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Abstract

Elastic optical network (EON)s offer flexible spectrum allocation, allowing for

the accommodation of varying bandwidth traffic. Multiband and multicore fiber

(MCF) EONs that extend the capacity in spectral and spatial dimensions have

been proposed to meet future communication demands. Planning the resource

usage of these networks has been the subject of extensive research. Careful de-

sign of routing, spectrum, core (if MCF), and modulation assignment algorithms

enable efficient use of network resources in the wake of an increasing number of

network users. In addition, consideration of physical layer impairments in EONs

is important in the network planning stage for long-haul systems, especially when

dealing with large dynamic traffic.

This dissertation investigates the resource provisioning problem for multiband

and multicore fiber EONs using heuristic and machine learning approaches. The

contributions of the dissertation work are mainly divided into four parts: (1) a

Q-learning (reinforcement learning) based routing selection for C+L band multi-

band network is proposed considering dynamic network status; (2) the impact

of different impairments in a dynamic multicore fiber provisioning scheme is an-

alyzed that highlights the importance of inclusion of non-XT impairments; (3)

a multi-attribute decision-making based route and core selection method and a

new spectrum assignment scheme is proposed for multicore networks while con-

sidering network fragmentation and energy efficiency; and (4) machine learning

(ML) is introduced to capture the hidden relationships in the network to judge

the suitability of candidate resources and to estimate the links noises, thereby

speeding the quality of transmission constraint verification in comparison to the

analytic Gaussian Noise model.

For each part of the dissertation, the performance of the proposed algorithms

is evaluated and compared with standard and published algorithms as bench-

marks. Results show that both multiband and multicore are potential candidates

for handling increasing network traffic. Although each of them comes with new
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associated impairments, it is found that multiband can handle the demand in-

crease only to a certain level, and multicore can considerably multiply the capac-

ity, also providing greater flexibility in the impairment-aware design. Heuristic

solutions enable the design of resource allocation so that the individual network

aspects can be tackled by designing the rules for the selection and utilization of

network resources in a unique manner while also being straightforward and easy

to design and implement. On the other hand, the ML based solutions, especially

the supervised approaches, enable learning unknown relationships of the network,

allowing for different insights to help design the allocation solutions. The incor-

poration of ML can also help reduce the computation time for tasks that can

become time-consuming when considering dynamic resource allocation for large

loads and traffic. However, ML usage also comes with the need for a careful de-

sign and expertise with the problem domain. Hence, depending on the problem’s

goal and the long-term network requirements, either heuristic, ML based, or a

combination of their approaches can be chosen. The proposed algorithms are

simple, practical, and can be used easily by the network operators.
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sor Mäıté Brandt-Pearce for their direction and insights.

I also acknowledge the Research Computing at the University of Virginia for

providing computational resources and technical support that have contributed

to the results of this dissertation.

Lastly, I would like to thank the National Science Foundation (NSF) for the

financial support of my studies.

4



To my beloved parents.

5



Contents

Acronyms 13

1 Introduction 17

1.1 Research Motivation and Background . . . . . . . . . . . . . . . . 17

1.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 EON Description and Problem Formulation 22

2.1 Elastic Optical Networks (EONs) . . . . . . . . . . . . . . . . . . 22

2.2 Enabling Technologies for Space Division Multiplexed EONs . . . 24

2.3 Resource Provisioning Problem . . . . . . . . . . . . . . . . . . . 26

2.4 Algorithm Performance Validation Approach . . . . . . . . . . . . 29

2.5 Physical Layer Impairments . . . . . . . . . . . . . . . . . . . . . 29

3 Multi-Band Resource Allocation Algorithm 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Chapter Contribution . . . . . . . . . . . . . . . . . . . . . 36

3.2 C+L Band Lightpath Model and OSNR Estimation . . . . . . . . 37

3.3 Q-learning-based EON Routing Algorithm . . . . . . . . . . . . . 41

3.3.1 Example Scenario . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Time and Space Complexity . . . . . . . . . . . . . . . . . . . . . 48

3.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.2 Network Results . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Important Impairments for QoT-Aware Provisioning in Multi-

core Fiber Networks 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6



4.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Test and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Multicore Resource Allocation: Multi-attribute Decision-Making

Approach 64

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 System Description and Evaluation Metrics . . . . . . . . . . . . . 69

5.3.1 Physical Layer Impairments Model . . . . . . . . . . . . . 69

5.3.2 Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.3 Power Consumption . . . . . . . . . . . . . . . . . . . . . 71

5.4 Multi-Attribute Decision Making Methods . . . . . . . . . . . . . 73

5.5 Crosstalk and Fragmentation Aware RMSCA Algorithm . . . . . 76

5.5.1 Implementation Example: Route and Core . . . . . . . . . 77

5.5.2 Implementation Example: Spectrum Assignment . . . . . . 82

5.6 Network Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6.1 Performance Analysis, 7-core MCF: Blocking Probability . 84

5.6.2 7-core MCF: Bandwidth Blocking Probability . . . . . . . 86

5.6.3 7-core MCF: Power Consumption . . . . . . . . . . . . . . 88

5.6.4 7-core MCF: Network Fragmentation . . . . . . . . . . . . 89

5.6.5 12-core MCF . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Multicore Resource Allocation: Machine Learning Approach 94

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Related Literature Review . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.1 DNN and RF Performance Metrics . . . . . . . . . . . . . 100

6.3.2 Network Performance Metrics . . . . . . . . . . . . . . . . 101

6.4 Proposed ML Models . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.4.1 Data Generation and Feature Selection . . . . . . . . . . . 101

6.4.2 ML Model Tuning and Training . . . . . . . . . . . . . . . 104

6.5 DNN and RF-enabled RMSCA Algorithm . . . . . . . . . . . . . 108

6.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6.1 DNN Classifier Model Results . . . . . . . . . . . . . . . . 111

6.6.2 Feature Selection Analysis . . . . . . . . . . . . . . . . . . 113

7



6.6.3 ML-enabled RMSCA Results . . . . . . . . . . . . . . . . 114

6.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Conclusions and Future Work 122

7.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . 122

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8



List of Tables

3.1 System and Fiber Parameters Used for multi-band EON . . . . . 40

3.2 Q-table Used in Q-learning . . . . . . . . . . . . . . . . . . . . . . 41

3.3 K = 3 Routes Obtained by the Q-routing Algorithm for a Given

(source, destination) Pair Connection Request . . . . . . . . . . . 44

5.1 Literature on Dynamic Allocation Considering Impairments, Frag-

mentation, and power Efficiency . . . . . . . . . . . . . . . . . . . 69

5.2 General Form of Decision Table in MADM . . . . . . . . . . . . . 74

5.3 Relative Importance scale . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Decision Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Preference Values for CU Attribute . . . . . . . . . . . . . . . . . 81

5.6 Preference Relations and the Ranks of Alternatives . . . . . . . . 82

6.1 Literature on ML-Assisted Optical Networking in Single- and Multi-

Core Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 DNN Hyperparameters and Their Tested Ranges . . . . . . . . . 105

6.3 Comparison of AUC ROC Obtained with Single DNN vs. Separate

DNNs for Two Dataset Sizes Using the Adam Optimizer . . . . . 109

6.4 Test AUC ROC for Untrained Loads Using Adam vs. Jaya-trained

DNNs in a 7-core NSFNET . . . . . . . . . . . . . . . . . . . . . 112

6.5 Average Request CPU Setup Time (ms) for KSP and DNN Ap-

proaches at Different Loads Using a GN or RF QoT Estimator . . 121

9



List of Figures

2.1 Spectrum in (a) conventional DWDM networks and (b) EON [5]
©[2012] IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 A node architecture using BVTs and WSSs [5]©[2012] IEEE . . . 24

2.3 Illustration of three switching paradigms for different spatial switch-

ing granularities [38] ©[2019] IEEE . . . . . . . . . . . . . . . . . 26

2.4 Example showing the (a) contiguity and continuity constraints and

(b) fragmentation in EONs . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Illustration of resource provisioning in multicore fiber EON (adapted

from [9]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 (a) 14-node NSFNET (b) 11-node COST-239 network [24] ©[2019]

IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 24-node USNET topology [42] . . . . . . . . . . . . . . . . . . . . 30

3.1 Lightpath example with multiple hops. The symbol α represents

the fiber attenuation. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 General scheme of reinforcement learning . . . . . . . . . . . . . . 42

3.3 Obtained mean reward over the number of episodes for one (source,

destination) pair . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Obtained mean reward over the number of episodes for another

(source, destination) pair . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Blocking probabilities in NSFNET for PLI-check type RMSA con-

sidering KSP routing and Q-learning EON routing using first fit

for spectrum allocation. . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Blocking probabilities in NSFNET for PLI-check type RMSA con-

sidering KSP routing and Q-learning EON routing using exact fit

for spectrum allocation. . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Blocking probabilities for PLI-aware RMSA with first fit for spec-

trum allocation in NSFNET. . . . . . . . . . . . . . . . . . . . . 52

10



3.8 Blocking probabilities for PLI-aware RMSA with last fit for spec-

trum allocation in NSFNET. . . . . . . . . . . . . . . . . . . . . 53

3.9 Blocking probabilities for PLI-aware RMSA with exact fit for spec-

trum allocation in NSFNET. . . . . . . . . . . . . . . . . . . . . 53

3.10 Bandwidth blocking probabilities for PLI-aware RMSA in the NSFNET

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 Network fragmentation for PLI-aware RMSA in the NSFNET net-

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.12 Blocking probabilities for PLI-aware COST-239 network with ex-

act fit SA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Contribution of different factors to a request’s failure computed in

USNET and COST-239 at 300 Erlangs . . . . . . . . . . . . . . . 60

4.2 Contribution of different factors to a request’s failure computed in

USNET and COST-239 at 600 Erlangs . . . . . . . . . . . . . . . 61

4.3 Noise power comparison in USNET and COST-239 at 300 Erlangs 61

4.4 Noise power comparison in USNET and COST-239 at 600 Erlangs 62

4.5 Blocking probabilities in MCF-enabled USNET under different im-

pairment settings for R = 100, 000. . . . . . . . . . . . . . . . . . 63

5.1 Blocking probabilities for the KSP FF, KSP SF, MADM FF and

MADM SF in a 7-core NSFNET . . . . . . . . . . . . . . . . . . . 85

5.2 Blocking probabilities for the KSP FF, KSP SF, MADM FF and

MADM SF in a 7-core COST239 . . . . . . . . . . . . . . . . . . 85

5.3 Blocking probabilities for the KSP SF, MADM SF, DI-aware RM-

SCA [92] in 7-core NSFNET . . . . . . . . . . . . . . . . . . . . . 86

5.4 Bandwidth blocking probabilities for the KSP FF, KSP SF, MADM

FF, and MADM SF in 7-core NSFNET . . . . . . . . . . . . . . . 87

5.5 BW blocking probabilities for the KSP FF, KSP SF, MADM FF,

and MADM SF in a 7-core COST239 . . . . . . . . . . . . . . . . 87

5.6 Total power consumption for KSP FF, KSP SF, MADM FF, MADM

SF, and DI-aware RMSCA algorithm [92] in 7-core NSFNET . . . 88

5.7 Network fragmentation for the KSP FF, KSP SF, MADM FF,

MADM SF, and DI-aware RMSCA algorithm [92] in 7-core NSFNET 89

5.8 Blocking probabilities for the KSP FF, KSP SF, MADM FF and

MADM SF in 12-core NSFNET . . . . . . . . . . . . . . . . . . . 90

11



5.9 BW blocking probabilities for the KSP FF, KSP SF, MADM FF,

and MADM SF in 12-core NSFNET . . . . . . . . . . . . . . . . . 91

5.10 Network fragmentation for the KSP FF, KSP SF, MADM FF, and

MADM SF in 12-core NSFNET . . . . . . . . . . . . . . . . . . . 92

5.11 Total power consumption for KSP FF, KSP SF, MADM FF, and

MADM SF in 12-core NSFNET . . . . . . . . . . . . . . . . . . . 92

6.1 Test RMSE obtained for different numbers of trees in the RF model

at a load of 400 Erlangs for the 7-core USNET . . . . . . . . . . . 105

6.2 Flowchart of Jaya algorithm adapted for DNN training . . . . . . 107

6.3 Difference between simulated AUC ROC and the ideal AUC ROC =

1.0 using Adam vs. Jaya-trained DNNs in a 7-core NSFNET . . . 112

6.4 DNN classifier performance when using the full 13 features vs. the

chosen 8 features at a load of 300 Erlangs for the 7-core NSFNET 113

6.5 Blocking probabilities for the KSP and DNN approaches with GN-

based vs. RF-based noise estimation for the 7-core USNET . . . . 115

6.6 Blocking probabilities for the KSP and DNN approaches with GN-

based vs. RF-based noise estimation for the 7-core COST-239 . . 116

6.7 Blocking probabilities for the KSP All PLI, KSP XT [81], ICXT Aware All PLI,

ICXT Aware XT [81], and DNN approaches for the 7-core USNET 117

6.8 Blocking probabilities for the KSP and DNN approaches with GN-

based vs. RF-based noise estimation for the 12-core NSFNET . . 118

6.9 Bandwidth blocking probabilities for the KSP and DNN approaches

with GN-based vs. RF-based noise estimation for the 7-core USNET119

6.10 Bandwidth blocking probabilities for the KSP and DNN approaches

with GN-based vs. RF-based noise estimation for the 7-core COST-

239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.11 Bandwidth blocking probabilities for the KSP All PLI, KSP XT

[81], ICXT Aware XT [48], ICXT Aware All PLI, and DNN ap-

proaches for the 7-core USNET . . . . . . . . . . . . . . . . . . . 120

12



Acronyms

AHP analytic hierarchy process 73, 74, 76–78, 80

ASE amplified stimulated emission 31, 34, 36, 38, 50, 56–64, 67–70, 91, 99, 114,

116, 118, 123

AST average setup time 101, 114, 120, 121

AUC ROC area under the curve of the receiver operating characteristic 100,

102, 104, 108, 111–113

BBP bandwidth blocking probability 27, 50, 101, 114, 118, 120

BCE binary cross entropy 107, 108

BER bit error rate 35, 95, 96, 98

BP blocking probability 27, 50, 58, 101, 114–118, 121

BVT bandwidth variable transponders 18, 21, 24, 65

BW Bandwidth 90, 91

DGCNN deep graph convolutional neural networks 98

DNN deep neural network 35, 36, 94, 97–102, 104, 106–118, 120, 121, 124

DRL deep reinforcement learning 35, 36, 97

DSP digital signal processing 31

DWDM dense wavelength division multiplexing 18, 22, 24

EDFA erbium-doped fiber amplifiers 31, 33, 34, 36–38, 65

EF exact fit 27, 28, 34, 42, 83

13



EON elastic optical network 2, 18, 20–24, 28, 29, 34–37, 42, 43, 55–57, 65, 97,

98, 102, 109, 111, 115, 118, 122, 123

EONs elastic optical networks 26, 33

FC first core 28, 102, 114

FF first fit 27, 28, 34, 42, 83, 84, 86, 88–91, 102, 114, 115, 120

FWM four wave mixing 30–32

GN Gaussian noise 20, 97, 102, 114, 115, 117, 118, 120, 124

GVD group velocity dispersion 30

ILP integer linear programming 20, 58

ISRS inter-channel stimulated Raman scattering 34, 36–39, 50, 56

ITU-T International Telecommunication Union Telecommunication Standard-

ization Sector 18, 22

KSP K-shortest paths 27, 34, 67, 84–86, 88–91, 97, 102, 114–121

LF last fit 27, 28, 34, 42, 83

MADM multi-attribute decision making 64–67, 73, 74, 78, 84–86, 88–91, 93,

124

MCF multicore fiber 2, 19, 23, 28, 32, 57–59, 61–63, 65, 66, 69–71, 79, 83, 84,

90, 91, 93, 97, 98, 102, 114–117, 123, 124

MF modulation format 98, 99

MILP mixed integer linear programming 21, 34, 35, 66, 67

ML machine learning 2, 3, 20, 35, 36, 94–98, 100–102, 104, 114, 121, 124

MODM multi-objective decision making 73

NLI nonlinear interference 30, 35, 38, 39, 57, 59–62, 64, 68, 70, 97, 114, 116,

118, 123

14



NN neural network 36, 98

OFDM orthogonal frequency-division multiplexing 35

OSNR optical signal-to-noise ratio 34, 38, 40, 41, 44, 46, 47, 50, 52

OXC bandwidth variable optical cross-connects 65

PLI physical layer impairments 19–21, 28, 31, 34–37, 50, 56–58, 66–69, 94, 97,

116, 119, 123

PMD polarization mode dispersion 30

PROMETHEE preference ranking organization method for enrichment evalu-

ations 73, 74, 76–78, 80, 88

PSD power spectral density 38

QoT quality of transmission 19, 20, 31, 34, 36, 50, 51, 57–60, 65, 95–100, 102,

109, 110, 112, 114, 115, 117, 118, 120, 121, 124

RF Random Forest 94, 99–102, 105, 106, 109, 111, 113–115, 117, 118, 120, 121

RFE recursive feature elimination 102, 113

RL reinforcement learning 35, 36, 41–43, 55, 97

RMSA routing, modulation and spectrum assignment 21, 28, 33–37, 44, 46, 48,

50, 52, 54, 56, 97

RMSCA routing, modulation, spectrum and core assignment 21, 25, 28, 58–60,

63–68, 71, 73, 76, 84, 88, 91, 94–96, 100–102, 108–112, 121, 124

RMSE root mean square error 101, 102, 106

ROADM reconfigurable optical add-drop multiplexers 19, 24–26, 37, 65

RSA routing and spectrum assignment 19, 21, 26–28, 34, 35, 96

RSCA routing, spectrum, and core assignment 19

RWA routing and wavelength assignment 20, 26

SA spectrum assignment 27, 28

15



SDM space division multiplexing 19, 23–26, 35, 65, 97, 98, 118, 122

SDM-EON space division multiplexing based elastic optical networks 19, 23,

66, 70, 86, 91, 93, 94, 98, 99, 102, 121

SDN software defined networks 23, 36

SF score fit 83–86, 88–91

SNR signal to noise ratio 70, 97

SPM self-phase modulation 30, 31, 34, 38, 57, 58, 63, 67, 68, 84, 85, 91, 99

SRS stimulated Raman scattering 31

TL transfer learning 97

TR transmission reach 20

WDM wavelength division multiplexing 20, 26, 33, 35, 97

WSS wavelength selective switches 24, 25

XPM cross-phase modulation 30–32, 34, 38, 57, 58, 62, 63, 67, 68, 99

XT crosstalk 32, 57–68, 71, 82, 86, 90, 91, 97–100, 114, 116–118, 123

16



Chapter 1

Introduction

This chapter presents a motivation for the dissertation and outlines the organi-

zation and contributions of the work.

1.1 Research Motivation and Background

The proliferation of electronic devices, social media platforms, video streaming

services, and machine-to-machine communications underscores the critical im-

portance of optimizing communication networks [1]. Projections indicate a sub-

stantial rise in the global number of internet-connected devices, with estimates

suggesting a staggering 22 billion devices by 2025. Moreover, there is a corre-

sponding surge in data consumption per smartphone, expected to escalate from

21 GB in 2023 to 56 GB in 2029, driven by the growing popularity of gaming,

extended reality experiences, and video-centric applications [2]. The capacity

demand will also be fueled by cyber-physical systems, fiber for 6G and future

generation networks, data center switching speeds, etc. This exponential growth

places considerable strain on the optical backbone networks, which have served as

a vital component of telecommunications infrastructure, facilitating long-distance

data transmission across continents since the 1970s. Given this dynamic land-

scape, it is now crucial that the optical networks are utilized efficiently and new

techniques for capacity increase are researched and utilized.

Optical networks comprise fiber links and network nodes (data switch ex-

changes) and are designed to transport large volumes of data over long distances

efficiently. Each traffic demand is modulated and transmitted as a light signal

from its source node, along fiber links through several intermediate nodes, to its

destination node. The light is transmitted inside the fiber core and amplified
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by optical amplifiers at the end of each fiber span. The path from the source

to the destination node is called the lightpath. Each data signal is transmitted

at a specific wavelength range. Selecting network resources such as a lightpath

and wavelength band for each traffic request is referred to as resource allocation.

This dissertation is a comprehensive study of resource allocation algorithms that

utilize heuristic and machine learning techniques for multi-band and multicore

fiber networks.

Current optical networks use dense wavelength division multiplexing (DWDM)

based on a fixed-width wavelength grid to transmit the traffic demands over C-

band. The C-band wavelengths are conventionally used for data transmission

to enable long-distance data transmission because of the low attenuation of the

signal in the fiber and high bandwidth range. Following the industry standard

International Telecommunication Union Telecommunication Standardization Sec-

tor (ITU-T) G.694.1, 88 channels, each spaced 50 GHz apart, are supported by

DWDM networks. However, because of the fixed 50 GHz grid, data beyond 100

Gbps using standard modulation cannot be accommodated in this scheme [3].

Therefore, DWDM networks find it difficult to satisfy the growing demands for

communications. To address this issue, elastic optical networks (EONs) with a

flexible spectrum structure have been developed that can switch broader spec-

trum channels to support high bit rate (such as 400 Gbps or 1 Tbps) demands

[4, 5].

Unlike conventional DWDM networks, EONs use bandwidth variable transpon-

ders (BVT), making them suitable to serve heterogeneous traffic demands. Ide-

ally, EONs finely segment the optical spectrum into infinitely many frequency

slots with arbitrarily small granularity, making the network bandwidth appear

elastic and continuous. However, due to hardware limitations, full elasticity,

i.e., arbitrarily small spectrum granularity, is challenging to achieve. As a more

achievable approach, we focus on flexible grid networks that partition the spec-

trum into a fine grid of frequency slots (12.5 GHz or 6.25 GHz) and where de-

mands can occupy one or more slots [3, 6, 7].

There is no doubt that EON technology has dramatically influenced optical

networking and considerable research has been done both in the fiber aspects

and in the networking part. However, the current single-core fiber technologies

are nearly exhausted and won’t be able to handle the explosive data growth

effectively. Therefore, it is imperative to look for ways to utilize the existing

resources efficiently and explore new structures to address the problem of capacity
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crunch. There is a need to find potential cost-effective solutions to scale the

existing link capacity in the next five to ten years.

The data transported in an optical fiber via light is over a certain spectrum

range. The spectrum is a limited network resource, and the conventionally used

single-core C-band can be extended to include L and S bands. In this dissertation,

we explore the effective use of L-band to increase the network capacity. Other

solutions to augment capacity include using multiple fibers, hollow-core fibers,

open reconfigurable optical add-drop multiplexers (ROADM), increasing symbol

rates, etc. Alternatively, space division multiplexing (SDM) exploits the space

dimension to accommodate more data in the same fiber. The spatial aspect can

be incorporated into the optical fiber using cores or modes. A MCF has multiple

cores in the fiber, with each core having its own individual spectrum range. This

multiplies the available transmission capacity. In contrast, multi-mode fibers

allow multiple orthogonal transverse fiber modes in a single fiber core and are

typically used for short-range links. A variant of multi-mode fibers using a lower

number of modes (3-15) is the few-mode fiber and is relatively more common than

the multi-mode type in SDM research. However, MCF is the most common one

among these because of its practicality and is expected to be deployed within this

decade. MCF are the focus of this dissertation, and space division multiplexing

based elastic optical networks (SDM-EON)s is the expression used to refer to

MCF-based fiber networks in this dissertation.

Efficient planning of the use of network resources (spectrum, switches, optical

amplifiers, etc.), whether new or existing technologies, is a must from the cost,

time, and energy points of view. The planning scope is broadened depending

on the objectives to achieve and the resources that are at the focus of the opti-

mized planning. Planning the resource usage in EON, the so-called routing and

spectrum assignment (RSA) problem, is an essential networking problem and has

been the subject of extensive research [8, 9]. The spectrum is a scarce resource

due to the limited low-loss available bandwidth in standard fibers versus the rapid

increase of data traffic. In addition, spectrum usage is related to optical switches,

amplifiers, and filters. In SDM-EON network planning, the RSA becomes rout-

ing, spectrum, and core assignment (RSCA) as there is the choice of which core

to use as well.

The performance of optical networks is limited by physical layer impairments

(PLI)s, such as fiber loss, dispersion, and nonlinearities, which can impair qual-

ity of transmission (QoT) of the signals in long-haul networks. When the QoT
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is unsatisfied due to PLIs, signal regeneration is needed to recover the lost/de-

graded transmitted data and fully negate the effects of the accumulated PLIs.

Different modulation formats offer different levels of sensitivity to the PLIs. How

to estimate the PLIs has been studied for several years since the estimated dis-

turbances can help the network provisioning. The most common model is the

transmission reach (TR) model, which, as the name suggests, estimates the max-

imum distance a signal can travel without regeneration amidst the noises while

still maintaining an acceptable QoT level. However, this model provides worst-

case estimates and lacks accuracy and flexibility. A more accurate PLI estimate

accounting for real-time network state is the so-called Gaussian noise (GN) model

[10]. Resource allocation techniques that account for the PLIs are referred to as

impairment-aware.

The EON resource assignment problem is an NP-Hard problem where finding

an exact optimal solution is computationally intractable. Hence, heuristic ap-

proaches have often been employed, and they generally provide rule-based strate-

gies aiming to find suitable solutions in a reasonable amount of time, though

sub-optimal ones. Many impairment-aware resource allocation algorithms in the

literature use heuristic and ML approaches to model the PLIs, with the former

dominating the literature [9, 11]. In recent years, ML techniques are finding a

place in resource allocation tasks [9, 12], comparatively more on the single-core

side. ML is generally known to capture hidden relationships in the considered

problem domain, in our case the resource allocation. However, as fancy as ML

may sound, a wealth of heuristic solutions developed over the years tackling

multiple network aspects cannot simply be sidelined by throwing in ML. Hence,

cautious use of the latter is necessary while assessing the need for ML and the

advantages gained with its incorporation.

The literature relevant to the contributions of the dissertation is comprehen-

sively discussed in the respective chapters. However, a succinct overview of some

of the important works is presented here. The initial resource provisioning prob-

lem in transparent wavelength division multiplexing (WDM) networks called the

routing and wavelength assignment (RWA) problem was published in 1995 by

Ramaswami et al. [13], and integer linear programming (ILP) was used to model

the problem. In [14], a RWA in translucent (network has regeneration nodes)

optical WDM networks was presented. The allocation of regeneration nodes was

optimized using new heuristic algorithms. This work initiated subsequent stud-

ies on translucent optical networks. The work presented in [5] in 2012 paved the
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way for the next generation of optical networks by presenting the idea of EONs.

The paper described the structure, advantages, and associated challenges of using

EONs. Accordingly, resource provisioning now means flexible spectrum alloca-

tion. Subsequently, in [15], the heuristic method was proposed to solve a static

RSA problem in EONs. Although a basic RSA without PLIs was considered,

it greatly influenced future studies based on mixed integer linear programming

(MILP) solutions. The research on PLI modeling in [10, 16, 17, 18, 19] further

fueled network state-dependent PLI-aware resource allocation research. Adap-

tive modulation schemes enabled by BVT in the EON structure increased the

degree of freedom in the assignment and pushed the research towards routing,

modulation and spectrum assignment (RMSA) designs [12, 20, 21, 22].

While the research on finding improved allocation algorithms using heuristic

and machine learning methods [4, 23, 24, 25, 26] continued, the optical networking

community also started focusing more on networking solutions with additional

resources using multi-band and multicore EONs [21, 27, 28, 29, 30]. This disser-

tation focuses on these multi-band and multicore networks.

1.2 Dissertation Outline

The dissertation is organized as follows. Chapter 2 elaborates on EONs, single-

core multi-band networks, and multicore single-band fiber networks, including

their hardware equipment and infrastructures. This chapter also describes physi-

cal layer impairments in detail and defines the resource allocation problem neces-

sary to understand the allocation schemes presented in the subsequent chapters.

The first contribution of the thesis is given in Chapter 3, where a reinforcement

learning based resource provisioning scheme for single core C+L multi-band net-

works is presented. In Chapter 4, the impacts of impairments in the multicore

fiber networks are analyzed under the realm of dynamic resource provisioning,

necessary for understanding the importance of PLI aware multicore provisioning;

it is the second contribution of the dissertation. Chapter 5 presents the third con-

tribution of the dissertation, a dynamic routing, modulation, spectrum and core

assignment (RMSCA) heuristic algorithm for multicore fiber optical networks.

In Chapter 6, machine learning is utilized and a dynamic RMSCA algorithm

is proposed, which is the fourth contribution of the dissertation. Finally, the

conclusions of the dissertation work and future scope are provided.
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Chapter 2

EON Description and Problem

Formulation

This chapter presents the fundamental concepts of elastic optical networks, multi-

core fiber-enabled optical architecture, and the physical layer impairments needed

to understand the problem addressed in this dissertation. This is followed by de-

scribing the impairment-aware resource provisioning problem and the associated

constraints.

2.1 Elastic Optical Networks (EONs)

Until 2012, the ITU-T recommendation for DWDM networks included only the

1530–1565 nm C-band spectrum divided into fixed 50 GHz frequency slots [3].

This division limits the transmission to 50 GHz, meaning that higher bandwidth

signals have to be divided into multiple fixed slots, requiring additional signal

processing and often leaving a spectrum gap in the last block. This also results

in spectrum wastage for bandwidth demands less than 50 GHz. This problem is

illustrated in Fig. 2.1.

With this in mind, EONs have been proposed to support long-haul transmis-

sion beyond 100 Gbps and to better adapt to heterogeneous traffic [5]. Hence,

in 2012, in order to support the adaptive spectrum allocation concept of EON,

the ITU-T updated its G. 694.1 recommendation to include the flexible grid op-

tion based on the new frequency slot concept. A frequency slot is defined as

the frequency range that an optical channel is allowed to occupy. The allowed

frequency slots have a nominal central frequency and a slot width defined by an

integer multiple of 6.25 GHz. Some characteristics of EONs include improved effi-
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Figure 2.1: Spectrum in (a) conventional DWDM networks and (b) EON [5]
©[2012] IEEE

ciency, simultaneous support to low and high data rate traffic via super-channels,

adaptive modulation format selection enabling optimization of spectrum usage,

and cost- and energy-efficient traffic grooming. In addition, EONs can be oper-

ated together with the idea of software defined networks (SDN)s. Realizing these

benefits of the EONs, they have been widely researched over the last few years.

However, despite the added capabilities of the EON structure, the currently

deployed single-core fiber capacity is nearly exhausted. Possible solutions to this

problem include using extended frequency bands [21, 29], multi-fiber links [31],

and multi-core fiber links [7]. Frequency band extension includes using L- and

S-bands with original C-band or hybrid links utilizing a combination of C and

frequency-extended links [32]. The extension can increase the network capacity by

a small factor and with an additional need for new transponders and multiplexers

compared with exploiting MCFs. Hence, the network will eventually need to rely

on more transmission dimensions as available in SDM-EON. Examples of SDM

fibers are bundles of single-core single-mode fibers, MCFs, few-mode fibers, and

few-mode MCFs where spatial can refer to fiber, core, mode or group of modes

[33].
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2.2 Enabling Technologies for Space Division Mul-

tiplexed EONs

There are two significant hardware-enabling technologies needed for EONs: flex-

ible wavelength selective switches (WSS)s and bandwidth variable transpon-

ders (BVTs). Fig. 2.2 shows a node architecture utilizing these two compo-

nents. BVTs can send and receive optical signals with any bandwidth and

datarate. A BVT may adapt to numerous modulation formats to preserve spec-

trum while maintaining the necessary transmission quality, in contrast to con-

ventional DWDM transponders that support only one particular datarate and

modulation. Hence, the BVTs need more sophisticated filtering, sampling, syn-

chronization, and other techniques. The WSSs are used to add or drop optical

signals at specific source or destination nodes, respectively. The channels of EONs

occupy various spectrum widths, and the arbitrary bandwidth connections are

switched from any input port to the desired output port using WSS to achieve

spectrally efficient routing and grooming. Bandwidth variable WSSs supporting

the 12.5 GHz granularity are currently commercially available.

Figure 2.2: A node architecture using BVTs and WSSs [5]©[2012] IEEE

In a transparent optical network, signals traverse from their source to their

destination solely within the optical domain, avoiding any conversion to the elec-

trical domain. A ROADM is a crucial networking device that has access to all

wavelengths on a fiber and allows for specific wavelengths to be dropped or added

at a location while also allowing other wavelengths to optically pass through the

site without requiring termination. The ‘reconfigurable’ capability allows adapta-

tion to varying traffic volume and patterns and enables remote (re)configuration

of lightpaths. In the realm of SDM enabled networks, the granularity of spatial

switching plays a pivotal role in shaping the architecture of ROADM in all-optical
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switching scenarios. Opting for a finer switching granularity offers greater rout-

ing flexibility at the network layer, albeit at the expense of requiring more WSSs

within the ROADM infrastructure. Conversely, adopting a coarser switching

granularity reduces the ROADM deployment costs but concurrently diminishes

routing flexibility. This arises from the need to treat optical carriers within a

core and spectrum block as unified entities, necessitating their collective switch-

ing during routing operations. Thus, the employed core and spectrum scheme

depends on the design of the ROADM architecture. Additionally, the number of

add/drop ports supported by a ROADM significantly impacts its architecture.

A higher number of add/drop ports enhances network layer performance but

with increased device costs and power consumption associated with the ROADM

infrastructure.

To improve the flexibility in fiber core usage, a spatial lane change (SLC)

technology was proposed to alleviate the impact of spectral continuity constraints.

SLC allows traffic connections to use different spatial dimension indices on each

link along the lightpath while still using the same spectral range [34]. Thus,

the routing flexibility can be further improved by deploying ROADMs with SLC

support at intermediate nodes. However, the architecture of such a ROADM is

considerably more complex than that of a ROADM without SLC support because

WSSs with higher port-count are required. Hence, a no SLC assumption is quite

common in many contemporary RMSCA studies [35, 36, 37].

Three switching paradigms are available for SDM based optical networks:

independent, fractional, and joint, with the spatial dimension possibly corre-

sponding to either a mode or a core. In the independent switching paradigm,

each spatial dimension can be independently switched to output ports sharing

the same spatial index or ports of any index if SLC is supported. While this

approach offers superior routing flexibility, it necessitates the most significant

number of WSSs. Conversely, joint switching treats all spatial dimensions as a

unified entity, regardless of SLC support, making it a cost-effective option for

implementing SDM optical networks but at the expense of reduced routing flex-

ibility. The third paradigm, fractional switching, strikes a balance between cost

and flexibility. Here, spatial dimensions are grouped, with each group requir-

ing joint switching. This architecture can also be implemented with or without

SLC support. Fig. 2.3 illustrates these three switching schemes under no SLC

assumption for spatial switching granularities of 1,4, and 2, where the WSSs are

depicted by trapezoids.
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Figure 2.3: Illustration of three switching paradigms for different spatial switching
granularities [38] ©[2019] IEEE

Hence, all SDM transmission technologies are closely associated with one an-

other, and each of them has a great influence on the architectures of the cor-

responding physical devices (i.e., SDM transceivers and ROADMs). Therefore,

the choice of architecture affects the design of new SDM optical networking al-

gorithms. In this dissertation, a joint switching paradigm is assumed in all net-

working scenarios, as is common in current literature [37, 39, 40, 41].

2.3 Resource Provisioning Problem

The task of selecting network resources to enable the transmission of the signal

of a given traffic demand from source to destination is known as a resource provi-

sioning/assignment/allocation problem. In elastic optical networks (EONs), the

RSA problem is the equivalent of the RWA problem in WDM networks. How-

ever, in transparent EONs, as assumed here, RSA comes with the additional

constraints of spectrum contiguity, spectrum continuity, and non-overlapping of

frequency slots, as depicted in Fig. 2.4(a). The spectrum contiguity constraint

requires the assigned frequency slots on the network link to be adjacent, main-

taining the same spectrum range across all selected links in the chosen optical

path (spectrum continuity). The non-overlapping spectrum constraint indicates

that the frequency ranges assigned to multiple requests at any time in the net-

work must be distinct. Consider a request that needs links 1 through 4 and three

spectrum slots as shown in Fig. 2.4(a); the selected slots fulfill the adjacency

requirement and are the same frequencies on all the links.

The traffic demand may be static (i.e., a fixed or offline traffic matrix) or
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Figure 2.4: Example showing the (a) contiguity and continuity constraints and
(b) fragmentation in EONs

dynamic (i.e., time-varying traffic); our work focused on the latter since, in a

real network, there is a lack of information on the upcoming user traffic, but the

network has to be able to accommodate it. With dynamic traffic, the performance

of an RSA algorithm is often measured by the blocking probability (BP), which is

the proportion of traffic demands that are not successfully provisioned. The input

traffic load is measured in Erlangs. The BP and bandwidth blocking probability

bandwidth blocking probability (BBP) are calculated as:

BP =
Number of blocked requests

Total number of requests
(2.1)

BBP =
Amount of blocked bandwidth

Total amount of requested bandwidth
(2.2)

In dynamic RSA, dynamically setting up and tearing down connections can lead

to bandwidth fragmentation, resulting in inefficient spectrum use. Fig. 2.4(b)

shows this phenomenon for a demand seeking four slots. They are available

on both links but cannot be assigned due to non-contiguity, thus leading to

unnecessary blocking.

The conventionally used routing algorithm is the K-shortest paths (KSP)

algorithm, which is based on distance, although sometimes hop count may be used

as the definition of shortest. For the spectrum assignment (SA), three common

approaches exist, first fit (FF), last fit (LF), and exact fit (EF) [4]. In FF, the
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first available frequency slot is selected, i.e., starting from the lowest frequency.

In the LF, the free slots are checked from the other end of the spectrum, i.e.,

higher frequencies. Finally, in EF SA, a search for the exact number of required

slots is performed; if it is not found, the first-fit criterion is used.

When adaptive modulation is considered, the RSA problem becomes the

RMSA problem. Adaptive modulation helps in spectrum savings as it enables

the selection of higher-order modulation formats having higher spectral efficiency.

The state-of-the-art digital coherent technology makes it possible to generate and

detect optical signals with a wide variety of modulation formats with a single type

of transceiver [3]. However, as the modulation order increases, the sensitivity to

impairments increases and is mostly suitable for shorter distances. This influences

the acceptance of the present request as well as future requests, particularly when

evaluating the impact of noise on existing lightpaths in service. For a given de-

mand, the modulation format selection, the required number of slots, and the PLI

sensitivity are interrelated. Hence, the selection of a modulation format offers

cautious flexibility when designing a resource assignment algorithm. The number

of frequency slots of width δf needed for a demand requesting a certain data rate

when using a modulation spectral efficiency ηM denoted as Sreq, is calculated

using

Sreq =

⌈
data rate

2 ∗ δf ∗ ηM

⌉
+ 1. (2.3)

One slot is used as a guard band.

In MCF networks, the choice of the core is another degree of freedom for allo-

cation, and the assignment is termed as RMSCA. The design of the core selection

strategy is affected by the switching paradigm and the number of neighbor cores

due to crosstalk effects that may deteriorate the due-to-be-provisioned request

and future ones. Also, the minimization of crosstalk effects requires the signal to

be spaced out, whereas this spreading can introduce spectrum gaps, leading to

spectral fragmentation. Hence, core selection plays an important role in the RM-

SCA design. In this work, core continuity is assumed to be similar to spectrum

continuity. Similar to the FF spectrum scheme, the commonly used core alloca-

tion method is the first core (FC) that allocates the first available core depending

on the considered constraints. Fig. 2.5 illustrates the route, core, and spectrum

selection process in a MCF network for a request traveling from node 1 to node

5 using core 1 and occupying frequency slots f4 to f6 that obey the three EON

constraints.
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Figure 2.5: Illustration of resource provisioning in multicore fiber EON (adapted
from [9])

2.4 Algorithm Performance Validation Approach

The performance of resource allocation algorithms is usually tested on large-scale

network topologies. In this dissertation, the various networks used are the single

and multicore 11-node COST-239, 14-node NSFNET, and 24-node USNET. All

these topologies have varying connectivity, i.e., nodal degrees, and have a wide

diversity of link distances (200 km - 2400 km), which is essential while considering

the inclusion of PLI. Fig. 2.6(a) shows the 14-node NSFNET with 21 optical

fiber links, the European 11-node COST-239 network with 52 optical fiber links

is shown in Fig. 2.6(b), and the 24-node USNET with 43 links in Fig. 2.7.

The traffic requests demand connection provisioning on these networks and ar-

rive in a Poisson manner with an exponential holding time. A request is composed

of a source node, destination node, and data rate. The EON in this dissertation

is represented by a graph G(V,E) where V is the set of nodes and E is the set of

links/edges. This work considers transparent EONs, i.e., the data transmission is

entirely in the optical domain, and there is no optical-electrical-optical conversion

in the nodes. This dissertation assumes the modulation format continuity along

the entire route, unlike the case of translucent EONs, where regenerators can be

equipped with a modulation conversion facility.

2.5 Physical Layer Impairments

This section gives an overview of the significant physical layer impairments af-

fecting the optical network performance.

Many losses and impairments, such as dispersion, fiber losses, and nonlinear

impairments, limit the performance of optical systems. The dispersion effects
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Figure 2.6: (a) 14-node NSFNET (b) 11-node COST-239 network [24] ©[2019]
IEEE

Figure 2.7: 24-node USNET topology [42]

include group velocity dispersion (GVD), material dispersion, waveguide disper-

sion, and polarization mode dispersion (PMD). The fiber losses, called attenu-

ation, result from material absorption, Rayleigh scattering, coupling losses, and

waveguide imperfections (bending losses). The nonlinear interference (NLI) ef-

fects include stimulated light scattering such as Brillouin and Raman scattering

and phase modulation such as self-phase modulation (SPM), cross-phase modu-

lation (XPM), and four wave mixing (FWM).

Dispersion affects all kinds of fibers. In single-mode fibers, chromatic disper-

sion causes the group velocity of the fundamental frequency mode to be frequency-

dependent, known as GVD. This effect causes spectrum pulse broadening during

propagation, causing different signal components to travel at different velocities

and arrive at the output non-simultaneously. Material dispersion is caused by

irregularities in the refractive index of silica, fabrication materials, and character-

istic resonant frequencies that cause radiation absorption. Waveguide dispersion

is caused by a dependence of the operating wavelength of the signal on the core

radius and the differences in the core and cladding of the fiber waveguides. The
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dispersion can be managed by using dispersion compensating fibers, fiber Bragg

gratings for long-haul systems and dispersion equalizing filters. As the bit rates

increase, tunable dispersion compensators and electronic dispersion compensa-

tion can be used. The use of digital signal processing (DSP) in the electronic

method has greatly improved the reverting of dispersion effects. In this disser-

tation, dispersion is assumed to be electronically compensated while considering

the PLIs.

Fiber losses limit the transmission distance of the signals. Amplifiers are re-

quired to boost the signal for fiber lengths over 100 km [43]. During the 1990s,

all-optical amplifiers began to supersede the intricate and costly optoelectronic

repeaters, eliminating the necessity of converting signals into electrical form at

the receiver before regeneration. There are two main approaches to all-optical

amplifiers: lumped and distributed. In lumped amplifiers, pumped erbium-doped

fibers are used to compensate for the accumulated losses over a span of 60 to 80

km. In the distributed method, the fiber itself is used for the loss compensation

by controlled use of the nonlinear stimulated Raman scattering (SRS) effect, and

pump lasers are periodically placed to pump optical powers at suitable wave-

lengths. In this dissertation, erbium-doped fiber amplifiers (EDFA) are assumed

for the signal amplification. However, amplifier noise in itself is a signal QoT-

degrading source and is an ultimate limiting factor. The spontaneous emission

during the amplification process adds noise to the signal, termed as amplified

stimulated emission (ASE) noise. Its spectral density is assumed to be constant

i.e., white noise assumption. Despite the low noise levels of EDFAs, the per-

formance of long-haul optical fiber communication systems employing multiple

EDFAs is often limited by the ASE noise [43]. Hence, this dissertation considers

the ASE impairment for QoT-aware networking algorithm design.

Using optical amplifiers and dispersion management together can extend the

length of an optical system to several thousand kilometers. However, in an all-

optical domain amplifier-cascaded long-haul system, the other factors limiting the

performance are the nonlinear effects: SPM, XPM, FWM, and Raman-induced

nonlinearities, especially the SPM and XPM. The origin of these nonlinearities is

the nonlinear relation between the refractive indices of the core-cladding medium

and the light signal intensity, called the Kerr nonlinearity effect for optical fibers.

In the SPM effect, this nonlinearity results in a varying refractive index profile

for the medium producing frequency chirping and phase shifts in the propagating

optical pulses. Whereas in XPM, a similar effect is produced when two or more
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optical signals are transmitted at different wavelengths, and one affects the other

by changing the refractive index of the propagation medium. In FWM, three

optical carriers produce a fourth optical field with frequency as a sum or difference

combinations of the three frequencies. Unlike XPM, FWM causes energy transfer

in the pulses, thus creating new ghost bits, leading to bit errors in the system.

These effects pertain to each core in the fiber link. In MCF links, another

noise to consider is the inter-core crosstalk (XT). As the name suggests, inter-

core XT is the leakage of signal power from one core to another, thus causing

disturbances to each other. Different methods are employed to minimize the XT

effects, such as trench-assisted core design, increasing distance between the cores,

and switching off a few cores during operation.

In conclusion, considering the impairments is crucial in the network design and

planning stage. Hence, in this dissertation, the proposed networking algorithms

consider a cross-layer (physical and network) design of the optical network.
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Chapter 3

Multi-Band Resource Allocation

Algorithm

The chapter presents a routing, modulation, and spectrum allocation algorithm

for C+L band elastic optical networks considering fiber impairments such as

cross-phase modulation, self-phase modulation, amplified spontaneous emission,

and inter-channel stimulated Raman scattering. A reinforcement learning-based

dynamic routing algorithm is proposed using Q-learning. The effect of fragmen-

tation is considered in the Q-learning process in addition to considering con-

straints related to spectrum continuity, contiguity, and non-overlapping. The

proposed RMSA approach is evaluated on two network topologies, NSFNET and

COST-239 and is shown to have a lower blocking probability compared with us-

ing K-shortest path routing combined with the three classical spectrum allocation

strategies: first-fit, last-fit, and exact-fit. This work has been published in [29].

3.1 Introduction

Although EONs offer better spectrum utilization than WDM networks, it is still

essential for network operators to find ways to utilize the existing resources effi-

ciently and explore new technologies to increase the networks’ capacity. Starting

from a single core fiber network, a cost-effective solution is extending the opera-

tional range of frequencies by targeting the already existing spectrum resource of

a fiber network. At present, the C-band is majorly used by all optical systems.

Adding the next band, i.e., the L band, to this existing C-band would increase the

system’s capacity to 10 THz. This is possible due to the negligible attenuation

coefficient variation in C+L bands and the possibility of using the same EDFA

33



for the L-band. However, this also introduces inter-channel stimulated Raman

scattering (ISRS), resulting in a power transfer from high-frequency components

to lower ones and making the optical signal-to-noise ratio (OSNR) frequency-

dependent [44]. Hence, when dealing with the C+L band, it is vital to consider

the ISRS nonlinear effects in addition to the usual Kerr nonlinear effects such as

the XPM and SPM, as well as the EDFA’s ASE noise.

The KSP algorithm is a state-independent routing scheme that selects the

same path for a pair of nodes for the entire lifetime of the network operation. This

chapter presents a state-dependent dynamic routing scheme using a reinforcement

learning technique called Q-learning. The fiber impairments of C+L band EONs

such as XPM, SPM, ASE, and ISRS are considered. The effect of fragmentation

is considered in the Q-learning process in addition to considering constraints

related to spectrum continuity, contiguity, and non-overlapping. Three classical

spectrum allocation strategies, FF, LF, and EF are used after the Q-learning

routing algorithm.

The rest of this chapter is organized as follows. Section 3.1.1 summarizes the

current literature in this area and highlights the novel contributions. Section 3.2

provides the C+L band model and the QoT estimation process. Section 3.3 briefs

about Q-learning and provides a detailed pseudocode of the proposed algorithm.

An example demonstration is also given. Section 3.4 discusses the time and space

complexity of the algorithm. Section 3.5.2 details the simulation and discusses

the obtained RMSA results, followed by a chapter summary in Section 3.6.

3.1.1 Related Works

Several research works can be found in the literature on solving the RSA prob-

lem in EONs. Xu et al. [45] proposed an online-offline algorithm for spectrum

assignment of demands with varying bandwidths. To accommodate the random-

ness of bandwidth demands, the authors proposed a probabilistic PLI model.

In another work, Xu et al. [46] proposed a Gaussian noise-based PLI model

and a MILP design using a heuristic approach, resulting in resource savings and

comparatively higher speeds. Yan et al. [47] investigated the regenerator allo-

cation problem in flex-grid optical networks to deal with PLI and included time

as an extra optimization dimension to address time-varying traffic. Wang et al.

[20] studied the impacts of using multiple-modulations, regeneration, modula-

tion conversion, and wavelength conversion techniques in EONs using a recursive

34



MILP approach. Chatterjee et al. [8] compared different routing and spectrum

allocation approaches and summarized recent works on RSA related issues such

as modulation, fragmentation, traffic grooming, survivability, QoT, energy sav-

ing, and networking cost. Adhikari et al. [6] presented a bit error rate (BER)

and fragmentation-aware RSA algorithm; their simulation results showed that

BER-awareness increases the blocking probability, which can be addressed by

increasing the transmit power but at the cost of increased NLI noise. Abkenar

and Rahbar [12] reviewed existing RSA and RMSA algorithms and compared

them in terms of their computational complexity and quality of performance in

resource management. Li and Li [48] presented an RMSA algorithm with a trade-

off between minimizing the interval between spectrum blocks and the consumed

resources. Choudhury et al. [49] described the performances of different routing

and spectrum allocation approaches for multi-cast traffic in EONs.

A few techniques using machine intelligence have been proposed to optimize

network routing, as described in recent survey papers. Zhang et al. [9] presented

an overview on routing and resource allocation based on machine learning in dif-

ferent optical networks such as WDM, orthogonal frequency-division multiplex-

ing (OFDM)-based EON, and SDM-EON. Dai et al. [50] investigated state-of-

the-art techniques in machine intelligence-enabled network routing and discussed

development trends. Amirabadi [51] reviewed ML applications in optical com-

munications, providing a comprehensive view of ML techniques applicable in this

field. Amin et al. [52] surveyed applications of machine learning techniques for

routing optimization based on unsupervised learning, supervised learning, and

reinforcement learning in software-defined networking. Mammeri [53] provided a

comprehensive review of literature on reinforcement learning (RL) applications

for optimal route selection in different types of communication networks under

various user quality-of-service requirements.

The following works are the closest to the contribution in this chapter. Yu et

al. [26] proposed a deep learning-based RSA strategy and reported that the neu-

ral network model had reduced spectrum fragmentation and blocking probability.

Shimoda and Tanaka [54] proposed a deep reinforcement learning (DRL)-based

RSA algorithm enhanced with domain-specific knowledge. Chen et al. [24] pro-

posed DeepRMSA, a deep reinforcement learning-based neural network for ad-

dressing the RMSA problem. The DeepRMSA learned the correct online RMSA

policies by parameterizing the policies with deep neural network (DNN)s to sense

complex EON states; PLIs were considered but limited to modulation format se-
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lection based on distance. The same authors [55] extended the Deep RMSA to

multi-domain EONs and presented a new architecture for network management

using multi-agent RL showing better performance than a heuristic-based design.

Further, Chen et al. [56] proposed a transfer learning-based DeepRMSA that

can transfer knowledge of different DRL agents depending on the network tasks.

However, efficient network feature extraction remains a challenge, and graph neu-

ral networks (GNNs) were cited as a potential solution. Lia and Zhu [57] used

GNNs for resource orchestration in elastic optical data center interconnections.

Mitra et al. [27] studied the effect of reduced link margins on C+L band EONs

and reported that significant gains in capacity can be achieved by operating at

low margins across the networks. Jana et al. [58] proposed a signal-quality-aware

proactive defragmentation scheme for C+L band systems using deep neural net-

works; minimizing the fragmentation index and QoT maintenance was prioritized

for both nonlinear-impairment-aware and unaware defragmentation.

3.1.2 Chapter Contribution

Based on the literature review, only a few researchers have considered ML ap-

proaches such as RL, neural network (NN)s DNNs, DRL, with or without con-

sideration of different impairments. The PLIs considered in previous works do

not simultaneously include linear and nonlinear impairments. Furthermore, the

NN, DNN, and DRL models presented in the current literature are knowledge-

intensive, and most of them consider only the C-band.

The novelty of the work in this chapter lies in attempting to adopt a simple

model-free Q-learning algorithm, which belongs to the family of RL algorithms,

to solve the RMSA problem in single-core EONs using C+L band. From our

literature survey, Q-learning has not been applied to the optical network routing

problem; Q-learning does not require pre-collected training data, can be used

by the SDN network controller, and is simple to implement. In addition, the

present work considers the ISRS, Kerr nonlinear impairments (SPM, XPM), and

the EDFA ASE noise encountered by the signal along the chosen network path.

These impairments have rarely been jointly considered [58] for resource provi-

sioning in C+L band operation. The effect of fragmentation of the network is

also considered in the Q-learning process.

The significance of the work lies in proposing a state-dependent routing scheme

using Q-learning and crafting local and global custom reward functions for the Q-
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learning algorithm while simultaneously considering PLIs, fragmentation, and the

constraints of spectrum continuity, contiguity, and non-overlapping to perform

online RMSA for C+L band EONs. The algorithm’s performance is evaluated

against a standard K-shortest path algorithm, commonly used as a benchmark.

Employing the Q-learning routing algorithm yielded lower blocking probabilities

across all spectrum algorithms, network loads, and topologies examined.

3.2 C+L Band Lightpath Model and OSNR Es-

timation

The considered C+L band EON consists of 10 THz bandwidth links, each divided

into spans. A typical network lightpath connection in such a network is shown

in Fig. 3.1. The signal is launched with power Pch and travels through a series of

intermediate ROADMs placed at the end of each link. At the end of each span,

two Erbium-doped fiber amplifiers amplify the signals, one for the C-band and

one for the L-band. The EDFAs are capable of compensating for the ISRS power

transfer variations across all the active channels in the C+L band by bringing

the power back to Pch and thereby restoring the originally transmitted power

spectrum.

Figure 3.1: Lightpath example with multiple hops. The symbol α represents the
fiber attenuation.

The Gaussian noise model used to estimate the PLI levels accounts well for
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the Kerr nonlinearity effects, but it cannot be directly applied to the C+L band

scenario due to the additional ISRS effect in this extended bandwidth. ISRS

can be either accounted for by using an extra exponential power decay term

or by numerically solving the ISRS differential equations. The first approach

is suitable for approximating weak ISRS regimes, and the second approach can

approximate any level of ISRS but has a higher computational complexity. The

latter necessitates a closed-form model, and one such model was used in [27]. The

ISRS gain is modeled using a linear approximation up to 15 THz by using the

slope of the normalized Raman gain spectrum. Hence, this can also be applied to

the considered 10 THz C+L band scenario. The current work adopts the OSNR

estimation model of [27].

The OSNR of a light path Υ traversing NΥ set of links is calculated as [Eq.(1),

[27]],

1

OSNR(f)
=

NΥ−1∑
e=0

(
P

(e)
ASE(f) + P

(e)
NLI(f)

Pz

)
. (3.1)

P
(e)
ASE(f) is the ASE noise due to the EDFA present on the eth link of Υ, P

(e)
NLI(f)

is the NLI power due to SPM and XPM, and Pz is the power of channel of interest,

z. The signal power spectral density (PSD) is assumed to be rectangular, and

so, the NLI power is calculated for the center frequency f of the signal. In the

current work, f refers to the center frequency of the channel z that the spectral

assignment algorithm proposes to assign to the request.

The total ASE noise power on link e with N
(e)
s spans having symmetrically

spaced EDFA modules is given by

P
(e)
ASE (f) ≈ 2N (e)

s ηspg(f)hνBref , (3.2)

where ηsp is the noise figure of the EDFA and h is the Planck’s constant. ν is the

optical light frequency and Bref is the reference bandwidth of the operating ASE

noise power measurement. The gain g(f) needs to account for both the power

loss due to attenuation in the fiber span and the power transfer due to ISRS

i.e. the frequency-dependent ISRS gain profile across the C+L band. Hence the

overall gain G(f)[dB] (linear g(f)) for the EDFA module that affects the ASE

generation in Eq. (3.2) is given by
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G(f) =


αLspan − ρspan(f) positive ISRS Gain at f

αLspan no ISRS gain at f f

αLspan + ρspan(f) negative ISRS Gain at f

. (3.3)

where Lspan is the span length, α is the fiber loss, and ρspan(f) is the ISRS gain

at frequency f approximated as

ρspanf = ln

[
Pz(Lspan)

Pz(0) exp(−αLspan)

]
. (3.4)

where Pz is the launch power of channel z. The total NLI power experienced by

z with center of frequency fz in the eth optical link with N
(e)
s spans is given by

P
(e)
NLI (f) = P 3

zN
(e)
s (ηXPM (fz) + ηSPM (fz)) . (3.5)

The NLI coefficients, ηXPM (fz) and ηSPM (fz) are computed as below [27, Eqs. (7)-

(11)].

ηSPM(fz) ≈
4

9

γ2π

B2
zϕzᾱ(2α + ᾱ)

·
[
Tz − α2

α
asinh

(
ϕzB

2
z

απ

)
+

A2 − Tz

A
asinh

(
ϕiB

2
z

πA

)] (3.6)

ηXPM(fz) ≈
32

27

Dact∑
k=1,k ̸=z

γ2

Bkϕz,kᾱ(2α + ᾱ)

·
[
Tk − α2

α
atan

(
ϕz,kBz

α

)
+

A2 − Tk

A
atan

(
ϕz,kBz

A

)] (3.7)

where ϕz = 3
2
π2 (β2 + 2πβ3fz), ϕz,k = 2π2 (fk − fz) [β2 + πβ3 (fz + fk)], A = α +

ᾱ, Tz = (A− PtotCrfz)
2, Tk = (A− PtotCrfk)2, Bz and Bz are the bandwidths of

channels z and k.

Fully filled channels were considered in [59] to show the effectiveness of these

closed-form expressions. For the scenario in this work, Dact is the total number of

demands active on the particular link that can vary as requests arrive and depart.

This model can be utilized as the closed-form of the GN-model under both the

C-band and C+L band scenarios. This aspect was mutually acknowledged by the

authors of both models in [60, 61, 21]. The parameter description is as follows
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and Table 3.1 presents their typical values used in the current work [59]:

• fk: frequency of channel k

• γ: fiber nonlinearity coefficient

• Bk: bandwidth of channel k

• α: attenuation coefficient in C-band

• ᾱ: attenuation coefficient in L-band. The attenuation coefficient variation

over the considered C+L band is assumed to be negligent in this work,

hence α = ᾱ.

• β2: group velocity dispersion

• β3: linear slope of β2

• Ptot: Total launch power

• Cr: Raman gain slope

Table 3.1: System and Fiber Parameters Used for multi-band EON

Parameters Values

Fiber attenuation α, dB/km 0.2

Group velocity dispersion β2, ps/nm/km 17

Dispersion slope β3, ps/nm2/km 0.067

Nonlinear coefficient γ, 1/W/km 1.2

Raman gain slope Cr, 1/W/km/THz 0.028

Raman gain Cr · 14 THz, 1/W/km 0.4

Channel launch power Pch, dBm 0

Number of channels Variable

Optical bandwidth, THz 10

Slot bandwidth, GHz 12.5

The OSNR that the current request would experience if it were to be assigned the

particular tentative route is calculated using the models above and compared with

the OSNR threshold. Also, alongside satisfying its OSNR constraint, the new and
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about-to-be provisioned request should not degrade different existing requests

along with various links of the tentative route. Hence, the OSNR constraint also

includes checking their corresponding OSNR threshold requirements.

Another term that requires defining is fragmentation since it is used as a part

of the proposed algorithm. To compute the fragmentation on a particular link of

a lightpath, an entropy-based fragmentation metric is used, [62]

F (e) =
∑
γe∈Γe

|γe|
S

· ln
S

|γe|
, (3.8)

where Γe is the set of fragments on link e ∈ E, |γe| is the size of fragment γe, and

S is the total number of frequency slots on e. This fragmentation metric is based

on the entropy concept and better captures the difference in fragment sizes, i.e.,

better distinguishes differently fragmented links compared to the commonly-used

external fragmentation formula [62] [33].

3.3 Q-learning-based EON Routing Algorithm

Reinforcement learning (RL) stands out as a powerful methodology for attaining

optimal behavior within complex systems through the mechanism of reward-

based interactions between an agent and its environment [63]. These positive or

negative rewards reflect the efficacy of the agent’s decisions in achieving desired

objectives. Hence, in the long run, the agent tries to maximize the cumulative

rewards by taking favorable actions to get the desired output. RL has found

application in areas such as robotics, gaming, networks, telecommunications, and

building autonomous systems. RL is commonly considered suitable for solving

optimization problems related to distributed systems in general and for network

routing in particular. Fig. 3.2 shows the general scheme of reinforcement learning.

Table 3.2: Q-table Used in Q-learning

States Action 1 Action 2 Action N

State 1 Q(s1,a1) — Q(s1,aN)

State 2 Q(s2, a1) — Q(s2, aN)

State M Q(sM ,a1) — Q(sM ,aN)
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Figure 3.2: General scheme of reinforcement learning

Q-learning is one of the widely known RL algorithms [63]. Q-learning algo-

rithms use a state-action table consisting of Q-values that indicate the quality

of the action at each state, as shown in Table 3.2. Each Q-value is denoted by

Q(s, a), representing the expected reinforcement of taking action a in state s.

The action space contains the actions that the agent can perform, while the state

space represents possible system conditions.

The entries in the Q-table are updated using the Bellman equation after an

action is taken, and the update model is,

Qnew(s, a) = (1 − ξ)Q(s, a) + ξ

(
rewt+1 + d max

a′∈actions
, Q (s′, a′)

)
, (3.9)

where Qnew(s, a) is the updated value denoting the quality of action a taken,

Q(s, a) is the old value, and rewt+1 is the reward obtained for taking action a; ξ

is the learning rate parameter, and d is the discount factor that determines the

importance given to the anticipated future rewards; s′ is the state attained after

taking action a; a′ is the particular action that has the maximum Q-value among

all the possible actions from the given state s′.

This work uses the Q-learning algorithm to perform dynamic routing in C+L

EONs. After the routes are decided by the Q-learning algorithm, the modula-

tion assignment is done based on the length of the chosen tentative route. The

spectrum allocation (SA) for each route is then assumed to use one of three

well-known algorithms: first-fit (FF), last-fit (LF), and exact-fit (EF), as de-

scribed in Chapter 2. In the EON scenario of this chapter, the network nodes,

s ∈ V , are considered as the states, and their respective Q-values are affected
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by the estimated PLI, fragmentation, and link availability as seen by the adja-

cent nodes. The action is a decision on what the next hop should be, given the

desired destination, and thus the action space is represented as the pair (net-

work node, destination) ∈ (V, V ). The proposed routing algorithm includes the

effect of fragmentation, link availability, and physical layer impairments in the Q-

learning process through local (fragmentation-based and link availability-based)

and global (PLI-based) rewards. The proposed approach is modeled on recent

literature defining the state and/or action spaces similar to this current work

[Table 2 and 3, [53]], [64, 65, 66, 67]. However, these prior studies have targeted

different applications than what is considered in this work: here, the Q-learning

method is adopted to perform routing in EONs by including EON-specific sys-

tem parameters and performance metrics, which has not been reported in the

literature.

In RL, an episode is defined as a sequence of states that ends at a terminal

state. To adapt the Q-learning algorithm to the proposed resource allocation

scenario, an episode is defined as one lightpath selection made by the central

network controller, starting from the requested source node and reaching the

destination node. Consequently, the proposed approach emulates hop-by-hop

routing without the network actually making the node-level decisions. This is

possible due to the automated EON data plane control by the network controller.

The algorithm collects current network information in a Q-table as a result of

rewards acquired both during the provisioning of other requests and during the

current request’s episodic runs. It uses a randomizing parameter ϵ that controls

whether to explore different paths or exploit the gained knowledge in the Q-table.

This ϵ decays over the episodes to make the system take exploratory decisions

initially; as the ϵ decays over the episodes, the algorithm tends to take more

exploitative actions through the knowledge already acquired.

Table 3.3 shows K = 3 routes obtained using our Q-routing algorithm for the

NSFNET, shown in Fig. 2.6(a), for two repeated requests tracked for demonstra-

tion purpose. Requests for routes with (source, destination) = (13, 5) result in

different candidate lightpaths since the Q-table values vary based on the differ-

ent reward values. This is not the case for KSP routes. Similarly, when requests

for transmission between nodes (4, 14) occur, different routes become candidate

choices at different request arrival times. Note that some repetition in the candi-

dates’ route list is normal since the K routes cannot all be unique to each arrival

time; they all belong to the same subset of all possible paths.
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Table 3.3: K = 3 Routes Obtained by the Q-routing Algorithm for a Given
(source, destination) Pair Connection Request

(Src,Dest) Routing Route 1 Route 2 Route 3

(13,5)

KSP

Q-routing

Q-routing

[13,9,8,7,5]

[13,9,8,7,5]

[13,14,6,5]

[13,14,1,9,8,7,5]

[13,14,6,5]

[13,11,4,5]

[13,14,6,5]

[13,9,10,6,5]

[13,9,10,6,5]

(4,14)

KSP

Q-routing

Q-routing

Q-routing

[4,11,13,14]

[4,11,13,14]

[4,2,3,6,14]

[4,2,3,6,14]

[4,11,12,14]

[4,5,6,14]

[4,11,12,9,13,14]

[4,5,6,14]

[4,5,7,8,9,13,14]

[4,2,3,6,14]

[4,11,13,14]

[4,5,7,8,9,12,14]

Algorithm 3.1 gives a pseudo-code of the proposed Q-learning algorithm for

EON routing. Consider a particular network provisioning demand where X is

the current node, Z is the destination node, and Y is the next-hop node for X.

Then, Q(X, (Y, Z)) represent the Q-value for X to reach Z via Y It is important

for the Q-value to be a function of the destination node so that the node-by-node

learning accounts for how beneficial it is to traverse through a particular Y to

reach Z.

Rewards play a major role in steering the decisions of the Q-learning agent,

and this work uses rewards to avoid routing loops, invalid actions, and proper

node selections, all enabling destination-reaching capability. The actions of non-

connected nodes and already visited nodes are penalized, and additionally, each

episode restricts the search to a maximum number of steps to curb routing loops.

Positive rewards are given upon reaching Z based on computed fragmentation,

link availability, and PLI satisfaction for all remaining action scenarios.

Algorithm 3.2 shows the PLI-aware RMSA algorithm that uses the output

routes of Algorithm 3.1. The algorithm computes the required frequency slots

based on the chosen modulation format and checks for continuity and contiguity

of the frequency slots. It then checks if the route satisfies the OSNR threshold

constraint and accepts it if all constraints are satisfied. If K candidate paths are

assumed (K = 3 in the present work), then the above procedure is repeated for

those K paths until a proper route is found, or else the request is blocked.
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Algorithm 3.1 Q-learning-based EON routing algorithm

1: procedure Routing(source = X, destination = Z, Q-table (initialized to
0))

2: while Maximum number of episodes is not reached do
3: Set Visited nodes = [ ]
4: Set Current node = X
5: Set Candidate route = [ ]
6: while Current node is ̸= Z (i.e. terminal state) do
7: Obtain Q(possible actions) where possible actions ∈ (|V |, Z)
8: if exploitation is True then
9: action = argmax(|V |,Z) {Q(possible actions)}

10: else exploration is True
11: action = random number ∈ |V |
12: end if
13: Get neighbors of Current node
14: if action ∈ neighbors then
15: Append action to final route
16: Get reward for (Current node, action)
17: Update Visited nodes
18: Perform Bellman Q-value update (Eq. (3.9))
19: Do Current node = action
20: else
21: Get a negative reward
22: Perform Bellman Q-value update (Eq. (3.9))
23: end if
24: end while
25: Store the route of current episode if it is a feasible path
26: end while
27: Extract K-1 more paths from stored set of feasible path from over the

episodes
28: return K valid routes from X to Z
29: end procedure
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Algorithm 3.2 PLI aware RMSA scheme based on proposed routing algorithm

1: procedure RMSA(source = X, destination = Z, requested bandwidth)
2: Obtain K paths from Algorithm 3.1
3: Set route counter k = 0
4: while a valid route satisfying all constraints is not found or k ̸= K do
5: Obtain modulation format, number of frequency slots (Eq. (2.3)), and

OSNR threshold
6: Find feasible spectrum slots using First Fit/Last Fit/Exact Fit
7: if spectrum constraints are satisfied then
8: Compute OSNR (Eq. (3.1))
9: if OSNR computed ≥ OSNR threshold then

10: Assign the light path (LP) resources
11: Compute the local reward for each node of the LP: fragmenta-

tion (Eq. (3.8)) and available spectral slots on the corresponding link
12: Compute a positive global reward if PLI constraint satisfied,

else a negative global reward
13: Add the global to reward to each local reward
14: Perform Bellman update similar to Algorithm 3.1
15: else
16: Check on next feasible spectrum block
17: end if
18: else
19: Check on next feasible spectrum block
20: end if
21: Set k=k+1
22: end while
23: return a valid RMSA solution
24: end procedure
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3.3.1 Example Scenario

The algorithm’s application is explained with an example scenario. Consider a

traffic demand from source X to destination Z with a data rate of 200 Gbps. K

routes are found for this source-to-destination pair using Algorithm 3.1; K = 3

in the presented results. The number of frequency slots, Sreq, is computed using

Eq. (2.3). Then, the spectrum allocation part of the algorithm begins. A set

of frequency slots is found using either the first fit, last fit, or exact fit SA. The

contiguity constraint (the Sreq are adjacent on the link), continuity constraint (the

Sreq are at the same spectral positions on each link of the route), and frequency

non-overlapping constraint are checked on the selected route. If all constraints

are satisfied, the OSNR satisfaction constraint is checked.

The OSNR is obtained from Eq. (3.1); the OSNR threshold is based on the

chosen modulation format. If any of the three constraints were not satisfied or the

OSNR condition failed for the selected frequency slots, then the next frequency

is selected and again checked. If all the frequencies are exhausted, then the next

route in the already-found routes from Algorithm 3.1 is picked, and the conditions

are checked. If no suitable route is found even after three paths, the request is

blocked. The blocking can be either frequency blocking or PLI blocking.

Whether a route acceptance or rejection happens, rewards are assigned to

all the nodes of the route that led to success or failure. If it is a success, the

local reward is calculated based on the fragmentation occurring on each of the

chosen links (Eq. (3.8)) and the links’ availability, i.e., number of unoccupied

frequency slots. These two are considered in the reward calculation since high

fragmentation and low link availability can lead to higher blocking. If the chosen

route has three nodes, then the local reward will be a vector of three elements.

Including this information is a way of praising or criticizing the action taken to

choose that particular node’s link for any next request to the same destination.

The fragmentation reward is negative since the Q-learning algorithm tries to

maximize the reward, and fragmentation values are desired to be low. In the

proposed Q-learning routing algorithm, the global reward is related to OSNR

satisfaction. A global reward of +1 or -1 is added to the above-decided local

reward for each node on the route depending on whether the OSNR constraint is

satisfied or not. The total rewards (sum of the local and global rewards) are then

used to update the Bellman equation, Eq. (3.9), for each node of the considered

route. It is these same node values that the Q-learning EON routing later uses

to tentatively choose a path at each node, thus emulating hop-by-hop routing for

47



upcoming requests.

As a side note, this approach could be extended to EON using multimode or

multicore fibers, where the fragmentation computation is different than for the

single-core single-mode RMSA case [68, 69]. Perhaps more carefully crafted re-

ward functions can then be used in order to capture the fragmentation differences

in the spatial modes/cores rather than considering a single value in the reward.

3.4 Time and Space Complexity

The worst case time complexity of Algorithm 3.1 can be deduced as follows. The

Q-table is stored in the form of a dictionary that is implemented as a hash table

to make it less time-consuming to find the desired Q-value using the state as the

key. The time complexity to search for one value in a dictionary is O(1). Hence,

the worst-case scenario for a given destination is when all the states in the state

and action space are visited, and the complexity would then be O (|V |2).
The size of the Q-table in the proposed algorithm is |V | × |V | × |V | because

for each of |V | state node, there are |V | potential next hops on the way to |V | po-

tential destinations. This size is reasonable for Q-learning provided all the entries

are visited and updated [63]. This condition is fulfilled in the considered network

scenario since, as part of the training and during provisioning, the source/desti-

nation pairs are randomly generated for thousands of requests, and node-by-node

tabular updates are performed for both success and failure scenarios.

3.5 Results and Analysis

3.5.1 Training Setup

As mentioned in Section 3.3, a Q-table is maintained by the centralized controller.

Multiple episodes are run in order for the Q-table to converge, even though a

route may be found before all episodes are considered. This also helps to finalize

a better route than one found along the episode iterations. Figs. 3.3 and 3.4 show

the mean rewards obtained for two example source/destination pairs, where the

data has been downsampled for plotting purposes. For any given source and

destination, convergence was always reached before 10,000 episodes. Note that

the overall trend of the rewards is increasing; reward values are more often positive

than negative.
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Figure 3.3: Obtained mean reward over the number of episodes for one (source,
destination) pair

Figure 3.4: Obtained mean reward over the number of episodes for another
(source, destination) pair
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3.5.2 Network Results

The 14-node NSFNET and 11-node COST-239 networks described in Chapter 2

are used to test the performance of the proposed Q-learning algorithm for routing

combined with the three classical spectrum allocation strategies.

Data rates considered are between 50 Gbps to 300 Gbps. Modulation for-

mats considered are BPSK, QPSK, 8QAM, 16-QAM and 32-QAM; the threshold

OSNRs are 9 dB, 12 dB, 16 dB, 18.6 dB, and 21.6 dB, respectively [70].

The algorithm’s effectiveness is measured by calculating the BP, BBP, and

network fragmentation (FNET ). For each trial, 300,000 requests are considered to

determine these network metrics. The BP and BBP are computed using [Eqns.

(2.1)-(2.2)]. The network-wide fragmentation FNET for a network with |E| num-

ber of edges can be computed as in [33],

FNET =

∑
e∈E F (e)

|E|
, (3.10)

In optical networks, PLIs are typically addressed either through a PLI-aware

algorithm, as described above, or using an algorithm that ignores the PLI and

then performs a final quality PLI-check just before provisioning; the proposed

approach is compared to KSP under each assumption. The PLI effects consid-

ered are the fiber Kerr nonlinearity (SPM and XPM) and ASE noise, including

the ISRS effect. In the PLI-check approach, the OSNR constraint is checked

after the algorithm finds a route and a spectrum allocation. If the constraint

is satisfied, the request is provisioned, but no attempt is made to find another

route if the condition fails. This process is like the basic RMSA problem but

with the additional OSNR constraint. This checking increases the blocking when

compared to basic RMSA algorithms, but in a practical network, there is no

use in provisioning a request just based on the availability of resources without

considering physical layer aspects. Conversely, in the PLI-aware type RMSA,

OSNR constraints are checked as a part of the RMSA problem, and re-attempts

are made to find another route and/or spectrum allocation (still among the K

paths) if the OSNR constraint fails.

Simulation results of blocking probabilities with KSP and Q-learning PLI-

check routing using first and exact fit allocation in the NSFNET topology are

given in Figs. 3.5 and 3.6. The last fit performance is almost identical to the first

fit and, hence, not shown here. As the load increases, a higher resource blocking

or QoT blocking is inevitable, irrespective of the chosen routing or spectrum
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strategy. For all three SA algorithms tested, the Q-learning routing performed

better than the traditional KSP routing.

Figure 3.5: Blocking probabilities in NSFNET for PLI-check type RMSA con-
sidering KSP routing and Q-learning EON routing using first fit for spectrum
allocation.

Figure 3.6: Blocking probabilities in NSFNET for PLI-check type RMSA con-
sidering KSP routing and Q-learning EON routing using exact fit for spectrum
allocation.

When requests arrive repeatedly with sources and destinations whose routes

include many common crowded links, shortest path routing leads to repeated

blocking due to unavailability of frequency slots or QoT degradation to existing

requests on these links. Hence, always following the shortest path rule is not wise

in high-usage network operations. Conversely, in the proposed Q-learning routing

for C+L band EON, the decision of how to hop from one node to the next is
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optimized, thus finding the best Q-valued routes. Unlike the KSP PLI-check case,

the likelihood of failure is reflected in the Q-values of the nodes of a failed route.

This leads to the selection of different routes over time since the network state

changes and gets reflected in the Q-values through the rewards. Consequently,

the agent chooses the path that is in the best interest of the current request being

considered and also for better service provisioning in long-term operation.This is

supported by the simulation results shown in Figs. 3.5 and 3.6.

Figs. 3.7, 3.8 and 3.9 show the blocking probabilities obtained using KSP

and Q-learning routing in the NSFNET for the PLI-aware RMSA scenario. The

results are plotted with 95% confidence intervals, confirming the stability of the

measurements.

Figure 3.7: Blocking probabilities for PLI-aware RMSA with first fit for spectrum
allocation in NSFNET.

The blocking probabilities for these algorithms are lower than for the PLI-

check versions, as expected because there is a re-attempt to find another route

(among the K routes) and/or frequency spectrum if the OSNR constraint is

violated. Q-learning routing continues to perform better than conventional KSP

routing, even at high loads. The proposed algorithm achieves 1% blocking at loads

greater than around 120 Erlangs than the benchmark. Even with the inclusion of

PLI constraints, the Q-learning EON routing can adapt well in the long run. This

behavior is explained as follows. For the KSP algorithm, routing decisions affect

the blocking probability but are unaffected by spectrum decisions since routing

decisions are solely based on distance. On the other hand, for the Q-learning

routing, the spectrum affects the routing because the provisioning success or

failure is included in the Q-learning process through local (fragmentation, link
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availability-based) and global (PLI-based) rewards, affecting the routing of future

requests.

Figure 3.8: Blocking probabilities for PLI-aware RMSA with last fit for spectrum
allocation in NSFNET.

Figure 3.9: Blocking probabilities for PLI-aware RMSA with exact fit for spec-
trum allocation in NSFNET.

Fig. 3.10 depicts the bandwidth blocking probability for the PLI-aware NSFNET

scenario. The Q-learning based routing results in lower BBP when compared to

the KSP for all loads tested. The improvement is smaller at higher loads because

the fragmentation and PLI effects are higher, and link availability is lower.

Fig. 3.11 shows the FNET for the PLI-aware algorithm on the NSFNET net-

work. At each load, the FNET for every 10,000 requests were collected and then

averaged to obtain each of the points on the graph. The proposed Q-learning
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based RMSA algorithm is able to maintain lower fragmentation levels because

rewards are calculated based on the fragmentation that occurs after provisioning.

Note that the considered metric, Eq. (3.8) is a relative measure and not bounded

between 0 to 1.

Figure 3.10: Bandwidth blocking probabilities for PLI-aware RMSA in the
NSFNET network.

Figure 3.11: Network fragmentation for PLI-aware RMSA in the NSFNET net-
work.

To verify that the proposed Q-learning RMSA algorithm performs well in

different network topologies, a similar traffic pattern, as used on the NSFNET
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Figure 3.12: Blocking probabilities for PLI-aware COST-239 network with exact
fit SA.

topology, is given as input to the European COST-239 network. Fig. 3.12 shows

the blocking probabilities obtained using KSP and Q-learning for PLI-aware rout-

ing for this topology. Similar conclusions as the PLI-check scenario of NSFNET

topology are applicable here as well; hence, only exact fit results are shown.

In this network topology as well, the Q-learning routing algorithm is more ro-

bust than KSP routing and maintains lower blocking probabilities. Note that

the blocking is minutely higher in the COST-239 network when compared to

the NSFNET network. In both cases, the proposed algorithm outperforms the

traditional KSP algorithm.

The better performance of the proposed algorithm in both continental-sized

networks indicates that Q-learning routing can perform better than widely-used

KSP routing. As the primary intention of moving towards C+L band EON

operation is to support higher capacity traffic, the results showing improved per-

formance at high loads with the inclusion of realistic PLI provides a notable

contribution towards the realization of this emerging technology.

3.6 Chapter Summary

Using Q-learning for routing combined with classical spectrum allocation strate-

gies of first-fit, last-fit, and exact-fit is investigated for C+L band EONs. The

Q-learning algorithm belongs to the family of RL techniques. The present work
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has considered the ISRS effect, Kerr nonlinear impairments such as SPM and

XPM, and also the ASE noise encountered by the signal along the chosen network

path. The effect of fragmentation and link availability of the network is also con-

sidered through the reward-based interactions of Q-learning. To our knowledge,

this is the first application of the Q-learning algorithm for routing considering

the PLIs, fragmentation, and the constraints of spectrum continuity, contiguity,

and non-overlapping to perform online RMSA for C+L band EONs. The sim-

ulations are performed on two topographically diverse topologies, NSFNET and

COST-239, and the results are analyzed. In general, Q-learning routing per-

formed better than the K-shortest path algorithm. The proposed Q-learning for

routing is simple and can be used easily by operators in real situations.
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Chapter 4

Important Impairments for

QoT-Aware Provisioning in

Multicore Fiber Networks

This chapter presents a brief quantitative overview of the effect of various impair-

ments that are significant in MCF EONs when operating with dynamic traffic

having varying requirements. This work has been accepted for the IEEE 2024

Conference on Optical Network Design and Modeling.

4.1 Introduction

High-capacity optical networks and their management are crucial to support the

increasingly connected world. Hence, the next portion of the thesis focuses on

multicore single-band networks, that is, the exploitation of spatial diversity in-

stead of spectrum diversity for a multifold increase in capacity. The signals in

MCF EONs are also plagued by PLIs that degrade the QoT and limit the trans-

mission reach in continental-scale networks. As mentioned in Chapter 2, linear

PLI effects include amplified spontaneous emission (ASE) and crosstalk (XT),

and nonlinear impairments (NLI) include self-phase modulation (SPM) and cross-

phase modulation (XPM). The XT is an additional impairment in MCF-EONs

compared to the single core EONs. Hence, impairment effects are inevitable, and

the networking algorithms need to be all-impairment-aware. However, before

delving into the design of novel algorithms in the next chapters, we first discuss

the state-of-the-art followed by a brief quantitative discussion on the importance

57



of the PLIs and impact on resource provisioning in MCFs.

4.1.1 Literature Review

Many impairment-aware algorithms in the realm of MCF networking consider

only the XT impairment. The ASE, XPM, and SPM effects that have domi-

nated the QoT-aware single core literature are ignored. In [71], the focus was on

inter-mode and inter-core XT and to reduce the BP. A bi-partitioning method

wass proposed to maximize the number of non-adjacent cores and modes in each

partition of the bipartite graph, essentially using two distinct sets of cores and

modes in a counter-propagation manner for lightpath establishment. In [72], two

heuristic algorithms were proposed for multi-cast traffic using a rating method for

the links. A strict strategy of avoiding XT was employed to reduce the amount

of calculations, which can lead to a decrease in spectral efficiency due to the un-

necessary spreading of signals. In [73], the authors solved an RSCA problem that

simultaneously finds the route, core, and spectrum for each request. The advan-

tage is the reduction in provisioning time, which can be useful for provisioning

in large-scale networks. However, a static traffic scenario was considered, and

since the complexity of the problem increases in a dynamic scenario, it would be

interesting to extend the proposed approaches. Moreover, a worst-case XT was

assumed, leading to conservative over-provisioning of the network.

In [39], an ILP-based attack aware RMSCA was solved by considering all im-

pairments, whose levels were computed using extensive analytical models [74].

However, extending this work to a dynamic scenario would be interesting since

jamming signals are unpredictable, and real-time accurate impairment computa-

tion is a challenge. In [75], the authors presented a new approach to RMSCA

using the bit-loading concept to independently modulate each frequency slot ac-

cording to the experienced interference level. A congestion-based ordering strat-

egy is proposed to reduce the fragmentation. However, a static traffic matrix

was used, and an extension to dynamic traffic may be needed since the varia-

tion in fragmentation levels is large due to the dynamic arrival and departure

of demands. Most RMSCA studies ignore the impact of the current candidate

traffic request on existing signals that share the same lightpath on the network

[71, 72, 76, 77, 75, 78].

It is clear that there is a gap in the impairment-aware RMSCA literature

on the importance of considering the effects of different noise sources, especially
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in dynamic scenarios where impairments must be calculated in real time. The

non-XT linear and nonlinear impairments are either ignored or considered in the

worst-case scenario and under static traffic conditions, where traffic demands are

pre-defined. Hence, in this chapter, we focus on dynamic provisioning and answer

whether including only XT in provisioning is enough to predict and optimize the

performance of impairment-aware RMSCA algorithms accurately. The contribu-

tion of different factors on the blocking probability in analyzed at different loads

and channel launch powers for realistic dynamic impairment-aware networking

algorithms.

4.2 Test and Analysis

The MCF-EON analysis is performed on two different network topologies, the

USNET (24-node, 43-link) and COST-239 (11-node, 52-link) network, with |C| =

7 core MCF per link. Each core has 320 frequency slots, each supporting 12.5

GHz transmission. A Poisson traffic distribution model generates R = 100, 000

requests with data rates uniformly distributed in [50, 600] Gbps at 200 to 600

Erlangs traffic loads. Spectrally efficient modulation formats (PM-BPSK, PM-

QPSK, PM-8QAM, and PM-16QAM) are selected to satisfy the QoT threshold

as per dynamically calculated XT, ASE, and NLI levels [76].

Figs. 4.1 and 4.2 show the contribution of different factors when a failure to

accommodate traffic requests occurs in the MCF-enabled USNET and COST-239

topologies at 300 and 600 Erlangs for two input launch powers: 0 dBm and 2 dBm.

For R = 100, 000 requests, there are [RKC,RKC × NB] = [2100000, 2100000 ×
NB] total candidate RMSCA solutions, where K = 3 shortest paths, |C| = 7

cores, and NB is the number of spectral blocks obeying the continuity and con-

tiguity EON constraints. Hence, considering the extensive range of values, we

show the percentage contribution of different factors counted when a candidate

solution fails, for an easier comparison. The columns labeled ‘NLI’, ‘XT’, and

‘ASE’ refer to cases where each impairment is high enough to cause a provision-

ing failure on its own. ‘PLI combinations’ account for situations where only a

sum of these noises causes enough degradation to the QoT to block the request.

The ‘Spectrum’ failures include insufficient spectrum to accommodate demands,

spectral contiguity, and continuity constraint failures.

Figs. 4.1 and 4.2 consider the reason for the failure when the current request

is blocked, including when it negatively impacts in-service lightpaths. However,
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much of the RMSCA literature only considers the former [71, 72, 76, 77, 75, 78],

even when the work includes all impairments. From the same figures, note that, at

both power levels and for both networks, NLI plays a pivotal role in deciding the

request’s QoT failure when compared to XT. With the increase in launch power,

the NLI influence on provisioning failures rises, and the ASE influence decreases,

as expected. ASE plays an essential role compared to XT and cannot be ignored,

as assumed in some networking studies on RMSCA [39, 71, 72, 73, 79, 75]. ASE

contributes less to failures in USNET than in COST-239, which is because COST-

239 is a more highly connected network (density of 5.7) than USNET (density of

1.7), and hence, it is easier to find shorter paths. As the load doubles from 300

to 600 Erlang, XT has a stronger influence on a request’s failure. At the higher

load, NLI and ASE still play a significant role, with NLI contributing ∼ 58%

compared to XT contributing ∼ 21% to failures. PLI combinations also play an

essential role in QoT failure, with spectrum continuity, contiguity, and spectrum

unavailability failures increasing with increasing load.

Figure 4.1: Contribution of different factors to a request’s failure computed in
USNET and COST-239 at 300 Erlangs

Figs. 4.3 and 4.4 show a comparison of the various noise powers on different

network links of the USNET and COST-239 topologies at 300 and 600 Erlangs.

The noise power values used for the comparison are an average over multiple

time instants (every 1000 requests) of network provisioning, as the 100,000 re-

quests are dynamically allocated. Whenever the noise experienced by a request is
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Figure 4.2: Contribution of different factors to a request’s failure computed in
USNET and COST-239 at 600 Erlangs

computed, the corresponding ASE, NLI, and XT powers are captured for the can-

didate route/core/spectrum. The results estimate how a new request perceives

the different noise sources in the MCF-EON.

Figure 4.3: Noise power comparison in USNET and COST-239 at 300 Erlangs

The large majority of the 43 links of the USNET and 52 links of the COST-239

network are more affected by ASE noise than XT. At a low load of 300 Erlangs in

both networks and at both launch powers, XT is stronger than NLI on only ∼1/3
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Figure 4.4: Noise power comparison in USNET and COST-239 at 600 Erlangs

of the links. As the load increases to 600 Erlangs, XT exceeds NLI on ∼1/2 of

the links. Moreover, unlike the 300 Erlangs case, XT starts to dominate the ASE

on a few links. Also, as expected, the number of NLI-affected links increases in

both networks as the channel launch power increases and becomes dominant on

par with the ASE-affected links. Similarly, the XT noise power effects increase

slightly with the input channel power. Note that Figs. 4.3 and 4.4 show only the

noise distribution on different links over different points of network operation,

and hence, the NLI contribution to failure is observed to be stronger in Figs. 4.1

and 4.2 as they also account for blocking due to degradations on the in-service

lightpaths. XT is an additional noise contribution for MCF compared to single-

core fibers and is often considered the dominant source of impairment in these

systems. However, Figs. 4.1 and 4.2 show that a large proportion of MCF links

are more affected by ASE, SPM, and XPM effects at different loads. These can

cause signal degradation that can go unnoticed if the resource allocation schemes

only consider XT.

To further validate the noise analysis conclusions drawn from Figs. 4.1 to 4.4,

a blocking probability difference is shown in Fig. 4.5 when considering only XT

vs. NLI+ASE vs. all impairments for a 2 dBm launch power. Considering NLI

and ASE along with XT clearly increases the number of blocking events that

would go unnoticed if the provisioning scheme only considers XT or when the

effects on in-service lightpaths are ignored.
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Figure 4.5: Blocking probabilities in MCF-enabled USNET under different im-
pairment settings for R = 100, 000.

4.3 Chapter Summary

An analysis of MCF networks affected by various impairments, many of which

are ignored in the literature, is provided. The impact of XPM, SPM, and ASE

noise is shown for dynamic networks with different power levels, where they

account for ∼30% to ∼60% of QoT failures compared to ∼20% XT-induced

failures. A link noise distribution is also provided that re-iterates the importance

of holistic impairment modeling for RMSCA algorithm designs. Ignoring non-XT

impairments or effects on in-service demands will result in an underestimation of

the blocking probability obtained. The remaining portion of the thesis builds on

this conclusion, and the next chapter presents an impairment and fragmentation

aware RMSCA algorithm.
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Chapter 5

Multicore Resource Allocation:

Multi-attribute Decision-Making

Approach

This chapter presents a routing, modulation, spectrum, and core allocation algo-

rithm for space-division multiplexing-based elastic optical networks. A network

state-dependent route and core selection method using multi-attribute decision-

making (MADM) is proposed. This systematic resource allocation allows the

network designer to choose which resources are most valuable. It is followed by

a novel spectrum allocation algorithm using a weighted score function to rate

and select the best spectrum blocks. Physical layer impairments, including inter-

core XT, ASE, and Kerr fiber NLIs, are considered alongside fragmentation and

power consumption. The proposed RMSCA approach is compared with pub-

lished benchmarks incorporating QoT constraints and evaluated on two network

topologies, NSFNET (7 and 12-core multicore fiber links) and COST. It is shown

to be superior in terms of blocking probability, bandwidth blocking probabil-

ity, network fragmentation, and power consumption compared to standard and

published benchmarks. This work has been published in [30].

5.1 Introduction

From the previous chapters, it is clear that, for a truly impairment-aware RMSCA

algorithm, XT and non-XT effects should be considered for a proper analysis of

the network blocking under a dynamic traffic model. In addition, fragmentation
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and power consumption are two network aspects worth considering in the RMSCA

algorithm design. The dynamic setting and tearing up of traffic connections

increase the random occurrence of scattered and varying-sized spectral gaps, thus

making it challenging to allocate contiguous and continuous spectral blocks along

an entire route. A spatial continuity constraint is also placed in the RMSCA

decision as it is enforced in the majority of proposed SDM-EON architectures,

e.g., in the case of independent switching over single-mode MCFs, or for fractional

joint switching over few-mode MCFs [33]. This constraint is needed for switching

devices with limited flexibility for lane changes such as lower complexity and cost

ROADMs. Hence, under these spectral and spatial constraints for spectrum and

core allocation, it is important to focus on the impacts of fragmentation in the

algorithm design.

As emphasized in Chapter 4, impairments affect the optical planning schemes,

and the inter-core XT is an added impairment in the considered MCF network.

XT minimization prefers inter-signal spacing in the spectral assignment phase

to avoid signal overlap. In contrast, fragmentation mitigation demands compact

spectral assignment to avoid unnecessary spectrum gaps and make it easier to

satisfy continuity and contiguity constraints. Hence, it becomes important to

view the two issues collectively while allocating the spectrum of a MCF link [78].

The power consumption increases with an increase in traffic volume. Hence,

SDM-EONs offering higher capacity via multiple cores also increases the power

consumption because of more network elements such as BVTs, bandwidth vari-

able optical cross-connects (OXC)s, and EDFAs. It is a common assumption

to consider a two-part network power consumption model: a fixed part that is

independent of traffic served and a dynamic part that is traffic dependent [80].

The fixed part contributes constant power while the elements are in operation,

while the dynamic part represents the variable power consumption that is propor-

tional to the traffic that the network element handles. Keeping the power usage

to a minimum while solving the RMSCA problem is another essential aspect to

consider [81, 82, 83, 84].

Keeping these aspects in mind, this chapter presents a heuristic dynamic

RMSCA algorithm that reduces the probability of a connection request being

blocked. It is achieved using a MADM method to choose the core and route and

a weighted score function to select the spectral block for transmission. These

algorithms are designed to minimize the effects of fiber impairments on the signal

QoT while maintaining lower network fragmentation and power consumption
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than the baseline approaches.

The rest of this chapter is organized as follows. Section 5.2 summarizes the

current literature in this area and highlights our novel contributions. Section 5.3

gives the system description and the evaluation metrics. Section 5.4 elaborates

on the MADM technique and its adaptation for routing. Section 5.5 details

the proposed RMSCA algorithm. Finally, Section 5.6 gives the performance

evaluation of the algorithm, followed by a chapter summary in Section 5.7.

5.2 Literature Review

Several research works can be found in the literature on solving the RMSCA

problem in SDM-EONs. Fujuii et al. [82] proposed an RSCA algorithm for power-

efficient architecture on-demand modules as these modules provide flexibility of

SDM-EON architectures but suffer from high power consumption. Tode and

Hirota [85] proposed an RSCMA algorithm (‘M’ here stands for Mode) where

they included both MCF and multi-mode fibers. However, XT was the only

impairment considered, and more effects, such as modal dispersion and mode

coupling, could be considered. Yang et al. [73] solved a static RCSA problem

using MILP models for XT-aware and XT-unaware cases; the dynamic traffic

case was not considered. Zhang and Yeung [86] presented an RMSCA scheme to

reduce the wasted spectrum and to exploit path diversity, but in this case, the

XT was assumed to be negligible. In [87], Zhu et al. proposed an power-efficient

RMSCA scheme while considering a multi-path scheme for survivability. XT was

the only PLI considered, and the objective was to improve spectral efficiency

during fluctuating traffic without regard to fragmentation. The work of [84],

which preceded [83] described above, also considered energy efficiency for static

traffic scenarios.

Some recent works solve the RMSCA problem differently by considering as-

pects of network load balancing, different XT representation and traffic, or a

combination of network issues. In [88], Zhang et al. examined a new concept

of SDM-EONs supporting super-channels that allow the usage of frequency slots

on neighboring cores to form contiguous spectrum blocks. The RMSCA used a

load-balancing strategy and a metric accounting for spatial and spectral fragmen-

tation to minimize the number of wasted slots; impairments, however, were not

considered. In [89], Li et al. devised an effective XT representation model and an

RMSCA strategy that minimizes it, but other PLIs were not considered. In [90],
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Aretor et al. proposed an RMSCA scheme based on mixed integer linear program-

ming (MILP) and a heuristic approach for delay-sensitive multi-cast traffic; again

only XT impairment was considered. In [78], an RMSCA scheme was presented

to improve spectrum efficiency while focusing on XT and fragmentation issues.

A new modulation format selection method is provided w.r.t. XT-fragmentation

reduction. Until that time, this was the only paper (except for own work [91])

that addressed the importance of the combined XT- XT-fragmentation problem.

However, other impairments were not included. In [92], a dynamic impairment-

aware RMSCA algorithm was proposed considering XT, ASE, and XPM effects,

but not the quite important SPM. The work considered other PLIs (except SPM),

unlike most other PLI-aware RMSCA studies, and hence, this chapter uses this

algorithm for benchmarking purposes. In [93], fragmentation-aware RSCA algo-

rithms were proposed using a core classification method for spectrum assignment

and a cost function to increase spectrum efficiency. However, impairments were

not considered in the design process.

Most XT-aware networking studies compute the worst-case XT levels, i.e., all

neighbor cores are considered active [73, 94, 95, 96]. This approach simplifies

the computation but increases the blocking of incoming traffic demands due to

conservative XT estimates. On the other hand, computing precise XT levels

dynamically, as used in [97, 23], can be time-consuming. A lesser time-consuming

version that considers spectral blocks can be found in [77] and is used in this work.

However, these researchers did not consider the network fragmentation and power

consumption aspects.

Almost all of the RMSCA algorithms in the literature use the K-shortest

paths (KSP) method for routing. KSP routing based on distance results in the

same paths used for any network source-destination pair, irrespective of the net-

work state. This increases link congestion and blocks future traffic requests. In

addition, as distance-based KSP focuses only on the shortest paths, the rout-

ing part of the RMSCA design does not consider other network issues, such as

PLIs or fragmentation. In [88], a load-balanced routing method that considers

fragmentation is proposed. In [98], traffic-aware routing is performed to choose

routes based on the incoming traffic demand. [99] suggests a fragmentation and

alignment aware routing for 3D elastic optical networking. However, more rele-

vant network metrics could be incorporated into routing decisions. Using MADM

approaches to perform routing using multiple metrics in a systematic manner, as

proposed in this chapter, has not been previously considered.
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Recently, approaches using machine learning (ML) for RMSCA have been ex-

plored. In [100], an ML model trained with synthetic traffic estimated a path’s

acceptability based on crosstalk, fragmentation, and required slots. More fea-

tures related to impairments and network topology would need to be included

to compare their results to the current work. In [101], the authors used a deep

reinforcement learning approach to solve the RMSCA task. However, only XT

impairment was considered. Using ML for RMSCA is an attractive prospect to

consider; however, care should be taken in the design and implementation.

Fiber PLIs, specifically the ASE, SPM and XPM effects, have been widely

considered in single-core RMSA algorithms; a search of the relevant literature

yielded that there are no published RMSCA algorithms that holistically con-

sider these impairments alongside XT. This chapter’s work addresses this gap.

There are two reasons it is important to do this. Firstly, these impairments to-

gether significantly limit the signal reach, which is a major design aspect of any

impairment-aware RMSCA, and hence, as shown in Chapter 2, considering XT

alone is not enough. Secondly, a higher utilization in one core increases the NLI

effects, whereas spreading the traffic over different cores exacerbates the XT.

Hence, these factors affect the routing decisions, the required spectrum range,

and, subsequently, the networking costs.

Table 5.1 shows the literature works that considered impairments, fragmenta-

tion, and power efficiency aspects. We observed from the literature that no works

have covered all impairments while including fragmentation and power consump-

tion issues in performing dynamic resource allocation. Therefore, keeping all the

above aspects in mind, the following contributions are made in this chapter:

• A power-efficient PLI- and fragmentation-aware dynamic RMSCA is pro-

posed. The physical layer impairments consider ASE , XPM, and SPM

effects in addition to XT.

• The routing is improved by including network-dependent parameters in the

decisions and applying a new multi-attribute decision-making approach.

The proposed routing method checks the best path and core combinations

while considering multiple network features.

• A weighted score function combining XT, fragmentation, and power con-

sumption is proposed to rate and select the best spectral block for spectrum

allocation.

68



• The results of the proposed algorithm are compared with standard and pub-

lished benchmarks on 7 and 12 core-based NSFNET and COST networks.

Table 5.1: Literature on Dynamic Allocation Considering Impairments, Fragmen-
tation, and power Efficiency

Related works Network issues considered
Impairments Fragmentation power effi-

ciency
XT ASE,SPM,XPM

Liu [81] ✓ - - ✓
Fujii [82] - - ✓ ✓
Tode [85] - - - -

Yang [73] ✓ - - -

Zhang [86] - - ✓ -

Zhu [87] ✓ - - ✓
Zhang [88] - - ✓ -

Li [89] ✓ - ✓ -

Samuel[90] ✓ - - -

Zhang [78] ✓ - ✓ -

Ravipudi [91] ✓ - ✓ ✓
Su [92] ✓ ✓(except SPM) - -

Pourkarimi [93] - - ✓ -

Zhao [95] ✓ - ✓ -

Moghaddam [97] ✓ - - -

Tang [23] ✓ - - -

Klinkowski [77] ✓ - - -

Oliveira [100] ✓ - ✓ -

Pinto [101] ✓ - - -

Current chapter ✓ ✓ ✓ ✓

5.3 System Description and Evaluation Metrics

This section describes the PLIs and provides the MCF QoT model used in this

work. The network’s fragmentation and power consumption aspects are dis-

cussed, accompanied by the corresponding evaluation metrics.

5.3.1 Physical Layer Impairments Model

The QoT of optical signals is degraded by phenomena such as Kerr nonlinear

impairments and ASE noise occurring during the propagation and detection pro-
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cesses. The NLI is caused by the interaction of nonlinearity and dispersion in

the fiber and the ASE noise is due to EDFAs. These impairments affect the

end-to-end QoT, thus limiting the signal’s transmission reach. A well-known and

widely used PLI estimation model in long-haul transport networks is the so-called

Gaussian noise (GN) model, which is a state-dependent (traffic-dependent) model

[45].

The ASE noise power, P
(e)
ASE is modeled as additive Gaussian noise, and, for

a link e with N
(e)
s spans, can be computed as

P
(e)
ASE = N (e)

s

(
eαLs − 1

)
hνηsp∆f, (5.1)

where α is the fiber attenuation, Ls is the fiber length per span, i.e., the length

of the fiber between amplifiers, h is Planck’s constant, ν is the optical light

frequency, ηsp is the spontaneous emission factor and ∆f is the signal bandwidth.

The noise power originating from the nonlinear impairments, SPM, and XPM

are computed using Eq. (3.5). The power of XT, the additional impairment in

SDM-EON systems, can be estimated using [77]

P
(e)
XT = Pz ·XT

(e)
Υ , (5.2)

and

XT
(e)
Υ = Amax(L, e) · h · ℓ(e), (5.3)

where ℓ(e) is the length of the fiber link e, and h is the power-coupling coefficient.

XT
(e)
Υ is the XT of the most affected spectral slice of lightpath Υ on link e, and

Amax(Υ, e) is the maximum number of currently active adjacent cores surrounding

the spectral block of the core under consideration on link e of Υ.

Hence, the signal to noise ratio (SNR) of Υ propagating through NΥ MCF

links is calculated using

SNR(f) =
Pz∑

e∈NΥ

(
P

(e)
ASE(f) + P

(e)
NLI(f) + P

(e)
XT

) . (5.4)

In this work, the SNR that the current request would experience if it were to be

assigned a particular tentative route is calculated using Eq. (5.4) and compared

with an SNR threshold,

SNR(f) > SNRth, (5.5)
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where SNRth depends on the modulation format chosen. Also, in addition to sat-

isfying its SNR constraint, the new and about-to-be-provisioned request should

not degrade existing requests already provisioned along various links of the tenta-

tive route. Hence, the SNR constraint also includes checking their corresponding

SNR threshold requirements.

5.3.2 Fragmentation

As considered in Chapter 3, fragmentation is another cause of blocking in RMSCA

due to the creation of spectrum fragments that cannot be used by incoming

calls and still satisfy continuity and contiguity constraints, leading to spectrum

wastage. As explained in Chapter 2, fragmentation and XT effect mitigation

desire opposing strategies. Hence, this factor is considered in this chapter. The

network-wide fragmentation FNET for a network with |E| number of edges is

computed as the average of link fragmentation, F (e) (Eq. (3.10)). However, in

the MCF scenario, the F (e) is modified as the average of core fragmentation over

all cores computed as

F (e) =
1

|C|
∑
c∈C

F (e)
c , (5.6)

with

F (e)
c =

∑
γec∈Γec

|γec|
S

· ln
S

|γec|
(5.7)

C is the set of cores per link, |C| is the number of cores per link, Γec is the set

of fragments on link e of core c, |γec| is the size of fragment γec, i.e., number of

frequency slots in that fragment, and S is the total number of frequency slots in

the C-band.

5.3.3 Power Consumption

The BVTs typically consume more power than the other two power-consuming

elements, OXCs and EDFAs, while provisioning a traffic request [87]. The power

consumption of a BVT depends on the number of frequency slots used by the

request and hence, depends on the resource allocation decisions. Longer paths

demand more spectral resources and are influenced by chosen modulation for-

mats [Table 1, [87]]. The power consumption model given by [Eqs.(5.8)-(5.13)] is

adapted from [87].
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The power consumed by the BVTs to provision a lightpath Υ traveling NΥ

set of links is given by

EΥ
BV T =

∑
e∈NΥ

S
(e)
(Υ,m) · EBV T (m), (5.8)

where S
(e)
(Υ,m) is the total number of the spectrum slots allocated to Υ using

modulation m on link e. EBV T (m) is the power consumed by the BVT per

spectral slot when using a given modulation format m, which depends on T (m),

the data rate supported by a frequency slot using modulation format m, and can

be estimated as

EBV T (m) = 1.683 · T (m) + 91.333 (5.9)

The power EOXC(n) consumed by an OXC at node n depends on the node degree

d(n), the add/drop degree β, and some overhead power. It can be approximated

as

EOXC(n) = 85 · d(n) + β · 100 + 150 (5.10)

Hence, the total OXC consumption when accommodating a new Υ with S avail-

able slots on each e is given by

EΥ
OXC =

∑
n∈V n

Υ

S(e,n)

S
· EOXC(n), (5.11)

where S(e,n) is the number of occupied slots on link e connecting node n and the

next node of lightpath Υ and V n
Υ is the set of nodes on Υ.

The power consumed by EDFAs on a link e can be estimated as

E
(e)
EDFA =

(
ℓe

Ls

+ 1

)
· 100, (5.12)

assuming the power consumed by an amplifier is approximately 100 W [102].

Hence, the total power consumed by the EDFAs along lightpath Υ is given as

EEDFA =
∑
e∈NΥ

S(e)

S
· E(e)

EDFA (5.13)

where S(e) is the total number occupied slots on link e. The sum of these EBV T ,

EOXC , and EEDFA is the total power consumed by a request on path Υ. And

the total network power consumption (ENET ) calculated as the power consumed
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by all BVTs, OXCs, and EDFAs use these expressions but sum up all active

requests.

5.4 Multi-Attribute Decision Making Methods

Multi-criteria decision-making is a popular branch of decision-making that falls

under the discipline of Operations Research. It is categorized into multi-attribute

decision-making (MADM) and multi-objective decision making (MODM), de-

pending on the domain of the alternatives. MODM methods are preferred when

the problem is a decision problem and the decision variables have values in the

continuous or integer domain. These methods generally have infinite or many

alternatives. However, the MADM methods are applied when faced with the

problem of selecting the best viable option (or sorting and ranking) from a given

finite set of alternatives, as is the case for the considered RMSCA problem.

Optimization algorithms use an objective criterion to determine the opti-

mal solution. Often in complex problems, simple objective functions cannot be

phrased or solved. Heuristic algorithms are then used to weight multiple factors

and decide on a viable solution. It is then essential to use scientific methods to

structure the problem correctly and arrive at a well-informed decision. In this

section, the proposed heuristic yet structured MADM approach to routing and

core selection is described.

MADM methods need alternatives and attributes, and the values of the al-

ternatives are calculated w.r.t. different attributes considered. The attributes

influence the alternatives; hence, weights are assigned to them that determine the

importance/influence they can have in the decision-making process to achieve a

specific goal. What weights to assign to the attributes is the decision maker’s

choice. Example MADM methods include: simple additive weighting (SAW),

analytic hierarchy process (AHP), preference ranking organization method for

enrichment evaluations (PROMETHEE), technique for order preference by sim-

ilarity to ideal solution (TOPSIS), compromise ranking method (VIKOR), etc.

[103, 104].

Of the MADM methods, the PROMETHEE method is simple to apply, in-

volves less computation, and can handle qualitative and quantitative attributes

easily. Hence, in this work PROMETHEE combined with the AHP method is

utilized [105]. The PROMETHEE method belongs to a category of outranking

methods that were introduced by [106] and has been applied in various areas such
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as banking, workforce planning, water resources, investments, medicine, chem-

istry, health care, dynamic management, etc, mainly due to its ease of application

[106]. PROMETHEE handles the alternatives and attributes in a detailed man-

ner but lacks a systematic way to compute the attribute weights [106]. AHP

provides a systematic and practical approach to finding attribute weights and

ranking the alternatives [107]. Therefore, to determine the attributes’ weights,

the present work uses the AHP method, and the same weights are used in the

PROMETHEE method. The steps of the method are outlined below, and a

detailed demonstration of the route-core selection process using the proposed

AHP-enabled PROMETHEE method is given in Section 5.5.

Step 1: Identify the ’proper’ attributes (or criteria) for the problem

The first step is to create a short-list of the alternatives based on the attributes

identified. The attribute values can be the already-available data or data esti-

mated by the decision-maker. Table 5.2 shows the general form of the decision

table used in MADM methods based on these alternatives-attributes.

Table 5.2: General Form of Decision Table in MADM

Alternatives Attributes
a1 a2 · · · aY

Alt1 v11 v12 · · · v1Y
Alt2 v21 v22 · · · v2Y
Alt3 v31 v32 · · · v3Y
... · · · · · · . . . · · ·
AltX vX1 vX2 · · · vXY

Altx (for x = 1, 2, · · · , X) denotes alternative x, ay (for y = 1, 2, · · · , Y )

denotes attribute y, and vxy denote the performance measure used, i.e., the value

corresponding to alternative x with respect to attribute y.

Step 2: Decide the attributes’ weights using AHP

In this work, the steps of the AHP are adopted from [104]. Calculating weights

involves an important step of forming a relative importance (RI) matrix that

denotes the relative importance of the attributes considered and is determined

by the decision maker depending on the goal of the task. AHP provides a rela-

tive importance relations table to quantitatively fill the RI matrix, showing the

importance of a particular attribute over another using a standard scale of 1-9,
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as shown in Table 5.3, rather than using random intuition. The generic structure

of a RI matrix for Y attributes is given as

RI =



Attribute a1 a2 ··· aY

a1 1 r12 · · · r1Y

a2 r21 1 · · · r2Y
...

...
...

. . .
...

aY rY 1 rY 2 · · · 1

 (5.14)

where rij denotes the relative importance of attribute i over attribute j with

rij=1/rji; rij=1 for i = j. Using the degree of importance in Table 5.3 as either

rij or 1/rij, the RI matrix is filled, and the weights are computed. The geometric

means for each attribute are computed row-wise in the RI matrix (5.14) and then

normalized by their sum to get the weights, wy.

Table 5.3: Relative Importance scale

Degree of im-
portance

Definition

1 Two attributes have equal importance
3 One attribute is slightly more important than the other
5 One attribute is strongly more important than the other
7 One attribute is very strongly more important than the

other
9 One attribute is absolutely more important than the

other
2, 4, 6, and 8 Intermediate values

To verify the correctness of the weights found, a consistency ratio (CR) is

computed that should be less than 0.1, i.e., < 10% judgment error [105]. The

additional steps to verify the weight computations are given as:

Step A: Compute the vector M = (RI ∗W ) ⊘W , where W = [w1, w2, ..., wy]
T

and the weights are from Step 2 above, and ⊘ represents a Hadamard division.

Step B: Find the average of M as (λmax) to compute the consistency index (CI)

as

CI = (λmax − Y )/(Y − 1) (5.15)

Step C: Compute the CR as CR = CI/rindex where the rindex, known as the
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random index, is a standard value computed using a table provided for AHP for

a specific value of Y [105, 107]. The random index value for Y = 6 attributes,

as considered in this work, is 1.25. A CR value less than 0.1, indicates good

consistency in the relative importance relations assigned, and the weights can be

used with confidence.

Step 3: Preference function calculation (Prefy)

The preference functions Prefy represents the evaluation difference between two

alternatives (e.g., Alt1 and Alt2) w.r.t. a particular attribute y. They are calcu-

lated for each of the Y attributes and they assess the relative contribution of a

given alternative concerning a given attribute. Prefy outputs a preference degree

ranging from 0 to 1. The PROMETHEE method offers six different types of

preference functions. The ”usual” preference function is the simplest one and is

used in this work: it is the difference between the values vx,y and vx′,y of alter-

natives Altx and Altx′ , (for x, x′ ∈ X) w.r.t. an attribute value ay. Since this

is for each of the Y attributes, we get Y separate preference tables. Then, a

multiple attribute preference index table is formed using the weighted average of

the preference function tables Prefy, using the weights from Step 2.

Step 4: Calculation of leaving, entering flow, and net flow

Using the multiple attribute preference index table found in Step 3, we compute

the leaving, entering, and net flow. The leaving flow value ϕ+ is a measure of how

much the particular alternative dominates the rest of the alternatives, and the

entering flow value ϕ− denotes how much the rest of the alternatives dominate

the alternative. The leaving flow is calculated as the row-wise summation and the

entering flow as the column-wise summation of the multiple-attribute preference

index table described in Step 3. The net flow (ϕ+ − ϕ−) is a measure of how

attractive a particular alternative is. Therefore, the alternatives are ranked by

net flow, giving the best rank to the one that has the highest net flow value.

5.5 Crosstalk and Fragmentation Aware RM-

SCA Algorithm

The proposed RMSCA algorithm is given in Algorithm 5.1. The algorithm begins

by computing K ranked paths/cores using Algorithm 5.2, which takes as input
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the K shortest paths. For each k ∈ K and all cores, alternatives are formed and

scored using AHP-enabled PROMETHEE. This set of ranked alternatives is used

in the outer loop of Algorithm 5.1 (Line 2). The spectrum assignment algorithm

is performed inside the loop and relies on a score function based on spectrum

blocks on respective cores as described in Algorithm 5.3. The subsections below

detail these two functions.

Algorithm 5.1 Proposed RMSCA algorithm

1: procedure RMSCA(Source, destination, requested bandwidth)
2: Run MADM route procedure (Algorithm 5.2) to get ranked route-core

alternatives
3: while viable spectrum block not found on ranked route-core alternatives

and all alternatives not explored do
4: Calculate spectrally efficient modulation format
5: Create list of candidate spectrum blocks satisfying the continuity and

contiguity constraints on that route-core combination
6: Obtain scores for the candidate blocks using Algorithm 5.3 and sort

them in ascending order
7: while candidate block in sorted list does not satisfy QoT constraints

do
8: Compute the impairments and the QoT using Eqs. (3.5), (5.1),

(5.2), and (5.4)
9: if QoT is satisfied (Eq. (5.5)) and existing lightpaths not degraded

then
10: selected spectrum block = candidate block
11: else check next spectrum block
12: end if
13: end while
14: end while
15: return current route, core, and selected spectrum block to provision the

request
16: end procedure

5.5.1 Implementation Example: Route and Core

In this work, AHP-enabled PROMETHEE is used to find the best path and core

combination among the available choices as detailed in Algorithm 5.2. Following

the steps explained before, the alternatives here are the path and core combina-

tions. The alternatives for K paths and with |C| cores are denoted as (pk, cj) for

k = 1, · · · , K and j = 1, · · · , |C|. The total number of alternatives is K × |C|.
In this chapter, K = 3 routes and |C| = 7 or |C| = 12 cores are used.
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Algorithm 5.2 MADM path and core selection

1: procedure MADM route(Network topology, source, destination, set of
cores C, network state)

2: Find K shortest paths from source to destination
3: Obtain core utilization, core fragmentation, number of amplifiers needed,

available route bandwidth, power cost, and the QoT factor information for
each path-core alternatives.

4: Apply AHP-enabled PROMETHEE steps to obtain the ranking
5: return Ranked K × |C| path-core alternatives
6: end procedure

Algorithm 5.3 Score function

1: procedure Score Function(Route-core alternative, network status, can-
didate spectral block)

2: for each link e of route Υ do
3: S

(e)
occ = number of occupied frequency slots on adjacent cores overlap-

ping the spectral block
4: Sreq = number of frequency slots required to provision the current

request
5: X(e) = [S

(e)
occ − (Sreq/2)]2

6: N
(e)
F = number of fragments created with a size less than the required

slots
7: ETot = power consumed due to using the particular link using Eqs.

(5.8), (5.11), and (5.13)

8: Compute weighted multi-objective function Z(e) = α1X
(e) + α2N

(e)
F +

α3ETot

9: end for
10: Score(candidate block) =

∑
e∈NΥ

Z(e)

11: return Score
12: end procedure

The relevant attributes identified are core utilization (CU), core fragmentation

(CF ), number of amplifiers needed (NA), number of available frequency slots in

the route (SFree), power cost (ETot) and the QoT factor (QoT ). CU is included to

take into account the uniform utilization of the cores present in a fiber. CF affects

the availability of contiguous spectrum resources and thus affects the blocking.

NA depends on the length of the paths and the SFree affects the blocking directly.

ETot captures the power cost of choosing a particular path and a core combina-

tion. The CU , CF , NA, SFree, ETot and QoT for a request using modulation m

and a given candidate (path, core)= (NΥ, c) are computed using the following
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equations:

CU =
∑
e∈NΥ

Se
m

S
, (5.16)

CF =
∑
e∈NΥ

F e
c , (5.17)

NA =
∑
e∈NΥ

N e
s , (5.18)

SFree =
∑
e∈NΥ

1

|C|
∑
ζ∈C

(S(e)
m )ζ , (5.19)

ETot = EBV T + EOXC + EEDFA, (5.20)

QoT =
∑
e∈NΥ

C
(c)
XT + (S − S(e)

m )c + Sreq, (5.21)

C
(c)
XT =

∑
ac∈Nac

(S − S(e)
m )ac, (5.22)

where Nac is the number of adjacent cores for the considered core c. All the above

equations use notations having the same meanings as in Section 5.3 except that

they are now defined for a specific core c, wherever used.

As an example, let us assume there are four (path, core) alternatives: (p1, c1),

(p2, c3), (p2, c4) and (p3, c1). These alternatives are a subset of considered 21

and 36 alternatives (for 7 core and 12 core MCF, respectively, and three shortest

paths) in this work and are only chosen to illustrate the algorithm’s working.

Table 5.4 shows the decision table containing the information about the alterna-

tives, attributes and the corresponding data. Higher values of CU and SFree and

lower values of CF , NA, ETot and QoT are desired. The relevant system and fiber

parameters ([59]) are given in Table 3.1 in Chapter 3.

Table 5.4: Decision Table

Alternatives CU CF NA SFree ETot QoT
(p1, c1) 0.625 30 8 96 92 1740
(p2, c3) 0.9375 74 11 148 127 1405
(p2, c4) 0.828 132 11 148 127 1860
(p3, c1) 0.475 62 14 117 164 2587
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Following this example, the attribute weights can be computed using the RI

matrix, resulting in

RI =



Attribute CU CF NA SFree ETot QoT

CU 1 1/3 3 1 5 1/4

CF 3 1 5 3 7 1/3

NA 1/3 1/5 1 1/3 3 1/6

SFree 1 1/3 3 1 5 1/4

ETot 1/5 1/7 1/3 1/5 1 1/7

QoT 4 3 6 4 7 1


(5.23)

To obtain this, the CU is considered slightly more important than the NA required;

hence, a value of 3 is assigned. Accordingly, the reciprocal 1/3 is given to NA

vs CU matrix entry. Note that these assignments only illustrate the proposed

AHP-enabled PROMETHEE method for path selection: in real practice, the

decision-maker may assign values on a scale of 1-9 according to Table 5.3 based

on their expertise toward solving the particular problem.

As explained in Section 5.4, the geometric means of the attributes are calcu-

lated as

For CU : (1 ∗ 1/3 ∗ 3 ∗ 1 ∗ 5 ∗ 1/4)1/6 = 1.037

For CF : (3 ∗ 1 ∗ 5 ∗ 3 ∗ 7 ∗ 1/3)1/6 = 2.172

For NA: (1/3 ∗ 1/5 ∗ 1 ∗ 1/3 ∗ 3 ∗ 1/6)1/6 = 0.472

For SFree:(1 ∗ 1/3 ∗ 3 ∗ 1 ∗ 5 ∗ 1/4)1/6 = 1.037

For ETot: (1/5 ∗ 1/7 ∗ 1/3 ∗ 1/5 ∗ 1 ∗ 1/7)1/6 = 0.254

For QoT : (4 ∗ 3 ∗ 6 ∗ 4 ∗ 7 ∗ 1)1/6 = 3.554

The sum of these geometric means is 8.526. The corresponding weights of the

attributes are obtained by dividing their geometric means by the sum:

wCU = 1.037/8.526 = 0.1217

wF = 2.172/8.526 = 0.2546

wNA
= 0.472/8.526 = 0.0553

wSFree
= 1.037/8.526 = 0.1217

wETot
= 0.254/8.526 = 0.0298

wQoT = 3.554/8.526 = 0.4167

Putting these weights into a vector, we denote

W = [0.1217, 0.2546, 0.0553, 0.1217, 0.0298, 0.4167]T
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. The CR computations following the steps given in Section 5.4 are given as:

Step A: Derive the vector M :

M =



0.7478/0.1217 = 6.1454

1.6095/0.2546 = 6.3203

0.3464/0.0553 = 6.2550

0.7478/0.1217 = 6.1454

0.1928/0.0298 = 6.4629

2.6954/0.4167 = 6.4682


(5.24)

Step B: The value of λmax is 6.2995. The CI value is computed as CI =

(6.2995 − 6)/(6 − 1) = 0.0599.

Step C: The CR value is 0.0599/1.25 = 0.0479. This is much less than 0.1, in-

dicating good consistency in the relative importance relations assigned, and the

weights can be accepted.

Next, the preference values (Prefy) resulting from the pairwise comparisons of

the alternatives with respect to each attribute are found. Table 5.5 shows these

values for the CU attribute; similar preference tables are formed for the remaining

attributes. Pairwise comparison means that when an alternative Alti dominates

another alternative Altj, a 1 is assigned to matrix element (i, j), and a 0 is

assigned to element (j, i). However, if two alternatives are equal, no dominance

exists and a 0 is assigned in both cases. Using the four preference tables for

the X = 4 alternatives, a multiple attribute preference index table is formed, as

shown in Table 5.6.

Table 5.5: Preference Values for CU Attribute

CU (0.1217) (p1, c1) (p2, c3) (p2, c4) (p3, c1)
(p1, c1) – 0 0 1
(p2, c3) 1 – 1 1
(p2, c4) 1 0 – 1
(p3, c1) 0 0 0 –

The leaving, entering, and net flows are calculated next. The leaving flow is

computed as the row-wise summation and the entering flow as the column-wise

summation of the preference values of Table 5.6. The net flow (ϕ) is calculated as
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Table 5.6: Preference Relations and the Ranks of Alternatives

(p1, c1) (p2, c3) (p2, c4) (p3, c1) ϕ+

(p1, c1) – 0.3485 0.7652 0.8869 2.0006
(p2, c3) 0.6601 – 0.793 0.754 2.2071
(p2, c4) 0.2434 0 – 0.754 0.9974
(p3, c1) 0.1217 0.2546 0.2546 – 0.6309
ϕ− 1.0252 0.6031 1.8128 2.3949

the difference between the leaving and entering flows i.e. (ϕ+ − ϕ−), which come

out to be 0.9754, 1.604, -0.8154 and -1.764 for the example shown. Based on these

ϕ values, the alternatives are ranked in descending order and, the best alternative

is the first one. Hence, the ranking of the alternatives becomes (p2, c3), (p1, c1),

(p2, c4), (p3, c1), with (p2, c3) being the best choice.

5.5.2 Implementation Example: Spectrum Assignment

The next step is to find the spectral blocks satisfying the continuity and contiguity

conditions for the particular route-core combination being considered. The score

function algorithm, Algorithm 5.3, is called for the candidate blocks, and they

are sorted in ascending order of their scores in Line 6. All spectrum blocks of

the size required for the data rate and modulation format selected that obey

the continuity and contiguity constraints of the EONs are considered candidate

blocks. The QoT is checked starting with the first candidate block. If it does not

satisfy the threshold criterion in Eq. (5.5) or unduly degrades other established

lightpaths, the search proceeds toward the next spectrum block. However, if Eq.

(5.5) is satisfied, then the current candidate block is selected. Hence, the loop at

line 7 of Algorithm 5.1 continues until a QoT-satisfying block is found. Since the

scores already incorporate the XT aspect as one term, it can be assured that the

found block from the sorted set is one of the better choices w.r.t. XT satisfaction,

and there is no need to continue the search for other spectrum blocks.

We define a weighted multi-objective function that computes a score for the

feasible candidate spectrum block, returned by Algorithm 5.3. This score is cal-

culated for the entire route-core alternative and considers the number of occupied

slots surrounding the candidate block on adjacent cores and the amount of frag-

mentation incurred from selecting that block on that core and on that route. As

seen from Algorithm 5.3, for each link, the first term, X(e), denotes the score value

considering XT and the second term, N
(e)
F , denotes the score value relating to the
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additional fragmentation caused by selecting that particular spectral block, and

the third term ETot calculates the power consumption. Depending on the weights

chosen, the algorithm can emphasize a lower expected XT, fragmentation-causing

capability, or power cost when considering the whole route. This spectrum selec-

tion scheme using scores is named as score fit (SF) in this work.

To see how the N
(e)
F term captures the spectral block’s fragmentation-causing

capability when compared to classical spectrum schemes [4], consider a link’s

spectrum status [ABCD111HIJKLM11PQRST11], where a ‘1’ denotes an occu-

pied slot, and the letters are position indicators denoting available slots. Assume

3 frequency slots are required to accommodate the current traffic request, i.e.,

Sreq = 3. Then, the candidate blocks are [ABC], [BCD], [HIJ], [IJK], [JKL],

[KLM], [PQR], [QRS], and [RST]. Assume that these candidates satisfy the con-

tinuity constraint. The classical spectrum allocation algorithms, FF , LF , EF ,

and Best Fit (BF) [108] would choose [ABC], [RST], [ABC], and [ABC], respec-

tively. However, these blocks create fragments of sizes 1, 2, 1, and 1, respectively,

which is wasteful w.r.t. future traffic. However, the N
(e)
F term would encourage

the selection of [HIJ] or [KLM] as they leave zero fragments with sizes less than

Sreq, thus leaving bigger blocks of contiguous available slots.

The complexity of the proposed algorithm is O(KS|C||V |), where K is the

number of routes considered, S is the number of frequency slots, |C| is the number

of cores, and |V | is the number of network nodes.

5.6 Network Results

The proposed algorithm is tested on two network topologies, the 11-node and

52-link COST-239 and the 14-node and 21- link NSFNET, using a 7-core MCF

on each link, as shown in Fig. 2.6. The NSFNET is additionally tested with 12-

core links to check the robustness of the algorithms. Both these networks have

a wide diversity of link distances (200 km - 2400 km), which is essential while

considering the inclusion of PLI. This work assumes a 4 THz optical spectrum

per core for both networks. Each frequency slot of a core supports 12.5 GHz

transmission.

A Poisson traffic distribution model is used to generate 100,000 requests for

varying loads with data rates uniformly distributed in [50, 300] Gbps. A request

comprises a source node, a destination node, and requested data rate. Modu-

lation selection is distance adaptive and the modulation formats considered are
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binary phase shift keying, quadrature phase shift keying, 8-quadrature amplitude

modulation (QAM), 16-QAM, and 32-QAM; the threshold SNRs are adopted

from [109]. The algorithm’s effectiveness is measured by calculating the blocking

probability (BP), bandwidth blocking probability (BBP), network fragmentation

(FNET ) computed using Eq. (3.10), and total power consumption (TEC). The

BP and BBP are calculated using [Eqns. (2.1))-(2.2)].

The next sections show the simulation results where a 95% confidence interval

is drawn as error bars around each mean value over 5 trials. In all the results, the

conventional KSP routing with FF spectrum assignment algorithm is subjected to

the QoT constraint for a fair comparison with the proposed approach. The results

are also compared with a recently published impairment-aware RMSCA algorithm

described in [92]. The authors proposed a dynamic impairment-aware (DI-aware)

RMSCA algorithm. However, the SPM impairment was not considered in their

work; hence, for a fair comparison, the proposed algorithms of this chapter are

also simulated without the SPM effect whenever compared with the DI-aware

algorithm.

5.6.1 Performance Analysis, 7-core MCF: Blocking Prob-

ability

This section analyzes the performance of the algorithms when operating in net-

works where all links use 7-core MCFs. The 7-core fiber has a core at the center

and 6 cores surrounding it. Figs. 5.1 and 5.2 compare the blocking probability

obtained using the benchmark KSP and the proposed MADM routing under FF

spectrum allocation and the proposed SF approach for the two networks consid-

ered, respectively.

The results show that the MADM SF obtains the lowest blocking probability

among the considered algorithms. For a given routing scheme (KSP or MADM),

the SF performs better than the benchmark FF. And for a given spectrum al-

location (FF or SF), the MADM routing aids in obtaining lower blocking. This

behavior is because KSP only considers distance, whereas MADM-based routing

uses a holistic approach, including blocking-affecting metrics. The performance

of KSP SF is comparable with MADM FF but still performs better than the

routing and spectrum benchmark (KSP using FF). Similar observations can be

drawn from the blocking behavior in the NSFNET and COST239 networks.

Fig. 5.3 shows the blocking probability comparison between the proposed

84



Figure 5.1: Blocking probabilities for the KSP FF, KSP SF, MADM FF and
MADM SF in a 7-core NSFNET

Figure 5.2: Blocking probabilities for the KSP FF, KSP SF, MADM FF and
MADM SF in a 7-core COST239

algorithm and the DI-aware algorithm. The blocking probability is slightly lower

than in Fig. 5.1 since the SPM effect is absent. The DI-aware algorithm uses

KSP routing; hence, the KSP case is shown with the SF and the MADM routing
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with SF. MADM SF offers significantly lower blocking, and even KSP SF offers

slightly better performance than the DI-aware scheme. This is because the SF

is more concerned with XT than with the other impairments considered in the

MADM routing decision; hence, MADM SF performed better than the KSP SF

when compared to the DI-aware scheme.

Figure 5.3: Blocking probabilities for the KSP SF, MADM SF, DI-aware RMSCA
[92] in 7-core NSFNET

5.6.2 7-core MCF: Bandwidth Blocking Probability

Since SDM-EONs are expected to carry high amounts of data, analysis of BBP

gives better insight into the network performance than the BP that treats all

requests the same irrespective of their size [7]. Figs. 5.4 and 5.5 show the BBP for

the benchmark KSP and the proposed MADM routing with FF and SF spectrum

allocation for the two networks, respectively. Results show that MADM SF

obtains the lowest BBP among the considered algorithms. This is because, at any

given time, the SF tries to find a block that balances the XT and fragmentation-

causing capabilities. As a result, the chance of successful allocation is higher in the

proposed approach despite changes in the request sizes. Furthermore, with any

given candidate spectral block, the algorithm considers how much fragmentation

it could cause that can lead to the possibility of rejection of future bigger-sized

requests. Similar performance conclusions as those of blocking probability can be
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drawn regarding the relative performance of other approaches in NSFNET and

COST239 networks.

Figure 5.4: Bandwidth blocking probabilities for the KSP FF, KSP SF, MADM
FF, and MADM SF in 7-core NSFNET

Figure 5.5: BW blocking probabilities for the KSP FF, KSP SF, MADM FF, and
MADM SF in a 7-core COST239
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5.6.3 7-core MCF: Power Consumption

Fig. 5.6 shows the power consumption (kW) in the NSFNET network as a func-

tion of traffic load when using the benchmark KSP and the proposed MADM

routing under FF and SF spectrum allocation methods. As expected, the con-

sumption increases with increasing load. Despite similar BP and BBP perfor-

mances for KSP SF and MADM FF, they vary in power consumption. MADM-

based RMSCA solutions are more power efficient than KSP-based ones. Includ-

ing power cost via an attribute while applying the PROMETHEE method in the

MADM routing decision stage has been more beneficial than in the spectrum

allocation stage for the considered C-band operation. MADM FF shows lower

power consumption than MADM SF and is due to its higher blocking. Similar

reasoning goes for the performance differences between KSP FF and KSP SF.

The DI-aware approach of [92] did not consider power consumption. Hence,

the consumption here is plotted by subjecting the algorithm to the formulas [Eqs.

(5.8)-(5.13)], as used for the proposed methods. Results show that the DI-aware

approach causes more power consumption than the proposed approaches – an

algorithm being impairment-aware is unrelated to how power efficient it is.

Figure 5.6: Total power consumption for KSP FF, KSP SF, MADM FF, MADM
SF, and DI-aware RMSCA algorithm [92] in 7-core NSFNET
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5.6.4 7-core MCF: Network Fragmentation

Fig. 5.7 shows the network fragmentation that occurs over different traffic loads

for KSP and MADM routing under FF and SF spectrum allocation for the

NSFNET network. In addition, the fragmentation resulting upon using the DI-

aware published benchmark is also analyzed. The fragmentation metric can take

values ranging from 0 to ∞ [33].

Figure 5.7: Network fragmentation for the KSP FF, KSP SF, MADM FF, MADM
SF, and DI-aware RMSCA algorithm [92] in 7-core NSFNET

The MADM SF maintains lower fragmentation levels than the other algo-

rithms for all traffic loads tested. The KSP FF compactly allocates the spectrum

at any given time, but as seen in Section 5.5, the SF better quantifies and allo-

cates the spectrum. This causes the proposed SF to perform better. In addition,

the use of fragmentation as an attribute in the MADM route selection process

helps to improve the performance further. The DI-aware approach did not con-

sider fragmentation. Hence, the algorithm is subjected to the same formula Eq.

(3.10) used for the proposed methods and plotted here. The algorithm results in

higher fragmentation than the KSP FF. This is because the DI-aware approach

minimizes the impairments’ impact and does not include fragmentation in the

spectrum allocation design process. Instead, it uses the KSP routing; hence,

considering the spectrum part alone, the FF is naturally better at reducing frag-
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mentation than the DI-aware allocation.

5.6.5 12-core MCF

Figs. 5.8-5.11 show the blocking probability, Bandwidth (BW) blocking proba-

bility, network fragmentation, and power consumption, respectively, in a 12-core

based NSFNET. A ring-structured 12-core fiber is assumed for all simulations

[110].

Fig. 5.8 shows that MADM SF obtains the lowest blocking probability among

the algorithms tested for similar reasons as in the case of 7-core MCF. Similarly,

the KSP SF and MADM FF give close results. However, the performance dif-

ference between the algorithms is smaller than in the 7-core case. The reason

is that the number of neighbors in the ring-structured 12-core MCF link is less

than in the 7-core type; hence, the XT experienced by a signal is lower. Since

the algorithms are XT-aware, they might show a higher performance advantage

when the XT is stronger. However, the algorithms still perform better than the

KSP FF benchmark due to including holistic network features in routing and

spectrum allocation decisions.

Figure 5.8: Blocking probabilities for the KSP FF, KSP SF, MADM FF and
MADM SF in 12-core NSFNET

Conclusions drawn from the results in Fig. 5.9 are similar to those for the

7-core MCF network shown in Fig 5.4. The proposed methods maintained lower
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BW blocking than the KSP FF with MADM SF being the best. Fig. 5.10 shows

the obtained 12-core MCF network fragmentation for the proposed algorithms.

Similar to the 7-core case, the SF aids in a better quantification of the net-

work fragments before deciding the RMSCA solution and hence provides lower

fragmentation when combined with MADM routing. Fig. 5.11 shows the power

consumption in a 12-core MCF network; the MADM approaches maintain lower

power consumption than the other approaches as the traffic loads increase.

Figure 5.9: BW blocking probabilities for the KSP FF, KSP SF, MADM FF, and
MADM SF in 12-core NSFNET

5.7 Chapter Summary

An impairment-aware, fragmentation-aware, and power-efficient RMSCA algo-

rithm for C-band SDM-EONs is proposed in this chapter. The present work

considers the XT, Kerr nonlinear impairments such as SPM and XPM, and also

the ASE noise encountered by the signal along the chosen network path. Novelty

is introduced in the form of new routing and new spectrum allocation processes.

A MADM-based routing that considers relevant network aspects is used to rank

the candidate routes and cores for traffic requests. In the spectrum allocation

part, a score-based approach uses a weighted function that qualitatively incorpo-

rates the effects of the expected XT and the expected fragmentation on existing
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Figure 5.10: Network fragmentation for the KSP FF, KSP SF, MADM FF, and
MADM SF in 12-core NSFNET

Figure 5.11: Total power consumption for KSP FF, KSP SF, MADM FF, and
MADM SF in 12-core NSFNET
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and upcoming traffic while maintaining lower power consumption levels. To the

best of the knowledge when the work was published, this is the first work that

considered all impairments in SDM-EONs while also being fragmentation and

power aware.

The simulations are performed on two diverse network topologies, NSFNET

and COST-239 with 7 and 12 core MCF links, and the results of blocking prob-

ability, bandwidth blocking probability, network fragmentation, and power con-

sumption are analyzed. The novel combination of MADM routing and score func-

tion spectrum assignment performs significantly better than the conventional and

published benchmarks for all cases tested.
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Chapter 6

Multicore Resource Allocation:

Machine Learning Approach

This chapter presents an RMSCA algorithm for SDM-EONs comprising multi-

core links. A network state-dependent route and core selection method is pro-

posed using a DNN classifier. The DNN is trained using an advanced optimization

algorithm to predict lightpath suitability, considering the quality of transmis-

sion and resource availability. Physical layer impairments, including inter-core

crosstalk, amplified spontaneous emission, and Kerr fiber nonlinearities, are con-

sidered, and a Random Forest (RF) based link noise estimator is proposed. A

feature importance selection analysis is provided for all the features considered

for the DNN classifier and the RF link noise estimator. The proposed machine

learning enabled RMSCA approach is evaluated on three network topologies, US-

NET, NSFNET, and COST-239 with 7-core and 12-core fiber links. It is shown

to be superior in terms of blocking probability, bandwidth blocking probability,

and computational time compared to the standard and published benchmarks at

different traffic loads. This work was submitted for publication in February 2024

and is under editorial review in the IEEE/Optica Journal of Optical Communi-

cations and Networking.

6.1 Introduction

As emphasized in the previous chapters, a RMSCA solution needs to account

for the PLIs present. Closed-form models and ML approaches have been used to

estimate the dynamic PLI levels, the latter mainly for single-core fibers and rarely

integrated into RMSCA schemes [25, 111, 112, 113]. In addition, the lightpath
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acceptability is constrained by resource availability, spectrum continuity, and

contiguity. The work in this chapter moves closer to integrating ML with multi-

core optical networking by proposing an ML-enabled dynamic RMSCA algorithm

that considers holistic factors affecting the lightpath suitability and incorporates

a ML-enabled noise estimation to help check QoT conditions. The QoT model

used in this chapter is the same as in Chapter 5.

ML intends to capture unknown optical network relationships for intelligent

decision-making to improve network performance and faster computations. In

recent years, there has been an increase in research works incorporating ML

into traditional resource allocation at various stages, notably QoT estimation

[114], traffic prediction [115], and network monitoring and survivability [116, 117].

Among the various applications, ML-based QoT estimation has received consid-

erable attention [11, 118, 119, 120, 121, 112, 122]. In ML-based QoT estimation,

regression and classification approaches usually decide the QoT suitability for a

given lightpath. A regression method approximates the BER, whereas a binary

classifier outputs a yes/no denoting the lightpath suitability w.r.t the defined tol-

erable BER, and this outcome can be used for resource allocation [121, 112]. The

ML applications in the literature estimate or classify the lightpath solely on the

QoT compared to a QoT metric threshold; they ignore the question of lightpath

unavailability due to spectral resource shortages.

The ML optical networking community has focussed on improving ML models

by enriching the training dataset quality and applying different ML tools, but not,

as observed in the literature, on improving the inner workings of the ML models.

Advanced training algorithms, as used in this work, can aid the current ML

efforts to improve the model prediction capabilities. In addition, the previously

proposed ML models have been well-analyzed for a given traffic load, but no

works have considered all impairments under different traffic load scenarios for

model robustness.

Keeping these aspects in mind, this chapter proposes an ML-enabled dy-

namic RMSCA method, a step toward ML integration into multi-core optical

networking. It extends the previous work reported in [123], which introduced

and described an ML classifier for route and core selection, by applying it to

resource allocation and incorporating a random forest-based multi-core link noise

estimator. The proposed approach uses ML at two stages: for multi-core link

noise estimation and for the route and core selection process. The former uses

a random forest (RF) model, and the latter uses a deep neural network (DNN)
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trained by an advanced optimization algorithm called the Jaya algorithm [124].

The proposed scheme finds the best resources to reduce the probability of a con-

nection request being blocked while reducing the computation time needed to find

viable resource allocation candidates satisfying the QoT. A feature importance

analysis is also performed on the proposed model for explainability.

The rest of this chapter is organized as follows. Section 6.2 summarizes the

current literature in this area and highlights the chapter’s novel contributions.

Section 6.3 provides a description of the performance metrics employed. The

proposed RF noise estimator and the DNN classifier are presented in Section 6.4.

This section also describes the Jaya algorithm and the model tuning procedure.

The proposed RMSCA algorithm is detailed in Section 6.5. The results and a

chapter summary are provided in Sections 6.6 and 6.7, respectively.

6.2 Related Literature Review

This section describes the literature on applications of ML in single and multi-

core optical networking. The mention of single-core here is important to notice

the shift in research trends towards multi-core, to emphasize the comparatively

smaller quantity of research performed in the latter under the umbrella of ML,

and to also present to the readers the possibility of extensions of single-core

solutions to multi-core networks.

ML has been widely used in the literature for QoT estimation for single-core

fiber networks. In [118], an ML classifier for BER estimation was proposed based

on lightpath characteristics, traffic volume, and modulation format. However,

more features could be investigated to model the real network scenario better.

Few works have extended the use of ML-QoT estimators for network planning.

In [121], an integration of ML-based transmission reach estimator with RSA was

presented. This work was one of the first attempts to show the application of ML

outputs to resource allocation, albeit for a static RSA problem. The proposed

framework was reported to achieve spectrum savings compared to conservative

reach models. The work was extended in [112] by proposing a dual-stage frame-

work to apply the ML predictions to RSA. However, these have not been extended

to a dynamic resource allocation scenario. In [125], ML was used to model the

fiber nonlinearities by calibrating the deviations resulting from nonlinear mod-

els in single-core fibers. Different fiber types and link configurations were used;

hence, this model could be developed further for QoT-aware resource allocation,
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including the XT effect for MCF links. In [126], a gradient-boosted ML model

was presented that estimated the NLIs for multi-period network planning. The

model was reported to have lower computation times than the GN-based net-

work planning solutions. In [58], a ML model was used to estimate the optical

SNR of in-service lightpaths in C+L bands before initiating defragmentation;

they reported capacity increments in small and large-scale networks. In [127], a

DNN-assisted QoT estimator was proposed for multi-band EON resource provi-

sioning. The computational time, traffic admissibility, and number of contiguous

blocks were improved compared to the benchmark schemes. The model could be

adapted for QoT modeling in MCF networks.

In addition to supervised ML approaches, RL based solutions have been pro-

posed in the optical networking literature, not just limited to QoT estimation.

In [24], a DRL-based RMSA scheme was presented that selects a routing path

and a spectral block. This was one of the initial works to pave the way for

RL based optical networking to lower network blocking. However, only a few

candidate spectral blocks were considered to enable successful policy learning by

the RL agent, and a transmission reach model was used. Real-time nonlinear

impairments were not considered, and the algorithm was limited to single-core

networks. In [29], a Q-learning-based routing algorithm was proposed for RMSA

in C+L band EON. Impairments and fragmentation were used to design the re-

ward functions that helped lower blocking and fragmentation. In [23], a DRL

based RMSA problem was studied, emphasizing the custom reward function de-

sign using path fragmentation levels. The method outperformed a heuristic and

a simple reward-based DRL approach w.r.t. fragmentation. However, no PLIs

were considered that would affect the resources chosen. In [22], a DRL-based

RMSA scheme was proposed for inter-domain requests in a multi-domain EON.

The method obtained lower blocking than KSP and a published benchmark for a

multi-domain architecture. The PLIs, however, were ignored, so DRL agent ac-

tions were not sensitive to signal degradation when crossing multiple domains in

real-time. In [128], a RL approach was proposed to find near-optimal parameters

maximizing the overall bitrate of a 51-channel WDM link. Unlike most RL works,

this approach considered linear and nonlinear impairments. The method was also

reported to have lower computational time than optimization approaches.

Some works in the literature also reported the use of ML for SDM-EON net-

work planning. In [116], a transfer learning (TL)-based optimization scheme

was presented to predict the spectrum defragmentation time for improving re-
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source utilization. However, the QoT aspect was simplified by categorizing the

requests into four levels of BER. In [115], an Elman NN for traffic prediction and

a fragmentation-reducing rectangular packing spectrum model were proposed.

A spectrum partitioning method was used to reduce the XT effect; other im-

pairments were not considered. In [129], an modulation format (MF) selection

scheme using ML predictions was proposed. The ML was used to capture the

relation between spectral efficiency, transmission reach, and XT to predict the

optimal MF to obtain lower bandwidth blocking. Capturing the relation over

more impairments would lead to a more realistic MF selection. In [122], a DNN

was presented to predict an optimal set of XT thresholds to determine the MF

selection that ensures XT compliance for a given traffic request in SDM-EONs.

Other impairments were not included that would have yielded a more realistic

effect on the thresholds chosen by the ML model. In [117], two defragmentation

algorithms were proposed based on unsupervised ML. The lightpaths were clus-

tered using link characteristics, and new lightpaths were assigned to the closest

cluster as predicted by the ML model. This work is one of the few works that

used the unsupervised approach for optical networking.

Few works also utilized ML to aid QoT calculations for SDM-EONs. In

[114], deep graph convolutional neural networks (DGCNN) were applied for MCF

QoT estimation. The DGCNN was used to find the feasibility of a lightpath in

terms of QoT satisfaction and its effect on in-service traffic due to XT. In [130],

a self-organizing feature mapping-based model was proposed to process multi-

dimensional data of SDM-EONs. The model estimated the core transmission

quality and was integrated into RCSA to locate higher transmission-quality cores

for lower blocking. In [131], mode selection for a few-mode MCF was performed

using ML-assisted XT prediction. Improved connection setup times and spec-

trum utilization were reported. However, in both these works, only the XT effect

was considered for the estimation.

Table 6.1 shows the state-of-the-art related to the application of ML in single

and multi-core optical networking, respectively. It is concluded from the liter-

ature that no ML-based works have covered all impairments in multi-core fiber

networks. In addition, there is a lack of literature on applying ML methods to

dynamic resource allocation in multi-core networks, and the work in this chapter

addresses this gap. Furthermore, the literature on lightpath classification/re-

gression solves the prediction problem from the QoT perspective and does not

consider other factors affecting the network. Therefore, keeping all the above
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Table 6.1: Literature on ML-Assisted Optical Networking in Single- and Multi-
Core Networks

Related
works

Single
core

Multi-
core

Impairments Focus of Application

ASE & NLIs XT
[121] ✓ - ✓ - static resource allocation
[126] ✓ - ✓ - multi- period planning
[118] ✓ - ✓ - QoT prediction (no resource

allocation)
[22] ✓ - ✓ - multidomain EON
[120] ✓ - ✓ - QoT estimation (no re-

source allocation)
[112] ✓ - ✓ - static resource allocation
[128] ✓ - ✓ - parameter optimization (no

resource allocation)
[24] ✓ - ✓ - resource allocation
[127] ✓ - ✓ - multi-band
[29] ✓ - ✓ - multi-band
[114] - ✓ - ✓ QoT estimation (no re-

source allocation)
[115] - ✓ - ✓ resource allocation
[116] - ✓ - ✓ defragmentation time pre-

diction
[117] - ✓ - - lightpath clustering for de-

fragmentation
[122] - ✓ - ✓ MF selection
[129] - ✓ - ✓ MF selection (no resource

allocation)
Current
work

- ✓ ✓ ✓ resource allocation via noise
estimation and lightpath
suitability

aspects in mind, the following contributions are made in this chapter:

• A DNN-based binary classifier and a RF-based link noise estimator are

proposed to find viable resources and to aid QoT checking for impairment-

affected SDM-EONs.

• The classifier is then used to perform a PLI-aware dynamic RMSCA using

the results of the noise estimator. All physical layer impairments (ASE,

XPM, SPM, and XT) are considered for realistic results.

99



• ML is used to predict the acceptability of a lightpath, including the accept-

ability of the QoT and the availability of end-to-end spectral resources.

• An advanced optimization algorithm called the Jaya algorithm [124] is

adopted and presented for DNN training in the optical networking domain

for the first time.

• Varying traffic loads are considered for improving prediction capability and

robustness, and a feature selection analysis is provided.

The results of the proposed algorithm are compared with standard and published

benchmarks on 7 and 12 core-based USNET, NSFNET, and COST-239 networks.

The algorithm in [81], called the ICXT-aware algorithm, was chosen for compar-

ison over the works described above because, while it is not an ML-based work,

it is the closest to the work in this chapter as it considers a PLI-aware RMSCA

for SDM-EONs. It is designed to reduce the impact of XT by utilizing core pri-

oritization and spectrum partitioning. The cores are grouped together, and the

spectrum is divided in each of these cores in a different manner, thus reducing

signal overlapping that leads to XT.

6.3 Evaluation Metrics

The performance metrics of the DNN and RF, and the proposed RMSCA algo-

rithm are described in this section.

6.3.1 DNN and RF Performance Metrics

The classification problem considered is imbalanced since the proportion of ac-

cepted and unaccepted lightpaths for any traffic load is not equal while consid-

ering all the RMSCA candidates. This is expected since rejections are rare at

low loads and increase with traffic. Hence, the commonly used classifier accuracy

metric fails here: the accuracy of a classifier predicting a 1 will be misleadingly

high if the dataset has a significant proportion of class 1 samples. Therefore, the

proposed classifier is evaluated using the area under the curve of the receiver op-

erating characteristic (AUC ROC) metric whose range is [0, 1] [132]. In general,

any classifier with an AUC ROC ≥ 0.8 is considered very good, and ≥ 0.9 is

deemed excellent for imbalanced problems [132, 133]. An ideal classifier has an

AUC ROC = 1.0.
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A binary classifier needs a threshold, denoted as Vth, to convert the prediction

into a binary 0 or 1 decision. The best Vth for each DNN is found using the

geometric mean (GM) technique [134]. The GM for an imbalanced classifier

seeks a balance between sensitivity and specificity and is a point on the AUC

ROC curve that maximizes the 0/1 distinguishing capability. The maximum GM

is computed as

max
a

(
√
TPRa ∗ (1 − FPRa)) (6.1)

where TPRa and FPRa are the true positive rate and false positive rate for each

point a ∈ [0, 1], i.e., the range of values the FPR can take.

The performance of the RF regression model is assessed using the root mean

square error (RMSE).

6.3.2 Network Performance Metrics

The proposed RMSCA algorithm’s effectiveness is measured by calculating the

BP, BBP, and average setup time (AST). The BP and BBP are given by [Eqns.

(2.1)-(2.2)] in Chapter 2. The setup time for a successfully provisioned traffic

request demand r is measured as the CPU time difference between when the

search for resources starts and when a successful allocation is found. The AST

for a set of R requests is the average setup time for all requests r ∈ R.

6.4 Proposed ML Models

The general three-step process to designing a ML-enabled RMSCA algorithm is

(1) dataset generation using appropriate features, (2) model architecture selec-

tion, training, tuning, and testing, and (3) application of the trained ML model to

the RMSCA problem to assist in successfully provisioning new resource requests.

This section explains the first two steps, and the third step for the proposed

algorithm is explained in Section 6.5.

6.4.1 Data Generation and Feature Selection

The dataset of a supervised ML model is composed of independent samples of the

form (features, target). In regression, the target value is continuous, whereas in

binary classification, the target class is a 1 or 0, denoting the lightpath success or
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failure. This chapter proposes a DNN binary classifier and a RF-based link noise

regression to predict the suitability of a lightpath and the noise levels on a link

given the optical network features. The public datasets for optical networks from

Abilene, GEANT, Mendeley, etc., do not include the desired features considered

in this work and do not pertain to SDM-EONs [135]. An optical simulator such

as GNPy does not consider MCF-enabled links to generate lightpath conditions.

Hence, synthetic data generation is used, the most common methodology in sim-

ilar studies [100, 130, 126]. It is generated using a custom RMSCA code by

applying the KSP for routing, GN model based QoT aware modulation selection

[76], FC for core selection, and FF for spectrum allocation. The GN and XT

models described in Section 6.3 are used as the true value of impairments needed

to set the target for each data sample. The training datasets are generated for

each load of interest and for all K routes over the entire set of cores C (K × |C|
combinations) for each request r with different modulations m.

The features in a dataset are representative of the problem being solved. Al-

though using an exhaustive list of features may help the machine effectively learn

the mapping from feature space to target space, it does not guarantee the best

performing ML model and increases the training time. Choosing too small a set

of features may not capture the problem well enough, leading to poor approxi-

mations. The feature selection problem in the context of EONs is well-explained

in [136]. To this end, a technique called recursive feature elimination (RFE) is

utilized in this work to identify the most influential features for improving the

accuracy of the predictions made by the RF noise estimator [137]. RFE itera-

tively removes less essential features to create a subset that minimizes some loss

function, the RMSE in the case of the RF model. For the DNN model, the set

of features resulting in the highest testing AUC ROC is chosen.

RF link noise estimator

The output variable of the link noise estimator is an estimate of the combined

PLIs over the link of interest. In this work, noise is selected for the estimation

rather than the SNR directly, as is typically done, for two reasons. First, during

the QoT checking phase, the possible degradation of in-service lightpaths due to

the current request is checked. This checking requires the individual link noise

values so that the overlapping lightpaths on each link of the candidate route can

be analyzed for disturbance. Secondly, it allows us to estimate the SNRs for any

input channel power.
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The twelve lightpath features considered for the estimator for a given link e

belonging to the candidate lightpath Υ, core c ∈ C, and a candidate spectrum

block are:

1. Sreq, the number of frequency slots required for the request based on the

data rate requested

2. Modulation format selected for the new request, m ∈ M , where M = {32-

QAM, 16-QAM, 8-QAM, QPSK, BPSK}

3. Link length ℓ(e), which affects the XT and ASE

4. Spectrum usage of the core on link e, as a higher usage makes the provi-

sioning difficult and also presents more interference to the candidate request

5. Number of active blocks on core c of link e, which affects the XPM

6. Number of occupied slots overlapping the candidate spectral blocks in ad-

jacent cores of c.

7. Center frequency of the candidate spectral block, f

8. Modulation format of the neighbor occupying the frequency slots immedi-

ately to the left of f

9. Center frequency of the neighbor occupying the frequency slots immediately

to the left of f

10. Center frequency of the neighbor occupying the frequency slots immediately

to the right of f

11. Number of occupied spectrum slots to the left of the candidate spectral

block, which captures spectral occupancy.

12. Number of spans in link e, N
(e)
s

DNN classifier

The output of the DNN classifier is a 1 or 0 and the eight features considered for

the classifier are given by features number 1 and 2 of the estimator above, and

the rest are:
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1. Lightpath length

2. Number of spectrum blocks on c that satisfy the continuity and contiguity

constraint; this feature directly relates to the spectrum provisioning capa-

bility.

3. Same as feature no. 4 of estimator but over the entire lightpath Υ

4. Same as feature no. 5 of estimator but over Υ

5. Number of occupied slots in adjacent cores on link e, as this relates to the

crosstalk impairment

6. Core fragmentation from [33]. The fragmentation feature affects the avail-

ability of contiguous spectrum resources and thus affects the blocking prob-

ability.

6.4.2 ML Model Tuning and Training

A supervised ML model performance is dependent on how well it is ’tuned’ and

trained. This section describes the tuning and training processes for both the

DNN classifier and the RF noise estimator.

Hyperparameter Tuning

A DNN is a collection of neurons arranged as an input layer, more than two hidden

layers, and an output layer; each neuron requires a set of weights and biases.

During training, the DNN classifier learns the optimal set of weights and biases

that minimizes the loss function, thus best approximating the function mapping

the feature space and the target class space. But the training performance of

a DNN is affected by various hyperparameters that must be predefined, such as

the number of hidden layers, the number of neurons per layer, the activation

functions used, the training algorithm itself, learning rate, decay rate, number

of epochs, batch size, etc. Tuning these parameters is tedious and requires trial

and error, even when starting with educated guesses from the literature. In this

work, various combinations of these parameters were tested on the DNN, and the

maximum AUC ROC-producing combinations were narrowed down to serve as a

starting point. These were further fine-tuned to improve the performance. The

ranges of values tested and the final chosen values for the classifier are given in

Table 6.2.
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Table 6.2: DNN Hyperparameters and Their Tested Ranges

Hyperparameter Tested Values Chosen Value
Learning rate 10−1 to 10−5 10−4

Number of hidden
layers

1, 2, 3, 4 3

Number of neu-
rons per hidden
layer

16, 32, 64 32

Number of neu-
rons in last hidden
layer

2, 4, 8, 16, 32, 64 16

Activation func-
tions [134]

Sigmoid, ReLU, Tanh ReLU, Sigmoid

Batch size 32, 64, 128, 256, 1024 256
Regularizer [134] l1, l2 l2
Initializer [134] Glorot, He normal He normal

Figure 6.1: Test RMSE obtained for different numbers of trees in the RF model
at a load of 400 Erlangs for the 7-core USNET

For the RF estimator, the hyperparameters are the number of decision trees

in the forest, the maximum depth of the decision trees, the minimum number of
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samples required to split a node, the minimum number of samples required to

be at a leaf node, and the number of features to consider when looking for the

best split. The final chosen values are (50, until all leaves contain less than two

samples, 2, 1, 1), respectively. The RF tuning in this work needed trials only

to determine the number of decision trees; the default Scikit-learn library values

were used for the other parameters [134]. Fig. 6.1 shows the obtained test RMSE

for different numbers of trees, i.e., estimators in the RF model. The plotted

test RMSE values are a result of the RF model trained using the K-fold cross-

validation technique (5 folds) to assess and ensure the model’s generalizability

[134]. The results show that 50 tree estimators resulted in the lowest RMSE with

150 and 200 estimators also performing at par. However, the computational time

increases with the number of trees; hence, the 50 tree model was chosen for this

work.

Jaya Algorithm for DNN training

Training algorithms differ in scalability, the computational effort needed in train-

ing, interpretability, and sensitivity to outliers. The commonly used training algo-

rithms are gradient-based, such as Adam, stochastic gradient descent, RMSProp,

and Adagrad [138]. Some metaheuristic algorithms can also be used for train-

ing, especially when the optimization problem is complex, non-convex, or high-

dimensional and when traditional gradient-based optimization algorithms can-

not find a good solution. Examples include particle swarm optimization (PSO),

genetic algorithms (GA), ant colony optimization (ACO), differential evolution

(DE), etc. [138].

In this work, one such advanced metaheuristic algorithm called the Jaya algo-

rithm [124] is used for DNN training and to compare its performance with Adam.

The Jaya algorithm has been shown to perform better than the commonly used

optimizers in various problem domains [139, 140, 141, 142]. Algorithms such as

PSO, GA, DE, ACO, etc., have their algorithm-specific parameters that must be

tuned before applying them to the optimization problem [139]. In contrast, the

simplicity of the Jaya algorithm lies in the absence of such parameters; only com-

mon control parameters, such as population size and termination criteria, need

to be defined. Fig. 6.2 shows a flowchart of the Jaya algorithm. Only relevant

details to understand the current work are provided; the detailed working of the

algorithm can be found in [124].

The objective function to optimize during a binary classifier training is the
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Figure 6.2: Flowchart of Jaya algorithm adapted for DNN training

loss function, the binary cross entropy (BCE) in this case. The Jaya algorithm

begins by initializing the candidate population size U , the number of variables

V , and the termination criterion, which in this work is taken as I, the number

of iterations. The population is the set of candidate solutions (set of variable

values); these are randomly initialized at the beginning of the algorithm, denoted

as X1
u,v, for all candidates u = 1, · · · , U and variables v = 1, · · · , V . For a DNN,
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the variables are the DNN weights and biases whose values are to be found.

At each iteration i, the values are updated using

X i+1
u,v = X i

u,v + ri1,u(X i
u,best − |X i

u,v|) + ri2,u(X i
u,worst − |X i

u,v|) (6.2)

for all u = 1, · · · , U , v = 1, · · · , V , i = 1, · · · , I. The new solution X i+1
u,v is

computed as a function of the value X i
u,v from the previous iteration, the best

and worst values of that variable, denoted as X i
u,best and X i

u,worst, respectively,

and two random numbers, ri1,u and ri2,u, in the range (0, 1). The best and worst

solutions are the values of the variable yielding minimum and maximum BCE

values at the previous iteration. The candidate values in the population, i.e.,

the DNN weights and biases, are updated at each iteration using Eq. (6.2).

The corresponding objective function, i.e., BCE values, are computed. The new

solutions are compared with those in the previous iteration and either accepted

if the new solution is better or rejected if not. The procedure continues until the

termination criterion is fulfilled and the optimum solution is reported, i.e., the

set of weights and biases.

Two Approaches to the Proposed DNN Classifier

In this work, the trained DNN is applied to different traffic loads, and hence, it is

natural to question whether a single DNN trained on the entire data for all loads

would suffice or whether a separate DNN is required at each load. In the former

case, the single DNN is trained with the dataset formed by merging 80% of the

datasets of each load, and for the latter, separate approach, each DNN uses the

corresponding load 80% dataset for training. For a fair AUC ROC comparison,

both approaches are tested using the remaining 20% unseen test samples of the

individual load datasets. Table 6.3 shows the corresponding results, which show

that the separate DNN method obtains higher AUC ROCs for all loads tested.

Hence, in the next sections, a custom-trained DNN is used for ML integration

into RMSCA at each load.

6.5 DNN and RF-enabled RMSCA Algorithm

The proposed RMSCA algorithm is given in Algorithm 6.1. The algorithm begins

by computing the K shortest paths for the given source and destination. The

modulation formats are chosen starting from the most spectrally efficient one from
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Table 6.3: Comparison of AUC ROC Obtained with Single DNN vs. Separate
DNNs for Two Dataset Sizes Using the Adam Optimizer

R = 10, 000 R = 100, 000
Load Single DNN Separate DNNs Single DNN Separate DNNs
200 0.981 0.987 0.979 0.982
300 0.975 0.981 0.966 0.974
400 0.964 0.973 0.958 0.963
500 0.956 0.965 0.947 0.953
600 0.943 0.952 0.932 0.941

the set M (defined in Section 6.4). Using the K shortest paths and the set of

cores C of the links, Algorithm 6.2 is invoked to find the K×|C| ranked path-core

combinations. These are used in the second loop of Algorithm 6.1 (Line 6) for

subsequent spectrum assignment. All spectrum blocks of the size required for the

data rate and modulation format selected that obey the continuity and contiguity

constraints of the EONs are considered candidate blocks in the innermost loop.

In Algorithm 6.2, for each of the K×|C| candidates, the input feature vector is

formed from the dynamic network state as described in Section 6.4. The trained

DNN model is used to predict the suitability and outputs a real value between

0 and 1. These predictions are stored if they satisfy the threshold Vth (obtained

for the trained DNN at that network load), resulting in a classifier decision of

”1”. They are then sorted in ascending order to sort the candidates from the

most viable route-core pair to the least viable one for use in the remainder of

Algorithm 6.1.

The spectrum assignment loop (Step 8 of Algorithm 6.1) finds a spectral

block that satisfies the QoT conditions on the particular route-core-modulation

combination being considered. The RF link noise estimator of Algorithm 6.3 is

invoked at this point to estimate the denominator of Eq. (5.5) and to perform

the QoT check on the candidate route, core, and spectrum block found using

Algorithm 6.2 and a first fit spectrum selection approach. The network topology

information, the associated parameters, and the spectrum block are provided as

the input to form a feature vector as described in Section 6.4. The algorithm

returns a positive response (”QoT satisfied”) if the threshold in Eq. (5.5) is

met and the proposed demand provisioning causes no unduly degradation to in-

service lightpaths. Hence, the loop at line 8 of Algorithm 6.1 continues until a

QoT-satisfying block is found.

The DNN enables the RMSCA scheme to capture the hidden nonlinear re-
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Algorithm 6.1 Proposed DNN enabled RMSCA algorithm

1: procedure RMSCA(Source, destination, requested bandwidth)
2: Find K shortest paths from source to destination
3: while viable resource allocation not found do
4: Choose the next most spectral-efficient modulation format m ∈ M
5: Run DNN route core procedure (Algorithm 6.2) to get ranked route-

core candidates
6: while viable spectrum block not found on ranked route-core candidate

do
7: Create a list of candidate spectrum blocks satisfying the continuity

and contiguity constraints on that route-core combination
8: while candidate block in the list does not satisfy QoT constraints

do
9: Check the QoT constraint using Algorithm 6.3

10: if Algorithm 6.3 returns satisfied then
11: selected spectrum block = candidate block
12: else check next spectrum block
13: end if
14: end while
15: end while
16: end while
17: return current route, core, and selected spectrum block to provision the

request
18: end procedure

Algorithm 6.2 Path and core selection using DNN classifier

1: procedure DNN route core(Network topology, K shortest paths, set of
cores C, network state)

2: for each candidate in set of K × |C| candidates do
3: Form the feature vector using values stated in Section 6.4
4: Predict the candidate’s suitability using the trained DNN model of the

corresponding traffic load
5: if prediction ≤ Vth then
6: Store the prediction
7: end if
8: end for
9: Sort the predictions in ascending order and rearrange the corresponding

K × |C| candidates
10: return ranked K × |C| candidates
11: end procedure

lations using the selected features, which a straightforward scoring scheme may

not be able to learn. By considering all the possible candidates, the DNN scheme
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Algorithm 6.3 QoT checking using RF link noise estimator

1: procedure RF noise estimator(Candidate spectrum block, Network
topology, Link parameters)

2: for each link e of the candidate path do
3: Form the feature vector as described in Section 6.4
4: Estimate the link noise using the trained RF model, which results in

an estimate of [Eqns. (3.2) + (3.5) + (5.2)]
5: end for
6: Compute Eq. (5.4) using the estimated link noises.
7: if QoT is satisfied (Eq. (5.5)) and existing lightpaths not degraded then
8: return QoT satisfied
9: else return QoT not satisfied

10: end if
11: end procedure

helps to select the best candidate. Note that the selection of a candidate is kept

limited to the route and core but not the spectrum. This is because there is a

large number of spectral candidate blocks compared to the K × |C| route-core

candidates.

6.6 Results and Analysis

This section analyzes the performance of the DNN training algorithm, feature

selection procedure, and the RMSCA algorithm.

6.6.1 DNN Classifier Model Results

The performance of the trained DNNs is tested using 20% unseen test data re-

served for testing. Fig. 6.3 shows the difference between the actual AUC ROC

observed from simulations and the ideal AUC ROC = 1.0 for each DNN trained

at different loads using the Adam or Jaya algorithms. The Jaya-trained DNNs are

closer to an ideal classifier at all loads than the Adam-trained DNNs. Hence, the

Jaya-trained classifiers would perform better in practice when unseen EON data

is input to the DNN. This performance is because the Jaya algorithm can mini-

mize the binary cross entropy loss better than Adam, and the resulting weights

and biases provide comparatively better classification capability at each load.

Fig. 6.3 presumes that the operational network load is one of the loads the

DNN was trained for. It is thus worthwhile to investigate its robustness when
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Figure 6.3: Difference between simulated AUC ROC and the ideal AUC ROC =
1.0 using Adam vs. Jaya-trained DNNs in a 7-core NSFNET

Table 6.4: Test AUC ROC for Untrained Loads Using Adam vs. Jaya-trained
DNNs in a 7-core NSFNET

Actual Load Trained Load AUC ROC for
Adam

AUC ROC for
Jaya

350
300 0.910 0.910
400 0.924 0.936

525
500 0.888 0.902
600 0.892 0.911

this assumption is violated. Table 6.4 shows the AUC ROCs when the actual

network load is 350 and 525 Erlangs. For both loads, DNNs trained on a higher

load, i.e., 400 and 600, respectively, performed better than the DNN trained at

300 and 500 Erlangs. The lower AUC ROC values at the lower assumed loads

can be attributed to an underprediction of QoT failures for loads 350 and 525

Erlangs. Similar reasoning follows for the Jaya-trained DNNs; these (shown in

boldface in the table) again perform better than the Adam-trained ones at 400

and 600 Erlangs.

Considering the prediction quality enhancement obtained by using the Jaya-

trained DNNs, these DNNs are chosen to test the RMSCA performance in all

remaining results in this chapter.
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Figure 6.4: DNN classifier performance when using the full 13 features vs. the
chosen 8 features at a load of 300 Erlangs for the 7-core NSFNET

6.6.2 Feature Selection Analysis

The RF noise estimator and the DNN classifier use the features stated in Sec-

tion 6.4. These were determined as the best features by cross-validation using

RFE to determine the best subset of features automatically to ensure model

generalizability instead of manual selection.

For the RF, the entire set of possible features included the features stated in

Section 6.4 alongside traffic load, the source, the destination of the request, data

rate requirement, core fragmentation, link number, modulation format of the

immediate right spectral neighbor, and spectral occupancy on right side of the

candidate block. The twelve features listed in Section 6.4 resulted in the lowest

RMSE for the RF estimator compared with using any other subset of possible

features tested. For the DNN classifier, the additional features considered other

than those listed in Section 6.4 are traffic load, the source, the destination of

the request, data rate requirement, maximum link length, and the number of

traversed links. For the DNN, the final set of features gives the highest AUC

ROC; Fig. 6.4 shows how the prediction capability of the classifier is reduced

when considering the additional features.
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6.6.3 ML-enabled RMSCA Results

The proposed RMSCA algorithm described in Section 6.5 is tested on three net-

work topologies (Chapter 2): the (11 node, 52 link) COST-239, the (24 node, 43

link) USNET, both using a 7-core MCF on each link, and the (14 node, 21 link)

NSFNET using 12-core links to check the robustness of the algorithms. This work

assumes a 4 THz optical spectrum per core for all networks. Each frequency slot

in each core supports 12.5 GHz transmission.

For the simulation, 100,000 traffic demands are generated at 200 to 600 Er-

langs loads and with data rates uniformly distributed in [50, 400] Gbps. Spec-

trally efficient modulation formats subjected to QoT constraint are selected from

M = {32-QAM, 16-QAM, 8-QAM, QPSK, BPSK}; the threshold SNRs are

adopted from [109]. The algorithm’s effectiveness is measured by calculating

the BP, BBP, and request AST, as described in Section 6.3.

The performance of the proposed algorithm is compared with the standard

KSP with FC core selection and FF spectrum selection and a published algo-

rithm described in [81]. In this section, KSP All PLI refers to the conventional

KSP run on a network subjected to all impairments, (XT, ASE and NLI), for a

fair comparison with the proposed algorithm. KSP XT refers to the KSP con-

sidering the network is only affected by XT [81]. ICXT Aware XT refers to

the ICXT-aware algorithm from [81] applied to a network only affected by XT.

ICXT Aware All PLI refers to the ICXT-aware algorithm from [81] but assum-

ing the network is subjected to the additional ASE and NLI impairments. Both

ICXT Aware XT and ICXT Aware All PLI algorithms utilize core priorities and

spectrum partitioning strategies as used in [81]. In all results, the DNN approach

refers to the use of a load-specific trained DNN model for path-core selection,

resulting in K × |C| sorted candidates to start the spectrum search from the

best candidate, as described in Algorithm 6.2. The KSP All PLI and DNN ap-

proaches are subjected to two methods of estimating the QoT: the GN QoT model

described in Section 6.5 and an ML-noise estimator based on a trained RF model

to approximate the link noise in Eq. (5.5) described in Section 6.4.

In analyzing the XT effects on in-service requests, as described in Chapter 5,

a dynamic neighbor and precise request-by-request SNR threshold comparison is

used, which differs from the approach in [81]. In [81], an XT awareness model

is adopted with complexity greater than that of passive avoidance and yet less

than a dynamic neighbor and precise checking approach, which leads to higher

blocking [77]. Hence, high levels of blocking in [81] are observed at very high load
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Figure 6.5: Blocking probabilities for the KSP and DNN approaches with GN-
based vs. RF-based noise estimation for the 7-core USNET

levels.

Performance Analysis, 7 and 12-core MCF: Blocking Probability

The RMSCA algorithm is first analyzed by applying it to EONs using 7-core

MCFs. Figs. 6.5 and 6.6 compare the BP obtained using the benchmark KSP

and DNN-enabled path-core selection, both under FF spectrum allocation, on the

USNET and COST-239 topologies, respectively. In Fig. 6.5, a 95% confidence

interval is drawn as error bars around each mean value over 5 trials – these are

similar for other figures but omitted for clarity.

The results in Fig. 6.5 show that the DNN approach obtained a lower BP than

the conventional KSP, an average of 57% lower, indicating that the proposed DNN

model’s ability to accurately predict the lightpath suitability helps in selecting

the best path-core candidates. In both KSP and DNN schemes, the blocking

obtained using the RF QoT estimator is slightly higher than when using the GN

QoT estimator. This is expected since the trained RF model can approximate the

link noise with lower accuracy compared with the analytical GN model. However,

the tradeoff is in the computational time, as explained below in Section 6.6.3.

Similar observations can be drawn from the blocking behavior in the COST-

239 network shown in Fig. 6.6. However, a closer glance reveals that the perfor-

mance difference between the RF and GN based allocation is slightly less than
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Figure 6.6: Blocking probabilities for the KSP and DNN approaches with GN-
based vs. RF-based noise estimation for the 7-core COST-239

in Fig. 6.5. This behavior indicates that the optical network dimensions impact

the RF model performance, especially at higher loads.

Fig. 6.7 compares the BP among KSP All PLI, KSP XT, ICXT Aware All PLI,

ICXT Aware XT, and the DNN approach. The all-impairment versions obtain

higher blocking than their XT only counterparts, almost 65% on average. This

indicates that the effect of ASE and NLI noises on the blocking performance of a

MCF network over the XT impairment is significant and highlights how impor-

tant it is to consider all impairments in MCF networking algorithms. Between the

KSP All PLI and ICXT Aware All PLI algorithms, the latter maintained lower

blocking only at low loads, with the BP approaching the former at higher loads.

This is because the core grouping and spectrum divisions of the ICXT Aware al-

gorithm are only effective in the initial provisioning stages; when the traffic level

increases, all the non-crosstalk groups are fully loaded, and the performance is

limited. This behavior is observed in the case of KSP XT and ICXT Aware XT

as well [81]. However, the larger gap between their blocking performance in

comparison to the KSP All PLI and ICXT Aware All PLI is due to the careful

design of the ICXT Aware XT algorithm to minimize the effects of XT. In the

all-impairment versions, the other PLIs dominate, making it difficult to benefit

from the improvement offered by the ICXT design.

Fig. 6.7 also shows that the proposed DNN w/ GN approach lowers the BP

116



Figure 6.7: Blocking probabilities for the KSP All PLI, KSP XT [81],
ICXT Aware All PLI, ICXT Aware XT [81], and DNN approaches for the 7-
core USNET

by 57% and 35.8% on average compared with the KSP All PLI w/ GN and

ICXT Aware All PLI, respectively. A direct comparison cannot be made be-

tween the ICXT Aware XT approach and the DNN w/ classifier since the former

is designed to focus on XT alone.

To check the applicability and performance of the proposed model for networks

using a larger number of cores, Fig. 6.8 compares the BP using the KSP and DNN

approaches with RF vs. GN QoT models in the 14-node NSFNET topology with

12-core MCF links. The same conclusions can be drawn regarding the relative

performance of the approaches as for the 7-core MCF. However, the BP in the

12-core case is lower than in the 7-core case due to increased core availability

and lower XT from a smaller number of adjacent neighbors. The DNN approach

with the GN model outperforms all others due to its ability to find better-scored

route-core candidates in the interest of the provisioned request and because it

uses the benchmark QoT model. Also, despite the RF QoT estimator providing

a slightly higher blocking than the GN model in general (35% on average), its

combination with the DNN approach still performs well, and the blocking does

not exceed that of the KSP based on GN QoT estimation.
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Figure 6.8: Blocking probabilities for the KSP and DNN approaches with GN-
based vs. RF-based noise estimation for the 12-core NSFNET

Performance Analysis, 7 and 12-core MCF: Bandwidth Blocking Prob-

ability

Since SDM-EONs are expected to carry highly heterogeneous data, an analysis

of the BBP gives better insight into the network performance than the BP metric

that treats all requests equally irrespective of their size [7]. Fig. 6.9 shows the

BBP for the benchmark KSP All PLI, the proposed DNN approach, and their

QoT estimation variants. Results show that the DNN w/ GN approach obtains

the lowest BBP among the four algorithms, with an average of 53.8% decrease

and one order of magnitude at lower loads, in comparison to the KSP All PLI

scheme. The DNN method considers features such as the required slots and the

number of blocks that satisfy the continuity and contiguity constraints, which

help it predict well the lightpath suitability even for higher data rate requests.

Similar to the BP analysis, the DNN and KSP that use the RF QoT estimator

results in lightly higher BBP at higher loads than their GN counterparts. Similar

results are observed for the COST-239 network topology, as shown in Fig. 6.10.

Fig. 6.11 shows the BBP performance of the DNN w/ GN alongside the

KSP All PLI, KSP XT [81], ICXT Aware All PLI, and ICXT Aware XT [81].

Similar to the performance of BP, the all-impairment variants obtain a higher

BBP than their XT only counterparts. The NLI and ASE effects have pushed the

blocking up compared to a network affected by XT alone. The lack of available

118



Figure 6.9: Bandwidth blocking probabilities for the KSP and DNN approaches
with GN-based vs. RF-based noise estimation for the 7-core USNET

Figure 6.10: Bandwidth blocking probabilities for the KSP and DNN approaches
with GN-based vs. RF-based noise estimation for the 7-core COST-239

continuous and contiguous spectrum can contribute to request blocking. How-

ever, comparing the KSP All PLI with KSP XT and ICXT Aware All PLI with

ICXT Aware XT, on average seven times more failures are caused by the PLI in

the former combination, as spectrum failures will be same in among the pairs.

Fig. 6.11 also shows that the ICXT Aware All PLI maintained its superior
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Figure 6.11: Bandwidth blocking probabilities for the KSP All PLI, KSP XT
[81], ICXT Aware XT [48], ICXT Aware All PLI, and DNN approaches for the
7-core USNET

performance over KSP All PLI at low loads; the core grouping and spectrum

divisioning approach was insufficient for it to avoid high bandwidth blocking

at higher loads. This BBP behavior is observed in the case of KSP XT and

ICXT Aware XT as well [81]. The proposed DNN approach lowers the BBP by

an average ∼ 1.5 times that of the KSP All PLI and ICXT Aware All PLI.

Performance Analysis, 7 and 12-core MCF: Request Setup Time

Table 6.5 shows the AST for the KSP and DNN approaches under a FF spectrum

assignment at different loads using GN and RF QoT models.1 The simulation

assumes all impairments are included.

The DNN takes a longer time to provision a request than the KSP scheme

at all loads tested. This is because the former needs to collect the features

of all the K × |C| candidate paths. It is not shown in the table but it was

observed that, since the computations can be performed in parallel, the AST

does not scale linearly with K and |C|. There is a tradeoff between achieving

better network performance and taking longer to do so that depends on K and

|C|. Between the GN and RF QoT estimation schemes, the former takes ∼1.7

and ∼1.75 times more computation time than the latter in the DNN and KSP

1The computations were performed on a Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
machine.
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Table 6.5: Average Request CPU Setup Time (ms) for KSP and DNN Approaches
at Different Loads Using a GN or RF QoT Estimator

GN QoT RF QoT

Load DNN KSP DNN KSP

200 15.5 10.5 7.3 5.7

300 21.8 20.3 13.5 11.4

400 32.8 24.1 20.6 13.2

500 45.6 33.6 28.3 20.3

600 52.5 46.3 32.7 28.7

schemes, respectively. The RF QoT model is able to reduce the AST significantly,

which is a promising aspect considering how QoT computations are needed for

every spectral candidate block. The reduction is slightly less at higher loads

owing to increased active spectral and adjacent core neighbors that add to the

feature computation.

6.7 Chapter Summary

An impairment-aware ML-enabled RMSCA algorithm for C-band SDM-EONs

is proposed in this chapter. A RF based link noise estimator is presented to

reduce the computation time during the QoT checking phase. The present work

considers the XT, Kerr nonlinear impairments such as SPM and XPM, and also

the ASE noise encountered by the signal along the chosen network path. Novelty

is introduced by using a new training algorithm, the Jaya algorithm, to obtain

better predictive performance of the DNN compared to the widely used Adam

algorithm. The trained DNN is applied to an RMSCA algorithm for the first time,

over varying loads. From literature, it is concluded that, this is the first work that

considers all impairments in SDM-EONs while applying ML methods to perform

RMSCA. The simulations are performed on three network topologies, USNET,

NSFNET, and COST-239, with 7 and 12 core MCF links, and the results of BP,

bandwidth BP, and request setup time are analyzed. The novel use of scored

DNN predictions to find the best route-core candidates performs significantly

better than the conventional KSP benchmark for all loads tested, and the ML

based noise estimation lowers the computation time to find a successful solution.
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Chapter 7

Conclusions and Future Work

This chapter describes the contributions of this dissertation, summarizes the main

conclusions, and presents some avenues of possible future work.

7.1 Summary and Conclusions

Elastic optical networks (EONs) have emerged as a promising backbone technol-

ogy to combat the challenges posed by the exponential growth of communication

demands. Using heuristic and machine learning techniques, this dissertation ex-

amines the resource provisioning issue for multi-band and multicore fiber EONs.

The enhancement of the optical capacity within contemporary single-core

EON can be achieved through advancements in both spectral and spatial dimen-

sions. Regarding spectral expansion, the utilization of supplementary frequency

bands presents a logical progression beyond the existing C-band extension. How-

ever, the incremental capacity gains in this aspect are relatively modest compared

to the spatial expansion achievable through space division multiplexed (SDM)

EON. The selection between multi-band and multicore approaches is contingent

upon the projected network traffic volumes and the associated capital and oper-

ational expenditures. Nevertheless, there is a discernible trend towards adopting

SDM capability via multicore fibers. Either multi-band or multicore, efficient op-

tical network resource allocation for any request subjected to certain constraints

has been the subject of extensive research. Different algorithms are used for rout-

ing, modulation, spectrum, and core (if multicore) allocation to improve traffic

acceptance. Consequently, the dissertation work’s contributions are mainly di-

vided into four parts:
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1. In light of the dynamic network status, a Q-learning (reinforcement learn-

ing) based routing selection for C+L band multi-band networks is pro-

posed. Considerations include the L-band specific ISRS effect, Kerr non-

linear impairments like SPM and XPM, and the ASE noise the signal en-

countered along the selected network path. It is observed that utilizing

state-dependent routing decisions helps improve traffic acceptance, and the

proposed method obtains lower blocking than the conventionally used K-

shortest paths approach. The algorithm is motivated to find routes with

higher acceptability due to Q-learning’s reward-based interactions. Utiliz-

ing custom rewards as a function of network characteristics such as fragmen-

tation and PLI helps to find paths that would have been dismissed under

K-shortest path routing. To the best of our knowledge, this is the first time

that the Q-learning method has been used for online RMSA for C+L band

EONs. Since Q-learning routing outperformed the K-shortest path method

under different spectrum allocation methods, network operators can readily

employ the straightforward Q-learning for routing in software-defined EON

scenarios.

2. The resource allocation in the next higher capacity increase solution, MCF

enabled EONs, is explored after the multi-band method. A gap in ad-

dressing impairments and the preferential treatment to XT alone in the

PLI-aware networking literature of MCF EONs, especially with dynamic

traffic, is noted. Hence, the effects of various impairments in a dynamic

multicore fiber provisioning system for C-band are briefly investigated. Our

results show that NLI and ASE contribute to failures by around ∼ 58%

compared to XT contributing ∼ 21% and a noticeable contribution by a

combination of these three (but insufficient to cause a failure on their own).

It is observed that at multiple time instants over the operational lifetime

of USNET and COST-239 network, a large majority of the links are more

affected by ASE than XT. At low loads (at two different launch powers),

XT is stronger than NLI on only ∼ 1/3% of the links but showing presence

in ∼ 1/2% of the links as the load increases. Over two networks and

two power levels, it is observed that the impact of XPM, SPM, and ASE

noises averagely accounts for ∼ 30% to ∼ 60% of QoT failures compared

to ∼ 20% XT-induced failures. These can cause signal degradation that

can go unnoticed if the dynamic resource allocation schemes only consider

XT.
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3. Incorporating all the MCF impairments, a novel RMSCA scheme is pro-

posed via a new spectrum assignment and a multi-attribute decision-making

MADM-based route and core selection mechanisms. The PROMETHEE

and AHP approaches are combined to create the MADM method to rank

the candidate routes and cores based on pertinent optical network charac-

teristics. Energy consumption and fragmentation-reducing capability are

incorporated into the spectrum selection phase. The results of the simu-

lations are analyzed in terms of blocking probability, bandwidth blocking

probability, network fragmentation, and energy usage. For every evaluated

situation in NSFNET and COST-239, the innovative combination of scor-

ing function spectrum assignment and MADM routing outperformed the

traditional, published benchmarks by a wide margin over reasonable ranges

of traffic loads. To the best of our knowledge, at the time of publication,

this is the first study to take into account all impairments in SDM-EONs

while also taking fragmentation and energy awareness into account.

4. An impairment aware RMSCA scheme utilizing deep neural networks is

proposed to assess candidate resources’ suitability for allocation. In addi-

tion, a random forest algorithm (ML algorithm) is used to estimate link

noises, which expedites the process of verifying the QoT constraint when

compared to the analytic Gaussian Noise (GN) model. Novelty is also in-

troduced by employing a training method, the Jaya algorithm, to achieve

improved predictive performance of the DNNs compared to the widely used

Adam algorithm. The blocking and bandwidth blocking performance are

analyzed with USNET and COST-239 networks with 7 and 12-core links

over varying loads. Our results show that the blocking performance is im-

proved by around ∼ 53% when using scored DNN predictions to identify

the best route-core candidates over the traditional KSP with the first core

allocation policy. The GN QoT assisted allocation results in a slightly

lower blocking than the RF-estimated QoT counterparts but also takes

around ∼ 1.75 times more computational time (measured in CPU time)

indicating that the ML-based noise estimates reduce the computation time

required to find a successful solution.

The proposed algorithms are evaluated, and their performance is compared

with standard and published algorithms. The research work in this dissertation

uses heuristic and machine learning techniques to conduct a thorough analysis
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of resource provisioning algorithms for multi-band and multicore fiber networks.

The proposed methods are straightforward, useful, and simple for network oper-

ators.

7.2 Future Work

As part of future work, additional link information may be incorporated in the

state representation of reinforcement learning to make the routing more adap-

tive while crafting better reward functions. Comparing the proposed Q-learning

with other routing approaches and extending it to spectrum allocation is also a

fascinating subject of research.

For future work, more network metrics may be incorporated into the MADM

attributes. Accordingly, the alternatives can be made diverse to make the final

selection relevant to the network goal to be optimized. Reducing the number of

alternatives may also be tried, but in a way that can still positively affect the

network status upon being selected by the MADM method.

Autonomic EON operation may be tried using a software-defined network

controller. Deep reinforcement learning may be used, and the whole resource

allocation may be involved in the learning process. Various network objectives

may be fulfilled by using multi-agent RL, where each agent can cater to a specific

aim, such as reducing blocking probability, reducing fragmentation, minimizing

power cost, etc. A DNN may be used to implement the DRL models.
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