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ABSTRACT

Tilting-pad journal bearings (TPJBs) support the rotors of systems in many industries

such as power generation, HVAC, and oil & gas. Reliable operation with little to no

unplanned downtime is paramount. Stability predictions using rotordynamic analysis tools

ensure safe and reliable operation. As demands on rotating machinery push operating

conditions towards higher speeds and more demanding loads, the accuracy of rotordynamic

analysis becomes critical. Accurate rotordynamic analysis relies on having accurate

component level models, especially for the bearings, such as TPJBs. The dynamic behavior

of the TPJBs, expressed as stiffness and damping coefficients, are used in system-level

analyses. The coefficients are predicted with a variety of TPJB models used in different

bearing codes. Bearing codes must be validated by comparing predictions with

experimental data. Validation experiments for TPJB bearing codes are often performed on

dedicated test rigs.

Reliable validation for TPJB models requires data from test rig to have the lowest

uncertainty possible. The state-of-the-art for performing and presenting uncertainty

analysis is inadequate for confidently validating TPJB dynamic coefficients. Therefore, a

framework for analyzing the uncertainty of TPJB coefficient identification that is more

suitable to the problem is proposed in this dissertation.

First, the framework is described and applied to single-axis models. The framework is

a simulation-based method that (1) defines a truth model to represent the physics of the

test rig and expected measurement errors, (2) establishes an identification model that will

process simulated measurements into dynamic coefficients, and (3) compares the coefficients

identified in the simulation using the identification model with the true values defined in

the truth model. Through the single-axis applications, important trends that affect the

uncertainty of TPJB coefficient identification are identified. These trends are applicable for

TPJBs and other components (such as seals) on rotating machines with behavior described

by stiffness and damping coefficients. Furthermore, some common assumptions used in TPJB

identification experiments are shown to be problematic, especially when identifying dynamic



coefficients in high performance conditions (e.g. - high rotation speeds or high-frequency

excitations).

The models are extended to higher-fidelity models in two-axes. First, uncertainty

analysis is performed using models based on existing test rigs and compared with the

single-axis models. The results in the higher-fidelity models support the results from the

single-axis models and add further details into TPJB identification uncertainties. For

example, identifying the cross-coupled coefficients of TPJBs is incredibly challenging due to

the small magnitude of the cross-coupling. While at a system level these uncertainties may

not change the dynamics significantly, they add challenges to bearing model validation.

Second, the utility of the uncertainty analysis is demonstrated by updating the design of a

new test rig for TPJB dynamic coefficient identification. The uncertainty analysis serves as

a design tool to make changes that would reduce uncertainty.

Improving the analysis of uncertainty for TPJB coefficient identification will lead to

test rig designs and experimental methods that reduce the identification uncertainty and

allow more accurate model validation. This will ultimately improve TPJB modeling for

rotordynamic analysis and increase rotating machine performance and reliability.
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Chapter 1

Introduction

Rotating machines convert and transmit energy in industries such as

power generation, aviation, HVAC, and oil & gas. The reliability of rotating

machines is of utmost importance to minimize unplanned costs. In

examples such as jet engines, reliability is tied directly to human safety.

Accurate modeling ensures safe, reliable operation and this requires

modeling the supporting bearings. Bearings enable relative motion between

stationary components and rotating components while providing support

for the weight of the rotor and dynamic forces experienced during

operation. A strong argument can be made for bearings being the most

important components in a rotating machine. Therefore, contributions to

bearing modeling and model validation are always worthwhile.

1
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(a) Jet Engine
(b) Steam Turbine (c) Turbocharger

Figure 1.1: Examples of Rotating Machines

1.1 Bearings Overview

Most bearings for rotating machinery can be classified as rolling element

bearings, hydrodynamic bearings, or magnetic bearings. A high-level

summary is provided to illustrate some of the trade-offs to be considered

during bearing selection. The trade-offs make it important to have accurate

models so an appropriate bearing design can be selected based on the

system requirements. Some references are provided as a starting point if

more information is required regarding the different bearing types. A

comprehensive description of each bearing type is not the scope of this

section.

This dissertation focuses on radial, oil-lubricated hydrodynamic tilting-

pad journal bearings (TPJBs) . Section 1.2 covers TPJBs in more detail.

The objectives of this dissertation (stated in 1.4) focus on TPJBs, but the

developments of the research in this dissertation are relevant for all types of

bearings.

Rolling element bearings [1] have elements of circular cross section -
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balls or rollers (cylinders or conical frustums) - sandwiched between the rotor

and stator in machined elements called races. The rotor is supported on the

elements and races of the bearing. Friction is reduced by allowing rotation

through the rolling of the elements instead of sliding between the rotor and

stator. For high-performance applications some form of lubrication is required

and this can make modeling more challenging. Rolling element bearings are

practical for many applications due to their high load capacity and relatively

small required volume. However, rolling element bearings have little damping.

If an application calls for damping, this must be added externally through

means such as a squeeze-film damper around the bearing.

Hydrodynamic bearings [2] support the rotor using pressure built up

in a fluid film. The fluid-film pressure eliminates contact between the rotor

and the stator during standard operation, minimizing friction and wear.

The fluid-film also provides damping. The reduction of wear and addition of

damping compare favorably with rolling element bearings. However,

hydrodynamic bearings face challenges in wear during startup when the

hydrodynamic pressure has not been generated yet. This can be alleviated

by externally pressurizing the fluid but the required pumping mechanism

adds cost and complexity. Hydrodynamic bearings can have a load capacity

comparable to the load capacity of rolling element bearings. This depends

significantly on the lubricating fluid used and operating conditions such as

rotation speed. When a fluid like oil is used, hydrodynamic bearings could

have a much higher load capacity than rolling element bearings. When the
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fluid is air, the load capacity would be significantly lower unless the rotating

speed of the system is high enough (which is unlikely due to the challenges

in achieving the speeds required for equivalent load capacity). Still, growing

interest in oil-free systems drives research into gas bearings and foil

bearings.

Magnetic bearings [3] levitate rotors using electromagnetic forces.

Magnetic bearings share the non-contact benefits of hydrodynamic bearings

without the added wear at low speeds during startup and shutdown.

Magnetic bearings are typically active magnetic bearings (AMBs) -

designed to be active systems using electromagnets in opposing pairs with a

controller determining the current in each electromagnet coil. Passive

magnetic bearings exist, often using permanent magnets pushing against

permanent magnets or reactive eddy currents to generate forces. Unit load

capacity, stiffness, and damping are generally lower in passive magnetic

bearings than in comparable AMBs. The maximum unit load capacity of

AMBs is significantly lower compared with oil-lubricated hydrodynamic

bearings and rolling element bearings. AMBs also require power amplifiers

and a controller to function, often leading to higher initial costs. The active

control of AMBs offers a compelling alternative to passive bearings

including hydrodynamic bearings and rolling element bearings when the

other design trade-offs can be tolerated. For example, actively controlled

AMBs can incorporate on-line methods for vibration control. [4]
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1.2 TPJBs in Rotating Machinery

Developments Leading to TPJBs

The foundation of hydrodynamic lubrication began in the 1880s with

Beauchamp Tower’s experimental discoveries [5] and Osborne Reynolds’

mathematical modeling [6]. At the time, the basic requirements for

hydrodynamic lubrication (a rotating shaft with oil as a lubricant) were

actively used. However, hydrodynamic force was an unknown side effect

rather than a deliberately harnessed phenomenon.

Figure 1.2: Diagram of Beauchamp Tower’s Experimental Setup

Tower began by collecting a variety of data and experience from his peers

and conducting his own experiments. Figure 1.2 shows a test rig Tower used

for his own studies. Tower noticed that as the journal was rotating, a plug

used to close the oil hole kept being pushed out. He could not fully explain

this phenomenon. Reynolds’ was able to take the experience and data from
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Tower’s experiments and corroborate it with a mathematical model. Tower’s

and Reynolds’ work shed light on the pressures generated by oil films in

rotating machinery. With this new understanding, the working principle of

plain journal bearings could be harnessed.

As demands on systems supported by fluid-film bearings increased, cases

began to be reported of large forces transmitted to other parts of the system

under certain conditions. The first documented case came from Newkirk in

1924 [7]. This led to further investigation of hydrodynamic lubrication and

instability mechanisms by many researchers including Lund [8], Crandall [9],

and Leonard & Rowe [10]. Wachel observed through case studies that changes

to bearings supporting a rotating system can significantly affect stability. [11]

Studying instability demonstrated the importance of bearings in ensuring

stable operation. As a result, plain journal bearings evolved into more

sophisticated variations (shown in Figure 1.3) such as elliptical bearings,

offset-halves bearings, and lobed bearings. All these designs are classified as

fixed-geometry journal bearings. The modifications in these designs aimed

to reduce the effects of cross-coupled forces that can lead to instability. [12]
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(a) Plain Journal Bearing (b) Elliptical Bearing

(c) Offset-Halves Bearing
(d) 3-Lobed Bearing

Figure 1.3: Fixed geometry bearing designs reproduced from Allaire & Flack [13]
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Cross-coupling means that a displacement or velocity along an axis leads

to a force along a perpendicular axis. When static loads such as the weight of

the rotor are applied, the rotor displaces in the direction of the load as well

as a perpendicular direction. Figure 1.4a shows a plot of rotor eccentricity

as static load is increased.

(a) Operating eccentricity as applied load varies

(b) Forces on the rotor during whirling motion

Figure 1.4: Effects of cross-coupling reproduced from He et al. [2]

The movement in the direction perpendicular to the load direction is an

effect of cross-coupling. Another effect of the cross-coupling happens when

the rotor is whirling about its operating point. Since systems cannot be

balanced perfectly, every rotating machine will have some whirl. The rotor

displaces along the direction of the rotating unbalance vector and this

results in cross-coupled forces applied perpendicular to the unbalance

vector’s direction. The resulting cross-coupled forces could point in the
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same direction as the whirling motion, injecting more energy into vibrations

and potentially driving the system unstable. Figure 1.4b shows a diagram

of cross-coupled forces during whirl.

As long as enough damping is present the vibration will not grow in

magnitude over time. Ensuring cross-coupled forces don’t overwhelm the

available damping is a critical design step that becomes increasingly

challenging with fixed geometry bearings as high-performance rotating

machines trend higher in rotating speeds.

Benefits of TPJBs

The typical TPJB design significantly reduces cross-coupling in

hydrodynamic bearings. In a TPJB, there are pads (or shoes as they are

sometimes called) that can pivot. Four pads and five pads are common in

radial bearings. In response to rotor displacements from static loads or

dynamic forces around the operating point, the pads can rotate about an

axis parallel to the rotor’s axis. Some pivot designs can even allow the pads

to tilt along with any static or dynamic shaft slope. As a result, the

cross-coupling can be negligible compared with fixed geometry bearings.

Figure 1.4(a) includes the operating point changes in a TPJB as applied

load increases. The operating point shifts almost completely in the

direction of the applied load, indicating negligible cross-coupling. Nicholas

[14] provided a survey of several cases of axial compressors where TPJBs

demonstrated increased stability relative to fixed-geometry bearings. Some
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examples of TPJB designs are shown in Figure 1.5.

(c)

Figure 1.5: Examples of Tilting-Pad Journal Bearings reproduced from San Andres [15].

(a) Rocker Pivot TPJB, (b) Spherical Pivot TPJB, and (c) Flexure Pivot TPJB

TPJBs are becoming increasingly important as rotating machines increase

in operating speed and loads. The growing demands on systems place greater

burdens of accuracy on models used to predict the system behavior.
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1.3 Motivations

If modeling can’t predict a rotating system’s behavior accurately, the

consequences range from lost time and production to lost lives [16]. Rieger

[17] described the costs of five types of rotating equipment failures seen in

turbines. One example saw approximately 1.1 billion USD (in 1983) lost

over the span of 11 years due to blade failures. Three of the five types of

failures Rieger discussed (blade cracking/failure, disk cracking/rupture, and

rotor burst) are associated with undesirable dynamic behaviors of the rotor

such as resonance and “whirl unbalance.” Though Rieger’s discussion

focused on gas turbines in power generation, the high cost of rotating

machinery exhibiting undesirable behavior has been documented more

broadly.

Gunter & Weaver [18] reviewed the redesign of the Kaybob compressor, a

notable case of high costs of addressing excessive vibrations. The case study

highlighted the need for accurate component models (e.g. - bearings) for

rotordynamic analysis. The Kaybob compressor suffered from self-excited,

subsynchronous whirl leading to vibration beyond acceptable limits. This

instability led to expensive troubleshooting including bearing design

modifications, the addition of squeeze film dampers, and ultimately a

complete redesign of the rotor which was made to be shorter and stiffer.

These efforts took more than five months and cost more than 100 million

USD. The engineers working on the Kaybob compressors did not have



12 CHAPTER 1. INTRODUCTION

access to many state-of-the-art models and rotordynamic analysis software

available today. Gunter & Weaver developed new models of the Kaybob

compressor bearings and incorporated these into stability analyses with

modern rotordynamic analysis software. The tools available to Gunter &

Weaver in 2016 predicted the results experienced by the engineers originally

working with the Kaybob compressors. Additional bearing configurations

were modeled and showed that if modern tools and understanding were

available, the Kaybob engineers could have resolved the instability issues in

less time and with lower costs. The results showed that computerized

analysis, provided the models in the analysis are sufficiently accurate, can

predict system behavior with enough fidelity to consider replacing

experimentation which requires significantly more time and money.

In a similar review, Childs [19] revisited the analysis of a machine

suffering from “large and damaging subsynchronous whirling motion”: The

Space Shuttle Main Engine (SSME) High-Pressure Fuel Turbopump

(HPFTP). Engineers analyzed the system’s stability before testing. At the

time, stability analysis was typically performed only if testing revealed

problems that needed to be diagnosed. However, even with preliminary

analysis, early tests still showed some issues and changes were made to the

design to try and reduce the vibration issues. Two attempted changes

included additional dampers and asymmetrically stiffened bearing housings.

The drawback to these two options was an increase in synchronous

vibration levels. The final solution involved further modifying the bearing
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housings, stiffening the rotor, and modifying the seals. Each design

iteration was reviewed with modern tools and the results are generally in

line with the experimental results, just like in Gunter & Weaver’s review of

the Kaybob compressor redesign. In a concluding comment Childs stated,

“there is a serious deficiency in test data for the component elements which

must be modeled and incorporated into an overall rotordynamic model.” In

this dissertation it is shown that there is an additional requirement: The

test data must come with comprehensive uncertainty analysis to ensure that

the experimental results are adequately validating models of the component

elements.

The deficiency of experimental data for component model validation is

echoed by an API study conducted by Kocur et al. [20] This study found

that there is large variation in dynamic coefficient predictions for bearings

(and seals) leading to large variations in stability predictions. In this study,

engineers and researchers with rotordynamic modeling capabilities were

presented with identical bearing, seal, and rotor designs to analyze from a

compressor system with available experimental data. The data was not

provided to the engineers and researchers. First, bearing and seal

coefficients were requested. Figure 1.6 shows the bearing coefficients

collected in the study. The bearing coefficient predictions varied by almost

an order of magnitude.

The surveyors analyzed the stability of the system using the various

predictions of bearing coefficients. To isolate the coefficient variation as the
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(a) Principal Stiffness Coefficients

(b) Principal Damping Coefficients

Figure 1.6: Collected Coefficient Predictions (Reproduced from Kocur et al. [20])

source of predicted stability variation, a common eigenvalue solver and

identical rotor model were used in all stability calculations. This resulted in

significant variation in predictions of stability and critical speeds as seen in

Figure 1.7. The stability analyses often predicted more stability than
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experimentally measured for the system analyzed.

Figure 1.7: Predicted Stability Values with Bearing Coefficients Only (Reproduced from

Kocur et al. [20])

Kocur et al. [20] then compared several different bearing models with the

goal of understanding the main source of variation. Ultimately, one of the

major conclusions from this survey was that “a gold standard of experimental

data is needed for both tilting pad journal bearings and gas labyrinth seal

dynamic coefficients.” This data would be used in validating bearing models

and minimize the variation of predicted bearing dynamic coefficients.

Two studies separated by almost 30 years - Childs et al. [19] and Kocur

et al. [20] - highlighted a need for accurate experimental data. Gunter &
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Weaver [18] added additional support for this by showing how challenges

faced by engineers in the past can be mitigated with more accurate models.

The bearings supporting rotating machinery in particular need to be

modeled with increasing accuracy. In short, to mitigate challenges facing

rotating machinery now and in the future, improved prediction tools relying

on more accurate models need to be developed. Therefore, the uncertainty

in experimental validation of models must be understood.

The Need for Understanding Uncertainty

In this dissertation, a framework will be developed for modeling the

uncertainty of experimentally identifying TPJB dynamic coefficients (i.e. -

stiffness and damping). While this dissertation focuses on TPJBs, the same

uncertainty analysis framework is applicable to the identification of

dynamic coefficients for other components such as other bearing types (e.g.

- foil bearings) and seals.

Understanding the identification uncertainty is crucial to ensure

confidence in model validation. If a bearing design is being tested but the

experimental uncertainty is large, the model’s ability to predict the physical

behavior cannot be confidently validated. In addition to evaluating a

model’s ability to predict behavior, two models can be compared. Large

uncertainties would not allow for determining if one model is better than

the other as they may both - within uncertainty bounds - capture the

experimentally measured behavior. This dissertation seeks to advance the
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state-of-the-art of uncertainty analysis for dynamic coefficient identification

of TPJBs. By providing a path to understanding and managing

experimental uncertainty for dynamic coefficient identification, predictive

models can be validated with greater confidence for rotating machines.

1.4 Dissertation Objective

This dissertation has three main objectives.

The first objective of this dissertation is to establish a formal framework

for modeling the experimental uncertainties of dynamic coefficient

identification under specific operating conditions. The framework should be

used by engineers and researchers to have a consistent method of analyzing

uncertainty for TPJB coefficient identification experiments.

The second objective of this dissertation is to investigate the influence

of various aspects of the bearing and test rig design on the uncertainty of

identified dynamic coefficients. Considerations will include test rig design

choices (such as force measurement scheme), parameters of the bearing being

tested, and differences in dynamics between the physical system and models

used for identification. Some important factors will be identified for engineers

and researchers to consider for coefficient identification experiments and the

design of test rigs for those experiments.

The third objective of this dissertation is to complete the design of a test

rig to identify TPJB dynamic coefficients with acceptable accuracy over a
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range of excitation frequencies from 10 Hz to 500 Hz and rotor speeds up to

22,000 RPM. Bearings tested will have a journal diameter of 5 inches and

an axial length between 2.5 inches (L/D=0.5) and 3.75 inches (L/D=0.75).

Feedback from industrial members of the Rotating Machinery and Controls

Laboratory (ROMAC Lab) at the University of Virginia (UVA) established

the standard for acceptable accuracy. Identification accuracy will be modeled

and evaluated with uncertainty analysis using the framework developed in

this dissertation.

1.5 Dissertation Outline

This dissertation is divided into 6 chapters:

Chapter 1 introduced the motivation, context, and scope of the

dissertation.

Chapter 2 describes the state-of-the-art of uncertainty analysis

pertaining to rotordynamic coefficient identification and reviews the

uncertainty analysis of dynamic coefficient identification in TPJB

experiments. The publications reviewed are grouped according to whether

they contain uncertainty analysis or not. The publications with uncertainty

analysis are further grouped according to whether the analysis includes

uncertainty from systematic sources of error or not.

Chapter 3 develops the uncertainty analysis framework. Because TPJBs

have minimal cross-coupled stiffness and damping, single-axis models are
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used as representative approximations of systems with TPJBs (which

includes test rigs identifying TPJB coefficients). The single-axis models are

used to simultaneously describe the uncertainty analysis framework and

gain insight into significant factors affecting the uncertainties of dynamic

coefficient identification.

Chapter 4 will extend the uncertainty analysis framework in two ways.

First, the uncertainty analysis is extended with a second axis to increase

fidelity. Second, a model based on a test rig is developed to compare with

analysis of uncertainty in the literature. Ultimately, the uncertainty analysis

with increased fidelity supports the results in Chapter 3.

Chapter 5 demonstrates a novel application of uncertainty analysis to test

rig design using the framework developed in this dissertation. The design of

a test rig is modified to reduce the modeled uncertainty of TPJB dynamic

coefficient identification.

Chapter 6 summarizes the contributions and recommendations based on

the research presented in this dissertation.
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Chapter 2

Reviewing Uncertainty Analysis of

TPJB Coefficient Identification

Experiments

The state-of-the-art of uncertainty analysis in TPJB dynamic coefficient

identification experiments will be established by reviewing published

literature presenting experimentally identified dynamic coefficients for

TPJBs. While there are many experimental results presented for other

bearing types as well as theoretical or analytical works for TPJBs, the

scope of the included literature will be limited to experimental results and

to TPJBs (excluding active TPJBs). The uncertainty analysis performed

for the experimental TPJB coefficient identification will be reviewed.

Literature will be classified into three categories based on the type of

uncertainty analysis performed: 1) No uncertainty analysis, 2) uncertainty

analysis including uncertainty only from random error sources, and 3)

21
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uncertainty analysis including uncertainty from systematic error sources.

Literature in the first two categories will only be addressed briefly because

the goal of this chapter is to review the completeness of uncertainty analysis

when including systematic sources. In the third category, where systematic

error sources are considered, each publication will be summarized in greater

detail and the methods of computing the uncertainty will be reviewed.

For a broader look at identification experiments, reviews by Tiwari et al.

[21] and Dimond et al. [22] are recommended as starting points. Tiwari et

al. [21] covered literature from 1956 to 2003 and provided an overview of

identification for components including hydrodynamic bearings, hydrostatic

bearings, ball bearings, seals, and more. The details provided include

descriptions of experimental measurement techniques, mathematical

modeling, parameter extraction algorithms, and uncertainty in the

estimates. Dimond et al. [22] reviewed identification experiments of

hydrodynamic bearings specifically, focusing on providing some comparison

of different methods of exciting the system for testing. This review

indicated that “methods of evaluating the effects of measurement

uncertainty on overall bearing coefficient confidence levels are reviewed.”

However, the details of uncertainty analysis performed - when the literature

contains it - are not provided and analyzed.

The two broader reviews provided data suggesting two challenges related

to uncertainty analysis. First, many experiments covered did not perform

uncertainty analysis. Second, when uncertainty analysis was performed, the
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method of performing the analysis was not consistent. Taken together, this

means that meaningful comparison of uncertainty (and thus accuracy) of

experimental results is difficult, if not impossible.

This dissertation’s first objective of establishing a framework for

uncertainty analysis will begin to address these issues. With the framework

established, engineers and researchers will have a lower barrier of entry to

including truly comprehensive uncertainty analysis with a consistency that

allows comparisons between efforts by different groups.

2.1 Tests Rigs for Bearing Model Validation

Comprehensive uncertainty analysis for TPJB dynamic coefficient

identification requires models of test rigs used for these experiments. In this

section, one of the most significant design choices for test rig design is

highlighted and several other important modeling considerations are noted.

Test rigs for TPJB coefficient identification can broadly be classified into

two types based on where in the system dynamic excitation is applied.

The first type of test rig has dynamic excitation applied to the bearing

stator, typically through the housing, while the rotor is held as rigidly as

possible, such as with rolling element bearings. This configuration is

common because it is easier to apply forces and place sensors on a

stationary component than a rotating component.

The second type of test rig has dynamic excitation applied to the rotor
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while the housing is fixed to the substructure. Historically, there were few

ways of implementing this type of excitation. One example is using known

unbalance weights as a source of excitation. A drawback to this is the

excitation can only be applied synchronous to the rotor speed. Recently,

magnetic bearings have become more available and are able to provide

asynchronous excitation forces directly to the rotor.

A system in the field will have bearing housings that are fixed to the

foundation and the usual forces of concern (such as unbalance) act on the

rotor. The second type of test rig, though less common for bearing

identification experiments, nominally represents the physics of a system in

the field more accurately. Typically, it is assumed that the difference

between the two test rig configurations is negligible. Under some conditions

such as low-speed operation this may be a suitable assumption. However,

with high-speed machinery experiencing high-frequency forces, the

difference may be more noticeable. Wilkes & Childs [23] explored this topic

and found that depending on bearing’s dynamic properties, applying

excitation forces on the bearing housing versus applying excitation forces on

the shaft may lead to significant differences.

Figure 2.1 and 2.2 show dynamic coefficients of two different bearing

models identified in a simulation. The simulations were performed twice,

once modeling the application of dynamic forces on the stator and a second

time modeling the application of dynamic forces on the rotor. Figure 2.1

highlights a case where the difference in dynamic force application did not
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lead to significant differences. Figure 2.2 shows a case where significant

differences are observed between the two methods of applying dynamic

forces.

Figure 2.1: Comparing Test Rigs with Excited Housing vs. Excited Rotor with

Bearing Design Showing Slight Difference - Reproduced from Wilkes & Childs [23]
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Figure 2.2: Comparing Test Rigs with Excited Housing vs. Excited Rotor with

Bearing Design Showing Significant Difference - Reproduced from Wilkes & Childs [23]

While this topic is not a focus of this dissertation, the effect of designing

a test rig of the first type rather than the second type can be evaluated with

the uncertainty analysis framework presented in this dissertation using the

models developed by Wilkes & Childs [23]. Other design factors that can be

similarly evaluated with the framework in this dissertation include:

• including two test bearings and not needing additional support bearings

vs. identifying a single bearing and needing at least one other bearing

to support the rotor

• choice of displacement sensor system (e.g. - eddy current displacement
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sensor vs. capacitive displacement sensor)

• choice of force sensor system (e.g. - strain gage load cell vs. piezoelectric

load cell)

In this dissertation, it is proposed that understanding the effect on

uncertainty of various design choices is important to design the best

possible test rig for the operating conditions with which TPJB dynamic

coefficients will be identified.

2.2 Uncertainty of Dynamic Coefficient Identification

The identification experiment applies a force on the target component

and measures the response of the rotor. Typically, a prescribed force

applied on the excited component is measured as an input and the relative

displacement between the rotor and stator is measured as an output. With

these measurements, it is possible to compute dynamic coefficients for a test

bearing. The identification can be performed in the time domain or in the

frequency domain. In principle it does not matter which domain is chosen

but the effect of noise or errors may affect one more than the other. [24]

[25] The reviews cited earlier by Tiwari et al. [21] and Dimond et al. [22]

provide more details on identification methods for components of rotating

machinery.

Measurements of force and displacement for coefficient identification can

come directly from a sensor or be constructed from the data of several
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sensors. A measurement will differ from the truth with some errors. Errors

can be random or systematic. If only random errors are present, then

multiple measurements will show scatter about the truth. As the number of

samples increases, the mean of the measurements will approach the truth. If

only systematic errors are present, multiple measurements will have a

consistent deviation from the truth. Figure 2.3 is a popular representation

of systematic and random errors and how they affect measurements. The

bullseye (center) of the target represents the truth the sensor attempts to

measure. Each dot represents a separate measurement.

Figure 2.3: Typical Representation of Accuracy vs. Precision

If the truth is known, the errors can be directly quantified. This

principle is used for calibrating sensors and developing estimates of the

uncertainty in sensor measurements. Usually there is some standard for

calibrating sensors, such as using “proof loads” to calibrate force sensor

systems. Sensor vendors typically provide calibration information in

traceable certificates. When the truth is not known, if the errors are known
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exactly the measurements can be compensated to obtain the truth. In

bearing dynamic coefficient identification, the truth as well as the errors are

unknown. After all, there is no “standard bearing” with accurately known

coefficients to calibrate a test rig!

Uncertainty is a characterization of the range of values that the truth

will most likely lie within. To adequately understand the uncertainty of a

measurement, the effects of both systematic errors and random errors must

be considered. If an analysis is performed with only the effect of random

errors, it is possible to estimate how precise the measurements are but not

how accurate. In a case such as dynamic coefficient identification where the

truth and errors are unknown, estimates of uncertainty (and thus accuracy)

can be developed from models including a bearing model, rotor model, etc.

This process is referred to as uncertainty analysis.

In essence, the test rig and its dynamics are treated as a “dynamic

coefficient sensor” for a bearing being tested. The errors that lead to

identification uncertainty are the result of errors related to the

subcomponents of the “dynamic coefficient sensor” such as dynamic models

used to describe the physics and the measurement sensors. Each

subcomponent can have their own uncertainties. Sensor uncertainty

provides helpful parallels to understand uncertainty for TPJB dynamic

coefficient identification.
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2.2.1 Examples of Uncertainty in Sensors

Since a typical experiment to identify TPJB coefficients measures the

displacement response of the excited component, the uncertainty associated

with displacement measurements is a good example of how sensor vendors

can describe the uncertainty of measurement. One sensor vendor, Lion

Precision, highlights three types of measurement error due to deviations

from the ideal voltage curve. Figure 2.4 shows an ideal voltage curve

compared with three highlighted types of deviation from the ideal.

(a) Ideal Displacement-Voltage Curve (b) Linearity Errors

(c) Offset Errors (d) Sensitivity Error

Figure 2.4: Displacement-Voltage Curves reproduced from Lion Precision TechNote [26]
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Another specification related to uncertainty in sensors is resolution.

Resolution is a function primarily of electrical noise that cannot be

eliminated completely. While filtering can help with resolution, there is a

trade-off between resolution and bandwidth. Heavy filtering to remove noise

will reduce the bandwidth of the sensor. Figure 2.5 shows two examples of

noise levels for a sensor.

(a) Noise for 100 Hz sensor bandwidth (b) Noise for 10 kHz sensor bandwidth

Figure 2.5: Sensor Noise Measurements reproduced from Lion Precision TechNote [26]

Measurement uncertainties are typically summarized in specifications

such as the specifications for Lion Precision’s CPL190/CPL290 capacitive

displacement sensor product shown in Figure 2.6.

Uncertainties in displacement measurement as well as other measurement

uncertainties will contribute to the uncertainty of identified coefficients. It

is important to note that the measurement uncertainty is not summarized

by a single parameter but described with several different descriptors (e.g. -

linearity errors, sensitivity errors, resolution). In this dissertation it is shown
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Figure 2.6: Specification for Lion Precision CPL190/CPL290 capacitive displacement

sensor system obtained from Lion Precision website [27]

that the uncertainty of identified dynamic coefficients is the same way and the

experimental uncertainty must be carefully described to ensure a complete

understanding of the confidence level in the results.

Much like specifications of sensors for displacement, force, pressure, etc.,

a test rig for identifying dynamic coefficients can be conceptualized as a

sensor for stiffness and damping parameters. Thus it would be convenient

to have a unified system of conveying uncertainty for use with various

“dynamic coefficient sensors.” The framework in this dissertation

establishes a foundation for such a system.
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2.2.2 Existing Frameworks for Uncertainty

Uncertainty analysis is addressed in standards such as, “Evaluation of

measurement data - Guide to the expression of uncertainty in

measurement” (hereafter referred to as the GUM) [28] and ISO 5724-1:1994

[29]. The American Society of Mechanical Engineers holds a Verification

and Validation Symposium dedicated to addressing topics including

uncertainty analysis. The international standards are useful to establish a

basic understanding of uncertainty analysis that applies to many

applications, but the trade-off for being general is that specific cases such as

bearing coefficient identification are not completely addressed by following

these specifications.

In a comparison between the ISO specification and the GUM, Deldossi

& Zappa [30] provided a summary that indicates the ISO specification is

not suitable for analyzing the uncertainty of identified bearing coefficients.

One of the key assumptions of the ISO specification is that the measurand is

directly measurable. The specification establishes the idea of “trueness” and

“precision.” A measure of trueness requires a reference value which is not

available for TPJB dynamic coefficients.

The GUM on the other hand looks at the measurand being a result of some

function of other variables. This function is analyzed in two ways: Type A

analysis for uncertainty and Type B analysis for uncertainty. Type A analysis

is defined as a “method of evaluation of uncertainty by the statistical analysis
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of a series of observations.” In other words, it looks at the repeatability of

measurements (and other statistical measures) without considering how far

away from the true quantity the measurements may be. Type B analysis is a

broad category for anything else (a “method of evaluation of uncertainty by

means other than the statistical analysis of series of observations”). While the

GUM offers a great foundation to build on, the specification itself indicates

that care must be taken to ensure the final analysis is applicable to the

evaluated experiment.

One of the challenges for the methods described in the GUM is that

dynamic coefficients are not calculated with a functional relationship in the

form the GUM framework assumes for uncertainty analysis. The GUM

computes uncertainty as:

uc(y) =

√√√√ N∑
i=1

(
δf

δxi
)2u2(xi) (2.1)

The total uncertainty, uc, is found by taking the square root of the sum

of the squares of the product of the elemental uncertainty, u(xi), and the

influence of that uncertainty on the functional relationship determining the

computed parameter, ∂f
∂xi

.

The functional relationship between the measured quantities (x1, x2, ...)

and the computed parameter (Y ) is defined by f :

Y = f(x1, x2, ...) (2.2)
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Modern dynamic coefficient identification is typically not computed by a

direct functional relationship between measured quantities such as force and

displacement. The computation is an optimization process of some sort such

as least-squares-regression analysis. The GUM addresses some of these issues

in a supplement [31] where some of the requirements (such as defining partial

derivatives) are relaxed by using a Monte Carlo method. However, even

in this supplement, the applications of the GUM framework are not fully

applicable to dynamic coefficient identification. The principle requirement

for the GUM is the determination of a measurement model and there is no

formally established method to evaluate the selection of the measurement

model itself.

For dynamic coefficient identification, the measurement model will not

capture all the physics affecting a test rig. The GUM Monte Carlo method

suggested by the GUM supplement will determine the uncertainty if the

measurement model matches the truth but cannot determine which models

of the physics of a test rig are significant. For example, if a rotor on a test

rig to identify bearing coefficients is considered “rigid enough”, it is

assumed to be rigid in the measurement model (i.e. - the measurement

model does not include any representation of rotor flexibility). The GUM

does not provide details on how the impact of the assumption may be

evaluated.

In reaching the three main objectives of this dissertation, a method of

determining the models of physics to include in the measurement model will
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be presented. By establishing this process as a part of a framework that

engineers and researchers can use for rotordynamic component dynamic

coefficient identification, experimental results can be meaningfully

compared with each other and test rig designs can be improved through the

use of simulations.

2.2.3 Other Frameworks for Uncertainty

Another field where uncertainty has been extensively explored is controls.

The concept of robustness develops criteria for making sure a system can meet

desired specifications even with modeling uncertainties. One framework for

handling uncertainty in this field is the linear fractional transformation (LFT)

framework shown in Figure 2.7.

Figure 2.7: General LFT Framework Reproduced from Zhou [32]

The LFT framework in particular was considered carefully for its

applicability to the problem of identifying dynamic coefficients. In Kemin

Zhou’s book [32] one of the illustrative examples is actually a

mass-spring-damper system with uncertain parameters. The system
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dynamics including the uncertainties can be expressed with the ideas of the

LFT and a diagram of this is shown in Figure 2.8.

Figure 2.8: Mass Spring Damper with Uncertain Parameters from Zhou [32]

It was determined that as modeling complexity increased for dynamic

coefficient identification test rigs, the problem would quickly become

intractable. Rather than looking at the responses to inputs based on

parameter uncertainties, the uncertainty analysis for dynamic coefficient

identification is actually trying to identify the uncertainties of these

parameters (represented by δm, δc, and δk in Figure 2.8). Because of the

difference in the end-goal, the LFT framework requires significant

modification to be applied in the context of bearing dynamic coefficient

identification. For practical purposes a different approach was developed in

this dissertation suitable for academic researchers as well as engineers in

industry. More details are presented in Chapter 3.
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2.3 Review of Uncertainty Analysis for TPJB

Coefficient Identification

Published literature presenting experimentally measured TPJB dynamic

coefficients have the associated uncertainty analysis reviewed. The review’s

scope excludes purely theoretical investigations of TPJB dynamic coefficients

though they may be referenced. The collected works are classified into three

categories: 1) experiments with no uncertainty analysis, 2) experiments that

only analyze repeatability, and 3) experiments that perform comprehensive

uncertainty analysis including the influence of systematic errors. Tables 2.3.1,

2.3.2, and 2.3.3 summarize the publications in each category. The first two

categories are treated more briefly than the third group. For the purpose of

this dissertation, the focus is on publications with uncertainty analysis that

at least superficially includes the effect of systematic errors on the uncertainty

of identified dynamic coefficients.

2.3.1 Experiments with No Uncertainty Analysis

The publications listed in 2.3.1 experimentally identify TPJB dynamic

coefficients but do not analyze uncertainty. The test rigs used for the

identification varied significantly between the groups that published these

papers and without any uncertainty analysis, direct comparison of the

accuracy of identification is not possible. A comprehensive uncertainty

analysis - including both the effect of random errors and systematic errors -
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would allow the comparison of the accuracy and precision of identified

coefficients between experiments.

Table 2.3.1: Experimentally Identified TPJB Coefficients Without Uncertainty Analysis

Year Authors Title

[33] 1956 Hagg, AC; Sankey, GO Some dynamic properties of oil-film journal bearings with reference

to the unbalance vibration of rotors

[34] 1972 Glienicke, J.; Han, D. C.; Leonhard, M. Practical determination and use of bearing dynamic coefficients

[35] 1980 Hisa, S; Matsuura, T; Someya, T Experiments on the dynamic characteristics of large scale journal

bearings

[36] 1997 Reddy, D Sudheer Kumar;

Swarnamami, S; Prabhu, BS

Experimental investigation on the performance characteristics of

tilting pad journal bearings for small LD ratios

[37] 1999 Ha, Hyun Cheon; Yang, Seong Heon Excitation frequency effects on the stiffness and damping coefficients

of a five-pad tilting pad journal bearing

[38] 2013 Kukla, Sebastian; Hagemann, Thomas;

Schwarze, Hubert

Measurement and Prediction of the Dynamic Characteristics of

a Large Turbine Tilting-Pad Bearing Under High Circumferential

Speeds

[39] 2015 Chatterton, Steven; Pennacchi, Paolo;

Dang, Phuoc Vinh; Vania, Andrea

Identification dynamic force coefficients of a five-pad tilting-pad

journal bearing

[40] 2015 Dang, Phuoc Vinh; Chatterton, Steven;

Pennacchi, Paolo; Vania, Andrea;

Cangioli, Filippo

Behavior of a tilting-pad journal bearing with different load directions

[41] 2016 Dang, Phuoc V.; Chatterton, Steven;

Pennacchi, Paolo; Vania, Andrea

Effect of the load direction on non-nominal five-pad tilting-pad

journal bearings

Hagg and Sankey [33] identified dynamic coefficients of a 150-degree partial

arc bearing and a 4-pad tilting-pad journal bearing. The experiments were

performed on the test rig shown in Figure 2.9. Forces were applied on the

rotor using a known unbalance. The vertical orientation of the system is

atypical. A comprehensive uncertainty analysis would be able to estimate

the impact of dynamics such as the effect of the motor unbalance on the

identified dynamic coefficients’ accuracy.
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Figure 2.9: Diagram of Hagg and Sankey test rig reproduced from [33]

Reddy et al. [36] identified performance characteristics and dynamic

coefficients of a TPJB. The test rig resembled a Jeffcott rotor with a

ball-bearing on one side and the test bearing on the other end as seen in

Figure 2.10. A non-contact electromagnetic actuator applied test forces to

Figure 2.10: Diagram of Reddy et al. test rig reproduced from [36]

the mass at the center of the rotor. In this configuration, the measurements
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would be affected by the dynamics of the ball bearing and the rotor in

addition to the TPJB. Following the process set up in Arumugam et al.

[42], the non-TPJB dynamics of the system were accounted for by using a

finite element model which included models of the test setup’s ball bearing

and rotor. The finite element models will have some errors relative to the

true physical system. The errors may contribute significantly to coefficient

identification uncertainty and a comprehensive uncertainty analysis would

provide data to help make evaluate the impact.

Glienicke et al. [34] investigated the dynamic coefficients of 4 types of

bearings including a 4-pad TPJB. Only damping results are presented

however. In addition to the experimental results, theoretical investigations

of factors affecting important bearing properties are presented. With

respect to the dynamic coefficients, no uncertainty analysis is presented.

Hisa et al. [35], Ha & Yang [37], and Kukla et al. [38] used similar test

rigs to identify TPJB dynamic coefficients. Depictions of the test rigs can be

seen in Figure 2.11.

In these experiments, pneumatic bellows provided static loading. Each

experiment applied the dynamic excitation differently to the bearing housing.

Hisa et al. used pneumatic bellows, Ha & Yang used hydraulic actuators,

and Kukla et al. used a set of vibration generators comprised of two pairs

of imbalanced shafts supported in a massive housing. In each rig the two

actuators were connected to the bearing housing in two orthogonal directions.
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(a) Hisa et al. [35]
(b) Ha & Yang [37]

(c) Kukla et al. [38]

(c)

Figure 2.11: Similarly Designed Test Rigs

Dang et al. [40] [41] present two studies for TPJBs investigating the

effect of load direction on bearing performance and dynamic coefficients.

The test rig used by Dang et al. differs from the others discussed so far by

having two TPJBs used in the experiment as seen in Figure 2.12.

Furthermore, rather than measuring the applied force, the force measured

by the load cells attached to the bearing housings were used as an estimate

of the hydrodynamic force generated within the bearing. Section 3.1.5

shows that under some conditions, measurements of hydrodynamic force

can reduce identification uncertainty. However, the extent to which it might

reduce uncertainty must be carefully analyzed with a comprehensive

uncertainty analysis. Furthermore, the effect of having another fluid-film

bearing in the system and any methods of compensating for additional
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dynamics would also have to be evaluated.

Figure 2.12: Diagram of Dang et al. test rig reproduced from [40]

Summary of Publications with No Uncertainty Analysis

The published literature in this section cover several distinct types of

test rigs. Without uncertainty analysis, the confidence in the results cannot

be estimated. Furthermore, consistent uncertainty analysis would allow

comparisons between the capabilities of the test rigs. Due to the differences

in mechanical design and component selection, even similar concepts such
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as Hisa et al., Ha & Yang, and Kukla et al. will have different uncertainties

in the identified coefficients operating at the same conditions. This means

each test rig could have operating conditions in which they are more

accurate than the other test rigs and operating conditions in which they are

less accurate than other test rigs. A comprehensive uncertainty analysis is

required to properly understand the relative capabilities of the test rigs with

respect to identified dynamic coefficient uncertainty.

2.3.2 Experimental Uncertainty Analysis Only Including Random

Errors

The publications listed in Table 2.3.2 analyze one component of the total

uncertainty when identifying dynamic coefficients of TPJBs: uncertainty

from random errors. Analyzing the uncertainty from random errors will

estimate the repeatability of the results presented. Without an analysis of

the uncertainty from systematic errors, there is no estimate of how the

identified coefficients may compare to the true values especially as a result

of unmodeled dynamics. The results may capture the TPJB dynamic

coefficients well or the identified coefficients may be inaccurate. This cannot

be differentiated by only analyzing the repeatability or other similar

statistical measure associated only with random errors.



2.3. REVIEW OF UNCERTAINTY ANALYSIS 45

Table 2.3.2: Experimentally Identified TPJB Dynamic Coefficients With Uncertainty Only

Including Random Errors

Year Authors Title

[42] 1994 Arumugam, P; Swarnamami, S;

Prabhu, BS

Experimental identification of linearized oil film coefficients of

cylindrical and tilting pad bearings

[43] 2006 Rodriguez, Luis E; Childs, Dara W Frequency Dependency of Measured and Predicted Rotordynamic

Coefficients for a Load-on-Pad Flexible-Pivot Tilting-Pad Bearing

[44] 2006 Al-Ghasem, Adnan M; Childs, Dara W Rotordynamic Coefficients Measurements Versus Predictions for a

High-Speed Flexure-Pivot Tilting-Pad Bearing (Load-Between-Pad

Configuration)

[45] 2006 Hensley, Eric Rotordynamic Coefficients for a Load-Between-Pad , Flexible-Pivot

Tilting Pad Bearing At High Loads

[46] ([47]) 2009 Childs, Dara W; Harris, Joel Static Performance Characteristics and Rotordynamic Coefficients

for a Four-Pad Ball-in-Socket Tilting Pad Journal Bearing

[48] 2011 Delgado, Adolfo; Vannini, Giuseppe;

Ertas, Bugra; Drexel, Michael; Naldi,

Lorenzo

Identification and Prediction of Force Coefficients in a Five-Pad and

Four-Pad Tilting Pad Bearing for Load-on-Pad and Load-Between-

Pad Configurations

[49] 2012 Kulhanek, Chris D; Childs, Dara W Measured Static and Rotordynamic Coefficient Results for a Rocker-

Pivot, Tilting-Pad Bearing With 50 and 60% Offsets

[50] 2011 Childs, Dara W.; Tilting-pad bearings: measured frequency characteristics of their

rotordynamic coefficients

[51] 2011 Childs, Dara W.; Carter, C. Rotordynamic Characteristics of a Five Pad, Rocker-Pivot, Tilting

Pad Bearing in a Load-on-Pad Configuration; Comparisons to

Predictions and Load-Between-Pad Results

[52] 2012 Kulhanek, Chris. D. Dynamic and Static Characteristics of a Rocker- Pivot , Tilting-

Pad Bearing With 50 % and 60 % Offsets Dynamic and Static

Characteristics of a Rocker- Pivot , Tilting-Pad Bearing With 50

% and 60 % Offsets

[53] 2012 Delgado, Adolfo; Libraschi, Mirko;

Vannini, Giuseppe

Dynamic characterization of tilting pad journal bearings from

component and system level testing

[54] 2013 Wilkes, Jason C. & Childs, Dara W. Improving Tilting-Pad Journal Bearing Predictions-Part II:

Comparison of Measured and Predicted Rotor-Pad Transfer

Functions for a Rocker-Pivot Tilting-Pad Journal Bearing

[55] 2014 Coghlan, David M. Static, Rotordynamic, and Thermal Characteristics of a Four Pad

Spherical-Seat Tilting Pad Journal Bearing with Four Methods of

Directed Lubrication

[56] 2014 Tschoepe, David Patrick Measurements versus predictions for the static and dynamic

characteristics of a four-pad, rocker-pivot, tilting-pad journal bearing

[57] 2016 Gaines, Jennifer E & Childs, Dara W The Impact of Pad Flexibility on the Rotordynamic Coefficients of

Tilting-Pad Journal Bearings

[58] 2017 Coghlan, David M; Childs, Dara W Characteristics of a Spherical Seat TPJB With Four Methods of

Directed Lubrication—Part II: Rotordynamic Performance
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Arumugam et al. [42] state that “the identification algorithm presented

here [in the paper] can identify the bearing coefficients exactly, if the FRFs

[frequency response functions] are free from noise.” To evaluate this, a

simulation study is performed with random noise added. One of the

implications of this simulation study’s results is that smaller parameters

being identified (i.e. - smaller stiffness or damping values) may have larger

errors. There is an investigation of the effect of fluid inertia on the

identification but a variational study is not performed. Only a single case of

inertia is simulated. On the experimental side, one of the results presented

(shown in Figure 2.13) compares frequency response functions (FRFs)

including the identified bearing model in finite element analysis of the

rotor-bearing system. The authors indicate that the comparison with

measured response is “satisfactory” but there is no explanation for the

discrepancy in the prediction versus the experimentally measured FRF at

750 rpm and 1250 rpm. It is possible the system is affected by the dynamics

of some part of the test rig which could be increasing the uncertainty. In

that case, the comparison may fall within the expected uncertainty bounds.

On the other hand, the expected uncertainty may be small compared with

the discrepancy between the prediction and measured FRF at 750 rpm and

1250 rpm. This would indicate some effect that is not captured in the

model of the experiment. Either possibility is difficult to support without a

comprehensive uncertainty analysis that includes the contributions of

systematic errors and dynamics of the system.
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Figure 2.13: FRF results from Arumugam et al.[42]

Delgado et al. [48] identify TPJB coefficients and present results with

uncertainty values. One major drawback to the results is that the method

of computing the uncertainty is not presented. Due to the similarity of the

identification method and the contents of the results (e.g. - including mass

matrix), it is assumed that the uncertainty computation is similar to the

uncertainty computations in the remaining publications.

Besides Arumugam et al. [42] and Delgado et al. [48], the remaining

publications all contain experimental results on TPJBs performed at the same

research facility. The test rig used for these studies is shown in Figure 2.14.

The analysis of uncertainty in these publications is consistently defined as

the 95% confidence internal of the curve fit of the frequency response. This is

used to place error bars on the identified results. In Rodriguez and Childs [43],

the error bars from this method are explicitly stated to be “not uncertainties

but are a measure of the reproducibility of the results.” Therefore it is evident
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Figure 2.14: Diagram of test rig for remaining publications reproduced from [44]

that uncertainty from systematic error sources are not analyzed. The system’s

dynamics are considered, however, and it is clear that careful thought was put

into the identification process. For example, “dry shakes” are performed to

determine if pad dynamics are a significant influence [46]. This dissertation

provides a guide for researchers and engineers to harmonize the quantification

of uncertainty as a result of dynamics in the system - including when the

dynamics are not a significant contributor to the uncertainty. Childs and

Harris [46] state that they “see no evidence in our tests that the relative pad

motion has any perceptible influence on housing acceleration measurements”

but without a quantified estimate of the effect on uncertainty, the reader
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cannot evaluate the significance of the impact on identification uncertainty

from a small effect on the acceleration measurement.

Summary of Publications With Experimental Uncertainty Analysis Only

Including Random Errors

While it is good that uncertainty analysis is included, there are

unaddressed challenges with the uncertainty analysis when only random

errors are included. For example, in the Arumugam et al. work, the results

may repeatably identify dynamic coefficients that are different from the

theoretical models and/or actual bearing coefficients. There was no method

used for estimating if the differences may fall within expected bounds or if

the differences indicate an issue that should be addressed. The “dry shakes”

discussed are another example of effects that are not captured well with

repeatability. A comprehensive uncertainty analysis should 1) quantify the

effect to determine if it is expected to be large or small and 2) allow for

understanding how the effect is affected by operating conditions.

Another challenge is the lack of consistency in uncertainty analysis

method. The uncertainty presented in one publication may not be

compared directly with another if the analysis is performed differently.

The uncertainty analysis framework developed in this dissertation in

Chapters 3 and 4 will address both of these challenges.



50 CHAPTER 2. LITERATURE REVIEW

2.3.3 Experimental Uncertainty Analysis Including Random and

Systematic Errors

Literature is considered to include systematic errors if they explicitly

reference elemental uncertainties and state that uncertainty was computed

with the referenced values. For example, computing coefficient uncertainty

using uncertainties of sensors that are associated with systematic errors

would place the publication in this category. However, the method of

calculating the uncertainty may not completely incorporate the effect of

systematic errors on the uncertainty. The literature in this section will have

the uncertainty analysis method carefully evaluated to determine how the

final uncertainty values presented include uncertainty from systematic error.

One such check will be to determine if differences in system dynamics

between would have an effect on the uncertainty. If this would not have an

effect, then the uncertainty analysis is deemed to not properly account for

systematic errors. An example of dynamics to consider is the rotor’s

flexibility. Variations in rotor model would lead to variations in system

critical frequencies, which would affect how sensitive the test rig is to

bearing dynamics around those frequencies. Though an experiment may not

be investigating the affected frequencies, the uncertainty analysis method

must be able to account for those effects in theory.

Table 2.3.3 presents all the publications considered in this section together

in one chart. The review of the publications is grouped by test rig.
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Table 2.3.3: Publications That May Analyze Uncertainty Comprehensively

Year Authors Title

[59] 1999 Pettinato, Brian; De Choudhury,

Pranabesh

Test results of key and spherical pivot five-shoe tilt pad journal

bearings—part II: dynamic measurements

[60] 1999 Wygant, Karl D; Barrett, Lloyd E;

Flack, Ronald D

Influence of Pad Pivot Friction on Tilting-Pad Journal Bearing

Measurements - Part II: Dynamic Coefficients

[61] 2004 Wygant, Karl D; Flack, Ronald D;

Barrett, Lloyd, E

Measured Performance of Tilting-Pad Journal Bearings over a Range

of Preloads-Part II: Dynamic Operating Conditions

[62] 2006 Dmochowski, W. M.; Blair, B. Effect of oil evacuation on the static and dynamic properties of tilting

pad journal bearings

[63] 2006 Flack, Ronald D; Wygant, Karl D;

Barrett, Lloyd, E

Measured Dynamic Performance of a Tilting Pad Journal Bearing

over a Range of Forcing Frequencies

[64] 2007 Dmochowski, Waldemar Dynamic Properties of Tilting-Pad Journal Bearings: Experimental

and Theoretical Investigation of Frequency Effects due to Pivot

Flexibility

[65] 2014 Simmons, Gregory F; Varela, Alejandro

Cerda; Santos, Ilmar Ferriera;

Glavatskih, Sergei

Dynamic characteristics of polymer faced tilting pad journal bearings

[66] 2018 Ciulli, Enrico; Forte, Paola; Libraschi,

Mirko; Naldi, Lorenzo, Nuti, Matteo

Characterization of High-Power Turbomachinery Tilting Pad Journal

Bearings: First Results Obtained on a Novel Test Bench

Pettinato et al. [59]

Pettinato et al. [59] compared the performance of five-pad TPJBs with key

seat pivots and five-pad TPJBs with spherical seat pivots. The test rig (shown

in Figure 2.15) is described in detail in a previous paper by Pettinato et al.

[67]. A rotor supported by a main bearing and a test bearing is connected

to a motor. A third partial arc hydrostatic bearing transmits forces from a

loading system to the rotor. The test bearing is at the opposite end of the

coupling to the motor and has an unbalance plane outboard of the bearing

to apply unbalance forces.

Stiffness coefficients were identified first and then used to identify
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Figure 2.15: Diagram of Pettinato et al. test rig reproduced from [67]

damping. The vertical stiffness coefficient was derived using the eccentricity

ratio and Sommerfeld number. The horizontal stiffness coefficient was

measured by applying a horizontal force and measuring the resulting

displacement. Damping was determined by iterating damping values until

predicted values matched the measured vibration data. The previously

identified stiffness values were used for these iterations. An additional

parameter, radial pivot stiffness, was also measured by loading the shaft in

a newly installed bearing without oil present.

Uncertainty was “calculated for a 95 percent confidence by either a least

squares method or statistically.” Some of the measurement uncertainties

are presented in Figure 2.16. The stated uncertainties in vertical stiffness

are “typically ±10%” and horizontal stiffness are “typically ±25%”. For

damping, uncertainties were “typically on the order of ±35%, but sometimes
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ranged as high as ±100%”.

Figure 2.16: Table of factors used to compute uncertainty reproduced from [59]

For the vertical stiffness, after the data points are gathered, the variance

in curve fit coefficients of many fits sorted by F-statistic are used to

estimate uncertainty. This is ultimately a measure of repeatability and

cannot estimate the effect of systematic errors. Presumably this is the

method that computed uncertainty “statistically.” The other method using

a least squares method is not explicitly defined. A content review of one of

the sources [68] suggests that References (8) (9) in Pettinato et al. focus on

statistical analyses. Reference (8) in Pettinato et al. is an older version of a

book by Ernest Doebelin [69]. In this particular book there is a section on

uncertainty that includes detailed discussion of computing total uncertainty.

There are two formulations for estimating the final accuracy based on the

available information. If the elemental uncertainties (such as measurement

error) is given as absolute limits of error, then the total uncertainty in

absolute terms can be estimated as given in Equation (3.32) in Doebelin
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[69]:

|∆u1
∂f

∂u1
|+ |∆u2

∂f

∂u2
|+ ...+ |∆un

∂f

∂un
| (2.3)

In the case that the elemental uncertainties are not limits of error but

rather statistical bounds, the total uncertainty formulation changes to:
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)2
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)2
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The referenced resources and Figure 2.16 strongly suggest that sources of

uncertainty from systematic errors are considered. However, the method of

combining the uncertainties cannot include all possible systematic sources of

uncertainty. For example, though the rotor may be relatively stiff compared

to the bearing, it is not fully rigid. As shown in Section 3.3, when the

measurement model does not include the rotor flexibility, the coefficients can

still be affected even if the rotor is extremely rigid. This is especially true

for damping. The effect is typically a bias or offset. If some quantification

of rotor flexibility effect was included in Equations 2.3 or 2.4 directly, the

result would suggest a range of uncertainty rather than a bias. Some other

considerations that are not captured in the analysis would be the effects of

other components attached to the shaft such as the main bearing, the partial

arc bearing where static loading was applied, and the coupling to the motor.

The uncertainty analysis presented in this paper used a method of

computing uncertainty that would not be suitable for including the effect of

various dynamics that may affect the coefficient identification, especially for
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a high performance bearing (e.g. - high loads and/or high speed).

Wygant et al. [60] [61] and Flack et al. [63]

Wygant, Flack, & Barrett performed three experiments identifying TPJB

dynamic coefficients focusing on the effect of two different factors. The first

experiment [60] investigated the differences in TPJB dynamic coefficients

between two types of pivots (spherical seated ball with socket pad pivots

and line contact rocker-back pad pivots). The second experiment [61]

investigated the effect of pad preload on TPJB dynamic coefficients. The

third experiment [63] measured dynamic coefficients over a range of forcing

frequencies including frequencies not equal to the rotating speed. These

three experiments were performed on the test rig shown in Figure 2.17.

y

(a) Test Rig Overview

(b) Cross Section

Figure 2.17: Test Rig used by Wygant et al. reproduced from [70]
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The test rig is comprised of a test bearing housed in a floating stator that

has shakers connected to it for dynamic loading. A static loading mechanism

is also connected via a soft spring to minimize the impact on dynamics while

loading the bearing to the testing point. The rotor is designed to be rigid

relative to the test bearing and is held by rolling element bearings on either

side of the test bearing. The test rotor is driven by a motor connected via

belt-and-pulley system.

The method for computing the uncertainty presented for dynamic

coefficients identified in these experiments is described in Kostrzewsky &

Flack [71]. This method is simulation-based and begins by selecting a set of

coefficients for the truth model. This would typically be based on bearing

operating conditions such as shaft speed, static load, clearance, etc. Once

the bearing’s truth model stiffness and damping are determined, the

response to dynamic excitation is computed. The dynamic excitation can

be selected to generate a specific response so long as there are two sets of

linearly independent excitations defined. At this point if the force data and

response data are used to identify the bearing coefficients, the truth model

is obtained again. The elemental uncertainties affecting the identification

are identified and these can be applied to the force and displacement data

generated with the truth model. The perturbed data is used to identify

coefficients that are different from truth. By varying each uncertainty

individually, the coefficient uncertainty from each elemental uncertainty can

be computed. The total uncertainty is a root-mean-square summation of
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the individual contributions.

The root-mean-square combination of the individual contributions of each

uncertainty is similar to the method described in Doebelin [69]. The main

difference is that Kostrzewsky & Flack are simulating the identification with

each individual uncertainty varied to determine the contribution to the total

uncertainty. The simulation is key, as the truth values for a virtual bearing

can be placed within models of the rotor, housing, foundation, and other

interacting systems of the test rig. Furthermore, since the simulation includes

a model of the identification scheme, that aspect can also be evaluated to see

if it contributes to uncertainty. Kostrzewsky & Flack were able to use this

technique to determine the best points in each orbit for data measurement.

One notable drawback is the root-mean-square combination of

uncertainty. This combination of elemental uncertainty is not suitable for

including any biases or offsets from systematic effects such as rotor

flexibility. While the simulation method of analyzing uncertainty can, in

principle, account for dynamics such as rotor flexibility, the combination of

contributions to uncertainty needs to be adjusted to properly account for

biases in identified coefficients.

This method of uncertainty analysis used by Wygant et al. [60] [61] and

Flack et al. [63] is well-suited for comprehensive uncertainty analysis if a

different method of pulling together the contributions to uncertainty can be

used and the results presented properly. The framework developed in this

dissertation will address this.
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Dmochowski & Blair [62] and Dmochowski [64]

Dmochowski & Blair [62] investigated how stiffness and damping

properties of TPJBs are affected by oil evacuation. Dmochowski [64]

investigated how pivot stiffness affects the dynamic coefficients of TPJBs.

These studies were performed on the test rig shown in Figure 2.18. A

rotating shaft (1) supported by high-precision, angular contact ball

bearings. The test-bearing stator is excited with two orthogonal

electromagnetic shakers (3 & 4) attached with a steel rod and flexible

element assembly (5) to minimize the impact on the lateral motion of the

bearing stator. A static load is applied through a tensioned cable (6)

connected via soft springs (7) to minimize the variation of static loading

due to the bearing vibration.

Figure 2.18: Diagram of test rig reproduced from Dmochowski and Blair [62]
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The uncertainty for these two experiments are computed using “Type B”

analysis specified by an edition of the GUM [72]. The elemental

uncertainties shown in Figure 2.19 for Dmochowski & Blair [62] and

Dmochowski [64] states the elemental uncertainties in the text: 2.5

micrometers (0.0001 in) for displacement and 0.01 g for acceleration.

Though the studies were performed on the same test rig, the displacement

uncertainty specified is different. The reason is not explicitly stated. It

could be because the sensors used in the studies are different or different

information from the sensor specification were used to compute the sensor

uncertainty. An additional elemental uncertainty derived from the

frequency domain identification method used in these experiments (power

spectral density (PSD) method) is described in an appendix to Dmochowski

& Blair [62]. Sensitivity coefficients estimating the partial fraction influence

of each individual uncertainty on the identification are determined

numerically by perturbing a small increment of the cross-spectral density

and observing the resulting change in the frequency response function. One

of the assumptions in calculating the uncertainty of the PSD method is that

“the measurement of the dynamic excitation is error free.” Furthermore,

this assumption is “consistent with the assumption made for the PSD

method.” In other words, both the identification and the calculation of

elemental uncertainty assume there is no measurement error for the

dynamic excitation.

While the “Type B” analysis as described in the GUM does not
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Figure 2.19: Table of factors used to compute uncertainty reproduced from [62]

inherently capture the effects of systematic errors comprehensively, the

analysis performed in these experiments can arguably determine the impact

of some forms of systematic error. The main drawback is that unlike the

method by Kostrzewsky and Flack [71], a true value is not available.

Dmochowski and Blair’s uncertainty analysis method [62] can thus estimate

the effect of uncertainty on the identified transfer function but not offer

insight into the uncertainty relative to the true value. The techniques

developed can be used to complement the uncertainty analysis proposed in

this dissertation but do not provide a comprehensive look at the impact of

errors on identification uncertainty.

Simmons et al. [65]

Simmons et al. [65] included measurement uncertainty in temperature,

static load, dynamic load, and displacement as sources of uncertainty in

dynamic coefficients of various tilting-pad journal bearings with

polymer-faced pads. As part of the data analysis, coherence between the
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dynamic force and pad displacement are plotted.

The test rig used for this experimental study is shown in Figure 2.20. The

force application mechanism is different from most other rigs for dynamic

coefficient identification.

Figure 2.20: Image of test rig reproduced from Varela et al. [73]

While sources of uncertainty from systematic errors are stated and

discussed, they are not addressed further in an estimate of uncertainty for

dynamic coefficients. Some of the results have a band for the coefficients

identified (see Figure 2.21) but this band is just a representation of the

effect of repeatability on the system computed after 3 trials.
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Figure 2.21: Results from Simmons et al. [65] showing an uncertainty band

The inclusion of uncertainty as a function of frequency is something that

this dissertation will show to be important in properly presenting the

uncertainty of dynamic coefficients. However, beyond that, the uncertainty

analysis in this publication does not address uncertainty from systematic

sources in any way.

Ciulli et al. [66]

Ciulli et al. [66] referenced a calculation of uncertainty that is further

described in Forte et al. [74]. The test rig for this experiment is shown in

Figure 2.22.

The test rig is designed for TPJBs of diameters between 150 to 300 mm,

journal surface speeds of 150 m/s, static loads up to 270 kN, dynamic loads

up to 30 kN, and test frequencies up to 350 kHz. The test rig can be

classified as an excited housing test rig with the shaft held with roller

bearings. The housing has three anti-pitch rods to constrain the rotor to
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Figure 2.22: Image of test rig reproduced from Forte et al. [74]

only the plane perpendicular to the rotor axis. The static load is applied by

a hydraulic actuator deemed compliant enough to not interfere with the

dynamic actuators. The dynamic load is also applied by hydraulic actuators

which were selected for higher load capacity. The dynamic coefficients are

identified by measuring the applied force through the dynamic actuators,

acceleration of the bearing housing to use for inertial compensation, and

proximity measurements measuring the relative displacements of the shaft

and the bearing.

The uncertainty analysis in Ciulli et al. with the details traced back to

Forte et al. account for dynamics of the system. Models of each of the

components of the system - rotor, bearings, load cells, stator, actuators -

were developed and a dynamic simulation was created. The linked dynamic

systems represented a truth model and coefficients are identified with a
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mathematical model that assumes an ideal rigid stator and ideal rolling

element bearings. Three levels of fidelity are analyzed leading to the results

presented in Figure 2.23.

Figure 2.23: Uncertainty from systematic errors reproduced from Forte et al. [74]

The methodology used to develop these results were also used to analyze

the effects of noise as seen in Figure 2.24.

It should be pointed out that the uncertainty from random errors noted

here is just for one trial and that multiple trials will reduce the uncertainty

by “an order of magnitude.”

The techniques used to perform this uncertainty analysis are along the lines

of the framework presented in this dissertation. However, there are significant

elements not analyzed. For example, there are no models of measurement

error. It is possible that in Ciulli et al. [66] they are considered but no

details are provided. Part of the goal of this dissertation in presenting an
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Figure 2.24: Uncertainty from random errors reproduced from Forte et al. [74]

uncertainty analysis framework will include guidance on a minimum level of

detail and a standardized method of presenting the results.

Summary of Publications That Consider Systematic Errors

While a few sources of systematic errors are presented in the publications

of this section, the uncertainty analysis typically fails to properly translate

the sources of systematic errors to uncertainty in identified dynamic

coefficients. Wygant et al. [60] [61], Flack et al. [63] used a simulation

method of estimating uncertainty that is suitable for comprehensive

uncertainty analysis but the method used to combine uncertainty

contributions is problematic. Ciulli et al. [66] and Forte et al. [74] also use

a simulation method and consider model differences between truth and

identification. Ultimately, their analysis proved to be incomplete without
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including factors such as measurement uncertainty. While their analysis

helped determine which material to use for a housing, it did not further

serve as an uncertainty analysis for the coefficient identification. The

remaining publications in this section do not analyze uncertainty using

methods compatible with a comprehensive uncertainty analysis.

Though the publications using a simulation method for uncertainty

analysis are on the right track, the methods are still different enough that a

direct comparison is not immediately possible. A single framework that

researchers can reference would iron out details such as how to combine

uncertainties as well as define the sources of uncertainty that must be

included and how the choices should be presented. This will provide greater

awareness of how experimental results can compare with each other.

Meaningful comparisons will help advance the state-of-the-art of model

validation for TPJB dynamic coefficients.

2.3.4 Conclusions from the Literature Review

The major conclusions and observations of this literature review are

summarized here.

• Uncertainty analysis is not common when identifying TPJB dynamic

coefficients. The Tiwari et al. review [21] suggests that uncertainty

analysis is more generally not common as well. The lack of uncertainty

analysis leads to two challenges: 1) the accuracy of a dynamic

coefficient identification experiment is not estimated and 2) the
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capabilities of different dynamic coefficient identification experiments

cannot be easily compared. Even on the same test rig, identifying the

dynamic coefficients of a different TPJB can yield different

uncertainties and this can’t be considered without uncertainty analysis.

• When uncertainty analysis is performed, many analyses only look at

uncertainty resulting from random error sources. This provides insight

into repeatability but cannot be considered comprehensive because

uncertainty from systematic error sources are not considered.

• Even when sources of uncertainty from systematic errors are considered,

the uncertainty analysis method may not be broadly capable of handling

all sources of uncertainty. For example, in the publications analyzed in

this dissertation, when systematic errors are considered the analysis is

often able to handle measurement error but cannot handle the systematic

error resulting from modeling error relative to truth.

• Regardless of the sources of uncertainty considered, the uncertainty

analysis methods were not consistent. Direct comparisons of

uncertainty between experiments are therefore difficult because the

uncertainty estimate can be different based on differences in

uncertainty sources considered. During the literature review, there

were some difficulties in determining what factors were used in the

uncertainty analysis. Both of these issues go hand-in-hand and a

unified framework that guides the selection of factors to consider as
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well as how to present the analysis will help researchers understand

and compare the uncertainty of TPJB dynamic coefficient

identification experiments.

• Though analytical methods may be available, the most comprehensive

uncertainty analyses of the publications in this review used

simulation-based uncertainty analysis. Further investigation suggested

that simulation-based methods can include more complex models that

may include non-linearities and other effects in an attempt to increase

model fidelity. This guided the development of the framework to being

a simulation-based method.

The framework developed in this dissertation will provide a common

ground for researchers and engineers when thinking about TPJB dynamic

coefficient identification (and dynamic coefficient identification for

components in general).



Chapter 3

Defining the Uncertainty Analysis

Framework with Single-Axis Models

A simulation-based uncertainty analysis framework is proposed for TPJB

dynamic coefficient identification experiments. The framework compares a

representation of an experiment’s physics to a model used for identifying

dynamic coefficients using measurements from the experiment. To begin

with, a truth model must be established. The truth model seeks to capture

as much of a system’s dynamics as possible. Second, an identification model

(or measurement model) is selected. The identification model is how the data

measured from the experiment will be used to identify dynamic coefficients.

If 1) the truth and the identification models are the same and 2) the input

and output signals are the same for both models (i.e. - the true signals are

measured without error for use in the identification model), then there is no

uncertainty. Figure 3.1 provides a diagram of the truth model, identification

model, and how they are related in the uncertainty analysis framework for

69
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TPJB coefficient identification.

Figure 3.1: Schematic of Relationship Between Truth Model and Identification Model

In practice, the identification model will not match the real physics of

the experiment. Since the truth model is designed to be as close as possible

to the real physics, the identification model will typically also be different

from the truth model. In cases where the identification model and the truth

model contain the same elements (such as a substructure model or a rotor

model), modeling uncertainty between the truth model and identification

model should be included in the final uncertainty analysis. This will lead to

differences in identified coefficients versus the true coefficients. Even if the

identification and the truth model are the identical, models of measurement

uncertainty will lead to differences between the true coefficients and the

identified coefficients.

To perform a comprehensive uncertainty analysis of an experiment, the

truth model should capture all significant dynamics affecting the
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experiment. Uncertainty analysis should be used to determine which

dynamics are significant since the goal is to capture as much of the

contributions to uncertainty as possible. As an example, consider a test rig

where the rotor might be assumed rigid. This assumption is typically used

when the rotor is expected to be much stiffer than any bearing tested. To

determine the sensitivity of uncertainty to this modeling assumption, the

uncertainty analysis can be performed with the truth model including rotor

flexibility. The identification model will not consider the rotor’s flexibility.

Other sources of uncertainty such as measurement uncertainty are not

included to isolate the estimate of uncertainty to just the effect of modeling

the rotor flexibility in the truth model. If the modeling assumption of a

rigid rotor is reasonable, then the uncertainty will be small. However, if

there is a significant effect from including the rotor flexibility in the truth

model, that suggests two things: 1) the truth model should include a

flexible rotor model because it has a significant impact on the dynamic

coefficient identification and 2) the engineer or researcher should strongly

consider not using the rigid rotor assumption in the identification model.

The final truth model and a suitable identification model can be determined

through multiple sensitivity studies using carefully selected dynamics in the

system modeled with the most appropriate methods. Once the final truth

model and identification model are established, an estimate of the

identification uncertainty can be made.

Determining the significant dynamics to include in the truth model is
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challenging because there may be unmodeled dynamics (either from a

modeling assumption or by unintentional omission) that affect the dynamic

coefficient identification process. When available, experimental

measurements on a test rig can be used to calibrate a truth model.

However, when designing a new test rig, this type of data may not be

available. Another aspect of the uncertainty analysis framework is

evaluating the experimental configuration for sensitivity to the effects of

unmodeled dynamics. To use the rotor flexibility example again, there may

be experimental configurations that are not sensitive to the dynamics of the

rotor because of the signals selected for measurement to use in identifying

coefficients. Section 3.1.5 provides an illustrative example.

In this chapter of the dissertation, the process for analyzing uncertainty

comprehensively is developed carefully through single-axis models. First, a

single degree-of-freedom (SDoF) mass-spring-damper model is used to

investigate the impact of measurement errors. In the beginning it is possible

to derive useful insights using analytical models but the complexity rapidly

increases, requiring some other way of assessing the impact.

A Monte Carlo simulation is proposed for this purpose. Using

simulations with the SDoF model, the impact of selecting measurements to

use for identification are evaluated by going through several possible

methods of instrumenting a test rig. Second, the model is extended by

introducing a second degree of freedom (still with one axis). This model can

be used to investigate the effect of simplified substructure dynamics on the
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identification of dynamic coefficients. Finally, an example of a

higher-fidelity single-axis model is presented that combines a dynamic

model developed from the finite element method with some lumped mass

models. This gives an example of how models from a variety of different

sources can be combined together.

3.1 Single Axis Models

One of the primary characteristics of TPJBs when compared with other

oil-lubricated hydrodynamic bearings is the relative insignificance of

cross-coupled forces relative to the forces from the principle stiffness and

damping coefficients. For many systems this reduces the interaction

between horizontal and vertical motion enough to allow the two axes to be

treated independently. Single-axis models can then be used to understand

the dynamics of the system. Researchers have used single-axis models to

investigate tilting-pad journal bearing dynamics before. For example,

Waldemar Dmochowski [75] developed a single-axis model for pad dynamics

including pivot stiffness. Dmochowski’s model provides useful information

on how the pad dynamics are affected by the ratio of film stiffness and

damping to pivot stiffness and damping. While a higher-fidelity model may

be used to develop predictive models for TPJBs, single axis models offer

useful insight into important properties and trends for bearing coefficient

identification.
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3.1.1 SDoF Analytical Analysis

Force and Displacement Measurement Error in SDoF Model

At the most basic level, a test rig for dynamic coefficient identification can

be modeled as a mass-spring-damper system. The excited component of the

test rig is approximated as a lumped mass. The fluid-film’s dynamics are

represented by the spring and damper. Figure 3.2 uses the test rig described

by Flack et al. [63] to visually represent the simplification. At this level of

analysis, the rigidly held component and its supports are assumed to be ideal

(i.e. - not flexible). This assumption simplifies dynamics for a first analysis.

(a)

(b)

Figure 3.2: (a) Single-Axis, SDoF Model (b) Cross Section of Test Rig from Flack et al. [63]

One advantage of a simplified model is the ability to develop analytical

equations. While model complexity grows rapidly, at the single-axis, SDoF

level a set of equations may be derived for the effect of systematic errors on

dynamic coefficient identification.

Starting with the equation of motion for the SDoF system,
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mẍ = −kx− cẋ+ f (3.1)

the dynamics can be expressed in the frequency domain as

F

X
= ms2 + cs+ k (3.2)

where s = jω for the experimental methods modeled in this dissertation.

F and X are complex values representing the magnitude and phase of the

true signals. This method of modeling is useful for SDoF modeling and some

other very basic analyses. For a more broadly generalizable formulation,

linear algebra and matrix mathematics are required to describe the system

and the dynamic coefficient identification. The simple, specific models are

used to gain insight on important trends. Later, the uncertainty analysis is

generalized to be more broadly applicable

Equation 3.2 represents the truth model. Because this is an illustrative

example, the truth model is identical to the “real” system which has been

defined to be a SDoF system. F and X must be measured in an experiment

to identify dynamic coefficients. The measured force, F̂ , and measured

displacement, X̂, are different from the true values due to errors resulting

from unknown variations in the sensor system. There will always be some

level of variation that we cannot quantify exactly though typically this

variation is relatively small through careful calibration of sensors. One of

the basic models of measurement error is a multiplicative error:
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F̂ = (1 + δf)F , X̂ = (1 + δx)X (3.3)

The deltas (δf and δx) are complex numbers representing errors in

magnitude and phase that arise from imperfect measurement. There are

two assumptions in this model. The first assumption of this model is that

the error does not change as a function of test frequency. This assumption

is not a requirement of the framework but rather an assumption to simplify

the analysis and extract trends from the model. Second, random errors are

explicitly not considered. In a practical experiment this would mean taking

many samples at a test frequency to reduce the effect of the random error

on the total uncertainty. Since the literature review revealed that random

errors are more commonly treated, this dissertation will focus on systematic

errors. The uncertainty analysis framework developed in this dissertation is

suitable for analyzing uncertainty from random errors as well as systematic

errors.

With the two assumptions and using the measured values from Equation

3.3, the model of estimated coefficients (with s = jω) is:

F̂

X̂
= k̂ −mω2 + jĉω (3.4)

The estimated transfer function (Eq. 3.4) and the true transfer function

(Eq. 3.2) can be related:
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F̂

X̂
=
F

X
(
1 + δf
1 + δx

) = k̂ −mω2 + jĉω (3.5)

To derive an easily understandable analytical solution, we can assume

the errors δf and δx are small in magnitude which allows for the following

simplification:

1 + δf
1 + δx

≈ 1 + δf + δx ≈ 1 + δtotal (3.6)

This simplification is useful for deriving analytical equations. Simulations

using linearized models of system components are developed in Section 3.1.2

and beyond to avoid using simplifications such as this one. The utility of

these analytical results - where feasible - is the ability to understand where

the trends seen in the simulation results come from.

The truth model can be substituted for F
X in equation 3.5:

[
k −mω2 + jcω

]
(1 + δtotal) = k̂ −mω2 + jĉω (3.7)

Equation 3.7 can be separated into real and imaginary parts. The real

components lead to:

k −mω2 + <(δtotal)(k −mω2) + =(δtotal)(jcω) = k̂ −mω2 (3.8)

Equation 3.8 can be rearranged to find the percent error of k̂:

k̂ − k
k

= <(δtot)(1−
mω2

k
)−=(δtot)

(cω
k

)
(3.9)
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The imaginary parts from Equation 3.7 have the following relationship:

ĉω = =(δtot)(k −mω2) + (1 + <(δtot))(cω) (3.10)

Similar to the real components, a rearrangement of Equation 3.10 shows

the percent error of ĉ:

ĉ− c
c

= <(δtot) + =(δtot)

(
k

cω
− mω

c

)
(3.11)

Equations 3.9 and 3.11 are directly related to the magnitude of uncertainty

because δtotal is obtained from the full range of measurement errors (i.e. - the

measurement uncertainty).

There are several important features of these analytically derived equations

(Equations 3.9 and 3.11):

• As the magnitude of the true stiffness and true damping decrease, the

percent errors (and thus uncertainty) increases. This can be understood

by considering an example where a “softer” bearing (lower stiffness)

is tested on the same test rig as a stiffer bearing. In both cases the

instrumentation is identical so the magnitude of errors would be the

same (e.g. - for sensors where the typical uncertainty is defined as a

function of the full scale of the sensor measurement capability). This

means that the magnitude of possible error in identified coefficient is the

same while the true value is smaller, leading to increased uncertainty.

• On a similar note this suggests that the uncertainties in identifying cross-
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coupling in TPJBs will be large compared with the principal values. Of

course the impact of this uncertainty may be small - a large uncertainty

around a small value may have little noticeable impact on system level

properties such as stability. On the other hand, validating predictions

from TPJB codes might need cross-coupling with low uncertainty to use

as additional evidence of proper modeling of TPJB physics.

• For a given operating condition, the stiffness uncertainty becomes

dominated by a quadratic term, mω2

k , as test frequency increases. This

leads to a challenge in TPJB coefficient identification. TPJBs can

exhibit varying dynamic coefficients as the frequency of excitation

changes (while operating conditions such as rotation speed are

constant) due to the impact of the pad dynamics on the system. The

equations derived in this section suggest that coefficient identification

at higher test frequencies result in larger uncertainties. Model

validation for higher test frequencies becomes difficult.

• It should be noted that even at this level of analysis, a single

uncertainty value cannot describe uncertainty for TPJB identification.

First, the uncertainty is a function of test frequencies used in the

experiment. Second, even if the test rig is the same, identifying

coefficients of a different bearing would yield different uncertainties.

The practical implication of this result is that for every bearing to be

tested, an uncertainty analysis must be performed and the results
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presented as a function of the test article and the test frequencies of

interest.

• The relationship between damping uncertainty and test frequency in

Equation 3.11 suggests that damping is more difficult to identify at

frequencies approaching zero. This is reasonable because as the

excitation frequency decreases, the velocity of the excited component

decreases. Damping forces are typically modeled as directly

proportional to the velocity. With small velocities, the forces are small

and the errors in damping forces become large relative to the true

damping forces.

Many of these ideas are supported with simulations in Section 3.1.2 and

beyond.

Force, Displacement, and Acceleration Measurement Error in the SDoF Model

One of the trends identified in Equation 3.9 is the quadratic relationship

to the excitation frequency. For TPJBs, where the dynamic coefficients may

be frequency-dependent depending on the TPJB configuration and the

operating conditions, this trend can lead to large uncertainty for high test

frequencies. Rather than rely on numerical integration of the displacement

to get acceleration (as the ms2 leading to the mω2 term in the frequency

domain implies), some test rigs measure the acceleration of the excited

component. Modeling this measurement scenario similar to the
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mathematical representation in Equation 3.2 gives:

F −mA
X

= k − jcω (3.12)

On the surface, comparing Equation 3.12 with Equation 3.2 might suggest

that the inertial component leading to the quadratic dependency on test

frequency has been eliminated. To evaluate this, a measurement error for

acceleration can be defined like the force and displacement errors in Equation

3.3:

Â = (1 + δa)A (3.13)

Through a similar process as before, we can determine the identified

coefficients as:

F̂ −mÂ
X̂

=
F (1 + δf)−mA(1 + δa)

X(1 + δx)
= k̂ + jĉω (3.14)

In the previous analysis with the single-axis, single degree-of-freedom

model with only force and displacement measurement errors analyzed, a

single simplification with the ratio of measurement errors lead to

straightforward analytical conclusions. For this case, more intricate

simplifications and manipulations would be required. Rather than rely on

simplifications, the simulation method will be developed to avoid these
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types of simplifications altogether. Once the simulation has been developed,

the SDoF cases are revisited.

3.1.2 Developing the Simulation Based Uncertainty Analysis

Modern tools such as MATLAB make it straightforward to model linear

systems. To begin with, the single-axis, SDoF model with errors can be

implemented with transfer function models according to Figure 3.3. One of

the advantages of modeling the system in a simulation instead of working

with analytical equations is that fewer simplifications are required.

Figure 3.3: Modeling SDoF Model as Transfer Functions

The application of errors to the true signals to get F̂ and X̂ from F and

X is done with complex numbers. The complex numbers δf and δx represent

an error in magnitude and phase of a signal used in the identification model

relative to the corresponding signal in the truth model. If a different model

of measurement uncertainty is desired, the model can be adjusted here as

needed. For example, measurement noise can also be included to incorporate

random errors into the analysis.
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For this dissertation the amplitude of the magnitude error and amplitude

of the phase error are determined independently. Figure 3.4 shows a visual

representation of the measurement error model in this dissertation.

Figure 3.4: Errors Affecting Truth Signal

To account for the uncertainty in error, a Monte Carlo method will be used.

Multiple trials of the simulated identification experiment will be run and

each trial will have a value for error sampled from the defined measurement

uncertainty. In this dissertation, the measurement error is defined to be

uniformly distributed within the uncertainty bounds but any appropriate

distribution may be used.

Once the errors are selected, the simulation can generate data for the

identification model to use. For this dissertation, the identification of
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dynamic coefficients will use a single-frequency identification swept across

the desired test frequencies. The scope of this dissertation is not to evaluate

identification techniques such as multi-frequency identification or time

domain identification methods. The motivation is to select a single

identification method and hold it consistent across the various analyses such

that differences in identification uncertainty arise from differences between

the truth model and identification model without additional contributions

from identification technique variation.

3.1.3 The Identification Process Used in This Dissertation

For a more detailed investigation of identification methods, the literature

review by Dimond et al. [22] includes a discussion of identification methods.

In this dissertation, the bearing identification experiment is summarized

as:

F = HU (3.15)

F is a matrix of force applied to the system. Each column would represent

a different experiment and each row would represent a different force input

to the system. U is a matrix of the responses of the system with a column

for each trial. H is the frequency response matrix. The frequency response

matrix will contain the bearing coefficients as well as the dynamics of any

other modeled component such as the rotor or the substructure. Therefore, if
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H can be identified, then the bearing coefficients are identified. The frequency

response matrix is generally frequency-dependent.

The frequency response matrix (with frequency dependency represented)

can be identified by solving for H:

H(ω) = F(ω)U−1(ω) (3.16)

The solution for H(ω) typically relies on numerical methods for efficient

computation. Directly inverting U(ω) is often not the most efficient

method. In effect, the typical solution process may be described as

optimizing H(ω) to minimize the difference between H(ω)U(ω) and F(ω).

MATLAB documentation has an illustrative diagram (reproduced in Figure

3.5) for a function, mldivide(), that solves this type of equation with the

options available to numerically solve this problem.
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Figure 3.5: MATLAB Decision Tree for Solving for H(ω) reproduced from [76]
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3.1.4 First Results from the Simulation

The SDoF model described by Figure 3.3 is implemented with

measurement uncertainties listed in Table 3.1.1. The mass is assumed to be

known exactly. For a range of test frequencies from 1 Hz to 1000 Hz, the

identification experiment is simulated by 1) finding H(ω), 2) applying a

true force F(ω) to the system truth model, 3) obtaining the true response

U(ω), 4) applying a selected case of measurement errors to get F̂(ω) &

Û(ω), and 5) finally computing Ĥ(ω).

Table 3.1.1: Uncertainty Parameters for SDoF Model Simulation

Displacement Magnitude Uncertainty ±5%

Displacement Phase Uncertainty ±5 degrees

Force Magnitude Uncertainty ±5%

Force Phase Uncertainty ±5 degrees

Once Ĥ(ω) is found, stiffness and damping values are extracted by

separating the real and imaginary components: k̂ = <(Ĥ(ω)) + mω2 and

ĉ = =(Ĥ(ω))/ω. For each test frequency this process is repeated 3,000

times with a new combination of measurement errors sampled each time.

The identified coefficients from the simulations are summarized in Figure

3.6 by indicating the largest and smallest identified values for each test

frequency. The true value is included for reference.

The results can be further post-processed to present the results in a more

typical plus-or-minus uncertainty value. The uncertainty magnitude
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(a) Identified Stiffness Coefficients (b) Identified Damping Coefficients

Figure 3.6: Maximum and Minimum of Identified Coefficients for SDoF Model

(indicated in Fig. 3.6) can be normalized by the true value to get a

plus-or-minus percent uncertainty. This is shown in Figure 3.7.

(a) Stiffness (b) Damping

Figure 3.7: SDoF Identification Uncertainty

A quick evaluation of the distribution of the identified coefficients can be

presented by including a 95% confidence interval to the uncertainty. Figure

3.8 presents the uncertainty results with the confidence intervals included.
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It is recommended that uncertainty analysis results present both pieces of

information - the maximum uncertainty and a 95% confidence interval value

- to offer insight in how the identified values are distributed. Furthermore,

being able to see the maximum uncertainty in the results encourages

conservatism.

(a) Stiffness (b) Damping

Figure 3.8: SDoF Identification Uncertainty with Confidence Interval

It is important to remember that the results shown in Figures 3.6, 3.7,

and 3.8 are the worst-case results. “Worst-case” refers to the values farthest

away from the truth in the simulations. Practically these results are actually

the lower limit of achievable uncertainty for the measurement uncertainties

given in Table 3.1.1. In other words, since we are considering minimal error

sources, the uncertainty is the best (i.e. lowest) uncertainty possible for the

modeled case and any real experiment will be worse than the analysis. This

makes it all the more important that a systematic framework exists to ensure

enough significant factors are considered to get as close as possible to the
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real-world uncertainty.

Comparing to Analytical Modeling

The overall trend in uncertainty for stiffness looks quadratic. This is in

line with the expectation that Equation 3.9 indicated. Damping uncertainty

increases asymptotically as test frequency approaches zero. The behavior as

test frequency increases to infinity is linear. There’s also a minimum point

at approximately the natural frequency of the system. All three of these

behaviors can be ascertained from the analytical results for damping in

Equation 3.11. The matching trends between the analytical results and the

simulation suggests that the simulations are accurate and suitable for

modeling the uncertainty of identifying dynamic coefficients for more

complicated systems, which will be evaluated in this dissertation.

Parameter Variation Effects on Uncertainty for SDoF Case

While simple, the SDoF simulation allows for the investigation of how

physical parameter (stiffness, damping, mass) variations affect uncertainty.

The analytical equations from Section 3.1.1 are used as a point of comparison

for the effects to show how the simulation is behaving as expected in response

to varying parameters of the model.

The first parameter variation is of the true stiffness of the model while

damping and mass are constant. The results are shown in Figure 3.9 with

only the maximum uncertainty shown to minimize clutter in the plots. The
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uncertainty results for stiffness show the same trend expected from Section

3.1.1 where the uncertainty increases as the true stiffness decreases. There is

an effect on damping uncertainty as well when the stiffness is changed even

with the damping held constant. The minimum point in damping uncertainty

shifts as the stiffness changes and the undamped natural frequency of the

system also changes. It’s evident that the critical frequencies of the system

are important to uncertainty, though the models suggest that it is not as

simple as trying to increase the frequencies as much as possible. In the

case of damping uncertainty, a larger critical frequency leads to increased

uncertainty at lower frequencies even as the uncertainty at higher frequencies

decreases. The effect of the system’s dynamics on uncertainty is shown to be

relatively complex even for a simple case such as the SDoF model.
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(a) (b)

Figure 3.9: Effect of Varying True Stiffness (with damping and mass constant) in SDoF

Model for (a) identified stiffness and (b) identified damping
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The second parameter variation is of the true damping of the model while

stiffness and mass are constant. Figure 3.10 shows the maximum uncertainty

similar to the results for varying the true stiffness in the model in Figure 3.9.

As true damping decreases, the uncertainty increases. This matches the

expected trend from the derived analytical equations. The stiffness

uncertainty increases as damping increases. This also matches the

equations. Physically, the explanation would be that with higher damping,

damping forces are larger and the errors - being a multiplicative error -

would be larger as a function of damping forces. The contribution to the

measured force from stiffness would likely decrease as increased damping

reduces displacements. In sum, the force error will be larger if damping is

higher leading to larger uncertainty.

In the damping identification uncertainty, the point of minimum

uncertainty for damping shifted noticeably in the case where true stiffness is

varied without changing the other parameters. In this case with damping

changing, the point of minimum uncertainty does not change noticeably.

This means that the uncertainty increases or decreases consistently as a

function of frequency.
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(a) (b)

Figure 3.10: Effect of Varying True Damping (with stiffness and mass constant) in SDoF

Model for (a) identified stiffness and (b) identified damping
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The third parameter variation analyzed is changing the mass of the

model while holding stiffness and damping constant. Figure 3.11 shows the

uncertainty results for identified stiffness and damping.

Varying stiffness and damping had opposite effects on identification

uncertainty for stiffness and damping. When mass is varied, the effect on

uncertainty is similar for stiffness and damping. As mass increases, the

uncertainty increase at higher frequencies. Below a certain frequency the

uncertainty decreases. The effect of the critical frequencies of the system

are noticeable.
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(a) (b)

Figure 3.11: Effect of Varying True Mass (with stiffness and damping constant) in SDoF

Model for (a) identified stiffness and (b) identified damping
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The results in Figures 3.9, 3.10, and 3.11 obtained from simulating an

experiment to identify stiffness and damping of a SDoF system show the

same trends expected from the equations derived in Section 3.1.1. Because

the simulation trends match the analytical results, there is confidence that the

simulation is a suitable tool for modeling coefficient identification uncertainty.

While the SDoF models are a substantial simplification of the dynamics a

real system may have, the conclusions derived from these results hold value

in identifying trends that will be applicable both in the SDoF model as well

as a real system. Some of the most significant conclusions are summarized

here:

• Increasing the mass of the system increases identification uncertainty for

both stiffness and damping. This suggests that for a bearing test rig, the

mass of the excited component should be kept to a minimum. Similarly,

inertia for any dynamics affecting the system (such as bending modes of

the rotor, flexural modes of the system) should be kept to a minimum.

• Larger magnitudes of true stiffness decreases stiffness identification

uncertainty and (at higher frequencies) decreases the damping

identification uncertainty as well. This suggests that model validation

will be more accurate for higher stiffness bearings. And if a bearing

model cannot be accurately validated in the best case validation

scenario, then it certainly cannot be validated under actual testing

that would yield higher uncertainties. Larger magnitudes of true
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damping increases stiffness identification uncertainty and decreases

damping uncertainty. However, the cross-over point between

decreasing-uncertainty for damping and increasing uncertainty for

damping yields a minimum uncertainty point. This suggests that a

high-stiffness, low-damping bearing has a small frequency range in

which uncertainties are minimized. This region would be useful as a

first bench-marking region for a bearing model before other frequency

ranges and stiffness/damping combinations are tested. It should be

kept in mind that the exact significance of this “sweet spot” will

depend greatly on the dynamics of the system and the instrumentation

being evaluated for uncertainty.

• The results from the simulation support the conclusions that the

analytically derived equations would suggest. This provides evidence

bolstering the idea that the method proposed in this dissertation can

lead to valid conclusions about the uncertainty of coefficient

identification.

Measuring Acceleration In Addition to Force and Displacement

A typical variation of test rig instrumentation includes an acceleration

measurement on the excited component (usually the housing or another

stationary component because measuring the acceleration of a spinning

rotor is more challenging). In the SDoF model, this concept can be modeled

by expanding the dynamics to allow for the extraction of the lumped mass’s
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acceleration signal and then applying an acceleration measurement error.

Figure 3.12 shows this.

Figure 3.12: SDoF Model Diagram Including Measurement Errors for Displacement,

Acceleration, and Force

From this model, a Monte Carlo analysis over the space of force sensor and

displacement sensor uncertainties yields the results shown in Figure 3.13. The

acceleration measurement is assumed to be error free to show an important

property. The mass of the lumped mass is again required and assumed to be

known perfectly to match with the case of measuring only applied force and

resulting displacement.

The results (shown without the 95% confidence interval lines to avoid

confusion) show that in this case when the acceleration of the lumped mass

is measured, the uncertainty actually increases. These results may seem

counter-intuitive at first. After all, if we are identifying the inertia and

canceling it out of the measured applied force, we should be closer to the

bearing’s force and thus yield better results with the identification.
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(a) Identified Stiffness (b) Identified Damping

Figure 3.13: Uncertainty for SDoF Identification With and Without Acceleration

Measurement

However, errors add even when quantities are subtracted (i.e. - applied

force minus inertial force estimated with the accelerometer) and so the

uncertainty in the force increases while the magnitude of the force (bearing

force relative to the applied force) gets smaller. This makes the effective

force error larger. While this is a simplified case, the results suggest that

the selection of signals to measure is important and that more signals

measured do not necessarily improve our ability to identify dynamic

coefficients. Equation 3.17 shows this a different way, highlighting that even

if the acceleration measurement is perfect (Â = A), the displacement

measurement errors will affect the inertial compensation.

F̂

X̂
= mÂ+ ĉs+ k̂ → F̂

X̂
− mÂ

X(1 + δx)
= ĉs+ k̂ (3.17)

Conclusions must be drawn carefully from this set of simulations. It is
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not directly indicating that measuring the acceleration of the excited

component is worse than not using the acceleration information. Since this

is a simplified case, the elements involved must be accounted for more

generally. For example, a model of inertia is required whether acceleration

is measured or not. For the SDoF case, this is simply the mass of the

excited component. When acceleration information is not used in the

identification, the inertial uncertainty is driven by the mass uncertainty and

the square of the test frequency. When the acceleration is measured, the

sensor itself may yield better accuracy at higher frequencies because the

acceleration is greater. So the inertial uncertainty as a combination of the

mass uncertainty and acceleration measurement uncertainty may actually

be lower at higher frequencies. This makes the relationship more

complicated and could lead to improved uncertainty when acceleration

measurement is used at higher frequencies. Though not analyzed in this

dissertation, such uncertainty properties can be modeled and analyzed with

the uncertainty analysis framework presented in this work.

The results demonstrate the power of the uncertainty analysis framework

to provide comparisons. It is up to the engineer/researcher to perform all the

comparisons necessary to determine the best identification method.
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3.1.5 SDoF Uncertainty Analysis when Measuring Bearing Force

Directly

The inertial force proved to be contributing significantly to uncertainty

when applied force and the resulting response are measured. The

uncertainty of coefficient identification when using an acceleration

measurement also showed the inertial force’s effect on uncertainty.

Identifying bearing dynamic coefficients becomes more uncertain as a

function of the square of test frequency.

Another option available for identifying bearing dynamic coefficients is

measuring the hydrodynamic force generated by the fluid film more directly.

Examples of measuring the component force more directly include

constructing the force by numerically integrating pressure measurements

within the component [77], load cells external to bearing housings (with

applied excitation on the rotor) [39], and a null-balance type of force

measurement [78].

The SDoF model offers useful insight for the case of measuring bearing

force. The system model when measuring bearing force can be represented

similar to Equation 3.2 as

Fb

X
= cs+ k (3.18)

A system diagram with the signal to be measured is presented in Figure

3.14.
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Figure 3.14: SDoF Model Diagram Highlighting Bearing Force Signal to be Measured

By performing the same analysis from Section 3.1.1, it can be shown that

analytical equations modeling identification error when measuring bearing

force are:

k̂ − k
k

= <(δtot)−=(δtot)
(cω
k

)
(3.19)

ĉ− c
c

= <(δtot) + =(δtot)

(
k

cω

)
(3.20)

Equations 3.19 and 3.20 are analogous to Equations 3.9 and 3.11. The

most notable difference is the absence of mass when bearing force is measured.

For stiffness uncertainty, the effect on uncertainty is a shift in trend from

quadratic to linear as a function of test frequency. For damping uncertainty,

the uncertainty actually decreases as the test frequency increases.

An uncertainty analysis performed on the SDoF model when bearing force

is measured supports the analytically derived trends, much like the applied

force measurement case. In the analysis, the measurement uncertainties had

the same definitions as the applied force case. The uncertainty magnitudes
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for measuring bearing force are compared with measuring the applied force

in Figure 3.15.

Figure 3.15: Comparing Uncertainty Magnitudes for Stiffness and Damping Identification

When Measuring Applied Force vs. Bearing Force

There are some notable conclusions that these results point to:

• The uncertainty trends are improved when the bearing force is

measured instead of the force applied to excite the system. The

stiffness uncertainty is dominated by a linear trend instead of a

quadratic trend and the damping uncertainty will actually decrease

until it reaches an asymptote at a small, non-zero value directly related

to the uncertainties in the measurement.

• While the analysis presented here uses the same measurement

uncertainty to present a direct comparison between the measurement

of applied force and the measurement of bearing force, the selection
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criteria for a test rig should be based on the actual expected

uncertainty for measurements related to each method.

In Sections 3.1.1 to 3.1.5, the analyses presented reveal useful trends

about the uncertainty of experimentally identifying TPJB dynamic

coefficients. For further analysis, the truth model used in the uncertainty

analysis framework can be changed to have higher fidelity relative to reality.

By doing so, further properties of the uncertainty of TPJB coefficient

identification can be observed.

3.2 Single-Axis, Two Degree-of-Freedom (2DoF)

Models

Adding a second degree-of-freedom is a simple but powerful change to

the truth model that can model many effects in a TPJB dynamic coefficient

identification test rig. The previously referenced study by Waldemar

Dmochowski [75] investigated the effect of pivot stiffness with a 2DoF

model. Along the same lines the 2DoF model may be used to understand

the effect of the substructure on the identified coefficients. Figure 3.16

shows the latter example in a diagram.

First, a model of a dynamic coefficient identification experiment that

measures force applied to the excited component will be simulated. The

displacement measurement modeled will be the relative displacement

between the excited component and the substructure. This represents the
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Figure 3.16: Diagram of Modeling Simplification to Two Degrees of Freedom

placement of the displacement sensor probe on the bearing housing to sense

the displacement of the rotor. Regardless of if the rotor is excited or if the

bearing housing is excited, the resulting displacement measurement will be

the relative displacement between the rotor and the bearing housing. A

diagram of the truth model used to model this case is shown in Figure 3.17.

The identification model to be used in this analysis is shown in Figure 3.18.

The identification model assumes that the substructure dynamics are

negligible. In test rigs where the excitation force is applied on the housing,

the rotor is designed to be as stiff as possible to make this assumption. The

parameters for analysis are presented in Table 3.2.1.

An important detail regarding the simulation setup is the

pedestal/substructure stiffness. It is larger than the bearing stiffness by a

factor of 20. To put this into context, the API specification states that if

the support stiffness is predicted to be greater than the bearing stiffness by

a factor of 3.5, it does not need to be considered for analysis. The modeled
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Figure 3.17: 2DoF Truth Model

Figure 3.18: 2DoF Identification Model Not Compensating for Substructure Model

Displacement Magnitude Uncertainty ±5%

Displacement Phase Uncertainty ±5 degrees

Force Magnitude Uncertainty ±5%

Force Phase Uncertainty ±5 degrees

m (kg) 40

k (N/m) 175,127,000

c (N*s/m) 117,170

ms (kg) 40

ks (N/m) 3,502,500,000

cs (N*s/m) 74,860

Table 3.2.1: 2DoF Simulation Parameters
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stiffness ratio between bearing and substructure would be considered rigid

as far as typical industrial analysis is concerned.

The uncertainty results of the 2DoF case are presented in comparison with

the SDoF case results for reference. Figure 3.19 presents the stiffness results

while Figure 3.20 presents the damping results.

(a) 2DoF (b) SDoF

Figure 3.19: Comparing Identified Stiffness Uncertainty Between SDoF and 2DoF

Uncertainty Analyses

The results show that the overall trend does not seem different between

the SDoF case and the 2DoF case. The uncertainty for the 2DoF case is

higher, however. This is evident even when the substructure is stiffer than

the simulated test bearing by a factor of 20. This implies that

fundamentally, the substructure is affecting the identification even when

much stiffer than the test bearing. Rules of thumb that may suggest

contributions from a substructure/pedestal are negligible must be

reevaluated with this information.
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(a) (b)

Figure 3.20: Comparing Identified Damping Uncertainty Magnitude Between SDoF and

2DoF Uncertainty Analyses: (a) 2DoF (b) SDoF

At this point the results must be analyzed in terms of absolute identified

stiffness and damping rather than percent uncertainty. A significant trend is

shown when viewed this way. Figure 3.21 shows these results.

(a) Stiffness (b) Damping

Figure 3.21: 2DoF: Minimum and Maximum Identified Coefficients

The results in Figure 3.21 clearly show a trend of the identified coefficients
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deviating away from the true value. This means that if the bearing stiffness

k and c were identified on a test rig that was well-represented by the 2DoF

truth model, the identified coefficients at higher frequencies will not reflect the

true value well (or perhaps a better phrasing is “less well than the uncertainty

would indicate”). Both stiffness and damping will be under-predicted. From

a model validation perspective the implication is that bearing codes cannot

be validated with the experimental data from this hypothetical test rig above

a certain test frequency (above approximately 350 Hz in the analyzed 2DoF

example). If researchers adjusted the bearing code to better fit the data,

predictions using that code would be deviating away from reality. Yet if

typical industry guidance was applied to model validation through dynamic

coefficient identification (i.e. - substructure is considered rigid enough to

ignore), this bias may not be understood.

It is also clear from these results that the uncertainty by itself is not a

complete picture of the uncertainty of dynamic coefficient identification. It is

important to know if the identified coefficients are expected to deviate away

from the truth due to system dynamics. This is important to know because

if there is an expected bias, then even if the researchers tested 1,000 identical

bearings or even 1,000,000 identical bearings on the same test rig, they would

not be able to identify the bearing’s true properties when conditions leading

to biases are present. Statistical measures such as averaging would not be

able to get to the truth.

Therefore, a bias or offset prediction for uncertainty is proposed for use
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alongside uncertainty. In this dissertation, it will be referred to as a bias.

The bias will be predicted by using the mean of the identified coefficients in

the uncertainty analysis. In the cases analyzed here and in most cases, the

mean is assumed to be a reasonable measure of central tendency. The bias

can also be normalized by the truth to obtain a percent bias relative to the

true value.

Generally, it is advisable for an engineer or researcher developing a test

rig for dynamic coefficient identification to reduce the bias as much as

possible. However, it will be shown that reducing the bias by including

additional models in the identification model may also increase uncertainty.

The uncertainty analysis framework proposed in this dissertation is

well-suited to analyze trade-offs between bias and uncertainty. The

parameters in a cost-benefit analysis would include instrumentation of the

test rig (such as if the applied force or bearing force is measured) in

addition to models used in the identification model.

To present a more complete representation of the uncertainty of identifying

dynamic coefficients, it is proposed that both the uncertainty and the bias be

analyzed and presented together. Figure 3.22 shows an example of presenting

the information together. Two plots are coupled together similar to frequency

response plots that include magnitude and phase data. The graphs in Figure

3.22 are the uncertainty and bias results of the same case shown in Figure

3.21.

If the uncertainty analysis results show a bias, the researcher or engineer
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(a) (b)

Figure 3.22: Uncertainty and Bias Results from 2DoF for (a) stiffness and (b) damping
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must determine if the bias is significant or not. A thorough treatment of what

makes bias significant for identified dynamic coefficients is not in the scope of

this dissertation. However, on a simple level, there will be a threshold above

which identified coefficients cannot be used to validate models and there

will be a threshold below which the bias would be negligible. For example,

if the bias is greater than the uncertainty, then the uncertainty analysis is

suggesting that the true coefficients are not likely to be found. On the other

hand, if the bias is predicted to be less than five percent, the net effect on

identifying dynamic coefficients may be small (especially compared to other

factors that may be contributing more to uncertainty).

Depending on the context of the uncertainty analysis, researchers and

engineers will have different options for addressing various problems that

may be highlighted by the uncertainty analysis. If the analysis is performed

on a test rig that is already built, there are limited options for changing the

expected uncertainty. The most direct path would be to minimize any

uncertainty present in any sensors and/or improve the identification model

used. When working on a new test rig design, bias (and uncertainty) can be

affected in more ways. The instrumentation can be changed, or the

fundamental layout of the test rig may be altered. The uncertainty analysis

can guide the changes in design.

As a simple example of changes that can be considered when in the

design phase, the mass of the added degree of freedom (relative to the SDoF

model) in the 2DoF model is varied and uncertainty analysis is carried out
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on identifying dynamic coefficients. The results are shown in terms of

uncertainty magnitude and uncertainty bias in Figures 3.23 to 3.26.

(a) (b)

Figure 3.23: Comparing uncertainty when pedestal mass is 0.1x baseline for (a) stiffness

and (b) damping. Only max. uncertainty shown to avoid clutter.

The most noticeable trend when the dynamics of the second DoF are

changed is that the bias decreases when the second mass is decreased. The

uncertainty does not change significantly until one of the system’s critical

speeds enters the frequency range of interest (such as in Figure 3.25).

Interestingly, as seen in the damping uncertainty in Figure 3.26, the
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(a) (b)

Figure 3.24: Comparing uncertainty when pedestal mass is 0.3162x baseline for (a) stiffness

and (b) damping. Only max. uncertainty shown to avoid clutter.
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(a) (b)

Figure 3.25: Comparing uncertainty when pedestal mass is 3.162x baseline for (a) stiffness

and (b) damping. Only max. uncertainty shown to avoid clutter.
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(a) (b)

Figure 3.26: Comparing uncertainty when pedestal mass is 10x baseline for (a) stiffness

and (b) damping. Only max. uncertainty shown to avoid clutter.
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uncertainty peaks at the critical frequency but then returns to

approximately the same as baseline afterward. It even seems like the growth

of uncertainty is improved past the natural frequency. Furthermore, Figure

3.26 clearly shows a benefit to operating above a critical speed: the bias,

instead of growing, levels off and seems to approach an asymptote. Figure

3.27 shows the same results when the frequency range is extended to be 1

Hz to 10,000 Hz for understanding this effect. The uncertainty, whether

operating above a critical frequency or below, becomes greater than one

hundred percent fairly quickly. The bias of the stiffness identification is

smaller when operating above the critical frequency up to about 3,000 Hz.

At this point, the baseline bias is smaller in absolute value. After about

6,000 Hz though the baseline once again has greater bias. For the damping

bias, identifying when the system is operating above a critical frequency

yields a potentially acceptable bias (about ten percent) for a majority of the

frequency range while the base line model’s bias is off the charts. These

results generally reinforce the complexity of uncertainty when identifying

dynamic coefficients. On a more specific note with respect to damping bias,

the results support the idea that operating above critical frequencies may

be of benefit rather than designing a test rig substructure to operate well

below critical frequencies. The simulations here are only 2DoF systems

while a real system is more complicated so the uncertainty analysis must be

performed with a higher fidelity model to get stronger conclusions
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(a) (b)

Figure 3.27: Comparing uncertainty when pedestal mass is 10x baseline for (a) stiffness

and (b) damping. Only max. uncertainty shown to avoid clutter.
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3.2.1 Including More Fidelity in the Identification Model

When identifying with an identification model that does not include the

second degree of freedom, the uncertainty increases and a bias is introduced

relative to the SDoF model. The bias in the 2DoF case comes from the

dynamics introduced by the second degree of freedom (the substructure model

in Figure 3.17) that is not accounted for in the identification model. Though

it is possible that the dynamics may be altered by changing the design of the

test rig (especially design changes that impact the critical frequencies), the

simulations indicate that this may not be a comprehensive solution. The case

tested in this dissertation had some favorable bias results, but the uncertainty

was not significantly improved. There is also the case of analyzing uncertainty

of an already-completed test rig - design changes may not be feasible.

Since the identification model’s lack of accounting for the second DoF

is the root of the issue, it follows then that if we had knowledge of the

substructure properties, it would compensate for the new dynamics. This

can be evaluated by adjusting the identification model for the 2DoF model

to include the pedestal dynamics. In other words, both the truth model and

identification model are now the same (represented by Figure 3.17). In this

case, with the same parameters originally analyzed, the uncertainty and bias

results of the identified coefficients are presented in Figure 3.28. It can be seen

that with perfect knowledge of the substructure, the bias can be completely

compensated. However, the uncertainty is actually greater. Of course in a
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real experiment we would not know the substructure perfectly. Either our

modeling will have some errors relative to truth or identifying the subsystem

dynamics would have uncertainties associated with it. This is analyzed by

implementing an uncertainty on the pedestal model used in the identification

model. To compare the three cases, the stiffness uncertainty and the stiffness

biases are compared in Figure 3.29. The damping results showed the same

behavior.

(a) (b)

Figure 3.28: Identification uncertainty when identification model includes error-free

substructure model.
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(a)

(b)

Figure 3.29: Comparing stiffness (a) uncertainty and (b) bias with different compensation

models for the substructure
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3.2.2 2DoF Identification Using Measured Bearing Force

So far the dynamic coefficients have been identified with applied force

measurement and displacement measurements between the excited

component and the substructure mass. In the SDoF model, it was observed

that measuring the bearing force for identification instead of the applied

force lead to improvements for uncertainty. If we repeat the same analysis

for the 2DoF model, we get some interesting results shown in Figure 3.30.

Even without any knowledge of the substructure model, measuring the

bearing force improved the uncertainty and eliminated bias. Furthermore,

much like in the SDoF model, the trend ends up being dominated by a

linear term for the stiffness (versus a quadratic term when measuring

applied force).

The results in this section suggest the following:

• Figure 3.29 supports the idea that requiring more knowledge increases

uncertainty. Even when the substructure model is known perfectly, the

uncertainty still increases.

• Measuring the bearing force again shows an improvement in uncertainty

trends. In addition to reducing uncertainty, bias is reduced as well. The

reduction of bias is an important feature when trying to validate bearing

models on a test rig.

• Uncertainty has an interesting relationship with critical frequencies. At

the critical frequencies there is a spike in uncertainty (as expected),
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(a) Stiffness (b) Damping

Figure 3.30: Identifying with bearing force measurement, no substructure compensation
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but afterwards the uncertainty trends return to the original trajectory.

Caution must be used however as in more complex systems the way the

mode interacts with the system will also be important.

3.3 Single-Axis Models Including Models based on

Finite-Element Analysis (FEA)

It is possible to continue adding degrees of freedom to the systems

analyzed for uncertainty in this chapter so far. In an attempt to achieve

higher uncertainty accuracy, it is advantageous to break down solid bodies

into elements to better model the flexibility of components such as bearing

housings, rotor, foundations, etc. Since this basic idea is the principle

behind FEA, tools using FEA to develop dynamic models can be

implemented within the uncertainty analysis framework. The ability to pull

in models based on FEA is a powerful feature of the uncertainty analysis

proposed in this dissertation. It would eventually allow for the inclusion of

non-linearities and other complex dynamics. Furthermore, some aspects of

the system may still be approximated with lumped mass models.

A model will be developed for a coefficient identification test rig with

higher fidelity than the SDoF or 2DoF model. The system modeled will be

the same test rig described by Flack et al. [63] seen in Figure 3.2. A force will

be applied to the housing through a load cell. The load cell will be modeled

as a simple mass-spring-damper and the force measurement will be a function
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of the deformation of the load cell in one-axis (to represent the real physics

in which a signal in a load cell is generated when the load cell experiences

strain from an applied load). The load cell model will be connected to a

housing model which will also be a lumped mass. The housing model will

be connected to the bearing model. Also connected to the bearing model, a

FEA-based rotor model will be used. This will be connected to a fixed ground

through a flexible connection with extremely high stiffness (representing the

rolling element bearings holding the rotor in place). Finally, two displacement

sensors will be placed on either side of the bearing housing (not at the center

of the bearing). A simple depiction of the model setup is shown in Figure

3.31.

The truth model for this system is shown in Figure 3.32. The identification

model for a first analysis will be the same as in Figure 3.18. In other words,

the force and displacement data will be collected and will be used to identify

coefficients with the assumption that all the components are behaving ideally.

The rotor is assumed to be rigid, the bearings and foundation holding the

rotor are rigid, and the bearing housing is rigid.

As an example of the dynamic properties of the system, the dynamic model

from force input on the rotor at the bearing location to the averaged output

displacement at the sensor locations without the bearing active is shown in

Figure 3.33.

Figure 3.34 shows the results when the complete system is analyzed with

identification based on an applied force measurement and averaged
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Figure 3.31: Higher Fidelity Single-Axis Model to be Analyzed with the Uncertainty

Analysis Framework
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Figure 3.32: Higher Fidelity Single-Axis Truth Model

Figure 3.33: Rotor Model w/ Support Bearings
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displacement probe measurements. The results show a strong bias - as large

in magnitude as the uncertainty itself! Further inspection reveals that this

is indicative of the stiffness and damping of the bearing being

under-predicted by a significant margin.

(a) (b)

Figure 3.34: Identifying 2DoF using applied force measurement (and not compensating for

substructure): (a) Stiffness Uncertainty (b) Damping Uncertainty.

Figure 3.35 shows the results when bearing force is used instead of applied

force. The results clearly demonstrate that even with the more complicated

dynamics modeled, measuring the bearing force has improved trends. The
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uncertainty grows linearly as opposed to quadratically and the bias is smaller

in magnitude and grows at a slower rate. One of the benefits of using these

simpler models is identifying these types of trends. If a more realistic bearing

was modeled instead of a constant stiffness and constant damping model, the

variation in dynamic coefficients as a function of test frequency would have

also affected the growth rate of uncertainty. This would make it harder to

identify the underlying trends.

(a) (b)

Figure 3.35: Identifying 2DoF using bearing force measurement (and not compensating for

substructure): (a) Stiffness Uncertainty (b) Damping Uncertainty
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Perhaps the most significant observation from these two sets of results is

that even on a system that has many attributes that would typically be

considered rigid enough to assume rigid, the dynamics are affecting the

identification uncertainty significantly. The rolling element bearings

supporting the rotor are twenty times stiffer than the bearing as is the load

cell stiffness. The rotor was originally considered short enough and large

enough in diameter (i.e. - the L/D ratio of the rotor was small enough) to

be considered rigid.1 Nevertheless with these dynamics, the system results

in significantly increased dynamic coefficient identification uncertainty.

In some experimental studies such as the testing in Childs et al. [50],

a “dry shake” is used to try and account for some system dynamics. In

the “dry shake”, the system is excited without the fluid-film bearing being

active. Without oil being supplied to the bearing, the connection between

rotor and stator is broken. There is a load path through the foundation but

it’s effect is typically minimal. So for the “dry shake” the only dynamics

identified are the dynamics directly connected to the excited component (the

housing). One of the biggest contributors to the uncertainty bias in the

higher-fidelity single-axis model is the rotor’s flexibility. Without accounting

for the rotor’s dynamics in some form the bias will still be present. The

study referenced, Childs et al. [50], does not make it clear if there was any

attempt to reconcile the data with a model of the rotor or experimentally

1Another reason for assuming the rotor was rigid is that the first bending mode was calculated to be

much higher than the original testing speeds. A further analysis in Chapter 4 reveals that the assumption

is troublesome even at those lower frequencies.
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identified rotor properties between where the bearing is located and where

the displacement probes are located.

There is a clear advantage when measuring bearing force. Theoretically,

the identification is only affected by the dynamics affecting the displacement

measurement. Another alternative this suggests is that instrumentation

that can measure the film thickness directly could lead to improved

dynamic coefficient identification. The compensation using modeled or

identified dynamics when measuring the applied force is possible still.

However, even in the case where everything is compensated perfectly, the

resulting uncertainty from measurement errors would still yield a quadratic

increase in uncertainty as a function of frequency versus a linear increase of

uncertainty magnitude when bearing force is measured. This should of

course be weighed against the measurement uncertainty associated with

each setup. Depending on the frequency range of interest (particularly at

lower frequencies), applied force measurement may still result in better

uncertainty because the quadratic term has not become dominant.

3.4 Summary and Conclusions of Single-Axis Models

to Understand Uncertainty Analysis

In this chapter, the proposed uncertainty analysis framework is

developed with simple examples. These examples, although relatively

simple, offer valuable insight into factors that significantly affect the
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uncertainty of dynamic coefficient identification. The factors explored in

this chapter are not meant to be exhaustive but serve as a starting point for

engineers and researchers to build upon.

The major conclusions developed in this chapter are summarized below:

• The results of an uncertainty analysis cannot be captured adequately

in a single value. The recommendation presented in this dissertation is

to present results with test frequency on the horizontal axis and

uncertainty magnitude as a percent on the vertical axis. The driving

motivation for using uncertainty magnitude as a percent is for the

purpose of validating bearing codes that predict dynamic coefficients.

In addition to the uncertainty magnitude, an uncertainty bias value as

a percent of the truth used in the simulation should also be presented

as an indication of how well the identification model matches the

actual system.

• Identifying dynamic coefficients with the bearing force measured (as

opposed to the applied force) through some method leads to a linear

growth in uncertainty magnitude rather than a quadratic growth when

applied force measurements are used. Compensation through

acceleration measurements or otherwise cannot eliminate this trend.

Therefore, especially as systems are moving towards requiring validated

models for higher excitation frequencies, measuring the bearing force is

strongly recommended. In the literature reviewed for this dissertation,
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the large majority of test rigs measured applied force.



Chapter 4

Applications of the Uncertainty

Analysis Framework

Chapter 2 of this dissertation reviewed the state-of-the-art of uncertainty

analysis for TPJB dynamic coefficient identification experiments and found

it lacking. Chapter 3 developed a framework for uncertainty analysis using

single-axis models that addresses the shortcomings of uncertainty analysis

currently. The single-axis models identify some important factors for

analyzing uncertainty, offering insight into practical test rig considerations

to minimize the uncertainty of TPJB dynamic coefficient identification.

With the uncertainty analysis framework established, this chapter applies

the framework to a test rig that was previously used to identify TPJB

coefficients. The test rig described in Flack et al. [79] is used as a reference

to build models for analysis.

135
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4.1 Higher-Fidelity Uncertainty Analysis Based on the

Test Rig Described in Flack et al. [79]

4.1.1 Description of the Test Rig

The test rig described by Flack et al. [79] was used to measure static and

dynamic properties of a variety of bearings including TPJBs. Figures of the

test rig’s cross section (Figure 4.1) and layout (Figure 4.2) are reproduced

for convenience.

Figure 4.1: Test Rig Cross Section Reproduced From Flack et al. [79]

This test rig has a floating bearing housing which is excited with

electrodynamic shakers. The rotor is supported by rolling element bearings

modeled as a rigid connection to ground. This configuration was chosen for

the convenience of applying and measuring forces on the excited

component. The rotor was designed to be “rigid” by ensuring the system’s
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Figure 4.2: Test Rig Layout Reproduced From Flack et al. [79]

first critical speed was much higher than the running speed of the rotor.

The first critical speed is quoted to be 16,000 RPM compared with the

original maximum running speed of 1,800 RPM. Some later studies ran the

system at slightly higher speeds.

Dynamic loads were applied to the floating housing using electrodynamic

shakers connected with rigid stingers long enough such that the motion of

the housing would not significantly affect the loading. Some additional

details of the dynamic load system are seen in Figure 4.3 including a

preload spring. The stinger joints could not support compression loads so

the preload springs ensured the joints always experienced tensile loads. The
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applied dynamic force was measured with strain gage load cells at the point

of application. Structural modes in the operating range were removed to

minimize undesired dynamics. The static loading is applied through electric

linear actuators connected via a “soft” spring of 175 kN/m. The

low-stiffness spring was selected to minimize static load variation due to the

motion of the actuator and the bearing. The rotational alignment of the

bearing housing is maintained with a constraint system shown in Figure 4.4.

Figure 4.3: Test Rig Dynamic Loading System Reproduced from Flack et al. [79]
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Figure 4.4: Housing Constraint System of Test Rig Reproduced From Flack et al. [79]

4.1.2 Developing Models of the Test Rig Components/Subsystems

for Analysis

The uncertainty analysis framework is applied to a study of pad pivot

friction by Wygant et al. [60] which was performed on the Flack test rig.

This study compared the dynamic properties of two TPJBs with different

pivot types - spherical seated ball-and-socket pivots and line contact rocker-
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back pivots. Experiments were conducted with synchronous excitations at 15

Hz (900 RPM), 27.5 Hz (1,650 RPM), and 37.5 Hz (2,250 RPM).

Models were developed representing the TPJBs identified in the

experiment, the rotor, and measurement instrumentation (force and

displacement measurement).

TPJB Model

The modeling parameters and operating conditions used for the

uncertainty analysis are presented in Table 4.1.1.

Table 4.1.1: TILTING PAD JOURNAL BEARING PARAMETERS

Parameter Value

Number of Pads 5

cb, µm 81.3

cp, µm 91.4

Preload 0.125

Pivot Offset Ratio 0.500

Length/Diameter 0.750

Pad Arc Length (degs) 52

Oil Inlet Configuration flooded

Pad Material steel

A fluid-film bearing modeling algorithm developed by Branagan [80] is

used to perform TEHD analysis with these parameters to generate a truth

model. The resulting true coefficients are presented in Figure 4.5. It was

discovered that the bearing coefficients differed only slightly as a function of
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operating speed so a single operating speed was selected. Furthermore,

though some variation is expected with varying loading, a single loading

case is selected. The goal is not to match the experimental results exactly

but rather to compare the uncertainty published in the paper with the

uncertainty computed using the uncertainty analysis framework developed

in this dissertation.

The dynamic coefficients from the model are presented in Figure 4.5. The

vertical principal coefficients (Kyy, Cyy) are larger in magnitude than the

horizontal principal coefficients (Kxx, Cxx). The cross-coupled stiffnesses are

negligible relative to the principal stiffnesses up to about 60 Hz. The cross-

coupled damping remain negligible in the entire range of test frequencies

plotted.

(a) Stiffness Coefficients (b) Damping Coefficients

Figure 4.5: Bearing Truth Model Based on Wygant et al. [60]
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Rotor Model

Based on a scale drawing of the rotor and some critical measurements, a

finite element model was developed for the rotor. The model was imported

into the uncertainty analysis as a state-space model which could be combined

with the other models. The state-space model included inputs for the TPJB

model and a model of the rolling element bearings. The substructure was

not directly modeled because there was not enough information to recreate

a high fidelity model. The dynamic properties of the supports (i.e. - rolling

element bearings) are shown in Table 4.1.2.

Table 4.1.2: Additional Parameters - Relative to Test Bearing Max. Stiffness and Damping

Support Bearing Stiffness 20x

Support Bearing Damping 0.01x

Load Cell Stiffness 20x

Load Cell Damping 0.01x

Load Cell Mass 1 kg

Measurement Instrumentation Model

The measurement model for displacement assumed the bandwidth of the

sensor system was high enough that the only significant effect was the

measurement error model. Additionally, the rotor model allowed the

displacement measurement to be non-collocated with the bearing location.

Two sets of sensors are used on either side of the bearing housing. The

measurements are averaged to obtain the displacement measurement.
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The force measurement was modeled with a simple mass-spring-damper

model for each axis representing the two load cells for two orthogonal axes.

Model parameters are shown in Table 4.1.2. The load cells output a signal

that corresponds with force when they experience a strain and this is captured

in the measurement model.

4.1.3 Uncertainty From Force and Displacement Error Alone

A first analysis is performed using only the higher-fidelity TPJB model

for the test bearing. The rotor is assumed to be rigid, and thus treated as a

lumped mass. The support bearings and substructure are also assumed rigid.

This analysis serves two purposes. First, the higher fidelity model - now

including a TPJB model in two axes - can be compared with the results

obtained with the single-axis models. Second, the original publication states

that “the combined uncertainty analysis included, but was not limited to,

uncertainty in the magnitude and phase of the sinusoidal applied force and

the resulting sinusoidal response.” The description implies that while the

uncertainty analysis in the publication allows for other factors, only

measurement errors were analyzed and presented. Therefore, the

uncertainty analysis framework in this dissertation can be compared with

the uncertainty analysis performed by Wygant et al.

The uncertainty parameters are listed in Table 4.1.3. These values have

been selected to be representative of typical uncertainties for load cells and

displacement probes. For each trial in the Monte Carlo method an
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Displacement Magnitude Uncertainty ±2%

Displacement Phase Uncertainty ±2 degrees

Force Magnitude Uncertainty ±7%

Force Phase Uncertainty ±4 degrees

Table 4.1.3: Uncertainty Parameters for Higher Fidelity Uncertainty Analysis

independent error case is generated for the principle lateral directions as

well as for cross-coupling in the system based on the values in Table 4.1.3.

The results of this first analysis for the stiffness terms are shown in Figure

4.6. Note that the vertical axis scale has been relaxed for the Kxy and Kyx

results to show the magnitude of uncertainty for the cross-coupled terms.

The reason the cross-coupled term uncertainties are so large is because the

magnitude of the cross-coupled stiffness terms are so much smaller than the

direct terms.

Vertical lines at the rotating frequencies of the experiments are included

as a reference to Wygant et al. Since the TEHD algorithm used to develop

the truth model did not vary significantly based on the operating speeds,

the dynamic coefficients should be representative at all three speeds. Some

variation is expected due to loading changes in the Wygant et al. experiments.

Depending on the pivot being tested, uncertainties computed by Wygant

et al. for the principal coefficients varied from as low as 5% for the Kyy with

the rocker-back pivot to 82% for the ball-and-socket pivot TPJB. To

provide a more direct comparison, the Kxx results in the present

uncertainty analysis have representative points from the Wygant et al.
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Figure 4.6: Stiffness Uncertainty with Only Measurement Errors
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uncertainty analysis plotted. These points have been estimated from the

computed experimental uncertainty for Kxx for the TPJB with rocker-back

pivots. The uncertainties computed by Wygant et al. are comparable to the

uncertainties computed with the proposed uncertainty analysis framework.

Differences can be attributed to differences in static load, sensor uncertainty

definition (absolute vs. relative), and dynamics implications of experimental

methods. For example, it is stated that “the uncertainties varied due to

decreasing orbit peak-peak response as stiffness increased.” To achieve a

closer comparison to the published uncertainty values, more detail than

given in the publication is required of how the peak-peak response varied

relative to the sensor capability to measure the response. Regardless of the

differences, the uncertainties are reasonably close to each other and provide

support that the uncertainty analysis framework in this dissertation

estimates uncertainty accurately.

The cross-coupled term uncertainties in Wygant et al. were much larger

typically though not quite as large as predicted by the uncertainty analysis

in this dissertation. Still, because the cross-coupled terms are much less

significant to system dynamics for TPJBs, they will not be presented beyond

Figure 4.6. The uncertainty results for damping are shown in Figure 4.7. The

values predicted by the uncertainty analysis in this dissertation are reasonable

relative to the values of uncertainty computed in Wygant et al. [60].

In addition to the comparison to the published results, an important

observation is that the uncertainty behaves in a similar fashion to the
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(a) (b)

Figure 4.7: Damping Uncertainty with Only Measurement Errors

uncertainty results from the single-axis models including the SDoF models.

The principal stiffness uncertainty follows a roughly quadratic curve which

is expected. The behavior is exaggerated because instead of a constant true

stiffness, the higher fidelity TPJB model has decreasing true stiffness -

which is expected to increase the uncertainty further on top of just the

frequency effects. The cross-coupled stiffnesses were expected to be much

more uncertain than the direct terms because they were much smaller in

magnitude and the results show this. It is interesting to note that there is a

little bit of bias introduced at about 100 Hz, most noticeable in Kxx. This

bias, even though there are no additional dynamics, results from the direct
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stiffness becoming about the same magnitude as the cross-coupling, so the

cross-coupling is introducing a bias. This result reinforces the importance of

a complete uncertainty analysis. Even if the system dynamics have been

designed to be as close to ideal as possible, it is possible that the

cross-coupling can introduce biases. While the bias is broken out here to

show the described effect, it is small enough in the test frequency range that

the researchers could say, “Bias is estimated to be within ±5% in the test

frequency range of interest.” This way only the uncertainty results need to

be shown. The damping uncertainty results also demonstrate the same

trends identified in the single-axis models.

4.1.4 Adding More Dynamics to the Two-Axis Analysis of

Uncertainty

The first uncertainty analysis of the higher fidelity, two-axis model based

on the Flack et al. test rig analyzed the effects of measurement errors alone.

The analysis is extended to include additional dynamics similar to Section

3.3. The following dynamics are considered:

• A two-axes finite-element model for the rotor that will include the effect

of the rotor flexibility as well as displacement sensor non-collocation

relative to the bearing center-line. Gyroscopics from the rotation of the

rotor will also be modeled.

• A simple model of the connection to ground through the rotor support
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bearings and substructure.

• A simple load cell model.

These additional dynamics are mostly the same as the dynamics in

Section 3.3 and the common factors included will provide a comparison

between the uncertainty analysis with only one axis to the higher-fidelity,

two-axes analyses. The parameters such as load cell stiffness and rotor

support bearing stiffness are kept the same to make the most effective

comparison.

The results are shown in Figures 4.8 and 4.9. Cross-coupling coefficient

uncertainties are omitted due to the large uncertainties for values orders of

magnitude smaller than the principal coefficients.

The frequency range analyzed is 1 Hz to 100 Hz which is different from

the frequency range in the single-axis analyses which ranged from 1 Hz to

1000 Hz. In this frequency range, the most notable bias was in Kxx.

Otherwise, the bias is within 10%. As noted in the uncertainty analysis

with just measurement error, the basic trends match the expected trends

from the single-axis models.

An interesting relationship is observed when comparing stiffness

uncertainty to damping uncertainty. For the lower test frequencies, the

stiffness uncertainty is lower but the damping uncertainty is higher.

If any sort of model compensation is performed for the bias in the Kxx,

the uncertainty would increase. For Wygant et al., given the range of
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Figure 4.8: Stiffness Uncertainty With More Dynamics

frequencies tested, this may not be an issue. However, modern systems

operate at much higher speeds and experience excitations at much higher

frequencies. There are many test rigs with a very similar design still in use

to identify TPJB dynamics and it is very likely that they have acceptable

uncertainty at very low frequencies, but at test frequencies more applicable

to modern machinery, the uncertainty for stiffness would definitely be

unacceptable. However, it appears that at higher frequencies damping

uncertainty may in fact improve. The primary take-away from this is that

uncertainty analysis is more important than ever to truly understand these

trade-offs in the identification process.
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Figure 4.9: Damping Uncertainty With More Dynamics

4.1.5 Evaluation of Measuring Bearing Force and Bearing Film

Thickness More Directly

One of the interesting features of the test rig described by Flack et al. [79]

is the presence of transducers on the shaft. These transducers rotate with

the shaft and provide measurements from within the bearing that stationary

transducers connected to the housing or elsewhere typically cannot. There are

three pressure probes and two displacement probes along the axial direction

of the bearing. Details of the placement are shown in Figure 4.10.

The typical use of applied force measurements and external displacement

measurements takes the full dynamics of the bearing and reduces it to a

spring-damper equivalent operating at a single point. This is convenient
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Figure 4.10: Shaft Probe Locations from Flack et al. reproduced from [79]
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relative to using data from within the bearing for several reasons. First, the

practical realities of trying to extract dynamic force and displacement

information from a sensor that is also rotating requires extremely high

performance sensors which can be costly for high-speed applications or

possibly non-existent. Second, uncertainties such as the uncertainties in

integrating a pressure profile for force may prove to be large enough to be

problematic even if the dynamics of the identification are favorable.

The first point may be mitigated by using pressure and displacement

sensors in the pad of a TPJB. The challenge with this setup is that with

limited real estate it may be more difficult to get a full pressure profile or

displacement profile whereas a rotating sensor can, in theory, see the entire

circumferential profile. This may perhaps be mitigated by using both

transducers in the pad and rotating transducers in the shaft together to

create a complete picture. The second point may be mitigated by using new

advancements in computational fluid dynamics (CFD) to develop a better

understanding of where probes would need to be located to get the most

relevant information.

Though these considerations are coming from the perspective of dynamic

coefficient identification, the same probes for looking within the bearing also

have benefits for bearing code validation as a whole by providing valuable

steady-state data within the bearing.

The uncertainty analysis framework developed in this dissertation is used

to determine if it might be worthwhile to develop the hardware and techniques
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to measure quantities within the bearing such as pressure (to determine force)

and displacement (to determine film thickness). The truth model in this

uncertainty analysis will include all of the dynamics described in Section 4.1.4.

The identification model will not include any details of the dynamics. Some

assumptions are implicit to this analysis including 1) transducer locations

are carefully planned to allow for the tracking of the dynamic pressure profile

and dynamic film thickness and 2) the transducers have the bandwidth to

track the real-time signals while rotating. As a simple model of some of the

increased challenges associated with this instrumentation, the uncertainties

for each measurement have been increased by a factor of 1.5 as shown in

Table 4.1.4.

Displacement Magnitude Uncertainty ±3%

Displacement Phase Uncertainty ±3 degrees

Force Magnitude Uncertainty ±10.5%

Force Phase Uncertainty ±6 degrees

Table 4.1.4: Uncertainties Used for Within-Bearing Transducer Analysis

The results of this uncertainty analysis are presented in Figures 4.11 and

4.12. For the stiffness uncertainty, at first glance it may seem like this method

is worse in terms of uncertainty. Compared with measurements of applied

force and displacements at probes on the sides of the housing, the stiffness

uncertainty is slightly higher. However, the bias is significantly improved as

the test frequency approaches 100 Hz. It must be considered that to eliminate

the bias in Figures 4.8 and 4.9, the engineer must identify or model (1) the
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rotor, (2) the connection of the rotor to ground, and (3) the load cell model.

Needing to identify or model these dynamics may eliminate the bias but will

increase the uncertainty which can quickly become equal to or greater than

when measuring bearing force and film thickness directly. Furthermore, there

may be other dynamics that are not modeled or the reality may not have been

fully captured in the truth model. Because measuring the bearing force and

film thickness seems less sensitive to these additional dynamics, there can

be more confidence that hidden dynamics in the test rig will not impact the

dynamic coefficient identification uncertainty as much.

The damping uncertainty results are in favor of measuring bearing force

and film thickness. There was not a significant bias to begin with. The

uncertainty, however, is decreased noticeably compared with Figure 4.12.

4.1.6 Improving Identification Uncertainty by Improving Sensor

Accuracy

The uncertainty analysis in Section 4.1.5 using the sensor uncertainties

in Table 4.1.4 was conservative, assuming that sensor uncertainties for

rotating sensors would be worse than for stationary sensors. This provides

an opportunity for improving the identification experiment by improving

the accuracy of the sensors.

The same analysis with sensors on the shaft is re-run with the uncertainties

in Table 4.1.3. The results are shown in Figure 4.13 and Figure 4.14. In all

cases the uncertainty analysis results are better than the case of measuring
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Figure 4.11: Stiffness Uncertainty With Direct Force and Film Thickness Measurement

applied force and displacement from sensors besides the bearing.

The results demonstrate that improving the uncertainty of TPJB

dynamic coefficient identification is a multi-pronged effort. First, the

system configuration (especially measurement systems) can reduce the

sensitivity of the test rig to physics that can lead to biases in the identified

dynamic coefficients. Second, the uncertainty analysis framework can be

used to evaluate and minimize the modeling requirements for identification

which will reduce the uncertainty. Third, sensor accuracy can be improved.

Typically this would mean higher-cost sensors with better performance.
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(a) (b)

Figure 4.12: Damping Uncertainty With Direct Force and Film Thickness Measurement

To further demonstrate the significance of improving sensor accuracy,

Figure 4.15 shows the Kxx results for three different cases for comparison.

The first and second cases are the Kxx uncertainty results from Figure 4.11

and Figure 4.13. The third case models uncertainty when sensor

performance (displacement and force) achieves 1% magnitude uncertainty

and 1 degree phase uncertainty. Gancitano [78] demonstrates how this may

be achieved for force measurement. There is a trade-off for the accuracy.



158 CHAPTER 4. UNCERTAINTY ANALYSIS APPLICATIONS

(a) (b)

Figure 4.13: Uncertainty Analysis Results Measuring Bearing Force and Film Thickness

Directly With Improved Sensor Uncertainty (a) Kxx (b) Kyy

Since the method described by Gancitano uses systems external to the

bearing, the pressure within the bearing can no longer be measured without

additional instrumentation separate from the force measurement system.

Ultimately this means more cost if both capabilities are to be retained. The

trade-off may be worthwhile as the uncertainty and bias are significantly

improved when the measurement uncertainty is accurate to within 1% in

magnitude and 1 degree in phase.
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(a) (b)

Figure 4.14: Uncertainty Analysis Results Measuring Bearing Force and Film Thickness

Directly With Improved Sensor Uncertainty (a) Cxx (b) Cyy

4.2 Uncertainty Analysis Applications - Summary

The models of the application discussed in this chapter show results that

demonstrate several important points:

• The uncertainty analysis results in this chapter reflect the trends and

observations seen in Chapter 3. The value in the single-axis models is

demonstrated when the same trends emerge in the higher-fidelity,
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(a) (b) (b)

Figure 4.15: Comparing Kxx Uncertainty and Bias Results (a) Measuring Applied Force

and Rotor Displacement (b) Measuring Bearing Force and Film Thickness (c) Improved

Measurement of Bearing Force and Film Thickness

two-axes models. A bearing model that includes dynamic coefficients

that change with test frequency shows how the basic trends may

express themselves with a real bearing even without additional

dynamics modeled. Further study with measuring bearing force and

measuring film thickness more directly mirrored the measurement of

bearing force in the single-axis models. By measuring the

hydrodynamic film more directly, the identification is shown to become

less sensitive to dynamics such as rotor flexibility. The more direct

measurement of force and displacement also completely avoids some

issues such as sensor non-collocation.
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• The additional fidelity of having a second axis in the models reveals

that - even when additional dynamics are not included - the inherent

dynamic characteristics of the TPJB could add biases at high

frequencies. At higher frequencies, the principal stiffnesses for the

bearing design modeled decreases while the cross coupling increases.

Thus, even with perfect measurement, bias is introduced. Careful

modeling will allow researchers to evaluate the impact of this

phenomenon on dynamic coefficient identification.

• Analyses with increasing measurement accuracy demonstrate how

important it is that the instrumentation be as accurate as possible. In

Figure 4.15, modifying the measurement signals showed noticeable

benefits. The improvement of measurement accuracy also showed

significant improvement. Engineers/researchers should therefore ensure

that sensor selection and measurement scheme are made as accurate as

possible and evaluated to ensure suitability.
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Chapter 5

Novel Test Rig Design Using The

Uncertainty Analysis Framework

The uncertainty analysis framework developed in this dissertation

features the capability to guide the design of dynamic coefficient

identification test rigs. Chapter 3 showed that single-axis models of test rigs

can demonstrate significant trends in the uncertainty of identified dynamic

coefficients. Chapter 4 showed that higher-fidelity models provide further

insight on significant factors affecting the uncertainty of identified dynamic

coefficients. In this chapter, the uncertainty analysis predictions identify

problematic features of a test rig design and act as a design parameter to

evaluate design changes. A test rig is designed that considers the

uncertainty of identified coefficients as part of its development.

163
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5.1 Original Concept For the Bearing Test Rig

A test rig design presented in a dissertation by Tim Dimond [81] is

evaluated with the uncertainty analysis framework developed in this

dissertation. Figure 5.1 shows the test rig layout.

Figure 5.1: Test rig layout reproduced from Dimond [81]

A 350 HP (261 kW) motor drives the system through a speed-increasing

gearbox with a 1:5.0625 ratio. A quill shaft connects the gearbox to the

hollow test rotor. The quill shaft is designed to minimize the transmission of

vibration to the test rotor from the gearbox and motor. A hollow test rotor

design allows coupling with the quill shaft at the center of the test rotor.

This design minimizes asymmetric dynamics and moments that might occur

as the test rotor is displaced during testing.

The test bearing will be located at the center of the shaft with a five inch

diameter for the journal section. There are two active magnetic bearings

(AMBs), one on either side of the test bearing. The active magnetic bearings
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apply static and dynamic loading in addition to levitating the rotor. Figure

5.2 shows a cross section of the original design.

Figure 5.2: Test rig cross section reproduced from Dimond [81]

5.2 Bearing Test Rig Specifications

Table 5.2.1 lists key target specifications for the original test rig design.

The speed and diameter were selected to achieve surface speeds relevant to

industrial applications that may include turbulent flows of the lubricant. The

maximum load rating was selected to work with the surface speed to simulate

a wide range of industrial applications. Sizing was performed assuming fully-

flooded bearings using ISO VG46 as the lubricant. Active magnetic bearings

were selected for applying forces to the system due to their asynchronous

non-contact excitation capabilities

The original specifications did not consider uncertainty. Based on
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Table 5.2.1: Fluid Film Bearing Test Rig Specifications

Test Bearing Diameter 5 in (127 mm)

L/D Ratios 0.50 - 0.75

Pad Pivot Offsets 0.5

Orientations LBP, LOP

Rotational Speed Range 9,000 - 22,400 RPM

Surface Speed Range 196 ft/s (60 m/s) - 480 ft/s (149 m/s)

Lubricants ISO VG 32, ISO VG 46, Water

Maximum Bearing Unit Load 480 psi (3.3 MPa)

Dynamic perturbation displacement (p-p) 0.001 in (24 µm)

Excitation Frequency Range 10 Hz - 515 Hz

feedback from members of the Rotating Machinery and Controls (ROMAC)

lab’s industrial consortium, a target of twenty percent uncertainty or better

was set. Since a comprehensive uncertainty analysis includes a plus-minus

uncertainty as well as a bias, the goal will be to reduce the sum of the

uncertainty and bias below 20%.

5.3 Motivations for Design Changes

A design audit of the test rig revealed some challenges for achieving the

specifications in Table 5.2.1. The AMB design was insufficient for the

maximum bearing unit load specification. Along with the AMB actuator

design, an uncertainty analysis was performed. The uncertainty analysis

began simply and eventually exercised many of the capabilities of the
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uncertainty analysis framework developed in this dissertation. The results

of the uncertainty analysis were used to guide the design changes presented

in this chapter to achieve acceptable predicted uncertainty for TPJB

dynamic coefficient identification experiments.

Prior studies in this dissertation included single-axis models to

understand important uncertainty trends and higher-fidelity models on

previously built test rigs. In this chapter, the uncertainty analysis

framework is applied to a test rig in the design phase. The exercise is a

demonstration of how uncertainty analysis can become a part of the design

phase. Examples of design modifications for improving TPJB identified

coefficient uncertainty are explored. The test rig design will be modified to

reduce the uncertainty of identified coefficients using the results of the

uncertainty analysis while also working within the practical constraints of

the test rig design.

5.4 Modifying the Active Magnetic Bearing Design

The original AMB design was a continuous-backiron, E-core design with

coils on each salient stator pole. The journal diameter was six inches for the

rotor laminations. Based on the original specifications, the maximum unit

load (480 psi) for the test bearing could only be achieved for an L/D ratio

of 0.5 and then only by fully saturating the AMB which would leave little

to no capacity for dynamic loading. While this would allow for steady-state
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properties to be measured, dynamic testing would be difficult. The AMBs

were redesigned to broaden the range of bearing L/D ratios that can be tested

at the specified maximum 480 psi while still retaining dynamic force capacity.

The main goal of the redesign was to maximize pole-face area available

for the magnetic flux path across the air-gap between the stator and rotor.

To accomplish this, a single-coil E-core stator lamination design was

adopted. Additionally, rather than a continuous backiron design a

segmented stator design was adopted. Figure 5.3 shows the original AMB

cross-section compared with the new AMB cross-section. While this adds

some complexity in the mechanical design, each sector would become

magnetically isolated from each other which has some benefits for the flux

density across the air gap, further increasing the maximum force capability

of the AMBs. There are drawbacks for this type of design including

challenges with redundancy if an amplifier fails and an increased diametral

space requirement. While an industrial machine might struggle with those

trade-offs, for this test rig it was determined that these trade-offs were

acceptable.

The original AMB design was analyzed using 2-D FEA to estimate force

capacity. Figure 5.4 shows the results for the maximum load condition

assuming linear operation. A perturbation current of 27 A about a bias of

27 A was applied to the top two quadrants and the bottom quadrants were

not energized. The FEA predicted a force of 11.1 kN resulting in a bearing

specific load of 2.7 MPa (391 psi) for a test article with an L/D ratio of 0.5.
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(a) (b)

Figure 5.3: Comparing the AMB cross section of (a) the original design reproduced from

Dimond [81] and (b)

Flux density across the air gap is approximately 1.3 T and in the backiron,

the peak flux density was between 1.5-1.7 T. The flux density in the

backiron can be considered saturated and therefore additional current in the

coils will yield diminishing results. The only feasible way to achieve the 480

psi target was to go well into this saturated zone at which point the

dynamic load capacity is significantly diminished.

With the new design, the bias current is only 7.5A with a perturbation

current of 7.5A to reach peak current. For a similar flux density across the air

gap and in the backiron, the new AMB design achieves a FEA predicted force

of 22,500 N for a unit load of 770psi for with a test bearing L/D ratio of 0.5.

The unit load for the maximum L/D ratio of 0.75 would be approximately
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Figure 5.4: Original AMB FEA

Original AMB FEA reproduced from Dimond [81]

510 psi. The results shown in Figure 5.5 are generated using the FEMM

finite element package for electromagnetics created by David Meeker [82].

These results correspond to the backiron being saturated again but with the

additional headroom afforded by the increased force capacity, the target of

480 psi can be achieved for a much broader range of bearings while preserving

some dynamic load capacity.

5.4.1 First Analysis of Uncertainty with AMBs

As the basic AMB design was reconsidered, a simple analysis of uncertainty

was performed that began a process of adjusting the configuration of the test

rig to improve uncertainty. The AMBs were originally intended to act as

calibrated load cells for the test rig as well as actuators. Hall sensors would



5.4. MODIFYING THE ACTIVE MAGNETIC BEARING DESIGN 171

Figure 5.5: Updated FEA Result

be included in the AMB to measure the magnetic flux. Combined with the

position of the rotor in the AMB measured with displacement sensors, the

force applied through the AMB can be calculated. Fiber optic strain gages

were planned as secondary sensors to estimate the force applied by the AMB

through a measurement of the AMB stators’ strain. In either method the

force measured would be the total applied force: static loading plus dynamic

excitation.

Measurement error in this case would be applied to the total applied force
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measurement. The error then will be larger relative to the dynamic force

applied for the experiment which is typically a smaller portion of the total

force applied. Table 5.4.1 presents a numerical case study. The analyses

in Chapters 2, 3, and 4 clearly demonstrate that the increased uncertainty

relative to the dynamic force magnitude will be problematic for dynamic

coefficient identification.

Table 5.4.1: Numerical Example of Dynamic Force Error from Total Force

Static Force 2,500 lbf

Dynamic Force Magnitude 500 lbf

Total Peak Force 3,000 lbf

Force Measurement Uncertainty (% Full Scale) 3%

Force Uncertainty at Peak Force 90 lbf

Force Uncertainty Relative to Dynamic Force Magnitude 18%

The first design change to address this issue was to separate the static

loading and dynamic excitation by having a set of AMBs to apply the static

force and a set of AMBs applying the dynamic forces. The basic design for the

bearings will be the same. The two main differences will be the axial length

of the two AMB types (the static loading bearings will be longer axially for

larger force capability) and the controller for the two applications. Figure 5.6

shows a schematic of the updated configuration. In addition to reducing the

measurement uncertainty for dynamic excitation, the separation of the AMB

actuators into a pair of static loading AMBs and a pair of dynamic excitation

AMBs allows tuning each AMB pair for their application. This would further
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help reduce uncertainty by minimizing any additional dynamics introduced

by a controller not optimized for either application if the AMBs are combined.

Figure 5.6: Splitting the Dynamic Loading and Static Loading Sources

Further investigation with a lumped-mass, single-axis approximation of

the system (see Section 3.1.2 for the basic principles) indicated that further

reduction of force uncertainty was required if possible. The simple

computation performed first showed that the application of static loading

and dynamic excitation needed to be split. Figure 5.7 shows the uncertainty

results from three different speed cases analyzed for a bearing design in a

simulation of the test rig. The bias is negligible for these analyses. The

results are shown both for the case where the AMB actuator is combined

for static and dynamic loading as well as the case where the AMB actuator

is split to perform the functions separately. The uncertainty is significantly
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improved when the actuator is split, but the combination of the quadratic

inertial term and the decreasing stiffness as test frequency increases

becomes problematic at higher test frequencies. The impact on

identification uncertainty at higher frequencies made it important to reduce

the dynamic force uncertainty even further to achieve the uncertainty target

in the specified test frequency range.

5.4.2 Improving Force Measurement Uncertainty - The “Active

Load Cell” Concept

As the importance of reducing force measurement uncertainty became

evident, a new concept was developed to improve AMB actuator force

measurement beyond the capability of hall sensors and/or strain gages. The

idea proposed measuring the force of the AMBs through an externally

attached electrodynamic shaker that was inertially canceling the motion of

the AMB stator. A detailed investigation of the “Active Load Cell”

concept’s ability to measure component force is presented in a MS Thesis

by Paul Gancitano [78]. A simple representation of the operation is shown

in Figure 5.8. As with typical test rig operation, an excitation force is

applied to the excited component (the rotor in this case). For the proposed

test rig this would be through AMBs. The applied force, Fexcitation, will

generate a reaction force on the AMB housing, Freaction, resulting in an

acceleration of the stator measured by an accelerometer (shown in yellow).

The electrodynamic shaker (shown in blue) will apply a force to counteract
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(a)

(b)

Figure 5.7: Comparing Kxx Uncertainty for Combined AMB vs. Split-AMB Configuration

for 3 Speeds - (a) AMB combined (b) AMB split into separate static loading and dynamic

excitation actuators
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Freaction. The force from the shaker, Fcancel, will be adjusted until the

accelerometer reading is zero. This indicates that Fcancel = −Freaction.

Figure 5.8: Operating Schematic of “Active Load Cell” concept

In the original conception, the electrodynamic shaker force is a proxy for

the force applied through the AMB. (As discussed in Section 5.5, the

concept can also be applied to measure the force generated within the

TPJB.) Estimation of the shaker’s electrodynamic force can be more

accurate (better than 1% uncertainty) than measuring the AMB forces with
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hall sensors (about 3% at best) or strain gages. The trade-off is added

complexity in the support structure required to achieve the force

measurement.

There are some other benefits of using a proxy for force measurement. For

example, one of the most accurate ways of measuring the force of an AMB

is to measure the flux density across the air gap with hall sensors. However,

from a practical design perspective this requires space for the sensor between

the rotor and stator, increasing the effective air gap. This affects the force

capability of the AMB. A proxy force measurement allows for designing the

AMB without worrying about an effective increase in air gap with a hall

sensor. Additionally, hall sensors only measure flux at a single location. This

may not capture the full distribution of the flux in the air gap. This adds

another error in force measurement using hall sensors relative to using the

“active load cell” concept.

Similar to the analyses with results shown in Figure 5.7, the capability

of the active load cell was modeled and the same analysis was re-run. The

AMB actuators were still split and the active load cell concept was modeled

as measuring the dynamic force applied on the rotor. The results are shown

in Figure 5.9.

Though the results are promising, only measurement uncertainties have

been modeled thus far. For a truly comprehensive uncertainty analysis,

additional dynamics such as rotor flexibility must be included. Adding

fidelity to the uncertainty analysis shows that even though the uncertainty



178 CHAPTER 5. NEW BEARING TEST RIG

Figure 5.9: Uncertainty Results for 3 Speed Cases with “Active Load Cell” Measurement of

Dynamic Excitation Force Modeled

of applied force measurement has been significantly improved, the dynamics

of the test rig may still be problematic. Following these new findings, the

test rig design was modified to look at measuring the hydrodynamic bearing

force instead of the dynamic excitation force applied on the rotor.

5.5 Measuring Bearing Force Instead of Applied Force

To investigate the impact of additional dynamics, a rotor model was

developed allowing a comparison between an ideal transfer function and a

transfer function that includes the effects of rotor flexibility and

noncollocation of forces and displacements. Figure 5.10 shows a

representation of the model that was developed. The ideal or desired

transfer function represents the response between the forces at the bearing

location and the resulting displacement at the bearing location. As this test
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rig was originally designed, the input force would not be applied at the

bearing location but away from the center where the AMBs would be

acting. The displacements would not be measured at the bearing location

but with probes on either side of the bearing housing.

Figure 5.10: Diagram Showing Example of Non-collocation Modeled in Analysis With

Flexible Rotor Truth

Even without performing an uncertainty analysis, a simple comparison of

the ideal and more practical transfer function showed a significant effect of

the dynamics modeled in this analysis. Figure 5.11 shows the difference in the

magnitudes of the transfer functions relative to the ideal transfer function.

The conclusion from this analysis is that the experimental setup is sensitive

to the dynamics of the rotor. A critical frequency is observed in the target

test frequency range. While modeling the rotor would reduce this sensitivity,

a different course of action was chosen based on the work presented in this
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Figure 5.11: Impact of Rotor Flexibility - Difference Between Truth and Identification

dissertation. With the current analysis, the sources of this sensitivity are 1)

the noncollocation of force measurement location and the dynamic force in

the test article and 2) the noncollocation of the displacement measurement

and the actual film thickness of the TPJB. This reflects analysis shown in

Section 3.3 and Section 4.1. The first point - the force non-collocation - was

addressed by using the “Active Load Cell” concept to measure the forces

exerted by the fluid-film in the TPJB rather than the applied force at the

AMBs.

Figure 5.12 shows the first results from evaluating this configuration.

Uncertainty analysis was performed on an identical case with sensor

uncertainties defined for the original configuration with combined static
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loading and dynamic excitation, the case where the dynamic excitation is

split from the static loading, and the case where the active load cell concept

is used to measure TPJB force. It is clear that measuring the bearing force

behaves better from the perspective of uncertainty. Furthermore, it has

been shown in this dissertation that measuring bearing force is less sensitive

to additional dynamics such as the force noncollocation issue. The

displacement noncollocation between film thickness and prox probes will

still affect the identification. While not modeled in this example, the

displacement noncollocation will affect all three cases.

Figure 5.12: Uncertainty Analysis Results for Kxx Comparing Original Test Rig Design,

Splitting the Actuators, and Active Load Cell for Measuring TPJB Force

Some design work was undertaken to evaluate the measurement of TPJB

forces with the active load cell concept further. The anticipated

experimental method required two electrodynamic shakers installed

orthogonally to perform the cancellation. The bearing housing would also

have to be supported at frequencies other than the test frequency,
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particularly at zero frequency for the static loading. Due to the size of the

electrodynamic shakers for forces required to support the total force, the

electrodynamic shakers were limited to dynamic cancellation forces while a

series of electromagnetic actuators were designed to levitate the housing

and keep it in place. Another issue with sizing the electrodynamic shakers

is that the already installed foundation would require extensive changes to a

third of the substructure. Figure 5.13 shows the required layout for this

model of force measurement. The section with the AMBs and

electrodynamic shakers must be completely modified including dropping the

floor to accommodate the shakers. This would also entail splitting a large

metal foundation that had been previously designed, built, and installed.

Figure 5.13: Isometric View of Foundation Changes Required for Active Load Cell Concept



5.6. ESTIMATING BEARING FORCE USING PIEZOELECTRIC LOAD CELLS 183

Some ideas to circumvent this issue were discussed such as hanging the

electrodynamic shakers from the ceiling and using them similar to shakers

used for modal testing. This may also require some infrastructure changes

to allow for this. Ultimately, it was determined that an alternative method

would be required.

5.6 Estimating Bearing Force Using Piezoelectric Load

Cells

The typical instrumentation on dynamic coefficient identification test

rigs of measuring applied force leads to high uncertainty as test frequency

increases. The most common configuration for force measurement uses load

cells at the point of application (usually at the connection between a shaker

and the excited component). In this test rig where the actuator applying

forces is a magnetic bearing, the applied force needed to be measured in a

different way. Originally designed to be hall probes and/or strain gages to

construct the force measurement, the active load cell concept was proposed

to further reduce uncertainty. Based on the development of the uncertainty

analysis framework in this dissertation, the measurement of force was

redesigned to be taken from the bearing housing, leading to a measurement

that approximates the bearing force. While this showed the most promise

for reducing uncertainty, the practical challenges of implementing the

concept forced a redesign.
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All the analysis so far supports measuring bearing force to minimize

uncertainty and sensitivity to dynamics. To approximate this measurement,

piezoelectric load cells between the test article housing and the foundation

are proposed. In the active load cell concept, active cancellation would have

zeroed the housing acceleration, resulting in a force measurement that in

principle does not include an inertial component. With piezoelectric load

cells, the housing will still experience vibration and thus there will be some

inertial component in addition to the bearing force captured by the load

cells. However, the uncertainty analysis framework is used to evaluate if the

additional error is small enough to make the overall configuration still

viable.

Piezoelectric load cells were selected from the available types of load cells

for two main characteristics: 1) high stiffness and 2) high sensitivity to

dynamic forces. Piezoelectric load cells take advantage of the piezoelectric

effect which generates an electric charge in response to an applied stress. It

is important to note that the piezoelectric effect responds to changes in

force so if the applied force is a static force, the reading from the

piezoelectric load cell will eventually return to zero. This effect on the test

rig might mean some loss of accuracy in reading the static applied load, but

the trade-off is that dynamic force measurements for forces acting on the

load cell are more accurate. The importance of the high stiffness of the load

cell is to minimize the dynamics of the housing within the desired test

frequency range.
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The piezoelectric load cell model selected for this test rig application is

the PCB M260A03. Figure 5.14 shows an image of the load cell with some

important specifications. This model is a tri-axial load cell because each

load cell is expected to experience some part of horizontal and vertical forces

from the bearing. Due to the piezoelectric physics, the force resolution of

this load cell is well-suited for this application. The stiffness values are much

larger than the expected stiffnesses of bearings tested on the rig. A model

of the piezoelectric load cell was developed using 3D FEA and calibrated

to the manufacturer specifications. The load cell model was incorporated

in a comprehensive dynamic model to perform an uncertainty analysis for

coefficient identification on the proposed test rig design. The model used

in the uncertainty analysis incorporates some features such as the cross-talk

between the axes of measurement in the load cell to properly account for its

impact on identification uncertainty.

The proposed configuration on the test rig with the piezoelectric load cells

is shown in Figure 5.15 with an isometric view of the test rig as well as an

exploded view of the test bearing section. The placement of the piezoelectric

load cells was developed using dynamic FEA of the test section. Originally,

the piezoelectric load cells were placed between the lower bearing housing and

the foundation. This led to problems with moment loading on the bearing

housing from horizontal bearing loads. The dynamic models shows that the

housing would respond dynamically with a tilting motion. The magnitude

of the motion caused problems with the measurement by introducing more
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(a)

(b)

Figure 5.14: Details of M260A03 Piezoelectric Load Cell: (a) Image (b) Some Specifications

inertial forces into the force measurement. After some iterations, the present

configuration was selected. The piezoelectric load cells are attached to the

sides of the lower housing and then attached to side supports that are tied

to the foundation. This solution reduced the bearing housing motion and

minimized additional complications. The entire substructure including the

foundation and the components shown in the exploded view of Figure 5.15

were modeled with 3D FEA for the uncertainty analysis.
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(a)

(b)

Figure 5.15: Design Configuration Layout with Piezoelectric Load Cells

5.7 High Fidelity Uncertainty Analysis of Proposed

Test Rig Redesign

A high-fidelity uncertainty analysis was carried out for the proposed

design with models developed using various finite element analysis tools.

First, a bearing truth model was developed using a fluid-film bearing

modeling algorithm developed by Branagan [80]. The truth model’s

dynamic coefficients are presented in Figure 5.16.

A schematic representation of the interaction between the models in the

uncertainty analysis is shown in Figure 5.17. The truth model includes a

rotor model, bearing model, and substructure model that includes all the

components in the force measurement such as the load cells and side supports.

The measured signals are sent to the truth model which includes a rotor model

but does not include any model of the substructure.
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(a) (b)

Figure 5.16: Truth Model for Bearing Test Rig TPJB

Figure 5.17: Truth and Identification Model for Test Rig Uncertainty Analysis

To build a complete understanding of the total uncertainty in identified

coefficients, analyses including only one source of error were performed. By

using the uncertainty analysis framework with single sources of error, the

relative significance of each source of error on uncertainty and bias can be
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determined.

5.7.1 Rotor Modeling Effects on Uncertainty and Bias

Figure 5.18: System Diagram for Uncertainty Analysis Investigating Rotor Modeling

Effects

A finite element model of the rotor is developed for the identification model

because of early analysis that showed a rotor critical frequency in the specified

test frequency range (see Figure 5.11). The exact frequency is expected to

vary based on the test article’s design and also the controller design of the

AMBs. In the present analysis, it is assumed that the static loading AMBs

are able to levitate the system (i.e. - apply zero frequency forces) while

impacting the system negligibly at test frequencies. An open-loop algorithm

using the dynamic excitation AMBs will apply the test forces to the system.

The open-loop algorithm will not affect the system dynamics by design. As
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a result of these two features of a system only possible with AMBs, the rotor

is basically operating in a free-free conditions with only the test bearing’s

dynamic coefficients influencing the system.

The rotor model is also used to compensate for the non-collocation of the

displacement measurement and the location of the actual bearing. This is

expected to increase uncertainty but reduce bias. The uncertainty analysis

will reveal how much of an effect this will have. In practice, the modeling

error between the truth and the identification model may be improved by

identifying the rotor experimentally and using the identified rotor model as

the identification model. Some uncertainty must still be included but this can

be developed using the uncertainty analysis framework in this dissertation as

well.

A model of error is introduced to the identification model for the rotor by

using the same finite element model used for the truth model. Figure 5.18

shows where these errors are applied. In this way, the identification model

is perturbed about the truth. The perturbations included ±5% difference

in structural damping, ±5% difference in Young’s modulus for each element,

and ±5% for material density per each element. The variations resulting from

these error sources within the rotor model are designed to try and bound the

variation in rotor behavior due to various effects such as the dynamic effects

of friction between sleeves and the rotor and dynamic effects of the AMB

lamination stack.

First, Figure 5.19 shows identified dynamic coefficients with the only
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difference between truth and identification model being the identification

model does not include the rotor model. Another set of data is plotted

where the identification model includes a rotor model identical to the one in

the truth model. No additional errors are included. This demonstrates that

in principle, biases in identification can be addressed with the appropriate

models. Figure 5.20 then shows the results of an uncertainty analysis when

errors in the identification rotor model relative to the truth is introduced.

Results for the cross-coupled coefficient results are omitted because these

coefficients are small relative to the principal coefficients and have little

impact on the overall system dynamics. Any impact on the principal

coefficients will be captured because the cross-coupling is included in the

simulations for uncertainty analysis.

The uncertainty analysis results including only rotor modeling errors

between the truth and identification shows a flat uncertainty curve as test

frequency varies until just above 500 Hz. A slight bias exists at lower

frequencies and at higher frequencies. The bias plot is shown for reference,

but this is a case where it may be possible to summarize the bias as ”below

10%” without needing to show the plot. The uncertainty at higher

frequencies is the result of a rotor critical frequency just outside the range

plotted. Though it has a reasonable separation from the operating speed of

the bearing, it still has an effect on identified coefficient uncertainty.
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(a)

(b)

Figure 5.19: The Effect of Including a Perfect Rotor Model in the Identification Model for

(a) Kxx/Kyy and (b) Cxx/Cyy
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(a) Kxx (b) Kyy

(c) Cxx (d) Cyy

Figure 5.20: Uncertainty Results from Rotor Model Variation
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Figure 5.21: System Diagram for Uncertainty Analysis With Displacement Errors Only

5.7.2 Displacement Measurement Error Effects on Uncertainty

and Bias

To determine the sensitivity of uncertainty to displacement measurement

error, an analysis similar to Section 5.7 was performed with displacement

measurement errors being the only difference between truth and the

identification model as shown in Figure 5.21. The results of this analysis are

shown in Figure 5.22. It should be noted that with these results, the force is

assumed to be known perfectly and the rotor model is assumed to be known

perfectly. Since the force model is tied to the substructure model through

the load cells, knowing the bearing force perfectly implicitly assumes all the

substructure dynamics are accounted for.

While the bias results are shown for completeness, in this case it would

be sufficient to say that the stiffness bias results are all less than 5%. With



5.7. HIGH FIDELITY UNCERTAINTY ANALYSIS 195

damping uncertainty and bias, there is a growth towards infinity as the test

frequency approaches 0 (as expected from the model development in this

dissertation). For stiffness, the uncertainty increases as test frequency

increases, approaching 20% at 600 Hz (which is above the target maximum

frequency of 510 Hz for the test rig).

5.7.3 Force Measurement Error & Substructure Effects on

Uncertainty and Bias

The last sensitivity study for uncertainty of identified coefficients is for

force measurement and the substructure. These components are analyzed

together because the load cells measuring force are effectively a part of the

substructure. Because the housing will experience some vibration, this

analysis was performed with models of accelerometer on the housing to

measure the inertial forces of the housing. This is expected to increase

uncertainty but reduce bias. Figure 5.24 shows a diagram of the force

measurement model and the details going into simulating the force

measurement.

The inclusion of the substructure model introduces several contributors

to uncertainty. First, AMB forces (from both static loading bearings and

dynamic excitation bearings) will be transmitted to the load cells through

the substructure. The substructure’s dynamics will also respond to the

forces in an experiment and add to the test bearing’s dynamics. In addition

to the force measurement error, the impact of the substructure will be
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(a) Kxx (b) Kyy

(c) Cxx (d) Cyy

Figure 5.22: Uncertainty Results from Displacement Errors
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Figure 5.23: System Diagram for Uncertainty Analysis With Only Force Measurement

Errors

Figure 5.24: Measurement Model for Force

evaluated by including it in the truth model and not in the identification

model. In practice it may be possible to model or identify the

substructure’s dynamics, but this would be more challenging than modeling



198 CHAPTER 5. NEW BEARING TEST RIG

and/or identifying the rotor. Therefore, if it is possible to identify TPJB

dynamic coefficients accurately enough without needing to model and/or

identify the substructure, the experiment will be significantly simpler.

Figure 5.25 shows the uncertainty analysis results only considering force

measurement error and the inclusion of the substructure model in the truth.

The difference between the horizontal axis and the vertical axis is clearly

demonstrated in this analysis. The difference can be traced back to a mode

of the substructure that affects the horizontal axis dynamics of the system. In

effect, this shows that any experiment on this test rig will be wrestling with

the effect of this mode on the identification. At this stage, the foundation

has already been built and installed so design changes would be prohibitive

in time and cost. Therefore, in Section 5.7.4 when the uncertainty factors

are combined, the substructure effects will still be present.

5.7.4 Total Uncertainty of Coefficient Identification on the Test

Rig

Figure 5.27 shows the results of the uncertainty analysis including

displacement measurement errors, force measurement errors, rotor model

errors in the identification model relative to the truth, and substructure

dynamics (which are included in the truth model but not in the

identification model).

Overall, the total uncertainty and bias results have trends that are

combinations of the individual trends observed in the sensitivity studies. At
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(a) Kxx (b) Kyy

(c) Cxx (d) Cyy

Figure 5.25: Uncertainty Results from Force Errors and Truth Substructure Model
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Figure 5.26: System Diagram for Total Uncertainty Analysis

low frequencies for stiffness, the uncertainty is dominated by the rotor

model errors’ contribution. At higher frequencies, the substructure

dynamics’ effects become dominant.

5.7.5 Evaluating Uncertainty for Different Bearings

Thus far a single TPJB model was used to perform the uncertainty

analysis. While it is impossible to analyze every possible bearing that may

be analyzed on this test rig, some studies can be performed to determine if

changing the true properties will still allow accurate TPJB identification.

Since the uncertainty analysis indicates that higher stiffness and damping

would result in lower uncertainty, a second case was explored that had lower

stiffness and lower damping. Figure 5.28 shows the dynamic coefficients for

this bearing model. For a real system there would be challenges with this
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(a) Kxx (b) Kyy

(c) Cxx (d) Cyy

Figure 5.27: Total Uncertainty
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bearing design (the damping is negative at very low frequencies, for

example) but for understanding the impacts on uncertainty analysis, this

case is useful. In addition to having stiffness approximately an order of

magnitude lower than the first case analyzed, the principal horizontal and

vertical stiffness and damping coefficients are identical. The cross-coupling

is also similar in magnitude for some part of the frequency range (low

frequency for damping, high frequency for stiffness).

(a) (b)

Figure 5.28: Truth Model for Bearing With Lower Stiffness and Damping

The transfer function from applied forces (horizontal and vertical) to

measured forces (horizontal and vertical) are plotted in Figure 5.29. This

shows how the difference in bearing properties affects the overall system

dynamics.

The results after performing uncertainty analysis with the same

uncertainty features and parameters as the higher stiffness bearing are

shown in Figure 5.30. Stiffness uncertainty and bias increase rapidly at a



5.7. HIGH FIDELITY UNCERTAINTY ANALYSIS 203

(a)

(b)

Figure 5.29: Dynamics from Applied Forces to Sum of Load Cell Forces in (a) x and (b) y

lower test frequency than with the higher stiffness bearing. Therefore, the

uncertainty target cannot be achieved for the entire specified test frequency
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range. However, the stiffness uncertainty and bias are within the target

below the nominal design synchronous frequency of this hypothetical

bearing design. Damping uncertainty and bias meet the uncertainty targets

across most of the test frequency range specification. The damping

identification struggles at lower frequencies over a greater range than the

higher stiffness bearing (which also had higher damping). Nevertheless,

above 200 Hz the uncertainty is low and the bias is also close to zero.

Ultimately, though there are challenges over the entire frequency range, this

bearing model if tested on the system would accurately identify damping

between approximately 150 Hz to 510 Hz. Stiffness would also be identified

accurately between 0 Hz and 300 Hz. The model can be validated between

150 Hz and 300 Hz for both stiffness and damping which would build

confidence for dynamic coefficient predictions at test frequencies outside

this range.

Comparing the two examples highlights how differently the system

behaves when the test article is different. This adds emphasis to the idea

that a single uncertainty value would not make sense for dynamic coefficient

identification over a range of test frequencies and between test articles.

Careful consideration is required to understand the conditions which lead to

the most accurately identified coefficients. Bearing model predictions can be

validated only with the most accurate identified coefficients.
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(a) Kxx (b) Kyy

(c) Cxx (d)

Figure 5.30: Total Uncertainty, Case 2
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5.8 Summary

The analyses in this chapter guided the redesign of a test rig to reduce

uncertainty. Approximating the bearing force using piezoelectric load cells

connected to the test bearing housing was shown to be capable of meeting

accuracy requirements. The redesign process demonstrated how the

uncertainty analysis framework can work with practical considerations for

the design and construction of a bearing test rig. Ultimately, the third

objective of this dissertation has been achieved with the work presented in

this chapter. Some further conclusions are listed here:

• The original design for the test rig would have been capable of

identifying coefficients. However, as the uncertainty analysis results in

Figure 5.7 show, the uncertainty of identified coefficients grows large

very quickly. Without any changes, the cases analyzed exceed the 20%

threshold accepted by the ROMAC industrial members by about 250

Hz. This does not include bias from various dynamics in the system

which would decrease the usefulness of the identified coefficients. The

framework for comprehensive uncertainty analysis was required to

identify this challenge and overcome it with design changes.

• The bearing model with higher stiffness and higher damping can be

identified confidently within the accuracy limits specified for this test

rig.
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• The bearing model with lower stiffness and lower damping has some

challenges related to uncertainty in the target test frequency range.

For the stiffness coefficients, uncertainty below 20% with minimal bias

is achievable up to approximately 300 Hz. For the damping

coefficients, the uncertainty target is achievable above approximately

150 Hz. The horizontal damping (Cxx) uncertainty shows some effects

of the substructure dynamics as the test frequency approaches 600 Hz

but the uncertainty is still below the target of 20%.

• The models used in the high-fidelity uncertainty analyses in Section 5.7

provide engineers with flexibility as far as how the models are

developed. Analysis-based methods were used in this dissertation

including FEA for the rotor and for the substructure. The models can

be experimentally identified as well and the experimentally identified

model can be incorporated into the uncertainty analysis. For due

diligence, the same uncertainty analysis can be used with the

experimental identification of the subsystem to estimate the

identification uncertainty which can be used in the uncertainty analysis

of the complete system.
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Chapter 6

Conclusions and Recommendations

This dissertation developed a framework for estimating the uncertainty

of experimentally identified TPJB dynamic coefficients. The single-axis

development in Chapter 3 established the fundamentals of the uncertainty

analysis framework including important concepts such as the truth model,

identification model, and implementations of uncertainty. Single-axis,

higher-fidelity models demonstrated the combining of models such as

finite-element models and lumped-mass simplifications of dynamics.

Chapters 4 and 5 implement the framework with two-axes models.

Regardless of the component that is being experimentally identified (TPJB,

fixed-geometry bearing, foil bearing, seal, etc.), the framework can be used

to analyze uncertainty with a consistent method. Having a common

framework allows more significant comparisons between identification

experiments, paving the way for determining the appropriate test rig to

identify the dynamic coefficients of various components.

As the framework was developed, studies were performed looking at the

209
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impact of varying parameters and experimental methods. These studies

highlighted the impact of factors such as measurement method (especially

for force measurement), the properties of the bearing tested, and differences

between the identification model and truth model. The trends and effects

identified in this dissertation can guide future test rig designs.

Finally, a test rig design was updated using the uncertainty analysis

framework as a tool to guide the design. From the original configuration,

the uncertainty of identified coefficients was reduced to acceptable levels for

a broader range of bearings. The reduction of uncertainty was balanced

with the cost and schedule impact of required design changes. For example,

while the active load cell concept would have provided the best accuracy

(lowest uncertainty), the cost to implement this would have been

prohibitive. The uncertainty analysis framework provided the means to

evaluate alternatives and identify a test rig configuration that was still able

to meet the uncertainty targets.

6.1 Conclusions

The conclusions from this research are summarized in groups according to

which objective of this dissertation the points satisfy.
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6.1.1 Establishing the Uncertainty Analysis Framework

• The framework proposes analyzing the uncertainty of identifying

dynamic coefficients with a simulation-based method. A Monte Carlo

method is recommended to iterate over combinations of errors affecting

the identification. The errors are selected from the uncertainty of

subsystems such as measurement systems or models of subcomponents

such as the foundation. The two main parts of the uncertainty analysis

are the truth model and the identification model. The truth model is a

representation of the real physics of the system. The identification

model represents how the measurements taken from an experiment are

translated into dynamic coefficients.

• The truth model should include as much of the dynamics affecting the

experiment as possible. The inputs to the truth model will be the inputs

to the experiment. For a simple model this may simply be forces applied

on the excited component. For a higher fidelity model, the input may

be commands given to the system (such as from a computer system)

with models for how this translates into actual force on the excited

component. The outputs of the truth model are measured signals that

act as inputs to the identification model. Measurement models should

include uncertainty. Analytical tools such as finite-element analysis can

be used to develop models for the analysis. Experimental techniques

can also be used to identify relevant dynamics if a physical system is
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available. If a test rig is in the design phase this may not be possible.

The uncertainty analysis framework can be used for a sensitivity study

of components in the truth model to determine what parts of the test

rig have the greatest effect on the dynamic coefficient identification.

• The identification model represents how the experimental

measurements will be used to compute dynamic coefficients. The

inputs to the identification model are the simulated measurements

from the truth model. If models of any parts of the system (such as the

rotor) are used in the identification model to process the signals in any

way, uncertainty may be included with the models to understand the

effects of errors in modeling the physical system. The uncertainty

analysis can be iterated with different models for components in the

truth model to determine which models are significant for uncertainty

and which models are not significant. For example, when measuring

applied force, the rotor model played a significant role as evidenced by

large bias when the identification model did not include a rotor model.

This would mean the rotor model is significant in that uncertainty

analysis and should be included. On the other hand, when bearing

force is measured the effect of the rotor model is less significant. If the

uncertainty and bias from not including the rotor model is small

enough, it does not need to be included in the identification model for

the analysis.
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• Identification uncertainty should be presented with both uncertainty and

bias as demonstrated in this dissertation. If the bias is small (such as

less than five percent), then plots are not required but a statement of

maximum bias in the caption of a figure or in the text of the publication

should still be included. (e.g. - “The bias in the target test frequency

range is less than 5%”) The uncertainty is presented with the maximum

uncertainty as well as a 95% confidence interval to provide a description

of how the uncertainty is distributed.

• All dynamic coefficient identification experiments should be

accompanied by uncertainty analysis using the framework described in

this dissertation. The analysis results should be presented with

accompanying information describing the models used in the truth

model and models used in the identification model. Where feasible,

results of intermediate sensitivity studies can be presented to support

the selection of models in the final uncertainty analysis. With a

common framework used in uncertainty analysis, different experiments

(both on the same test rig and on different test rigs) can be compared

more directly.

6.1.2 Factors Affecting Identified Coefficient Uncertainty

• Uncertainty analysis results with higher fidelity models exhibit the same

trends identified in single-axis models and in analytically derived models.
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TPJBs are particularly suited for this type of comparison due to the lack

of cross-coupling but even when the cross-coupling is more significant,

the trends corroborate well over all the analyses. This is strong evidence

for the applicability of lessons learned from simple models to complex

systems when analyzing uncertainty.

• The uncertainty of identified coefficients is frequency-dependent.

Components such as TPJBs may have frequency-dependent dynamic

coefficients depending on the design. For a given operating point

(speed, load, etc.), dynamics at different frequencies will experience

different bearing properties. This makes understanding the

frequency-dependence important. Furthermore, the

frequency-dependence changes depending on the measurement scheme.

If the applied force on the excited component is measured, for high test

frequencies the dominant behavior is quadratic growth for stiffness and

linear growth for damping. If the bearing force is measured, then for

high test frequencies the dominant behavior is linear growth for

stiffness and constant for damping. In both force measurement

schemes, damping also has another trend for very low frequencies. As

test frequency approaches zero, the damping uncertainty increases to

infinity.

• The uncertainty of identified coefficients is dependent on the

magnitude of the true property. Lower stiffness and lower damping
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values lead to increased uncertainty. For TPJBs, stiffness typically

decreases as test frequency increases so there is an added component to

the increasing uncertainty from the decreasing true stiffness. Combined

with the quadratic dependence on test frequency, identifying stiffness

coefficients at high frequencies can be challenging. In the big picture,

this also highlights challenges of identifying gas bearing or foil bearing

dynamic coefficients as they are typically less stiff and have less

damping than TPJBs. Another area where this property is evident is

in the identified coefficient uncertainty for cross-coupling coefficients.

• Bias is introduced into the dynamic coefficient identification if the

identification model does not include the effects of dynamics that are

affecting the experiment. Bias can be reduced by including models of

the dynamics in the identification model. This comes at the expense of

uncertainty, however, so the pros and cons must be carefully evaluated

to determine if including additional models is worthwhile for an

experiment.

• If the measurement uncertainties are equal, the uncertainty of

identifying dynamic coefficients is minimized when the bearing force

and film thickness are measured directly. This insight along with the

uncertainty analysis framework described in this dissertation will allow

for more focused design of test rigs for dynamic coefficient

identification. Practical consideration may make it difficult to measure
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the signals from within the bearing but if at all possible the bearing

force should be considered for measurement. (The “Active Load Cell”

concept referenced here can measure bearing force without requiring

instrumentation inside the bearing, for example) The measurement of

bearing force has been shown to significantly improve the trends in

uncertainty when identifying coefficients so this is critical for advancing

the state-of-the-art.

• Based on the SDoF analysis, decreasing the true stiffness while the

other properties remain constant increases the uncertainty of identified

stiffness. The effect on damping is a little bit more complex. At lower

frequencies the uncertainty is decreased but at higher frequencies the

uncertainty is higher. This can be observed as the point at which the

damping uncertainty changes from decreasing to increasing shifts to

lower frequencies when the true stiffness decreases.

• Based on the SDoF analysis, decreasing the true damping while the

other properties remain constant increases the uncertainty of identified

damping and decreases the uncertainty of identified stiffness. The

transition point from decreasing uncertainty to increasing uncertainty

for damping does not change. This supports the idea that the critical

frequencies of a system play a significant role in uncertainty. When

stiffness and mass change and the critical frequencies change

significantly, behaviors such as the transition point change while when
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the damping is changed, the behaviors such as the transition point do

not change significantly.

• Based on the SDoF analysis, decreasing the true mass of the excited

component decreased identification uncertainty for both stiffness and

damping. Since the critical frequency is changing, behaviors such as

the transition point of decreasing uncertainty to increasing uncertainty

for damping shift in frequency. In general, these results suggest that

the lowest mass possible for the excited component is preferable. For

real systems that will have additional dynamics for the excited

component (such as rotor modes), the takeaway is that the modal mass

of various modes in the system should be as small as possible to

minimize uncertainty.

• The fewest number of measurements and models should be used for the

identification. Every measurement or model required for the

identification of dynamic coefficients increases uncertainty. In some

cases this may be a required trade-off for reducing bias. The

uncertainty analysis framework should be used to identify which

models are critical and which models may be omitted for an

experiment.

• In addition to more favorable trends for stiffness and damping

uncertainty as test frequency increases, measuring bearing force is also

shown to be less sensitive to dynamics in the system.
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• When additional degrees of freedom are introduced, the uncertainty

behavior becomes more complex. For example, in the 2DoF models,

when the pedestal mass is increased by a factor of ten, there are ranges

of frequency where the system with the higher pedestal mass offers

better uncertainty and bias. Right around the critical frequency,

however, the uncertainty and bias spike extremely high.

6.1.3 Novel Test Rig Design

• The final design for the test rig is capable of identifying dynamic

coefficients with less than 20% uncertainty for a large fraction of the

specified frequency range. The exact uncertainty will depend on the

bearing to be tested. Bearings with higher stiffness and damping will

have lower uncertainty and bias than the cases presented in this

dissertation. Bearings with lower stiffness and damping than the cases

analyzed in this dissertation will have higher uncertainty and bias. The

dynamics of the substructure may also affect different bearings

differently. Therefore, every bearing to be analyzed on the test rig will

need to have a comprehensive uncertainty analysis performed.

• The first changes to the test rig design involved the AMBs. Modifying

the design from the continuous back-iron stator design to the

segmented e-core design improved the load capacity of the bearings

and ensured adequate dynamic force capacity to hit the performance
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targets for unit load and test frequencies in the specifications.

Furthermore, with the uncertainty analysis framework as a guide, the

AMBs were split into two pairs: One pair dedicated to providing static

loading for the system and the other pair applying dynamic excitation

on the rotor. The separation of functions would also reduce the

uncertainty of dynamic force measurement with the AMBs, though

ultimately a different force measurement scheme was developed to

meet the desired uncertainty requirements.

• While analysis showed that the active load cell concept would have the

best accuracy, the cost and schedule impact for changes to the test rig

design and existing hardware would have been prohibitive. Piezoelectric

load cells were selected to estimate the bearing force and the uncertainty

analysis showed that the resulting accuracy would meet the targets set

for this test rig.

6.2 Recommendations for Uncertainty Analysis for

Identified TPJB Dynamic Coefficients

• First and foremost the analyses presented in this dissertation should

make it clear that when focusing on the problem of identifying dynamic

coefficients, uncertainty analysis must be performed both as forethought

and as part of hindsight. Uncertainty analysis is a valuable tool during

the design phase of test rigs and once the experimental phase is reached,
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uncertainty must be analyzed for each bearing tested because the true

bearing coefficients affect the uncertainty of the identified coefficients.

• Results of the uncertainty analysis must be presented as a function of

frequency.

• Uncertainty analysis results should include the maximum uncertainty of

the simulations, a 95% confidence interval, and bias results.

• Modeling decisions for the truth model and identification model should

be justified using the uncertainty analysis framework.

6.3 Future Research Opportunities

• This dissertation focused on using a consistent, single-frequency

identification method for isolating differences in uncertainty estimates

to differences in modeled dynamics (the identification model) versus a

more realistic model of true physics (the truth model). The scope of

the analysis can be expanded to evaluate methods of identification in

conjunction with modeling and instrumentation choices.

• The uncertainty analysis framework has a lot of untapped potential

that is not covered in this dissertation. Non-linear models can be

incorporated into the uncertainty analysis, for example, if this is

valuable to the experiment being analyzed. The cases analyzed in this

dissertation are suitable for linear analysis because the perturbations
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will be kept small. If an experiment is investigating large-orbit

dynamics for TPJBs, then non-linear models may be required. The

significance for any experiment can be determined using the

uncertainty analysis framework to investigate the sensitivity of

identified coefficient uncertainty to linear versus nonlinear models.

• Methods for measuring bearing force more directly should be explored.

The “Active Load Cell” concept briefly mentioned in this dissertation

offers one possible alternative. High-performance pressure transducers

are another example.

• This dissertation focused on experimental identification of TPJBs on

dedicated test rigs. It is possible to use the uncertainty analysis

framework for identifying the dynamics of a system in the field.

Though such an experiment may not be useful for accurate

component-level model validation, system models may be validated.

• The measurement error models used in this dissertation are

multiplicative models. This can be extended with additive components

that can incorporate other forms of error including noise. This can be

explored further to more comprehensively document the effects of

measurement error on the uncertainty of identified dynamic

coefficients.

• It may be possible to develop a TPJB that exhibits dynamic coefficient

properties that end up being favorable for minimizing identification
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uncertainty. This TPJB design may have no value for industrial

applications but could be used to evaluate if the physics models in a

bearing code are working as intended. By decreasing the experimental

identification uncertainty, models can be validated with more

confidence.

• In a similar vein, methods of validating test rig capability may be

developed. For example, it may be valuable to validate that a test rig

can identify bearing coefficients accurately even if it is not the

component intended for testing on that system. This would require

additional design consideration. A rolling element bearing without

lubrication may be useful in this application as they have high stiffness

and very little damping. The modeling of a rolling element bearing

without lubrication may also be more straightforward than fluid-film

bearings, for example, that require fluid mechanics to be modeled. In

fact, if rotation is not required, the test article used to validate test rig

capability may not even be a bearing! It could simply be a rigid link at

the test bearing location.

• A notable challenge not addressed in this dissertation is the measurement

of cross-coupling coefficients for TPJBs. While the effect in the field may

be insignificant, model validation for dynamic coefficients is challenging

if half the dynamic coefficients cannot be accurately identified. With

the uncertainty analysis framework now established, further research
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can develop methods of validating TPJB models’ capability to predict

cross-coupling coefficients as well as principal coefficients.
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