Dataplane Software Engineer Intern Experimental Learnings

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia * Charlottesville, Virginia

In Partial Fulfillment of the Requirement for the Degree

Bachelor of Science in Computer Science, School of Engineering

Luke Allen Francis

Spring, 2024

On my honor as a University student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Luke Allen Francis

ADVISOR

Aaron Bloomfield, Department of Computer Science

Dataplane Software Engineer Intern Experimental Learnings

CS4991 Capstone Report, 2024

Luke Francis
Computer Science
The University of Virginia
School of Engineering and Applied Science
Charlottesville, Virginia USA
rgn4su@yvirginia.edu

ABSTRACT

I was brought into a team at the
telecommunications company Ciena in order
to test subscriber management software. My
teammates and [decided to develop an
automated testing suite in order to test this
software. There were multiple aspects that
needed to be implemented in order to flesh
out the testing suite. The primary components
included an automated traffic generation tool,
as well as multiple different configurations of
testing procedures to be run, the routing of
the data between the traffic generation tool
and the software we were testing to receive it,
and code to process the results of each test
run and store them as appropriate. The test
suite was praised by the senior developers on
the team, who provided feedback on
modifications and additional features to
implement. Future steps for this software
involve increasing the rate at which the traffic
is generated and sent through the subscriber
management system. Additionally, a more
robust performance evaluation algorithm can
be developed to further analyze the results of
each test.

1. INTRODUCTION

I began my internship experience at Ciena not
as a software developer, but as an Operations
Summer Intern in their Blue Planet division
in the summer of 2022. While working on
this team, I was responsible for business
operations, research, and analytics. I
interfaced with numerous members of the

team in order to create a comprehensive
services process document to outline
procedures regarding project entitlement,
generation, and tracking. This information
was used by software consultants in order to
streamline their workflows, and it allowed the
onboarding process to be much more
efficient. 1 also interfaced with support,
financial planning, and business operations
teams to help with reporting and automation
for their processes.

After a successful first internship with Ciena,
I was selected again to be part of a new
project. While the first internship catered
more to my business minor, this second
internship in the summer of 2023 was fully
relevant to my computer science major. [
moved to the Boston area in the early summer
in order to work in person with their team in
Burlington, MA. Previously named

Benu Networks, this team had actually been
acquired by Ciena within the past year and
was because Benu’s software complemented
the existing portfolio of telecommunications
services that Ciena was able to provide to
their customers. This was the team’s first time
having interns, so it was a learning experience
for everyone involved.

2. RELATED WORKS

Software testing is an extremely important yet
often overlooked part of the development
process. Software testing can be tedious, but
it is work that needs to be done in order to

protect the customer by providing quality
assurance.

As Manns and Coleman (1987) argue: “the
nature of the product is different”. Testing
software is not like testing other mechanical
systems. The testing takes no physical form,
so care must be taken to “promote visibility at
all stages”. Additionally, due to the fact that
software does not degrade means failures may
happen repeatedly in quick sequence if the
problem is not detected. Finally, “the quality
criteria for acceptance are thus debatable”, so
thorough work must be done to assure
adequate coverage (p. 494).

Another aspect of software testing that is
extremely important is discussed by Banker,
et al. (1998). They posit that “software
comprehension plays a major role in software
maintenance and performance” (p. 435).
Thoroughly understanding the software being
tested is an important step in developing
proper testing for the software. Sometimes it
can take longer to fully understand the
software being tested than to conduct the
testing itself. This was an important step I had
to take before designing my test suite.

3. PROJECT DESIGN

The design of our project came in multiple
steps. The first step in completing the project
was to familiarize ourselves with all the tools
and software we would be using in order to
implement the test suite, including
understanding the software that we were
testing. This was a multi-week process where
some of the team leaders would demonstrate
concepts and teach them to us in meetings.

After learning about each aspect of the
software we were using, the next step was to
begin to get the traffic generation working.
This involved using the system TRex, which
is described in the next step. After getting the
traffic working on TRex, we needed to launch

2

and automate the TRex server. After getting
all the TRex infrastructure set up, we needed
to build out the testing suite. This involved
running different types of packet tests, and
configuring these tests. After enabling the
tests we wanted to run, the TRex generator
would send the traffic to the TRex server,
through the subscriber management software,
for the corresponding tests. This data was
then captured by our software for storage and
evaluation.

3.1 Cisco TRex

TRex is a hardware tool developed by Cisco
which is able to simulate large amounts of
real-world traffic to a specific address. It is
primarily used to benchmark networking
devices and applications. By simulating large
amounts of real-world data, testers can
evaluate the performance, scalability, and
reliability of network infrastructure. TRex
supports various protocols like TCP, UDP,
IPv4, and IPv6, all of which were applicable
to our testing. It offers features such as
stateful generation, traffic analysis, and
supports automation which was perfect for
our uses.

The first step was learning how to use the
TRex system. I practiced launching a TRex
server using command prompts and
generating large amounts of traffic to the
server for varying durations and at various
speeds. This testing allowed me to understand
how the TRex worked and fit into our testing
suite. Once this was understood, we had to
learn how to automate all of the TRex aspects
within our personal testing suite. This was the
much more difficult and time consuming part.
We had to learn how to pass all the required
parameters and information we needed,
launch the TRex server, and execute the run
command. We initially started by launching
the TRex server manually, separate from the
rest of the automation of the testing suite, and
then running the testing suite procedure. We

did this in order to begin building out the rest
of the testing suite. After some time, I came
back to the server automation and was able to
successfully get it to automatically run within
the execution of the testing suite command.
This meant that everything had been fully
automated, so only one command had to be
run to complete all of the testing (which could
be scheduled).

3.2 Routing and Performance Metrics

After finishing work on the TRex system, we
had to move on to the testing suite. The first
step when working with the testing suite was
making sure that all the traffic was being
routed correctly. This meant matching the
ports of the TRex traffic generation with the
ports of our node that the testing suite was
running on, in order to allow the traffic to go
to the subscriber management software. This
is something that needed to be updated and
maintained a few times throughout the

summer, as ports needed to be changed in the
lab.

After all these other steps were done, it was
finally time to evaluate the performance of
the testing. We captured a large number of
metrics about each test, such as packets sent
and received, the speed at which the packets
were processed, the number of packets
dropped (if any), and if the contents of the
outgoing packets matched the contents of the
incoming packets. We devised an automated
algorithm that took these various data points
from the software and evaluated their ratios.
If these values were within a certain tolerance
level, then the test passed.

The last step was to store the data for each
run. We developed an automated script to
take the configurations, logs, and results from
each run and store them within the testing
suite. This was done for each individual test
run, and the output was marked by the time
that the test was executed. These test runs

3

were then organized into directories by days
and months

4. RESULTS

At the end of my summer internship, the
other interns and I held a demo to show the
rest of the team what we had been working
on. The automated testing suite was very
popular with the full-time developers on the
team. They highlighted how this was a
long-time want for them, but they did not
have the bandwidth to create it themselves
since they were constantly working on
maintaining or improving the subscriber
management software. They detailed how this
would save time for them and get rid of
existing pain points. They also provided
advice and suggestions on how to improve
the testing suite, and they outlined a few
desired features. Due to the success of the
project, I accepted the team’s offer to
continue working part time over the course of
this current school year in order to further
improve the testing suite.

5. CONCLUSION

This project was long desired by the senior
developers on the Ciena team in Burlington,
MA. The test suite that the other interns and I
created will allow them to monitor the
continued performance of the software that
they have created on a daily basis. It will
ensure consistent quality and provide
benchmark performance assessment numbers
for future interactions of the subscriber
management software to build upon. This
will, in turn, allow them to provide better
quality assurance to their customers that the
software is reliable. Due to the automated
nature of the testing suite, it will also allow
them to spend more of their time devoted to
other tasks that require their attention.

6. FUTURE WORK
Future work on this project will likely involve
increasing the rate of traffic that the testing

suite sends through the subscriber
management software. It will be important to
learn from and demonstrate how the
subscriber management software behaves
when it is operating at or near capacity. This
will also allow the senior developers to
determine what exact level of traffic the
software can handle before the performance
declines. Another item of future work for this
project will be to increase the complexity of
the performance algorithm. This will allow
the developers to gain further insight into
how the subscriber management software is
performing in different areas. They also may
be able to discern trends or potential
problems that aren’t readily apparent.

REFERENCES

Banker, R. D., Davis, G. B., & Slaughter, S.
A. (1998). Software Development
Practices, Software Complexity, and
Software Maintenance Performance:
A Field Study. Management Science,
44(4), 433-450.
http://www.jstor.org/stable/2634607

Manns, T. S., & Coleman, M. J. (1987). An
Approach to Software Quality
Assurance Training. Journal of the
Royal Statistical Society. Series D
(The Statistician), 36(5), 493—498.
https://doi.org/10.2307/2348660

http://www.jstor.org/stable/2634607
https://doi.org/10.2307/2348660

