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Evaluating Cyclist Behavior in Different Roadway Designs through
Immersive Virtual Environments and Psychophysiological Sens-
ing

ABSTRACT

As a healthier and more sustainable way of mobility, cycling has been advocated by

literature and policy. However, current trends in cyclist crash fatalities suggest de-

ficiencies in current roadway design in protecting these vulnerable road users. The

lack of cycling data is a common challenge in studying cyclists’ safety, behavior, and

comfort levels under different design contexts. The integration of human sensing

technologies has greatly facilitated the human-centered design evaluation of road in-

frastructures. Another question of interest is cyclists’ distraction and involvement in

secondary tasks. Understanding cyclists’ behaviors under the influence of distraction

can provide evidence for interventions to address safety-related issues. This study

will focus on cognitive distraction as it is related to the most frequently reported

secondary tasks during cycling, such as listening to music or talking in the earphones.

To understand cyclists’ behavior in different contextual settings, an Immersive Vir-

tual Environment(IVE) bicycle simulator - Omni-Reality and Cognition Lab Simu-

lator (ORCLSim) is developed with the ability to collect the following data: cycling

performance (speed, steering, braking, acceleration and lane position), eye Track-

ing (gaze direction, fixation), physiological responses (Heart rate, head movement,

hand acceleration), video recording and stated preferences surveys (subjective rat-

ing). With the ORCLSim system framework, this proposal aims to study the effect
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of different roadway designs (external factors) and psychophysiological states (inter-

nal factors) on cycling behavior with the goals of (1). Capturing and analyzing cyclist

behavior and psychophysiological responses within an immersive virtual environment.

(2). Validate the use of an IVE-based bike simulator with multimodal data sources

for cyclist study. (3). Evaluate alternative designs for cyclists with human-centered

and data-driven methods. (4). Study the effect of cognitive distraction on cyclist

behavior.

Specifically, in addition to the system setup integration and development, three exper-

imental studies are conducted: (1). Benchmark the use of IVE for cyclist behavioral

study. Cyclist behavior and psychophysiological responses will be compared between

the real-world environment and IVE to validate what set of information in IVE is

representative of the real world (n=6). (2). Evaluation of different design alterna-

tives in the IVE. Three different roadway designs will be evaluated in the ORCLSim

system framework to test if the cyclists’ physiological response is different from their

stated preferences and actual cycling behaviors (n=50). (3). Study the effect of cog-

nitive distraction on cyclist behavior. Two types of cognitive distractions are tested:

listening to music and talking on the phone with earphones. Both the standardized

secondary task (Mock phone conversation task) and the actual secondary task (music

listening) will be introduced in the experiment to test if the standardized secondary

task can be applied to simulate cyclists’ cognitive workload and the effect of cognitive

distraction on cycling behaviors (n=75).

The results indicate (1). Most of the performance measurements have absolute va-

lidity, the IVE bike simulator can be further utilized for understanding cyclists’ be-

haviors. (2). It is important to track physiological metrics to better understand how

different settings may impact cyclists. Additionally, we showcased the importance of
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gaze tracking and heart rate data in capturing the behavioral response to different

events or roadway settings. (3). Bicycle infrastructure can meaningfully impact cy-

clists’ movement and psychophysiological responses. The protected bike lane design

has the highest subjective safety rating, lowest cycling speed, and highest lateral dis-

tance to the vehicle lane, indicating the potential for safer bicycling behavior with

lower speeds and increased separation from vehicles; cyclists focus their gaze on the

cycling task more in the separate and protected bike lane scenarios; creating sepa-

rate zones for bicyclists (whether separate bike lane or protected bike lane) has the

potential to reduce the stress level, as indicated by decreased HR changes compared

to the shared bike lane. (4). Differences are found in cyclists’ adaptive behaviors

with different types of cognitive distractions. Talking on the phone is rated as the

most distracting scenario, cyclists would keep a lower speed with less input power and

less head movement variation. While listening to music, cyclists would have a signif-

icantly higher speed, a lower standard deviation of speed, and higher input power.

The introduction of bike lanes has the potential to stabilize the lateral lane position.

Demographic information is also found to affect behavioral and psychophysiological

responses.

Based on the findings and results of this dissertation, suggestions are made for poli-

cymakers and designers.
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Chapter 1

Introduction

Cycling, as a traditional means of mobility, has gained more popularity in recent years.

Bicycle mode share is rising in response to issues in modern cities, such as increases in

traffic jams, land use, energy consumption, air pollution, climate change, and physical

inactivity (Flusche 2012; Rupi and Krizek 2019). This trend has continued during the

COVID-19 pandemic, as it is reported that cycling levels have significantly increased

in many countries despite lockdowns and travel restrictions (Buehler and Pucher

2021). A study in Europe estimated that substituting a bike over a car just once

a day reduces an average citizen’s carbon emissions from transport by 67% (Brand

et al. 2021). However, with a growing number of vehicles on the roads, there are more

and more traffic conflicts between cyclists and vehicles. There has been an alarming

increase in cyclist fatalities over the last decade. The National Highway Traffic Safety

Administration (NHTSA)’s report shows that in the United States, the number of

cyclists’ fatalities has increased by more than 35% since 2010 (NHTSA 2021a). The

report from the World Health Organization (WHO) also shows that more than half

of global road traffic deaths (1.35 million each year) are among pedestrians, cyclists,

and motorcyclists (Organization 2018).

Over the past couple of decades, the evaluation of roadway safety and design has

been automobile-centric. The development of automotive technology has decreased

the overall fatalities and fatality rate per 100 million Vehicle miles traveled (VMT)
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in traffic crashes. For example, in the United States, the fatality rate per 100 million

VMT has decreased from 3.35 to 1.10 since 1975 (Administration et al. 2020). Many

studies have been conducted to evaluate the impact of roadway design features on

drivers’ behaviors and safety, leaving out other roadway users such as cyclists. These

trends indicate that the design of our roadways needs to be improved to be more

inclusive for all users, especially for vulnerable road users such as cyclists (Rodriguez-

Valencia et al. 2021).

To better inform roadway design, extensive datasets similar to the automobile-focused

studies of the past are needed for cyclists. To develop robust cyclist-focused datasets,

studies with both high ecological and internal validity are needed. Ecological validity

refers to the extent an experimental environment matches with the real world, increas-

ing the chances that the effects identified in an experimental environment generalize

to real-world settings. Internal validity refers to the extent to which a cause-effect

relationship is warranted in a study.

Various methods of collecting bicycle safety, risk, comfort, and behavior data have

been utilized in the past. These studies spanned surveys, observational studies, nat-

uralistic studies, and simulation studies. Subjective studies, such as surveys, provide

measures of users and their perceptions of their environment but lack ecological and

internal validity (Wynne, Beanland, and Salmon 2019). For example, interviews and

surveys ask participants about their behaviors and comfort in a certain design context

either by imagination or after an actual bike ride. However, the subjective response

does not always reflect what the participant will do in a real-road setting and can

suffer from hypothetical bias (Fitch and S. L. Handy 2018). Observational studies

can record realistic changes within the environment and cyclists’ responses in real-

world conditions, but are unable to track cyclists’ physiological changes. Naturalistic
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studies can provide information about realistic changes within the environment and

cyclists’ behavior with high ecological validity. Naturalistic studies can further record

cyclists’ responses in real-world conditions through different sensing modalities such

as GPS, ECG, or mobile eye trackers (Rupi and Krizek 2019). However, these studies

with lower internal validity are resource- and time-extensive, and have potential risks

of injuries and fatalities for participants as they may be placed in dangerous roadway

settings (e.g. distraction in high traffic density area) (Stelling-Konczak et al. 2018).

Furthermore, naturalistic studies are influenced by many environmental factors that

restrict the ability to fully isolate and understand the impact of independent vari-

ables, thus offering low internal validity, especially for physiological and behavioral

factors (Fitch, Sharpnack, and S. L. Handy 2020; Teixeira et al. 2020). Thus far,

the majority of cyclist studies rely on subjective and naturalistic data derived from

real-world settings to assess participants’ behavior and comfort in different traffic

environments (Paridon et al. 2019).

Experimental studies provide an opportunity to evaluate the impact of safety-related

conditions, infrastructure, and technology on cyclists as they can offer the ecolog-

ical validity lacking in subjective studies and allow the researchers to control for

external variables, unlike naturalistic studies, for greater internal validity. Exper-

imental studies conducted through Immersive Virtual Environments (IVE) are an

emerging approach that minimizes the hypothetical bias of subjective surveys while

offering a controlled, low-risk, and immersive environment to evaluate the responses

of cyclists to different roadway designs and conditions. The benefit of an Immersive

Virtual Environment (IVE) is achieving high internal and ecological validity while

also being cost-effective, and offering complete experimental control to replicate tri-

als (Heydarian, Carneiro, et al. 2015; Heydarian and Becerik-Gerber 2017). Early
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IVE lacked realism, which was primarily due to a lack of technological capability.

Fortunately, IVE software and hardware platforms have significantly improved over

the last few years with the release of high-end, commercially available head-mounted

displays (HMD), and graphics cards capable of rendering highly detailed environ-

ments. Meanwhile real-life components can also be integrated into IVE studies. For

instance, we can now integrate a physical bicycle along with haptic feedback with an

IVE to create a more immersive setting for participants (Guo, Robartes, et al. 2021).

Furthermore, as the level of immersion increases, we can expand these experiments

to capture participants’ physiological and psychological factors, which is a field of

data that has historically been overlooked. Such data provides insights into how par-

ticipants’ behaviors and perceptions may change in contextual settings in different

research fields (J. Kim, Yadav, Ahn, et al. 2019; G. Lee et al. 2020; Adami et al.

2021; Noghabaei, K. Han, and Albert 2021; Sharif and Oppenheimer 2021). With

the increase of realism in IVE simulators and the development of low-cost ubiquitous

sensors, IVE simulators have become promising tools for conducting highly realistic

and immersive experimental studies (Ergan et al. 2019). In traffic safety studies,

driving simulators have been widely applied to study drivers’ behaviors, awareness

(Soares, Ferreira, and Couto 2020, and psychophysiological states with multimodal

data collection systems, such as eye trackers, electroencephalogram (EEG) and elec-

trocardiogram (ECG) (Haufe et al. 2011; Akbar et al. 2017; Guo, Cui, et al. 2019;

Baee et al. 2021). Some of the driver-related studies are conducted in IVE (Eudave

and Valencia 2017). Meanwhile, for cyclists, only a few studies have applied phys-

iological responses in IVE simulators. For example, cyclists’ galvanic skin response

had less peaks with a bike lane than with no bike lane condition (Cobb, Jashami,

and Hurwitz 2021). In another cycling virtual reality study, electroencephalography

(EEG) data shows its potential in a hybrid model framework as an indicator of the
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perceived risk of cyclists (Bogacz, Hess, Calastri, Choudhury, Mushtaq, et al. 2021).

Overall, we still have very a limited understanding of cyclists’ physiological responses

in different roadway environments, especially in IVE studies. Some naturalistic stud-

ies have been conducted to evaluate cyclist’s behavior and physiological responses

in different contextual settings (Guo, Robartes, et al. 2021; McNeil, Monsere, and

Dill 2015; Rupi and Krizek 2019; Teixeira et al. 2020). These preliminary studies re-

vealed that psycho-physiological metrics (e.g., heart rate (HR), gaze variability, and

skin conductance) are indicators of how participants’ behaviors and perceptions may

change in different contextual settings.

Other questions of interest are cyclists’ distraction and involvement in secondary

tasks. Distraction has been identified as one of the main reasons for traffic acci-

dents. In the US, nine percent of fatal crashes, 15 percent of injury crashes, and

15 percent of all police-reported motor vehicle traffic crash in 2019 were reported as

distraction-affected crashes. There were 566 vulnerable road users including pedestri-

ans, pedalcyclists, and others killed in distraction-affected crashes (NHTSA 2021b).

This data is from vehicle crash reports, and limited information about cyclists’ dis-

traction on the fatality is available. No only the limited data sources, but also the

number of studies that have been published on distracted biking is small. As a re-

sult, our knowledge about the effect of distraction on cycling is insufficient. Previous

studies have reported that distractions have a major prevalence among bike users and

that they play a significant role in the prediction of the traffic crash rates of cyclists,

through the mediation of risky behaviors (Useche et al. 2018). Studying cyclists’

behaviors under the influence of distraction can provide evidence for interventions to

address safety-related issues. Similar to the diving distraction, the cycling distraction

can be categorized into three main types: Visual (taking the eyes off the road), Man-
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ual(taking the hands off the handlebar), and Cognitive (taking the mind off cycling).

This study will focus on cognitive distraction as it is related to the most frequently

reported secondary task during cycling, such as listening to music or talking in the

earphones (Mwakalonge, White, and Siuhi 2014; Wolfe et al. 2016).

To understand cyclists’ behavior in different contextual settings, with the develop-

ment of an IVE bicycle simulator, this proposal aims to study the effect of different

roadway designs (external factors) and psychophysiological states (internal factors)

on cycling behavior with the goals of 1). Capturing and analyzing cyclist behav-

ior and psychophysiological responses within an immersive virtual environment. 2).

Validate the use of an IVE-based bike simulator with multimodal data sources for

cyclist study. 3). Evaluate alternative designs for cyclists with human-centered and

data-driven methods. 4). Study the effect of different types of cognitive distractions

on cyclist behavior.

Specifically, the dissertation has three main research objectives (RO), and each re-

search objective will be studied by an experimental study to answer the corresponding

research questions (RQ):

• RO 1: Benchmark the use of an Immersive Virtual Environment (IVE) for

behavioral study.

– RQ 1: What set of information can we capture in the Immersive Virtual

Environment (IVE) bike simulator?

– RQ 2: Will the cyclists’ cycling/Heart Rate/eye tracking behavior in the

IVE be representative of the real world?

• RO 2: Evaluation different design alternatives in the IVEs
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– RQ 3: Can the proposed framework support the IVE bike simulator to

study cyclists’ behaviors Not different roadway designs?

– RQ 4: Are the cyclists’ physiological responses different from their stated

preferences?

• RO 3: Study the effect of cognitive distraction on cyclist behavior

– RQ 5: Can we use the standardized secondary task to simulate cognitive

distraction during cycling?

– RQ 6: What’s the effect of different types of cognitive distraction on cy-

cling behavior?

Chapter 2 introduces more details of literature reviews, the Chapter 3 describes the

development of all components of the ORCLSim IVE bicycle simulator, the data

collection and analysis methods which will serve as the foundations of all three studies.

Chapter 4 introduces the benchmarking study between the real world and the IVE

simulator to test the representative of the data collected from the proposed ORCLSim

framework. Chapter 5 introduces the experiment designs, data analysis, and results

for different roadway designs in the IVE. Chapter 6 the experiment about the effect of

different types of cognitive distraction on cycling behavior and physiological response.

Chapter 7 concludes the findings from all the studies and summarizes the future

directions of the dissertation.
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Chapter 2

Review of Literature

2.1 Types of Methods for Cyclist Study

Accident crash reports, stated preference surveys, observational studies, field test/-

naturalistic studies, and simulator studies have been utilized by past researchers for

cycling studies. Most of the accident crash reports are led by governments or interna-

tional organizations, such as NHTSA and WHO (Organization 2018; NHTSA 2021a).

The crash reports provide valuable real-world data, but they are post-accident anal-

yses, the information for cyclists is often incomplete, which means limited behavioral

or psychophysiological data is included.

Surveys have been widely used to study cyclists’ behavior, particularly when faced

with a lack of real-world data. Surveys, when composed carefully, can efficiently

assess large populations of cyclists and have been used to study a wide variety of

topics such as perceived safety/comfort (Parkin, Wardman, and Page 2007; Chaurand

and Delhomme 2013; Abadi and Hurwitz 2018), route choice (Sener, Eluru, and Bhat

2009) and crash history (Robartes and T. D. Chen 2018; Poulos et al. 2012; H. Yang

et al. 2019). For instance, (Chaurand and Delhomme 2013) studied the perceived

risk of cyclists and drivers in certain interactions. Results suggest that perceived

risk is higher for drivers compared to cyclists. Additionally, the perceived risk of

cyclists is higher when interacting with a car than with another bike. Another study
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investigated the perceived level of comfort by cyclists near urban truck loading zones

in varying conditions of truck traffic, bicycle lane marking type, and traffic signs

(Abadi and Hurwitz 2018). Results indicate that the existence of trucks in the traffic

is a significant factor in reducing cyclists’ perceived comfort. Additionally, the study

finds that women are generally more affected by the truck traffic than men. While

these types of studies add significant value to our understanding of the effect of

contextual settings on cyclists’ perceived risk and comfort, they often are riddled with

issues such as limitations on external validity. For instance, these studies may suffer

from hypothetical bias, in which participants’ responses to surveys may not reflect

their real response in a naturalistic situation (Fitch and S. L. Handy 2018). For

instance, Fitch and S. L. Handy 2018 reports that imagined ratings of comfort while

biking may have a negative bias as high as 15% difference in comfort and safety when

compared to real-world situations. Additionally, surveys and subjective measures

generally cannot be used to understand the temporal dimension of the effect of certain

contextual elements on cyclists. For instance, in the case of perceived comfort, it is

not possible to understand the exact moment in which a bicyclist felt discomfort, or to

what level the discomfort varies among different people and at different locations. On

the other hand, physiological measures can be used as surrogate metrics to understand

the time span of contextual elements’ effects on the participants.

Observational studies can minimize the risk of hypothetical bias from stated prefer-

ence surveys and provide a real-world assessment of bicyclists’ responses in specific

locations (Thompson et al. 2013). For example, an observational study conducted

in Boston, United States, investigated distracted cycling behavior and reported the

prevalence of two types of distractions: auditory (ear buds/phones in or on ears),

and visual/tactile (electronic device or other objects in hand). Almost one-third of
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all bicyclists exhibited distracting behavior at four high-traffic intersections during

peak commuting hours. The highest proportion of distracted bicyclists was observed

during the midday commute (between 13:30-15:00) (Wolfe et al. 2016). Another ob-

servational study with 2187 cyclists in Germany shows 22.7% bicyclists are engaged

in a secondary task such as wearing headphones or earphones (13.1%) or interacting

with other cyclists (7.0%) (Huemer, Gercek, and Vollrath 2019). In observational

studies, the collected data relies only on the behavioral responses that the observers

can visually discern, without having the ability to manipulate different factors, such

as traffic density or noise levels (Daniels, Nuyts, and Wets 2008). In recent years,

the utilization of cameras has greatly increased the popularity of video-based obser-

vational studies. For instance, an observational study in China recorded 112 hours

of video footage with 13,407 bicyclists riding shared bikes and 2061 riding personal

bikes. Not wearing a helmet, violating traffic lights, riding in the opposite direction

of traffic, not holding the handlebar with both hands, and riding in a non-bicycle lane

are identified as top unsafe behaviors (Gao et al. 2020). Overall, observational studies

can only evaluate bicyclists’ behaviors in existing environments, and are unable to

collect bicyclist’s psycho-physiological responses. Psycho-physiological measures of

bicyclists may be helpful for understanding the reason behind distraction, the length

of the distraction, and to what level the stimulus affects the rider’s decision-making.

To have full control over design considerations, we need to evaluate how cyclists re-

spond to different designs of roadways during the planning or design phase of projects.

The development of mobile sensing technologies has enabled mobility data collec-

tion from a variety of modalities. In this line of research, several naturalistic studies

have investigated cyclists’ behaviors and physiological responses, such as HR, heart

rate variability (HRV) (Doorley et al. 2015), and gaze (Rupi and Krizek 2019). For
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example, the changes in ambient light levels can affect bicyclists’ perception of the

environment by changing their gaze reactions (Uttley, Simpson, and Qasem 2018).

These studies show preliminary evidence on how infrastructure design is associated

with cycling stress, although variations are found between different cities and road

types (Fitch, Sharpnack, and S. L. Handy 2020; Teixeira et al. 2020; Guo, Robartes,

et al. 2021). In Fitch, Sharpnack, and S. L. Handy 2020, through using a BodyGaurd

II heart beat-to-beat interval measuring device, the HRV results from 20 female par-

ticipants suggest that only local roads with no dividing yellow lines and low car speed

and volume bicyclists provided less stress to the participants compared to collector

(medium to high dividing traffic) and arterial roads (high volume, multi-lane). One

of the limitations identified in the study is that environments with protected or sep-

arate bike lanes are not included, so the results cannot indicate how those designs

might compare to the as-built designs (Fitch, Sharpnack, and S. L. Handy 2020).

Lack of environmental control (e.g., traffic, weather, etc.) could be the main cause

of the uncertainty, which undermines the interpretability of these results and sug-

gests the need for further research. Additionally, only a limited number of human

sensing devices can be applied in naturalistic settings, as many of these devices are

intrusive. For example, the electroencephalogram (EEG) measurement devices are

more capable for in-lab testing. This will have an effect on participants’ behavior

and safety, which may result in degraded data quality. Lastly, the potential risks of

injuries and fatalities for participants trigger ethical concerns for naturalistic studies.

For example, Stelling-Konczak et al. 2018 conducted a study in real traffic examining

the glance behavior of teenage bicyclists when listening to music. The study was

terminated after fourteen participants when the results indicated that a substantial

percentage of participants cycling with music experienced a decrease in their visual

performance (Stelling-Konczak et al. 2018).
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2.2 Bicycle Simulator With IVE Study

Over the past decade, driving simulators, virtual reality (VR) technologies, and hu-

man sensing technologies have provided new insights into human behavior in different

contextual settings, assisting in evaluating different design alternatives for roadways

(X. Zou et al. 2021), buildings (Francisco et al. 2018), hospitals (Chı́as et al. 2019,

and other civil infrastructure systems (H. Zou, N. Li, and L. Cao 2017; Noghabaei

and K. Han 2020; Awada et al. 2021). Simulation methods utilizing IVE offer a

low-cost, low-risk approach to studying the users’ safety, perception, and behavior.

Traditionally, real-world observation methods have been used to understand bicyclist

and pedestrian behavior. These methods are often expensive, time-consuming, and

unrealistic for studying naturalistic behaviors as they often require some level of unre-

alistic environmental control for the safety of test subjects. The improvements in IVE

over the recent years have provided researchers, designers, and engineers with a way

to evaluate alternative infrastructure design while providing high degrees of immer-

sion. Novel, commercially available VR headsets offer a high degree of realism and

immersion. Furthermore, environmental factors that may influence bicyclist behavior

are highly controllable within IVE, allowing for replicable experimental trials.

The advancements in VR and bicycle simulation over the past decade have led to

a rapid increase in its application among researchers, designers, and engineers to

evaluate human responses to alternative infrastructure designs. The combination of

IVE and instrumented physical bicycle simulators provides a high level of immersion

and flexibility in experimental designs. Furthermore, it enables user engagement and

allows subjective analysis of participants to better understand their behavior and

preferences to the changes in simulated environments (Nazemi, Eggermond, Erath,
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and Axhausen 2018). For instance, Xu, Lin, and Schmidt 2017 was able to evaluate

30 participants’ behaviors in an IVE, by designing a straight path with four sections

of varying traffic conditions. Through this experiment, results suggest that the exis-

tence of a bike lane in low traffic conditions significantly improved cyclist lane-keeping

performance (Xu, Lin, and Schmidt 2017). A more recent study compared cycling be-

haviors in an IVE between a keyboard-controlled bicycle and an instrumented bicycle

where participants could pedal. The results indicated that there is more variance in

the instrumented bicycle experiments in different measurements, such as speed, head

movement, acceleration, and braking behaviors (Bogacz, Hess, Calastri, Choudhury,

Erath, et al. 2020). Validation studies were also performed to compare the bicycling

behavior between the IVE bicycle simulator and naturalistic studies (O’Hern, Ox-

ley, and Stevenson 2017; Guo, Robartes, et al. 2021). Although there is a limited

number of validation studies, promising results are shown in the validity of cycling

performance such as lane position and speed (O’Hern, Oxley, and Stevenson 2017).

However, most IVE-related studies are limited to observing cycling behaviors and

preferences without exploring bicyclists’ psycho-physiological responses.

2.3 Measurement of Physiological Responses

Past studies have pointed out the utility of humans’ physiological signals such as

cardiovascular (e.g., HR), skin temperature, skin conductance, brain signals, gaze

variability, and gaze entropy in understanding emotions, stress levels, anxiety, and

cognitive load (Tavakoli, Kumar, Boukhechba, et al. 2021; H.-G. Kim et al. 2018;

Lohani, Payne, and Strayer 2019). Apart from subjective studies, there are limited

datasets including human physiological and psychological sensing (e.g. eye tracking,
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body tracking, and heart rate) for cyclists. It is crucial to assess participants’ patterns

of perception and reaction in certain contextual settings. Many traditional on-road

studies have used accident statistics and road infrastructure data (e.g., roadside cam-

eras) to evaluate the safety-related concerns of cyclists and pedestrians. To further

study their perception and cognitive states, human sensing devices (e.g. physiology

devices) have been shown to provide promising insights (Ridel et al. 2018; Trefzger

et al. 2018; Ayres et al. 2015). There are practical concerns about the data collec-

tion of human sensing on real roads. First, safety, ethical and cost considerations

prohibit large-scale on-road experiments (Stelling-Konczak et al. 2018). Second, the

implementation of traditional human sensing devices (such as body trackers) is in-

trusive, which may affect the behavioral and perception ability of the participant, as

well as the data quality on real roads (especially in high-speed scenarios) (Van Hoof

et al. 2012). In light of these shortcomings, most IVE can handle the first limitation,

as virtual environments provide a low-risk and cost-effective alternative to real set-

tings. While the second shortcoming (monitoring perception and cognition) requires

the integration of human sensing systems and ubiquitous computing into the IVE.

The majority of existing IVE research in bicyclist and pedestrian studies has not uti-

lized ubiquitous computing and human sensing techniques to monitor participants’

behaviors and physiological states.

2.3.1 Eye-Tracking

Eye-tracking behaviors are usually found to be related to the process of cognitive

resource allocation. Eye-tracking behavior is usually measured by optical eye-trackers,

it has been widely used in studying users’ visual perception and attention in different

contexts. Different features such as blinking rate, saccade and fixation duration, gaze
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variability in different directions, stationary gaze entropy (SGE), and gaze transition

entropy (GTE) are correlated to different states such as workload, stress level, and

emotions (B. Shiferaw, Downey, and Crewther 2019). A fixation in eye patterns

refers to maintaining the eye gaze on a specific location (Purves et al. 2001). At each

fixation, the gaze is approximately stationary. The transitions between fixations are

called saccades where the point of fixation changes rapidly to a new fixation point.

The variation and sequence of fixations and saccades were shown to be correlated with

human states such as stress and workload (May et al. 1990). In addition to fixation

and saccade, gaze variability is an additional feature that refers to the standard

deviation in gaze angles in both vertical and horizontal directions.

In general, two measures can be calculated for entropy. The first one is based on the

definition of uncertainty associated with a choice (B. Shiferaw, Downey, and Crewther

2019). With more randomness in a system, the entropy also increases. This is cal-

culated through Shannon’s equation (Shannon 1948). In the gaze analysis research,

this first entropy is referred to as the stationary gaze entropy (SGE), which shows the

overall predictability of fixation locations and can be a proxy for the gaze dispersion

(Shannon 1948). For a set of fixation locations in a sequence of eye movements, if we

assign fixation locations to spatial bins of pi, we can calculate the SGE as:

SGE = −
n∑

i=1
pi log2 pi (2.1)

Different studies have used SGE for human state analysis. For instance, SGE was used

for detecting task demand, complexity, experience, workload, drowsiness, and being

under the influence of alcohol (B. Shiferaw, Downey, and Crewther 2019). The second

measure of gaze entropy is gaze transition entropy (GTE), which is the conditional
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entropy that takes into account the temporal dependency between different fixations.

GTE is a measure of the predictability of the next fixation location given the current

fixation location. For a sequence of transitions between different spatial bins of i and

j, with a probability of pij the GTE can be calculated as:

GTE = −
n∑

i=1
pi

n∑
j=1

pij log2 pij (2.2)

Conceptually, for each specific combination of task demand and scene complexity, an

optimal level of GTE exists (B. Shiferaw, Downey, and Crewther 2019). Deviation

from the optimal GTE can provide information about changes in the human state.

For example, an increase in stress, anxiety, and frequency of emotional episodes are

associated with an increased level of GTE (relative to the optimum). While a decrease

in the level of GTE (relative to the optimum) can be due to the usage of depressants

such as alcohol (B. Shiferaw, Downey, and Crewther 2019).

In addition to gaze entropy, gaze data is usually analyzed based on the Area of

Interest (AOI). People divert their attention away from the previous fixation to an-

other, which reflects the changes in mental concentration through AOI. By mapping

fixations with the AOI, it is possible to obtain a statistical description of key gaze

parameters, including the fixation duration, fixation counts, and saccade counts. In

transportation-related studies, road center is a frequently used AOI (Wang, Reimer,

et al. 2014). The percentage of fixations in the road center AOI is referred to as the

percentage of road center (PRC) feature (Guo, Jiang, and I. Kim 2020). PRC has

been shown to increase with elevated cognitive demand (Engström, Johansson, and

Östlund 2005).

For bicycle-related studies, eye-tracking behaviors have been analyzed in several real-
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world experiments. In a naturalistic study from Germany, 20 participants cycled at

five defined test locations while wearing a mobile eye-tracking system. The outcome

shows that spatially open locations are related to a higher level of perceived risk,

and more cycling experience and greater familiarity with a location may lead to a

more foresighted and focused gaze behavior (Stülpnagel 2020). Another naturalistic

study in Italy investigated bicyclists’ eye gaze behavior at signalized intersections.

They collected this data through a mobile eye tracker from 16 participants in a 3-

kilometer corridor. The results show that intersections that force bicyclists to merge

with vehicle traffic yield notable differences in features of gaze behavior. For instance,

when approaching intersections, the moment of the first fixation on the traffic lights

occurs earlier for the case of no bike lane as compared to the case with a separate bike

lane. Additionally, for inexperienced cyclists, intersections without a separate bike

lane were associated with an increase in gaze variability and looking around (Rupi

and Krizek 2019). The latest virtual reality headsets, such as the HTC VIVE Pro

Eye, have integrated eye-tracking features, allowing IVE researchers to incorporate

eye-tracking analysis within their studies. To our knowledge, no previous research

has studied bicyclists’ gaze behaviors in IVE with bicycle simulators.

2.3.2 Heart Rate

Electrocardiography (ECG) is a well-established method to record the electrical ac-

tivity of the heart. A participant’s heart rate (HR) and heart rate variability (HRV)

can be measured using an ECG signal. Studies in different areas have used HR

measures to analyze different human states in response to changes within an environ-

ment. While in medical applications HR is generally retrieved through devices such

as Electrocardiography(ECG), wearable-based devices (e.g., smartwatches) generally
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use photoplethysmogram (PPG) technology. ECG measures the electrical activity

of the heart through the application of contact electrodes, while PPG records the

blood volume in veins using infrared technology. The blood volume measurement is

then used to estimate the HR (i.e., beats per minute), and HRV (Lohani, Payne, and

Strayer 2019; Tavakoli, Kumar, Guo, et al. 2021; Tavakoli, Boukhechba, and Heydar-

ian 2021). HRV features are a set of signal properties that are calculated based on

the beat-to-beat intervals in a person’s HR, such as the root mean squared of the suc-

cessive intervals (RMSSD) (Tavakoli, Boukhechba, and Heydarian 2020; H.-G. Kim

et al. 2018). Both HR and HRV metrics are used in the literature for understanding

the human state. In general, studies have shown that an increase in stress level is

associated with an increase in HR, and a decrease in RMSSD features (Tavakoli, Ku-

mar, Guo, et al. 2021; H.-G. Kim et al. 2018; Napoli et al. 2018). More specifically,

in bicycling studies, an association has been found between perceptions of risk and

HR (Doorley et al. 2015; Fitch, Sharpnack, and S. L. Handy 2020). For instance,

a naturalistic study in Ireland showed that situations bicyclists perceive to be risky

are likely to elicit higher HR responses. This study also found that busy roads and

roundabouts without bike lanes were perceived as more dangerous compared to roads

where cyclists are separated from traffic (Doorley et al. 2015).

2.3.3 Body Position

Body position influences leg kinematics and muscle recruitment for cyclists (A. R.

Chapman et al. 2008). Some professional sensors can be used to build 3D body

tracking by implementing multiple on-body receivers to study pedestrians’ dynamics

of indoor activity (Correa et al. 2016).
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Recent development in computer vision has greatly reduced the cost of obtaining body

movement data. For example, the OpenPose, an open-source real-time multi-person

system, can jointly detect the human body, hand, facial, and feet key points on single

2D images (Z. Cao et al. 2017).

2.3.4 Electrodermal Activity (EDA)/ Galvanic skin response

(GSR)

Electrodermal Activity (EDA) /Galvanic skin response (GSR) is the measurement of

changes in the electrical conductivity of the skin. Sweat level is a physiological signal

that indicates sympathetic nervous system activity. With an increased stress level,

sympathetic nervous system activity increases, resulting in increased sweat gland

activity. Higher EDA is indicative of physiological arousal due to increased stress

levels. EDA is also sensitive to respiration and mental effort(Dawson, Schell, and Fil-

ion 2017). The main metrics of EDA include skin conductance level (SCL) and skin

conductance response (SCR). SCL/SCR is higher during increased workload in dual-

task relative to single-task driving, Higher SCL could also be indicative of lower levels

of trust in the autonomous vehicles(Barnard and P. Chapman 2018). In the pedes-

trian movement experiment, a relationship between SCR amplitude and interpersonal

distances is observed for quantitative measurement of social repulsive force(Zhao et

al. 2019). EDA signals, after saliency detection analysis, are also feasible to evaluate

built environments(J. Kim, Yadav, Chaspari, et al. 2020b). EDA is sensitive to many

factors; therefore, we should be cautious when using EDA to interpret the findings.

The experiments should be carefully designed for different control groups.
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Table 2.1: IVE bicyclist simulator literature table. -: not included or not specified
in the paper; ✓: included in the paper. Visual Technology: Subject viewed a
single screen/multiple screens or CAVE/head-mounted display(HMD) as the visual
source; Agency of Movement: Stationary - subject remained motionless or inter-
acted via controller; Dummy - The subject was on a stationary bike but movements
were not translated into VR; Real-time - subject movements were translated in VR.
Sound: whether sound feedback was used. Haptic: Interaction with the environ-
ment through, vibration, resistance, etc. Kinematic: speed, steering, and direction
data. Movement: body or head movements.

Report Information Level of Immersion Data Reported

Author & Year Laboratory or Affiliation Simulator Environment Setting Visual Technology Agency of Movement Sound Haptic
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(Van Veen et al. 1998 Max-Planck-lnstitute for Biological Cybernetics Real-world (Tübingen, Germany) Single Screen + HMD Real-time - ✓ - ✓ - - - -
(Kwon et al. 2001 KAIST Bicycle Simulator Real-world (KAIST Campus, Korea) Single Screen + HMD Real-time - ✓ - ✓ ✓ - - -
(Nikolas et al. 2016 Hank Virtual Environments Lab Simulation CAVE Real-time ✓ ✓ 63 ✓ - - - ✓

(O’Hern, Oxley, and Stevenson 2017 Monash University Accident Research Centre Real-world (Monash University) HMD Dummy - - 30 ✓ - - - ✓
(Xu, Lin, and Schmidt 2017 Intelligent Human Machine Systems Lab Simulation HMD Stationary - - 30 ✓ - - - ✓

(Kwigizile et al. 2017 Western Michigan University Real-world (Western Michigan University Campus) HMD Real-time - ✓ 36 ✓ - - ✓ ✓
(O. Lee et al. 2017 Delft University of Technology - HMD Real-time - - - ✓ - - - -

(Stroh 2017 University of Iowa - CAVE Real-time - - - ✓ - - - -
(Keler et al. 2018 Technical University Munich Real-world (Munich, Germany) Single Screen + HMD Real-time - - - ✓ - - - -

(Sun and Qing 2018 ZouSim, University of Missouri Real-world (Columbia, Missouri) CAVE + HMD Real-time - ✓ - ✓ - - - -
(Nazemi, Eggermond, Erath, Schaffner, et al. 2018 Future Cities Laboratory - HMD Dummy - - - - - - - -

(Abadi, Hurwitz, et al. 2019 Oregon State University - Single Screen Real-time ✓ - 48 - - - - ✓
(Shoman and Imine 2020 IFSTTAR - CAVE Real-time - ✓ 10 ✓ - - - ✓

Current study ORCL, University of Virginia Real-world (Charlottesville, Virginia) HMD Real-time ✓ ✓ - ✓ ✓ ✓ ✓ ✓

2.4 Summary of IVE simulators and data collec-

tion

To summarize existing literature in this area, we have categorized past IVE bike

simulator studies with their IVE settings and data collection methods. Table 2.1 has

been developed to better illustrate how the trends in technology, immersion, collected

data, and analysis of cyclist research have changed over the last two decades. Note

that for studies from the same research group, only the latest work is included.

2.5 Cyclist Distraction

As mentioned before, we categorize cyclist distraction into three main types: Visual

(taking the eyes off the road), Manual(taking the hands off the handlebar), and

Cognitive (taking the mind off cycling). Recently distracted cycling due to the use of
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portable electronic devices has emerged which poses safety issues. Unlike distracted

cycling, a large number of studies have focused on the effect of using mobile devices

while driving, including reduced awareness of drivers’ surroundings, increased reaction

and braking times, increased incidences of collision, reduced vehicle speed, greater

following variability, greater lateral variability, and reduced response time to the lead

vehicle (Caird et al. 2008; Drews et al. 2009; Mwakalonge, White, and Siuhi 2014).

Cyclists, much like drivers, also engage in secondary task activities while cycling such

as listening to music, taking a photo or video, talking with other cyclists, writing text

messages, or accessing social media (Terzano 2013; Wolfe et al. 2016; Young et al.

2020). The current state of knowledge on cyclist distraction is mostly retrieved from

surveys or observational studies. For example, an observational study in New York

City shows that headphone use is the most prevalent distraction among local cyclists

(Ethan et al. 2016). However, observational studies are unable to track cyclists’

physiological changes and get the details of secondary tasks (e.g., headphone use can

be either music listening or talking on the phone). Surveys from different areas around

the world have been collected to study cyclists’ distracted behavior, listening to music

or talking with earphones have been identified as the most prevalent distractions

(Terzano 2013; Wolfe et al. 2016; Young et al. 2020). The limitation of the surveys,

as discussed before, is the hypothetical bias, which undermines the realism of cyclists’

behavioral responses. Cyclist distraction study in the IVE simulator can be a solution

yet there are very limited existing studies.

The most frequent secondary tasks, both listening to music and talking with ear-

phones can be categorized as the cognitive distraction. One of the main challenges

in the quantitative analysis of cognitive distraction is the difficulty in measuring the

workload needed for certain tasks. To understand the mechanism of distraction, a
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standardized secondary task with different levels of workload is required in the ex-

perimental study. To our knowledge, no prior studies have applied such methods

for cyclist distraction. In other research fields, several standardized secondary tasks

have been developed to simulate different levels of workload. For instance, the N-

back task requires subjects to recognize items that have been presented in n-steps

before. Since subjects must memorize the sequence of items in order to discover those

repetitions that span multiple items, the task has strong validity for being a working

memory task (Coulacoglou and Saklofske 2017). Depending on the type of stimulus,

the N-back task can be either visual or cognitive, or a mixture of both. For visual

distraction, more secondary tasks, like the Surrogate Reference task and Color Block

Task are developed for different levels of visual secondary tasks to simulate visual

distraction (Standardization 2016; Wang, Guo, et al. 2016).
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Chapter 3

ORCLSim: A System Architecture

for Studying Bicyclist and

Pedestrian Physiological Behavior

Through Immersive Virtual

Environments

3.1 Introduction

Over the past couple of decades, the evaluation of roadway safety and design has been

automobile-centric. Many observational, survey-based, naturalistic, and experimen-

tal studies have been conducted to evaluate the impact of roadway design features on

drivers’ behaviors and safety, leaving out other roadway users such as bicyclists and

pedestrians. Furthermore, recent studies have highlighted the growth in the number

of injuries and fatalities for vulnerable road users (National Highway Traffic Safety

Administration 2020). National Highway Traffic Safety Administration (NHTSA) re-

ported a 35% increase in pedestrian fatalities nationwide in the past ten years, and

deaths of bicyclists in the United States reached all-time highs in 2018 and 2019.
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These reports also indicate that although the overall number of vehicle crash fatal-

ities is decreasing (which includes vehicle and non-vehicle related), the proportion

of vulnerable road users (motorcyclists, pedestrians, pedal cyclists, and other non-

occupants in the vehicle) fatalities has been increasing from 20% in 1996 to 34% in

2019 (Administration et al. 2020). These trends indicate that the design of our road-

ways needs to be improved to be more inclusive for all users, especially for vulnerable

road users such as bicyclists and pedestrians (Rodriguez-Valencia et al. 2021).

Different factors, such as the speed limit, roadway design, and presence of large ve-

hicles (e.g., trucks) have been shown to be associated with severe injury or fatality

of bicyclists (P. Chen and Shen 2016). Additionally, the presence of intersections,

traffic volumes, noise level, and physical segregation between bicyclists and vehicles

have been shown to influence bicyclists’ stress or comfort level (Teixeira et al. 2020;

Rybarczyk et al. 2020; Cobb, Jashami, and Hurwitz 2021). Similarly, for pedestrians’

safety, similar factors as bicyclists’ are emphasized by researchers: pedestrian infras-

tructure, roadway design, traffic volumes, vehicle speed, and visibility of the road

environment (Stoker et al. 2015). It is also found that bicycle paths, crossing surface

material, street type, as well as the presence of nearby parked vehicles are associated

with the number of pedestrian–vehicle conflicts from a naturalistic observation study

(Cloutier et al. 2017).

To better inform roadway design, extensive datasets similar to the automobile-focused

studies of the past are needed for bicyclists and pedestrians. To develop robust bicy-

clist and pedestrians-focused datasets, studies with both high ecological and internal

validity are needed. Ecological validity refers to the extent an experimental environ-

ment matches with the real world, increasing the chances that the effects identified

in an experimental environment generalize to real-world settings. Internal validity
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refers to the extent to which a cause-effect relationship is warranted in a study. Sub-

jective, naturalistic, and experimental datasets can be utilized to tackle these issues.

Subjective studies, such as surveys, provide measures of users and their perceptions

of their environment but lack ecological and internal validity (Wynne, Beanland, and

Salmon 2019). On the other hand, naturalistic studies can provide information about

realistic changes within the environment and bicyclist and pedestrian behavior with

high ecological validity, but these studies with lower internal validity are resource-

and time-extensive and have potential risks of injuries and fatalities for participants.

For example, a study in real traffic examining the glance behavior of teenage cyclists

while listening to music was terminated when the results indicated that a substan-

tial percentage of participants cycling with music decreased their visual performance

(Stelling-Konczak et al. 2018). Furthermore, naturalistic studies are influenced by

many environmental factors that restrict the ability to fully isolate and understand

the impact of independent variables, thus offering low internal validity, especially

for physiological and behavioral factors (Fitch, Sharpnack, and S. L. Handy 2020;

Teixeira et al. 2020). Thus far, the majority of bicyclist and pedestrian studies rely

on subjective and naturalistic data derived from real-world settings to assess partic-

ipants’ behavior and comfort in different traffic environments (Paridon et al. 2019;

Shaaban, Muley, and Mohammed 2018).

Experimental studies provide an opportunity to evaluate the impact of safety-related

conditions, infrastructure, and technology on bicyclists and pedestrians as they can

offer the ecological validity lacking in subjective studies and allow the researchers to

control for external variables, unlike naturalistic studies, for greater internal validity.

Experimental studies conducted with virtual simulators can minimize the hypothet-

ical bias of subjective surveys while offering a controlled, low-risk, and immersive
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environment that real-world experiments cannot guarantee. The benefit of an Im-

mersive Virtual Environment (IVE) is achieving high internal and ecological validity

while also being cost-effective, and offering complete experimental control to replicate

trials (Heydarian, Carneiro, et al. 2015; Heydarian and Becerik-Gerber 2017). Early

IVE lacked realism, which was primarily due to a lack of technological capability.

Fortunately, IVE software and hardware platforms have significantly improved over

the last few years with the release of high-end, commercially available head-mounted

displays (HMD), and graphics cards capable of rendering highly detailed environ-

ments. Meanwhile, real-life components can also be integrated into IVE studies. For

instance, we can now integrate a physical bicycle along with haptic feedback with

an IVE to create a more immersive setting for participants (Guo, Robartes, et al.

2021). Furthermore, as the level of immersion increases, we can expand these ex-

periments to capture participants’ physiological and psychological factors, which is a

field of data that has historically been overlooked. Such data provides insights into

how participants’ behaviors and perceptions may change in contextual settings in

different research fields (J. Kim, Yadav, Ahn, et al. 2019; G. Lee et al. 2020; Adami

et al. 2021; Noghabaei, K. Han, and Albert 2021; Sharif and Oppenheimer 2021). For

example, pedestrians’ distinct physiological responses (gait patterns, heart rate, and

electrodermal activity) to negative environmental stimuli are reported from natural-

istic ambulatory settings in a building (J. Kim, Yadav, Chaspari, et al. 2020a). With

the increase of realism in IVE simulators and the development of low-cost ubiquitous

sensors, IVE simulators have become promising tools for conducting highly realistic

and immersive experimental studies (Ergan et al. 2019). In traffic safety studies,

driving simulators have been widely applied to study drivers’ behaviors, awareness

(Soares, Ferreira, and Couto 2020), and psychophysiological states with multimodal

data collection systems, such as eye trackers, electroencephalogram (EEG) and elec-
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trocardiogram (ECG) (Haufe et al. 2011; Akbar et al. 2017; Guo, Cui, et al. 2019;

Baee et al. 2021). Some of the driver-related studies are conducted in IVE (Eudave

and Valencia 2017). Meanwhile, for bicyclists and pedestrians, only a few studies

have applied physiological responses in IVE simulators. For example, bicyclists’ gal-

vanic skin response had fewer peaks with a bike lane than with no bike lane condition

(Cobb, Jashami, and Hurwitz 2021). In another cycling virtual reality study, elec-

troencephalography (EEG) data shows its potential in a hybrid model framework as

an indicator of the perceived risk of bicyclists (Bogacz, Hess, Calastri, Choudhury,

Mushtaq, et al. 2021). For pedestrians, it is notable that older pedestrians spent more

time focusing on the central area of the scene and even less so in the last five seconds

before making the crossing decision in an IVE study (Tapiro et al. 2016).

In this study, we propose an IVE-based framework (ORCLSim) for supporting pedes-

trian and bicyclist research. The proposed framework integrates realistic visualiza-

tions from the real world in IVE along with a physical bicycle and a suite of passive

sensing technologies, which enable the collection of physiological and behavioral re-

sponses of users. The goals of this paper are to: 1. identify research methods, trends,

and gaps in knowledge related to bicyclist and pedestrian research in IVE; 2. present

a novel framework for evaluating bicyclist and pedestrian behavioral changes through

integrating human physiological sensing within IVE; 3. present a set of case studies to

highlight how the proposed framework could be implemented to collect and analyze

bicyclist and pedestrians’ behavioral and physiological changes in different roadway

conditions and designs.
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3.2 Methodology

To address the existing knowledge gaps identified in the previous section, we intro-

duce a new IVE-based framework - ORCLSim - where we can evaluate participants’

behavioral and physiological responses in different simulated environments. This sec-

tion provides details on the devices and processing techniques utilized in the proposed

framework. To collect the multimodal data desired, multiple components are required

to work in synchronicity within the IVE. The ORCLSim system architecture is shown

in Figure 3.1, detailing all of the technology, software, communications network, and

associated data flow. The details of the system framework will be discussed in this

section.

3.2.1 Environment and Design Context

The IVE is developed based on a real-world location: the Water Street corridor

in Charlottesville, Virginia. Water Street is well-trafficked by bicyclists, and has

been identified by the Virginia Department of Transportation as a high-risk site for

pedestrians, and is being considered for redesign by the city of Charlottesville as

shown in Figure 3.2. The section of the corridor chosen for this experiment consists

of four city blocks, with a 4% eastbound downhill in one of the road segments (road

segment 1 in Figure ??d), shared lane markings for bicycles in the east and westbound

directions, a traffic signal at the intersection of East Water Street and 2nd Street SE,

and a parking lane in the westbound direction. The IVE was developed on a one-

to-one scale of the Water Street corridor based on technical drawings provided by

the City of Charlottesville and in-field measurements (Figure 3.1-1). The textures -

graphical images/skins laid atop 3D models to represent surface detail - used within
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Figure 3.1: System architecture of ORCLSim framework. Design context: 1) Road
geometry information from Google Maps; 2) Road texture from real-world measure-
ment; 3) Vehicle modeling and traffic simulation in Unity; 4) Buildings modeling
from 3DMax. IVE Platform: 5) Unity: 3D gaming engine; 6) SteamVR: integrat-
ing hardware with Unity. Simulator Setup: 7) Wahoo Kickr Climb: physical grade
changes; 8) Wahoo Kickr headwind: headwind simulation by speed; 9) Wahoo Kickr
Smart Trainer + ANT+: biking dynamics simulation; 10) Trek Verve physical bike;
11) HTC VIVE Pro Eye: VR headset with eye-tracking; 12) Controllers: steering
and braking of the bike and pedestrian’s interactions with the environment. Data
Collection: 13) C# scripts in Unity to record: 14) Position, 15) Cycling performance
and 16) Pedestrian’s interactions (touch, click or press); 17) TobiiPro Unity API col-
lects: 18) Eye tracking data; 19) OBS studio: records room videos and VR videos
simultaneously as shown in 20); 21) Android smartwatch collects: 22) Heart rate and
23) hand acceleration data. Data Preprocessing: 24) Opencv: video and image pro-
cessing; 25) Openpose: pose data extraction from videos; 26) Python: data cleaning,
management and analysis; 27) Amazon S3: smartwatch data on the cloud
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Figure 3.2: Comparison between (a) the real environment street map and (b) the
IVE, (c) the map for the location of the real world environment, (d) profile of road
geometry
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the IVE were custom-made from high-resolution images taken on-site of the real-world

surfaces appearing in the IVE so that all colors and surface details within the IVE

represented the same of those in the real-world environment (Figure 3.1-2). Figure

3.2 (a) and (b) present the comparison between the real environment and the IVE

created in Unity.

Real-world observations were conducted by installing four MioVision Scout cameras

at the intersections of 2nd St SW, 1st St S, and 2nd St SE along Water St. The

cameras captured video footage for two time periods: Tuesday 12 am to Thursday

11:59 pm on August 27-29 and September 3-5, 2019. Midweek days were chosen to

avoid any abnormal fluctuations in traffic typically seen on Mondays and Fridays.

Vehicle traffic within the IVE is generated based on the observed vehicle traffic dur-

ing these periods. A cumulative distribution function (CDF) was developed for the

observed headway gaps between vehicles in both directions of traffic. The resulting

CDF was used to generate multiple, randomly weighted theoretical gap observations.

The order of presentation of the gaps from the resulting theoretical distribution was

randomized during each experiment to avoid any bias toward gap sizes or learning

effects. Furthermore, four different car models were used within the IVE, and each

car model was randomly chosen each time for vehicles generated within the IVE to

further limit subject bias towards certain vehicles or learning effects (Figure 3.1-3).

The buildings in the IVE are modeled individually in 3DMax and then imported into

Unity (Figure 3.1-4). With all these methods aforementioned, we aim to maximize

the immersion of the IVE.
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3.2.2 IVE platforms

The IVE used in this framework is developed in Unity 3D game engine 2018 and

runs through the SteamVR platform. High-end computing equipment is chosen so

that development and testing would not be limited by computational performance.

Two high-performance, factory overclocked Nvidia 1080Ti graphics cards run through

Scalable Link Interface, an Intel Core i9-7920X CPU, 64 GB of DDR4 RAM at

clock speeds of 3600MHz, and M.2 Solid State Hard Drives are installed in the lab

computer to assure that environment rendering and stability, data collection speed,

and information exchanges would not bottleneck at any component within the system

while running SteamVR and Unity.

3.2.3 Simulator setup

This section will discuss the hardware components chosen for both simulators. Figure

3.3 demonstrates the appearances of both simulators. HTC Vive Pro VR headsets

(Figure 3.1-11) with their accompanying controllers (Figure 3.1-12) are equipped in

our simulators. The HTC Vive Pro is capable of running high resolutions (1440 x 1600

pixels per eye) and frame rates (90Hz), provides a wide field of view (110 degrees),

has motion tracking and gaze tracking capabilities, and is compatible with SteamVR.

Controllers can be used differently in bicyclist and pedestrian studies. For bicyclists,

the spatial location of the controllers allows the system to detect turning movements.

The braking action can be recognized by the squeezing value of the trigger keys on

the controllers. For pedestrian studies, controllers can help the user to interact with

objects in the virtual environment, as an extension of their hands.
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Figure 3.3: Appearance of the simulators, (a) Bicycle simulator; (b) Pedestrian sim-
ulator

Bicycle Specific Equipment

The following equipment has been specifically chosen for the bicyclist simulator:

• Wahoo Kickr Smart Trainer (Figure 3.1-9) - Power measurement system of

+/- 2% for accurate, realistic resistance feedback. It has adaptive, real-time

resistance based on road grade.

• Wahoo Kickr Climb (Figure 3.1-7) - Adaptive, real-time indoor bicycle grade

simulator attached to the front fork of the bicycle that accurately raises or lowers

the front end of the bicycle based on road grade. It is capable of simulating

roadway grade in a range of -10% to +20%.

• Wahoo Kickr Headwind (Figure 3.1-8) - It provides an adaptive, real-time vari-

able speed vortex fan capable of reaching wind speeds experienced by bicyclists

on the road, providing tactile feedback based on bicyclist speed.

• ANT+ (Figure 3.1-9) - Wireless protocol used for communications between the

Wahoo training equipment and desktop computer, capable of sending controller

information between the two devices regarding speed, resistance, grade, and

wind speed.
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The Wahoo equipment collects the data necessary for research studies and provides

haptic feedback to the users. Critically, through the use of ANT+ and a Unity asset,

the Wahoo equipment is compatible with the computer hardware and environment

software used in the simulators. An average physical Trek Verve bike (Figure 3.1-10)

is adapted as the main body structure of the bicycle simulator.

Pedestrian Specific Equipment

The HTC Vive Pro Eye headsets have been equipped with the HTC Vive Pro Wireless

Adapters, which support a 6 x 6 m space for accurate tracking and operating on

wireless communication. This HTC Wireless Adapter is chosen to meet the goals of

the simulator as it eliminates the impact that wires hanging from the back of the

headsets have on the users’ ability to move around without getting tangled.

3.2.4 Data Collection

In this section, we will introduce details about the collected data from different data

sources, including the data type and the frequency of data collection. Specifically,

we first discuss the data streams exported from the Unity software, followed by the

eye-tracking data points, and information extracted from the video recordings and

smartwatches, as shown in Figure 3.1.

Unity

With the attached scripts written in C# programming language to the Unity scenario

(Figure 3.1-13), we can extract the world position (in meters) and direction (unit

vector) of each object in the virtual environment, including headset, controllers and
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other virtual objects such as vehicles. This data can decipher where the users are in

the environment and their relative positions to other objects. The scripts also collect

any input from the controllers. For example, the pulled trigger values (0 to 1) are

the brake for the bike simulator. The frequency of Unity is generally around 30Hz.

Additionally, the system timestamp is attached to the final Unity output data for

time synchronization.

Eye tracking

The eye tracking features of HTC VIVE Eye Pro in Unity are from the integrated Tobii

Pro eye tracker. The raw data extracted from the headset can be processed to track

and analyze the eye movement, attention, and focus level of each participant. Details

of the utilized eye tracking system, sample environment, and the code to extract the

different data streams have been shared online (Guo 2021). The eye-tracking data is

collected through Tobii Pro Unity SDK (Figure 3.1-17). It is integrated into Unity

with C# scripts, and the data collection starts simultaneously with the running of

the Unity scenes. The system timestamp is attached to the final output data. The

output of Tobii Pro raw data is the 3D gaze direction, gaze origin, and pupil diameter.

Pre-processing techniques are required to relate the eye tracker’s coordinate system

to the headset’s position in a virtual 3D world (such as Unity). The frequency of eye

tracking data is 120Hz.

Video Recording

The video recording system has three components: two video recordings from cam-

eras capturing the body position of the participant and one screen recording of the
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participant’s point of view in IVE. These videos are recorded simultaneously in OBS

studio (Figure 3.1-19) with the same frequency (30Hz), resolution (1080p, 1920 ×

1080), and system timestamp.

Smartwatch

Experiment participants wear two android smartwatches ( (Figure 3.1-21, one for

each wrist) that are equipped with the “SWEAR” app for collecting longitudinal

data. The SWEAR app records heart rate (1 Hz), hand acceleration (10 Hz), audio

amplitude (noise level, 1/60 Hz), and gyroscope (10 Hz) (Boukhechba and Barnes

2020). Both watches are connected to a smartphone via Bluetooth, and the smart-

phone and computer are on the same wifi network to make sure time is synchronized

with the server before each experiment. All data from the smartwatches are stored

on the local device and then uploaded to the Amazon S3 cloud (Figure 3.1-27) for

future data extraction and analysis.

3.2.5 Data Pre-processing

All the data collection devices and platforms (except for the smartwatches) are con-

nected to the local computer, allowing them to be synchronized with the computer’s

system time. Figure 3.4 shows the visualization of all the data collected in the simu-

lator after time synchronization.

Information about each video source (frames per second, creation date, duration,

height, and width) can be extracted from the singular video and be split into separate

videos for each source (cameras 1 and 2) through the Opencv software (Figure 3.1-24).

Two external video cameras in the lab capture each participant’s body movement



37

during the experiment. These recordings can be used to understand participants’

movements and reactions. Furthermore, the body position data can be extracted

from these videos using the OpenPose software (Figure 3.1-25). Figure 3.4(a) and

(b) show the body position detection of the video recordings from OpenPose. Used

in conjunction with the motion tracking of the VR headset and controllers, this

video footage can help determine how participants react to their environments during

experimentation for better behavioral analysis and event detection.

Combining the raw gaze direction from the eye tracking data with the video informa-

tion of the point-of-view videos, it is possible to transform the 3D gaze direction into

2D videos to visualize what the participants are looking at in the IVE. As shown in

Figure 3.4(d), the green and blue dots represent the direction left and right eyes are

looking, respectively.

Data from the smartwatches are stored locally in the device during the experiment

and then uploaded to the Amazon S3 cloud storage. After the experiment, the data

can be downloaded for further analysis.

All the text data are transformed to .csv format for easier integration. All the physi-

ological data are labeled corresponding to different road segments based on the time

and position data from the unity output, where the road geometry information comes

from.

3.2.6 Data Analysis

In this section, we discuss the change point detection algorithm applied to the HR

as well as the gaze entropy, which is the basis of the event detection in our study.

First, we discuss how the Bayesian change point (BCP) detection is applied to the
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HR data. Similarly, for the gaze data, we discuss how gaze entropy can be calculated

and used to identify the dispersion of gaze.

Bayesian Change Point Detection

Bayesian Change Point (BCP) detection methods are applied to detect abrupt changes

in HR data. Change point analysis deals with time series data where certain char-

acteristics undergo occasional changes. It is assumed that there is an underlying

sequence of parameters partitioned into contiguous blocks of equal parameter values:

the beginning of each block is a change point. Observations are then assumed to be

independent in different blocks given the sequence of parameters (Barry and Harti-

gan 1993). A Bayesian approach to the change point problem can give uncertainty

estimates not only for location but also for the number of change points.

Suppose we have a time series of HR data X, and we use ρ = (U1, ..., Un) to indicate

a partition of the time series into non-overlapping HR regimes where Ui = 1 means

a change point happens at position i+1. To calculate the posterior distribution over

partitions, we use the Markov Chain Monte Carlo (MCMC) method. We define a

Markov Chain with the following transition rule: with probability pi, a new change

point at the location i is introduced. In each step of the Markov Chain, at each

position i, a value of Ui is drawn from the conditional distribution of Ui given the

data X and the current partition ρ. let b denote the number of blocks obtained if Ui

= 0, conditional on Uj , for i ̸= j. The transition probability p, for the conditional

probability of a change point at the position i + 1, can be obtained from equation

(3.1) (Barry and Hartigan 1993; Erdman and Emerson 2007):
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pi
1− pi

=
p(Ui = 1|X,Uj, j ̸= i)

p(Ui = 0|X,Uj, j ̸= i)

=

∫ γ

0
pb(1− p)n−b−1dp∫ γ

0
pb−1(1− p)n−bdp

∫ λ

0
wb/2

(W1+B1w)(n−1)/2dw∫ λ

0
w(b−1)/2

(W0+B0w)(n−1)/2dw

(3.1)

Here B0,W0, and B1,W1 are the within and between block sums of squares obtained

when Ui = 0 (with change point at location i) and Ui = 1 (without change point

at location i), respectively. The two tuning parameters γ and λ can be calculated

with MCMC. We use bcp package in R (Erdman and Emerson 2007) to implement

the change point analysis. A similar approach has been utilized in a previous study

to identify changes in driver’s HR data in different roadway conditions (Tavakoli,

Kumar, Guo, et al. 2021). The BCP output is time series data of the probability of

change points.

Gaze entropy

Gaze entropy is a comprehensive measurement of visual scanning efficiency. The

concept of entropy originates from information theory (Shannon 1948). It is only in

recent years that entropy has gained growing attention from researchers attempting to

quantitatively examine gaze behavior in naturalistic settings. By Shannon’s equation

of entropy and conditional entropy (Shannon 1948), there are two types of gaze entropy

measures: stationary gaze entropy (SGE) and gaze transition entropy (GTE) (B.

Shiferaw, Downey, and Crewther 2019). SGE measures overall predictability for

fixation locations, which indicates the level of gaze dispersion during a given viewing
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period (Holmqvist et al. 2011). The SGE is calculated using Shannon’s equation:

Hs(x) = −
n∑

i=1

(pi)log2(pi) (3.2)

Here Hs(x) is the value of SGE for a sequence of data x with length n, i is the index

for each state, pi is the proportion of each state within x, it is assumed that fixation

is an individual output of the gaze control system that makes spatial predictions

regarding the location of subsequent fixations (B. Shiferaw, Downey, and Crewther

2019).

Gaze transition entropy (GTE) is conducted by applying the conditional entropy

equation to 1st-order Markov transitions of fixations with the following equation:

Hc(x) = −
n∑

i=1

(pi)
n∑

i=1

p(i, j)log2p(i, j) (3.3)

Here Hc(x) is the value of GTE, pi is the stationary distribution, same as equation

(3.2), and p(i, j) is the probability of transitioning from i to j. GTE provides an overall

estimation for the level of complexity or randomness in the pattern of visual scanning

relative to the overall spatial dispersion of gaze, where higher entropy suggests less

predictability.

Specifically, to calculate the SGE and GTE, the visual field is divided into spatial

bins of discrete state spaces to generate probability distributions. In this study, the

fixation coordinates were divided into spatial bins of 100 × 100 pixels, followed by

a previous study (B. A. Shiferaw et al. 2018). To get the trend of gaze entropy, it

is calculated in a rolling window of five seconds (600 data points in raw gaze data

streams). We also apply the BCP methods to calculate the change points in the two
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Figure 3.4: Example of data visualization output. (a,b) Video data from two cameras
with body position detection; (c) position and controllers input data in VR ; (d) Field
of view VR video recording with gaze mapping, green/blue dots indicate left/right
eye fixation; (e) Eye tracking data, includes gaze direction and pupil diameter; (f)
Heart rate and hand acceleration data from smart watch

gaze entropy values.

3.3 Case Studies

In this section, we present two case studies (one for bicyclists and one for pedestrians)

from a pilot study of five participants to evaluate the proposed framework and high-

light the importance of collecting physiological data, speed, and position data from

participants. Using HR data, we demonstrate the relationship between the number

of changes in HR data and the corresponding time frames with the changes in the

environment (e.g., bicyclist arriving to an intersection) and/or the participant behav-

iors (e.g., when the pedestrian is ready to cross the street). The tasks in the IVE

are different for each user type (bicyclists and pedestrians) in the case study. The

bicyclists were asked to cycle eastbound along the corridor, as indicated by Figure

3.2. The pedestrian task was to cross the street using the crosswalk at intersection 2
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whenever they felt it was safe to do so. More details about the bicyclists experiment

can be found in our previous study (Guo, Robartes, et al. 2021). Furthermore, we

show how the multimodal dataset can be utilized to detect pedestrians and bicyclists’

state changes. The sample dataset is publicly accessible online (Guo, Robartes, et al.

2021). We first identify where abrupt changes happen in the HR readings and then

identify the potential reasons behind the events that take place in a given time frame.

To achieve this, the videos are manually annotated to identify an event or behavioral

changes among participants. Then the timestamps of these event/behavior changes,

as well as other physiological responses are compared to the time that we observe HR

change points for each participant. Through this, we can show whether the effect of

HR changes is consistent across different groups of participants.

The other physiological variables selected in the case study are: head movement

direction, the position of the bicycle and pedestrian from Unity, gaze direction from

the eye tracker, and the gaze entropy and its BCP probability from the gaze direction.

3.3.1 Bicycle Pilot Study

In this experiment, after familiarization with the simulator and calibration for eye

tracking and steering in a training scenario, the participants were asked to cycle

eastbound in the simulated environment as indicated in Figure 3.2.

Figure 3.5 shows one participant’s physiological responses from the pilot bike exper-

iment. Using BCP, we are able to detect the moments when the underlying distri-

bution of HR data changes in a short period of time. Figure 3.5b shows the overall

time series of different physiological data. Figure 3.5b.I. shows the HR (blue) and the

probability of detected change point events (red) during the whole experiment. In
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Figure 3.5: Bicyclist’s HR change point analysis over time with other physiological
responses. (a). Video snapshot of HR change point event 1. The bicyclist is ap-
proaching the intersection; (b). Visualizations of different physiological data: I. HR
(blue) and HR BCP probability (red); II. horizontal head movement direction (black)
and horizontal gaze direction (green); III. stationary gaze entropy (SGE) (cyan) and
SGE BCP probability (red); IV. gaze transition entropy (GTE) (yellow) and GTE
BCP probability (red); (c).Video snapshot of HR change point event 2. The bicyclist
looked left behind to check if cars are approaching from behind.

addition to the HR data, Figure 3.5b.II. shows the head movement x (black) and gaze

direction x (green), and the head movement in the x-axis indicates the head facing

the direction from straight backward (-1) to straight forward (1). The gaze direction

x indicates the gaze direction from left (-1) to the right (1). Figure 3.5b.III. shows the

stationary gaze entropy (cyan) and BCP probability of SGE (red), Figure 3.5b.IV.

shows the gaze transition entropy (yellow) and BCP probability of SGE(red).

Figure 3.5a and c show the corresponding screenshots for the two HR change points

detected in Figure 3.5b-I. The first change point happens when the participant is

approaching the first intersection on the road which does not have any traffic signals;

at this time, the participant is also being passed by a vehicle on the left (Figure

3.5a). Meanwhile, the other physiological signals do not show abrupt changes except

for minor peaks in GTE as shown in Figure 3.5b-IV. The second HR change point

takes place when the participant is approaching the third intersection where there
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is a traffic signal. While crossing the intersection, a looking-around behavior is also

observed as shown in (Figure 3.5c). As a result, we observe changes in both horizontal

head and gaze direction (Figure 3.5b-II), a larger variance in SGE, and the change

points detected from the SGE data points (Figure 3.5b-III). Similarly, we observe

higher variance and more change points in GTE (Figure 3.5b-IV). Previous research

suggests an increase in SGE associated with a higher GTE may reflect the influence

of top-down interference on visual scanning, which results in a greater dispersion of

gaze (B. Shiferaw, Downey, and Crewther 2019). In other words, increased SGE

together with GTE indicates a higher visual or cognitive load in the experiment

scenario for this participant. This case study indicates that the HR and gaze changes

are sensitive to environmental changes as well as participant/bicyclist behaviors. It

is also important to note that specific contextual factors (e.g., an intersection with

or without a traffic signal) can trigger different physiological responses; therefore,

it is important to collect and monitor different physiological data when conducting

naturalistic or experimental studies of bicyclists.

To find the reason behind each event, all five of the participants’ video recordings in

the case study are manually analyzed. Figure 3.6 illustrates when the HR and gaze

(use GTE as an example) change points happen for each participant. For HR, almost

all the change points take place when participants are approaching an intersection

within a distance of 15 meters, except for Participant 2. When Participant 2 was

passed by a vehicle in intersection 2 with a very close lateral proximity, the HR went

up immediately (no other participant in the pilot study had a car pass by them as

closely). For gaze transition entropy, the change point generally happens earlier than

the HR change point but follows a similar trend as the HR. Although the sample

size is small, some of our observations from the case study include 1) among the
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Figure 3.6: Summary of where the HR (a) and gaze transition entropy (b) change
point happen for bicycle experiment. Each dot indicates an HR/GTE change point.
The x-axis indicates the participant number, the y-axis value is the distance to the
intersection, and where a negative value indicates the distance the change point hap-
pens before the participant arrives at the intersection. For example, participant 2,
has two HR change points at 15 meters prior to intersection 2 as well as 5 meters
after passing through that intersection (a). And participant 2 has one GTE change
point 6 meters prior to intersection 1.

five participants in the pilot study, there are more HR/GTE change points prior

to reaching the first intersection. As it is the first intersection in the experiment,

participants may feel more stress than when approaching other intersections, as they

became familiar with the environment. This implies that in the early portions of VR

experiments, participants still need some time to get adjusted to the IVE environment,

even after a training scenario before the actual experiment. 2) The change points

prior to intersections 2 and 3 take place farther from the intersections compared to

the change points detection prior to intersection 1. This could be explained by two

possible factors: first, the road segment after intersection 1 has a 4% downhill slope as

shown in Figure 3.2d, where the participants’ visibility of the road is limited until they

get close or pass the intersection. Second, the roadway environments for intersections

2 and 3 are more complex. Intersection 2 is at the end of the downhill road segment

and there is a lane shift after intersection 2, thus braking and right steering are needed
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Figure 3.7: Pedestrian’s HR change point analysis over time with other physiological
responses. (a). Video snapshot of HR change point event 1. The pedestrian noticed
the first approaching vehicle; (b). Visualizations of different physiological data: I.
HR (blue) and HR BCP probability (red); II. horizontal head movement direction
(black) and horizontal gaze direction (green); III. stationary gaze entropy (SGE)
(cyan) and SGE BCP probability (red); IV. gaze transition entropy (GTE) (yellow)
and GTE BCP probability (red); (c). Video snapshot of HR change point event
2. The pedestrian is crossing in the eastbound lane, just after taking a look at the
approaching vehicle in the lane.

before they enter intersection 2. Intersection 3, as indicated before, includes a traffic

signal. Although participants are told the signal will always be green during the

experiment, their physiological (HR and gaze entropy) data still showed a distinct

response at this intersection.

3.3.2 Pedestrian Pilot Study

The pedestrian pilot study is conducted at intersection 2 in the same IVEs 3.2 with

the pedestrian simulator, where participants can walk freely as they would in real life

to cross a crosswalk. As explained before, the eastbound lane has randomly-generated

vehicles with different gaps. At the beginning of the pilot study, participants are asked

to wait until the first vehicle passes before they can cross using the crosswalk. Once

the first car passes, whenever they feel safe, they may cross the road.
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Similar to the bicycle case study, we extract the physiological data with the HR

change point analysis results for one of the participants as shown in Figure 3.7. The

definition of the data is the same as the bicycle case study. The first change point

happened when the pedestrian noticed the first approaching vehicle, as indicated by

the red circle in Figure 3.7a. A larger variance in SGE (Figure 3.7b.III) and GTE

(Figure 3.7b.IV) is observed at the same time. An increase in SGE associated with

lower GTE is likely indicative of distraction (such as the first approaching vehicle in

this case). The second change point happened during the crossing in the eastbound

lane, just after the participant looks at the approaching vehicle in the lane (Figure

3.7c). During the change point event, only a larger variance in GTE (Figure 3.7b.IV)

is observed, while SGE remains at a low level (Figure 3.7b.III). A reduction in SGE

when GTE is increasing reflects top-down interference whereby the viewer focuses on

specific items within the visual scene. In this case, the participant is looking straight

to the other side of the road after the last look at the approaching vehicle in the lane,

trying to cross the crosswalk quickly. In addition, after the pedestrian starts crossing,

the range of horizontal head movement is smaller than before crossing (Figure 3.7b.II).

This indicates that once they make the decision to cross, they will not observe the

surroundings (e.g., incoming vehicles) as much as they do before crossing.

Table 3.1 shows the video annotation details for the pedestrian experiment. A total

number of 7 HR change points are identified across the participants. There are three

main categories within HR change points: two HR change points are detected when

participants noticed the first approaching vehicle, two HR change points are identified

when participants cross the crosswalk right after the first vehicle passes, and three HR

change points are detected when participants are crossing in the vehicle-approaching

(eastbound) lane. Similar to the bicycle pilot study, these change points correlate to
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the changes in the contextual setting, such as a vehicle approaching a crosswalk. These

findings indicate why it is important to collect participants’ physiological responses

when conducting pedestrian studies. Although our preliminary findings show there

exists a correlation between HR and gaze change points to the time that certain events

take place in the environment, analysis of a larger group of participants is needed to

verify the findings.

Table 3.1: Summary of pedestrian HR change point

Description of HR change point category Included Participants
Noticed the first approaching vehicle in the initial position 1,5

Start crossing after the first vehicle passed from the initial position 3,4
Crossing in eastbound lane after looking at the approaching vehicle 1,2,5

3.4 Discussion and Conclusion

In this paper, we have developed a system architecture (ORCLSim) for VR simulators

to capture physiological and behavioral changes in bicyclist and pedestrian studies.

Specifically, the aim of this study is to determine (1) what metrics and set of in-

formation are needed to monitor bicyclists and pedestrians’ behavioral changes, (2)

what devices are available, and how different hardware and software packages can be

integrated in IVEs to conduct similar studies, (3) how the multimodal data can be

processed for observing the changes in physiological responses given different contex-

tual settings, and (4) showcase how the proposed framework can be implemented by

presenting two case studies for bicyclists and pedestrians.

Previous studies on bicyclists’ and pedestrians’ responses to changes in contextual

settings highlight the advantages of controlled experimentation, especially in IVEs.

In this paper, we demonstrated that it is important to track physiological metrics
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to better understand how different settings may impact bicyclists and pedestrians.

Additionally, we showcased the importance of gaze tracking and heart rate data in

capturing the behavioral response to different events or roadway settings. These

measurements may indicate the impact of the stress levels as well as the cognitive

load on the participants. In the case study, our initial findings from the five par-

ticipants indicate that physiological data is sensitive to road environment changes

or real-time events, especially for the change in heart rate and gaze behavior. In

the presented framework, we use Bayesian Change Point (BCP) detection method

to detect abrupt changes in physiological data. First, we use the HR change point

to identify any potential events, then the video annotation results can help to get a

better understanding of the causes behind each event. The findings are further ver-

ified by two measurements of eye tracking data: stationary gaze entropy (SGE) and

gaze transition entropy (GTE). The dynamical changes in the eye tracking data also

support the observations from the video annotation. For the presented bicycle case

study, most change points happen prior to the intersections, while the eye tracking

change points usually happened earlier than the HR change points. The increased

SGE and GTE along with abrupt changes in HR indicate where the participants

feel stressed in the environment, which is observed to be at the beginning of the

experiment and when participants reach the intersection with a traffic signal. The

physiological changes in the pedestrian case study are indicative of critical behavior

during the crossing, such as observing the first approaching vehicle or the moment

before crossing. Furthermore, the differences between individual participants’ physi-

ological responses also emphasize the importance of building personalized models for

different groups of people. Although these preliminary findings are promising, we

need to further examine whether these change points are observed when the number

of participants is increased for both case studies.
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We have open-sourced the system set-up document, code example, and sample dataset

for the research community. The integration between the presented devices and soft-

ware platforms along with the data processing method provides the foundation to

support IVE experimental studies where we can identify the impact of different road-

way designs on bicyclist and pedestrian behavioral and psychological changes. This

presented system architecture can be used to study bicyclists’ and pedestrians’ be-

haviors that may be affected by their perception ability and cognitive state, which

may also be influenced by different road design conditions. Furthermore, it makes the

development of a VR simulator simpler and more robust since many of the modules

are flexible and scalable to different systems and improvements. For example, the

smartwatch system can be replaced by more recent and advanced wearable devices

that can collect different data streams; or the video recording systems can integrate

more event or activity detection through computer vision based techniques.

3.4.1 Limitations and Future Work

While useful in addressing many of the gaps in virtual simulation research, IVE has

some limitations. Many of the reports included in Table 2.1 indicate that portions of

their subject pool’s data had to be disregarded due to the motion sickness participants

experienced while in VR.

Furthermore, the removal of risk within the IVE may also be perceptible to par-

ticipants – IVE experimentation relies heavily on subject immersion and while the

environment may look, feel, and behave real, the knowledge that one is still in a

risk-free virtual space where physical injury is not possible still exists. It is up to

the realism of the IVE to suspend a subject’s disbelief in the environment sufficiently
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to overcome this knowledge, which varies from person to person. Additionally, a

subject’s familiarity with VR technology could have an impact on their behavior and

how they perceive the IVE - someone who has played multiple games within VR may

be aware that if they were to collide with an object, they would not physically be

affected.

With our system architecture ORCLSim, future IVE researchers can apply any phys-

iological data collection modules to their IVE simulators to study the vulnerable road

users’ behaviors, perception abilities, and cognitive states in different contextual set-

tings. Additionally, more physiological responses may be included in the system with

off-the-shelf sensors, such as Electrodermal activity (EDA) and Electromyography

(EMG). Future IVE can be improved to increase immersion and tackle more complex

research problems. A feature that would greatly improve the ease of development

of an IVE would be the integration of development platforms, such as Unity or Un-

real Engine, and commercially available transportation simulation software, such as

Synchro and Vissim. Through such integration, roadway segments, objects, vehicles,

vehicle behaviors, and traffic networks could be simulated more realistically and ro-

bustly within IVE. Furthermore, more robust platforms for integrating multiple users

into IVE would vastly improve immersion and realism. Instead of modeling vehicles

to interact with bicyclists and pedestrians, having another subject controlling a ve-

hicle via a driving simulator and interacting with a bicyclist and a pedestrian would

provide valuable insights into the interactions between road users, unlike anything

that has been done before.
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Chapter 4

Benchmarking the Use of

Immersive Virtual Bike Simulators

for Understanding Cyclist

Behaviors

4.1 Introduction

As a result of increasing numbers of single-track roadway travelers (e.g., bicycles,

scooters, etc.), roadway design complexities, and varying traffic densities, bicyclist

fatalities are rising, with deaths of pedal cyclists in the United States reaching 846

in 2019, close to the highest number of deaths in recorded history (National Highway

Traffic Safety Administration 2020). Many contextual factors such as roadway design,

physiological states, ambient lighting/noise level, traffic density, and cycling workload

(uphill/downhill physical effort) can significantly impact cyclists’ safety (Coyle et al.

1991; Zahabi et al. 2011).

However, there exists a lack of robust data sources on the safety and comfort of vulner-

able road users, especially cyclists (Zeile et al. 2016). In traffic safety and specifically
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for driver-related studies, driving simulators have been widely adopted with a range of

benefits compared to on-road studies by creating a safe and controllable environment

to simulate different traffic scenarios cost-effectively. Simulator-based methods have

been applied to study drivers’ behaviors, awareness, and psychophysiological states.

Driving simulators have been validated with a variety of data (Wynne, Beanland,

and Salmon 2019). One approach to experimental studies relies on the construction

of a testbed in which participants can interact with their environment, imitating a

naturalistic environment. Virtual Reality (VR) simulation is a promising approach

for infrastructure evaluation that avoids the high cost of test bed construction. The

benefit of Immersive Virtual Environment (IVE) experiments is to achieve high in-

ternal and ecological validity while also being cost-effective and offering complete

experimental control to replicate trials (Heydarian and Becerik-Gerber 2017).

Although IVE has a range of benefits, such tools have been mainly utilized for de-

sign improvements in indoor settings and have not been validated for transportation

simulation, especially cyclists-safety studies. In the past few years, there has been an

increasing number of studies on the application of IVE for transportation simulation.

For the results of IVE studies to be meaningful, the cyclists’ behavior between the real

world and IVE must be consistent to a certain degree (O’Hern, Oxley, and Steven-

son 2017). Higher fidelity of the IVE simulator usually can provide a more realistic

experience, but this does not necessarily translate to a greater ability to replicate the

specific task or behavior of the users (Wynne, Beanland, and Salmon 2019). There-

fore, IVE simulators need to be validated against a set of key performance measures to

assess the correlation between results (Wang, Mehler, et al. 2010). Traditionally IVE

simulator validation studies have relied on cycling performance such as speed, lane

keeping, and deviation in the lateral position, while the effectiveness of physiological
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sensing has not been validated. For example, cycling behavior and risk perception

using behavior was significantly different between the non-immersive and immersive

scenarios (Bogacz, Hess, Calastri, Choudhury, Erath, et al. 2020). Another study

assessed the speed, lane position, and speed reduction on approach to intersections

of cyclists both in IVE and on-road. Apart from subjective responses and direct

cycling performance (e.g., speed, lane position), objective approaches such as gaze

variability, head/body movement, and heart rate variability can be used to assess the

safety of cyclists in different contextual settings. Furthermore, very few studies have

collected multimodal physiological data of cyclists in naturalistic experiments (Zeile

et al. 2016).

The goal of this study is to benchmark and validate the use of an immersive virtual

bike simulator to evaluate cyclist behaviors in a naturalistic on-road experiment with

its representative IVE. Through experimental studies, we can identify if there exist

any significant differences in cyclist performance metrics between the two types of

environments. To achieve this, through integrating the latest low-cost human sensing

devices, we have built a multimodal human sensing data collection system to track

cyclists’ gaze, heart rate, pose, and head movement to better contextualize cyclist

performance and behaviors. With the preliminary results from a pilot study, we

can get insights about which measurement is consistent between IVE and real road

environments.
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4.2 Methodology

4.2.1 Experimental design

To achieve the identified research objectives, we conducted a pilot study in which we

benchmarked participants’ cycling behaviors and performance in a real-life environ-

ment and the corresponding IVE setting. The benchmark study has a within-subjects

design to control for variance between subjects. The chosen corridor for this study

was Water Street between 2nd St SW and 4th St SE in the city of Charlottesville,

Virginia (Figure 3.2). Water Street is well-trafficked by bicyclists, and has been iden-

tified as high risk for vulnerable road users, and is being considered for a redesign.

The section of the corridor chosen for this experiment consists of two city blocks,

with a 4% downhill grade in the eastbound direction, shared lane markings in both

directions, a traffic signal at the intersection of East Water Street and 2nd Street SE,

and a parking lane in the westbound direction.

To collect data about the existing operating characteristics of the chosen corridor,

video footage was collected along the corridor for two weeks. With permission

from the City of Charlottesville, four cameras were set up along the selected Wa-

ter Street corridor and video footage was recorded from August 27th to August 29th

and September 3rd to September 5th in 2019, resulting in 144 hours of video record-

ing. Peak traffic hours (7:00 - 9:00 AM and 4:00 - 6:00 PM) of the video footage

were reviewed, and corresponding traffic volumes were recorded. These peak traffic

volumes were used to determine the traffic flow in the design of the corresponding

IVE settings. Figure 4.1 A-1 shows the google maps view of water street and Figure

4.1 A-2 is the corresponding IVE setting.
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Figure 4.1: Comparison of real road(A-1) and IVE (A-2) environments; Video collec-
tion system of IVE bike simulator(A3-A4); Heart Rate Distribution of experiment(B-
1)

4.2.2 Data collection

The data collection framework and system architecture of measuring cyclists’ behav-

iors and physiological sensing is shown in Figure 4.2. For the IVE bike simulator,

HTC Vive Pro Eye headsets with their accompanying controllers have been selected

for tracking interaction in the IVE. This VR headset has an integrated Tobii Pro eye

tracker with movement tracing capabilities, which works seamlessly with the headset

as compared to traditional eye tracking systems (either screen-based or eye-tracking

glasses). The spatial location of the controllers (attached to the handlebars) allows

the system to detect turning or braking.

The VR environments were designed and programmed in Unity, and run through the

SteamVR platform. With Unity C script, all the movement of the headset and con-

trollers were tracked and extracted. An instrumented Trek bicycle was implemented
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Figure 4.2: System Architecture and Data Framework

for both experiments. The Wahoo indoor bicycling training equipment was chosen to

connect the physical bicycle to Unity, allowing us to collect the data necessary for this

research study (real-time speed, instantaneous power, distance traveled) as well as

provide haptic feedback to the participant. Additionally, two external video record-

ing devices captured participants’ movements during the IVE experiments. These

recordings were used to monitor participants and understand their movements and

reactions. What participants see in the IVE was also recorded with OBS studio

software, which can integrate all videos with a uniform timestamp and frames per

second. Furthermore, two android smartwatches equipped with the “SWEAR” app

were utilized to track participants’ physiological signals such as arm movement and

heart rate (Boukhechba and Barnes 2020).

For the on-road test, there were two different sensors from the ones used in the IVE

experiments: (1) instead of the HTC Vive headsets a Hololens 2 headset was used,

and (2) an additional Android smartphone app - “Physics Toolbox Sensor Suite”

was used to track participants’ cycling performance. The Hololens 2 is a pair of

mixed-reality smart glasses with eye-tracking features developed and manufactured
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by Microsoft. The authors developed a Hololens app based on MRTK SDK called

‘datalog’ to collect eye tracking and head movement data. Additionally, the Physics

Toolbox Sensor Suite app can collect GPS, acceleration, sound, lighting, and many

other environmental factors.

To achieve the identified research objectives, we conducted a pilot study in which we

benchmarked participants cycling behaviors and performance in a real-life environ-

ment and the corresponding IVE setting. The benchmark study has a within-subjects

design to control for variance between subjects.

4.2.3 Experiment procedure

As a pilot study, a total number of six participants (mean age = 30.3, SD = 3.3) were

recruited for the experiment. All participants are 18 or older, without color blindness,

and familiar with the chosen corridor.

For the IVE bike simulator experiment, after arriving at the lab space, the partici-

pants were asked to wear Android smartwatches and fill out a pre-experiment survey

about demographic information. Before the formal experiment, the participants were

placed into a training scenario to familiarize themselves with the virtual environment,

navigation, as well as calibration for the eye tracker and bike simulator. The exper-

imental task was cycling to the end of the experimental area, as indicated in Figure

3.2. After the experiment, the participants were asked to sign up for the on-road

study to take place in a few weeks after. The IVE experiments took approximately

half an hour to complete.

For on-road experiments, the same bicycle model was utilized, instrumented with

sensors to collect a range of variables. All on-road tests were conducted on clear
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weather days, during peak traffic hours. The same steps as the IVE experiments

were followed for the on-road study.

4.2.4 Performance Metrics and Analysis

To study the validity of the IVE bike simulator in different contextual settings, all

the performance data are calculated separately for different road segments. As shown

in Figure 3.2, road segment 1 is the area between intersections 1 and 2, it includes a

4% downhill grade with a wall on the right to block the parking lot. Road segment 2

is a level road, and the parking lot is visible to cyclists.

The following metrics are measured as indicators of participants’ performance: speed

of the cyclist (km/h), head movements (three-dimensional unit vector), gaze direction

(gaze focus on the current field of view), and heart rate (beat per minute, BPM). All

performance measurements include average and standard deviation (SD) in differ-

ent road segments. Performance data from the on-road and simulator experiments

were compared to assess the relative and absolute validity of the simulator. Validity

refers to the ability of a simulator to accurately represent real-world driving (Wynne,

Beanland, and Salmon 2019). There are two major forms of validity: absolute validity

(direct value comparison of a simulator and on-road testing) and relative validity (the

same patterns or effects are observed even if the study failed to establish absolute

validity). In this study, absolute validity for on-road and simulator data was assessed

using paired sample t-tests at a level of significance of 0.05. If absolute validity is

failed to establish, Pearson’s correlation between the two settings is used to verify the

relative validity.
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4.3 Results and Discussion

Among the six participants, one participant was missing the eye tracking data and

another participant was missing heart rate data for the IVE experiment. The cor-

responding data was excluded from reporting. Table 4.1 shows all validity results.

Overall, the on-road experiment has a higher average speed and standard deviation

than the IVE experiment, however, there is no significant difference in the average

speed across both road segment 1 (p=0.09) and segment 2 (p=0.23); the difference

in the standard deviation of speed is significant for both segments (p1 = 0.04, p2 =

0.002), and Pearson correlations are positive for both, while only segment 1 is sig-

nificant (0.865, p = 0.026), which means relative validity is only achieved for road

segment 1. After the downhill road segment, as the speed is higher, participants in

real-road tend to have more control over the speed, resulting in a larger variance in

the SD of their speed. This can be explained by the difficulty in modeling all real-

world elements within the VR environment. The weight of the users is not considered

in the IVE bike simulator either, which in the real world would impact their accel-

eration and resultant speed after the downhill section. Furthermore, road friction is

another important factor that can affect the SD of the speed - in real road segment

2 most participants just keep freewheeling without pedaling, while in the IVE bike

simulator, they keep pedaling to maintain the current speed.

For head movement, all pairs’ t-test results are not significantly different except for

the up and down head movement in road segment 1 (p = 0.002). Pearson correlation

for the up/down head movement in road segment 1 is positive but not significant

(0.689, p = 0.20). After checking the video recording from HoloLens 2, we found

that in the real road, there are several manholes on the road (4 in segment 1 and 7

in segment 2) which are not modeled in the IVE. The presence of pedestrians was
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not modeled in the IVE which may also explain the significant difference between

the vertical head movement. This finding indicates that on real roads, cyclists will

lower their heads due to their concern with manholes or other roadway conditions

and contextual settings.

For gaze direction, no significant differences are found across left and right gaze

directions. Concerning up and down gaze direction, only the average of up/down gaze

direction in road segment 1 is not significant. Participants have significantly more

up-and-down scanning behaviors on-road than in IVE for both segments. The average

gaze center is lower in on-road tests in road segment 2. Furthermore, according to

Pearson correlations, relative validity is not established for other pairs either: mean

up/down gaze direction in segment 2 (-0.276, p = 0.653), the SD of up/down gaze

for both segment 1 (-0.660, p = 0.226) and 2 (0.013, p = 0.984). The trend in gaze

direction is similar to head movement as participants will scan up and down more

frequently due to the real road complexity.

For heart rate data from the smartwatches, there is no significant difference in all

comparisons, the overall distribution of HR can be seen in Figure 4.1 B-1, and he

distribution of IVE and real road are similar to each other.

4.4 Conclusion

The goal of this study is to evaluate the use of an IVE bike simulator in understanding

cyclists’ behavior with multiple low-cost human sensing devices. A pilot study was

conducted both in an IVE and on a real road. Various sensors are applied to ensure

that similar data output is obtained. Both absolute and relative validity is established

across a range of cyclist performances. Results show that most of the performance
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measurements have absolute validity, but some of the features from eye tracking, most

of which are in the vertical direction, could not establish either absolute or relative

validity. This phenomenon may be caused by road geometry changes, the appearance

of other road users, and hardware limitations (especially the headsets used in the

study). Overall, the promising results indicate that the IVE bike simulator can be

further utilized for understanding cyclists’ behaviors. In addition to the difficulty in

modeling all real-world elements as discussed above, the study is also limited in: (1)

The small sample size of participants. After the pilot study, an experiment with a

larger number will be conducted in the near future. (2) Another limitation is that

participants could not change the bike gear within the current IVE bike simulator as

the current version does not support gear change; therefore, the gear is consistently in

the middle level for all experiments, which might potentially affect the speed change.

(3) Lastly, as psychophysiological data are highly event-based, we did not annotate

or collect specific events that took place within the real-road condition and in our

future studies, we will consider collecting and integrating such information within the

design of IVE. Further work can be done by including a wider range of age groups,

validating more measurements from the sensors, and exploring different locations.
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Chapter 5

Psycho-physiological Measures on

a Bicycle Simulator in Immersive

Virtual Environments: How

Protected/Curbside Bike Lanes

May Improve Perceived Safety

Bicycling, as a traditional means of mobility, has gained more popularity in recent

years. Bicycle mode share is rising in response to issues in modern cities, such as

increases in traffic jams, land use, energy consumption, air pollution, climate change,

and physical inactivity (Flusche 2012; Rupi and Krizek 2019). This trend has con-

tinued during the COVID-19 pandemic, as it is reported that bicycling levels have

significantly increased in many countries despite lockdowns and travel restrictions

(Buehler and Pucher 2021). However, there has been an alarming increase in bicy-

clist fatalities over the last decade. The National Highway Traffic Safety Administra-

tion’s report shows that in the United States, the number of bicyclist fatalities has

increased by more than 35% since 2010 (NHTSA 2021a). One potential reason for

this increase is due to the auto-centric nature of much of US roadway design, which
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often overlooks the safety and comfort needs of vulnerable road users like bicyclists

(Schultheiss, Sanders, and Toole 2018). For instance, vehicles are now safer for the

vehicle occupants with the development of active (e.g., electronic stability control,

automatic emergency braking, head-up displays, and other systems that have been

used to assist in the prevention of a crash) and passive safety features (e.g., seat

belts, air-bags, laminated glass, and other settings to protect occupants during a

crash) on a vehicle. However, to increase the comfort of the in-vehicle occupants,

some adjustments on modern vehicles such as smaller windows, wider pillars, and

larger headrests, may increase the risks to other vulnerable users, as indicated by

a vehicle/bicycle crash analysis with 3350 motor vehicle/bicycle crashes in the U.S.

(lusk2015database). In addition, these technologies don’t help to avoid the ’Looked

but failed to see’ errors when the drivers saw the danger too late to avoid collision

when they are overtaking another road user like bicyclists (herslund2003looked;

koustanai2008statistical). Furthermore, current data sources have some limita-

tions. First, the police crash reports mainly focus on vehicle-bicyclist crashes that re-

sult in fatalities. Second, hospital data recently drew more attention TO traffic safety

especially for vulnerable road users as it can provide real-world fatality data with

different accident types, such as single-bicycle crashes (myhrmann2021factors).

The first study in North America with ambulance records showed that cycle tracks

were safer compared to biking on the road. The cycle tracks had a 28% injury rate

with 2.5 times as many bicyclists compared to parallel roads without bike provisions

(lusk2011risk). Specifically, for bike lane designs, different treatments on the bike

lane may result in different cycling behaviors. A study in the Netherlands with 62

participants from two experiments with different edge types has reported that for

older bicyclists, the shoulder and edge strip treatments were related to more efficient

path use and safer distances from the verge (westerhuis2020cycling). A compari-
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son study of 70 young adults from five European cities (Oxford, London, Amsterdam,

Houten, and Groningen) verified that physical segregation between cyclists and vehi-

cles reduces the likelihood of stress (Teixeira et al. 2020). Even for the protected bike

lane treatment, the different levels of separation can contribute to different risk levels

in protected bike lanes (cicchino2020not). Although these studies shine A light on

the importance of evaluating the impact of roadway design on cycling behaviors and

emotional states, generally speaking, there are a very limited number of studies as

well as sources of data for evaluations of roadway designs for vulnerable road users,

including bicyclists.

The absence of applicable data has been recognized as a limiting factor for many trans-

ports and urban planning studies, especially for bicyclists (willberg2021comparing).

Therefore, it is necessary to identify innovative approaches to understand how bicy-

clists’ behavior, sense of safety, and comfort are affected under different roadway

conditions during the design and planning phases. To achieve this, bicyclists’ behav-

ior and psycho-physiological state data should be explored and evaluated in different

roadway settings.

Various methods of collecting bicycle safety, risk, comfort, and behavior data have

been utilized in the past. These studies spanned surveys, observational studies, nat-

uralistic studies, and simulation studies. For example, interviews and surveys ask

participants about their behaviors and comfort in a certain design context either by

imagination or after an actual bike ride. However, the subjective response does not

always reflect what the participant will do in a real-road setting and can suffer from

hypothetical bias (Fitch and S. L. Handy 2018). Observational studies can record real-

istic changes within the environment and bicyclists’ responses in real-world conditions

but are unable to track bicyclists’ physiological changes (chidester2001pedestrian).
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Naturalistic studies can further record bicyclists’ responses in real-world conditions

through different sensing modalities such as GPS, ECG, or mobile eye trackers (Rupi

and Krizek 2019). However, these studies have potential risks for participants as

they may be placed in dangerous roadway settings (e.g. distraction in high-traffic

density areas) (Stelling-Konczak et al. 2018). Furthermore, in naturalistic studies,

it is difficult to control many environmental factors that may impact the indepen-

dent variables, especially for physiological and behavioral factors, which makes causal

inferences especially difficult (Fitch, Sharpnack, and S. L. Handy 2020; Teixeira et

al. 2020). Experimental studies conducted through Immersive Virtual Environments

(IVE) are an emerging approach that minimizes the hypothetical bias of subjective

surveys while offering a controlled, low-risk, and immersive environment to evalu-

ate the responses of bicyclists to different roadway designs and conditions. One of

the main challenges in previous IVE simulation studies was the integration of hu-

man sensing techniques into the experiment. In IVE-related literature, participants’

physiological responses have been applied to evaluate different design alternatives for

buildings (Francisco et al. 2018), hospitals (Chı́as et al. 2019), and other civil infras-

tructure systems (Awada et al. 2021). However, only a few recent studies have applied

bicyclist physiological sensing in IVE simulators (Cobb, Jashami, and Hurwitz 2021),

and a deeper understanding of bicyclists’ psychological and physiological responses in

different roadway designs and conditions is still needed. Overall, we still have very a

limited understanding of bicyclists’ physiological responses in different roadway envi-

ronments, especially in IVE studies. Some naturalistic studies have been conducted

to evaluate bicyclists’ behavior and physiological responses in different contextual

settings (Guo2022; McNeil, Monsere, and Dill 2015; Rupi and Krizek 2019; Teixeira

et al. 2020). These preliminary studies revealed that psycho-physiological metrics

(e.g., heart rate (HR), gaze variability, and skin conductance) are indicators of how
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participants’ behaviors and perceptions may change in different contextual settings.

By integrating a bicycle simulator with an IVE, this research aims to overcome some

of the limitations found in previous research by conducting repeated measures ex-

periments to collect bicyclists’ physiological responses (specifically, gaze variability

and HR) in different urban roadway designs. With an IVE, we are able to control

other roadway environmental factors, such as infrastructure design, vehicle traffic

volume, traffic signal phase, vehicular speeds, and gaps, vehicle types, lighting, and

weather conditions to better quantify the relationships between bicyclists’ behavior

(e.g., speed, lane position) and physiological responses (e.g., gaze variability, HR).

These measurements can be used as surrogate data to better understand how dif-

ferent types of roadway conditions and infrastructure designs result in higher rates

of physiological stimulation. In this paper, we leverage human sensing tools (e.g.,

wearable devices) together with a bicycle simulator in IVE to specifically evaluate

and model the bicyclists’ psycho-physiological and behavioral responses. We con-

sider three roadway design scenarios (shared bike lane [sharrows], standard curbside

bike lane, and protected bike lane with flexible delineators) and evaluate bicyclists’

HR, gaze measures, and speed within each environment. After performing extensive

feature extractions on HR and gaze data, we leverage linear mixed-effect models to

compare bicyclists’ responses across the simulated environments. With results from

50 participants (23 female/27 male; aged 18-68; student and faculty bicyclists) in

the IVE simulator study, we investigated the following research questions: How can

protected/curbside bike lanes improve bicyclists’ cycling experience in terms of per-

ceived safety, cycling behavior and psycho-physiological responses? The results reveal

the subjective and objective preferences of different bicycle infrastructures while rid-

ing the simulator bike through the virtual environment and provide suggestions to
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policymakers on how to potentially increase the bike share in certain environments.

In this paper, we first provide detailed background on previous bicycle safety studies

in naturalistic, simulated, and virtual reality (VR) environments. We then discuss the

applicability of bicyclists’ physiological responses and gaze measures in understanding

their behaviors and physiological states, such as stress level and cognitive load. By

providing the methodology of our experimental design, we dive into the details of

the experiment. We then provide the results of bicyclists’ HR and gaze variability

together with bicycling performance within each environment with a linear mixed-

effect modeling approach. We conclude with a discussion on comparing different

physiological responses and the reasons behind the results.

5.1 Experiment Design

This research studies the effect of different roadway designs on bicyclists’ physiological

states. The independent variables are demographic information (i.e., age, gender,

bicycling attitude, and VR experience), the subjective realism of the IVE, as well

as the three categorical variables of different roadway designs in IVE with a bicycle

simulator: (1) the as-built shared bike lane environment (sharrows), (2) separate bike

lane, and, (3) protected bike lane with pylons. The dependent variables are different

measurements of cycling performance (i.e., speed, lane position) and physiological

responses (i.e., eye tracking and HR features) from integrated or mobile sensors.
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5.2 Experiment Procedure

Figure 5.1 shows the experiment procedure. Once a prospective participant signed

up, a researcher contacted the participant both via email and phone call a day be-

fore the experiment to confirm their reservation and health condition (due to the

COVID-19 requirement). Upon arrival, each participant is asked to sign the consent

form approved by the IRB office and put on two smartwatches on both wrists, before

completing the pre-experiment survey. After finishing the pre-experiment survey, in-

structions are given on how to use the VR headset, controllers, and bike simulator.

After the bike is adjusted to a comfortable position, the participant mounts the bike

and puts on the headset. Next, the participant is guided through the eye tracker cal-

ibration. After the IVE system setup, the participant is placed into a familiarization

scenario (without any vehicle traffic) to become accustomed to interacting with the

IVE. In this environment, the participant can practice pedaling, steering, and braking

and the practice procedure can be repeated until the participant feels comfortable. If

the participant feels any motion sickness, they may stop the experiment at any point

and still receive compensation for participation.

Once the participant is comfortable in the training environment, they experience

the three design scenarios in random order, where each experiment trial lasts about

two minutes, with a two-minute break between each scenario. Once the participant

has completed all three scenarios, they are asked to complete the post-experiment

survey. On average, each participant spends 30 minutes completing the experimental

procedure.
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Figure 5.1: Experiment procedure

5.3 Participants

51 participants were recruited for the experiment. Most of the participants are local

bicyclists, university students, and faculty members who are familiar with the study

corridor. All participants are 18 or older and without color blindness. During the

study, one participant could not finish the experiment due to motion sickness. For

the remaining 50 participants (23 female and 27 male), the mean age is 34.1 with a

standard deviation of 12.9 (1 participant did not reveal his/her age information); the

age distribution is shown in Figure 5.2.

5.4 Statistical Modeling

a Linear Mixed Effects Model (LMM) was chosen to model the different response

variables across participants. LMM facilitates the analysis as it has the ability to (1)
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Figure 5.2: Age and gender distribution of participants based on the demographic
data. Overall 23(46%) are females and 27(54%) are males. One male participant
didn’t reveal his age information
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characterize group and individual behavior patterns in a formal way, (2) acknowl-

edge both group and individual differences, and (3) incorporate additional covariates

(Krueger and Tian 2004).

To evaluate participants’ physiological responses in different road environments, as

shown in Table 5.1, different behavioral and physiological responses are treated as

dependent variables in each LMM model, including cycling performance (speed and

lateral lane position), eye tracking metrics (SGE, GTE, PRC, and mean fixation

length), and HR metrics (mean HR and number of HR change points). Independent

variables include the type of bicycle infrastructure (as-built, separate bike lane, and

protected bike lane), age (older or younger than 30), attitude towards cycling (based

on pre-survey response), prior VR experience, and participants’ sense of realism for

bike speed and braking in the IVE. Additionally, each participant is treated as a

random effect in the model. If statistically significant effects are revealed in any LMM

models for the scenario variable, post hoc contrasts will be performed for multiple

comparisons using Fisher’s Least Significant Difference (LSD) L. J. Williams and Abdi

2010. All statistical analyses were performed at a 95% confidence level (α = 0.05).

5.5 Results

This section reports the results of the experiment. The following subsections de-

scribe the summary statistics (from the pre-and post-experiment surveys), the bicy-

clists’ physical behavior (cycling speed and lateral lane position), and physiological

responses (eye tracking and HR) in different roadway designs.
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Table 5.1: Summary of independent and dependent variables in LMM models

Variable Type Variable Name Categories Data Source
Scenario 3 IVE Design
Age 2 Pre-survey

Independent Gender 2 Pre-survey
(Categorical) Type of bicyclist 4 Pre-survey

VR experience 4 Pre-survey
Realism of bike steering 5 Post-survey
Realism of bike speed 5 Post-survey

Cycling speed km/h Unity
Lateral lane position m Unity

Horizontal gaze variability pixel Eye Tracking
Dependent Percentage of road center gaze percentage Eye Tracking

(Continuous) Mean fixation length second Eye Tracking
Stationary gaze entropy bits Preprocessing
Gaze transition entropy bits Preprocessing

HR bpm Smartwatch
Number of HR change points count Preprocessing

5.5.1 Survey Response

All participants indicated that they have some level of prior knowledge of VR, al-

though only one participant owns VR equipment and uses it regularly, as shown in

Figure 5.3-a. The majority of the participants have a positive attitude toward cycling,

as shown in Figure 5.3-b, with only two participants expressing hesitancy of cycling

under any condition.

In the post-experiment survey, the majority of participants indicated that the virtual

environment was immersive, with 94% of participants choosing a 4 or 5 on the 5-point

Likert scale (mean=4.42), with 4 and 5 indicating ”immersed” and ”very immersed”,

respectively. Most participants also found that the virtual environment was to scale

(94% chose 4 or 5, mean=4.54). The participant’s feelings of speed and steering

realism were both above average with 50% indicating a 4 or 5 level of realism (mean
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Figure 5.3: Summary of some survey responses. (a) Prior knowledge on VR, (b) Type
of bicyclist

= 3.56), and 54% indicating a 4 or 5 for steering realism (mean = 3.60). Figure

5.4 shows the results of participants’ scenario preferences. Participants indicated an

overwhelming preference towards the protected bike lane (69% rate it as the safest),

followed by separate bike lane (22% rate it as the safest), and the as-built scenario

rated the least preferred safe environment (10% rate it as the safest).

5.5.2 Cycling Performance

Two LMMs are built individually for average speed and lateral lane position to es-

timate the relationship between the independent variables and participants’ cycling

performance. For the mean speed LMM, there is a significant difference between

the as-built and protected bike lane scenarios (β = −1.209, SE = 0.383, p < 0.01).

Bicyclists’ mean speed in the protected bike lane with pylons scenario (13.88 km/h)

is significantly lower compared to the as-built scenario (15.09 km/h). No signif-

icant differences are found between the separate bike lane scenario (14.94 km/h)

and the as-built scenario, as shown in Figure 5.5 - a. Similarly, there is no signif-
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Figure 5.4: Scenario preference across participants based on the post-experiment
survey. Note that 94% of participants choose a 4 or 5 on the 5-point Likert scale
(mean=4.42), with 5 indicating a full immersion

icant difference in participants’ speed between the bike lane scenario and protected

bike lane with pylons. The random effect for the mean speed model is significant

(β = −1.209, SE = 0.383, p < 0.001), suggesting that it is necessary to treat the

participant as a random factor in the model. This is also indicative of individual

differences across participants in their cycling performance.

For the mean lateral lane position, no significant differences are found across the

three scenarios, although the difference between as-built and protected bike lanes

with pylons scenarios are marginally significant (β = −0.129, SE = 0.070, p = 0.068).

As shown in Figure 5.5 - b, the average distance to the roadside curb for the three

scenarios (as-built, separate bike lane, and protected bike lane with pylons) are 0.97

m, 0.88 m and 0.84 m respectively. The greater the average distance to the curb the

smaller the lateral distance between the bicycle and the vehicle. Therefore, there is

a trend of participants moving closer to the curb to stay away from vehicles with

the presence of separate bike lanes or protected bike lanes with pylons. The random

effects for this model are significant (β = 0.971, SE = 0.067, p < 0.001) as well.
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Figure 5.5: Cycling performance measured through speed (a) and lateral position (b)
across different scenarios. Note that there is a trend for participants to move closer
to the road curb to stay away from vehicles with the presence of a separate bike lane
or protected bike lane with pylons.

5.5.3 Eye Tracking

Five LMM are built individually for each eye-tracking dependent variable (Table 5.1)

to estimate the relationship between the independent variables and participants’ eye-

tracking metrics (horizontal gaze variability, PRC, mean fixation length, SGE, and

GTE). We first plot the eye-tracking heat map in the field of view to get an overview

of the gaze distribution. As shown in Figure 5.6, visual observations from the gaze

heat map indicate that the as-built scenario has a more dispersed distribution than

the other two scenarios. The separate bike lane scenario appears to have a higher

concentration in the center of the gaze area, followed by the protected bike lane with

pylons scenario.

As illustrated above, an LMM is built for evaluating the relationship between par-

ticipants’ horizontal gaze variability and the independent variables. In Figure 5.7,

the result of the horizontal gaze variability model shows the random effects were

significant (β = 86.257, SE = 32.990, p < 0.05), which suggests that it was nec-

essary to treat the participant as a random factor in the model. Both the sepa-
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Figure 5.6: Gaze density heat map for different scenarios. Note that visual observa-
tions from the gaze heat map indicate that the as-built scenario has a more dispersed
distribution than the other two scenarios

rate bike lane and protected bike lane scenarios are statistically significant predic-

tors for the horizontal gaze variability (β = −16.349, SE = 4.288, p < 0.001 and

β = −12.645, SE = 4.278, p < 0.01, respectively). As shown in Figure 5.7 - a, a

significantly lower horizontal gaze variability is observed both in the separate bike

lane and protected bike lane, which indicates that participants are more focused di-

rectly ahead rather than laterally looking around the road environment. Another

significant factor revealed by the model is the realism score of the bike speed from

the post-experiment survey (β = −13.991, SE = 6.287, p < 0.05). Generally speak-

ing, the higher realism of bike speed the participants indicate, the lower horizontal

gaze variability they show during the experiment (Figure 5.7 - b, except for the small

group who selected 2). No significant results are found in terms of the steering realism

score.

A similar LMM is built for the percentage of road center fixation. As shown in Figure

5.8, a similar result is presented by the LMM for the horizontal gaze variability; the

random effects are also significant (β = 91.993, SE = 6.045, p < 0.001). For the

independent variables, both the separate bike lane (β = 4.083, SE = 0.947, p < 0.001)
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Figure 5.7: Horizontal gaze variability within different scenarios (a) as well as within
different ratings of the realism of the bike speed (b). Note that a significantly lower
horizontal gaze variability is achieved both in the separate bike lane and protected
bike lane. Additionally, the higher realism of bike speed the participants indicate, the
lower horizontal gaze variability they show during the experiment

and protected bike lane (β = 2.558, SE = 0.938, p < 0.01) scenarios are statistically

significant. The percentage of road center fixation in the separate bike lane is slightly

higher than in the protected bike lane, which aligns with visual observation of the

gaze heat map (Figure 5.6). This result indicates participants focus their gaze most

on the road center in the separate bike lane. The realism score of the bike speed from

the post-experiment survey is also significant (β = 2.892, SE = 1.218, p < 0.05).

The LMM model for the mean fixation duration shows the random effects are sig-

nificant (β = 0.242, SE = 0.051, p < 0.001), and both the separate bike lane and

protected bike lane scenarios are statistically significant predictors of mean fixation

duration (β = 0.015, SE = 0.007, p < 0.05 and β = 0.014, SE = 0.007, p < 0.05,

respectively). As shown in Figure 5.9, significantly higher fixation duration is ob-

served both in the separate bike lane and protected bike lane scenarios compared to

the as-built scenario. No significant results are found for other independent variables.
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Figure 5.8: PRC and mean fixation length within different scenarios. Note that the
percentage of road center fixation in a separate bike lane is slightly higher than in the
protected bike lane, which aligns with the visual observation in the gaze heat map

Two LMMs are built for SGE and GTE. In both models, the random effects are

significant (β = 1.951, SE = 0.413, p < 0.001 and β = 0.791, SE = 0.306, p < 0.05,

respectively). Other than the random effects, only the separate bike lane in the SGE

model is a significant predictor (β = −0.224, SE = 0.079, p < 0.01). As shown in

Figure 5.10 - a, the SGE in the separate bike lane environment is significantly lower

than in the as-built environment. No significant results are observed in the GTE

model.

5.5.4 HR

An LMM is built for mean HR during each experiment to compare the overall HR

levels in different infrastructure designs. The random effects are significant (β =

92.892, SE = 29.191, p < 0.01). No significant results are found between different

road designs (Figure 5.11 - a). A significant result is shown in the type of bicyclist

attitude based on the survey result (β = −8.410, SE = 4.082, p < 0.05). As shown in
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Figure 5.9: Mean fixation duration within different scenarios. A significantly higher
fixation duration is observed both in the separate bike lane and protected bike lane
scenarios compared to the as-built scenario.
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Figure 5.10: Stationary gaze entropy (a), and gaze transition entropy (b) within
different scenarios. Note that the SGE in the separate bike lane environment is
significantly lower than in the as-built environment.

Figure 5.11 - b, the more positive attitude participants have on biking, the lower mean

HR they have during the experiment. Note that only two participants responded to

the bicycling attitude question with ’No way, no how’ so only six data points for this

category are available.

In addition to the overall HR level, we are also interested in the abrupt changes

in participants’ HR. By utilizing the BCP method, we can extract the abrupt HR

changes for each scenario. Figure 5.12 illustrates the average frequency of HR change

points in different scenarios. The LMM model shows that both the separate bike

lane (β = −0.393, SE = 0.145, p < 0.01) and protected bike lane (β = −0.360, SE =

0.145, p < 0.05) have a significantly lower frequency of HR change point than the

as-built scenario. The frequency of HR change points in the as-built design is almost

twice that of the separate bike lane and protected bike lane. The distribution of

HR change points is shown in Figure 5.13. There are three peaks in Figure 5.13 -

a, where all take place before the participant arrives at an intersection. Among the

three intersections, the peak of the HR change point in the third intersection, which
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Figure 5.11: Mean HR within different scenarios (a) as well as attitude towards biking
(b). Note that the more positive the attitude participants have on biking, the lower
the mean HR they have during the experiment.

has a traffic signal, happens earlier than the other two intersections. Figure 5.13 - b is

the density plot of HR change points for different scenarios. Each scenario appears to

have two peaks, with the as-built design having higher peaks in the first intersection

and the third intersection. The density plots of the separate bike lane and protected

bike lane scenarios are smoother than the as-built design. This indicates that the HR

change points in the as-built scenario are more subjective to roadway environmental

changes. In other words, the separate bike lane and protected bike lane may reduce

the effect of environmental changes on the HR changes.

5.6 Discussion

5.6.1 Cycling Performance

The results show that the roadway design can affect cycling performance. Among

the three roadway designs, the speed in the protected bike lane is significantly lower

than the other two designs. On average, participants cycled at a lower speed when

they are separated from the vehicle lane. However, this contradicts a similar IVE
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Figure 5.12: Frequency of HR change points within different scenarios. Note that both
the separate bike lane and protected bike lane have a significantly lower frequency of
HR change points than the as-built scenario.
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Figure 5.13: HR change points distribution (a) overall distribution on the road; (b)
distribution over each scenario. Note that each scenario appears to have two peaks,
with the as-built design having higher peaks in the first intersection and the third
intersection. The density plots of the separate bike lane and protected bike lane
scenarios are smoother than the as-built design, which indicates the HR change points
in the as-built scenario are more subjective to roadway environmental changes.

study (with 50 participants) where bicyclists ride at lower speeds in the no bike lane

condition versus the bike lane condition (Cobb, Jashami, and Hurwitz 2021). The

differences may be due to (1) the different IVE settings. In (Cobb, Jashami, and Hur-

witz 2021), A screen provides the forward view while in this study, a head-mounted

display provides the forward view, this implies that different IVE settings will af-

fect bicyclists’ responses, as discussed by previous studies (Bogacz, Hess, Calastri,

Choudhury, Erath, et al. 2020; Guo, Angulo, et al. 2022). (2) the different road

environments. Our IVE is modeled from a real road and all the participants are local

bicyclists, they are more familiar with the as-built designs. (3) The vehicle settings.

The vehicles are randomly generated based on the empirically observed distribution

of vehicle arrivals from the start point with a fixed routine in the vehicle lane. For

some participants, when they are cycling in the shared vehicle lane in the as-built

scenario, the approaching vehicles from behind will slow down and follow them until
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the vehicle lane is cleared. Therefore, in those cases, the participants will only see

an open street ahead of them without any cars passing by. In the post-experiment

survey, some participants mentioned that they were motivated to ride faster when

no vehicles were passed by them. Based on our statistics of how many vehicles have

passed the participants during the experiment, the average number of the passed ve-

hicle during the experiment for as-built design (0.77) is less than the separate bike

lane (0.88) and protected bike lane (1.03). (4) The traffic volume and speed. The

traffic volume is relatively low in our experiment. On average, there is 0.9 vehicle

passing the participant, which is lower than in related studies. Water Street is an

urban road with a speed limit of 25 mph and vehicles within the IVE were designed

to travel constantly at this speed limit, which may indicate that the effect of different

roadway designs on bicyclists’ speed is subjective to traffic volume and vehicle speed.

In addition, some participants report that they feel the protected bike lane is narrower

than expected, they want to avoid hitting the pylons during the experiment, which

may potentially lower their speed and decrease the lateral distance to the curb. For

the lateral lane position, the LMM model result is marginally significant, bicyclists

tend to stay away from the vehicle lane when there is a bike lane, which will lead to a

larger lateral distance when a vehicle is trying to pass them. This can help to increase

bicyclists’ comfort level and safety, which has been shown by many previous studies

(McNeil, Monsere, and Dill 2015; Nazemi, Eggermond, Erath, Schaffner, et al. 2021).

5.6.2 Gaze Behavior

The gaze behaviors also vary in different roadway designs. Generally, compared

with a separate bike lane and protected bike lane scenarios, participants in the as-

built scenario have a wider horizontal distribution of fixations, indicated by a larger
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horizontal gaze variability and a lower PRC, which can be a sign of active searching

strategy in the environment. The higher PRC in the separate bike lane and protected

bike lane scenarios might be an indicator of higher cognitive workload (Engström,

Johansson, and Östlund 2005), but this does not necessarily suggest a sub-optimal

state for the gaze strategy. According to the Yerkes-Dodson law (Yerkes, Dodson, et

al. 1908), there is an optimal range of cognitive load; if the current cognitive load is

lower than the optimal range, increased cognitive workload with higher arousal level

can help to improve the performance. The addition of a separate bike lane may have

impacted the cognitive workload of the participants to focus on keeping the bicycle

in the center of the bike lane. The increase in cognitive workload was lower for a

protected bike lane, where bicyclists tend to keep closer to the curbside instead of

being in the center of the bike lane.

In the as-built scenario, a shorter fixation duration is observed, which as discussed by

previous research is related to a higher hazard estimation of cyclists (Stülpnagel 2020).

It is further verified by our post-experiment survey in which most of the participants

rate the as-built scenario as the least safe scenario. In terms of the two alternative

designs, the separate bike lane scenario seems to have a more focused gaze behavior

than the protected bike lane. The phenomenon is also identified by the gaze entropy

results. Only the separate bike lane scenario has a significantly lower stationary gaze

entropy, which quantifies the overall spatial dispersion of gaze. To our knowledge,

the effect of roadway design on the gaze entropy of bicyclists has not previously been

examined. An increase in SGE indicates a change in the spatial areas that information

is being sampled from, which is illustrated by the less populated and more dispersed

depiction of fixation density, as discussed in a driver-related study (B. A. Shiferaw

et al. 2018). Meanwhile, for the GTE, no significant differences are found between the
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three scenarios. The increase in GTE reflects a more random pattern of transitions

between fixations. Variation in GTE is related to scene complexity and task demand

(B. Shiferaw, Downey, and Crewther 2019). One possible reason for the result may be

when designing a separate bike or protected bike lane, participants may feel obligated

to maintain a lateral bike lane position (especially in IVE), which offsets the effect

of new roadway designs with less scene complexity for necessary visual information

retrieval.

5.6.3 Heart Rate Variation

For the HR response, we did not find any significant difference in mean HR between

the three scenarios. The correlations between HR/HRV and subjective safety ratings

were also found to be weak in previous naturalistic studies (Doorley et al. 2015; Fitch,

Sharpnack, and S. L. Handy 2020). In our controlled experiment, the association is

even less conclusive. However, when considering the abrupt changes in HR, after

extracting the HR change point from the raw data, it is found that both the separate

bike lane and protected bike lane scenarios have a significantly lower frequency of HR

change points than the as-built scenario. We further explore the spatial distribution

of the HR change point and find that the peaks of the HR change point occur more

frequently prior to reaching the intersections. Based on our results, in our low-task

requirement scenario, the intersection is more associated with a higher number of

change points, possibly showing a higher stress level than other sites.

The position of the HR change point depends on the types of intersections. The

first intersection has more HR change points than the other two intersections. There

are two possible reasons. First, as the first intersection is at the beginning of the
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experiment, participants may still need some time to get used to the IVE, even if

they have practiced before. Second, as indicated by a previous study, spatially open

locations increase the level of perceived risk (Stülpnagel 2020), and the road segment

after the first intersection is a downhill road. After entering the first intersection,

bicyclists will have a wider field of view, which can lead to an increased level of

perceived risk. Our study further verified this finding through abrupt changes in

HR. Moreover, participants seem to have HR change points earlier in more complex

intersections (specifically, the third intersection with traffic lights and stop lines).

This can be explained by the fact that more complex intersections require more time

to prepare for the crossing. This aligns with another naturalistic study which shows

bicyclists’ first fixation on the traffic light occurs earlier in a no-bike-lane road (Rupi

and Krizek 2019). While not in biking studies, similar results were achieved in other

transportation studies with respect to other road users such as drivers’ stress levels

and emotions when getting closer to the intersections. For instance, recent studies

both through subjective measures (Bustos et al. 2021), self-reports (Dittrich 2021),

and increases in HR (Tavakoli, Kumar, Guo, et al. 2021; Tavakoli, Boukhechba, and

Heydarian 2021) have all shown that drivers experience higher stress level as they

arrive at an intersection. However, we note that our findings need to be further

verified by future studies due to the limited number and type of intersections in this

study. Moreover, the distribution of HR change points for the separate bike lane and

protected bike lane scenario is smoother than the as-built scenario. The separate

bike lane has more delayed peaks than the other two designs. The reasons behind it

should be further explored in future studies.

One important point with respect to HR in our study is the short duration of each

scenario as well as the overall experiment. Because the HR was sampled at a relatively
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lower frequency (1 Hz), the number of data points per scenario becomes significantly

smaller as compared to other data sources such as gaze measures (120 Hz). The low

frequency might be another reason for the insignificant results in the comparison of

mean HR across the three scenarios. In the future work of this study, we are planning

to use the raw PPG readings from the watches to enhance the depth of the HR

modeling within different scenarios. While HR is sampled at 1 Hz, PPG is sampled

at 100 Hz but with the caveat of being affected by the motion artifacts. However, we

should note that even with a lower number of data points, a change point detector,

when applied to the overall data of a participant, can learn the proper distribution

and find the moments of abrupt increases, which are spatially intuitive as well (e.g.,

being close to intersections).

5.6.4 Demographics and Survey

Although a majority of the 50 participants rate the protected bike lane with pylons

scenario as the safest design, the post hoc comparison does not reveal too many

differences between the separate bike lane and protected bike lane scenarios. The

protected bike lane scenario has a lower average speed. The average lane position is

closer to the road curbside and the separate bike lane design has a slightly higher gaze

concentration. Other than these findings, there is little evidence showing significant

differences between these two alternative designs in terms of cycling behavior and

physiological responses. These results indicate there exist some differences between

participants’ subjective ratings and objective behavioral responses.

No gender or age differences are found to be statistically significant in this study. It

is widely accepted that female bicyclists have lower cycling participation rates (Mitra
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and Nash 2019), as well as stronger preferences than males for greater separation from

motor traffic (Aldred et al. 2017). While some studies report minor gender differences

(Cobb, Jashami, and Hurwitz 2021), it is argued that female bicyclists using the lanes

had significantly more positive associations with the protected lanes than males. In

other words, the protected bike lanes can somehow help close the gender gap in

cycling (Dill et al. 2014; Aldred et al. 2017). It is worth noting that most of the

participants in this study are regular bicyclists, so they are not representative of the

entire population. Evidence of stronger preferences among older people is also limited

(Aldred et al. 2017). Another notable finding from this study is that the realism of

speed is more related to bicyclists’ physiological changes than the realism of steering.

This can be task-dependent, as in our experiment, most of the road is straight and

only a few steering maneuvers are required around the second intersection.

5.7 Limitations and Future Work

The limitations of this study are as follows. First, the duration of the experiment is

short, and some findings in this experiment need further study. Building a longer road

segment in the IVE with more street blocks can be a solution. However, we should

note that a longer duration is more likely to cause motion sickness or fatigue, which

can lead to performance degradation. Thus, future work needs to find an optimal

duration for the study accounting for the trade-off between avoiding motion sickness

and retrieving longer time series of data. Second, although a practice scenario is

introduced in the beginning and the order of the scenarios is randomized, a learning

effect can exist. This means that the participant might become more familiar with the

experiments as they progress through the scenarios, which can affect HR, gaze, and
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speed. Third, more benchmark studies are needed to verify the findings in real-world

environments. We have conducted a pilot study of six participants both in IVE and

real road, and preliminary findings show that most of the physiological responses in

IVE are representative of the real world (Guo, Robartes, et al. 2021). Nonetheless,

a benchmark study in the real world is needed for the same participant groups to

validate the findings. Future work will be focused on benchmarking the IVE setup in

more diverse scenarios and with a higher number of participants.

While in this study we focused on the design, it can be the case that different events

within each design can impact the participant’s psycho-physiology. For instance,

when considering the effect of a separate bike lane, it could be the case that increases

in traffic density, speed of vehicles, and other environmental factors can affect how

participant’s psycho-physiology changes within each scenario. In an attempt to iso-

late the effect of the roadway design, these variables had little or no variation in this

experimental design. Future work will be focused on simulating more detailed events

within each alternative design to better illustrate the interaction between environ-

mental properties (e.g., the presence of bike lane) and events (e.g., vehicles passing

at high speed).

While we focused on HR and gaze, we note that human psycho-physiology is a com-

plicated matter which is not bound by only two measures. The addition of wear-

able devices with more detailed sensors (e.g., skin conductance, skin temperature,

and breathing patterns) may provide additional insight on the bicyclists’ psycho-

physiology.
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5.8 Conclusion

This study explores bicyclists’ physiological and behavioral changes in different ur-

ban roadway designs. In an immersive virtual environment, a bicycle simulator with

integrated mobile sensing devices is used in the experiment to record bicyclists’ be-

havioral and physiological responses on the same road with three different roadway

designs: shared bike lane (as-built), separate bike lane, and protected bike lane with

pylons. Results from 50 participants indicate that (1) the protected bike lane design

has the highest subjective safety rating; (2) participants in the protected bike lane

scenario have the lowest cycling speed and highest lateral distance to the vehicle lane,

indicating the potential for safer bicycling behavior with lower speeds and increased

separation from vehicles; (3) bicyclists focus their gaze on the cycling task more in

the separate and protected bike lane scenarios, indicating the potential for decreased

distractions when cycling in a separate or protected bike lane compared to shared

bike lane; (4) creating separate zones for bicyclists (whether separate bike lane or

protected bike lane) has the potential to reduce the stress level, as indicated by de-

creased HR changes compared to the shared bike lane; and (5) the immersive virtual

environment can be an efficient and safe tool to evaluate bicyclists’ behavioral and

physiological responses in different alternative roadway designs.
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Chapter 6

The Effect of Cognitive Distraction

on Cyclist Behavior

6.1 Introduction

Bicycle users are expanding as an increasing number of cities in the United States are

encouraging Low-carbon transportation by investing in infrastructure to accommo-

date bicyclists (Pucher, Dill, and S. Handy 2010). This increasing trend hasn’t been

slowed down during the COVID-19 pandemic, it is reported that bicycling levels have

significantly increased in many countries even with lockdowns and travel restrictions

(Buehler and Pucher 2021).

However, bicyclist fatalities are increasing as more bicyclists are using the road over

the last decade. The report from the National Highway Traffic Safety Administration

shows that in the United States, the number of bicyclist fatalities has increased by

more than 35% since 2010 (NHTSA 2021a).

Distraction has been identified as one of the main reasons for traffic accidents. In

the US, nine percent of fatal crashes, 15 percent of injury crashes, and 15 percent of

all police-reported motor vehicle traffic crashes in 2019 were reported as distraction-

affected crashes. There were 566 vulnerable road users including pedestrians, pedal
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cyclists, and others killed in distraction-affected crashes (NHTSA 2021b). The data

for the fatalities and injuries are underestimated as only vehicle-related crashes are

reported. For now, very limited information about cyclists’ distraction on fatality

is available. Not only the limited data sources but also the number of studies that

have been published on distracted biking is small. As a result, our knowledge about

the effect of distraction on cycling is insufficient. Previous studies have reported that

distractions have a major prevalence among bike users and that they play a significant

role in the prediction of the traffic crash rates of cyclists, through the mediation of

risky behaviors (Useche et al. 2018). Studying cyclists behaviors under the influence

of distraction can provide evidence for interventions to address safety-related issues.

Similar to the diving distraction, the cycling distraction can be categorized into three

main types: Visual (taking the eyes off the road), Manual(taking the hands off the

handlebar), and Cognitive (taking the mind off cycling). This study will focus on

cognitive distraction as it is related to the most frequently reported secondary task

during cycling, such as listening to music or talking in the earphones (Mwakalonge,

White, and Siuhi 2014; Wolfe et al. 2016).

The current state of knowledge on cyclist distraction is mostly retrieved from surveys

or observational studies. For example, an observational study in New York City shows

that headphone use is the most prevalent distraction among local cyclists (Ethan et

al. 2016). However, observational studies are unable to track cyclists’ physiological

changes and get the details of secondary tasks (e.g., headphone use can be either

music listening or talking on the phone). Surveys from different areas around the

world have been collected to study cyclists’ distracted behavior, listening to music

or talking with earphones have been identified as the most prevalent distractions

(Terzano 2013; Wolfe et al. 2016; Young et al. 2020).
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The most frequent secondary tasks, both listening to music and talking with ear-

phones can be categorized as a cognitive distraction. One of the main challenges in

the quantitative analysis of cognitive distraction is the difficulty in measuring the

workload needed for certain tasks. To understand the mechanism of distraction, a

standardized secondary task with different levels of workload is required in the ex-

perimental study. To our knowledge, no prior studies have applied such methods for

cyclist distraction. In other research fields, several standardized secondary tasks have

been developed to simulate different levels of workload. For instance, to simulate the

phone conversation, an alternative mock cellphone task was used in a driving-related

study as a cognitive distraction (Ebadi et al. 2020). The mock cellphone task was

designed to simulate cognitive load when talking on the phone, and the impact of

this type of task was reported to be similar to a hands-free cellphone conversation in

a prior study (Muttart et al. 2007).

Physiological responses such as physical measures (e.g., eye movement) and biological

measures (e.g., EDA) are reported to be effective measurements to detect distractions

in driving, however, these conclusions haven’t been verified in cyclist studies (Yusoff

et al. 2017).

The goal of this experiment is to study the effect of cognitive distraction on cyclist

behavior, especially, we are interested in applying the standardized secondary task

in the IVE bicycle simulator to simulate different levels of cognitive workload, and

explore cyclists’ physiological responses in different situations. The research hypoth-

esis is 1. Listening to high-tempo music results in a higher biking speed, gaze/head

movement, and a higher rate of SCR peaks. 2. Talking on the phone result in lower

speed, lower gaze/head movement variation, and lower rate of SCR peaks. 3. Stan-

dardized secondary tasks can be used to simulate different cognitive distractions in
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the IVE.

6.2 Methodology

6.2.1 Experiment Design

This research studies the effect of cognitive distraction on cyclist behavior in the

proposed IVE bicycle simulator framework. The cognitive distraction will be triggered

by both the standardized secondary task (Mock phone conversation task) and the

actual task (music listening). Each participant will experience 3 different conditions

(baseline, music listening, and mock phone conversation) in random order.

As an alternative to cellphone conversations, a mock cellphone task was used in

this study as a cognitive distraction, particularly because typical conversations are

much more difficult to experimentally control. While performing the distraction task,

participants were instructed to listen to a series of generic English language sentences

synonymous with the previously validated grammatical reasoning task and respond

aloud to the subject, object, and whether the sentence was plausible or not. The

experimenter would remotely initiate the task with a button press at the beginning

of each scenario and similarly, terminate it a few seconds before the end of every

scenario. The participants listening to each sentence were then asked to reply aloud:

the subject of the sentence, the object of the sentence, and whether or not the sentence

was plausible. For example, for the sentence, “A child jumped a rope,” the correct

answer is: “Child, Rope, and Yes.” Similarly, an implausible sentence would be, “A

cat baked the television,” and the correct answer would be: “Cat, Television, and

No.” The mock cellphone task was designed in such a way that the driver would be
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cognitively loaded, and as found in prior studies, the impact of this type of task would

be similar to that of a hands-free cellphone conversation (Ebadi et al. 2020).

In addition to the standardized secondary tasks, an actual secondary task, music

listening is considered in this experiment as well. In the music listening condition,

the participants will be asked to listen to a popular song of the year. The song will be

played during cycling automatically by the experimenter, the participants can hear

the song from the earphone of the VR headset, similar to listening to music with

earphones in the real world.

6.2.2 Road Environment in IVE

The IVE for this study is developed from the IVE of our last study in Chapter 5. We

further develop the IVE with the real-world measurement of the Water Street corridor

in the city of Charlottesville, Virginia. The IVE road environment has been extended

to 8 street blocks as shown in Figure 6.1, the IVE road starts from the intersection

of West Main Street and Ridge Street, and ends at the intersection of East Water

Street and 9th Street NE (at the Belmont Bridge). Bike lanes are designed for the

road with a standard bike lane width of 4 feet (1.2m).

6.2.3 Experiment Procedure

A similar experiment procedure will be followed as the study in Chapter 5. Upon

arrival, each participant is asked to sign the consent form approved by the IRB office

(Appendix A) and put on two smartwatches on both wrists, before completing the

pre-experiment survey.
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Figure 6.1: Illustration of extended IVE road environment. (a) Bird view from the
map of real road. The built road segments are highlighted in yellow. (b) Bird view
of the modeled streets within the IVE in Unity software
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Figure 6.2: Age distribution of 75 participants. The mean age is 24.5 years old,
cyclists who are younger than this age are categorized as a younger group

6.2.4 Participants

75 participants were recruited for the experiment. Among them 40 are female, 33 are

male, 1 participant identified as other and 1 participant didn’t provide gender infor-

mation. Most of the participants are local bicyclists, students, and faculty members

from the University of Virginia. All participants are 18 or older and without color

blindness. The mean age is 24.5 with a standard deviation of 4.7, and the median age

is 24.5 years old as well (one participant didn’t provide the age information). The

age distribution is shown in Figure 6.2.
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6.3 Results

This section reports the results of the experiment. The following subsections describe

the summary statistics (from the pre-and post-experiment surveys), the bicyclists’

physical behavior (cycling speed, input power, and lateral lane position), and physi-

ological responses in different roadway designs.

6.3.1 Survey Response

Pre-experiment Survey

Participants’ attitude towards cycling is collected in the pre-experiment survey. 74

participants answered the question about what types of bicyclists they are. The

majority of the participants have a positive attitude towards cycling, as shown in

Figure 6.3, 6 participants (8.11%) indicated their attitude towards cycling as ”No

way, no how” - I do not ride a bike, 25 participants (37.84%) identified themselves

as ”Interested but Concerned” - I like the idea of riding but have concerns. The

rest of the participants had a higher preference for cycling as 28 (33.78%) indicated

themselves as ”Enthused and Confident” -I like to ride and will do so with dedicated

infrastructure and the remaining 15 (20.27%) chose ”Strong and Fearless” - I will ride

anywhere, no matter the facilities provided.

The engagement of secondary tasks both in daily life and during cycling is also col-

lected in the pre-experiment survey. We asked the participants to estimate how many

hours they spend in music listening and phone usage, as well as the frequency of music

listening, and phone talking when they ride a bike. The distribution of daily hours

spend on music listening and phone are displayed in Figure 6.4. The average music
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Figure 6.3: Participants’ attitude towards cycling

listening hours are 2.82 hours (sd = 2.88 hours). And unsurprisingly, the average

hours spent on the phone is higher (mean = 4.30 hours, sd = 2.07 hours). Partici-

pants’ music listening and phone talking frequency while riding a bike is self-reported

with 5-point Likert scales, with 5 options of ”Never (<10%)”, ”Seldom (about 25%)”,

”Sometimes (about 50%)”, ”Often (about 75%)”, and ”Always (>90%)”. Participants

were asked to choose an option that is closest to them. Table 6.1 summarizes the

results for these two questions. The participants have a higher frequency of music

listening than talking on the phone while biking. More than half of the participants

admitted that they have music-listening behavior while biking, and only about 25%

of the participants reported that they had the experience talking on the phone while

biking before.
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Figure 6.4: Participants’ daily hours spend in music listening (a) and phone usage
(b)

Table 6.1: Summary of participants’ music listening and phone talking frequency
while riding a bike

Secondary Task Type Frequency Number Percentage (%)
Never (<10%) 36 48

Seldom (about 25%) 9 12
Music Listening Sometimes (about 50%) 7 9.3
while Biking Often (about 75%) 15 20

Always (>90%) 7 9.3
NA 1 1.3

Never (<10%) 55 73.3
Seldom (about 25%) 18 24

Talking on the Phone Sometimes (about 50%) 1 1.3
while Biking Often (about 75%) 0 0

Always (>90%) 0 0
NA 1 1.3

Post-experiment Survey

In the post-experiment survey, participants’ stated preferences over the three scenarios

are collected in three aspects: safety, comfort and distraction. For each question, the

answer is to choose their subjective ratings from a 5-point Likert scale.

For subjective safety rating, the Baseline scenario is rated as the safest scenario with

an average score of 4.31/5.0, followed by the Music Listening (3.93/5.0), then the



104

Figure 6.5: Subjective safety rating of different scenarios (jitter points to avoid over-
plotting)

Mock phone conversation scenario (2.95/5.0), the differences between all the three

scenarios are significant, as shown in Figure 6.5 (Baseline v.s. Music listening, p =

0.00297; Baseline v.s. Mock phone conversation, p < 0.0001; Music listening v.s.

Mock phone conversation, p < 0.0001).

For subjective comfort rating, the scores of the Baseline (4.35/5.0) and Music listening

(4.32/5.0) scenarios are close to each other, and both are significantly higher than

the Mock phone conversation scenario (2.88/5.0), with both p values smaller than

0.0001, as shown in Figure 6.6.

For subjective distraction rating, the Mock phone conversation scenario is rated as

the most distracting scenario with an average score of 3.74/5.0, followed by the Mu-

sic Listening (2.42/5.0), then the Mock phone conversation scenario (1.64/5.0), the

differences between all the three scenarios are significant, as shown in Figure 6.7 (all
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Figure 6.6: Subjective comfort rating of different scenarios (jitter points to avoid
overplotting)

the p values are smaller than 0.0001).

6.3.2 Cycling Performance

Speed

For the mean speed, as indicated in Figure 6.8-a, there is a significant difference

between the Baseline and the Mock phone conversation scenarios (β = −1.262, SE =

0.435, p = 0.0428) and between the Music listening and the Mock phone conversation

scenarios (β = 1.178, SE = 0.312, p = 0.0007). Bicyclists’ mean speed in the three

scenarios (Baseline, Music listening, and Mock phone conversation) are 18.6 km/h,

19.1 km/h, and 17.9km/h, respectively. Age group differences are found only in

the Mock phone conversation scenario, where the younger group (19.3 km/h) has a
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Figure 6.7: Subjective distraction rating of different scenarios (jitter points to avoid
overplotting)

significantly higher cycling speed (β = 2.903, SE = 1.058, p = 0.00783) than the older

group (16.7 km/h), as indicated in Figure 6.8-b.

For the standard deviation of speed, the results show there is a significant differ-

ence between the Baseline and the Music listening scenarios (β = −0.30669, SE =

0.14391, p = 0.0348), as shown in Figure 6.9-a. Bicyclists’ standard deviation of speed

in the three scenarios (Baseline, Music listening, and Mock phone conversation) are

1.92 km/h, 1.74 km/h, and 1.83 km/h, respectively. For the Music listening scenario,

it is found that participants who listen to music a lot (>4 hours daily) have a lower

standard deviation of speed (β = −0.572, SE = 0.226, p = 0.0142), as shown in

Figure 6.9-b.
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Figure 6.8: Mean speed of (a) different scenarios, (b) different age groups in the Mock
phone conversation scenario

Figure 6.9: Standard deviation of the speed of (a) different scenarios, (b) participants
with different music listening time in the Music listening scenario
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Figure 6.10: Mean lateral lane position of (a) different attitudes toward cycling, a
higher score means a more positive attitude towards cycling. 1-4 indicates ’No way,
no how’, ’Interested but Concerned’, ’Enthused and Confident’, and ’Strong and
Fearless’, respectively. (b) different genders in the Music listening scenario

Lateral Lane Position

For the lateral lane position, no significant differences are found between different

scenarios. The average lateral lane position for the three scenarios is Baseline -

0.575m, Music listening - 0.569m, and Mock phone conversation - 0.592m. However,

significant differences are found between the participants with different attitudes

toward cycling. As can be seen from Figure 6.10-a, participants who hold more

positive attitudes toward cycling will go more on the left (closer to the vehicle lane).

Input Power

For the mean input power, the average input power in music listening (50.6 Wattage)

is 16% higher than mock phone conversation (43.8 Wattage), and 7.5% higher than

baseline (47.1 Wattage). There is a significant difference between the Baseline and the

Mock phone conversation scenarios (β = −6.658, SE = 2.443, p = 0.00725) and be-
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Figure 6.11: Mean input power of (a) different scenarios, (b) different age groups in
the Mock phone conversation scenario

tween the Music listening and the Mock phone conversation scenarios (β = 6.72, SE =

1.75, p = 0.0006), as shown in Figure 6.11-a. Age group differences are found only in

the Mock phone conversation scenario, where the younger group (50.4 Wattage) has

a significantly higher cycling input power (β = 11.864, SE = 5.712, p = 0.0418) than

the older group (37.8 Wattage), as indicated in Figure 6.11-b.

Head Movement

The head movement result shows a significant difference between the Baseline and the

Mock phone conversation scenario with β = −0.00636, SE = 0.00220, p = 0.00435,

as shown on Figure 6.12-a, participants had a lower variation of head movement

direction in the Mock phone conversation scenario than the Baseline. Additionally, in

the music listening scenario, male participants have a higher head movement variation

than female participants with β = 0.0122, SE = 0.00538, p = 0.0266 (Figure 6.12-b).



110

Figure 6.12: Head movement variation (a) different scenarios; (b) gender differences
in music listening scenario

6.3.3 Physiological Response

Heart Rate

The mean heart rate result indicates that there are no significant differences between

the three scenarios a 95% confidence level. The mean HR (beat per minute) of the

Baseline, Music listening, and Mock phone conversation are 92.89, 92.07, and 90.66,

respectively. No other factors are found to significantly affect the mean HR.

When calculating the frequency of increasing HR change points, the result in Figure

5.12 illustrates the average frequency of HR change points in different scenarios. The

LMM model shows that both the Baseline (β = 0.653, SE = 0.226, p = 0.0131)

and the Music listening scenarios (β = −0.546, SE = 0.226, p = 0.0171) have a

significantly higher frequency of increasing HR change points than the Mock phone

conversation scenario. Bicyclists’ average frequency of increasing HR change points

in the three scenarios (Baseline, Music listening, and Mock phone conversation) are

1.98 counts/min, 2.09 counts/min, and 1.44 counts/min, respectively (Figure 5.12-a).
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Figure 6.13: Frequency of increasing HR change points (a) different scenarios; (b)
gender differences

Male participants have a significantly lower frequency of increasing HR change points

than female participants (1.54 vs. 2.10), with β = −0.612, SE = 0.291, p = 0.0403,

as shown in Figure 6.13-b.

The distribution of HR change points is illustrated in Figure 6.14. With this figure,

it is easier to find which road segment causes more HR change points. The peak is

in the big curve after intersection 6. For other flat or uphill road segments, there will

be more HR change points as the bicyclists are approaching an intersection; While

for the downhill road segment, there will be fewer HR change points as the bicyclists

are approaching an intersection.

Skin Temperature

The mean skin temperature (°C) for the Baseline, Music listening, and Mock phone

conversation scenarios are 32.63°C, 32.68°C, and 32.71°C, although the Mock phone

conversation scenario has a slightly higher, we didn’t find any significant differences

between the three scenarios a 95% confidence level (Figure 6.15-a). The age factor
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Figure 6.14: Spatial distribution of HR change points

is found to be marginal significant (β = 0.682, SE = 0.347, p = 0.0544), as shown

in Figure 6.15-b. No other factors are found to significantly affect the mean Skin

Temperature.

EDA

The numbers of SCR peaks for the Baseline, Music listening, and Mock phone con-

versation scenarios are 28.0, 29.3, and 25.8. Although the Mock phone conversation

scenario has a slightly lower number of SCR peaks, we didn’t find any significant

differences between the three scenarios with a 95% confidence level (Figure 6.16-a).

No other factors are found to significantly affect the number of SCR peaks.

The mean amplitude of SCR peaks for the Baseline, Music listening and Mock phone

conversation scenarios are 0.151 µS, 0.171µS, and 0.205 µS (Figure 6.16-b). The

Mock phone conversation scenario appears to have a sightly higher number of SCR
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Figure 6.15: Skin Temperature of (a) different scenarios; (b) different age groups

Figure 6.16: EDA data results (a) number of SCR peaks different scenarios; (b) mean
amplitude of SCR peaks
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peaks than the Baseline, but the differences are not significant (β = 0.05279, SE =

0.03218, p = 0.1042). In the Mock phone conversation scenario, the gender factor is

found to be significant (male = 0.125 µS, female = 0.267 µS, β = −0.152, SE =

0.0717, p = 0.0394). No other significant differences are found in a 95% confidence

level.

6.4 Discussion

We measured three subjective ratings from the post-experiment survey: safety, com-

fort, and distraction. For the two types of secondary tasks, not surprisingly, the

Mock phone conversation is rated as the most distracting scenario, as it requires both

listening to the audio (input) and speaking out the response (output). And for music

listening, the cyclists only need to listen to the audio (input). The safety rating is

correlated with the distraction rating, lower distraction rating scenarios have higher

safety ratings. In terms of comfort rating, no significant results are found between the

Baseline and Music listening scenarios, both scenarios have a higher comfort rating

than the Mock phone conversation scenario.

Different levels of cognitive distraction have different effects on cycling behavior and

physiological response. For cycling performance, the Music listening scenario has a

significantly higher average speed and input power than the Mock phone conversation,

as cyclists have a lower subjective rating on the distraction of music listening scenario,

they are more confident to keep a higher speed in the IVE with more input power,

although the safety rating of music listening is lower than the Baseline.

In a previous virtual reality-based distracted cycling study, it was found that those

in a low perceptual load (visual distraction) VR cycled at a higher intensity despite
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greater pain (Wender et al. 2022). An earlier real road study also reported that

telephoning coincided with reduced speed, reduced peripheral vision performance,

and increased risk and mental effort ratings (De Waard et al. 2010). That study

created different levels of perceptual load by displaying different items in the VR

for the item detection task. In our study, we generated different levels of cognitive

distraction, and with low cognitive load (music listening), we observe a similar effect

as a visual distraction. With high cognitive load (mock phone conversation), the

adaptive cycling performance includes lowering speed, less input power, and less head

movement, indicating a degraded perception ability of the surrounding environment,

which is aligned with previous research findings with drivers made fewer saccades,

spent more time looking centrally and spent less time looking to the right periphery

(Harbluk, Noy, and Eizenman 2002).

However, in terms of lateral lane position, our findings of cycling performance under

the influence of cognitive distraction is different from driving. With the findings

from the last experiment in Chapter 5, we design bike lanes for the whole road in this

experiment, which is different from the real road of the shared bike lane with vehicles.

The introduction of bike lanes in the last experiment was found to help the bicyclist

to keep closer to the road curbside. In this study, a similar effect is found as there are

no significant differences between different scenarios in lateral lane position. While

in driving-related studies, cognitive load led to a diminished standard deviation of

lateral position, implying a better lane-keeping performance. However, a systematic

comparison of time-to-line crossing calculations suggested a degraded safety margin

of lane keeping (P. Li et al. 2018).

Music listening has been found to be related to emotional arousal, which has the

potential to affect cycling performance. For example, listening to preferred music
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showed no ergogenic benefit during repeated anaerobic cycling sprints when compared

to non-preferred music. However, preferred music increased motivation to exercise

and decreased perceived exertion (Ballmann et al. 2019). The cycling task in this

experiment is low intensity, listening to preferred music, as indicated by the survey

results with higher familiarity and preference of the song played in the Music listening

scenario, which may help to explain the increased speed and input power. Cyclists’

engagement in the music also leads to a decreased standard deviation of speed, there-

fore, they will keep a high speed while avoiding any additional speed changes during

the whole cycling process.

For the physiological response, the HR results are more related to the speed results.

No significant results are found in the mean HR, but the HR change points results

showed that there are fewer heart rate change points in the Mock phone conversation

scenario than in the Baseline and Music listening scenarios. The EDA data has no

significant difference across different scenarios, but the trend of SCR is worth-noting.

The Mock phone conversation scenario has a lower number of SCR peaks but a higher

mean amplitude of SCR peaks. This may indicate that with a higher level of cognitive

load, cyclists will have a lower frequency but higher intensity in their skin conductance

response. This result requires further validation in the future.

Demographic differences are found in several aspects. Generally speaking, partici-

pants who hold more positive attitudes toward cycling will go more on the left (closer

to the vehicle lane), as they may be more confident about their ability to control the

bike. The HR change points data reveals the gender difference as male participants

have a significantly lower frequency of increasing HR than female participants. The

differences vary in different levels of cognitive load. In the Music listening scenario,

the younger group has a significantly higher cycling speed and input power as they
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are more used to the selected music. In the Mock phone conversation scenario, par-

ticipants who listen to music a lot (>4 hours daily) have a lower standard deviation

of speed, indicating they are more engaged in the music. The physiological response

also shows that female cyclists are more affected by the cognitive load in the Mock

phone conversation scenario, as (1) male participants have a higher head movement

variation than female participants, and (2) Female participants have a higher mean

amplitude of SCR peaks. These results highlight the groups of people that require

more attention when studying cyclist cognitive distraction (young people who listen

to music a lot in their daily life and female cyclists under the effect of higher cognitive

distraction such as talking on the phone).

6.5 Conclusion

This research explores the effect of different cognitive distractions on bicyclists’ phys-

iological and behavioral changes. In an immersive virtual environment, a bicycle

simulator with multiple physiological sensing devices is utilized to collect bicyclists’

behavioral and physiological responses on the same road design with bike lanes. Data

collection includes demographic information (age, gender, biking attitude), engage-

ment in a secondary task such as music listening and talking on the phone during their

daily life or cycling, cycling performance in the simulator (speed, lane position, input

power, head movement) and physiological responses (heart rate, skin temperature).

Results from 75 participants who rode on a bicycle simulator through a virtual en-

vironment indicate that (1) Cyclists would have a significantly higher speed, a lower

standard deviation of speed, and higher input power in the music listening scenario.

(2) When talking on the phone, cyclists will try a lower speed with less input power
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and less head movement variation. (3) When listening to music, cyclists who had a

strong habit of daily music listening (> 4 hours/day) had a higher engagement in the

music, with a significantly lower sd of speed. Male cyclists stayed closer to the vehicle

lane and had a higher head movement variation. (4) Lane position is not affected by

the scenario, this may be the effect of introducing bike lanes in the environment.
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Chapter 7

Conclusion and Future Directions

In this dissertation, we address the lack of pre-accident data issues for vulnerable road

users, especially for cyclists, who are facing increasing risks from the road environment

nowadays. To understand cyclists’ safety, behavior, and comfort levels under different

design contexts, a low-cost, risk-free, more controllable solution with the ability of

multimodal data collection is needed for the research community. This dissertation

develops an Immersive Virtual Environment (IVE) bicycle simulator and tests it with

three different experiments for validation in different situations. The key conclusions

and the answers to research objectives (RO) and research questions (RQ) at the end

of Chapter 1 are listed below:

We start the work with the development of Omni-Reality and Cognition Lab Sim-

ulator (ORCLSim) in Chapter 3. Previous research highlights the advantages of

using an Immersive Virtual Environment (IVE) in conducting bicyclist and pedes-

trian studies. These environments do not put participants at risk of injury, are

low-cost compared to on-road or naturalistic studies, and allow researchers to fully

control variables of interest. In this study, we propose ORCLSim to support human

sensing techniques within IVE to evaluate bicyclist and pedestrian physiological and

behavioural changes in different contextual settings. To showcase this framework, we

present two case studies where pilot data from five participants’ physiological and

behavioral responses in an IVE are collected and analyzed, representing real-world
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roadway segments and traffic conditions. Results from these case studies indicate

that physiological data is sensitive to road environment changes and real-time events

in the IVE, especially changes in heart rate and gaze behavior. By analyzing these

changes, future studies can identify how participants’ stress level and cognitive load

is impacted by the surrounding environment. The ORCLSim system architecture is

a prototype that can be customized for future studies in understanding users’ be-

havioral and physiological responses in virtual reality settings. with this study, we

are able to answer RQ 1 of RO 1: What set of information can we capture in the

Immersive Virtual Environment (IVE) bike simulator? We are able to collect cycling

performance (speed, steering, braking, acceleration, and lane position), eye Tracking

(gaze direction, fixation), physiological responses (Heart rate, head movement, hand

acceleration), video recording and stated preference surveys (subjective rating).

We then run a benchmarking study in Chapter 4 to answer RQ 2 of RO1: Will the

cyclists’ cycling/Heart Rate/eye tracking behavior in the IVE be representative of the

real world? Immersive virtual environments (IVE) have been shown to provide a

realistic representation of real-world conditions, allowing researchers, designers, and

engineers to study the impact of design features on end users. However, these tools

have not been evaluated and validated for vulnerable road users, such as cyclists. The

purpose of this study is to assess the use of an IVE bike simulator to study the impact

of design and environmental conditions on cyclists’ perceived safety and behavioral

changes. By benchmarking cyclists’ behaviors and perceived safety in real-life settings

compared to their representative IVE bike simulations, we can validate whether these

IVE simulators are realistic representations of real-world conditions. A pilot study

was conducted both in IVE and on the real road. Various sensors are applied to ensure

that similar data output is obtained. Both absolute and relative validity is established
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across a range of cyclist performances. Results show that most of the performance

measurements have absolute validity, but some of the features from eye tracking, most

of which are in the vertical direction, could not establish either absolute or relative

validity. This phenomenon may be caused by road geometry changes, the appearance

of other road users, and hardware limitations (especially the headsets used in the

study). Overall, the promising results indicate that the IVE bike simulator can be

further utilized for understanding cyclists’ behaviors.

Next, we run two experimental studies in the IVE with larger numbers of participants.

In Chapter 5, we evaluate different design alternatives in the IVE. Participants bike

in a simulated virtual environment modeled to scale from a real-world street with

a shared bike lane (sharrows) to evaluate how the introduction of a curbside bike

lane and a protected bike lane with flexible delineators may impact perceptions of

safety, as well as behavioral and psycho-physiological responses. Results from 50

participants (representing both genders and across a wide age range) show that the

protected bike lane design received the highest perceived safety rating and exhibited

the lowest average cycling speed. Furthermore, both the curbside bike lane and the

protected bike lane scenarios show a less dispersed gaze distribution than the as-built

sharrows scenario, reflecting a higher gaze focus among bicyclists on the biking task in

the curbside bike lane and protected bike lane scenarios, compared to when bicyclists

share right of way with vehicles. Additionally, heart rate change point results from

the study suggest that creating dedicated zones for bicyclists (curbside bike lanes

or protected bike lanes) has the potential to reduce bicyclists’ stress levels. Female

participants show a higher preference for the protected bike lane design and a lower

perceived safety rating on the sharrows. With this study, we are able to answer

Yes to both RQ 3 and RQ 4 of RO 2: Can the proposed framework support IVE
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bike simulator to study cyclists’ behaviors in different roadway designs? and Are the

cyclists’ physiological response different from their stated preferences?.

In Chapter 6, we are more interested in the cyclists’ internal states, especially, the

effect of cognitive distraction on cycling behavior and psychophysiological responses.

This research explores the effect of different cognitive distractions on bicyclists’ phys-

iological and behavioral changes. In an immersive virtual environment, a bicycle

simulator with multiple physiological sensing devices is utilized to collect bicyclists’

behavioral and physiological responses on the same road design with bike lanes. Data

collection includes demographic information (age, gender, biking attitude), engage-

ment in a secondary task such as music listening and talking on the phone during their

daily life or cycling, cycling performance in the simulator (speed, lane position, input

power, head movement) and physiological responses (heart rate, skin temperature).

Results from 75 participants indicate that (1) Cyclists would have a significantly

higher speed, lower sd of speed, and higher input power in the music listening sce-

nario. (2) When talking on the phone, cyclists will try a lower speed with less input

power and less head movement variation. (3) When listening to music, cyclists who

had a strong habit of daily music listening (> 4 hours/day) had a higher engagement

in the music, with a significantly lower sd of speed. Male cyclists stayed closer to

the vehicle lane and had a higher head movement variation. (4) Lane position is

not affected by the scenario, this may be the effect of introducing bike lanes in the

environment. These results provide answers to RQ 5 and RQ 6 of RO 3: Can we use

a standardized secondary task to simulate cognitive distraction during cycling? and

What’s the effect of different types of cognitive distraction on cycling behavior?. For

RQ 5, based on our example of the mock phone conversation, it can create proper

levels of distraction during cycling with great experiment control ability. For RQ 6,
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we find that depending on the levels of cognitive distraction tasks, different adaptive

behaviors are observed. For lower levels of distraction like music listening, cyclists

tend to have a higher engagement in the secondary task with higher speed, less adjust-

ment in speed, higher input power, and more heart rate change points. With higher

levels of cognitive distraction like phone talking, cyclists keep a lower speed with less

input power and they will have less observation on the surrounding environment with

lower head movement variation.

7.1 Takeaways and Practical Outcomes

The key takeaways and practical outcomes from the dissertation are listed as followed.

The IVE-based framework can be utilized for studying the behavioral changes of cy-

clists in different contextual settings. The lack of pre-accident data is one of the main

challenges in finding the reasons behind traffic accidents, especially for vulnerable

road users. The IVE-based framework is proved to be an effective tool with relatively

lower cost and risk for understanding cyclists’ responses to different infrastructures.

For designers, when evaluating new designs with user tests, it is important to conduct

experiments with proper experiment design and include the users’ physiological re-

sponses in addition to subjective measurements. As the users’ objective measurements

can be different from their subjective preferences, the designs should be evaluated in

a more comprehensive way. The results in Chapter 5 show that we may not need

protected bike lanes in all locations on the same road and we can more strategically

add a hybrid protected and not protected bike lanes. For instance, through our gaze

tracking analyses, we see that participants’ stress level changes as they are approach-

ing an intersection or a traffic light. Similarly, going downhill/uphill has an impact
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on their focus and awareness of the surrounding environments. By optimizing the

locations where we have protected bike lanes, we can 1) reduce the cost of protected

bike lanes since we won’t have them everywhere, but also provide more sense of safety

to cyclists.

For urban planners, it’s crucial to consider contextual roadway settings such as traffic

patterns, speed of vehicles, presence of other roadway users as well as the target

populations that will be biking on this road (based on the surrounding neighborhood

and community information). It is also important to study why certain users do

not bike. For instance, across our participants, we identified that females were more

inclined toward safer bike lanes such as the protected bike lanes. meanwhile, in

their subjective responses, they indicated that safety is one of the main reasons they

might not choose biking as the main mode of transportation. So as planners, we

can potentially increase the usability of bike lanes by a larger number of members

of the surrounding community if we can increase their sense of safety when they are

biking on crowded streets. In other words, understanding the user and impacted

community members’ needs can inform the different options we can choose. Chapter

5 and Chapter 6 provide more details about these findings.

7.2 Future Directions

We discuss the limitations of our proposed work and possible future research directions

during the development and use of the VR simulator in this dissertation, several

limitations, and directions have been identified as areas of future research.

• Development of simulators for other road users in IVE. In addition
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to bicyclists and pedestrians, we haven’t tested the ORCLSim framework for

other road users such as drivers yet. We are planning to integrate the driving

simulator in the ORCL lab into our system in the near future. In addition, the

emergence of new road users like e-scooters and e-bikers has brought up new

conflicts between the existing road users and the fatalities of these new road

users have been increasing. The development of simulators for these road users

will help researchers to better understand the new challenges.

• Distributed multi-agent virtual reality simulator. One shortcoming of

existing virtual VRU simulators and driving simulators is that you are lim-

ited to integrating one user (agent) within the virtual space. Once the system

framework can support the simulation of different road users, we can propose

integrating multiple users, who could represent drivers (through a driving simu-

lator), pedestrians, and bicyclists (through virtual simulators) within the same

virtual environment. Furthermore, it would be possible to remotely connect

multiple simulators across different sites. By connecting these distributed sim-

ulators together within a single IVE, we will allow multiple participants re-

alistically interact with each other and the surrounding virtual environment.

Through this system, we can evaluate each participant’s behavioral and phys-

iological responses and create a realistic dataset that can better inform future

design decision-making.

• Integration of other physiological sensing methods in the simulator. In

addition to the physiological sensing used in the dissertation, more physiological

sensing could be included in the framework. For example, Electromyography

(EMG) is a diagnostic procedure to assess the health of muscles and the nerve

cells that control them (motor neurons). Cycling is a physical activity that
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requires a lot of manual input, the EMG data can provide more information

about the physical activity. An electroencephalogram (EEG) is a test that

measures electrical activity in the brain using small, metal discs (electrodes)

attached to the scalp. EEG is more sensitive in users’ internal states such as

cognitive states.

• Extension of current road network in IVE. Our IVE is built from the

Water Street Corridor in the city of Charlottesville, the initial IVE in Chapter

3 only has 4 street blocks, and in Chapter 6 we have extended the road to 8

street blocks. Our future vision is to extend the current road network to the

whole city of Charlottesville.

• Further improvement on the bicycle simulator components. The cur-

rent IVE-based is highly immersive and realistic both when rated by our par-

ticipants and when compared to other existing bike simulators, however, it is

not perfect. With the feedback from participants of different experiments, we

have learned that the realism of steering can be further improved. The current

steering is controlled by the controller, which requires steering calibration at the

beginning of each scenario. The latest bike trainer has integrated the handlebar

with the steering data input/output, we can make use of the new technology

to upgrade the current simulator. Furthermore, the bike simulator is fix-based,

and more degrees of freedom can be considered such as moving up and down

according to the road environment.

• Long-term benchmarking study both in the real world and in the

IVE. Although a benchmarking study is conducted in Chapter 4, a long-term

benchmarking study is required. The study in Chapter 4 has a relatively small

participant number and only tests in the daytime hours during working days
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with sunny weather. As we further extend the road network in IVE, a bench-

marking study is needed both in the real world and in the IVE with different

environment settings such as time of the day, weather conditions, and traffic

conditions.



128

Bibliography

Yerkes, Robert M, John D Dodson, et al. (1908). “The relation of strength of stimulus

to rapidity of habit-formation”. In: Punishment: Issues and experiments, pp. 27–

41.

Shannon, Claude Elwood (1948). “A mathematical theory of communication”. In: The

Bell system technical journal 27.3, pp. 379–423.

May, James G et al. (1990). “Eye movement indices of mental workload”. In: Acta

psychologica 75.1, pp. 75–89.

Coyle, EF et al. (1991). “Physiological and biomechanical factors associated with elite

endurance cycling performance.” In: Medicine and science in sports and exercise

23.1, pp. 93–107.

Barry, Daniel and John A Hartigan (1993). “A Bayesian analysis for change point

problems”. In: Journal of the American Statistical Association 88.421, pp. 309–

319.

Van Veen, Hendrik AHC et al. (1998). “Navigating through a virtual city: Using

virtual reality technology to study human action and perception”. In: Future Gen-

eration Computer Systems 14.3-4, pp. 231–242.

Kwon, Dong-Soo et al. (2001). “KAIST interactive bicycle simulator”. In: Proceedings

2001 ICRA. IEEE International Conference on Robotics and Automation (Cat.

No. 01CH37164). Vol. 3. IEEE, pp. 2313–2318.

Purves, Dale et al. (2001). “Types of eye movements and their functions”. In: Neuro-

science, pp. 361–390.



129

Harbluk, Joanne L, Y Ian Noy, and Moshe Eizenman (2002). The impact of cognitive

distraction on driver visual behaviour and vehicle control. Tech. rep.

Krueger, Charlene and Lili Tian (2004). “A comparison of the general linear mixed

model and repeated measures ANOVA using a dataset with multiple missing data

points”. In: Biological research for nursing 6.2, pp. 151–157.

Engström, Johan, Emma Johansson, and Joakim Östlund (2005). “Effects of visual

and cognitive load in real and simulated motorway driving”. In: Transportation

research part F: traffic psychology and behaviour 8.2, pp. 97–120.

Erdman, Chandra and John W Emerson (2007). “bcp: an R package for performing

a Bayesian analysis of change point problems”. In: Journal of Statistical Software

23.1, pp. 1–13.

Muttart, Jeffrey W et al. (2007). “Driving without a clue: Evaluation of driver sim-

ulator performance during hands-free cell phone operation in a work zone”. In:

Transportation Research Record 2018.1, pp. 9–14.

Parkin, John, Mark Wardman, and Matthew Page (2007). “Models of perceived

cycling risk and route acceptability”. In: Accident Analysis & Prevention 39.2,

pp. 364–371.

Caird, Jeff K et al. (2008). “A meta-analysis of the effects of cell phones on driver

performance”. In: Accident Analysis & Prevention 40.4, pp. 1282–1293.

Chapman, Andrew R et al. (2008). “Patterns of leg muscle recruitment vary between

novice and highly trained cyclists”. In: Journal of Electromyography and Kinesi-

ology 18.3, pp. 359–371.

Daniels, Stijn, Erik Nuyts, and Geert Wets (2008). “The effects of roundabouts on

traffic safety for bicyclists: an observational study”. In: Accident Analysis & Pre-

vention 40.2, pp. 518–526.



130

Drews, Frank A et al. (2009). “Text messaging during simulated driving”. In: Human

factors 51.5, pp. 762–770.

Sener, Ipek N, Naveen Eluru, and Chandra R Bhat (2009). “An analysis of bicycle

route choice preferences in Texas, US”. In: Transportation 36.5, pp. 511–539.

De Waard, Dick et al. (2010). “Mobile phone use while cycling: Incidence and effects

on behaviour and safety”. In: Ergonomics 53.1, pp. 30–42.

Pucher, John, Jennifer Dill, and Susan Handy (2010). “Infrastructure, programs, and

policies to increase bicycling: an international review”. In: Preventive medicine 50,

S106–S125.

Wang, Ying, Bruce Mehler, et al. (2010). “The validity of driving simulation for

assessing differences between in-vehicle informational interfaces: A comparison

with field testing”. In: Ergonomics 53.3, pp. 404–420.

Williams, Lynne J and Herve Abdi (2010). “Fisher’s least significant difference (LSD)

test”. In: Encyclopedia of research design 218, pp. 840–853.

Haufe, Stefan et al. (2011). “EEG potentials predict upcoming emergency brakings

during simulated driving”. In: Journal of neural engineering 8.5, p. 056001.

Holmqvist, Kenneth et al. (2011). Eye tracking: A comprehensive guide to methods

and measures. OUP Oxford.

Zahabi, Seyed Amir H et al. (2011). “Estimating potential effect of speed limits, built

environment, and other factors on severity of pedestrian and cyclist injuries in

crashes”. In: Transportation research record 2247.1, pp. 81–90.

Flusche, Darren (2012). “Bicycling means business: The economic benefits of bicycle

infrastructure”. In.

Poulos, Roslyn G et al. (2012). “Exposure-based cycling crash, near miss and injury

rates: The Safer Cycling Prospective Cohort Study protocol”. In: Injury prevention

18.1, e1–e1.



131

Van Hoof, Wannes et al. (2012). “Comparing lower lumbar kinematics in cyclists with

low back pain (flexion pattern) versus asymptomatic controls–field study using a

wireless posture monitoring system”. In: Manual therapy 17.4, pp. 312–317.

Chaurand, Nadine and Patricia Delhomme (2013). “Cyclists and drivers in road inter-

actions: A comparison of perceived crash risk”. In: Accident Analysis & Prevention

50, pp. 1176–1184.

Terzano, Kathryn (2013). “Bicycling safety and distracted behavior in The Hague,

the Netherlands”. In: Accident Analysis & Prevention 57, pp. 87–90.

Thompson, Leah L et al. (2013). “Impact of social and technological distraction on

pedestrian crossing behaviour: an observational study”. In: Injury prevention 19.4,

pp. 232–237.

Dill, Jennifer et al. (2014). “Can protected bike lanes help close the gender gap in

cycling? Lessons from five cities”. In: Urban Studies and Planning Faculty Publi-

cations and Presentations.

Mwakalonge, Judith L, Jamario White, and Saidi Siuhi (2014). “Distracted biking: a

review of the current state-of-knowledge”. In: International Journal of Traffic and

Transportation Engineering 3.2, pp. 42–51.

Wang, Ying, Bryan Reimer, et al. (2014). “The sensitivity of different methodologies

for characterizing drivers’ gaze concentration under increased cognitive demand”.

In: Transportation research part F: traffic psychology and behaviour 26, pp. 227–

237.

Ayres, Thomas J et al. (2015). “Bicyclist behavior at stop signs”. In: Proceedings of

the Human Factors and Ergonomics Society Annual Meeting. Vol. 59. 1. SAGE

Publications Sage CA: Los Angeles, CA, pp. 1616–1620.



132

Doorley, Ronan et al. (2015). “Analysis of heart rate variability amongst cyclists

under perceived variations of risk exposure”. In: Transportation research part F:

traffic psychology and behaviour 28, pp. 40–54.

Heydarian, Arsalan, Joao P Carneiro, et al. (2015). “Immersive virtual environments

versus physical built environments: A benchmarking study for building design and

user-built environment explorations”. In: Automation in Construction 54, pp. 116–

126.

McNeil, Nathan, Christopher M Monsere, and Jennifer Dill (2015). “Influence of bike

lane buffer types on perceived comfort and safety of bicyclists and potential bicy-

clists”. In: Transportation research record 2520.1, pp. 132–142.

Stoker, Philip et al. (2015). “Pedestrian safety and the built environment: a review

of the risk factors”. In: Journal of Planning Literature 30.4, pp. 377–392.

Chen, Peng and Qing Shen (2016). “Built environment effects on cyclist injury severity

in automobile-involved bicycle crashes”. In: Accident Analysis & Prevention 86,

pp. 239–246.

Correa, Alejandro et al. (2016). “Indoor pedestrian tracking by on-body multiple

receivers”. In: IEEE Sensors Journal 16.8, pp. 2545–2553.

Ethan, Danna et al. (2016). “An analysis of technology-related distracted biking be-

haviors and helmet use among cyclists in New York City”. In: Journal of commu-

nity health 41.1, pp. 138–145.

Nikolas, Molly A et al. (2016). “Risky bicycling behavior among youth with and

without attention-deficit hyperactivity disorder”. In: Journal of child psychology

and psychiatry 57.2, pp. 141–148.

Standardization, International Organization for (2016). Road vehicles–Transport in-

formation and control systems–Detection Response Task (DRT) for assessing at-

tentional effects of cognitive load in driving.



133

Tapiro, Hagai et al. (2016). “Where do older pedestrians glance before deciding to

cross a simulated two-lane road? A pedestrian simulator paradigm”. In: Proceed-

ings of the human factors and ergonomics society annual meeting. Vol. 60. 1.

SAGE Publications Sage CA: Los Angeles, CA, pp. 11–15.

Wang, Ying, Xiang Guo, et al. (2016). “Color Block Task: A New Surrogate Sec-

ondary Task to Measure the Impact of Drivers’ Incrementally Increased Work-

load”. In: Proceedings of the Human Factors and Ergonomics Society Annual

Meeting. Vol. 60. 1. SAGE Publications Sage CA: Los Angeles, CA, pp. 1889–

1893.

Wolfe, Elizabeth Suzanne et al. (2016). “Distracted biking: an observational study”.

In: Journal of trauma nursing: the official journal of the Society of Trauma Nurses

23.2, p. 65.

Zeile, Peter et al. (2016). “Urban Emotions and Cycling Experience–enriching traffic

planning for cyclists with human sensor data”. In: GI_Forum 1.2013, pp. 204–216.

Akbar, Izzat A et al. (2017). “Three drowsiness categories assessment by electroen-

cephalogram in driving simulator environment”. In: 2017 39th Annual Interna-

tional Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC). IEEE, pp. 2904–2907.

Aldred, Rachel et al. (2017). “Cycling provision separated from motor traffic: a sys-

tematic review exploring whether stated preferences vary by gender and age”. In:

Transport reviews 37.1, pp. 29–55.

Cao, Zhe et al. (2017). “Realtime multi-person 2d pose estimation using part affinity

fields”. In: Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 7291–7299.



134

Cloutier, Marie-Soleil et al. (2017). ““Outta my way!” Individual and environmental

correlates of interactions between pedestrians and vehicles during street crossings”.

In: Accident Analysis & Prevention 104, pp. 36–45.

Coulacoglou, C and DH Saklofske (2017). “Executive function, theory of mind, and

adaptive behavior”. In: Psychomterics and Psychological assessment. Principles

and applications, pp. 91–119.

Dawson, Michael E, Anne M Schell, and Diane L Filion (2017). “The electrodermal

system.” In.

Eudave, Luis and Miguel Valencia (2017). “Physiological response while driving in an

immersive virtual environment”. In: 2017 IEEE 14th International Conference on

Wearable and Implantable Body Sensor Networks (BSN). IEEE, pp. 145–148.

Heydarian, Arsalan and Burcin Becerik-Gerber (2017). “Use of immersive virtual

environments for occupant behaviour monitoring and data collection”. In: Journal

of Building Performance Simulation 10.5-6, pp. 484–498.

Kwigizile, Valerian et al. (2017). Real Time Bicycle Simulation Study of Bicyclists’

Behaviors and their Implication on Safety. Tech. rep. Western Michigan University.

Transportation Research Center for Livable …

Lee, Oliver et al. (2017). “Description of a model based bicycle simulator”. In: Pro-

ceedings of the 6th Annual International Cycling Safety Conference.

O’Hern, Steve, Jennie Oxley, and Mark Stevenson (2017). “Validation of a bicycle

simulator for road safety research”. In: Accident Analysis & Prevention 100, pp. 53–

58.

Stroh, Oliver (2017). “The Design of an Electro-Mechanical Bicycle for an Immersive

Virtual Environment”. In.



135

Xu, Jing, Yingzi Lin, and David Schmidt (2017). “Exploring the Influence of Simu-

lated Road Environments on Cyclist Behavior”. In: International Journal of Vir-

tual Reality 17.3, pp. 15–26.

Yusoff, Norhasliza M et al. (2017). “Selection of measurement method for detection of

driver visual cognitive distraction: A review”. In: IEEE Access 5, pp. 22844–22854.

Zou, Hao, Nan Li, and Lijun Cao (2017). “Emotional response–based approach for

assessing the sense of presence of subjects in virtual building evacuation studies”.

In: Journal of Computing in Civil Engineering 31.5, p. 04017028.

Abadi, Masoud Ghodrat and David S Hurwitz (2018). “Bicyclist’s perceived level

of comfort in dense urban environments: How do ambient traffic, engineering

treatments, and bicyclist characteristics relate?” In: Sustainable cities and society

40, pp. 101–109.

Barnard, Megan Patricia and Peter Chapman (2018). “The effects of instruction and

environmental demand on state anxiety, driving performance and autonomic ac-

tivity: Are ego-threatening manipulations effective?” In: Transportation research

part F: traffic psychology and behaviour 55, pp. 123–135.

Fitch, Dillon T and Susan L Handy (2018). “The relationship between experienced

and imagined bicycling comfort and safety”. In: Transportation research record

2672.36, pp. 116–124.

Francisco, Abigail et al. (2018). “Occupant perceptions of building information model-

based energy visualizations in eco-feedback systems”. In: Applied Energy 221,

pp. 220–228.

Keler, Andreas et al. (2018). “A bicycle simulator for experiencing microscopic traffic

flow simulation in urban environments”. In: 2018 21st International Conference

on Intelligent Transportation Systems (ITSC). IEEE, pp. 3020–3023.



136

Kim, Hye-Geum et al. (2018). “Stress and heart rate variability: A meta-analysis and

review of the literature”. In: Psychiatry investigation 15.3, p. 235.

Li, Penghui et al. (2018). “Does cognitive distraction improve or degrade lane keeping

performance? Analysis of time-to-line crossing safety margins”. In: Transportation

research part F: traffic psychology and behaviour 57, pp. 48–58.

Napoli, Nicholas J et al. (2018). “Uncertainty in heart rate complexity metrics caused

by R-peak perturbations”. In: Computers in biology and medicine 103, pp. 198–

207.

Nazemi, Mohsen, Michael AB van Eggermond, Alexander Erath, and Kay W Ax-

hausen (2018). “Studying cyclists’ behavior in a non-naturalistic experiment utiliz-

ing cycling simulator with immersive virtual reality”. In: Arbeitsberichte Verkehrs-

und Raumplanung 1383.

Nazemi, Mohsen, Michael AB van Eggermond, Alexander Erath, Dorothea Schaffner,

et al. (2018). “Speed and space perception in virtual reality for bicycle research”.

In: 7th International Cycling Safety Conference (ICSC 2018).

Organization, World Health (2018). Global status report on road safety 2018: sum-

mary. Tech. rep. World Health Organization.

Ridel, Daniela et al. (2018). “A literature review on the prediction of pedestrian

behavior in urban scenarios”. In: 2018 21st International Conference on Intelligent

Transportation Systems (ITSC). IEEE, pp. 3105–3112.

Robartes, Erin and T Donna Chen (2018). “Crash histories, safety perceptions, and

attitudes among Virginia bicyclists”. In: Journal of safety research 67, pp. 189–

196.

Schultheiss, William, Rebecca L Sanders, and Jennifer Toole (2018). “A historical

perspective on the AASHTO guide for the development of bicycle facilities and



137

the impact of the vehicular cycling movement”. In: Transportation research record

2672.13, pp. 38–49.

Shaaban, Khaled, Deepti Muley, and Abdulla Mohammed (2018). “Analysis of illegal

pedestrian crossing behavior on a major divided arterial road”. In: Transportation

research part F: traffic psychology and behaviour 54, pp. 124–137.

Shiferaw, Brook A et al. (2018). “Stationary gaze entropy predicts lane departure

events in sleep-deprived drivers”. In: Scientific reports 8.1, pp. 1–10.

Stelling-Konczak, A et al. (2018). “A study in real traffic examining glance behaviour

of teenage cyclists when listening to music: results and ethical considerations”. In:

Transportation research part F: traffic psychology and behaviour 55, pp. 47–57.

Sun, Carlos and Zhu Qing (2018). “Design and construction of a virtual bicycle simu-

lator for evaluating sustainable facilities design”. In: Advances in Civil Engineering

2018.

Trefzger, Mathias et al. (2018). “A visual comparison of gaze behavior from pedes-

trians and cyclists”. In: Proceedings of the 2018 ACM symposium on eye tracking

research & applications, pp. 1–5.

Useche, Sergio A et al. (2018). “Distraction of cyclists: how does it influence their

risky behaviors and traffic crashes?” In: PeerJ 6, e5616.

Uttley, Jim, James Simpson, and Hussain Qasem (2018). “Eye-tracking in the real

world: Insights about the urban environment”. In: Handbook of Research on Perception-

Driven Approaches to Urban Assessment and Design. IGI Global, pp. 368–396.

Abadi, Masoud Ghodrat, David S Hurwitz, et al. (2019). “Factors impacting bicyclist

lateral position and velocity in proximity to commercial vehicle loading zones:

Application of a bicycling simulator”. In: Accident Analysis & Prevention 125,

pp. 29–39.



138

Ballmann, Christopher G et al. (2019). “Effects of listening to preferred versus non-

preferred music on repeated wingate anaerobic test performance”. In: Sports 7.8,

p. 185.

Chı́as, Pilar et al. (2019). “3D MODELLING AND VIRTUAL REALITY APPLIED

TO COMPLEX ARCHITECTURES: AN APPLICATION TOHOSPITALS’DESIGN.”

In: International Archives of the Photogrammetry, Remote Sensing & Spatial In-

formation Sciences.

Ergan, Semiha et al. (2019). “Quantifying human experience in architectural spaces

with integrated virtual reality and body sensor networks”. In: Journal of Comput-

ing in Civil Engineering 33.2, p. 04018062.

Guo, Xiang, Lian Cui, et al. (2019). “How Will Humans Cut Through Automated

Vehicle Platoons in Mixed Traffic Environments? A Simulation Study of Drivers’

Gaze Behaviors Based on the Dynamic Areas of Interest”. In: Systems Engineering

in Context. Springer, pp. 691–701.

Huemer, Anja Katharina, Selvi Gercek, and Mark Vollrath (2019). “Secondary task

engagement in German cyclists–An observational study”. In: Safety Science 120,

pp. 290–298.

Kim, Jinwoo, Megha Yadav, Changbum R Ahn, et al. (2019). “Saliency detection

analysis of pedestrians’ physiological responses to assess adverse built environment

features”. In: Computing in Civil Engineering 2019: Smart Cities, Sustainability,

and Resilience. American Society of Civil Engineers Reston, VA, pp. 90–97.

Lohani, Monika, Brennan R Payne, and David L Strayer (2019). “A review of psy-

chophysiological measures to assess cognitive states in real-world driving”. In:

Frontiers in human neuroscience 13, p. 57.



139

Mitra, Raktim and Sean Nash (2019). “Can the built environment explain gender

gap in cycling? An exploration of university students’ travel behavior in Toronto,

Canada”. In: International journal of sustainable transportation 13.2, pp. 138–147.

Paridon, Kjell N van et al. (2019). “Visual search behaviour in young cyclists: A

naturalistic experiment”. In: Transportation research part F: traffic psychology

and behaviour 67, pp. 217–229.

Rupi, Federico and Kevin J Krizek (2019). “Visual eye gaze while cycling: Analyzing

eye tracking at signalized intersections in urban conditions”. In: Sustainability

11.21, p. 6089.

Shiferaw, Brook, Luke Downey, and David Crewther (2019). “A review of gaze en-

tropy as a measure of visual scanning efficiency”. In: Neuroscience & Biobehavioral

Reviews 96, pp. 353–366.

Wynne, Rachael A, Vanessa Beanland, and Paul M Salmon (2019). “Systematic review

of driving simulator validation studies”. In: Safety science 117, pp. 138–151.

Yang, Hongtai et al. (2019). “Underreporting, crash severity and fault assignment of

minor crashes in China–a study based on self-reported surveys”. In: International

journal of injury control and safety promotion 26.1, pp. 30–36.

Zhao, Yongxiang et al. (2019). “Quantitative measurement of social repulsive force

in pedestrian movements based on physiological responses”. In: Transportation

research part B: methodological 130, pp. 1–20.

Administration, National Highway Traffic Safety et al. (2020). “Overview of motor

vehicle crashes in 2019”. In: US Department of Transportation: Washington, DC,

USA.

Bogacz, Martyna, Stephane Hess, Chiara Calastri, Charisma F Choudhury, Alexander

Erath, et al. (2020). “Comparison of cycling behavior between keyboard-controlled



140

and instrumented bicycle experiments in virtual reality”. In: Transportation re-

search record 2674.7, pp. 244–257.

Boukhechba, Mehdi and Laura E Barnes (2020). “Swear: Sensing using wearables.

Generalized human crowdsensing on smartwatches”. In: International Conference

on Applied Human Factors and Ergonomics. Springer, pp. 510–516.

Ebadi, Yalda et al. (2020). “Impact of cognitive distractions on drivers’ hazardous

event anticipation and mitigation behavior in vehicle–bicycle conflict situations”.

In: Transportation research record 2674.7, pp. 504–513.

Fitch, Dillon T, James Sharpnack, and Susan L Handy (2020). “Psychological stress

of bicycling with traffic: examining heart rate variability of bicyclists in natural

urban environments”. In: Transportation research part F: traffic psychology and

behaviour 70, pp. 81–97.

Gao, Yuyan et al. (2020). “Unsafe bicycling behavior in Changsha, China: A video-

based observational study”. In: International journal of environmental research

and public health 17.9, p. 3256.

Guo, Xiang, Yichen Jiang, and Inki Kim (2020). “Interacting with Autonomous Pla-

toons: Human Driver’s Adaptive Behaviors in Planned Lane Changes”. In: 2020

Systems and Information Engineering Design Symposium (SIEDS). IEEE, pp. 1–

5.

Kim, Jinwoo, Megha Yadav, Theodora Chaspari, et al. (2020a). “Environmental Dis-

tress and Physiological Signals: Examination of the Saliency Detection Method”.

In: Journal of Computing in Civil Engineering 34.6, p. 04020046.

— (2020b). “Saliency detection analysis of collective physiological responses of pedes-

trians to evaluate neighborhood built environments”. In: Advanced Engineering

Informatics 43, p. 101035.



141

Lee, Gaang et al. (2020). “Wearable biosensor and collective sensing–based approach

for detecting older adults’ environmental barriers”. In: Journal of Computing in

Civil Engineering 34.2, p. 04020002.

National Highway Traffic Safety Administration, NHTSA (2020). “Fatality analysisi

reporting system encyclopedia”. In: http://www-fars. nhtsa. dot. gov/Main/in-

dex.aspx.

Noghabaei, Mojtaba and Kevin Han (2020). “Hazard recognition in an immersive

virtual environment: Framework for the simultaneous analysis of visual search and

EEG patterns”. In: Construction Research Congress 2020: Computer Applications.

American Society of Civil Engineers Reston, VA, pp. 934–943.

Rybarczyk, Greg et al. (2020). “Physiological responses to urban design during bi-

cycling: A naturalistic investigation”. In: Transportation research part F: traffic

psychology and behaviour 68, pp. 79–93.

Shoman, M and H Imine (2020). “Modeling and simulation of bicycle dynamics”. In:

Proc. TRA, pp. 1–10.

Soares, Sónia, Sara Ferreira, and António Couto (2020). “Driving simulator exper-

iments to study drowsiness: a systematic review”. In: Traffic injury prevention

21.1, pp. 29–37.

Stülpnagel, Rul von (2020). “Gaze behavior during urban cycling: Effects of subjective

risk perception and vista space properties”. In: Transportation research part F:

traffic psychology and behaviour 75, pp. 222–238.

Tavakoli, Arash, Mehdi Boukhechba, and Arsalan Heydarian (2020). “Personalized

driver state profiles: A naturalistic data-driven study”. In: International Confer-

ence on Applied Human Factors and Ergonomics. Springer, pp. 32–39.



142

Teixeira, Inaian Pignatti et al. (2020). “Does cycling infrastructure reduce stress

biomarkers in commuting cyclists? A comparison of five European cities”. In:

Journal of Transport Geography 88, p. 102830.

Young, Kristie L et al. (2020). “Australian cyclists’ engagement in secondary tasks”.

In: Journal of Transport & Health 16, p. 100793.

Adami, Pooya et al. (2021). “Effectiveness of VR-based training on improving con-

struction workers’ knowledge, skills, and safety behavior in robotic teleoperation”.

In: Advanced Engineering Informatics 50, p. 101431.

Awada, Mohamad et al. (2021). “An integrated emotional and physiological assess-

ment for VR-based active shooter incident experiments”. In: Advanced Engineering

Informatics 47, p. 101227.

Baee, Sonia et al. (2021). “MEDIRL: Predicting the visual attention of drivers via

maximum entropy deep inverse reinforcement learning”. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision, pp. 13178–13188.

Bogacz, Martyna, Stephane Hess, Chiara Calastri, Charisma F Choudhury, Faisal

Mushtaq, et al. (2021). “Modelling risk perception using a dynamic hybrid choice

model and brain-imaging data: Application to virtual reality cycling”. In: Trans-

portation Research Part C: Emerging Technologies 133, p. 103435.

Brand, Christian et al. (2021). “The climate change mitigation effects of daily active

travel in cities”. In: Transportation Research Part D: Transport and Environment

93, p. 102764.

Buehler, Ralph and John Pucher (2021). COVID-19 Impacts on Cycling, 2019–2020.

Bustos, Cristina et al. (2021). “Predicting Driver Self-Reported Stress by Analyzing

the Road Scene”. In: 2021 9th International Conference on Affective Computing

and Intelligent Interaction (ACII). IEEE Computer Society, pp. 1–8.



143

Cobb, Douglas P, Hisham Jashami, and David S Hurwitz (2021). “Bicyclists’ be-

havioral and physiological responses to varying roadway conditions and bicycle

infrastructure”. In: Transportation Research Part F: Traffic Psychology and Be-

haviour 80, pp. 172–188.

Dittrich, Monique (2021). “Why Drivers Feel the Way they Do: An On-the-Road

Study Using Self-Reports and Geo-Tagging”. In: 13th International Conference

on Automotive User Interfaces and Interactive Vehicular Applications, pp. 116–

125.

Guo, Xiang (2021). ORCL VR EyeTracking Set Up. URL: https://git.io/JK3hq.

Guo, Xiang, Erin Robartes, et al. (2021). “Benchmarking the use of immersive vir-

tual bike simulators for understanding cyclist behaviors”. In: Computing in Civil

Engineering 2021, pp. 1319–1326.

Nazemi, Mohsen, Michael AB van Eggermond, Alexander Erath, Dorothea Schaffner,

et al. (2021). “Studying bicyclists’ perceived level of safety using a bicycle simula-

tor combined with immersive virtual reality”. In: Accident Analysis & Prevention

151, p. 105943.

NHTSA (2021a). Fatality analysis reporting system encyclopedia.

— (2021b). “Traffic Safety Facts Research Note: Distracted Driving 2019”. In: Report

No. DOT HS 813, p. 111.

Noghabaei, Mojtaba, Kevin Han, and Alex Albert (2021). “Feasibility Study to Iden-

tify Brain Activity and Eye-Tracking Features for Assessing Hazard Recognition

Using Consumer-Grade Wearables in an Immersive Virtual Environment”. In:

Journal of Construction Engineering and Management 147.9, p. 04021104.

Rodriguez-Valencia, Alvaro et al. (2021). “Towards an enriched framework of service

evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of

users’ perceptions”. In: Transportation, pp. 1–24.

https://git.io/JK3hq


144

Sharif, Marissa A and Daniel M Oppenheimer (2021). “The effect of categories on

relative encoding biases in memory-based judgments”. In: Organizational Behavior

and Human Decision Processes 162, pp. 1–8.

Tavakoli, Arash, Mehdi Boukhechba, and Arsalan Heydarian (2021). “Leveraging

Ubiquitous Computing for Empathetic Routing: A Naturalistic Data-driven Ap-

proach”. In: Extended Abstracts of the 2021 CHI Conference on Human Factors

in Computing Systems, pp. 1–6.

Tavakoli, Arash, Shashwat Kumar, Mehdi Boukhechba, et al. (2021). “Driver state

and behavior detection through smart wearables”. In: 2021 IEEE Intelligent Ve-

hicles Symposium (IV). IEEE, pp. 559–565.

Tavakoli, Arash, Shashwat Kumar, Xiang Guo, et al. (2021). “HARMONY: A Human-

Centered Multimodal Driving Study in the Wild”. In: IEEE Access 9, pp. 23956–

23978.

Zou, Xin et al. (2021). “On-road virtual reality autonomous vehicle (VRAV) simula-

tor: An empirical study on user experience”. In: Transportation Research Part C:

Emerging Technologies 126, p. 103090.

Guo, Xiang, Austin Angulo, et al. (Aug. 2022). “ORCLSim: A System Architecture

for Studying Bicyclist and Pedestrian Physiological Behavior through Immersive

Virtual Environments”. In: Journal of Advanced Transportation 2022, p. 2750369.

ISSN: 0197-6729. DOI: 10.1155/2022/2750369. URL: https://doi.org/10.1155/

2022/2750369.

Wender, Carly LA et al. (2022). “Virtual reality-based distraction on pain, perfor-

mance, and anxiety during and after moderate-vigorous intensity cycling”. In:

Physiology & Behavior 250, p. 113779.

https://doi.org/10.1155/2022/2750369
https://doi.org/10.1155/2022/2750369
https://doi.org/10.1155/2022/2750369


145

Appendices



146

Appendix A

Informed Consent Agreement

Please read this consent agreement carefully before you decide to partici-

pate in the study.

Purpose of the research study: The purpose of this research is to test the effec-

tiveness of Virtual Reality (VR) as tool to replicate realistic environmental settings at

a low cost while reducing risk to the user during experimentation. In this experiment,

we aim to increase understanding of perceived safety and technological acceptance as

it relates to bicyclists and the road environment. This information can be used by

planners and engineers to better design technology and infrastructure for bicyclists.

With VR, we can study human behaviors in settings/scenarios that (1) we have

limited or no access to (e.g., design of a new intersection that has not been built yet)

or (2) are considered high-risk environments for collecting real-life data (e.g., bicyclist

safety or crash rates at an intersection).

What you will do in the study: The goal of the Bicyclist Study is to place bi-

cyclists in an environment in which they can naturally interact with vehicles. The

participant will be seated on a stationary bike and will be wearing a VR headset

and physiological sensing. The instrumented bicycle will allow their actions to be

replicated in the virtual environment (speeding up, slowing down, steering). Specifi-

cally, this research aims to study how bicyclists behave in scenarios where they will
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be involved with different secondary tasks. You will be given a short questionnaire

after each test in which you will respond to your thoughts and feelings regarding your

experience.

Time required: The study will require about 1 hour of your time.

Risks: The physical components of these tasks are not stressful, and include head

and body turning, moving, and pointing. Light and sound intensities are well within

normal ranges. The only foreseeable physical risks are slight eye strain, dizziness,

and mild nausea. There are no known mental risks. You will be asked to remove the

head mounted display if they experience any eye strain, dizziness, or nausea during

the sessions. They will be given rest breaks in between the sessions. Upon request,

you will also be allowed to stop and leave the experiment if you feel uncomfortable or

cannot continue the experiment. A loss of confidentiality would not put you at risk,

and the researchers will use caution in handling the data.

Benefits: There are no direct benefits associated with the participation in this study.

The proposed experiments are straightforward tests of performance and visual comfort

using standard virtual environments displays and trackers.

Confidentiality: The information that you give in the study will be handled confi-

dentially. Your information will be assigned a code number. The list connecting your

email to this code will be kept in a locked file. When the study is completed and

the data have been analyzed, this list will be deleted. Your name will not be used

in any report. Once any data is deleted from a request, the changes will propagate

correspondingly to the backup drives.

Voluntary participation: Your participation in the study is completely voluntary.

Deciding not to participate will have no effect on your education at the University of
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Virginia.

Right to withdraw from the study: You have the right to withdraw from the

study at any time without penalty.

How to withdraw from the study: If you want to withdraw from the study,

please contact the ORCL lab at xg3kb@virginia.edu indicating that you would like

to withdraw from the study. There is no penalty for withdrawing. You may request

that your archived data to be destroyed upon withdrawing from the study.

Payment: You will receive a $20 gift card as payment for participating in the study.

If you have questions about the study, contact:

Donna Chen

Engineering Systems and Environment

151 Engineer’s Way, Room 101G

University of Virginia, Charlottesville, VA 22904

Telephone: (434) 924-6224

Email address: tdchen@virginia.edu

Arsalan Heydarian

Engineering Systems and Environment

151 Engineer’s Way, Room 281

University of Virginia, Charlottesville, VA 22904

Telephone: (434) 924-1014

Email address: ah6rx@virginia.edu
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Research Assistants

Xiang Guo

Engineering Systems and Environment

Thornton Hall, Room D101

University of Virginia, Charlottesville, VA 22904

Email address: xg3kb@virginia.edu

To obtain more information about the study, ask questions about the

research procedures, express concerns about your participation, or report

illness, injury or other problems, please contact:

Tonya R. Moon, Ph.D.

Chair, Institutional Review Board for the Social and Behavioral Sciences

One Morton Dr Suite 500

University of Virginia, P.O. Box 800392

Charlottesville, VA 22908-0392

Telephone: (434) 924-5999

Email: irbsbshelp@virginia.edu

Website: www.virginia.edu/vpr/irb/sbs

Agreement:

I agree to participate in the research study described above.

Print Name:
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Signature:

Date:

You will receive a copy of this form for your records.
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