretch method 
stretch 
mode 

stretch 
direction 

stretch 
intensity 

stretch 
frequency 

stretch 
duration 

18332106 Backs Mol Cell Bio 2008 COS       

22427904 Barnabei Plos One 2012 Mouse adult heart Balloon ex vivo Static Equibiaxial 200 
mmHg 

  

9072970 Beals Science 1997 Purified       

10662546 Bespalova Genomics 2000 Purified       

20026769 Bian Hyperten 2010 NRVM       

24850911 Bogomolovas Open Biol 
2014 

Mouse cell line       

8108121 Brown Oncogene 1994 Purified       

7478553 Buday Oncogene 1995 Purified       

9466976 Calderone JCI 1998 NRVM       

11243782 Centner J Mol Bio 2001 Human Cardiac       

10884684 Chin Trends Cell Bio 2000        

17339567 Cingolani Circ 2007        

9776724 Cingolani Circ Res 1998 Feline papillary muscle Force 
transducer 

Static Uniaxial 9%  10 min 

21301862 Cingolani Pflugers Arch 2011 NRVM, Mammal papillary 
muscles 

      

22056317 Clemente JMCC 2012 Mouse adult heart       

11948406 Coles Oncogene 2002 HEK293       

11448959 Craig JBC 2001 NRVM       

12663674 Davis JBC 2003 NRVM       

7839144 Dérijard Science 1995 Purified       

10376603 Dimmeler Nature 1999 HUVEC       

11788403 Domingos Am J Phys HCP 
2002 

Rat adult heart Balloon in vivo Static Equibiaxial 15 mmHg  10 min 

9612209 Eble Am J Phys 1998 NRVM       

15155564 El Jamali FASEB 2004 NRVM       

1913804 Ervasti Cell 1991 Purified rabbit skeletal 
muscle 
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PMID author species stretch method 
stretch 
mode 

stretch 
direction 

stretch 
intensity 

stretch 
frequency 

stretch 
duration 

8349731 Ervasti JBC 1993 Purified rabbit skeletal 
muscle 

      

12177418 Fielder PNAS 2002 NRVM       

11062067 Fleming Biochem J 2000 Purified       

11009560 Franchini Circ Res 2000 Rat adult heart Transverse 
aortic 
constriction 

Static Equibiaxial 10–60 
mmHg 

 3–60 
min 

17720185 Freire JMCC 2007 Rat adult heart       

22921230 Gao JMCC 2012 NRVM       

26483453 Garbincius PNAS 2015 AMVM Flexcell Cyclic Equibiaxial 15% 1 Hz 0–60 
min 

15205937 Gehmlich Cell Tissue Res 
2004 

Human cell line       

9079650 Gerwins JBC 1997 Human cell line       

20610383 Gingras JBC 2010 3T3       

25246556 Granzier PNAS 2014 Mouse adult heart, 
Mouse adult 
cardiomyocyte 

Force 
transducer 

Cyclic Uniaxial 5% 0.1-100 
Hz 

 

21572419 Guilluy Nat Cell Bio 2011 Mouse embryonic 
fibroblast 

      

8654373 Gupta EMBO J 1996 Human cell line       

15001529 Hardt Circ Res 2004 NRVM       

9641916 Hart Science 1998 COS       

12829427 Heidkamp Am J Phys HCP 
2003 

NRVM       

20585009 Hilfiker-Kleiner Circ 2010 Mouse adult heart       

10219240 Hirota Cell 1999 Mouse adult heart Transverse 
aortic 
constriction 

Static Equibiaxial   3 hr–7 d 

9930701 Hofmann Nature 1999 CHO       

22851699 Hojayev Mol Cell Bio 2012 Mouse adult heart       

11172039 Ikuta PNAS 2001 Human cell line       

11777939 Innocenti J Cell Bio 2002 Purified       

8326007 Ito J Clin Inv 1993 NRVM       

15795322 Jeong Circ 2005 NRVM       

18258855 Jeong Circ Res 2008 NRVM Transverse 
aortic 
constriction 

Static Equibiaxial   2 w 

26303226 Jiang Cell Physiol Biochem 
2015 

COS Custom device 
with silicone 
membrane 

Static Uniaxial 20%  10 min 

7592992 Jung JBC 1995 Purified rabbit skeletal 
muscle 

      

24874017 Katanosaka Nat Commun 
2014 

NMVM STREX Static Uniaxial 20%  3 s 

10849446 Kato JBC 2000 HeLa, CHO       

18830417 Kerkela J Clin Inv 2008 Mouse adult heart       

23000580 Kim J Vet Sci 2012 Adult rat heart Balloon ex vivo, 
Aorto-caval 
shunt 

Static Equibiaxial 40 mmHg  5 min 

10864901 Kimura Brit J Pharm 2000 Canine basilar arterial 
myocyte 

Hypotonic cell 
swelling 

Static     

9593662 Klee JBC 1998        

12507422 Knöll Cell 2002 NMVM Custom device 
with silicone 
membrane 

Static Equibiaxial 10%  24 hr 

2567995 Knowles PNAS 1989 Rat forebrain       

18466959 Kockskämper PBMB 2008 Human ventriclar muscle       

19961855 Koitabashi JMCC 2010 NRVM       

10531040 Kolodziejczyk Curr Bio 1999 Mouse adult heart       
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PMID author species stretch method 
stretch 
mode 

stretch 
direction 

stretch 
intensity 

stretch 
frequency 

stretch 
duration 

11701614 Kulke Circ Res 2001 Purified, Rabbit cardiac 
muscle 

Force 
transducer 

Static Uniaxial   10–20 s 

8921810 Kunisada Circ 1996 NRVM       

9020175 Kuppuswamy JBC 1997 Cat adult heart Pulmonary 
artery 
constriction, 
Balloon in vivo 

    4 hr–5 w 

15798203 Kuwahara Mol Cell Bio 2005 Mouse cell line       

14983059 Kwan PNAS 2004 Human coronary 
endothelial cell line 

      

12432079 Lange J Cell Sci 2002 Rat papillary muscle       

25336613 Lauriol Sci Sig 2014 Mouse adult heart       

20566642 Leenders JBC 2010 NRVM       

18317936 Lemaire-Ewing Cell Biol 
Toxicol 2009 

Human cell line       

9507010 Leopoldt JBC 1998 Purified       

9525975 Leri J Clin Inv 1998 ARVM Custom device 
with silicone 
membrane 

Static Equibiaxial 9%  10 min–
24 hr 

8978330 Leskinin Circ Res 1997 Rat adult heart Right atrial 
saline injection 

Static Equibiaxial   5–21 
min 

11585926 Liang Mol Cell Bio 2001 NRVM       

22403241 Liu Circ Res 2012 Mouse adult heart       

20605796 Loukin JBC 2010 Xenopus oocyte Hypotonic cell 
swelling 

Static     

1577864 Lu J Cell Bio 1992 Chick embryonic 
cardiomyocyte 

      

10737771 Lu PNAS 2000 NRVM       

12176756 Lyford Am J Phys CP 2002 CHO Bath perfusion, 
Pipette 
pressure 

Static     

23266827 Manso JBC 2013 Mouse adult heart Transverse 
aortic 
constriction 

Static Equibiaxial   10 min–
1 w 

15522277 Markou JBCC 2004 ARVM       

7746328 Marrero Nature 1995 Rat aortic myocyte       

9576927 Mascareno PNAS 1998 Rat adult heart       

20876535 Masuda JBC 2010 COS       

8635223 Matsuda Circ Res 1996 Rabbit cardiomyocyte Hypotonic cell 
swelling 

Static     

9299374 McWhinney JMCC 1997 NRVM Custom device 
with silicone 
membrane 

Static Uniaxial 20%  90 min 

9891086 Mercurio Mol Cell Bio 1999 Human cell line       

2174351 Mignery EMBO J 1990 COS       

8831108 Miyata Eur J Pharm 1996 NRVM Custom device 
with silicone 
membrane 

Static Uniaxial 15%  10 min–
4 d 

9568714 Molkentin Cell 1998 Mouse adult heart       

18718528 Moon Cell Signal 2008 Mouse cell line       

12881422 Morton EMBO J 2003 Mouse cell line       

18776042 Nakamura Circ Res 2008 Mouse adult heart       

15950986 Nelson JMCC 2005 NRVM, Mouse adult heart       

11387209 Nicol EMBO J 2001 NRVM       

15743761 Nishida JBC 2005 NRVM       

16880823 Nishimoto EMBO Rep 2006 Human cell line       

12604610 Nojima JBC 2003 Human cell line       

9814702 Oancea Cell 1998 Rat cell line       

23271052 Okamoto FASEB 2013 Mouse adult heart       
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PMID author species stretch method 
stretch 
mode 

stretch 
direction 

stretch 
intensity 

stretch 
frequency 

stretch 
duration 

11799083 Omura Hyperten 2002 NRVM       

10485710 Ozes Nature 1999 HEK293       

26847743 Paudyal J Phys 2016 NRVM Flexcell Cyclic Equibiaxial 10% 1Hz 48 hr 

15910769 Peng Brain Res 2005 HEK293 Bath perfusion Static     

18448675 Peng PNAS 2008 Mouse adult heart       

20041152 Pereira Plos One 2009 Mouse adult heart, NRVM Transverse 
aortic 
constriction 

Static Equibiaxial   1–15 d 

11087248 Pham Am J Phys HCP 2000 NRVM       

15610731 Philippar Mol Cell 2004 Human cell line       

10652349 Porter JBC 2000 COS       

26259779 Qi JMCC 2015 Human ESC-CM STREX Cyclic Uniaxial 10-30% 1Hz 0–20 
min 

20530803 Rakesh Sci Sig 2010 HEK293 Flexcell, 
Hypotonic cell 
swelling, In vivo 
balloon 

Both Both 10% 1Hz 0–30 
min 

15483225 Rauch Am J Phys CP 2005 C2C12 Flexcell Static Equibiaxial 9%  5 min–3 
hr 

11923478 Ray Mol End 2002 HepG2       

11015615 Rebecchi Physiol Rev 2000 Purified       

11715022 Rommel Nat Cell Bio 2001 C2C12       

23357406 Rosa Cell Calc 2013 HEK293 Pressure-flow 
pulses 

     

7744823 Russell JBC 1995 Human cell line       

8909541 Rybakova J Cell Bio 1996 Purified rabbit skeletal 
muscle 

      

10974007 Rybakova J Cell Bio 2000 Mouse skeletal muscle Mechanical 
peeling 

     

8348686 Sadoshima 1993 Circ Res NRVM       

8001266 Sadoshima Circ Res 1995 NRVM       

19719782 Salameh Br J Pharm 2009 NRVM       

17376402 Salazar BBA 2007        

15657416 Sanna Mol Cell Bio 2005 NRVM       

12167717 Scheid Mol Cell Bio 2002 Human cell line       

9566877 Schlaepfer Mol Cell Bio 1998        

10724174 Schlossmann Nature 2000 Bovine tracheal smooth 
muscle 

      

9478959 Schmidt JBC 1998 Osteosarcoma cell line Microbeads Both Uniaxial 10 
dyne/cm2 

1 Hz 30 min 

12767723 Shah Trends Pharm Sci 2003        

19033658 Sheikh J Clin Inv 2008 Mouse adult heart Force 
transducer, 
Transverse 
aortic 
constriction 

Static Equibiaxial 20 kPa  5 hr–5 d 

21284984 Shimizu Cell Metab 2011 Rat cell line       

2173712 Shubeita JBC 1990 NRVM       

15781459 Skurk JBC 2005 NRVM       

17056714 Spassova PNAS 2006 CHO and HEK293 Hypotonic cell 
swelling 

Static     

1447296 Straub J Cell Bio 1992 Human skeletal muscle       

11073940 Sun JBC 2001 Human cell line       

19652361 Sundaresan J Clin Inv 2009 Mouse adult heart       

22972902 Takefuji Circ 2012 Mouse adult heart       

9305639 Takekawa EMBO J 1997 Human cell line       

21108934 Tang Biochem Pharm 2011 NRVM       

25170081 Tang JBC 2014 HEK293 Hypotonic cell 
swelling 

Static     
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PMID author species stretch method 
stretch 
mode 

stretch 
direction 

stretch 
intensity 

stretch 
frequency 

stretch 
duration 

24637628 Teng JOVE 2013 Yeast, Xenopus oocyte Hypotonic cell 
swelling 

Static     

16873723 Tenhunen Circ Res 2006 Rat adult heart       

12570982 Torsoni Am J Phys CP 2003 Rat adult heart Transverse 
aortic 
constriction 

Static Equibiaxial 40 mmHg  5–60 
min 

9207092 Tournier PNAS 1997 Hamster cell line       

11262406 Uozumi JBC 2001 Mouse adult heart Transverse 
aortic 
constriction 

Static Equibiaxial   4 w 

21746915 van Berlo PNAS 2011 Mouse adult heart       

15367659 Vega Mol Cell Bio 2004 NRVM       

12650883 von Lewinski Cardiovasc Res 
2003 

Rabbit ventricular muscle Force 
transducer 

Static Uniaxial 10%   

15105296 von Lewinski Circ Res 2004 Human ventriclar muscle Force 
transducer 

Static Uniaxial 10%  0–15 
min 

18612045 Waddell Am J Phys EM 2008 Human cell line       

16376520 Wang Cell Sig 2006        

7684161 Wang Science 1993 Capillary endothelial cells Microbeads Static Uniaxial 0–68 
dyne/cm2 

  

8332195 Warne Nature 1993 Bacteria cell line       

8557975 Whitehurst J Immunol 1996 Cell line       

12370307 Wilkins Mol Cell Bio 2002 Mouse adult heart       

17272810 Willis Circ Res 2007 Monkey cell line Transverse 
aortic 
constriction 

Static Equibiaxial   1–2 w 

11799084 Wollert Hyperten 2002 NRVM       

20382852 Wu Am J Phys HCP 2010 Mouse adult 
cardiomyocyte 

      

21750914 Xu Mol Bio Res 2012 Mouse adult heart       

16172266 Xuan Circ 2005 Mouse adult heart       

16037569 Yamada Circ Res 2005 NRVM Custom device 
with silicone 
membrane 

Cyclic Uniaxial 10% 3–Hz 1 hr 

8621724 Yamazaki JBC 1996 NRVM Custom device 
with silicone 
membrane 

Static Uniaxial 20%  1 min–
24 hr 

8974057 Yamazaki Mol Cell Biochem 
1996 

NRVM Custom device 
with silicone 
membrane 

Static Uniaxial 20%  1–60 
min 

7997270 Yan Nature 1994 Monkey cell line       

11739382 Yanazume JBC 2002 NRVM       

10330143 Yang Mol Cell Bio 1999 COS       

17267546 Zhang Am J Phys CP 2007 C2C12 Flexcell Cyclic Equibiaxial 10% 0.5 Hz 2–4 d 

12202037 Zhang Cell 2002 Mouse adult heart       

8610126 Zhu PNAS 1996 Monkey cell line       

15146194 Zou Nat Cell Bio 2004 NRVM Custom device 
with silicone 
membrane 

Static Uniaxial 20%  8 min 
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Papers used for model validation: 

PMID author species stretch method 
stretch 
mode 

stretch 
direction 

stretch 
intensity 

stretch 
frequency 

stretch 
duration 

10066681 Aikawa Circ Res 1999 NRVM Custom device with 
silicone membrane 

Static Uniaxial 20%  9 min 

11847190 Aikawa Hyperten 2002 NRVM Custom device with 
silicone membrane 

Static Uniaxial 10–30%  5 min–24 hr 

14645255 Anderson JBC 2004 NRVM Flexcell Cyclic Equibiaxial 20% 1 Hz 5 min–48 hr 

12909322 Baba Cardiovasc Res 2003 NRVM Flexcell  Cyclic Equibiaxial 10% 1 Hz 5–60 min 

16963613 Boateng Am J Phys HCP 2007 NRVM Flexcell Cyclic Equibiaxial 10% 1 Hz 48 hr 

19376126 Boateng JMCC 2009 NRVM Flexcell Cyclic Both 10% 1 Hz 48 hr 

9925362 Cadre JMCC 1998 NRVM Flexcell Cyclic Equibiaxial 20% 1 Hz 48–72 hr 

19673940 Cheng Clin Exp Pharm Phys 2009 NRVM Flexcell Cyclic Equibiaxial 20% 1 Hz 30 min–24 hr 

18854312 Del Re JBC 2008 NRVM Custom device with 
silicone membrane 

Static Equibiaxial 10%  5 min–2 hr 

19015044 Duquesnes Int J Biochem Cell Biol 
2009 

NRVM Flexcell Static Equibiaxial 15%  1–60 min 

26512830 Feng Int J Cardiol 2016 NRVM Flexcell Static Equibiaxial 20%  15 min–2 hr 

18158353 Frank Hyperten 2008 NRVM Custom device with 
silicone membrane 

Static Equibiaxial 12%  24 hr 

20600098 Frank JMCC 2010 NRVM Custom device with 
silicone membrane 

Static Equibiaxial 12%  24 hr 

15665106 Heineke PNAS 2005 NRVM Flexcell Cyclic Equibiaxial 15% 0.5Hz 24 hr 

12777392 Kawamura JBC 2003 NRVM Custom device with 
silicone membrane 

Static Equibiaxial 20%  1–15 min 

8621062 Komuro FASEB 1996 NRVM Custom device with 
silicone membrane 

Static Uniaxial 10–30%  1 min–2 hr 

2105950 Komuro JBC 1990 NRVM Custom device with 
silicone membrane 

Static Uniaxial 5-20%  30 min 

20606005 Kuwahara Mol Cell Bio 2010 NRVM Custom device with 
silicone membrane 

  20%  5 min–4 hr 

17583725 Lal JMCC 2007 NRVM Flexcell Static Equibiaxial 20%  2–15 min 

18926830 Lal JMCC 2008 NRVM Flexcell Static Equibiaxial 20%  2min–24 hr 

15802564 Lange Science 2005 NRVM Arrest of beating      

22174951 Leychenko Plos One 2011 ARVM Flexcell Cyclic Equibiaxial 10% 0.5Hz 24–48 hr 

9603978 Liang JBC 1999 NRVM Flexcell Cyclic Equibiaxial 20% 1Hz 2–48 hr 

14521925 Liao BBRC 2003 NRVM Flexcell Static Equibiaxial 20%  90 min 

18757826 Marin Circ Res 2008 NRVM Flexcell Cyclic Equibiaxial 15% 1Hz 10–60 min 

15961069 Nadruz Cardiovasc Res 2005 NRVM Flexcell Cyclic Equibiaxial 15% 1Hz 10 min–2 hr 

9588217 Nyui BBRC 1998 NRVM Ikemoto Static Uniaxial 20%  10 min 

10347087 Pan Circ Res 1999 NRVM Custom device with 
silicone membrane 

Static Uniaxial 20%  2–30 min 

12704188 Pikkarainen JBC 2003 NRVM Flexcell Cyclic Equibiaxial 10–25% 0.5Hz 15 min–24 hr 

17965285 Rana Am J Phys HCP 2007 NRAM Custom device with 
Flexcell plates 

Static Equibiaxial 3–21%  48 hr 

11162845 Ruwhof Cell Calc 2001 NRVM Flexcell, Custom 
device with silicone 
membrane, Prodding 
with microelectrode 

Cyclic Equibiaxial 15–25% 1Hz 15 s–2 hr 

25696767 Ruwhof Neth Heart 2001 NRVM Flexcell Cyclic Equibiaxial 20% 1Hz 5–30 min 

8252633 Sadoshima Cell 1993 NRVM Custom device with 
silicone membrane 

Static Uniaxial 20%  10 min–24 hr 

8385610 Sadoshima EMBO 1993 NRVM Custom device with 
silicone membrane 

Static Uniaxial 20%  1 min–2 hr 

1534087 Sadoshima JBC 1992 NRVM Custom device with 
silicone membrane 

Static Uniaxial 20%  30 min–48 hr 

20378856 Salameh Circ Res 2010 NRVM Flexcell Cyclic Uniaxial 5–20% 1Hz 24–48 hr 

20705136 Salameh Pharm Res 2010 NRVM Flexcell Cyclic Uniaxial 10% 1Hz 24 hr 

10334907 Seko BBRC 1999 b NRVM Flexcell Cyclic Equibiaxial 15% 1Hz 2–30 min 

11273722 Shyu JMCC 2001 NRVM Flexcell Cyclic Equibiaxial 20% 1Hz 2–48 hr 
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PMID author species stretch method 
stretch 
mode 

stretch 
direction 

stretch 
intensity 

stretch 
frequency 

stretch 
duration 

15532707 Sil Mol Cell Biochem 1999 NRVM Flexcell Cyclic Equibiaxial 24% 1Hz 30 min–2 hr 

23530122 Takefuji J Exp Med 2013 NRVM Flexcell Cyclic Equibiaxial 10% 1Hz 3 min–24 hr 

9688953 Tamura Am J Phys RICP 1998 NRVM Ikemoto Static Uniaxial 20%  1–24 hr 

15923313 Torsoni Am J Phys HCP 2005 NRVM Flexcell Cyclic Equibiaxial 15% 1Hz 10 min–4 hr 

12805241 Torsoni Circ Res 2003 NRVM Flexcell Cyclic Equibiaxial 5-20% 1Hz 10 min–2 hr 

11330825 van Wamel Mol Cell Biochem 2001 NRVM Flexcell Static Equibiaxial 15%  30–60 min 

11584267 Vila Petroff Nat Cell Bio 2001 ARVM Custom device with 
agarose 

Static Uniaxial 0-20%  0–15 min 

24120154 Wang JFMA 2013 NRVM Flexcell Cyclic Equibiaxial 20% 1Hz 4–24 hr 

15350851 Wang JMCC 2004 NRVM Flexcell Cyclic Equibiaxial 20% 1Hz 6–24 hr 

10419503 Yamamoto Circ 2001 NRVM Custom device with 
silicone membrane 

Cyclic Equibiaxial 4% 1.2Hz 1–60 min 

10419504 Yamamoto JBC 1999 NRVM Custom device with 
silicone membrane 

Static Equibiaxial 1-14%  1–24 hr 

17207463 Yamane BBRC 2007 NRVM STREX Cyclic Uniaxial 20% 0.5Hz 5 min–20 hr 

9506703 Yamazaki Circ Res 1998 NRVM Custom device with 
silicone membrane 

Static Uniaxial 20%  2 min–24 hr 

7615816 Yamazaki J Clin Inv 1995 NRVM Custom device with 
silicone membrane 

Static Uniaxial 20%  1–60 min 

17264507 Zobel Cardiol 2007 NRVM Flexcell Static Equibiaxial   48hr 

 



Appendix B 

Appe ndix B: Mechano-signaling network model 

This database includes information about each species in the cardiac mechano-signaling network. 

 

module ID name Yinit Ymax τ type 
alternate 
names 

integrin aActinin alpha-actinin 0 1 1 protein  

integrin Actin Actin 0 1 1 protein  

PI3K Akt Protein kinase B 0 1 1 protein PKB 

outputs aMHC Alpha-myosin heavy chain 1 1 1 geneExpr  

g-coupled AngII Angiotensin II 0 1 1 protein  

outputs ANP Atrial natriuretic protein 0 1 1 geneExpr ANF 

outputs Ao Angiotensinogen 0 1 1 geneExpr  

transcription AP1 Activator protein 1 0 1 1 protein  

g-coupled AT1R Antiotensin type 1 receptor 0 1 1 protein  

outputs bMHC Beta-myosin heavy chain 0 1 1 geneExpr  

outputs BNP Brain natriuretic protein 0 1 1 geneExpr  

calcium Ca Calcium 0 1 1 smallMolecule Ca2+ 

calcium CaM Calmodulin 0 1 1 protein  

calcium CaMK CaM kinase 0 1 1 protein  

calcium CaN Calcineurin 0 1 1 protein  

outputs CellArea Cell area 0 1 1 phenotype  

transcription cFos Proto-oncogene c-Fos 0 1 1 protein  

PI3K cGMP Cyclic guanosine monophosphate 0 1 1 smallMolecule  

transcription cJun Proto-oncogene c-Jun 0 1 1 protein  

transcription cMyc Proto-oncogene c-Myc 0 1 1 protein  

transcription CREB cAMP response element binding 0 1 1 protein  

outputs Cx43 Connexin 43 0 1 1 geneExpr  

g-coupled DAG Diacylglycerol 0 1 1 phospholipid  
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module ID name Yinit Ymax τ type 
alternate 
names 

integrin Dysgl Dystroglycans 0 1 1 protein  

integrin Dysph Dystrophin 0 1 1 protein  

growth 
factor 

EGFR Epidermal growth factor receptor 0 1 1 protein  

PI3K eIF4E Eukaryotic translation initiation 
factor 4E 

0 1 1 protein  

PI3K eIF2B Eukaryotic translation initiation 
factor 2B 

0 1 1 protein  

MAPK ERK12 Extracellular signal-related kinases 1 
or 2 

0 1 1 protein p42/p44 
MAPK 

MAPK ERK5 Extracellular signal-related kinase 5 0 1 1 protein BMK1 

g-coupled ET1 Endothelin-1 0 1 1 protein  

g-coupled ET1R Endothelin-1 receptor 0 1 1 protein  

integrin FAK Focal adhesion kinase 0 1 1 protein  

integrin FHL1 Four-and-a-half LIM domains 
protein 1 

0 1 1 protein  

integrin FHL2 Four-and-a-half LIM domains 
protein 2 

1 1 1 protein  

transcription FoxO Forkhead box O 1 1 1 protein  

g-coupled Ga1213 G 12/13 alpha subunit 0 1 1 protein  

g-coupled Gaq11 G q/11 alpha subunit 0 1 1 protein  

transcription GATA4 GATA-binding protein 4 0 1 1 protein  

g-coupled Gbg G beta/gamma subunit 0 1 1 protein  

cytokine gp130 Glycoprotein 130 0 1 1 protein  

PI3K GSK3b Glycogen synthase kinase 3 beta 1 1 1 protein  

transcription HDAC Histone deacetylase 1 1 1 protein  

PI3K IkB Nuclear factor of kappa light 
polypeptide gene enhancer in B-
cells inhibitor, alpha 

1 1 1 protein  

PI3K IKK Inhibitor of kappa light polypeptide 
gene enhancer in B-cells, kinase 
beta 

0 1 1 protein  

integrin Integrin Integrin 0 1 1 protein  

g-coupled IP3 Inositol triphosphate 0 1 1 phospholipid  

cytokine JAK Janus kinase 1 or 2 0 1 1 protein  

MAPK JNK c-Jun N-terminal kinase 0 1 1 protein SAPK 

MAPK Lmcd1 LIM and cystein-rich domains 1 0 1 1 protein Dyxin 

calcium LTCC L-type calcium channel 0 1 1 protein  

transcription MEF2 Myocyte enhancer factor 2 0 1 1 protein  

MAPK MEK12 MAPK/ERK kinase 1 or 2 0 1 1 protein MAPKK12 

MAPK MEK36 MAPK/ERK kinase 3 or 6 0 1 1 protein MAPKK36 

MAPK MEK47 MAPK/ERK kinase 4 or 7 0 1 1 protein MAPKK4 or 
MAPKK7, 
TAK1, SEK1 

MAPK MEK5 MAPK/ERK kinase 5 0 1 1 protein  
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module ID name Yinit Ymax τ type 
alternate 
names 

MAPK MEKK1 MAPK/ERK kinase kinase 1 0 1 1 protein MAP3K1 

MAPK MEKK23 MAPK kinase kinase 2 or 3 0 1 1 protein MAP3K23 

MAPK MEKK4 MAPK kinase kinase 4 0 1 1 protein MAP3K4, 
MTK1 

integrin MLP Muscle LIM protein 0 1 1 protein  

outputs MRTF Myocardin-related transcription 
factor 

0 1 1 protein  

PI3K mTor Mechanistic target of rapamycin 0 1 1 protein  

integrin MuRF Muscle ring finger protein 1 1 1 protein  

calcium Na Sodium 0 1 1 smallMolecule Na+ 

calcium NCX Sodium-calcium exchanger 0 1 1 protein  

transcription NFAT Nuclear factor of activated T-cells 0 1 1 protein  

transcription NFkB Nuclear factor kappa-light-chain-
enhancer of activated B cells 

0 1 1 protein  

calcium NHE Sodium-hydrogen exchanger 0 1 1 protein  

PI3K NOS Endothelial nitric oxide synthase 0 1 1 protein  

MAPK p38 p38 mitogen-activated protein 
kinase 

0 1 1 protein  

PI3K p70s6k 70 kDa ribosomal protein S6 kinase 
1 

0 1 1 protein  

PI3K PDK1 3-phosphoinositide dependent 
protein kinase 1 

0 1 1 protein  

PI3K PI3K Phosphatidyl inositol 3 kinase 0 1 1 protein  

g-coupled PKC Protein kinase C 0 1 1 protein  

PI3K PKG1 cGMP-dependent protein kinase 1 0 1 1 protein  

g-coupled PLC Phospholipase C 0 1 1 protein  

outputs PrSynth Protein synthesis 0 1 1 phenotype  

MAPK Rac1 Ras-related C3 botulinum toxin 
substrate 1 

0 1 1 protein  

MAPK Raf1 Proto-oncogene c-Raf 0 1 1 protein  

MAPK Ras Rat sarcoma viral oncogene 
homolog 

0 1 1 protein p21ras 

MAPK RhoA Ras homolog gene family, member A 0 1 1 protein  

MAPK RhoGEF Rho guaninen nucleotide exchange 
factor 12 

0 1 1 protein  

MAPK ROCK Rho-associated protein kinase 0 1 1 protein  

outputs sACT skeletal alpha-actin 0 1 1 geneExpr  

outputs SERCA Sarcoplasmic reticulum Ca2+ ATPase 1 1 1 geneExpr  

PI3K sGC Soluble guanylyl cyclase 0 1 1 protein  

integrin Src Proto-oncogene c-Src 0 1 1 protein  

MAPK SRF Serum response factor 0 1 1 protein  

transcription STAT Signal transducers and activators of 
transcription 

0 1 1 protein  

input Stretch Stretch 0 1 1 perturbation  

integrin Talin Talin 0 1 1 protein  
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module ID name Yinit Ymax τ type 
alternate 
names 

integrin Titin Titin 0 1 1 protein  

calcium TRP Transient receptor potential channel 0 1 1 protein  

integrin Vinculin Vinculin 0 1 1 protein  

 



Appendix C 

Appe ndix C: Mechano-signaling network model 

reactions 

This database includes information about each reaction in the cardiac mechano-signaling network. For 

references for each reaction, see S1 Table in Tan PLoS Comput. Biol. 13(11), 2017. 

 

module ID rule w n EC50 notes 

input i1 => Stretch 0 1.4 0.5 Stretch input 

input i2 => AngII 0 1.4 0.5 AngII addition 

input i3 => AT1R 0 1.4 0.5 AT1R activation (without AngII) 

input i4 => Dysgl 0 1.4 0.5 Dysgl activation 

input i5 => ET1 0 1.4 0.5 ET1 addition 

input i6 => gp130 0 1.4 0.5 gp130 activation 

input i7 => Integrin 0 1.4 0.5 Integrin activation 

input i8 => LTCC 0 1.4 0.5 LTCC activation 

input i9 => NHE 0 1.4 0.5 NHE activation 

input i10 => TRP 0 1.4 0.5 TRP activation 

input i11 => sGC 0 1.4 0.5 sGC activation 

middle r1 Stretch => AngII 0.9 1.4 0.5 Stretch induces AngII secretion 

middle r2 Stretch => AT1R 0.9 1.4 0.5 Stretch activates AT1R 

middle r3 Stretch => Dysgl 0.9 1.4 0.5 Stretch exerts force on Dysgl 

middle r4 Stretch => ET1 0.9 1.4 0.5 Stretch induces ET1 secretion 

middle r5 Stretch => gp130 0.9 1.4 0.5 Stretch activates gp130 

middle r6 Stretch => Integrin 0.9 1.4 0.5 Stretch activates Integrin 

middle r7 !PKG1 & Stretch => LTCC 0.9 1.4 0.5 Stretch activates L-type Ca channel 

      PKG1 inhibits LTCC 

middle r8 Stretch => NHE 0.9 1.4 0.5 Stretch activates NHE 

middle r9 !PKG1 & Stretch => TRP 0.9 1.4 0.5 Stretch activates Trp 
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module ID rule w n EC50 notes 

      PKG1 phosphorylates and inhibits TRP 

middle r10 Actin => aActinin 0.9 1.4 0.5 Actin links to aActinin 

middle r11 Actin => Lmcd1 0.9 1.4 0.5 Actin activates Lmcd1 

middle r12 Actin => Titin 0.9 1.4 0.5 Actin links to Titin 

middle r13 !Akt => FoxO 0.9 1.4 0.5 Akt phosphorylates and inactivates FoxO 

middle r14 !Akt => GSK3b 0.9 1.4 0.5 Akt phosphorylates and inactivates GSK3B 

middle r15 Akt => IKK 0.9 1.4 0.5 Akt activates IKK 

middle r16 Akt => mTor 0.9 1.4 0.5 Akt activates mTor 

middle r17 Akt => NOS 0.9 1.4 0.5 Akt activates NOS 

middle r18 AngII => AT1R 0.9 1.4 0.5 AngII binds to AT1R 

middle r19 AP1 & CREB & GATA4 & 
MEF2 & NFAT & SRF => 
ANP 

0.9 1.4 0.5 AP1 is necessary for ANP transcription 

     CREB is necessary for ANP transcription 

     GATA4 is necessary for ANP transcription 

     MEF2 is necessary for ANP transcription 

     NFAT is necessary for ANP transcription 

     SRF is necessary for ANP transcription 

middle r20 AP1 & CREB & GATA4 & 
NFAT & SRF => bMHC 

0.9 1.4 0.5 AP1 is necessary for bMHC transcription 

     CREB is necessary for bMHC transcription 

     GATA4 is necessary for bMHC transcription 

     NFAT is necessary for bMHC transcription 

     SRF is necessary for bMHC transcription 

middle r21 AP1 & CREB & GATA4 & 
NFAT & SRF => BNP 

0.9 1.4 0.5 AP1 is necessary for BNP transcription 

     CREB is necessary for BNP transcription 

     GATA4 is necessary for BNP transcription 

     NFAT is necessary for BNP transcription 

     SRF is necessary for BNP transcription 

middle r22 AP1 & CREB & GATA4 & 
MEF2 & NFAT => CellArea 

0.9 1.4 0.5 AP1 is necessary for CellArea increase 

     CREB is necessary for CellArea increase 

     GATA4 is necessary for CellArea increase 

     MEF2 is necessary for CellArea increase 

     NFAT is necessary for CellArea increase 

middle r23 AP1 & CREB & GATA4 & 
NFAT & SRF => sACT 

0.9 1.4 0.5 AP1 is necessary for sACT transcription 

     CREB is necessary for sACT transcription 

     GATA4 is necessary for sACT transcription 

     NFAT is necessary for sACT transcription 

     SRF is necessary for sACT transcription 

middle r24 AP1 & CREB => Cx43 0.9 1.4 0.5 AP1 is necessary for Cx43 transcription 

      CREB is necessary for Cx43 transcription 

middle r25 !AP1 => aMHC 0.9 1.4 0.5 AP1 inhibits aMHC transcription 

middle r26 !AP1 => SERCA 0.9 1.4 0.5 AP1 inhibits SERCA transcription 

middle r27 AT1R => ET1 0.9 1.4 0.5 AT1R induces autocrine ET1 release 

middle r28 AT1R => Ga1213 0.9 1.4 0.5 AT1R activates Ga1213 
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middle r29 AT1R => Gaq11 0.9 1.4 0.5 AT1R is coupled to Gaq11 

middle r30 AT1R => JAK 0.9 1.4 0.5 AT1R activates JAK 

middle r31 Ca & DAG => PKC 0.9 1.4 0.5 Calcium and DAG cooperate to activate PKC 

middle r32 Ca => CaM 0.9 1.4 0.5 Ca binds to CaM 

middle r33 CaM & Lmcd1 & MLP => 
CaN 

0.9 1.4 0.5 CaM binds to CaN; MLP is required for CaN 
activation 

      Lmcd1 is necessary for NFAT nuclear 
translocation 

      MLP is necessary for CaN activation 

middle r34 CaM => CaMK 0.9 1.4 0.5 CaM binds CaMK 

middle r35 !CaMK & !PKC => HDAC 0.9 1.4 0.5 CaMK phosphorylates HDAC causing its nuclear 
export 

      PKC phosphorylates HDAC causing its nuclear 
export 

middle r36 cFos & cJun => AP1 0.9 1.4 0.5 cFos and cJun form heterodimer AP1 complex 

middle r37 cJun => AP1 0.9 1.4 0.5 cJun forms homodimer AP1 complex 

middle r38 cGMP => PKG1 0.9 1.4 0.5 cGMP binds to and activates PKG1 

middle r39 CREB & STAT => Ao 0.9 1.4 0.5 CREB is necessary for Ao transcription 

      STAT is necessary for Ao transcription 

middle r40 Dysgl => Dysph 0.9 1.4 0.5 Dysgl links to Dysph 

middle r41 Dysph => Actin 0.9 1.4 0.5 Dysph links to Actin 

middle r42 EGFR & JAK => Ras 0.9 1.4 0.5 EGFR is required for Ras activation 

      JAK is required for Ras activation 

middle r43 Src => Ras 0.9 1.4 0.5 Src activates Ras 

middle r44 eIF2B & eIF4E & p70s6k 
=> PrSynth 

0.9 1.4 0.5 eIF2B is required for increased protein 
expression 

      eIF4E is required for increased protein 
expression 

      p70s6k is required for increased protein 
expression 

middle r45 ERK12 => cFos 0.9 1.4 0.5 ERK12 phosphorylates cFos 

middle r46 ERK12 => cJun 0.9 1.4 0.5 ERK12 phosphorylates cJun 

middle r47 ERK12 => cMyc 0.9 1.4 0.5 ERK12 phosphorylates cMyc 

middle r48 ERK12 => NFkB 0.9 1.4 0.5 ERK12 phosphorylates NFkB; IkB binds to and 
inhibits NFkB 

middle r49 ERK5 => cMyc 0.9 1.4 0.5 ERK5 phosphorylates cMyc 

middle r50 ET1 => ET1R 0.9 1.4 0.5 ET1 binds to ET1R 

middle r51 ET1R => EGFR 0.9 1.4 0.5 ET1R transactivates EGFR through NADPH 

middle r52 ET1R => Gaq11 0.9 1.4 0.5 ET1R activates Gaq11 

middle r53 FAK => PI3K 0.9 1.4 0.5 FAK activates PI3K 

middle r54 FAK => Src 0.9 1.4 0.5 FAK activates Src 

middle r55 FHL1 & MEK12 => ERK12 0.9 1.4 0.5 MEK12 phosphorylates ERK12 

      FHL1 activates phospho-ERK12 

middle r56 !FHL2 & CaN => NFAT 0.9 1.4 0.5 FHL2 binds CaN preventing NFAT activation 

      CaN dephosphorylates NFAT 
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middle r57 !FHL2 & CaN & ERK12 => 
NFAT 

0.9 1.4 0.5 ERK12 phosphorylates CaN NFAT complex, 
increasing NFAT DNA binding in the nucleus 

middle r58 !FHL2 & !HDAC & !MuRF 
& MRTF => SRF 

0.9 1.4 0.5 FHL2 binds promotors of SRF-responsive genes 

     HDAC dissociates from SRF ending its inhibition 

     MuRF reduces nuclear SRF 

     MRTF co-activates with SRF 

middle r59 gp130 => JAK 0.9 1.4 0.5 gp130 phosphorylates JAK 

middle r60 Ga1213 => RhoGEF 0.9 1.4 0.5 Ga1213 activates RhoGEF 

middle r61 Gaq11 => FHL1 0.9 1.4 0.5 Gaq11 activates FHL1 

middle r62 Gaq11 => Gbg 0.9 1.4 0.5 GPCR dissociates into alpha and beta gamma 
subunits 

middle r63 Gaq11 => PLC 0.9 1.4 0.5 Gaq11 binds PLC 

middle r64 Gbg => PI3K 0.9 1.4 0.5 Gbg activates PI3K 

middle r65 !GSK3b & !JNK & !p38 & 
NFkB => NFAT 

0.9 1.4 0.5 GSK3b phosphorylates NFAT to prevent 
nuclear translocation 

      JNK phosphorylates NFAT to prevent nuclear 
translocation 

      p38 phosphorylates NFAT to prevent nuclear 
translocation 

      NFkB binds NFAT and promotes its activation 

middle r66 !GSK3b & ERK12 => 
GATA4 

0.9 1.4 0.5 GSK3b prevents expression and nuclear 
localization of GATA4 

      ERK12 phosphorylates GATA4 

middle r67 !GSK3b & p38 => GATA4 0.9 1.4 0.5 p38 phosphorylates GATA4 

middle r68 !GSK3b & ROCK => GATA4 0.9 1.4 0.5 ROCK contributes to GATA4 activation 

middle r69 !GSK3b & p38 => CREB 0.9 1.4 0.5 GSK3b inhibits CREB by phosphorylation at a 
secondary site 

      p38 phosphorylates and activates CREB 

middle r70 !GSK3b => eIF2B 0.9 1.4 0.5 GSK3b phosphorylates and inhibits eIF2B 

middle r71 !HDAC & aActinin => MLP 0.9 1.4 0.5 HDAC blocks MLP nuclear accumulation 

     aActinin binds to MLP 

middle r72 !HDAC & ERK5 => MEF2 0.9 1.4 0.5 HDAC dissociates from MEF2  ending its 
inhibition 

      ERK5 phosphorylates MEF2 

middle r73 !HDAC & p38 => MEF2 0.9 1.4 0.5 p38 phosphorylates MEF2 

middle r74 !IkB => NFkB 0.9 1.4 0.5 IKK phosphorylates IkB targeting it for 
degradation 

middle r75 !IKK => IkB 0.9 1.4 0.5 IKK phosphorylates IkB targeting it for 
degradation 

middle r76 Integrin & RhoA => FAK 0.9 1.4 0.5 Integrins activate FAK 

      RhoA is necessary for FAK activation 

middle r77 Integrin => RhoGEF 0.9 1.4 0.5 Integrin activates RhoGEF 

middle r78 Integrin => Talin 0.9 1.4 0.5 Talin and Vcl link Integrin to Actin 

middle r79 IP3 => Ca 0.9 1.4 0.5 IP3 binds to IP3 receptors on the endoplasmic 
reticulum which release Ca ions 

middle r80 JAK => STAT 0.9 1.4 0.5 JAK phosphorylates STAT 
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middle r81 JNK => cJun 0.9 1.4 0.5 JNK phosphorylates cJun 

middle r82 LTCC => Ca 0.9 1.4 0.5 L-type Ca channel increases Ca 

middle r83 MEF2 => mTor 0.9 1.4 0.5 MEF2 activates mTor 

middle r84 MEK36 => p38 0.9 1.4 0.5 MEK36 phosphorylates p38 

middle r85 MEK47 => JNK 0.9 1.4 0.5 MEK47 phosphorylates JNK 

middle r86 MEK47 => p38 0.9 1.4 0.5 MEK47 phosphorylates p38 

middle r87 MEK5 => ERK5 0.9 1.4 0.5 MEK5 phosphorylates ERK5 

middle r88 MEKK1 => MEK47 0.9 1.4 0.5 MEKK1 phosphorylates MEK4 

middle r89 MEKK23 => MEK5 0.9 1.4 0.5 MAP3K2 and MAP3K3 both phosphorylate 
MEK5 

middle r90 MEKK4 => MEK36 0.9 1.4 0.5 MEKK4 (MTK1) activates MEK3 and MEK6 

middle r91 MEKK4 => MEK47 0.9 1.4 0.5 MEKK4 phosphorylates MEK4 

middle r92 mTor => eIF4E 0.9 1.4 0.5 mTor phosphorylates a binding protein of 
eIF4E 

middle r93 mTor => p70s6k 0.9 1.4 0.5 mTor phosphorylates p70s6k 

middle r94 Na => NCX 0.9 1.4 0.5 Na leaves through NCX 

middle r95 NCX => Ca 0.9 1.4 0.5 NCX increases Ca 

middle r96 !NFAT => aMHC 0.9 1.4 0.5 NFAT inhibits aMHC transcription 

middle r97 !NFAT => SERCA 0.9 1.4 0.5 NFAT inhibits SERCA transcription 

middle r98 NHE => Na 0.9 1.4 0.5 NHE increases Na 

middle r99 NOS => sGC 0.9 1.4 0.5 NOS produces NO which activates sGC 

middle r101 p38 => IKK 0.9 1.4 0.5 p38 activates IKK 

middle r102 p38 => Lmcd1 0.9 1.4 0.5 p38 MAPK induces Lmcd1 expression 

middle r103 PDK1 => Akt 0.9 1.4 0.5 PDK1 activates Akt 

middle r104 PI3K => PDK1 0.9 1.4 0.5 PI3K activates PDK1 

middle r105 PKC => Raf1 0.9 1.4 0.5 PKC activates Raf1 

middle r106 !PKG1 & DAG => TRP 0.9 1.4 0.5 PKG1 inhibits IP3 

      DAG activates TRP 

middle r107 !PKG1 & PLC => IP3 0.9 1.4 0.5 PLC cleaves PIP2 to form IP3 and DAG 

middle r108 PLC => DAG 0.9 1.4 0.5 PLC cleaves PIP2 to form IP3 and DAG 

middle r109 Rac1 => MEKK4 0.9 1.4 0.5 Rac1 binds MEKK4 

middle r110 Raf1 => MEK12 0.9 1.4 0.5 Raf1 activates MEK12 

middle r111 Ras => MEKK1 0.9 1.4 0.5 Ras activates MEKK1 

middle r112 Ras => MEKK23 0.9 1.4 0.5 Ras activates MAP3K2 and MAP3K3 

middle r113 Ras => Rac1 0.9 1.4 0.5 Ras activates Rac1 

middle r114 Ras => Raf1 0.9 1.4 0.5 Ras activates Raf1 

middle r115 RhoA => MRTF 0.9 1.4 0.5 STARS and RhoA enhance actin polymerization, 
which allows for nuclear translocation of MRTF 

middle r116 RhoA => ROCK 0.9 1.4 0.5 RhoA binds to ROCK 

middle r117 RhoGEF => RhoA 0.9 1.4 0.5 RhoGEF activates RhoA 

middle r118 !ROCK & !Titin => FHL2 0.9 1.4 0.5 ROCK inhibits FHL2 

      Titin inhibits FHL2 

middle r119 sGC => cGMP 0.9 1.4 0.5 sGC converts GTP to cGMP 
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middle r120 Talin => Actin 0.9 1.4 0.5 Talin links to Actin 

middle r121 Talin => Vinculin 0.9 1.4 0.5 Talin links to Vinculin 

middle r122 Titin => FHL1 0.9 1.4 0.5 Titin activates FHL1 

middle r123 !Titin & FoxO => MuRF 0.9 1.4 0.5 Titin inhibits MuRF 

      FoxO transcriptionally regulates MuRF 

middle r124 TRP => Ca 0.9 1.4 0.5 Trp increases Ca 

middle r125 Vinculin => Actin 0.9 1.4 0.5 Vcl links to Actin 

 



Appendix D 

Appe ndix D: Validation relationships 

This database includes a list of activity changes predicted by the model, as well as the corresponding 

observed changes from the experimental literature used for validation. For references for each reaction, 

see S1 Table in Tan PLoS Comput. Biol. 13(11), 2017. 

 

ID Input Input 2 Input Code Output Valid Measurement Category 

Akt_ Stretch  w(1)=0.7; Akt  Increase In-Int 

AngII_ Stretch  w(1)=0.7; AngII  Increase In-Int 

AP1_ Stretch  w(1)=0.7; AP1  Increase In-Int 

Ca_ Stretch  w(1)=0.7; Ca  Increase In-Int 

CaN_ Stretch  w(1)=0.7; CaN  Increase In-Int 

cFos_ Stretch  w(1)=0.7; cFos  Increase In-Int 

cJun_ Stretch  w(1)=0.7; cJun  Increase In-Int 

cMyc_ Stretch  w(1)=0.7; cMyc  Increase In-Int 

CREB_ Stretch  w(1)=0.7; CREB  Increase In-Int 

Cx43_ Stretch  w(1)=0.7; Cx43  Increase In-Int 

DAG_ Stretch  w(1)=0.7; DAG  Increase In-Int 

EGFR_ Stretch  w(1)=0.7; EGFR  Increase In-Int 

ERK12_ Stretch  w(1)=0.7; ERK12  Increase In-Int 

FAK_ Stretch  w(1)=0.7; FAK  Increase In-Int 

FHL1_ Stretch  w(1)=0.7; FHL1  Increase In-Int 

GATA4_ Stretch  w(1)=0.7; GATA4  Increase In-Int 

gp130_ Stretch  w(1)=0.7; gp130  Increase In-Int 

GSK3b_ Stretch  w(1)=0.7; GSK3b  Decrease In-Int 

IP3_ Stretch  w(1)=0.7; IP3  Increase In-Int 

JAK_ Stretch  w(1)=0.7; JAK  Increase In-Int 

JNK_ Stretch  w(1)=0.7; JNK  Increase In-Int 

Lmcd1_ Stretch  w(1)=0.7; Lmcd1  Increase In-Int 
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MEF2_ Stretch  w(1)=0.7; MEF2  Increase In-Int 

MEK12_ Stretch  w(1)=0.7; MEK12  Increase In-Int 

MLP_ Stretch  w(1)=0.7; MLP  Increase In-Int 

MRTF_ Stretch  w(1)=0.7; MRTF  Increase In-Int 

mTor_ Stretch  w(1)=0.7; mTor  Increase In-Int 

MuRF_ Stretch  w(1)=0.7; MuRF  Decrease In-Int 

NFAT_ Stretch  w(1)=0.7; NFAT  Increase In-Int 

NFkB_ Stretch  w(1)=0.7; NFkB  Increase In-Int 

NOS_ Stretch  w(1)=0.7; NOS  Increase In-Int 

p38_ Stretch  w(1)=0.7; p38  Increase In-Int 

p70s6k_ Stretch  w(1)=0.7; p70s6k  Increase In-Int 

PI3K_ Stretch  w(1)=0.7; PI3K  Increase In-Int 

PKC_ Stretch  w(1)=0.7; PKC  Increase In-Int 

Rac1_ Stretch  w(1)=0.7; Rac1  Increase In-Int 

Raf1_ Stretch  w(1)=0.7; Raf1  Increase In-Int 

Ras_ Stretch  w(1)=0.7; Ras  Increase In-Int 

RhoA_ Stretch  w(1)=0.7; RhoA  Increase In-Int 

RhoGEF_ Stretch  w(1)=0.7; RhoGEF  Increase In-Int 

Src_ Stretch  w(1)=0.7; Src  Increase In-Int 

SRF_ Stretch  w(1)=0.7; SRF  Increase In-Int 

STAT_ Stretch  w(1)=0.7; STAT  Increase In-Int 

aMHC_ Stretch  w(1)=0.7; aMHC  Decrease In-Out 

ANP_ Stretch  w(1)=0.7; ANP  Increase In-Out 

Ao_ Stretch  w(1)=0.7; Ao  Increase In-Out 

bMHC_ Stretch  w(1)=0.7; bMHC  Increase In-Out 

BNP_ Stretch  w(1)=0.7; BNP  Increase In-Out 

CellArea_ Stretch  w(1)=0.7; CellArea  Increase In-Out 

PrSynth_ Stretch  w(1)=0.7; PrSynth  Increase In-Out 

sACT_ Stretch  w(1)=0.7; sACT  Increase In-Out 

SERCA_ Stretch  w(1)=0.7; SERCA  Decrease In-Out 

ERK12_Akti Stretch Akti w(1)=0.7; ymax(Akt)=0; ERK12 ERK12_ Decrease KO-Int 

BNP_AP1i Stretch AP1i w(1)=0.7; ymax(AP1)=0; BNP BNP_ No Change KO-Int 

ANP_AT1Ri Stretch AT1Ri w(1)=0.7; ymax(AT1R)=0; ANP ANP_ Decrease KO-Int 

Ao_AT1Ri Stretch AT1Ri w(1)=0.7; ymax(AT1R)=0; Ao Ao_ Decrease KO-Int 

BNP_AT1Ri Stretch AT1Ri w(1)=0.7; ymax(AT1R)=0; BNP BNP_ Decrease KO-Int 

CellArea_AT1Ri Stretch AT1Ri w(1)=0.7; ymax(AT1R)=0; CellArea CellArea_ Decrease KO-Int 

cFos_AT1Ri Stretch AT1Ri w(1)=0.7; ymax(AT1R)=0; cFos cFos_ Decrease KO-Int 

cJun_AT1Ri Stretch AT1Ri w(1)=0.7; ymax(AT1R)=0; cJun cJun_ No Change KO-Int 

Cx43_AT1Ri Stretch AT1Ri w(1)=0.7; ymax(AT1R)=0; Cx43 Cx43_ Decrease KO-Int 

ERK12_AT1Ri Stretch AT1Ri w(1)=0.7; ymax(AT1R)=0; ERK12 ERK12_ Decrease KO-Int 

JNK_AT1Ri Stretch AT1Ri w(1)=0.7; ymax(AT1R)=0; JNK JNK_ Increase KO-Int 

Raf1_AT1Ri Stretch AT1Ri w(1)=0.7; ymax(AT1R)=0; Raf1 Raf1_ Decrease KO-Int 
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skAct_AT1Ri Stretch AT1Ri w(1)=0.7; ymax(AT1R)=0; sACT sACT_ Decrease KO-Int 

STAT_AT1Ri Stretch AT1Ri w(1)=0.7; ymax(AT1R)=0; STAT STAT_ Decrease KO-Int 

cFos_Cai Stretch Cai w(1)=0.7; ymax(Ca)=0; cFos cFos_ Decrease KO-Int 

cJun_Cai Stretch Cai w(1)=0.7; ymax(Ca)=0; cJun cJun_ No Change KO-Int 

STAT_Cai Stretch Cai w(1)=0.7; ymax(Ca)=0; STAT STAT_ Decrease KO-Int 

ANP_CaNi Stretch CaNi w(1)=0.7; ymax(CaN)=0; ANP ANP_ Decrease KO-Int 

BNP_EGFRi Stretch EGFRi w(1)=0.7; ymax(EGFR)=0; BNP BNP_ Decrease KO-Int 

ERK12_EGFRi Stretch EGFRi w(1)=0.7; ymax(EGFR)=0; ERK12 ERK12_ Decrease KO-Int 

JNK_EGFRi Stretch EGFRi w(1)=0.7; ymax(EGFR)=0; JNK JNK_ No Change KO-Int 

MEK12_EGFRi Stretch EGFRi w(1)=0.7; ymax(EGFR)=0; MEK12 MEK12_ Decrease KO-Int 

Ras_EGFRi Stretch EGFRi w(1)=0.7; ymax(EGFR)=0; Ras Ras_ Decrease KO-Int 

ANP_ET1Ri Stretch ET1Ri w(1)=0.7; ymax(ET1R)=0; ANP ANP_ Decrease KO-Int 

BNP_ET1Ri Stretch ET1Ri w(1)=0.7; ymax(ET1R)=0; BNP BNP_ Decrease KO-Int 

cFos_ET1Ri Stretch ET1Ri w(1)=0.7; ymax(ET1R)=0; cFos cFos_ Decrease KO-Int 

STAT_ET1Ri Stretch ET1Ri w(1)=0.7; ymax(ET1R)=0; STAT STAT_ No Change KO-Int 

Akt_FAKi Stretch FAKi w(1)=0.7; ymax(FAK)=0; Akt Akt_ Decrease KO-Int 

ANP_FAKi Stretch FAKi w(1)=0.7; ymax(FAK)=0; ANP ANP_ Decrease KO-Int 

bMHC_FAKi Stretch FAKi w(1)=0.7; ymax(FAK)=0; bMHC bMHC_ Decrease KO-Int 

CellArea_FAKi Stretch FAKi w(1)=0.7; ymax(FAK)=0; CellArea CellArea_ Decrease KO-Int 

cJun_FAKi Stretch FAKi w(1)=0.7; ymax(FAK)=0; cJun cJun_ Decrease KO-Int 

cMyc_FAKi Stretch FAKi w(1)=0.7; ymax(FAK)=0; cMyc cMyc_ Decrease KO-Int 

ERK12_FAKi Stretch FAKi w(1)=0.7; ymax(FAK)=0; ERK12 ERK12_ Decrease KO-Int 

JNK_FAKi Stretch FAKi w(1)=0.7; ymax(FAK)=0; JNK JNK_ Increase KO-Int 

MEF2_FAKi Stretch FAKi w(1)=0.7; ymax(FAK)=0; MEF2 MEF2_ Decrease KO-Int 

mTor_FAKi Stretch FAKi w(1)=0.7; ymax(FAK)=0; mTor mTor Decrease KO-Int 

p70s6K_FAKi Stretch FAKi w(1)=0.7; ymax(FAK)=0; p70s6k p70s6k Decrease KO-Int 

Src_FAKi Stretch FAKi w(1)=0.7; ymax(FAK)=0; Src Src_ Decrease KO-Int 

RhoA_Ga1213i Stretch Ga1213i w(1)=0.7; ymax(Ga1213)=0; RhoA RhoA_ Decrease KO-Int 

RhoGEF_Ga1213i Stretch Ga1213i w(1)=0.7; ymax(Ga1213)=0; RhoGEF RhoGEF Decrease KO-Int 

BNP_GATA4 Stretch GATA4i w(1)=0.7; ymax(GATA4)=0; BNP BNP_ Decrease KO-Int 

STAT_gp130i Stretch gp130i w(1)=0.7; ymax(gp130)=0; STAT STAT_ Decrease KO-Int 

ERK12_Integrini Stretch Integrini w(1)=0.7; ymax(Integrin)=0; ERK12 ERK12_ Decrease KO-Int 

FAK_Integrini Stretch Integrini w(1)=0.7; ymax(Integrin)=0; FAK FAK_ Decrease KO-Int 

JNK_Integrini Stretch Integrini w(1)=0.7; ymax(Integrin)=0; JNK JNK_ Decrease KO-Int 

p38_Integrini Stretch Integrini w(1)=0.7; ymax(Integrin)=0; p38 p38_ Decrease KO-Int 

RhoA_Integrini Stretch Integrini w(1)=0.7; ymax(Integrin)=0; RhoA RhoA_ Decrease KO-Int 

RhoGEF_Integrini Stretch Integrini w(1)=0.7; ymax(Integrin)=0; RhoGEF RhoGEF Decrease KO-Int 

STAT_JAKi Stretch JAKi w(1)=0.7; ymax(JAK)=0; STAT STAT_ Decrease KO-Int 

ANP_JNKi Stretch JNKi w(1)=0.7; ymax(JNK)=0; ANP ANP_ Decrease KO-Int 

Ao_JNKi Stretch JNKi w(1)=0.7; ymax(JNK)=0; Ao Ao_ Increase KO-Int 

cJun_JNKi Stretch JNKi w(1)=0.7; ymax(JNK)=0; cJun cJun_ Decrease KO-Int 

ERK12_JNKi Stretch JNKi w(1)=0.7; ymax(JNK)=0; ERK12 ERK12_ Decrease KO-Int 
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CellArea_Lmcd1i Stretch Lmcd1i w(1)=0.7; ymax(Lmcd1)=0; CellArea CellArea_ Decrease KO-Int 

aMHC_LTCCi Stretch LTCCi w(1)=0.7; ymax(LTCC)=0; aMHC aMHC_ Decrease KO-Int 

ANP_LTCCi Stretch LTCCi w(1)=0.7; ymax(LTCC)=0; ANP ANP_ Decrease KO-Int 

bMHC_LTCCi Stretch LTCCi w(1)=0.7; ymax(LTCC)=0; bMHC bMHC_ Decrease KO-Int 

Ca_LTCCi Stretch LTCCi w(1)=0.7; ymax(LTCC)=0; Ca Ca_ Decrease KO-Int 

CaN_LTCCi Stretch LTCCi w(1)=0.7; ymax(LTCC)=0; CaN CaN_ Decrease KO-Int 

PrSynth_LTCCi Stretch LTCCi w(1)=0.7; ymax(LTCC)=0; PrSynth PrSynth_ Decrease KO-Int 

SERCA_LTCCi Stretch LTCCi w(1)=0.7; ymax(LTCC)=0; SERCA SERCA_ No Change KO-Int 

BNP_MEK12 Stretch MEK12i w(1)=0.7; ymax(MEK12)=0; BNP BNP_ Decrease KO-Int 

Cx43_MEK13 Stretch MEK12i w(1)=0.7; ymax(MEK12)=0; Cx43 Cx43_ Decrease KO-Int 

ERK12_MEK14 Stretch MEK12i w(1)=0.7; ymax(MEK12)=0; ERK12 ERK12_ Decrease KO-Int 

BNP_MLPi Stretch MLPi w(1)=0.7; ymax(MLP)=0; BNP BNP_ Decrease KO-Int 

NFAT_MLPi Stretch MLPi w(1)=0.7; ymax(MLP)=0; NFAT NFAT_ Decrease KO-Int 

PrSynth_MLPi Stretch MLPi w(1)=0.7; ymax(MLP)=0; PrSynth PrSynth_ Decrease KO-Int 

bMHC_MRTFi Stretch MRTFi w(1)=0.7; ymax(MRTF)=0; bMHC bMHC_ Decrease KO-Int 

BNP_MRTFi Stretch MRTFi w(1)=0.7; ymax(MRTF)=0; BNP BNP_ Decrease KO-Int 

ANP_NCXi Stretch NCXi w(1)=0.7; ymax(NCX)=0; ANP ANP_ Decrease KO-Int 

CaN_NCXi Stretch NCXi w(1)=0.7; ymax(NCX)=0; CaN CaN_ Decrease KO-Int 

PrSynth_NCXi Stretch NCXi w(1)=0.7; ymax(NCX)=0; PrSynth PrSynth_ Decrease KO-Int 

ANP_NHEi Stretch NHEi w(1)=0.7; ymax(NHE)=0; ANP ANP_ Decrease KO-Int 

CaN_NHEi Stretch NHEi w(1)=0.7; ymax(NHE)=0; CaN CaN_ Decrease KO-Int 

ERK12_NHEi Stretch NHEi w(1)=0.7; ymax(NHE)=0; ERK12 ERK12_ Decrease KO-Int 

PrSynth_NHEi Stretch NHEi w(1)=0.7; ymax(NHE)=0; PrSynth PrSynth_ Decrease KO-Int 

Raf1_NHEi Stretch NHEi w(1)=0.7; ymax(NHE)=0; Raf1 Raf1_ Decrease KO-Int 

STAT_NHEi Stretch NHEi w(1)=0.7; ymax(NHE)=0; STAT STAT_ Decrease KO-Int 

Ao_p38i Stretch p38i w(1)=0.7; ymax(p38)=0; Ao Ao_ Decrease KO-Int 

PrSynth_p38i Stretch p38i w(1)=0.7; ymax(p38)=0; PrSynth PrSynth_ Decrease KO-Int 

Akt_PI3Ki Stretch PI3Ki w(1)=0.7; ymax(PI3K)=0; Akt Akt_ Decrease KO-Int 

BNP_PI3Ki Stretch PI3Ki w(1)=0.7; ymax(PI3K)=0; BNP BNP_ Decrease KO-Int 

ERK12_PI3Ki Stretch PI3Ki w(1)=0.7; ymax(PI3K)=0; ERK12 ERK12_ Decrease KO-Int 

JNK_PI3Ki Stretch PI3Ki w(1)=0.7; ymax(PI3K)=0; JNK JNK_ No Change KO-Int 

NOS_PI3Ki Stretch PI3Ki w(1)=0.7; ymax(PI3K)=0; NOS NOS_ Decrease KO-Int 

Ras_PI3Ki Stretch PI3Ki w(1)=0.7; ymax(PI3K)=0; Ras Ras_ Decrease KO-Int 

cFos_PKCi Stretch PKCi w(1)=0.7; ymax(PKC)=0; cFos cFos_ Decrease KO-Int 

Cx43_PKCi Stretch PKCi w(1)=0.7; ymax(PKC)=0; Cx43 Cx43_ No Change KO-Int 

ERK12_PKCi Stretch PKCi w(1)=0.7; ymax(PKC)=0; ERK12 ERK12_ Decrease KO-Int 

Raf1_PKCi Stretch PKCi w(1)=0.7; ymax(PKC)=0; Raf1 Raf1_ Decrease KO-Int 

STAT_PKCi Stretch PKCi w(1)=0.7; ymax(PKC)=0; STAT STAT_ Decrease KO-Int 

Ca_PLCi Stretch PLCi w(1)=0.7; ymax(PLC)=0; Ca Ca_ Decrease KO-Int 

cFos_PLCi Stretch PLCi w(1)=0.7; ymax(PLC)=0; cFos cFos_ Decrease KO-Int 

IP3_PLCi Stretch PLCi w(1)=0.7; ymax(PLC)=0; IP3 IP3_ Decrease KO-Int 

ERK12_Rac1i Stretch Rac1i w(1)=0.7; ymax(Rac1)=0; ERK12 ERK12_ Decrease KO-Int 
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ID Input Input 2 Input Code Output Valid Measurement Category 

ERK12_Raf1i Stretch Raf1i w(1)=0.7; ymax(Raf1)=0; ERK12 ERK12_ Decrease KO-Int 

ERK12_Rasi Stretch Rasi w(1)=0.7; ymax(Ras)=0; ERK12 ERK12_ No Change KO-Int 

JNK_Rasi Stretch Rasi w(1)=0.7; ymax(Ras)=0; JNK JNK_ No Change KO-Int 

MEK12_Rasi Stretch Rasi w(1)=0.7; ymax(Ras)=0; MEK12 MEK12_ Decrease KO-Int 

p38_Rasi Stretch Rasi w(1)=0.7; ymax(Ras)=0; p38 p38_ Decrease KO-Int 

Akt_RhoAi Stretch RhoAi w(1)=0.7; ymax(RhoA)=0; Akt Akt_ Decrease KO-Int 

ANP_RhoAi Stretch RhoAi w(1)=0.7; ymax(RhoA)=0; ANP ANP_ Decrease KO-Int 

bMHC_RhoAi Stretch RhoAi w(1)=0.7; ymax(RhoA)=0; bMHC bMHC_ Decrease KO-Int 

BNP_RhoAi Stretch RhoAi w(1)=0.7; ymax(RhoA)=0; BNP BNP_ Decrease KO-Int 

cFos_RhoAi Stretch RhoAi w(1)=0.7; ymax(RhoA)=0; cFos cFos_ Decrease KO-Int 

ERK12_RhoAi Stretch RhoAi w(1)=0.7; ymax(RhoA)=0; ERK12 ERK12_ Decrease KO-Int 

FAK_RhoAi Stretch RhoAi w(1)=0.7; ymax(RhoA)=0; FAK FAK_ Decrease KO-Int 

MRTF_RhoAi Stretch RhoAi w(1)=0.7; ymax(RhoA)=0; MRTF MRTF_ Decrease KO-Int 

PrSynth_RhoAi Stretch RhoAi w(1)=0.7; ymax(RhoA)=0; PrSynth PrSynth_ Decrease KO-Int 

sACT_RhoAi Stretch RhoAi w(1)=0.7; ymax(RhoA)=0; sACT sACT_ Decrease KO-Int 

ANP_RhoGEFi Stretch RhoGEFi w(1)=0.7; ymax(RhoGEF)=0; ANP ANP_ Decrease KO-Int 

bMHC_RhoGEFi Stretch RhoGEFi w(1)=0.7; ymax(RhoGEF)=0; bMHC bMHC_ Decrease KO-Int 

CellArea_RhoGEFi Stretch RhoGEFi w(1)=0.7; ymax(RhoGEF)=0; CellArea CellArea_ Decrease KO-Int 

MRTF_RhoGEFi Stretch RhoGEFi w(1)=0.7; ymax(RhoGEF)=0; MRTF MRTF_ Decrease KO-Int 

RhoA_RhoGEFi Stretch RhoGEFi w(1)=0.7; ymax(RhoGEF)=0; RhoA RhoA_ Decrease KO-Int 

ANP_Srci Stretch Srci w(1)=0.7; ymax(Src)=0; ANP ANP_ Decrease KO-Int 

FAK_Srci Stretch Srci w(1)=0.7; ymax(Src)=0; FAK FAK_ Decrease KO-Int 

p38_Srci Stretch Srci w(1)=0.7; ymax(Src)=0; p38 p38_ Decrease KO-Int 

MuRF_Titini Stretch Titini w(1)=0.7; ymax(Titin)=0; MuRF MuRF_ Increase KO-Int 

 

 

 



Appendix E 

Appe ndix E: Genes with multiple shRNAs above 

threshold for area 

Genes with 2, 3, 4, or 5 distinct shRNAs displaying a median cell area above 95th percentile (1,579 µm2) 

are indicated, using the following key: 

2 shRNAs above; 3 shRNAs above; 4 shRNAs above; 5 shRNAs above 

 

 

1110001D15Rik 

1110004E09Rik 

1110032A04Rik 

1700016G05Rik 

2310014L17Rik 

2510005D08Rik 

2610034B18Rik 

2610204M08Rik 

2810401C16Rik 

4921509E07Rik 

4930542C12Rik 

4930578I06Rik 

4930595M18Rik 

4931414P19Rik 

4933421I07Rik 

5830443L24Rik 

9030224M15Rik 

9130022K13Rik 

9830123M21Rik 

9830147P19Rik 

A330008L17Rik 

A830031A19Rik 

AW491445 

Abcc10 

Abcc3 

Abtb1 

Acadvl 

Acox3 

Acta1 

Adam10 

Adcy8 

Ahctf1 

Ahnak 

Akr1c6 

Alk 

Ankfy1 

Ankrd2 

Anp32e 

Ap1g1 

Ap1s3 

Apom 

Aqp11 

Aqp7 

Arhgap12 

Arid5b 

Atf4 

Atg4c 

Aven 

B3galt5 

B630005N14Rik 

BC002163 

BC048546 

BC049762 

Bag5 

Bak1 

Bcl9l 

Birc4 

Bmi1 

Btc 

C030002J06Rik 

C330023M02Rik 

C330049O21Rik 

C6 

Carhsp1 
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Carm1 

Cbx6-Nptxr 

Ccbl2 

Cd33 

Cd40 

Cdv3 

Chd6 

Cldn11 

Clec2d 

Clec4a4 

Cnga3 

Cnr2 

Col18a1 

Col4a3 

Col9a1 

Cops6 

Coro6 

Cox17 

Cplx1 

Cxcl12 

D330012D11Rik 

Dapk1 

Dclre1c 

Defcr6 

Des 

Dffa 

Dhx29 

Dhx30 

Dhx33 

Dnajc5b 

Doc2b 

Dock3 

Dub1a 

Dync1li2 

E430002G05Rik 

Ecel1 

Ecg2 

Edf1 

Efhc2 

Efs 

Eomes 

Epo 

F8 

Fabp3 

Fam110b 

Fam123a 

Fath2 

Fbln5 

Fbxl4 

Fgd4 

Fkbp8 

Fmnl1 

Frrs1 

Fuca2 

Gabrp 

Galnt13 

Gbp2 

Ghrhr 

Gm1280 

Gm1890 

Gm270 

Gm443 

Gm4876 

Gm711 

Gnb2l1 

Gnl2 

Gpbp1 

Gpr158 

Gpx3 

Hc 

Hes7 

Hexdc 

Hif1an 

Hnrpab 

Hsp90ab1 

Htr3b 

Ibtk 

Ier3 

Ifit3 

Il2 

Insl6 

Irak3 

Itgb8 

Kcnk9 

Kctd4 

Kifc2 

Klk1b8 

Krt222 

Lass2 

Limk2 

Lims1 

Lmf1 

Lnx1 

Lrrc57 

Ltbp1 

Ltbp2 

Magea4 

Magi3 

Map2k4 

Map3k9 

Mbd3 

Med22 

Mesp2 

Mib2 

Mid1ip1 

Mmp15 

Mmp25 

Mtfmt 

Mybpc3 

Myl1 

Myst2 

Ndufaf4 

Nhlrc3 

Nkx2-9 

Nlrc4 

Nova2 

Npl 

Nudcd1 

Nup155 

Nxph2 

Olfr1009 

Olfr1226 

Olfr1231 

Olfr1423 

Olfr1484 

Olfr181 

Olfr199 

Olfr266 

Olfr403 

Olfr491 

Olfr605 

Olfr677 

Olfr984 

Omg 

Oosp1 

Osbpl5 

Osbpl6 

Osgepl1 

Otof 

Otub1 
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P2ry1 

Pard6g 

Pbk 

Pcdhga1 

Pde4dip 

Pebp1 

Perp 

Pgr 

Phactr3 

Pigb 

Pigf 

Pigt 

Plekhg2 

Pllp 

Polr3b 

Pou4f3 

Ppp2r4 

Pramel4 

Prkaca 

Prlpb 

Proc 

Prok2 

Prss8 

Psmb5 

Psmb6 

Psmb7 

Psors1c2 

Ptger3 

Ptk9 

Raet1c 

Rap2a 

Rbp2 

Ren1 

Rffl 

Rpa2 

Rpgrip1 

Rph3al 

Rslcan24 

Scube1 

Sdf2 

Sept11 

Serinc1 

Serpina3n 

Sertad1 

Slc27a3 

Slc35b3 

Slc39a8 

Slc6a15 

Sltm 

Smtn 

Socs5 

Sorcs3 

Spock2 

Spp2 

Stk40 

Suv420h2 

Svs3b 

Syn2 

Sypl 

Tcf12 

Tgm3 

Timm8b 

Tlx3 

Tmed6 

Tmem116 

Tmem149 

Tmem177 

Tmem2 

Tnfsf9 

Trib3 

Ttn 

Ttyh1 

Ugcg 

Usp16 

Usp32 

Usp38 

V1ra3 

Vmn1r203 

Vmn2r23 

Vrk2 

Wdr25 

Wnk1 

Xbp1 

Zc3h14 

Zfp101 

Zfp277 

Zfp286 

Zfp316 

Zfp329 

Znrd1 
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Appe ndix F: Genes with multiple shRNAs above 

threshold for elongation 

Genes with 2, 3, 4, or 5 distinct shRNAs displaying a mean elongation above 95th percentile (2.12) are are 

indicated, using the following key: 

2 shRNAs above; 3 shRNAs above; 4 shRNAs above; 5 shRNAs above 

 

 

0610010D20Rik 

0610042E07Rik 

1110001D15Rik 

1110004E09Rik 

1300007L22Rik 

1700001J03Rik 

1700001P01Rik 

1700016D06Rik 

1700021F05Rik 

1810014F10Rik 

2310056P07Rik 

2310057N15Rik 

2810046M22Rik 

4833420G17Rik 

4921507P07Rik 

4930532D21Rik 

4931419K03Rik 

4932411N23Rik 

4933424A10Rik 

4933425M15Rik 

4933430I17Rik 

6230409E13Rik 

6330403K07Rik 

9130023D20Rik 

9230119C12Rik 

AU021034 

Acly 

Acta1 

Adam1a 

Adam1b 

Add2 

Aif1l 

Aldh9a1 

Angptl4 

Ap1m1 

Armcx1 

Asb12 

Ascl3 

Asphd2 

Astn1 

Atp11b 

Attp 

B3gat2 

BC010787 

BC030476 

BC036313 

BC089491 

BC089597 

Bace2 

Bdh1 

Bet1 

Bivm 

Brms1 

Bscl2 

C130022K22Rik 

Cab39l 

Car5a 

Cav1 

Ccdc28b 

Ccdc85a 

Ccl11 

Cct5 

Cd109 

Cd80 
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Cdadc1 

Cdc14a 

Cdc14b 

Cdc5l 

Ceacam1 

Cfp 

Chchd7 

Chic1 

Clcf1 

Cldn19 

Clec2e 

Clgn 

Col1a1 

Cops8 

Cox7b2 

Cpsf3l 

Cryzl1 

Csf1r 

Ctdspl2 

Ctnna1 

Cul2 

Cutc 

Cyb561d2 

Cyb5r4 

Cyp1a2 

Cyp3a44 

Cyp7a1 

D0H4S114 

D15Ertd621e 

D230025D16Rik 

D430018E03Rik 

D830046C22Rik 

D8Ertd354e 

Dazap1 

Dbndd1 

Dennd1b 

Diras1 

Dnajc5b 

Dnmt1 

Dsp 

Dusp7 

Dvl2 

E330009J07Rik 

E330039K12Rik 

Eaf2 

Ear2 

Ear4 

Ece2 

Ecg2 

Edaradd 

Eed 

Efemp1 

Eif3s3 

Emcn 

Emr4 

Entpd1 

Eprs 

Eps8 

Ethe1 

Etnk2 

Exoc7 

F10 

F12 

F3 

Fam114a1 

Fam20a 

Fermt1 

Fgl1 

Flot2 

Gale 

Gdpd4 

Gm4884 

Gm5084 

Gm5388 

Gm608 

Gng12 

Golga7 

Gpr157 

Gpr82 

Gsn 

Gzmc 

Hdlbp 

Helb 

Herpud1 

Hkdc1 

Hsd17b12 

Hsf2 

Hydin 

Ifi204 

Ifna12 

Igfbp7 

Impact 

Irak1 

Irf8 

Itga11 

Jmjd4 

Klk1b1 

Klrb1c 

Kptn 

Krtap12-1 

LOC239191 

LOC547343 

Ldb3 

Leprot 

Lgi2 

Llgl1 

Lrrc24 

Lrrc46 

Lrrtm3 

Ly6a 

Lyplal1 

Lysmd4 

Mapre2 

March6 

March8 

Matn2 

Mbl2 

Med8 

Mfn1 

Mipep 

Mlf2 

Mmp17 

Mrfap1 

Mrs2 

Msx1 

Mthfd2 

Mtmr11 

Mtmr6 

Mucdhl 

Mypop 

Naca 

Nap1l2 

Nckipsd 

Nek4 

Nin 

Nol12 

Npr3 

Ntn1 

Nudt7 

Numbl 
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Nup35 

ORF28 

Olfr1031 

Olfr1040 

Olfr1101 

Olfr1121 

Olfr1123 

Olfr1124 

Olfr1213 

Olfr1242 

Olfr1289 

Olfr1305 

Olfr1333 

Olfr1408 

Olfr1451 

Olfr196 

Olfr2 

Olfr209 

Olfr314 

Olfr441 

Olfr470 

Olfr554 

Olfr582 

Olfr694 

Olfr697 

Olfr715 

Olfr768 

Olfr871 

Olfr900 

Olfr904 

Olfr924 

Olfr945 

Olfr978 

Osbpl6 

Pah 

Pam 

Pcdhb11 

Pcdhb3 

Pcdhga3 

Pde1a 

Pde1c 

Pdlim3 

Pfpl 

Phb2 

Phf17 

Pknox1 

Plekho1 

Plin4 

Plxna4 

Podnl1 

Polr3b 

Pramel4 

Prkcbp1 

Proc 

Prok2 

Prpf19 

Psmc3 

Ptafr 

Ptprk 

Pus1 

Pus3 

Rab11fip1 

Rabep1 

Raet1a 

Raet1d 

Ralgds 

Rassf1 

Rb1 

Rbbp9 

Rbm4b 

Rg9mtd2 

Rgmb 

Rgs2 

Rhod 

Rhox5 

Rmnd5a 

Rnaseh2c 

Rnf152 

Rpia 

Rpl36 

Rps19 

Rps24 

Rpusd2 

Rrad 

Rras2 

Rrh 

Rtcd1 

Rtp4 

Scg5 

Scn3a 

Scn4b 

Scube2 

Serpinb6a 

Sh3glb1 

Siglecf 

Skint2 

Skint4 

Slc22a5 

Slc25a14 

Slc25a46 

Slmap 

Snap29 

Snx4 

Socs5 

Spata16 

Sprr2j-ps 

Srcin1 

Srebf2 

St6galnac6 

Stam2 

Sv2a 

Sytl5 

Taar5 

Taf10 

Tagap 

Tas2r118 

Tcfe2a 

Tekt1 

Tex13 

Tex15 

Tfip11 

Tgfb2 

Thap3 

Thoc4 

Tlm 

Tmc4 

Tmem108 

Tmem33 

Tmem63c 

Tnfaip6 

Tnn 

Tnnc2 

Tom1l2 

Trappc6b 

Twist2 

Ubl4b 

Ugt1a6b 

Ulbp1 

Umps 

Unc13a 
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Usp46 

V1rc10 

V1rc28 

V1rg11 

Whrn 

X83328 

X99384 

Zbtb40 

Zc3h14 

Zdhhc12 

Zfp143 

Zfp422-rs1 

Zfp535 

Zfp654 

Zfp7 

Znrf1 
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Appe ndix G: Genes with multiple shRNAs above 

threshold for spikiness 

Genes with 2, 3, 4, or 5 distinct shRNAs displaying a mean spikiness above 95th percentile (7.86) are 

indicated, using the following key: 

2 shRNAs above; 3 shRNAs above; 4 shRNAs above; 5 shRNAs above 

 

 

1200009I06Rik 

1700081D17Rik 

1700128F08Rik 

1810022C23Rik 

2210012G02Rik 

2310002J15Rik 

2610109H07Rik 

4921511C20Rik 

4921524J06Rik 

4930417M19Rik 

4930563M21Rik 

4930566A11Rik 

4932701A20Rik 

5830443L24Rik 

5930416I19Rik 

9430015G10Rik 

9830147J24Rik 

A4galt 

A730008L03Rik 

Abca16 

Abcg5 

Acpp 

Acta1 

Acvr1b 

Acvrl1 

Aig1 

Aipl1 

Alg5 

Aph1a 

Aph1b 

Apoc1 

Apom 

Arhgef3 

Art3 

Art4 

Astn1 

B230359F08Rik 

B3gnt9 

BC020535 

BC048599 

BC049762 

BC061237 

BC066135 

Bcas2 

Bcl2a1b 

Birc1b 

Bmper 

C920008G01Rik 

Cab39 

Cacna1s 

Cacnb2 

Camkk1 

Camp 

Cap2 

Casq2 

Cav3 

Ccdc18 

Ccdc99 

Ccin 

Ccnl1 

Cd300e 

Cdx1 

Chx10 

Clec16a 

Clec1a 

Clec4b1 

Clm3 

Cnn3 

Cnot8 

Cntfr 

Col4a3 

Coro7 

Cplx1 

Cpne2 

Creb3l4 

Crtc2 

Cryab 

Csk 

Csn1s1 

Ctnna2 
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Cttn 

D10Wsu52e 

D15Ertd621e 

D830007F02Rik 

Dak 

Dapk3 

Dbc1 

Dbi 

Dbil5 

Dbt 

Ddx20 

Ddx6 

Defb9 

Defcr22 

Defcr6 

Disc1 

Dnaja3 

Dnajb11 

Dnajc9 

Doc2a 

Dppa2 

Dscr1 

Dusp28 

E130304F04Rik 

Efcab4a 

Efemp1 

Efemp2 

Enpp6 

Ercc3 

Etnk1 

Eva1 

Exoc3 

Exoc4 

Exoc6 

F630003A18Rik 

Fanci 

Fath2 

Fbln5 

Fbn1 

Fbxo5 

Fgd1 

Fgf12 

Fgfr2 

Fhdc1 

Fign 

Fliih 

Flot2 

Fn3k 

Fras1 

Galnt1 

Galnt5 

Gatm 

Gbp2 

Gga3 

Glt8d1 

Gltp 

Gm1890 

Gm5308 

Gmfb 

Gnas 

Gnat2 

Gpc1 

Gpr160 

Gprc6a 

Grm3 

Gstm5 

Gypa 

Gys3 

Hand1 

Havcr2 

Hdc 

Hemgn 

Hes7 

Hist1h1c 

Hist1h2ab 

Hist1h2ae 

Hnrph2 

Hnrpll 

Hsf2 

Hyi 

Igfbp2 

Igfbp5 

Iigp2 

Ik 

Ing1 

Itm2a 

Jph4 

Jub 

Kcne1 

Kcnj12 

Kctd13 

Kdelr3 

Kif9 

Klhl5 

Klrc2 

Kpna3 

Krtap21-1 

LOC236413 

LOC381806 

LOC434782 

LOC546214 

Ldb3 

Lhx5 

Lin54 

Lin9 

Lman2 

Lmod3 

Lnx1 

Ly9 

Mageb17 

Manba 

Map2k4 

Mapkapk2 

Mbd6 

Mcoln1 

Mea1 

Mfn1 

Mip 

Mras 

Mrps17 

Ms4a6b 

Ms4a7 

Mta1 

Mtl5 

Nadsyn1 

Nanos1 

Nckap1 

Nek9 

Nid1 

Nin 

Nol9 

Npas3 

Nr2f2 

Nr4a3 

Nxph2 

Odam 

Olfr1110 

Olfr1423 

Olfr1453 

Olfr169 
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Olfr228 

Olfr25 

Olfr371 

Olfr521 

Olfr774 

Olfr993 

Osbpl5 

Otof 

Pank3 

Pccb 

Pctp 

Pdcd4 

Pdgfrl 

Pdzd4 

Phlppl 

Pigo 

Pigt 

Pik4ca 

Pkd2l1 

Plekhh2 

Pnkp 

Pold2 

Polr3b 

Polr3h 

Pqbp1 

Prdx2 

Prlpn 

Prm3 

Pscd3 

Pten 

Ptx3 

Pvrl1 

Pxmp2 

Rab3il1 

Rbl1 

Rbm7 

Rgl2 

Rgma 

Rgr 

Rhag 

Rin3 

Rnf145 

Rock1 

Rock2 
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