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1 Abstract

With the rise of deep learning models which require exceedingly large amounts of data, there
exists a need to examine the biases that are reflected in the applications of these models.
For example, a visual recognition model can learn image representations of cooking that
are closer to the representations of women than men, thus reinforcing a negative gender
stereotype of women being homemakers. This thesis explores and analyzes these biases
across state of the art visual recognition models. Deep learning models are reliant on large
amounts of annotated data in order to be trained. Annotated data is difficult to collect and is
often aggregated from human annotators or scraped from the Internet. As a result, these large,
publicly available datasets can reflect societal biases. Labeled datasets require annotations
provided by human labelers, which will reflect their individual biases. Furthermore, these
biases can propagate into the model during training and potentially be amplified and reflected
in the predictions. With rising concerns of discrimination and bias in deep learning, it is
imperative to investigate the fairness and equity of these systems for all users.

Current bias identification pipelines target the explicit predictions of a model, often
overlooking the implicit feature representations that contribute to biased predictions. The goal
of this research is to investigate and compare gender biases across visual recognition models
by quantifying bias relationships at the feature representation level. This is accomplished
by exploring metrics that are able to capture the spatial relationships among classes in the
feature representation of a deep neural network, and investigating factors that contribute
to biases with respect to classes of images that co-occur with different genders. This work
demonstrates that the source of this bias can be better understood by comparing the trend
of feature representations for a group of classes across visual recognition models with
different objectives. The work presented in this thesis serves as an exploratory step for a bias
identification pipeline that explores gender bias relationships beyond the explicit predictions
made by a model. This work can be extended to exploring other societal biases such as racial
and religious biases. With the release of many deep learning models that have been trained
on millions of images, we hope the work presented in this thesis aims at providing more
transparency in how these models represent gender and encode bias at the feature level.
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2 Gender Bias in Feature Representations

2.1 Definition of Problem

2.1.1 Overview and Motivation

While there have been many advancements in deep learning models in the fields of computer
vision and natural language processing, the models are dependent on large amounts of
available, annotated data. These models are known as foundational models [1]. Foundational
models are neural networks that have been trained on a large amount of data and can be
reused for downstream tasks. There are a lot of models that the machine learning community
has released where a large scale dataset is used to train a neural network that can be reused
for various purposes. A big issue with these models is that they are not very accessible, the
resources needed to train these models are highly concentrated in industry and even the data
and the code required to reproduce their training is often not released. As a result, we’re often
required to use them as blackboxes. But they follow a general pipeline where, given some
large scale dataset, they are trained using some neural network architecture on an objective
such as image classification as illustrated in Figure 1.

Large Scale Dataset ....      

Classification

Pre-training for image 
classification

Surfboard
...

Figure 1: Foundational Models. Given some large scale dataset, train a neural network
architecture on an objective such as image classification.

These foundational models are usually released by the machine learning community and
have been pretrained on some large scale dataset. They can be used to train on a smaller
dataset which is usually specific to the task you want to do. This process of retraining the
model on top of the original pretrained model is called finetuning as illustrated in Figure 2.

3



Frozen 
Weights

Target Task Dataset
(Multilabel Classification)      

Weight 
Update+

man
car
lake
hat
...

Figure 2: Finetuning Pipeline.

An example large scale dataset is the COCO (Common Objects in Context) [2], an object
detection, segmentation and captioning dataset has over 330K images containing 80 object
categories and serves as an important benchmark for many computer vision tasks [3, 4, 5].
ImageNet is another common benchmark with over 1000 object categories and over one
million images [6]. Due to their ease of accessibility and scalability, many deep learning
networks such as ResNet50 [3], SimCLR [7], MoCo [8] have been trained on these datasets
and publicly released as pretrained models that can be finetuned on a downstream task. For
example, ResNet50 has been pretrained on ImageNet-1k in a supervised setting. In order
to adapt this model to a downstream task of object classification on the COCO dataset, the
pretrained ResNet50 model can be finetuned on the COCO dataset.

Datasets such as ImageNet and COCO provide a universal benchmark for research studies,
are rich in annotations and metadata, and provide a diverse set of classes for networks to learn.
However, these datasets are often aggregated from the Internet and as a result can reflect
harmful biases present in our society. Furthermore, the annotations are collected and verified
by humans, making them prone to each individual’s own implicit biases. For example, in
the imSitu [9] training set, 33% of cooking images have man in the agent role while the rest
have woman [10]. Bias towards women and cooking can be learned and amplified by models
where a trained Conditional Random Field reduced the number of men labeled as cooking to
16% [10]. Furthermore, [11] found that the COCO dataset is skewed towards lighter skinned
people over darker skinned people and males over females; images with lighter skinned
people are 7.5x more common and images with males are 2.0x more common than images
with females. These biases have been shown to propagate into the network during training
and adversely affect the fairness and equity of the predictions. For example, models are at
risk of amplifying biases that exist in the dataset by compromising protected attributes such
as gender and implicitly making associations that reinforce negative gender stereotypes. In
more critical applications, it is important to ensure the quality of the predictions are fair and
equitable for all user groups, and as a result, there is a need for a way to characterize these
biases and compare them across models.
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Bias and fairness in machine learning have been addressed previously in studies such as
[11] and [10], but these studies primarily dissect the explicit predictions made by the model.
This thesis explores and quantifies how these biases are reflected in the feature representation
of visual recognition models. Not only does this approach explore a finer level of granularity
to explore these bias relationships, but it also provides more transparency and insight into
how the model is learning these relationships. In addition, we also explore how transfer
learning impacts these biases and analyze several variables to better discern the source of
bias. We focus on visual recognition models and we finetune these models on the task of
multilabel image classification to examine biases in the feature representation space. More
specifically, we curate a dataset of images for bias analysis, and identify metrics to analyze
the intra-cluster variation for a given class. The representation of intra-cluster variation serves
as a proxy to identify how biases for different classes are represented in the feature space.
We can compare representations of classes of a pretrained and finetuned model to understand
how biases are represented before and after transfer learning. Furthermore, we can compare
the feature representations across models to understand how the architecture of a network,
the dataset it was pretrained on, and the setting it was pretrained with impacts the biases in
the feature space.

2.1.2 Technical Challenges

This thesis addresses several key technical challenges in studying bias in neural networks.
When investigating biases in neural networks, there exists a need for a dataset that is labeled
with the biases in question. However, this data is extremely rare and bias datasets that are
labeled by humans are still prone to error and prejudice in human judgement. This makes it
difficult to evaluate how bias shows up in a dataset and a network. For example, if we are
trying to study gender bias in object recognition tasks, it is necessary to have a dataset of
labeled images with gender. Publicly available datasets such as COCO [2] do not contain
such labels making it difficult to evaluate these biases in a standardized fashion.

Furthermore, examining and quantifying biases at the feature representation level for
comparison across models is particularly difficult. It is challenging to quantitatively compare
the hidden layer representations of neural networks because the features are distributed across
a large number of neurons [12]. Because of differences in the latent space representation
of the features, the feature representations of two models cannot be compared directly,
necessitating the use of more qualitative methods to identify biases.

2.2 Definition of Bias

2.2.1 Intra-Class Variation

For a given model, we represent the biases of a model with respect to a given class of
images by evaluating the intra-class and inter-class variation at the feature representation
level. Given an analysis set D with n classes where each class of images has k images, a
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similarity/distance metric f (x,y), and a model, M(∗), we evaluate this model on each class
n ∈ D, to generate a set of features: F ∈ Rn×k×d where d is the feature embedding size for
model M(∗). These features are extracted from the penultimate layer of the model M(∗). We
then use f (x,y) to evaluate the intra-class variation of a single class i ∈ n, by taking two
random samples x,y ∈ F [i, :, :] of the feature data corresponding to class i ∈ n and calculating
the distance f (x,y) between the two samples. We repeat this random sampling process for
T iterations for each class i ∈ n, resulting in T values representing the intra-class variation
for a class of images. We also compute a one-sample t-significance test, and average these
T values to get µi for a single class of images. In addition, we also compute min(T ) and
max(T ) to represent the range of variation across all the classes. We calculate one such µi

value for each class i ∈ n thus providing us with a comparison of the intra-class variation
in an analysis set D, for a given model M using a metric f (x,y). The intra-class variations
{µi}n

i=0 serve as a proxy to identify biases of a model and we can use {µi}n
i=0 to compare

relative biases across models. The variations provide an intuitive representation of how well
a model clusters a class of images in the latent space. This clustering can be compared
relatively to other classes. Ideally, objects should not be biased with respect to gender and we
can examine these biases by evaluating similarity/distance in the latent space. For example,
we can examine the embeddings of images of men, and women with respect to computer,
and the distance between man and computer and woman and computer should be equidistant.
Our definition of bias can capture this phenomenon by comparing the intra-class variation
across classes which are suspected to contain biases. This idea of bias was introduced in [13]
where biases were examined in word embeddings and we extend this work to analyze image
embeddings. This pipeline is illustrated in Figure 3
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X y

Figure 3: Intra-class metric calculation. Given an analysis set, with n classes each with k
number of images, and a pretrained model, or a pretrained model that has been finetuned
on some downstream task. We use the classes in our analysis set to extract a set of features
from the hidden layers of the network. These features are the representation of the classes
of images in some hyperdimensional space. To examine biases at the class level, we take a
single class and generate two random folds of this data. We grab their respective features
from the features we generated from the model. We then use some similarity metric, f(x,y) to
calculate the similarity between the two folds of the features corresponding to the images in
the class we are examining and we can repeat this process for a set number of iterations to
get an average similarity score for a given class. Intuitively, this µ score for each class shows
how well the model represented a class where a higher mu score implies that the model
represented a specific class better.

2.2.2 Inter-Class Distance

Alternatively, we also examine biases between two classes i, j ∈ n where n is the number of
classes in an analysis set D and each class n has k number of images. We take two random
samples x ∈ F [i, :, :] and y ∈ F [ j, :, :] and calculate f (x,y). We repeat this random sampling
for T iterations to get T values representing the distance between two classes i, j ∈ n in the
latent space. We take the average of these T values to get µi, j which represents the average
distance between two classes. The µi, j can be calculated for all pairs of classes in the analysis
set D for a specific model M(∗) and a metric f (x,y). This pipeline is illustrated in Figure 4

To examine biases between classes, we use a very similar pipeline but instead, we
take two random folds of data from two different classes, and we calculate the similarity
between these folds of data to get a mu score that represents the similarity between two
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different classes. This approach allows us to more directly compare the similarity between
two different classes and we can calculate this score for all pairs of classes in our analysis
set.

Analysis Set          
n classes each 

with k imgs

Class: i Class: j

Model 

dimension: d

Features

Class: i

X

Class: j

y

Figure 4: Inter-class metric calculation. To examine biases between classes, we use a very
similar pipeline to the intra-class calculation, but instead, we take two random folds of data
from two different classes, and we calculate the similarity between these folds of data to
get a mu score that represents the similarity between two different classes. This approach
allows us to more directly compare the similarity between two different classes and we can
calculate this score for all pairs of classes in our analysis set.

2.3 Metric Interpretation

The intra-class variation and the interclass distance both use a metric f (x,y) that calculates
the similarity between two sets of features in the latent space. We chose to test standard
pairwise cosine similarity to represent how well a model clusters a class of images and to test
the similarity between two classes of images. We chose cosine similarity as a starting point
to analyzing biases in the latent space for images because it is relatively easy to interpret. We
want to use the intra-class variation and inter-class distance to interpret the biases of a model
and compare biases across models. However, since each model’s features are represented in a
different latent space, we can instead compare the relative values of this metric across models.
For example, given models A(∗) and B(∗), and an analysis set D with n classes, we can
compute Aavg = {µi}n

i=0 and Bavg = {µi}n
i=0 where Aavg and Bavg represent the intra-class

variation for n classes. We can compare the Spearman’s coefficient [14] between Aavg and
Bavg which shows us if two variables are monotonically related even if their relationship
is not linear. This can also be computed for the inter-class distance between two different
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classes. Qualitatively, this gives us a way to compare two models in terms of their bias
relationships where a higher correlation implies the biases of the two models are similar. We
use our definition of bias to test how different variables contribute to bias.

2.4 Hypothesis

1. Given evidence of explicit biases in the predictions of models, we hypothesize that
there exist biases at the feature representation level of a visual recognition model and
we can identify and reasonably quantify these biases using standard metrics such as
cosine similarity.

2. We can identify which factors contribute most to biases at the feature representation
level by evaluating the change in bias with respect to the following variables for a given
model: which dataset the model was pretrained on, the training setting (supervised
vs. self-supervised), network architecture, and the dataset the model was finetuned on.
We speculate that each of these variables impacts the biases of a model in the feature
representation space in a different way.

3. We can qualitatively compare biases across models using our definition of bias and
discern which factors contribute most to a model’s representation of bias in the feature
space.

2.5 Contributions

The primary goal of this thesis is to investigate and quantify biases at the feature repre-
sentation level, compare these biases across visual recognition models, and identify how
characteristics of a model contribute to these biases. Deep neural networks are high in
complexity and often are treated as a black box in many industrial applications. As a result,
they do not typically undergo standardized software testing and can be prone to learning
harmful biases. This lack of transparency can further lead to discrimination and inequities in
our technology that impact end users. As a result, this thesis focuses primarily on quantifying
these biases in the feature representation space to gauge a better understanding of how
models encode these biases. This serves as a vital first step in better understanding how
biases propagate through a network and how transfer learning further affects these biases.
The contributions of this work are as follows:

1. Aggregation of a labeled dataset for measuring biases across classes of images that
may potentially exhibit gender bias. Separate analysis datasets are aggregated for both
COCO2017 [2] and Open Images [15].

2. Identification of metrics and proposal of a methodology for identifying biases in hidden
layers of a model. Given an analysis set of images, these metrics provide a quantitative
measure to capture the intra-cluster variation of a class of images that can be compared
relative to other classes.
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3. Development of a qualitative methodology to compare several different models for
biases using our improved metrics for bias on the aggregated analysis dataset. These
models have been pretrained on different datasets such as ImageNet-1K, ImageNet-
20k and COCO with a supervised or self-supervised setting. We finetune each of
these models on the COCO and Open Images dataset. Using the intra-class variation
metric and inter-class distance metric, biases are compared within a model before
and after finetuning. Biases are also compared across models, along with a qualitative
exploration of the factors which contribute most to a model’s bias.

3 Related Work

3.1 Profiling Biases in Datasets

Previous studies have examined biases in datasets by studying the distribution of objects
and categories in the annotations. [16] profiles the COCO 2014 [2] dataset for racial biases
in image captions and studies bias propagation pathways in neural networks. Furthermore,
[17] evaluates popular recognition datasets for relative data bias and provides insights into
how biased datasets that serve as popular benchmarks for deep learning models can impact
the notion of accuracy and effectiveness of a model’s prediction. Beyond analyzing the
dataset for biases, [18] addresses the issue of dataset bias by learning shared parameters
across datasets which serves as an approximation to an unbiased dataset. We have focused
on understanding how biases present in these benchmark datasets can propagate through the
network and are reflected in the feature representation space.

3.2 Biases in Natural Language Processing

In addition to computer vision, biases have also been studied in natural language processing.
[13] proposes a methodology to debias word embeddings by removing gender stereotype
associations while retaining neutral indicators of gender. Their proposed methodology
identifies the gender subspace that represents the biased embedding space, and then equalizes
the distance between words to reduce biased associations. They identify metrics to quantify
biases in these word embeddings and show that the resulting debiased word embeddings
can be used in downstream tasks without amplifying biases. Furthermore, [19] quantifies
and mitigates gender biases in ELMo’s contextualized word vectors by analyzing how
ELMo encodes gender, and examining the corpus used for training ELMo. They found
that this corpus has a skew towards male entities and this bias propagates into downstream
applications. They propose a training time data augmentation technique and a test time
embedding neutralization technique to mitigate these biases. We apply principles from bias
identification in the word embedding space to the feature representation space in visual
recognition models.
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3.3 Bias Measurement and Identification

Our work is primarily focused on measuring and identifying biases across pretrained models
for visual recognition. [20] introduces DeepInspect that measures biases in image classifiers
by testing for class property violations. This work targets biases at the class level and
proposes a testing technique to identify class based bias errors in deep neural networks.
[21] is another approach that focuses on how the model represents its input data. InsideBias
relies on the analysis of the learned features for a group of images and can detect biases
of a model with a very small subset of images. This framework is primarily restricted to
biases in facial recognition systems. [22] analyzes racial, gender and intersectional biases
in state of the art unsupervised models. They adapt bias tests such as iEAT and embedding
association tests designed for contextualized word embeddings and apply these methods
to the image domain and evaluate how well these tests are able to identify biases in an
unsupervised setting. We propose a bias measurement framework motivated by efforts in
[13, 20, 21, 22] that explore biases at the feature representation level in the image domain.
We extend this work by proposing metrics that capture the intra-cluster variation of image
classes to characterize a model’s internal feature representation for a set of categories. We
also investigate how these representations change with transfer learning and perform a
comparative study across visual recognition models to qualitatively analyze how network
architecture, training methodologies, and datasets impact biases.

3.4 Debiasing Approaches

More recently, bias identification and debiasing pipelines have focused on identifying how
models can amplify existing biases in datasets and how these biases are reflected in the
predictions of a model. [10] finds that models trained on biased datasets further amplify these
biases and they propose a framework that introduces corpus level constraints that balances the
co-occurance of gender with other objects in the prediction task to reduce bias amplification
in the predictions. In addition, [23] proposes a method that surpasses the need for human
labeled bias datasets that could be prone to human reporting bias to identify unknown biased
attributes. They frame the bias identification task as an optimization problem in a generative
model’s latent space. They propose a network that is able to identify biased attributes of a
class of images by optimizing a loss function dependent on a fairness criteria.

4 Methodology and Setup

4.1 Variables Impacting Bias

1. Models are pretrained on large datasets such as ImageNet [6] and COCO [2], and the
weights are released for finetuning. We hypothesize that different pretraining datasets
contribute to biases in the feature representation space. We test the following different
pretraining datasets:
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(a) ImageNet1K

(b) ImageNet 21K

(c) 400M Images collected from the web [24]

2. An open problem in bias exploration is the impact of the network architecture on
biases. We hypothesize that the network architecture has an impact on how the biases
are represented in the feature space. We test the following network architectures:

(a) ResNet18 [4]

(b) ResNet50 [24]

(c) CLIP ViT/32-B [24]

3. Furthermore, models are trained in different settings. We hypothesize that different
training settings could impact the model’s biases. Supervised learning uses labeled
training data whereas self-supervised learning learns from unlabeled training data. We
consider the following models in a supervised vs. self-supervised setting:

(a) Supervised: ResNet18, ResNet50, BigTransfer ResNet50 [25], CLIP: ViT/B-32

(b) Self-Supervised: Moco ResNet50

4. We hypothesize that finetuning impacts the biases of a model and the dataset used to
finetune the model could introduce new biases into the feature representation space.
We finetune the models on two datasets: COCO2017 and Open Images v4 and examine
the change in biases. In summary, we test the following models:

(a) ResNet18: A residual learning framework that solves the vanishing gradient
problem by allowing gradients to flow through the skip connections from deeper
layers to initial filters. This model has 18 layers. [4]

(b) ResNet50: Same idea as ResNet18, but with 50 layers. [4]

(c) CLIP: ViT/B32: The CLIP model learns visual concepts from natural language
supervision and performs zero-shot object classification tasks. We test the Vision
Transformer: ViT/B-32 from the CLIP model. [24]

(d) MoCo ResNet50: Momentum Contrast for Unsupervised Visual Representation
Learning, MoCo reframes the task of contrastive learning as a dictionary lookup.
[8]

(e) BigTransfer ResNet50: Leverages the potential of pretraining on large scale
datasets to pretrain ResNet50 on ImageNet21K for downstream tasks [25]

4.2 Bias Analysis Sets

As detailed in Technical Challenges, one of the primary challenges in analyzing deep neural
networks for biases is the need for a labeled dataset that includes annotations regarding the
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bias in question. Furthermore, previous works tend to examine biases of individual images
whereas we examine biases at the class level. We address this need for a dataset by collecting
a subset of images, called an analysis set, from the benchmark COCO 2017 dataset [2] and
the Open Images dataset [15]. In this work, we primarily want to examine gender bias and
thus we choose categories that allow us to compare the co-occurence of genders with different
objects. For example, if we want to examine the biases of man and woman with respect to an
object such as a car, our dataset would need to include at least five classes: [man, woman, car,
man+car, woman+car, random] where the gender+object (man+car, woman+car) categories
include images with the gender and the object and ideally no other objects. We also include a
random category that has a random subset of images from the dataset that serves as a baseline
for comparison with our categories of interest. To generalize our methodology for collecting
an analysis set, we come up with a list of objects we are interested in, and develop a dataset
that includes the following categories for each object: [man, woman, object, man+object,
woman+object, random]. As a result, if we are interested in examining biases of three objects
with respect to gender, the baseline analysis set would include 12 classes. For the purposes of
this study, we collect analysis sets from the COCO and Open Images dataset. The collection
procedures and details of these analysis sets are explained in the following sections.

COCO 2017 Analysis Set. The COCO 2017 dataset has over 200K labeled images with
80 object categories. COCO 2017 serves as a benchmark metric for many object recognition
tasks in computer vision and as a result, it serves a good starting point for testing our
bias measurement framework. Furthermore, it has been shown to reflect negative gender
stereotypes by exploratory data analysis studies so we wanted to examine the representation
of these images in the feature space. We used the object annotations for each of the images
to extract the analysis set. We wanted to examine gender with respect to the following object
categories: [car, refrigerator, surfboard]. Because COCO does not have explicit ’man’ and
’woman’ annotations in the images, we first segmented the dataset by the category ’person’
and the object categories, and manually sifted through this segmented dataset to develop an
analysis set with the categories described in Table 1 along with the count of images in each
of the categories. The COCO2017 Analysis Set section in the Appendix A details examples
from each class. We posit that because we manually sifted through the images to extract
the analysis set, it was not necessary to have many images in each of the classes as there is
very little noise. For example, we ensured that the man+object categories did not contain any
woman labels so we could more accurately preserve the class identity.
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Class Number of Examples

man 12

woman 15

random 20

stopsign 44

car 12

car+man 9

car+woman 6

refrigerator 18

refrigerator+man 8

refrigerator+woman 9

surfboard 14

surfboard+man 23

surfboard+woman 16

Table 1: COCO2017 Analysis Set: Categories and examples per category

Open Images Analysis Set. The Open Images Analysis dataset is a much larger dataset
than COCO 2017 and includes over 9 million varied images with rich annotations. The
images contain 8.4 annotations on average and thus serves as a good counterpart to the
COCO dataset for analysis. The Open Images analysis set was collected in a more automated
way. We wanted to examine the following object categories with respect to gender: [car, sport
equipment, fashion accessory, mammal]. These categories were chosen based on their class
frequency in the original dataset. We relied solely on the semantic labels of these images
to aggregate the analysis set ensuring that each class in the analysis set did not contain
overlapping images with other classes. Table 2 provides an overview of this analysis set. It’s
clear that this dataset contains a lot more noise, and as a result, we collected more images
per class. Section Open Images v4 Analysis Set in the Appendix A contains examples from
each of these classes.
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Class Number of Examples

man 150

woman 150

random 150

stopsign 22

car 150

car+man 150

car+woman 49

sports 150

sports+man 120

sports+woman 32

fashion 150

fashion+man 52

fashion+woman 150

mammal 150

mammal+man 150

mammal+woman 150

Table 2: Openimages v4 Analysis Set: Classes and examples per Class

4.3 Experimental Setup

We want to test each how of the defined variables in the Section- Variables Impacting Bias:
pretrained dataset, network architecture, pretraining setting and transfer learning, impacts
how biases are represented in the feature space for a given model. The feature space is often
represented by non-linear associations and as a result, is very difficult to interpret intuitively.
As a first step in measuring biases in the feature representation space, we wanted to analyze
the effectiveness of using standard, easily interpretable metrics to capture the representation
for a given class. As a result, we use our definition of bias in Section- Definition of Problem
with cosine similarity to represent the similarity between two sets of features. For each
given model M ∈ {ResNet18, ResNet50, CLIP:ViT/B-32, MoCo ResNet50, and Big Transfer
ResNet50}, we finetune the model on COCO2017 and Open Images v4 for multilabel image
classification to a comparable mean average precision and F1-Score. The specific metrics for
each model are detailed in Tables 3 and 4 for finetuning on COCO2017 and Open Images
v4 respectively. For an analysis set D, with n classes where each class has k number of
images, and the model M has a hidden feature dimension: d, we extract two sets of features:
pretrained-features, finetuned-features, each of size n× k×d. Each model is only evaluated
on the analysis set corresponding to the dataset the model was finetuned on. For example,
if a model M is finetuned on COCO2017, it is only evaluated on the COCO2017 analysis
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set. We then use our definition of bias to calculate the intra-class variation for each set of
features, and the embedding distance between pairs of classes.

Model Pretraining Dataset Pretraining Setting Epochs Learning Rate Optimizer mAP Micro F1

BiT-M-R50x1 ImageNet-21k (20M) Supervised 15 0.003 SGD, m: 0.9 0.7527 0.827

ResNet50 ImageNet-1k (1M) Supervised 15 0.001 SGD, m: 0.9 0.7024 0.8363

ResNet18 ImageNet-1k (1M) Supervised 40 0.1: reduce on plateau SGD, m: 0.9, wd:1e-5 0.7443 0.7307

CLIP: ViT-B/32 400M images from web Supervised 20 0.001 SGD, m: 0.9 0.7053 0.7929

MoCo ResNet50 ImageNet-1k (1M) Self Supervised 20 0.1: reduce on plateau SGD, m: 0.9, wd:1e-5 0.6268 0.6460

Table 3: Results from Finetuning on COCO2017, every model was finetuned with the BCE
with logits loss function

Model Pretraining Dataset Pretraining Setting Epochs Learning Rate Optimizer Micro F1

BiT-M-R50x1 ImageNet-21k (20M) Supervised 15 0.1:reduce on plateau SGD, m: 0.9, wd:1e-5 0.3237

ResNet50 ImageNet-1k (1M) Supervised 15 0.1:reduce on plateau SGD, m: 0.9, wd:1e-5 0.4039

ResNet18 ImageNet-1k (1M) Supervised 15 0.1: reduce on plateau SGD, m: 0.9, wd:1e-5 0.338

CLIP: ViT-B/32 400M images from web Supervised 20 0.001 SGD, m: 0.9, wd:1e-5 0.3139

MoCo ResNet50 ImageNet-1k (1M) Self Supervised 10 0.1: reduce on plateau SGD, m: 0.9, wd:1e-5 0.3132

Table 4: Results from Finetuning on Open Images v4, every model was finetuned with the
BCE with logits loss function

Using this methodology, each model is characterized with two sets of scores describing its
biases in the feature representation space: intra-class variation in the pretrained and finetuned
feature space for single classes, and embedding distance in the pretrained and finetuned
space for pairs of classes. The former provides an understanding of the model’s ability to
represent different classes: i.e. the higher the cosine similarity for a given class of images, the
lower the intra-class variation relative to other classes, and this shows us how well the model
clusters a class relative to other classes. The embedding distance gives us a more direct
representation of bias in examining the distance between two classes in the latent space. The
higher the cosine similarity score, the closer the embedding of the two classes in the model’s
representation. For example, in the analysis sets, we can compare the distance between the
classes car and car+man, and also car and car+woman. If the embedding distance between
car and car+man is less than car and car+woman, it implies the model places car and car+man
closer together in the embedding space, when car+man and car+woman should be equidistant
from car. Furthermore, looking at the intra-class variation and embedding distance in both the
pretrained and finetuned feature space, we test the impact of the following variables on how
biases are represented: the dataset the model was pretrained on, the model architecture, the
pretraining setting of the model, and the dataset the model was finetuned on. Systematically,
we can discern which of these variables contributes to biases in the feature representation
space by observing the change in the intra-cluster variation and the embedding distance in
the pretrained and finetuned feature space. We test each of these variables by finetuning on
COCO2017 and the Open Images Dataset.
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We can analyze the results in two ways: by observing a model on its own, or by comparing
across other models. By observing a model on its own, we can understand on well a model
clusters a class of images in comparison to others by examining the intra-class variation
metric and embedding distance metric scores. We can also observe how these scores change
after finetuning the model on a dataset. If the scores for each class do not change significantly,
we can attribute the biases from the model’s architecture or the dataset it was pretrained on,
overshadowing the biases coming from the dataset it was finetuned on. However, we cannot
make any confident conclusions on whether the bias is originating from the dataset the model
was finetuned on, the dataset the model was pretrained on, the network architecture or the
training setting. In order to do this, we must systematically compare the biases across models
by testing each of these variables one at a time. To test whether the bias originates from the
dataset the model was finetuned, we can compare two models with the same architecture,
pretrained on the same dataset with the same training setting and compare their pretrained
intra-cluster variations and embedding distances, and their finetuned intra-cluster variations
and embedding distances. In this way, we analyze each of the variables to get a better
understanding of which factors contribute to biases in the feature representation space.

5 Results

To test the pretrained dataset, network architecture, and training setting, we will evaluate
results from finetuning each of the models on the COCO2017 and Open Images Dataset. We
evaluate the mean average precision score for finetuning on COCO2017 and the micro f1
score on Open Images for each of these models. The results and parameters are detailed in
Tables 3 and 4. The features from the pretrained and finetuned models are evaluated using the
intra-class variation metric and the inter-class distance metric defined in section Definition of
Problem, using pairwise cosine similarity. We demonstrate our results using error bar plots
where the middle of the error bar represents the average of the intra-class variation metric:
{µi}n

i=0 for i ∈ n or inter-class distance metric: {µi j}n
i=0 for i ∈ n (where n is the number of

classes in an analysis set) from T iterations, and the bars represent the min(T) and max(T):
the range of values from repeatedly calculating the pairwise cosine similarity between folds
of the features. The x-axis represents the classes in the analysis set, and the y axis represents
the intra-class variation or inter-class distance scores. We also perform a one sample t test
with the null hypothesis being that the mean is in fact the mean of the sampled data and
found that all our results failed to reject this null hypothesis and as a result, the scores in
the error bar plots are statistically significant. Note, the results for all analysis done with the
Open Images Analysis set is in Appendix B.

5.1 Pretrained Dataset

As detailed in Table 3, ResNet50, Moco ResNet50, and ResNet18 have all been pretrained
on ImageNet1K, Big Transfer ResNet50 has been pretrained on ImageNet21K, and the
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Vision Transformer ViT/B-32 from the CLIP model has been pretrained on 400M images
scraped from the Internet. We first examine the impact of these different pretrained datasets
on the biases exhibited in the feature space before and after finetuning on COCO2017 and
Open Images. To better compare the impact of the pretrained dataset on the biases, we only
examine results from ResNet50, Big Transfer ResNet50, and ViT/32-B from CLIP. All these
models have been trained in a supervised setting, and ResNet50 and Big Transfer ResNet50
have the same architecture so we can reasonably observe the impact of the pretrained dataset
on the biases with respect to the other variables being constant. This is not the case for
ViT/32-B which differs in its architecture however it is included here as it has been pretrained
on 400M images from the Internet.

5.1.1 Pretrained Dataset: COCO 2017

We first examine results by finetuning ResNet50, Big Transfer ResNet50, and CLIP ViT/32-
B on COCO2017 and analyzing the results on the COCO2017 analysis set. Each column
in Figure 5 represents results of the intra-class variation metric, and inter-class distance
metric in the Car, Refrigerator, Surfboard categories and each row represents results from
the ResNet50, Big Transfer ResNet50, and CLIP ViT/32-B models in the pretrained feature
space respectively. For categories like ’car+man’, ’car’, or ’woman’, we use the intra-class
variation metric to evaluate each error bar where the intra-class variation metric is calculated
over a class of images for T iterations and the error bars represent the range of these values.
For classes like ’car+woman vs car’ where we are comparing two separate classes, we
calculate the inter-class distance between ’car+woman’ and ’car’. Intuitively, the ’random’
category should have the lowest score since it has the greatest intra-class variation and
thus the lowest cosine similarity score. The plots for ResNet50 and Big Transfer ResNet50
show us the impact of pretraining on ImageNet21K and ImageNet1K on the biases in the
pretrained feature space. For example, we see that ’car+woman vs. car’ has a lower cosine
score than ’car+man vs. car’ in Big Transfer ResNet50 and this is flipped in ResNet50. So
this shows us that pretraining on ImageNet1K could result in ResNet50 exhibiting a stronger
association between car+woman and car whereas ImageNet 21K may contain more of a
bias towards car and man and thus these categories are represented closer together in the
feature space. To generalize this analysis, we can compare the trends of these features across
models. The results from Big Transfer ResNet50 and CLIP ViT/32-B show a very similar
trend across features and thus we can conclude that ImageNet21K and the 400M images
that ViT/32-B was trained on represent the categories for car, refrigerator and surfboard in
a similar way. On the contrary, ImageNet1K exhibits different biases. For example, in the
Surfboard category, ImageNet1K has a higher cosine score for the ’surfboard+man’ class
than the ’surfboard+woman’ class, but this is flipped for ImageNet 21K and the 400M images
from the web. These plots show us the impact of the pretraining dataset on the biases in the
feature representation space where a similar trend across models implies the datasets the
model was pretrained on contain similar biases.
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Figure 5: ResNet50, Big Transfer ResNet50, and CLIP ViT/32-B: intra-class variation and
inter-class distance for classes of interest in the COCO2017 analysis set: Car, Refrigerator,
Surfboard. A similar trend across CLIP ViT/32-B and Big Transfer 21K implies that both
of these datasets encode and reflect similar biases in the pretrained space. However, the
model architecture could potentially be impacting the way these biases are represented.
Instead, we can directly compare Big Transfer ResNet50 and ResNet50 since they use the
same backbone architecture and we observe differences in biases across these two different
pretraining datasets on the same model architecture.

We can look at the same three models in Figure 6, but instead, the first two columns
represent the scores from the intra-class variation metric and the third column represents
scores from the inter-class distance function. These plots are representing the same results, but
grouped with different classes in each column. We examine the feature representations after
finetuning on COCO2017 and calculate the spearman coefficient between the pretraining and
finetuning scores. A similar trend between pretraining and finetuning scores results in a higher
Spearman’s coefficient as detailed in Big Transfer ResNet50 for the individual category
plot. A similar trend between the pretraining and finetuning scores shows that the model
mostly preserved it’s biases from pretraining and was not greatly impacted by the biases after
finetuning. This can be observed in the individual category plots and the comparison plots
where we calculate the inter-class distance between two classes. However, this does not hold
true for the paired plot for ResNet50. These plots show us that ImageNet21K and the 400M
images from the web still influence the biases even after the model has been finetuned on
COCO2017, but this is less true for models pretrained on ImageNet1K since the biases seem

19



to shift more after finetuning on COCO2017 which implies that the biases in the finetuned
feature space were potentially impacted by the biases in the COCO2017 dataset.

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class
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Figure 6: ResNet50, Big Transfer ResNet50, and CLIP ViT/32-B: these plots segment the
categories in the COCO2017 analysis set by individual classes (car, refrigerator, surfboard,
etc.), paired classes (refrig+man, surfb+woman etc.), and comparisons (refrig vs. random).
These plots show the results of the intra-class variation metric and the inter-class distance
metric of each class before and after finetuning. A similar trend before and after finetuning
implies that the model preserved its biases from finetuning whereas a different trend implies
that finetuning impacted the biases.

More concretely, we can plot the pretraining and finetuning scores on a single plot and
directly examine their correlation as shown in Figure 7. A linear correlation implies that
the trends were preserved from pretraining to finetuning whereas a non-linear curve implies
that finetuning impacted the model’s biases. Similar to the conclusions made in Figure 6,
we see that ResNet50’s paired plot shows the most non-linearity between the pretrained
and finetuned features. Thus, we can conclude that COCO2017 impacted the biases of the
paired categories in the analysis set for models trained on ImageNet1k. To examine how
these biases were impacted, we can observe the plots in Figure 6.
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Figure 7: ResNet50, Big Transfer ResNet50, and CLIP ViT/32-B: Plots the trend between
the pretrarining and finetuning scores.

5.2 Network Architecture

To examine the impact of the network architecture on the biases. We choose to look at
ResNet50, ResNet18, and ViT/B-32. Both ResNet50 and ResNet18 were pretrained on the
same dataset and all three models were trained in a supervised setting.

5.2.1 Network Architecture: COCO 2017

We observe the same format of the plots Section 2.7. We can compare the trends of the
pretrained scores in Figure 8 across models and observe that ResNet18 and ResNet50 exhibit
similar biases in the pretrained feature space. This is not the case for for Clip ViT/B-32.
From this, we can conclude that despite being a different network architecture, ResNet18 and
ResNet50 encode biases in a similar way. However, this is not the case for CLIP ViT/B-32.
We cannot confidently conclude that the difference in these biases originates from the network
architecture because CLIP ViT/B-32 was pretrained on a different dataset than ResNet50 and
ResNet18. However, we do not have access to CLIP ViT/B-32 pretrained on ImageNet and
thus we can only conclude that either the pretrained dataset and/or the model architecture of
CLIP ViT/B-32 results in different biases in the pretrained feataure representation space.
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Figure 8: ResNet18, ResNet50, CLIP ViT/B-32: Analysis of biases in the pretrained feature
space of categories in the COCO2017 analysis set with respect to network architecture.
Similarities in the trend across ResNet18 and ResNet50 imply that the network architecture
did not have an impact on how these biases were encoded in the pretrained feature space.
However, this is not true for CLIP ViT 32-B. We cannot conclude whether the difference
in biases for CLIP ViT 32-B is due to the architecture or the pretrained dataset, we can just
conclude that the biases are different than ResNet50 and ResNet18.

We can observe these biases after finetuning as well in Figure 9. For both ResNet18 and
ResNet50, the trends for the individual class plots and the comparison classes are similar
and the trends for the paired classes plot after finetuning diverges in the same way for both
models. This implies that ResNet18 and ResNet50’s biases were impacted after finetuning
on COCO2017 and their trends after finetuning are similar implying that their biases were
impacted in a similar way after finetuning. However, for CLIP ViT/B-32, the trends before
and after finetuning are mostly preserved implying that it was not impacted by finetuning on
COCO2017. From this analysis, we can conclude that despite different network architectures,
the biases were similar for ResNet18 and ResNet50 and so the dataset that the model was
pretrained on has more of an impact on the biases in the pretrained and finetuned space than
the network architecture.
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Figure 9: ResNet18, ResNet50, CLIP ViT/B-32: Analysis of biases before and after finetuning
on the COCO2017 analysis set. Low spearman coefficients for the paired ccategoreis in
ResNet18 and ResNet50 imply that both of these models absorbed biases from the finetuning
dataset since the trend diverges from the pretrained feature scores. A similar trend for the
rest of the models shows that the biases for those classes was mostly preserved.

Observing the same phenomenon in Figure 10, we can compare the trends between the
pretraining and finetuning scores for each model. The linear trends in all three of the models
implies that finetuning did not impact the biases of the pretrained model for the individual
classes and the comparison classes. However, this is not the case for the paired classes for
Resnet18 and Resnet50. This is also what we observed in Figure 9
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Figure 10: ResNet18, ResNet50, CLIP ViT/B-32: Trends between pretraining and finetuning
scores. We observe a less than linear trend for the paired classes for ResNet18 and ResNet50
implying that these paired classes were impacted by biases in the finetuning dataset.

5.3 Training Setting

We compare MoCo ResNet50 and ResNet50 to examine how the training setting impacts
biases. MoCo ResNet50 was pretrained in a self supervised setting whereas ResNet50 was
pretrained in a supervised setting. Both of these models have the same backbone architecture
and have been pretrained on the same dataset.

5.3.1 Training Setting: COCO 2017

Figure 11 compares MoCo ResNet50 and ResNet50. There is a clear difference in trends
between the biases in the pretrained feature representation space. With all other variables
constant (network architecture, and pretraining dataset), we can reasonably assume that
these differences in biases are due to the training setting. For example, ResNet50 has a
higher score for ’car+woman vs car’ than ’car+man vs car’ and ’car’ whereas this is flipped
for MoCo ResNet50 implying that MoCo ResNet50 placed ’car’ and ’car+man’ closer in
the embedding space than ’car’ and ’car+woman’. This difference can be attributed to the
pretraining setting.
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Figure 11: ResNet50, MoCo ResNet50: Analysis of biases in the pretrained feature space of
categories in the COCO2017 analysis set. The different trends between these two models
imply that the training setting impacted the way these classes are represented in the feature
space.

Figures 12 and 13 show the impact of finetuning on COCO2017. For the paired classes,
ResNet50 does not have a linear association between the pretrained and finetuned scores.
This implies that it was impacted by the biases in the COCO2017 dataset. For the rest of the
results, we observe that MoCo ResNet50 and ResNet50 mostly adhere to the biases in their
pretrained feature space implying that different supervised settings do not impact biases of a
model after finetuning on COCO2017.
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Figure 12: ResNet50, MoCo ResNet50: Analysis of biases before and after finetuning on the
COCO 2017. A less linear trend for the paired classes for ResNet50 implies that a supervised
setting may impact the biases in the finetuned feature space of the paired classes more than
an unsupervised setting.
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Figure 13: ResNet50, MoCo ResNet50: Trends between pretraining and finetuning scores.

5.4 Comparison Across Models

We can also examine pairs of models by comparing their pretrained and finetuned trends.
The pretrained trends show us a comparison of the model’s biases with respect to its network
architecture, its pretraining setting and its pretraining dataset. The comparison of the finetuned
trends show us the impact of finetuning the models on COCO2017 or Open Images. If the
pretrained trends for two models are similar, it results in a linear trend and shows that the
biases of the pretrained models were similar. However, we cannot conclude which factors
contributed most to those similar biases just by looking at these trend plots since the variables
are not necessarily constant and there could be a range of factors affecting these differences of
biases. If the finetuned trends are the same and result in a linear trend line, we can reasonbly
assume the biases originated from the dataset that the model was finetuned on given all other
variables of the models are the same. However, if this trend is less than linear, it implies that
at least one of the two models’ biases in the finetuned space was impacted by it’s biases in
the pretrained feature space. This would require examining the models individually in the
sections above to compare how a model’s biases change from pretraining to finetuning and
which factors contributed most to the changes in a model’s biases.
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5.4.1 Model Comparison: COCO2017

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 14: Comparison of CLIP ViT/B-32 and Big Transfer ResNet50. The top row compares
the pretrained trends across these two models whereas the bottom row compares the finetuned
trends. Since the trends after finetuning for both of these models are more linear (higher
spearman coefficient) than their pretrained trends, we can conclude that the biases in the
finetuned feature space came from the dataset that the model was finetuned on.

Comparing CLIP: ViT/B-32 and Big Transfer ResNet50, it’s clear that the trend for the
paired classes is linear. This indicates that for paired classes, both of these models encoded
their biases similarly before and after finetuning. However, we cannot make any conclusions
regarding which variables contributed most to the bias because there are no controlled
variables across these two models.
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Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 15: Comparison of CLIP ViT/B-32 and MoCo ResNet50. The pretrained trends are not
linear implying that these two models encode their biases very differently in the pretrained
feature space. However, these trends become more linear after finetuning implying that they
both absorbed and reflect some biases from finetuning on COCO 2017. To better examine
where these biases came from and how they are represented for each of the models, we would
have to examine each model’s biases independently as done in the sections above.

Comparing CLIP ViT/B-32 and MoCo ResNet50, the trends across all plots are not
linear. This implies that these two models encode their biases very differently before and
after finetuning. Furthermore, they differ in their network architecture, training setting and
pretraining dataset. As a result, we cannot conclude which factors contributed most to these
differences in biases.
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Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 16: Comparing CLIP ViT/B-32 and ResNet18. The trends after finetuning are more
linear than the pretraining trends implying that the models absorbed biases from the dataset
after finetuning.

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 17: Comparing MoCo ResNet50 and Big Transfer ResNet50, the biases in the
pretrained space were similar for the individual and comparisons categories but they became
less similiar after finetuning for the individual classes. This could imply that finetuning
impacted these models differently. For example, one of the models might not have been
impacted by finetuning resulting in a less than linear trend.

Comparing MoCo ResNet50 and Big Transfer ResNet50, the trends for the individual
classes and the comparison classes are close to linear implying that these models encode
biases similarly despite being pretrained with a different pretraining setting. This implies
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that the pretraining setting may not have a big impact on the representation of biases for the
ResNet50 architecture.

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 18: Comparing ResNet18 and Big Transfer ResNet50. The trends for the paired plots
and the comparison plotos become more linear after finetuning implying that both of these
models were impacted by the biases of the finetuning dataset. However, this is not true for
the individual categories. Although the trend is still close to linear, it could imply that one of
the models was impacted less by the biases in the finetuning dataset.

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 19: Comparing ResNet18 and MoCo ResNet50. The linearity of the trends is similar
before and after finetuning. For the paired categories, the correlation decreased implying that
one of the models was impacted differently by finetuning on COCO2017.
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Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 20: Comparing ResNet50 and Big Transfer ResNet50. The trend become very close
to linear after finetuning implying that both of these models were impated by finetuning in a
very similar way even though their biases in the pretrained space were different.

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 21: Comparing ResNet50 and ResNet18. These trends before and after finetuning
are also close to linear implying that their biases in the pretrained and finetuned space
are encoded in a similar way. It would be necessary to examine the biases of each model
independently to examine how the biases are represented.
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Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 22: Comparing ResNet50 and MoCo ResNet50. The trends become less linear after
finetuning implying that they may encode their biases in a similar way but they diverge after
finetuning.

5.5 Discussion

In sections Pretrained Dataset Network Architecture, and Training Setting, we test three
variables: pretrained dataset, network architecture, and training setting for their effects on
biases before and after finetuning on the COCO2017 and Open Images Dataset. By holding
other variables constant, we can discern which of these variables contributed most to changes
in the model’s biases after finetuning. We further observed that by comparing the trends
between the pretraining feature scores and finetuning feature scores for a single model, we
can observe if the model preserved biases from its pretrained weights. Similarly, in section
Comparison Across Models, we can observe these same trends across models to compare
how different models encode biases in their pretrained and finetuned feature space. This
analysis provided a qualitative methodology to compare the biases across two models with
respect to their pretrained weights, and compare how these biases shifted after finetuning on
a dataset. However, we cannot discern where these biases originated from without examining
the models individually as was done in sections Pretrained Dataset Network Architecture, and
Training Setting. We use our definition of bias to qualitatively compare the relative trends of
the intra-class variation and embedding distance for a class of images in an analysis set. This
provides us with a high level, interpretable methodology for comparing biases across models
without the need for a metric that generalizes across different models’ latent representations,
This study could benefit from additional models for comparison. However, one of the biggest
limitations is training these models to a reasonble, comparable performance on datasets such
as Open Images. This is because Open Images has 601 classes and is a very large dataset
requiring a lot of hyperparameter tuning in order to get reasonable performance. As a result,
a natural future direction for this work would be to incorporate more models for comparison
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so we can perform more controlled experiments with respect to the variables we explored in
this study.

6 Summary

In this work, we explore gender biases in the feature representation space of visual recognition
models. We aggregate subsets of the COCO2017 and Open Images v4 datasets containing
images with objects that co-occur with gender so we can study how models represent gender
in the feature space. We identify metrics that capture gender biases in the feature space
and propose a methodology that identifies factors which contribute to a model’s biases.
More specifically, we test how the pretraining dataset, finetuning dataset, training setting
and network architecture impact the model’s biases in the pretrained and finetuned feature
space. Using this methodology, we are able to qualitatively compare biases across models
and examine which models are more susceptible to biases with respect to the variables we
test. This work serves as an extension to modeling biases in natural language processing
settings. Past studies [13] have examined bias by measuring the distance between word
embeddings in the latent space. We extend this idea to the image domain and examine the
distance between class representations, and we analyze the representation of the class itself.
Unlike previous studies, we analyze biases at the class level instead of looking at individual
images or instances of bias. This generalization serves as a vital first step in characterizing
and comparing models for biases.

7 Future Directions

One of the challenges of bias studies is the availability of a labeled dataset that reflects
the biased relationship of interest. One of the future directions of this work is to aggregate
analysis sets with less noise. As detailed in Table 1, the COCO2017 analysis set has a small
number of examples per class. This dataset was carefully curated by human inspection and
thus is not reasonably scalable. Furthermore, COCO2017 does not have gender labels making
it harder to easily collect large amounts of data for the study proposed in this paper. This
can be solved by using datasets such as Open Images. However, as shown in the Appendix,
the Open Images analysis set has a lot more noise since this set was not manually collected
and instead, we relied on the labels in the dataset. Particularly for categories that contain
a gender and an object (i.e. car+woman), we want to ensure there are no other objects or
genders present in the image. However, this is very difficult to enforce in noisy datasets like
Open Images. To reduce noise, we would need to ensure only the gender and the object are
present in the classes with careful filtering and human inspection. The study in this paper
used cosine similarity as the primary metric to calculate the similarity between two sets of
features. However, cosine similarity does not capture the complex non-linear relationships
that are often reflected in the feature space. With the subtle gender bias associations we are
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trying to capture, we want to explore metrics that are better able to capture this non-linearity
such as distance correlation and Mahalanobis distance. Furthermore, we want to test with
other, standard interpretable metrics such as Euclidean distance. Due to the non-linearity of
the latent space, we also want to experiment with principal component analysis. As detailed
in the Appendix, there is a lot of variation in the analysis set. Furthermore, we are currently
using every single feature dimension to represent a class of images. Principal component
analysis could be beneficial in reducing the number of features and could better capture the
geometry of the subspace. In terms of the experiments, we want to test other self-supervised
models such as SimCLR [26] as another model for comparison with MoCo ResNet50. In
terms of training settings, it would also be beneficial to explore how training a model from
scratch impacts the biases in comparison to models that are pretrained and then finetuned.

In this work, we limited our gender biases to two genders and have yet to perform a more
extensive qualitative analysis on the images themselves to understand the kinds of images
that contribute most to bias in the feature representation space. In the future, we hope to
extend this study to other genders beyond men and women with the increasing availability of
labeled datasets for bias. Furthermore, it is necessary not only to observe who is represented
in the bias relationships, but also how these genders are represented. For example, if we
find a model to place sports and sports+woman closer together than sports and sports+man
but all the images of sports+woman have sexualized representations of women, it would be
necessary to perform a more thorough qualitative study of our analysis sets and examine how
the genders are being represented more carefully. Moving forward, we want to further explore
how we can develop improved metrics for representing biases in visual recognition models,
and explore these feature representations at different points in the network’s architecture
to understand how biases propagate through the network. This work serves as a necessary
exploratory step in characterizing biases at the class level in the feature representation of a
model.
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A Analysis Sets

A.0.1 COCO2017 Analysis Set

Figure 23: Man

Figure 24: Woman
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Figure 25: Random

Figure 26: Stop Sign
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Figure 27: Car

Figure 28: Car+man
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Figure 29: Car+woman

Figure 30: Refrigerator
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Figure 31: Refrigerator+man

Figure 32: Refrigerator+woman
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Figure 33: Surfboard

Figure 34: Surfboard+man
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Figure 35: Surfboard+woman

A.0.2 Open Images v4 Analysis Set

Figure 36: Man
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Figure 37: Woman

Figure 38: Random
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Figure 39: Stop Sign

Figure 40: Car
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Figure 41: Car+man

Figure 42: Car+woman
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Figure 43: Sports Equipment

Figure 44: Sports+man
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Figure 45: Sports+woman

Figure 46: Fashion
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Figure 47: Fashion+man

Figure 48: Fashion+woman
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Figure 49: Mammal

Figure 50: Mammal+man
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Figure 51: Mammal+woman

B Open Images Analysis

B.0.1 Pretrained Dataset: Open Images

In Figure 52, we observe that the trends for ImageNet21K and the 400M images from the
web are relatively similar whereas the ImageNet1K trends are different. This shows that
ImageNet 21K and the 400M images from the web have a similar effect on the biaess in the
pretrained feature representation space.
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Figure 52: ResNet50, Big Transfer ResNet50, and CLIP ViT/32-B: intra-class variation and
embedding distance for classes of interest in the Open Images analysis set: Car, Mammal,
Sports, Fashion. A similar trend across CLIP ViT/32-B and Big Transfer 21K implies that
both of these datasets encode and reflect similar biases in the pretrained space.
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In Figure 53, we observe that the Big Transfer ResNet50 model was almost unaffected
by finetuning on the Open Images dataset whereas the ResNet50 model was greatly impacted
since the trends between the pretraining and finetuning results are very different.

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class
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Figure 53: ResNet50, Big Transfer ResNet50, and CLIP ViT/32-B: these plots segment
the categories in the Open Images v4 analysis set by individual classes (car, refrigerator,
surfboard, etc.), paired classes (refrig+man, surfb+woman etc.), and comparisons (refrig vs.
random). These plots show the results of the intra-class variation metric and the embedding
distance metric of each class before and after finetuning.

We can more closely observe this in Figure 54, where we examine the trends between
the pretrained and finetuned scores for each of the models. Big Transfer ResNet50’s trend is
almost linear which matches what we observed in Figure 53. However, the trends for Clip
ViT/B-32 and ResNet50 are not linear implying that finetuning greatly impacted the model’s
biases and the biases from the pretrained model were not preserved. So we observe that
models pretrained on ImageNet21K are less prone to changes in their biases after finetuning
on Open Images, whereas pretraining on ImageNet1K and 400M images from the web are
more prone to absorbing and reflecting biases from Open Images.
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Figure 54: ResNet50, Big Transfer ResNet50, and CLIP ViT/32-B: Plots the trend between
the pretrarining and finetuning scores. A linear trend for Big Transfer ResNet50 shows that
this model preserved its biases from pretraining to fineetuning whereas the less linear trends
in ResNet50 ND CLIP ViT 32-B implies that biases from finetuning impacted the feature
representations in the finetuned feature space.

B.0.2 Network Architecture: Open Images

Figure 55 shows results from ResNet18, ResNet50, and CLIP ViT/B-32. We observe a
similar result to the COCO2017 dataset where ResNet18 and ResNet50 exhibit similar trends
implying that despite being different architectures, their biases are still the same because the
dataset they were pretrained on is the same. However, for the CLIP architecture, we cannot
necessarily discern whether the biases are coming from the pretraining dataset or the network
architecture. But nonetheless, the biases are different from ResNet18 and ResNet50.
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Figure 55: ResNet18, ResNet50, CLIP ViT/B-32: Analysis of biases in the pretrained feature
space of categories in the Open Images analysis set.

Figures 56 and 57 show the impacts of finetuning on Open Images. We observe that
ResNet18 preserved most of its biases from its pretrained model since the trend between the
pretrained and finetuned scores is close to linear. However, this is not the case for ResNet50.
This could indicate that the difference in network architecture could impact the biases in the
finetuned feature space when finetuning on Open Images. This was not true for the COCO
dataset as observed in Figure 10.
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Figure 56: ResNet18, ResNet50, CLIP ViT/B-32: Analysis of biases before and after finetun-
ing on the Open Images analysis set.

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Re
sn
et
50
:	

Im
ag
eN

et
	1
K

Re
sn
et
18
:	

Im
ag
eN

et
	1
K

CL
IP
	V
iT
/B
-3
2:
	

40
0M

	im
gs

Figure 57: ResNet18, ResNet50, CLIP ViT/B-32: Trends between pretraining and finetuning
scores.
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B.0.3 Training Setting: Open Images

Figure 58 shows that the trends in biases are very different between ResNet50 and MoCo
ResNet50 implying that the pretraining setting does have an impact on how the biases are
represented in the pretrained features. f
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Figure 58: ResNet50, MoCo ResNet50: Analysis of biases in the pretrained feature space of
categories in the Open Images analysis set.

From Figure 59 and 60, we find that MoCo ResNet50 preserves most of its biases from
pretraining whereas ResNet50’s biases are very different. This could implying that models
pretrained in supervised setting are more prone to absorbing biases in the dataset they were
finetuned on than models pretrained in a self supervised setting.

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class
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Figure 59: ResNet50, MoCo ResNet50: Analysis of biases before and after finetuning on the
Open Images datset.
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Figure 60: ResNet50, MoCo ResNet50: Trends between pretraining and finetuning scores.

B.0.4 Model Comparison: Open Images

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 61: Comparing CLIP ViT/B-32 and Big Transfer. We find that the trends for the
individual class plots are more linear after finetuning implying that the models absorbed
biases from the Open Images dataset for these specific classes. However, this is not true for
the paired and comparisons plots. Because the trend before finetuning is not linear either,
it is difficult to discern whether the models were impacted by biases after finetuning from
these plots and we wouold need to examine each of these biases more carefully.
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Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 62: Comparing CLIP ViT/B-32 and MoCo ResNet50. Similar to Figure 29, we observe
that the trends for the individual class plots and the comparison class plots become more
linear after finetuning so we can reasonbly assume that both of these models encoded biases
from the Open Images after finetuning for those specific classes.

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 63: Comparing CLIP ViT/B-32 and ResNet18. Each of the plots shows a higher
linear trend after finetuning implying that both of these models absorbed and reflected biases
from the Open Images dataset. However, we cannot conclude which model preserved more
of their biases from their pretrained weights without observing the biases of these models
independently.
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Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 64: Comparing CLIP ViT/B-32 and ResNet50. Because the trends before and after
finetuning are not linear, we cannot conclude much about the biases of these models except
that they represent their biases very differently in the pretrained and finetuned feature space.

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 65: Comparing Big Transfer ResNet50 and ResNet50, the trends before and after
finetuning are mostly linear implying that these models encode their biases in the pretrained
and finetuned feature space. However, we cannot conclude if both of these models were
impacted by biases in the finetuning dataset since the pretraining trend is also linear. There is
the possiblity that both of these models preserved their biases from their pretrained weights.
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Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 66: Comparing ResNet18 and Big Transfer ResNet50. Similar to Figure 33, both
the pretrainig and finetuning trends are similar and close to linear, as a result, we cannot
conclude whether the biases came from the finetuning dataset. We can only conclude that the
biases for these two models were represented in a similar way.

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 67: Comparing ResNet18 and MoCo Resnset50, similar to Figures 33 and 34, we
cannot conclude whether the biases came from the finetuning dataset. We can only conclude
that the biases for these two models were represented in a similar way.
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Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 68: Comparing ResNet50 and Big Transfer ResNet50, The biases after finetuning
are more linear than before finetuning. This implies that the biases that the models encoded
before finetuning were very different. Since we are comparing Big Transfer ResNet50 and
ResNet50, we can attribute these biases to the dataset they were pretrained on. However,
they are more linear after finetuning implying that they both absorbed some biases from
finetuning on Open Images.

Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 69: Comparing ResNet50 and ResNet18. Similar to Figure 36, The trends after
finetuning become more linear implying that the models encoded their pretrained biases very
differently due to their differing architectures, but absorbed some biases from Open Images
after finetuning.
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Indiv:	Intra-Class Paired:	Intra-Class Comps:	Inter-Class

Figure 70: Comparing ResNet50 and MoCo ResNet50, we can make the same conclusions as
Figure 37. The trends after finetuning become more linear implying that the models encoded
their pretrained biases very differently due to being pretrained on different datasets, but
absorbed some biases from Open Images after finetuning.
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