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Mahsa Pahlavikhah Varnosfaderani

Executive Summary

Heating, ventilation, and air conditioning (HVAC) systems account for approximately

40% of the energy consumed in buildings. However, traditional systems are still un-

able to dynamically adjust ventilation rates based on real-time indoor air quality

(IAQ) metrics and occupancy data. This thesis discusses the need for HVAC control

strategies that dynamically manage ventilation systems to enhance IAQ and energy

efficiency. Through a series of studies, this research evaluates the limitations of using

carbon dioxide (CO2) as the only indicator of IAQ and explores the inclusion of to-

tal volatile organic compounds (TVOC) for a more comprehensive IAQ assessment.

A four-month study conducted in various indoor spaces, including conference rooms

and open-plan offices, revealed that TVOC levels frequently exceeded recommended

limits, even when CO2 levels were within acceptable ranges. Poor IAQ conditions per-

sisted in conference rooms 71% of the time during occupancy, primarily during social

events in open spaces, while single-occupancy offices showed lower rates of poor IAQ.

These findings underscore the importance of incorporating TVOC metrics alongside

CO2 to better assess and respond to indoor pollutant levels. To optimize HVAC

operation further, this work explored occupancy detection using environmental data,

identifying TVOC as a useful indicator of occupant presence. Statistical models, in-

cluding Support Vector Machines (SVM) and Random Forests, were applied to clas-

sify occupancy based on measurements of CO2 and TVOC. Results indicated that
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TVOC, in combination with CO2, provided accurate occupancy insights, allowing

HVAC systems to dynamically adjust ventilation rates in response to real-time occu-

pancy status. Additionally, a CNN Bidirectional LSTM (CBLSTM) model success-

fully estimated the number of occupants in a space, offering further opportunities to

fine-tune HVAC operation based on occupancy levels. The study also developed pre-

dictive models to forecast IAQ metrics, comparing linear statistical models with deep

learning approaches. By leveraging the forecasting capabilities of BLSTM models, the

system achieved a high degree of accuracy, predicting CO2 and TVOC levels up to 30

minutes in advance. This allows HVAC systems to make preemptive adjustments, en-

suring pollutant concentrations remain within healthy ranges. The predictive models

demonstrated that deep learning approaches offer substantial improvements in accu-

racy over traditional models, enhancing the system’s ability to optimize IAQ in real

time. A dynamic, demand-driven ventilation approach was tested and compared to

a conventional schedule-based system, demonstrating energy savings and improved

IAQ. Dynamic operation reduced average TVOC and CO2 concentrations from 206.05

ppb and 544.18 ppm to 128.11 ppb and 496.89 ppm, respectively, while reducing total

ventilation rates during unoccupied periods from 154.56 CFM to 125.94 CFM. This

decrease led to energy savings without sacrificing air quality, highlighting the advan-

tages of a responsive HVAC system over traditional methods. Additionally, two novel

indices were developed to assess the performance loss associated with IAQ and ther-

mal comfort conditions on occupants. The IAQ index, incorporating CO2 and TVOC

levels, and the thermal comfort index, using temperature and humidity data, were

evaluated during both scheduled and dynamic HVAC operations. Results showed that

dynamic operation reduced these indices, with the thermal comfort index dropping

from 0.25 to 0.18 and the IAQ index from 0.53 to 0.12, indicating enhanced occu-

pant comfort and well-being under dynamic ventilation. In summary, this research
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demonstrates that integrating TVOC, advanced occupancy detection, and predictive

models into HVAC management strategies enables a more comprehensive approach

to IAQ and energy optimization. Dynamic, demand-driven HVAC systems have the

potential to create healthier indoor environments, reduce energy consumption, and

support sustainable building practices by adapting ventilation to the specific needs

of each environment.
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Chapter 1

Introduction

1.1 Thesis Statement

This thesis focuses on integrating indoor air quality (IAQ) monitoring and occupancy

data to dynamically optimize the operation of HVAC systems. By combining real-time

pollutant levels (CO2 and TVOCs), occupancy information, and predictive modeling,

it examines the frequency at which CO2 and TVOCs exceed their limit range in a

commercial building and demonstrates how ventilation operations can be improved

to enhance IAQ and energy efficiency by considering both pollutants and occupancy.

1.2 Motivation

According to the US Energy Information Administration (EIA), residential and com-

mercial buildings accounted for about 40% of total US energy consumption in 2020.

The main source of energy consumption in the buildings is typically heating, ventila-

tion, and air conditioning (HVAC) systems, accounting for approximately 48% of the

total energy consumption in buildings. HVAC systems are responsible for maintain-

ing comfortable and healthy temperatures and indoor air quality (IAQ) levels within

buildings. The World Health Organization (WHO) [1] has reported IAQ factors as

one of the major contributors that can negatively impact the occupants’ well-being,
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health, and performance. As of this importance, WHO defined a set of office-related

symptoms, including difficulty concentrating, skin irritation, and fatigue which work-

ers reported in many office buildings [1] as sick building syndrome (SBS). Recent

studies have also highlighted that IAQ can significantly impact our productivity,

concentration, comfort, and physical and mental health [2, 3, 4, 5]. As a result, for

proper ventilation, we need to consider both energy consumption aspects and health

perspectives to make an informed ventilation management decision.

Traditional HVAC systems in buildings do not use any form of automation or feed-

back control to regulate the temperature and IAQ in a building. As there is no

feedback control system to regulate the temperature and airflow, the HVAC systems

continue to run when the building is unoccupied or when the IAQ is in good con-

dition. In addition, traditional HVAC systems can be less effective at maintaining

decent air quality throughout a building by maintaining the pollutants’ levels within

an accepted range. Therefore, dynamic changes are needed for HVAC management

because they allow for adjustments to be made in response to the constantly changing

environmental conditions (regarding the IAQ and occupancy status) within a build-

ing. By implementing dynamic changes to HVAC management, building operators

can optimize the systems’ performance to meet the specific needs of the building oc-

cupants and reduce energy consumption. For example, if the building is not occupied

during certain hours of the day, the HVAC system can be programmed to reduce the

air exchange rate during those times to save energy. Additionally, if the IAQ level

is poor due to any reason, such as outdoor air quality conditions or specific events

happening indoors, the HVAC system can be programmed to adjust its operations

accordingly to maintain a consistent IAQ and avoid unnecessary energy consumption.

With these challenges, there is an increasing demand for advanced HVAC control



3

systems with dynamic adjustment mechanisms that would account for real-time IAQ

metrics and occupancy with the goal of improving energy efficiency and indoor envi-

ronmental quality (IEQ). This thesis targets these research shortcomings by studying

how dynamic demand-based control strategies for HVAC systems can improve IEQ

(and occupants’ health and productivity as the result) without compromising energy

efficiency. Toward this goal, I will perform a series of studies to investigate the inte-

gration of multiple indoor air pollutants, advanced predictive models for occupancy

and IAQ-related metrics forecasting, and the development of new integrated indices

based on IAQ factors, thermal comfort, and occupancy data to evaluate the efficiency

of our proposed method for dynamic operation of the ventilation systems.

1.3 Thesis objectives

This project’s overarching goal is to emphasize the need for dynamic approaches for

operating ventilation systems and demonstrate the benefits of these approaches. To

achieve this research goal, we formulate the following specific objectives:

1. Evaluating the adequacy of using carbon dioxide (CO2) as the sole indicator

of IAQ for HVAC system management in different spaces with different usages

and occupancy patterns.

2. Exploring the use of predictive models for occupancy status and level prediction

using IEQ metrics as the features.

3. Exploring the use of statistical time series models and deep neural networks to

forecast the future values of IAQ metrics.
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4. Design a dynamic HVAC control system that optimizes ventilation rates based

on real-time IAQ metrics and occupancy data.

5. Create a comprehensive IEQ index that evaluates the efficacy of the designed

dynamic HVAC control system

Overall, the chapters in this dissertation proposal demonstrate the contributions of my

research on how we can make more informed decisions regarding ventilation operations

for achieving optimal IAQ, which improves the occupants’ well-being and productivity

while minimizing energy consumption and costs.

1.4 Thesis outline

The remaining chapters address the research goals outlined in the previous section.

Chapter 2 establishes the importance of considering both CO2 and TVOC levels in

HVAC management. Although CO2 is widely used as an indicator of occupancy and

IAQ, TVOC, which are emissions from building materials, cleaning products, and

human activities, also play an essential role in the occupants’ well-being since they

relate to symptoms like headaches, fatigue, and respiratory issues. My longitudinal

study evaluates both CO2 and TVOC levels across various building spaces and pe-

riods, demonstrating the need for a more comprehensive IAQ assessment for HVAC

control.

Chapter 3 focuses on how occupancy detection can be optimized using low-cost Inter-

net of Things (IoT) sensors, such as CO2, temperature, humidity, and light sensors.

In general, the traditional methods rely on CO2 as an indicator of occupancy; how-

ever, my research investigates whether TVOC levels can offer reliable occupancy
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information and thus improve model performance. Using statistical models like Sup-

port Vector Machines (SVM) and Random Forest, I showed that combining multiple

environmental factors enhances the accuracy of occupancy detection, enabling more

precise ventilation control. Additionally, by using deep neural networks, I investi-

gated the possibility of predicting the number of occupants in the space by having

the IAQ metrics as the features. Having information on occupancy status helped us

detect the exposure period of the occupants to the bad IAQ during the scheduled

operation of the ventilation systems.

Chapter 4 focuses on using predictive models in the forecasting of IAQ metrics. Indoor

air pollutant behaviors are usually sophisticated and nonlinear, limiting the efficiency

of traditional linear models such as the ARIMA model in forecasting pollutant levels.

By comparing statistical models with deep neural networks (LSTM and CNN-LSTM),

this chapter showed that deep learning models can better capture these complex

relationships, therefore improving the accuracy of forecasts for pollutants like CO2

and TVOC. These models enable proactive HVAC management, where the system

adjusts based on predicted pollutant levels, further optimizing energy consumption

and maintaining a healthy indoor environment.

Chapter 5 investigates the application of dynamic, demand-driven ventilation strate-

gies that adjust based on real-time indoor air quality (IAQ) data, specifically focusing

on TVOC and CO2 levels and occupancy patterns. Through a four-month field ex-

periment, this chapter compares the performance of a scheduled-based and dynamic

operation of the ventilation systems regarding the indoor pollutants’ levels and en-

ergy consumption as a function of ventilation rates. The dynamic operation mode

integrates monitored IAQ and occupancy data into a building’s HVAC system to

automate ventilation in real-world conditions. This approach overcomes the limi-
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tations of traditional ventilation strategies, which rely primarily on fixed schedules,

and instead introduces a dynamic adjustment method to account for multiple pollu-

tants’ levels and occupancy status. This experimental analysis revealed that dynamic

control reduces both pollutants’ concentrations and energy consumption.

Finally, chapter 6 proposes a new performance loss index that incorporates multiple

environmental factors, including CO2, TVOC, PM2.5, temperature, and humidity

level with the number of occupants. For this goal, individual indices are defined

for each factor by utilizing multiple reference values that are selected based on their

specific impact on occupant well-being. Then, by using a geometric mean for index

aggregation, the final productivity loss index is defined. This index is then used

to compare the efficiency of the dynamic and the scheduled-base operation of the

ventilation system by using the data collected in the previous chapter.
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Chapter 2

A longitudinal observational study

to evaluate changes of IAQ levels

in a commercial building

2.1 Abstract

People spend approximately 90% of their time indoors, making effective indoor air

quality (IAQ) monitoring crucial for occupants’ well-being. Traditional IAQ monitor-

ing primarily focuses on carbon dioxide (CO2) levels to regulate Heating, Ventilation,

and Air Conditioning (HVAC) systems. However, HVAC systems often overlook

other critical IAQ metrics, such as total volatile organic compounds (TVOC), which

may correspond better to occupant activities in some cases. This naturalistic study,

conducted over four months at the University of Virginia, addresses this significant

gap by observing changes in TVOC and CO2 levels across various times, events, and

spaces, including conference rooms, single occupancy offices, and common open-space

areas. We aimed to determine whether CO2 can be the only representative of IAQ

for dynamically adjusting the ventilation rates within this testbed. A key focus was

on poor IAQ instances where CO2 levels were below the recommended levels, but

TVOC concentrations exceeded them, potentially impacting occupants’ health and
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well-being. Our results revealed that in the studied conference room, poor IAQ con-

ditions prevailed 71% of the time during occupancy, in contrast to lower rates in

single occupancy offices (11%, 7%, and 16%). Notably, while social events influenced

CO2 levels less, TVOC levels significantly increased in all open-space areas. These

findings challenge the conventional reliance on CO2 monitoring for IAQ management,

highlighting the necessity of incorporating comprehensive IAQ metrics in HVAC sys-

tems. The study underscores the critical need for dynamic HVAC systems that adapt

to real-time IAQ conditions, a vital step towards enhancing indoor environmental

quality in various settings.

2.2 Introduction and Background

On average, Americans spend up to 90% of their time in indoor environments [6].

However, most buildings are not designed or operated to enhance our health and pro-

ductivity[7]. Among the various factors affecting indoor environmental quality (IEQ),

which includes noise, light, and indoor air quality (IAQ), the World Health Organi-

zation (WHO) [1] identifies IAQ as a critical element with substantial influence on

occupant well-being, health, and performance. Recognizing its significance, WHO has

outlined a range of symptoms known as Sick Building Syndrome (SBS), which include

difficulty concentrating, skin irritation, and fatigue, commonly reported by occupants

of many indoor spaces [8]. Recent research underscores the profound impact of IAQ

on productivity, concentration, comfort, as well as physical and mental health [2, 3,

4, 5]. Carbon dioxide (CO2) and total volatile organic compounds (TVOC) [9, 10]

are among the primary indoor air pollutants associated with SBS symptoms such as

headache, fatigue [11, 12] and asthma [13]. Other contributing factors include partic-
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ulate matters such as PM2.5 and PM10, which may be more prevalent in residential

buildings [14, 15] during activities like cooking, in structures near high-traffic areas

[16, 17], or during extreme events such as wildfires [18].

According to the American Society of Heating, Refrigerating and Air-Conditioning

Engineers (ASHRAE) Standard 62.1, the primary source of indoor CO2 emissions is

human metabolism [19]. This gas is frequently used as the sole indicator of IAQ and

guides the operation of advanced Heating, Ventilation, and Air Conditioning (HVAC)

systems. Numerous studies have confirmed that elevated levels of indoor CO2 are

linked to symptoms such as fatigue and dizziness [20], as well as increases in blood

pressure [21]. Furthermore, prior research has established a correlation between high

indoor CO2 levels and occupants’ discomfort as well as a decrease in the performance

of office workers [22].

On the other hand, TVOC are compounds with high vapor pressure and low water

solubility and are emitted as gases from certain solids or liquids. TVOC encompass

a range of chemicals, some of which can have both short-term and long-term nega-

tive health impacts. Indoor concentrations of many TVOC are consistently higher

(up to ten times higher) than outdoors due to emissions from a variety of indoor

sources, including paints, cleaning supplies, pesticides, building materials, and office

equipment such as printers and copiers [23]. Previous studies have shown that the

presence and activities of humans and beauty products could impact TVOC levels in

indoor environments [24, 25]. These studies found associations between high levels of

TVOC and SBS [26], especially when occupants are feeling negative emotional states

such as stress [9]. The link between indoor TVOC levels and occupant well-being

has prompted further research aimed at developing reliable testing methods for pol-

lutants emitted by both occupants and the products they use. One notable study
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by Bartzis et al. [27] evaluated the emission rates of consumer products in indoor

settings. The authors selected items from different product classes, such as cleaning

agents, air fresheners, and personal care products that are known to emit TVOC, and

implemented an inter-laboratory comparison by testing the same items in three dif-

ferent test chambers. Their findings revealed that the studied consumer products can

significantly elevate TVOC levels beyond healthy limits. Consequently, the study

emphasized the need for standardized emission estimation protocols and called for

more extensive, naturalistic data collection concerning human-emitted pollutants in

indoor environments.

Several research studies have investigated the changes in IAQ factors across different

building types, including schools [28], museums [29, 30], cinemas [31], residential

buildings [32, 33, 34], and hospitals [35]. Educational institutes are also considered

one of the most important indoor environments to be studied regarding IAQ, given

that, after residential settings, students and instructors spend considerable time there.

[36, 4, 12, 37]. These studies found that poor IAQ exacerbates allergic diseases

and asthma across occupants and decreases their performance given the levels and

duration of exposure to poor IAQ [28]. They also identified that indoor air pollutants

are influenced by seasonal changes, time of day, and variations in occupancy level

and behaviors [38]. For instance, in residential settings, certain activities like cooking

and painting have been identified as triggers for elevated levels of specific pollutants,

notably TVOC [39].

The level of CO2 in indoor environments has been studied for various applications,

including its relevance to HVAC system performance and its impact on occupant well-

being. Asif et al. [40] have evaluated the CO2 level along with indoor temperature

and relative humidity in an academic building over a period from March to June.
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Their research encompassed buildings with diverse HVAC systems and revealed that

non-centralized HVAC systems often led to CO2 levels that exceeded ASHRAE stan-

dards during occupied periods. In this study, they only considered CO2 as the indoor

air pollutant and evaluated classrooms with high (or medium) occupancy levels. In

another study, Pantelic et al. [41] investigated the metabolically generated CO2 ef-

fects on the ”personal cloud” surrounding an individual. This study evaluated the

relationship between the metabolic CO2 concentration and the scenarios typically en-

countered in the office environment, such as working on a computer and talking. This

research showed that occupants’ presence and activities result in a higher metabolic

CO2 cloud around the occupants.

Other studies evaluated the relation between CO2 level and occupants’ performance.

Several studies showed that exposure to moderate CO2 levels (1000-2500 ppm) could

impair certain attributes of decision making, such as gathering and utilization of in-

formation, even in the absence of other bio-effluents [42, 43]. This is while some other

studies found exposure to CO2 at levels up to 3000 ppm without the presence of other

indoor air pollutants, such as sources of TVOC, did not cause occupants’ cognitive

performance degradation. With the presence of other bio-effluents and CO2 at levels

up to 3000 ppm, participants identified acute symptoms such as headache, fatigue,

and difficulty in thinking clearly, and decreased certain indicators of cognitive func-

tioning [44]. These findings show the importance of evaluating CO2 levels alongside

other indoor air pollutants, such as TVOC.

A review study by Weschler et al. [45] showed that humans have a pronounced influ-

ence on the indoor chemistry they reside in, such as transferring skin oils to indoor

surfaces, and specifically highlighted the occupants’ influence on ozone levels is sig-

nificantly large. The study emphasized the need for further research into the impact
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of human TVOC emissions on the IAQ of enclosed spaces [45]. Another study [46]

reviewed methodologies and approaches in previous studies for evaluating TVOC lev-

els. The paper highlighted that to obtain more reliable estimates of human exposure

to TVOC, there is a need for naturalistic studies over a long period of time, which

can be done using suitable analytical techniques and low-cost sensors. In another

study by Wang et al. [47], they implemented a controlled experiment in a climate-

controlled chamber occupied by four seated human volunteers. They evaluated the

effect of occupants’ activities, clothing, age, and relative humidity and temperature

on the TVOC’s emission rate. Their results showed that the occupants’ clothing,

as well as instructed movements, such as standing up and stretching, increased the

TVOC emission rates. The study also concluded that an increase in temperature and

relative humidity results in higher TVOC emissions.

Lin et al. [48] conducted an analysis of the influence of occupant behavior on IAQ, uti-

lizing data from smart home sensors across two testbeds. The study focused on three

representative pollutants, PM2.5, formaldehyde, and methanol, representing outdoor

and indoor pollutants that are associated with indoor materials and occupant activ-

ities. This study showed that activities that impact the ambient temperature, such

as bathing and cooking, have more impact on the pollutants. This might be because

the temperature caused by an activity may last longer than the activity itself; there-

fore, it can impact the IAQ even after the activity has ended. Other than the effect

of occupants on the TVOC level, Allen et al. [43] evaluated the effect of different

levels of TVOC on occupants’ cognitive performance. In this study, results showed

that TVOC and CO2 are independently associated with the cognitive functions of the

studied subjects, and their cognitive functions scores were significantly higher where

TVOC and CO2 levels were lower.



13

Previous studies have evaluated IAQ in a limited number of spaces for short periods

of time. Limited studies capture the changes in IAQ in open space areas in buildings

or enclosed spaces with a low number of occupants, such as single-occupancy offices.

Additionally, most existing research only focuses on IAQ during occupied periods,

neglecting to analyze how metrics fluctuate between occupied and unoccupied times

[49]. When studies do account for occupancy, they typically rely on preset schedules

for spaces like classrooms to determine occupied hours [40]. Also, limited studies have

evaluated the changes in TVOC and CO2 exposure rates longitudinally. Addressing

these gaps by simultaneously evaluating both CO2 and TVOC levels using affordable

IAQ sensors could be a crucial step toward enhancing IAQ and fine-tuning ventilation

systems. Over recent years, advancements in accurate and cost-effective Internet of

Things (IoT) devices have effectively overcome the scarcity of monitoring indoor

air pollutant concentration. Accordingly, by leveraging a network of affordable IAQ

sensing systems, we have conducted a longitudinal study of CO2 and TVOC variations

in multiple indoor spaces with diverse functionalities and occupancy profiles.

Target 
situation

Considering CO2 as the 
only proxy of IAQ

CO2 level is 
below the standard 

level 

No

Yes
VOC level is 

below the standard 
level

Yes
No action 
needed

No

Good IAQ  

Required action will be taken 
(HVAC or window opening by the 

occupant)
Poor IAQ Good IAQ  

Action needed, but no action will be 
taked as the CO2 level is below the 

standard level
Poor IAQPoor IAQ

(a) The flowchart showing the IAQ conditions
and the corresponding ventilation actions

TVOC
level (200
ppb)

CO2 level
(1000
ppm)

Ventilation
acti-
vated?

Poor
IAQ?

Safe Safe No No
Safe Poor Yes No
Poor Safe No Yes
Poor Poor Yes No

(b) The truth table showing the
IAQ conditions based on TVOC
and CO2 levels

Figure 2.1: The ventilation control logic and IAQ situation if CO2 is considered as
the only proxy of IAQ

The objective of our longitudinal study is to investigate whether CO2 measurements

can be the only representative of the IAQ for the purpose of automating ventilation
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systems or if it’s necessary to also consider the levels of TVOC in order to optimize

the performance of HVAC systems. Another objective is to evaluate the occupants’

approximate exposure frequency to the ”poor IAQ” condition in single-occupancy

offices and a conference room. Fig. 2.1 shows the rule-based logic for the identifi-

cation of poor IAQ conditions. As this flowchart shows, poor IAQ conditions could

be associated with CO2 and TVOC concentrations and the consequent ventilation

actions. Toward these goals, we gathered data on TVOC and CO2 levels across var-

ious indoor spaces, each characterized by different occupancy patterns. The study

areas included three single-occupancy offices, two shared office spaces, a hallway, a

kitchen and dining area, and a conference room. Our initial analysis examined the

effectiveness of existing ventilation systems in mitigating TVOC and CO2 concen-

trations, quantifying the instances where these pollutants surpassed recommended

levels. Subsequently, we focused on conditions of ”poor IAQ,” defined as situations

where CO2 levels remain within the acceptable range, but TVOC levels do not. As

noted, Fig. 2.1 shows the occurrence of the poor IAQ situation based on the TVOC

and CO2 levels. We reported the frequency with which the TVOC and CO2 exceeded

their standard level and the occurrence of poor IAQ for the weekdays and weekend

schedules of the HVAC system. To augment our analysis, we employed a support

vector machine (SVM) model that uses TVOC and CO2 data to predict occupant

presence in single-occupancy offices and the conference room. This predictive model

enabled us to quantify the occupants’ exposure time to poor IAQ conditions.



15

2.3 Methodology

This study aims to evaluate whether considering CO2 as the only proxy of IAQ to

inform HVAC ventilation rates is enough for healthier building and indoor environ-

ments. This section provides an overview of the testbed (L-LL) and sensing system,

data collection, and poor IAQ definition, followed by data processing and analysis.

(a) Different locations of the hallways and
the conference room in the lab; single-
occupancy offices A and C are selected
from zone A, and single-occupancy office
B is selected from zone B.

(b) Top left: single-occupancy offices, top right:
Arena & the kitchen area, bottom left: confer-
ence room, bottom right: shared office spaces

Figure 2.2: Different locations of the L-LL

2.3.1 Testbed and Sensing System Description

The data for this study was collected in the L-LL located at the University of Vir-

ginia campus. The L-LL is a 17,000 sqft open space office building and is occupied

by roughly 150 residents, including faculty, research scientists, graduate students,

and staff. L-LL consists of 24 single-occupancy offices, four conference rooms with

different capacities, one kitchen and arena space, and four connected main shared

office spaces. Fig. 2.2a shows different areas in L-LL, and Fig. 2.2b shows photos

of different locations of the testbed, including the arena and the kitchen area, the
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conference room, single-occupancy offices, and the residents’ shared offices. If there

are events in this space, they typically take place in the arena, and food and drinks

are usually served during events, and occupancy levels can increase by anywhere from

60 to 80 people. These events are typically scientific presentations or social events

and gatherings for different celebrations during the year. Since 2018, the space has

turned into a living lab where over 350 IoT devices have been deployed to monitor

indoor environmental changes, energy consumption, and occupants’ interactions with

different building systems. These sensors include appliance and electric circuit energy

monitors, motion, and indoor environmental quality sensors, such as light, tempera-

ture, humidity, noise, CO2, PM2.5, and TVOC levels [50]. Features and parameters

of the sensors that are utilized in the L-LL for this study are summarized in Table

2.1. For this study, we used eight Awair Omni IEQ sensors in L-LL, of which three

were located in the single-occupancy offices, one in the conference room, one in the

hallway, one in each shared office space, and one in the kitchen area to collect the

pollutants’ concentrations sampled every 10 seconds. In one of the single-occupancy

offices and the conference room, one of each type of motion sensor was used to collect

the occupancy status for four months (the entire study).

Sensor MeasurementValue
range

Error Unit

EnOcean E9T-OSW Motion [0,255] - -
Dual Tech Ceiling Mount
Sensor MOS-DT

Motion [0,255] - -

Awair Element CO2 [400, 5000] ±75ppm ppm
TVOC [0, 60000] ±10% ppb

Table 2.1: Characteristics of sensors used

As shown in Fig. 2.3, to optimize sensor placement in single occupancy offices, we

initially considered two locations: one closer to the occupant at a seating height of 3.94
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(a) Conference room

(b) Single-occupancy office (c) IAQ sensors

Figure 2.3: IAQ sensors arrangement in the single occupancy offices and the confer-
ence room. Green and red boxes: IAQ sensors, red box: the selected location of the
IAQ sensor for the data collection.

ft and another further away at a standing height of 3.91 ft. Our analysis indicated that

the data from both positions exhibited similar patterns, with readings typically within

a 3-5% range of each other. Notably, the sensor positioned closer to the occupant

consistently registered slightly higher pollutant levels. Based on these findings, we

decided to conduct the experiment using a single sensor placed near the occupant at

the 3.94 ft seating height in each room. This positioning provides a more accurate

representation of the pollutant concentration levels to which occupants are exposed.

To optimize sensor placement in the conference room, we initially installed nineteen

sensors at various locations and heights (3.94 and 5.91 ft.) within the room. This pilot

experiment was run during working hours (2.6 ACH) for 10 days (separate from the

main study). Upon analyzing the collected data, we observed that all sensor readings

were remarkably consistent, deviating by only 3-5% from each other. Utilizing both

correlation analysis and random forest feature selection techniques, we identified one
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sensor (shown in red boxes in Fig. 2.3) as the most representative of the collective

locations. This particular sensor’s significance was further underscored by its strategic

positioning, away from the direct influence of any ventilation vents, ensuring that

its readings were not artificially impacted. Consequently, this location was selected

for the experiment, balancing both statistical rigor and practical considerations in

environmental monitoring.

2.3.2 Data Collection

We recorded four months of TVOC, CO2, and motion sensor data during weekdays

and weekends. We divided the data into two different conditions based on the HVAC

systems’ operation. The first one is the ”working hours” condition that includes

weekdays from 6:00 AM to 7:00 PM, in which the HVAC systems are preset to operate

at a ventilation rate of 2.6 air changes per hour (ACH) across all zones. The second

condition is ”off hours”, which includes the weekends and specific hours of weekdays

(7:00 PM- 6:00 AM) when the HVAC operations are preset at a lower air exchange

rate of 1.5 ACH due to lower expected occupancy levels.

Particles Baseline Moderate High Productivity Effect
CO2

(ppm)
600 [43] 1000 [43,

42]
2500
[42]

-21% for every 400 past
600 [43], -44-94% at 2500
[42]

TVOC
(ppb)

50 [43,
51]

200 [52] 500 [43] -13% at 100 [43]

Table 2.2: IAQ guidelines and productivity impacts
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2.3.3 Poor IAQ Definition

We have considered the limit level for both pollutants (CO2 and TVOC) based on

the literature [43, 42, 53, 54, 52] on performance loss of the occupants at different

levels of indoor air pollutants. Table 2.2 represents the impact of moderate and

high levels of CO2 and TVOC on productivity loss according to the literature. For

this study, we have considered the moderate level category, which considers adverse

health and performance impacts at 1000 ppm for CO2 and 200 ppb for TVOC levels.

In this study, we are specifically interested in incidents where CO2 concentration is

below the recommended levels while TVOC levels exceed those recommendations.

In these conditions, although the IAQ is poor for the occupants due to high TVOC

concentration, the HVAC system is not informed to operate at a higher rate since it

is only actuated based on CO2 levels.

To better understand the ”poor IAQ” condition, Fig. 2.1 represents the potential sce-

narios that can happen if the ventilation system operates dynamically based on the

CO2 levels. As depicted, poor IAQ can happen in two ways: first, when CO2 levels

surpass recommended thresholds, prompting activation of the HVAC system. Second,

when TVOC levels alone exceed the recommended range, while CO2 remains within

acceptable limits, leading to an unresponsive HVAC system. In this paper, the term

”poor IAQ” specifically denotes the latter case. To assess the necessity of incorporat-

ing TVOC-level information into HVAC system operation, we quantify occurrences

of the aforementioned poor IAQ conditions across various spaces within the L-LL. In

essence, this longitudinal study aims to determine whether CO2 measurements alone

suffice for dynamically adjusting ventilation rates, or if the inclusion of TVOC levels

is essential for optimizing HVAC system performance.
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2.3.4 Data Processing and Analysis

To analyze the data, we aggregated the high-frequency data over 15-minute intervals

by computing the average values of the 10-second readings. To effectively identify and

remove outliers from the dataset, we replaced readings that fell outside the sensor’s

operational range (as detailed in Table 2.1) with the mean of the adjacent values,

preceding and following the outlier. This approach ensured that any anomalous data

potentially resulting from sensor errors did not skew our results. Additionally, we

meticulously evaluated the scatterplots of the pollutant time-series data to scrutinize

any significantly distant data points from the main cluster. Our thorough exam-

ination revealed no such anomalies in the dataset. Also, we installed the sensors

one week prior to the main study, ensuring they were adequately calibrated to the

environmental conditions of the space.

Additionally, we addressed the missing values by substituting them with the mean

of their immediate preceding and subsequent values. We then separated the ag-

gregated data into two categories: working hours and off-hours, identifying periods

during which CO2 and TVOC levels exceeded their respective recommended limits.

Additionally, we assessed instances of poor IAQ, as defined in Section 2.3.3, across

various locations for both working and off-hour conditions. Extending this analysis

to both the kitchen area and the arena, we pinpointed time periods corresponding

to scheduled events by referencing the lab’s calendar. By analyzing CO2 and TVOC

concentrations during these specific events, we aim to ascertain whether CO2 alone

serves as a sufficient proxy for IAQ under these particular conditions.

As noted, the second objective of our study is to evaluate the occupants’ approximate

exposure frequency to the ”poor IAQ” condition in single-occupancy offices and the
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conference room. Toward this goal, we trained several machine learning models to

predict the binary status of the occupancy levels (0 if there is not anyone in the area,

and 1 if there is at least one occupant in the area) by using CO2 and TVOC levels

as the features. We used the motion sensors installed in one of the single-occupancy

offices and the conference room for the target variable ground truth. To find the best-

fitted model, we trained five different models: SVM, Gaussian naive Bayes (GNB),

logistic regression (LGR), random forest classifier (RFC), and k-nearest neighbors

(k-NN). The best-fitted model for our data was an SVM model with a non-linear

kernel (with an F1 score of 0.86). We evaluated the results using both linear and

non-linear kernels for the SVM model, and the one with the Gaussian kernel (as a

non-linear kernel) leads to higher accuracy. This model uses the radial basis function

(RBF) as the Gaussian kernel. The details of the models we used for the occupancy

detection task can be found in our paper [55]. Using the occupancy predictor model

helped us find out the percentages of time that occupants were present and exposed

to poor IAQ levels in the other two single-occupied offices, which were not equipped

with motion sensors. For fine-tuning the SVM model in these offices, we used the

occupants’ calendar data for a limited time as the occupancy ground truth.

2.4 Results

This section provides the findings from the analysis of the data collected from three

single-occupancy offices, a conference room, and shared office spaces, examined both

during working hours and off-hours. Subsequent subsections will detail the frequency

with which CO2 and TVOC levels exceed recommended thresholds, as well as in-

stances of poor IAQ – i.e. when TVOC concentrations surpass the recommended
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level, but CO2 levels remain within the acceptable range. These subsections show

that poor IAQ happens most often in enclosed, shared areas with a high number of

occupants, such as conference rooms. Furthermore, our findings highlight that the

HVAC system may fail to address the poor IAQ conditions 6 to 30 percent of the time

across different zones and space types. These findings suggest that we can signifi-

cantly improve the IAQ levels during the occupied periods by dynamically operating

the HVAC systems based on both TVOC and CO2 data in targeted zones.

(a) CO2 concentration (b) TVOC concentration

Figure 2.4: Histograms of CO2 and TVOC concentration in single-occupancy office
C

2.4.1 Single-occupancy Offices

In this section, we evaluate the TVOC and CO2 levels of three single-occupancy

offices and assess how often these pollutants exceed the recommended thresholds.

Figure 2.4 provides a histogram that depicts the frequency distribution of TVOC

and CO2 concentrations in Office C during working hours over a four-month data

collection period. The data reveals that CO2 levels ranged between 400 and 1000

ppm, while TVOC levels varied from 0 to 600 ppb in this specific office. Peaks in the

histograms indicate that the most common concentration ranges for CO2 and TVOC
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are 460-480 ppm and 100-125 ppb, respectively — both of which fall beneath their

recommended levels. It also shows that CO2 level never exceeded its recommended

level in this room, while the red bars in the TVOC histogram indicated the occurrence

of TVOC levels above the recommended level (6% of the time). we presented the

histograms for TVOC and CO2 concentrations of the other two single-occupancy

offices in the appendix section (A.1and A.2). Tables 2.3 and 2.4 display the percentage

of time these pollutants exceeded the recommended thresholds during working and

off-hours, respectively. In these tables, the frequency of poor IAQ situations in the

third row is sometimes lower than the frequency of TVOC levels exceeding their

recommended limits in the second row. This difference occurs because instances where

CO2 levels have already triggered ventilation due to their high levels are excluded

from the calculation of poor IAQ frequency when TVOC levels also exceed their

recommended limits. Across the single-occupancy offices, the CO2 concentration

is below the identified moderate range during both working hours and off hours;

however, this is not the case for the TVOC concentration. We can see that the

TVOC levels are above the limit level at 6%, 3%, and 6% of the time in offices A, B,

and C, respectively, during working hours.

Pollutant Office
A

Office
B

Office
C

Conference
room

Hallway Arena Shared
office

space 1

Shared
office

space 2
CO2 (%) 0 0 0 3 0 0 0 0
TVOC

(%)
6 3 6 37 8 24 15 16

Poor IAQ
(%)

6 3 6 34 8 24 15 16

Table 2.3: Percentage of time pollutants exceeded recommended levels and poor IAQ
occurs during working hours

During off hours, single-occupancy offices A, B, and C experienced elevated TVOC
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Pollutant Office
A

Office
B

Office
C

Conference
room

Hallway Arena Shared
office

space 1

Shared
office

space 2
CO2 (%) 0 0 0 2 0 0 0 0

TVOC (%) 33 18 19 30 15 36 30 22
Poor IAQ

(%)
33 18 19 28 15 36 30 22

Table 2.4: Percentage of time pollutants exceeded recommended levels and poor IAQ
occurs during Off hours

levels, with the accumulation surpassing recommended thresholds 33%, 18%, and

19% of the time, respectively. To obtain information about the poor IAQ situation

in which air cleaning actions would not be taken, we need to assess the values of the

two pollutants jointly. Fig. 2.5 (plot a-c) shows the joint plot of CO2 and TVOC

concentrations for single-occupancy offices, and Table 2.3 shows the percentage of

time that the IAQ is in poor condition during working hours. Notably, instances

where both CO2 and TVOC levels surpassed the recommended limits are also marked

in green in Fig. 2.5. The reason is that when CO2 is above the recommended level,

the ventilation system would be activated as they consider this pollutant as the only

proxy of IAQ. Conversely, instances marked in red indicate periods where only TVOC

levels are elevated, leading to their accumulation due to the absence of ventilation

response, adversely affecting occupants’ well-being and performance. The highest

frequency of poor IAQ happens in offices A and C, which is 6% for both offices

during working hours. This shows that the IAQ in these offices is poor 6% of the

time during the normal weekday schedule in which the HVAC system is operating at

a 2.6 ACH air exchange rate.

The results of our SVM model and motion sensor data (where they were available)

show that during working hours, 11%, 7%, and 16% of the occupied time, there was
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(a) Single-occupancy of-
fice A

(b) Single-occupancy of-
fice B

(c) Single-occupancy of-
fice C

(d) Conference room

Figure 2.5: IAQ situation in single-occupancy offices and the conference room during
working hours

at least one occupant in the single-occupancy offices A, B, and C, respectively, while

the IAQ was poor. These values correspond to a daily average exposure of 45, 20, and

40 minutes for each occupant in single-occupancy offices A, B, and C, respectively.

Fig. 2.6 shows a time series plot of TVOC and CO2 levels of a working day in a

single-occupancy office with the occupied occasions. As shown in Figure 2.6, both

TVOC and CO2 levels exhibit a gradual increase following the arrival of an occupant.

During the occupied time, the TVOC level can exceed the recommended moderate

level, while the CO2 level stays below the recommended level. Evaluating occupied

periods on other days also showed the same pattern of TVOC and CO2 concentration.
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(a) CO2 level (b) TVOC level

Figure 2.6: CO2 and TVOC time series data during a working day in a single-
occupancy office

2.4.2 Conference Room

Figure 2.7a and 2.7b present histograms depicting TVOC and CO2 concentrations

in the conference room, respectively. The histograms reveal that CO2 levels ranged

from 400 to 2000 ppm, while TVOC levels varied between 0 and 4000 ppb. Notably,

the most frequent concentrations for CO2 and TVOC were 480-520 ppm and 120-160

ppb, respectively, both of which fall below their respective recommended limits. The

red bars in these plots signify instances where pollutant levels exceeded recommended

guidelines. As detailed in Table 2.3, TVOC levels surpassed the recommended limit

37% of the time during working hours in the conference room, compared to just 3%

for CO2 levels. Figure 2.5 (plot d) illustrates that poor IAQ conditions prevailed

34% of the time during working hours—a concerning statistic given the room’s fre-

quent turnover. Utilizing both the room’s calendar and motion sensors for occupancy

detection, we discovered that during 71% of the occupied time in working hours—

equivalent to 3 hours and 50 minutes—the room experienced poor IAQ conditions.

Further, calendar data and other metrics suggest that the room typically accommo-

dates more than one occupant when IAQ is in poor condition. These values showed

significant periods in which occupants have meetings in the conference room, but the
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(a) CO2 concentration (b) TVOC concentration

Figure 2.7: Histograms of CO2 and TVOC concentration in the conference room

HVAC system is not circulating enough air to improve the IAQ levels. Evaluating

the poor IAQ during off hours shows that 28% of the time, the space has poor IAQ

levels.

(a) CO2 level (b) TVOC level

Figure 2.8: The average CO2 and TVOC time series data during a working day for
four weeks in the conference room

Figure 2.8 shows the average levels of TVOC and CO2 for four representative Mon-

days during the data collection period, focusing specifically on days when recurring

meetings were scheduled in the conference room. The number of people and their

activities in the room varied across different meetings, leading to fluctuating levels

of TVOC and CO2 concentrations. For example, in the meeting at 12-1 PM, food

was served every week, resulting in higher levels of TVOC. As illustrated in Figure

2.8, the presence of occupants led to increases in both TVOC and CO2 levels. How-
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ever, the CO2 concentrations remained within acceptable range throughout the day,

unlike TVOC levels, which frequently exceeded the recommended thresholds. Like

the single-occupancy offices, the conference room also experienced elevated TVOC

levels from 7 PM to 6 AM, which directly resulted from the reduced ventilation rates.

During this period, the accumulation of TVOC occasionally resulted in poor IAQ.

Similar patterns in fluctuations of CO2 and TVOC levels are evident in the conference

room across other days of the week.

2.4.3 Open-space Areas

Fig. 2.2a shows the locations of four different open-space areas, including the shared

office spaces occupied by graduate students. Fig. 2.9 shows the poor IAQ conditions

in each of these four spaces. In this figure, the x-axis represents CO2 concentration,

while the y-axis reflects TVOC levels. Red dots in Fig. 2.9 mark instances in which

TVOC concentrations exceeded the recommended threshold of 200 ppb, even as CO2

levels remained below their advised limit of 1000 ppm.

Table 2.3 quantifies the percentage of working hours during which poor IAQ was

observed across these areas. Values in this table reveal that the poor IAQ situation

happens more often near the kitchen and dining area. In this area, 24% of the time,

the air quality was poor during working hours. It is important to note that occupants

do not typically spend long periods near this area; therefore, their exposure to higher

levels of TVOC in this space is limited. In shared office spaces 1 and 2, the IAQ levels

were poor at 15% and 16% of the time during working hours, respectively. This area

is where the occupants work at their desks for long periods. The entrance corridor,

which benefits from regular influxes of fresh air, recorded the lowest incidence of poor
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(a) Entrance Hallway (b) Kitchen and arena (c) shared office space 1

(d) shared office space 2

Figure 2.9: Poor IAQ situation of the open-space areas during working hours

IAQ at 8% during working hours. Our findings show that these values are at higher

rates during the off hours when the HVAC system operates at a lower rate. During

off hours, which include weekdays from 7 PM to 6 AM and all day on weekends, the

TVOC levels in various areas increased due to reduced ventilation rates. This led to

sporadic TVOC accumulation, exceeding recommended levels and resulting in poor

IAQ. Specifically, the incidence of poor IAQ during these off hours was recorded at

15% in the hallway, 36% in the kitchen area, and 30% and 22% in shared office spaces

1 and 2, respectively. As shown in both Table 2.3 and 2.4, it’s noteworthy that CO2

levels never surpassed their recommended limits (happened less than 1% of the time

only during the events in the arena), neither during working hours nor off-hours.

During the data collection period, the L-LL arena and kitchen area hosted three

events and one large gathering, each beginning around 5:00 PM and ending around

7:30 PM. To assess pollutant levels during these occasions, we took the raw data

and averaged it into five-minute intervals for both CO2 and TVOC on the event
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days. Figure 2.10 displays the 24-hour average concentrations observed on those

specific dates. Two of the events had an attendance of roughly 70-80 people, while

the remaining two drew between 30-40 participants. Food was also served in all four

events. For comparative purposes, Figure 2.11 isolates the pollutant levels from the

smaller events (30-40 attendees). In these smaller gatherings, CO2 peaked at 1200

ppm, and TVOC reached around 4000 ppb—levels that are appreciably lower than

those observed in larger events, where CO2 hit 1800 ppm, but TVOC soared to an

alarming value around 8000 ppb, as shown in Figure 2.10. The average of the TVOC

level in the event location was 4078 ppb during the event period.

(a) CO2 level (b) TVOC level

Figure 2.10: Average CO2 and TVOC time series data during days of four social
events in the arena

A significant observation shown in Fig. 2.10 is that the ventilation system failed

to mitigate TVOC concentrations in any of the open-space areas by the end of the

day. As previously mentioned, during off hours, there was an increase in TVOC

levels in these areas, with accumulations sometimes exceeding recommended levels.

Notably, following such events, TVOC concentrations remained above the recom-

mended threshold until 6 AM, when the ventilation systems resumed operation with

a higher ACH rate to cleanse the air of indoor pollutants. This is while CO2 was

above the standard level only in the arena for about 90 minutes during the events.

As we can see in Fig. 2.10, TVOC concentrations initially spiked in the arena and
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gradually permeated other lab spaces, a pattern not seen with CO2, which remained

elevated for a much shorter duration and was confined mainly to the arena where the

events were happening. Based on the preset schedule of the lab’s ventilation system,

the HVAC systems switched to a lower ventilation speed at 7:00 PM, regardless of the

pollutant level or occupancy levels. This contributed to TVOC concentrations stay-

ing above the recommended levels for nearly six hours post-event across all lab spaces.

As shown in Fig. 2.11, when the event is smaller with fewer attendees, the ventilation

systems decreased the TVOC level to the recommended level about an hour after the

event ended. As we can see, even in smaller events, the TVOC level increased all

around the lab, despite the CO2 level, which only surpassed the recommended range

in the event area.

(a) CO2 level (b) TVOC level

Figure 2.11: Average CO2 and TVOC time series data during days of two social events
with approximate 30 attendees

Figure 2.12 provides an alternative visualization of pollutant levels and their distri-

bution across various open-plan locations within the lab during these events. This

heatmap illustrates the peak levels for both TVOC and CO2 levels at each location.

The least affected area by the spread of TVOC is shared office space 2, in which the

TVOC level went up to 520 ppb in smaller events and 905 ppb in larger events. As

indicated in Fig. 2.12, the CO2 levels across different lab areas are comparatively less

influenced by the events. This could likely be attributed to a lower concentration of
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(a) CO2 level distribution (b) TVOC level distribution

Figure 2.12: CO2 and TVOC distribution over the lab during an event

people outside the main event area.

The entrance hallway is the most impacted area for CO2 concentration, following the

main event arena. In this hallway, CO2 levels peaked at 862 ppm in larger events

and 767 ppm in smaller events—levels that still fall below the recommended level as

defined in this study. Notably, the entrance hallway and the arena are the only two

areas where CO2 levels exhibited an increase due to event activities. Even so, in the

entrance hallway, the CO2 concentrations remained below the recommended level.

Upon examining the IAQ both during and after these events, it becomes evident

that the current preset HVAC system operations are inadequate for addressing the

dynamic changes in space utilization. Specifically, the system struggled to purify the

air expediently even once the events, particularly the larger ones, ended.

2.5 Conclusions and Discussion

This study investigated the spatiotemporal variations of CO2 and TVOC levels as

primary indicators of poor IAQ over four months in a multi-functional institutional

building. We examined the influence of occupant presence, activities, and HVAC
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system ventilation rates on pollutant concentrations in diverse spaces within the Uni-

versity of Virginia’s living lab. CO2 levels above 1000 ppm and TVOC levels exceeding

200 ppb were considered poor levels of these pollutants. Our analysis, conducted dur-

ing both working and off-hours, assessed the frequency of poor IAQ events and the

effectiveness of using CO2 as the sole metric for IAQ and ventilation adjustments.

We identified instances where poor IAQ conditions were not detected by the HVAC

system due to its reliance on CO2 levels alone, despite elevated TVOC concentrations.

The assessment of IAQ across various zones within our testbed reveals that poor IAQ

conditions are relatively infrequent in single-occupancy offices during working hours.

The highest value obtained in these offices for poor IAQ situation is 6% of working

hours. Also, using the machine learning models for occupancy presence showed that

in the same office, the IAQ was poor during 16% of the occupied time. These values

were higher in the conference room with the occurrence of poor IAQ during 34%

of the working hours and 71% during the occupied periods (during working hours).

Evaluating this situation in open plan spaces showed that the highest occurrence of

poor IAQ condition was in the kitchen and arena (24% of the time during working

hours), where occupants eat their food and hold gatherings and events. Next in line

were shared office spaces 1 and 2, showing poor IAQ for 15% and 16% of working

hours, respectively. As these spaces are primarily occupied by graduate students

who spend extended periods at their individual desks, enhancing ventilation rates in

these spaces becomes particularly crucial. The poor IAQ situation only occurs 8%

of the time during working hours in the entrance hallway. This area did not host

many students at the time of data collection and is located near one of the main

entrance doors where the occupants are in transit rather than stationary. During off

hours, TVOC levels were elevated due to the lower ventilation rates, and as a result,
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every area, except the conference room, experienced a higher frequency of poor IAQ

conditions compared to their working-hour counterparts.

Our analysis of pollutant levels during social events in the lab underscores the ne-

cessity of including TVOC as key factors in determining ventilation rates. Based

on our results of evaluating different locations of the lab with different applications,

occupancy levels, and patterns, we conclude that it is essential to consider TVOC in

automating HVAC systems in areas with more occupants, such as conference rooms

and shared office spaces. Our results show that a preset schedule of the HVAC op-

erations and considering CO2 as the only signal for ventilation rates is insufficient

for cleaning indoor air of high occupancy areas. Also, dynamic operation logic with

TVOC consideration for ventilation systems is needed to clean the indoor air during

social events. This is while areas with fewer occupants, such as single-occupancy

offices, are less prone to poor IAQ (up to 16% of occupancy period) even with the

preset schedules of ventilation systems.

For controlling the HVAC operation, rather than considering only the values we ob-

tained for poor IAQ frequency, we need to consider the exposure duration of the

occupants to these compounds as well. For instance, although poor IAQ is more

frequent in the kitchen area than in shared office spaces 1 and 2 —where graduate

students typically work at their desks— the latter still demands close attention. This

is because the potentially severe health impacts of long-term exposure to elevated

TVOC levels are a concern for students who spend extended periods at their desks.

In contrast, individuals who merely pass through the hallway or the kitchen expe-

rience shorter exposure times. Therefore, some spatial intelligence of how different

spaces are utilized is also important for the future optimization of HVAC operations.



35

2.6 Summary of contributions

• Analyzed CO2 and TVOC levels over a four-month period in real-world, natu-

ralistic conditions to assess air quality dynamics.

• Demonstrated that reduced preset ventilation settings often result in TVOC

accumulation, highlighting the need for more adaptive ventilation strategies.

• Identified the limitations of preset HVAC schedules in effectively managing air

quality, particularly in high-occupancy environments.

• Established that occupants’ actions and specific events have a greater influence

on TVOC variations than on CO2 changes, underscoring the need for more

responsive ventilation systems.
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Chapter 3

Detecting Occupancy status and

level using indoor environmental

factors

3.1 Abstract

Occupancy models can effectively optimize building-systems operations to prevent

energy waste and achieve optimal indoor environmental quality. Previous research

has relied on CO2 sensors and vision-based techniques to determine occupancy pat-

terns. Vision-based techniques provide highly accurate information; however, they

are very intrusive. Therefore, motion or CO2 sensors are widely adopted worldwide.

Total volatile Organic Compounds (TVOC) are another pollutant originating from

the occupants. However, a limited number of studies have evaluated the impact of

occupants on the TVOC level. This study recorded continuous CO2, TVOC, light,

temperature, and humidity measurements in a 17,000 sqft open office space for around

four months. Using different statistical models (e.g., SVM, K-Nearest Neighbors, and

Random Forest), we evaluated which combination of environmental factors provides

more accurate insights into the occupants’ presence. Our preliminary results indicate

that TVOC is a good indicator of occupancy detection in some cases. It is also con-
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cluded that using a proper feature selection method can reduce the cost and energy

of data collection without significantly impacting accuracy. Other than the occu-

pancy status model, using 14 months of data from a conference room, we developed

a CBLSTM model for detecting the number of occupants in the conference room,

achieving a mean absolute error (MAE) of 2.04.

3.2 Introduction & background

Buildings are major consumers of energy in the world, accounting for approximately

40% of the total energy consumption [56]. Heating, ventilation, and air conditioning

(HVAC) systems are considered as the highest contributors among building-related

energy consumption sources and are responsible for approximately 48% of the total

energy consumption in the buildings [57]. Consequently, HVAC systems can be one

of the main targets to be considered when thinking of reducing energy consump-

tion in buildings. Traditional HVAC systems operate based on the maximum design

occupancy of a building during the occupied hours, which may cause an unneces-

sary increase in HVAC operations and ultimately increase energy consumption [58].

Meanwhile, reducing the ventilation rates has resulted in occupants’ discomfort [59],

as well as increasing the chance for spreading harmful particles and viruses, as we

have learned more due to the COVID-19 pandemic.

In fact, traditional HVAC operations can lead to both energy waste and occupants’

discomfort, highlighting the need for a change in their operations. To address this,

having accurate information on building occupancy levels can help replace traditional

HVAC operations with demand-response HVAC control [60, 61]. Demand-response

HVAC control can significantly reduce the buildings’ energy consumption during the
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occupied hours and off-hours by dynamically adjusting the air ventilation according

to the occupancy status and patterns of specific zones while preventing overcooling or

over-heating of vacant zones [62, 63]. Prior research has shown that by having access

to accurate occupancy counts and patterns, building automation systems (BAS) can

dynamically adjust and control the ventilation rates of the HVAC systems in different

zones, resulting in up to 80% reduction in HVAC-related energy consumption [64].

Moreover, occupancy information is important for emergency evacuation [65], security

management [66], and controlling lighting systems of buildings [67].

With the recent advancements in the Internet of Things (IoT) along with ubiqui-

tous computing, we can accurately develop an occupancy model that can inform the

operation of HVAC systems [68, 69]. Low-cost and easy-to-deploy non-intrusive in-

door environmental quality (IEQ) sensors such as CO2, temperature, humidity, and

light sensors have become widely available in modern buildings and have shown to

provide promising results in detecting occupancy counts and patterns [70, 71]. Since

occupants directly influence the pollutants in indoor environments by their presence,

activities, and the products they use (e.g., perfume), using IEQ sensors can greatly

help detect occupants’ presence [68].

Among the IEQ factors, CO2 sensors are the most common modality that has been

studied to identify occupancy estimation and detection. Although CO2 has been

shown to be effective for occupancy detection, the slow spread of CO2 in the envi-

ronment and the time that it takes for CO2 to build up will cause the results to have

a time delay from the real building occupancy. Another limitation of CO2 sensors is

that there are other factors, such as passive ventilation and sensor placement, that

affect the CO2 levels. As an example of the importance of CO2 sensor placement,

Pantelic et al. show that occupants have a personal CO2 cloud, and if the CO2 sensors
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are not adequately placed near the occupant’s CO2 cloud, their readings could be de-

layed, or incorrect [41]. As a result, the placement of these sensors is widely important

and often not considered when such sensors are placed in indoor environments.

In addition to CO2, other environmental factors such as temperature, humidity, and

light have also been used for occupancy detection tasks. Candanedo and Feldheim

used environmental features including CO2, light, temperature, and humidity and

compared three learning algorithms, namely linear discriminant analysis (LDA), clas-

sification and regression trees (CART), and random forest (RF), in their occupancy

detection system. They showed that satisfactory results could be obtained by using

proper feature selection and learning methods [68]. In another work, Kraipeerapun

and Amornsamankul used stacking for multiclass classification and binary detection

of occupancy through utilizing CO2, light, temperature, and humidity levels as input

features [72].

Over recent years, due to the availability of more reliable commercially available IoT

devices, monitoring other IEQ factors has also gained more attention. For instance,

recent studies have shown that occupants’ presence can have a significant impact on

the changes in total volatile organic compounds (TVOC). These changes could be a

result of the presence of organic materials in indoor spaces, such as food, cleansers or

disinfectants, and aerosol sprays. However, to the best of the authors’ knowledge, no

study has evaluated whether TVOC can provide similar or better occupancy-related

information as other evaluated metrics such as CO2, lighting, or temperature.

To overcome the mentioned limitations in previous research, this paper evaluates

whether TVOC data is a reliable indicator of the occupancy status of single- and

multi-occupied spaces. Furthermore, we evaluate whether using different environ-

mental factors, including CO2, TVOC, light, temperature, and humidity, can bring
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better insights into detecting occupancy presence. Different statistical models (i.e.,

SVM, K-Nearest Neighbors, and Random Forest) are used for this task. The Ran-

dom Forest feature selection technique substitutes the manual selection of features

that require expertise and may miss some important features. In addition to models

for detecting the occupancy status, we have also developed deep neural networks to

predict the number of occupants in a conference room using CO2 and TVOC as the

features.

3.3 Methodology and Results

3.3.1 Detecting occupancy status

The data collection for this study was conducted in Living Link Lab (L-LL) (“Living

Link Lab” 2021) – a 17,000 sqft living lab located on the University of Virginia

campus, which includes approximately 250 occupants. L-LL consists of 24 single-

occupancy offices, four conference rooms, an arena space, and three large open-layout

spaces (Figure 2.2a). This space is equipped with over 200 IEQ sensors, including

temperature, humidity, light, motion, air quality (CO2, TVOC, PM2.5), and noise-

level sensors. These sensors have been deployed over the past four years, and as a

result, granular longitudinal data has been collected over this period.

For this section, we have chosen two single-occupancy offices (A and B) and one

conference room, which included at least two motion sensors, light-level, temperature,

humidity, and at least one air quality (CO2 and TVOC) sensor. The selected time

period for data analysis was from January 15, 2020, to April 30, 2020, which includes

both pre-COVID-19, when space was at full occupancy, and post-COVID-19, when
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the offices were not occupied, and HVAC systems were operating as normal. This

helps us have enough data points for both occupied and non-occupied situations in

the space. Another step toward balancing our dataset is applying the Synthetic

Minority Over-sampling Technique (SMOTE), which generates synthetic samples for

the minority class by identifying k-nearest neighbors based on Euclidean distance in

the feature space. By employing SMOTE and carefully selecting the time periods,

we ensured the dataset used for analysis was balanced and representative. Since the

space is considered a living lab, occupancy schedules were not pre-defined for single-

occupied offices, and the occupants in those rooms were living their normal lives.

Ground truth for occupancy status was obtained using two motion sensors as well as

occupants’ calendar information, indicating when they were in and out of their office.

Similarly, motion sensors and the conference room’s shared calendar were utilized to

obtain the ground truth for occupied versus non-occupied times in the conference

room.

In this phase, occupancy modeling is treated as a binary classification with the pos-

sible outcome of 0 when there is no occupant and 1 when there are one or multiple

occupants in the space. We adopted five machine learning models, including support

vector machine (SVM), Gaussian Naive Bayes (GNB), logistic regression (LGR), ran-

dom forest classifier (RFC), and k-nearest neighbor (KNN) to identify which would

fit the data better. Light, temperature, humidity, TVOC, and CO2 levels, which

were collected during the identified time frame, were the input features for these al-

gorithms. In the two single occupancy offices, two different CO2 levels are considered,

one with installing a sensor close to the occupants (CO2_inhale) and the other placed

in the background area (CO2_bg) to evaluate the impact of CO2 sensor placement.

For the SVM technique, C-Support Vector Classification with a kernel function is
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used. We used linear and non-linear kernels to train the model and chose the one

that outperformed. Based on the results, when we use more than two features for

the occupancy detection task, using a Gaussian kernel (as a non-linear kernel) leads

to higher accuracy. This paper uses the radial basis function (RBF) as the Gaussian

kernel. When training an SVM with the RBF kernel, two parameters should be

considered, the parameters C and gamma. Parameter C is common in all SVM

kernels and trades of misclassification of training examples against the simplicity of

the decision surface. When C has a low value, it smooths the decision surface, while

a high C aims to classify all training examples correctly. For tuning the parameter

C, we have used the cross-validation method, and for the parameter gamma in the

RBF, which affects the decision boundary’s flexibility, the equation 3.1 is used, in

which nfeatures is the number of features and X is the input (training data).

γ =
1

nfeatures · Var(X)
(3.1)

Additionally, we tested the LGR model that can be used when the output of a problem

is categorical, which in this case, the occupancy detection is in a binary form. This

paper uses the L-BFGS optimizer with L2 regularization for the LGR algorithm.

The C parameter, which is the inverse of regularization strength, is set to 10. This

parameter is similar to the one in the SVM algorithm, and the smaller values specify

stronger regularization.

The neighbors-based classification was tested, a type of instance-based learning that

does not attempt to construct a general internal model but instead attempts to store

instances of the training data. In this paper, we used the KNN model in which the

classification is implemented by using the majority vote of the nearest neighbors for
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each data point. We used uniform weights for this model. Parameter k in this model

is the number of neighbors to use for queries and in general, larger values of k suppress

the effects of noise while making the classification boundaries less district. We have

evaluated the model performance with k between 0 and 10 and set the parameter to 5,

which outperforms other values. The distance metric parameter is set to Minkowski

with a power parameter of 2, which is equal to the Euclidean distance.

Furthermore, the Naive Bayes (NB) method was tested which is a set of supervised

learning algorithms based on Bayes’ theorem with the “naive” assumption of con-

ditional independence between every pair of features given the value of the class

variable. Bayes’ theorem states the following relationship:

P (y | x1, . . . , xn) =
P (y)P (x1, . . . , xn | y)

P (x1, . . . , xn)
(3.2)

in which y is the category variable and x1 through xn are the feature vectors. Based

on the strong assumption in NB about the independence of all features, we used the

Maximum A Posteriori (MAP) estimation the Gaussian NB (GNB) was considered

for this classification task.

Results showed that both TVOC and CO2 levels significantly change upon the pres-

ence of occupants. For evaluating each of the mentioned models, we have used indi-

vidual environmental features and a combination of them to evaluate the impact of

the features on the accuracy of each model. Table 1 shows the results of using the

predictive models for occupancy detection in all three offices. As shown in the results

across all predictive models, for single occupancy offices, using CO2_bg (background

CO2) decreases the accuracy by around 10% compared to the CO2_inhale. As we

can see in the results of both single-occupancy offices, CO2 is a good indicator of oc-
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Office A/ Office B/ Office C
Feature SVM GNB LGR RFC KNN
CO2_inhale 84/88/- 78/87/- 79/87/- 79/87/- 76/81/-
CO2_bg 75/75/64 64/72/65 64/73/64 67/70/69 66/66/61
TVOC 76/63/56 71/50/30 66/46/39 68/44/50 68/52/56
Light 76/-/82 56/-/80 61/-/81 70/-/79 66/-/78
Temperature 76/63/61 55/58/69 57/58/69 57/56/70 61/52/62
Humidity 76/63/64 45/45/61 42/47/60 50/48/51 61/50/60
CO2 + TVOC 85/88/74 79/86/69 83/87/68 84/86/71 86/85/65
CO2 + TVOC +
light

85/-/82 80/-/81 83/-/81 84/-/80 86/-/70

Table 3.1: ML models accuracy in predicting the occupancy binary status in different
locations

cupant’s presence in both offices, but TVOC is a good indicator only in office A. This

can be because people emit CO2 by breathing while their activities and products they

use/wear are sources of TVOC. Therefore, the performance of TVOC as an indicator

of the presence of the occupants in the space is greatly influenced by the occupants’

characteristics and profile.

In office A, TVOC is a better indicator of occupancy than the background CO2.

The conference room does not get any sunlight and the best feature showing the

occupancy status is light since the lighting is controlled by the occupants. In the

Link Lab, the control of occupants on the temperature is limited and they have no

control over humidity, and as we can see, the results show that these features are

not a good indicator for detecting occupancy presence in all three rooms and they

have been removed by RF feature selection method. In the conference room, we can

see that CO2 and TVOC individually are not good indicators of occupancy; however,

when combined, they improved the models’ performance by up to 10%.

These modelings showed that TVOC could sometimes work better than background
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CO2 for detecting the occupancy level and can be used combined with CO2 to improve

the occupancy predictions. The results also showed that the location of CO2 sensors

is significantly important in detecting the occupants’ presence. The performance

of TVOC in detecting occupancy can depend on the occupants’ activities and the

products they use, as these are the ways by which occupants emit TVOC.

3.3.2 Detecting occupancy level

While binary occupancy status gives good information on how the building is being

used, occupancy level (or count) information can be more helpful in spaces with high

capacity (such as conference rooms). In these spaces, occupancy level information

provides more granular insights into how a building is used compared to simple bi-

nary occupancy status. Also, when we only have the binary occupancy status, it is

difficult to estimate occupants’ performance loss, as we do not know how many people

are affected by the poor IAQ. Information on the occupancy level can also help in

managing HVAC operations. Ventilation rates can be reduced in areas with lower

occupancy levels without negatively impacting air quality. Therefore, by knowing

the occupancy level of different building areas, HVAC systems can adjust ventilation

rates to better match the occupants’ needs. This can save energy and reduce the load

on the HVAC system.

For the previous section on detecting the occupants’ presence, we used motion sensors

to gain the ground truth of the target variable. There are some drawbacks to using

motion sensors for occupancy detection. While these sensors provide good insight

into the binary status of occupancy of the space, they can have false positives due

to being triggered by non-human movements. Especially in the L-LL, where many
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doors are made of glass, these sensors can be triggered by the movements of objects

outside the target space. The other concern regarding the motion sensors is the blind

spot. These sensors can miss movements in certain areas based on their location and

should be placed where they can catch most of the occupants’ movements. Therefore,

sometimes, these sensors can detect occupancy when there is none and can miss the

occupancy even though someone may be present.

In the second phase of this study, to tackle these limitations and both improve the

ground truth accuracy of binary occupancy status and gain information on the oc-

cupancy level, in the conference room, we installed an occupancy counter which is

installed in the room. The sensor we are using uses a technology called infrared time-

of-flight to anonymously detect and measure the movement of the occupants. This

technology ensures privacy is protected and no personally identifiable information is

collected. This sensor can count the number of occupants in the space with an accu-

racy of 98%. It has multi-directional counting and height filter capabilities, making

it a decent sensor for our target location.

For this study, we installed 19 Awair sensors all over the conference room to fully

detect the IEQ conditions of the room. Figure 3.1 shows the IAQ and occupancy

counter sensor and their location in the conference room. We had this installment

from June 2022 until August 2023 (14 months). All data (IAQ and occupancy data)

were resampled into one-minute intervals by getting the mean value. Upon analyzing

the collected data, we observed that all sensor readings were remarkably consistent,

deviating by only 3-5% from each other. Utilizing both correlation analysis and ran-

dom forest feature selection techniques, we identified one sensor (shown in the red

circle in Fig. 3.1) as the most representative of the collective locations. This partic-

ular sensor’s significance was further underscored by its strategic positioning, away
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from the direct influence of any ventilation vents, ensuring that its readings were not

artificially impacted. Consequently, this location was selected for the experiment,

balancing both statistical rigor and practical considerations in environmental mon-

itoring. In the next step, for predicting the occupancy status, we trained the same

models as the previous study (SVM (with both linear and RBF kernel), GNB, LGR,

RFC, and KNN models) to evaluate how improving the ground truth data results

in an improvement in the prediction. Therefore, the target variable is the binary

occupancy status, and the features were TVOC and CO2 data collected by the Awair

sensors.

Occupancy-counter
sensor

Indoor air quality
sensor

Figure 3.1: Left: sensors arrangement in the conference room. Purple cubes represent
IAQ sensors, the blue cube represents the occupancy counter sensor, the red box is
the selected location of the IAQ sensor for the data collection, and the yellow and
blue arrows represent air inlet and outlet vents, respectively. Right: IAQ sensor and
the occupancy counter sensor

Table 3.2 shows the results of ML models trained to predict the binary occupancy

status using CO2 and TVOC data. As we can see, the KNN, XGBoost, and RFC

models’ results significantly improved by improving the ground truth of the target

variable, and their accuracies are all above 95%.

Other than improving the accuracy of binary occupancy status ground truth, the oc-
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Evaluation
Metric

SVM
(linear)

SVM
(RBF)

GNB LGR RFC KNN XGBoost

Accuracy 64 70 60 62 94 99 98
Precision 68 77 73 65 96 99 98
Recall 52 57 30 51 93 98 98

Table 3.2: ML models performance for predicting the binary occupancy status in
the conference room using the occupancy counter sensor as the ground truth for the
target variable

cupancy counter sensor is also used to gain information on the occupancy level. As the

next step, we used ML models to predict the number of occupants by using the IAQ

metrics as the feature variables and the occupancy level gathered from the occupancy

counter sensor as the ground truth. In this phase, we employed both ML models

and deep learning networks to ascertain their comparative effectiveness. Our analysis

revealed that the Convolutional Bidirectional Long Short-Term Memory (CBLSTM)

network significantly outperformed the traditional machine learning models previ-

ously utilized for binary occupancy status prediction. This approach begins with the

raw CO2 and TVOC sensor data being input into a convolutional network, which is

structured around a convolutional layer paired with a max pooling layer. The convo-

lutional layer efficiently processes the sequential data through a sliding filter window,

extracting local features, while the max pooling layer is tasked with identifying and

isolating the most discriminative of these features. This pooling layer highlights the

essential characteristics and streamlines the model by reducing the overall number

of features, consequently decreasing the number of parameters required [73]. This

methodology enhances the model’s efficiency and accuracy in predicting the precise

number of occupants within a room.

Subsequently, the features extracted from the convolution network were input into

a BLSTM network for further analysis. The LSTM network is distinguished by its
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proficiency in learning long-term dependencies within the data, a notable advance-

ment over traditional Recurrent Neural Network (RNN) models [74]. Traditional

RNNs, which rely on gradient backpropagation for training, often struggle with gra-

dient vanishing and exploding problems. In contrast, the LSTM architecture incor-

porates specialized gates within its memory cells to regulate the flow of information,

enabling it to preserve long-term dependencies effectively [74]. Our exploration of

both unidirectional and bidirectional LSTM configurations revealed a critical insight

that solely accounting for past temporal dependencies was insufficient for optimal

model performance. The integration of future contextual information significantly

enhanced the model’s performance. Consequently, we opted for the BLSTM network

as our final model due to its dual-direction processing capability, which systemati-

cally incorporates both past and future data contexts, offering a more comprehensive

understanding of temporal dependencies.
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Figure 3.2: Overview of the machine learning models developed for occupancy status
and occupancy counter prediction

Following that, the dense (fully connected) layers get the outputs from the BLSTM

layer. The real occupancy count prediction is made in these layers, which also carry

out the transition of the BLSTM output to the intended output shape. In order to

translate features learned by the BLSTMs to the expected output, the fully connected
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layer mixes those features in nonlinear ways (considering the activation function). The

occupancy count in the conference room is derived from the patterns the model has

discovered in the CO2 and TVOC data. We utilized Mean Absolute Error (MAE) as

the loss function, and the outcomes revealed an MAE of 2.04.

3.4 Summary of contributions

• Predicting occupancy levels as binary status in single occupancy and the con-

ference rooms

• Identifying the important features for detecting occupancy levels

• Predicting occupant(s) exposure to poor air quality in single occupancy offices

and conference rooms

• Improving the models’ performance on the binary occupancy detection task by

improving the target ground truth accuracy by using an occupancy counter

sensor instead of the motion sensor

• Predicting the level or the number of occupants in the conference room by using

IAQ metrics as the feature
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Chapter 4

Time series forecasting of the IAQ

metrics

4.1 Abstract

Forecasting indoor air quality (IAQ) metrics is crucial for optimizing ventilation sys-

tems and ensuring a healthy indoor environment. This chapter investigates the

application of both statistical and deep learning models to forecast IAQ metrics,

using nine months of carbon dioxide (CO2) and total volatile organic compounds

(TVOC) data collected from a conference room. Linear models, such as Autoregres-

sive Moving Average (ARMA), are compared with more advanced neural networks like

Long Short-Term Memory (LSTM) and Convolutional Neural Network-LSTM (CNN-

LSTM) combinations. Although ARMA models have been shown to be effective in

predicting air pollution levels, their inability to account for nonlinear behaviors ne-

cessitated the adoption of deep networks for enhanced forecasting accuracy. The pro-

posed CNN-LSTM framework leverages 1D convolution layers to extract short-term

features from the data, while bidirectional LSTM layers capture long-term temporal

dependencies. The models are trained to predict pollutant levels up to 30 minutes in

advance, with results showing a significant improvement in prediction accuracy for

the deep models compared to linear approaches. The best-performing CNN-LSTM
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model achieved a mean absolute error (MAE) of 9.87 ppm for CO2 and 7.13 ppb for

TVOC forecasting. This chapter illustrates the capability of deep learning models to

enhance the precision of indoor air quality forecasts, facilitating the adaptive manage-

ment of HVAC systems to optimize occupant comfort and reduce energy consumption

in building settings.

4.2 Introduction & background

Many researchers [75, 76, 77] have focused on predicting and forecasting thermal

comfort-related parameters such as indoor temperature and humidity. For instance,

Mustafaraj et al. [77] discussed using a linear parametric autoregressive model with

external inputs (ARX) and a neural network-based nonlinear autoregressive model

with external inputs (NNARX) to forecast room temperature and relative humidity

in an open office. Features used for training the model were external and internal

climate data recorded over three months, and target variables were forecasted from

30 minutes to 3 hours ahead. The study found that both models effectively predicted

temperature and humidity, with the nonlinear neural network model providing better

accuracy than the linear model. The study suggests that these models can be used to

optimize HVAC systems to improve occupants’ thermal comfort and energy efficiency

in commercial buildings.

Also, suitable and effective forecasting tools were used for forecasting air quality met-

rics [78]. Generally, evaluating the air quality data by using statistical, ML, and

deep neural models does not require an in-depth understanding of the dynamic and

chemical processes between air contamination levels and building-related informa-

tion. Statistical models make connections between the variables using probability
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and statistical averages and can gain acceptable accuracies in forecasting concen-

tration levels of air pollutants. However, the behaviors of air pollutants could be

complex and highly nonlinear. This is where machine learning models and artificial

neural networks (ANN) can be helpful. Regarding outdoor air quality, due to the in-

crease in air pollutants and deterioration of air quality, many predictive models were

used to forecast the air quality metrics. However, the IAQ remains understudied in

terms of the application of forecasting models.

As an example of using predictive models for outdoor air quality metrics, Kumar

et al. [79] used the stationary stochastic ARMA/ARIMA (Autoregressive Moving

(Integrated) Average) model to forecast the concentration of daily mean ambient air

pollutants (O3, CO, NO, and NO2) at an urban traffic site in India. ARMA(0,1),

ARIMA(0,1,3), ARIMA(1,1,.2), and ARIMA(3,1,3) were chosen for O3, CO, NO, and

NO2 as the best predictors respectively. For 20 out of sample forecasts, one step (i.e.,

one day) ahead MAPE (mean absolute percentage error) for CO, NO2, NO, and O3

was 13.6, 12.1, 21.8, and 24.1%, respectively.

As mentioned, the IAQ is also very important and impacts occupants’ well-being be-

sides outdoor air quality and indoor temperature and humidity. The impacts of poor

IAQ on the occupants differ according to many factors, such as the pollutants’ level

and exposure time. Several studies indicate that exposure to increased levels of these

pollutants for a short period may result in breathing difficulties and eye irritation

and could adversely affect pulmonary and cardiovascular health. However, extended

exposure to these pollutants may cause harm to the respiratory, reproductive, neuro-

logical, and immune systems, as well as an increased risk of cancer [80, 81]. Regarding

improving the IAQ, using time series models to forecast the IAQ metrics ahead of

time can be very helpful in taking precautionary measures. Using these models would
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help minimize the occupants’ exposure to poor IAQ by early detection of the situa-

tion, resulting in improved comfort and productivity in indoor environments. These

models can help optimize the HVAC systems’ performance by forecasting changes in

indoor air pollutant levels and adjusting the system accordingly. For example, if a

time series model predicts that TVOC levels will rise, the HVAC system can increase

the ventilation rate to prevent the buildup of harmful air pollutants. This control

logic for HVAC management not only results in improving occupants’ comfort and

productivity but also saves energy. Therefore, using time series models to forecast

IAQ metrics is a valuable tool for HVAC management, allowing building managers

to optimize system performance, reduce energy consumption, and maintain a com-

fortable and healthy indoor environment for occupants.

As an example of forecasting IAQ metrics, Krati et al. [82] have created an IoT sensing

system to monitor and analyze the time variation of carbon dioxide in a university

classroom. In their study, they only considered CO2 level as the indicator of IAQ and

developed models to forecast the CO2 build-up in the classroom. The results showed

that a significant increase in CO2 concentration happened when the classroom was

fully occupied. Comparing the models’ performance showed that the hybrid model

(combination of linear and non-linear models) performs the best in capturing both

linear and nonlinear characteristics of the CO2 data.

As mentioned, linear models such as ARIMA have been very useful in many applica-

tions, including forecasting air quality metrics. However, for several reasons, relying

only on linear models might be insufficient to forecast indoor air quality metrics, such

as CO2 and TVOC levels. Firstly, indoor air quality pollutants exhibit complex and

nonlinear dynamics, which linear models may not accurately capture. On the other

hand, deep learning models are designed to learn complex nonlinear relationships be-
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tween input and output data, making them potentially more suitable for IAQ metrics

forecasting.

Secondly, indoor air pollutant levels are influenced by various factors (such as events

in the area, number of occupants, and outdoor weather conditions) with complex

interactions that evolve over time. These complex relationships and interactions can

be challenging to model with linear models, which are typically based on assumptions

of linearity and stationarity. Deep learning models can adapt to changing patterns

and capture the dynamic relationships between the input and output data, making

them more flexible and able to handle the complex interactions involved in IAQ

metrics’ forecasting.

Thirdly, deep networks can also incorporate other data sources to improve the ac-

curacy of the IAQ metrics’ forecasting. This is while incorporating additional data

sources is not easily applicable in linear models such as ARIMA, as they typically

rely solely on the past values of the time series. The application of this point in IAQ

forecasting is that we can use different sources as input rather than only relying on

the history of the target variable as the feature. Overall, while linear models such

as ARIMA are useful for time series forecasting, using deep learning models can im-

prove the accuracy of forecasting indoor air quality metrics due to the complex and

nonlinear dynamics involved.

LSTMs are a type of recurrent neural network (RNN) that have been widely used for

preprocessing and forecasting time series data in many applications. These models

can learn the temporal dependencies in the time series data and accurately predict

future values of the time series. To mention some, LSTMs have been used in financial

prediction tasks such as stock price prediction, traffic predictions, weather prediction,

and anomaly detection in time series data. LSTM has also been used in natural
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language processing (NLP) tasks, such as speech recognition and language translation.

In these applications, LSTMs are used to model the temporal dependencies between

words and sentences in the input text [83, 84].

Convolutional neural networks (CNNs) are a type of neural network used in deep

learning for processing and analyzing visual data, such as images and videos. Convo-

lutional layers can learn to extract features from the input data by convolving a set of

learned filters with the input data. Some applications of the CNNs are object recog-

nition and classification with the goal of identifying the presence of specific objects in

an image, object detection with the goal of identifying the location of objects within

an image, image segmentation to partition the image into different regions, and visual

tracking to track the movement of objects within a sequence of images or videos. 1D

convolutional layers are a type of convolutional layer that is specifically designed for

processing one-dimensional sequential data, such as time-series data, audio signals,

and text data. Some applications of the 1D convolutional layers are speech recogni-

tion, stock price prediction, text classifications, and signal processing. Overall, 1D

convolutional layers are a powerful tool to process and analyze a wide range of time

series data [85, 86].

Other than the separate applications of these two networks, there are different appli-

cations that use frameworks of a combination of CNN and LSTM networks. These

applications focused more on multimodal projects involving both computer vision and

NLP. For example, this framework has been widely used in visual question answering

(VQA), Image captioning, and video analysis. For example, Yu et al. [87] proposed

a multi-level attention network that uses both CNN and LSTM models for visual

question answering. The visual features from the input image were extracted using

CNN, and then region-based middle-level outputs from CNN were encoded into spa-
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tially embedded representations by a bidirectional recurrent neural network (LSTM).

I also have used a framework of CNN and LSTM for generating descriptive sentences

for video clips in one of my course projects [88]. In this project, we used CNNs

(ResNet152) for the video encoding task, and for text decoding, we used the LSTM

model. In our framework, the video encoder extracted feature vectors from the video

frames and passed the output to the LSTM models to generate the captions for the

corresponding video.

The combination of CNN and LSTM models can also be useful in forecasting tasks of

time series data, such as IAQ metrics. As mentioned, CNN layers are commonly used

for feature extraction in analyzing images and videos, but 1D convolutional layers

can also be used for feature extraction in time series data. LSTM networks, on the

other hand, are designed to capture long-term temporal dependencies in sequential

data. So, the combination of CNN and LSTM networks can capture both short-term

patterns (such as human occupancy, ventilation, and temperature effects) and long-

term dependencies (such as seasonal patterns and time of day) in the data. This

framework can help improve the accuracy of IAQ metrics’ forecasting and provide

better insights into the complex relationships of these metrics with the space’s other

conditions.

In this work, we used nine months of CO2 and TVOC data collected from a con-

ference room to train time series models to forecast these pollutants’ concentration

in the future. We will train linear statistical time series (such as ARMA) and deep

Networks (LSTM and a combination of CNN and LSTM models) and compare their

performance.
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4.3 Methodology and results

4.3.1 Statistical models

In working with time series data, the first step is to observe the data carefully and

implement some tests to make sure the data is stationary. In time series analysis,

data stationarity refers to the data’s statistical properties (such as mean, variance, and

auto-correlation structure) being constant over time. In other words, the statistical

properties of the stationary time series data remain the same irrespective of when

the data is observed. This is an important step in time series data analysis because

many statistical models and techniques assume that the underlying data is stationary.

So, feeding non-stationary data to the models can lead to inaccurate or misleading

results in modeling, forecasting, and hypothesis testing. There are several ways to

check for stationarity in time series data, such as Augmented Dickey-Fuller (ADF),

Kwiatkowski-Phillips-Schmidt-Shin (KPSS), and Variance ratio test.

ADF test is a unit root test that checks whether a time series has a unit root, indicat-

ing that the series is non-stationary. The null hypothesis of the ADF test is that the

time series data has a unit root, while the alternative hypothesis is that the series is

stationary. The test statistic for the ADF test is based on the regression of the first

difference of the series on its lagged values, and the significance level is usually set to

5% or 1%. The KPSS test is another commonly used method to test for stationarity,

which is a non-parametric test. This test checks for a trend in the time series data.

The null hypothesis of the KPSS test is that the series is stationary, while the alter-

native hypothesis is that the series has a unit root, indicating non-stationarity. The

test statistic for the KPSS test is based on the sum of squared deviations of the series

from its trend line, and the significance level is also usually set to 5% or 1%. While
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both of these tests check for the stationarity of the time series data, they evaluate

different aspects of stationarity. Therefore, getting different results from these two

tests on the same dataset is possible.

We implemented both tests on the TVOC and CO2 dataset of the conference room.

The results of the ADF test indicated that p-value < 0.001, which rejects the null

hypothesis of this test and indicates the data set as stationary. However, the result

of the KPSS test indicates that the data set is not stationary by rejecting the null

hypothesis with a p-value of 0.001. ADF and KPSS tests are complementary and

should be used together to gain a complete understanding of the stationarity of the

data. Based on the results from these two tests, visual signs, and the nature of our

data, it seems that the data is not stationary, and we solved it by taking a first-

order difference in the data. After pre-processing the data, we need to find the best

model that fits our data. The Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC) are both used as model selection criteria in statistics.

The main difference between these two methods is in how they penalize the model’s

complexity. The AIC is defined as AIC = 2k − 2 ln(L̂), where k is the number of

parameters in the model, ln is the natural logarithm, and L̂ represents the maximum

likelihood. The AIC favors models that have a good fit to the data but penalizes

models that are too complex, as measured by the number of parameters.

On the other hand, the BIC is defined as BIC = k ln(n) − 2 ln(L̂). , where n is the

number of observations, ln is the natural logarithm, and L̂ represents the maximum

likelihood. The BIC also favors models that fit the data well, but it penalizes com-

plexity more heavily than AIC, as measured by the number of parameters. Therefore,

BIC selects the simplest model that provides an adequate fit to the data, while AIC

tries to maximize the goodness-of-fit of the model while taking into account the com-
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plexity of the model. I used AIC to select the order of the ARIMA model that fits

the data better for the forecasting task. Using AIC indicates that the best model

that fits the data is ARMA(3, 2), with an AIC value of 84370.783.

4.3.2 Deep neural network models

To compare different models’ performances, we also considered using deep neural net-

works to see if these models would improve the results. LSTM networks are a power-

ful tool in forecasting time series data due to their unique structure, which can link

previous information to current tasks. The LSTM network is distinguished by its pro-

ficiency in learning long-term dependencies within the data, a notable advancement

over traditional Recurrent Neural Network (RNN) models [74]. Traditional RNNs,

which rely on gradient backpropagation for training, often struggle with gradient

vanishing and exploding problems. In contrast, the LSTM architecture incorporates

specialized gates within its memory cells to regulate the flow of information, enabling

it to preserve long-term dependencies effectively [74].

A unidirectional LSTM network processes a sequence of input data in only one di-

rection, typically from the past to the future. This traditional network only has

access to past information at any given time step and cannot use future information

to make its predictions. However, in a bidirectional LSTM network, the input se-

quence is processed both forward and backward through time by two separate RNNs,

with their hidden states concatenated at each time step. This allows the network to

capture dependencies in both directions and, therefore, can potentially improve the

performance of the model in forecasting tasks. The bidirectional LSTMs would have

more information, which can help them to better capture the long-term dependencies
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in the time series data. Additionally, bidirectional LSTMs can also help reduce the

effect of vanishing and exploding gradients, a common problem in training deep neu-

ral networks. By processing the input sequence in both directions, the gradients can

flow more easily through the network, leading to better training and more accurate

forecasts. Due to these reasons, to better capture the long-term dependencies in the

IAQ metrics, we used bidirectional LSTM layers in our proposed network.
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As shown in Figure 4.1, the first step of the forecasting task is data preparation.

The main steps of preparing the data for this time series forecasting tasks are nor-

malization, splitting, and sequencing of the data. In general, deep learning models

require data to be normalized or scaled to ensure that the optimization process during

training is more efficient and effective. Normalizing the data can help gradient de-

scent converge more quickly and efficiently since it helps keep the scale of the inputs

consistent. The other benefits of normalizing the data are more effective activation

functions, preventing vanishing/gradient descent, and acting as a form of regulariza-

tion. In the second step, the data was split into training and testing sets without

shuffling the data so as not to lose the dependencies of the sequential data. The last

step of data preparation for time series forecasting is creating sequential data with

the desired length (N) to be fed into the first layer.
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In the next layer, the output of the pre-processing step was fed as the input of the

LSTM layer, and the first hidden state was defined as a zero vector with a decent

size. In this layer, the BLSTM captures the long-term dependencies of the data.

The dropout layer is set in the LSTM layer, which is applied to the output of all

LSTM layers except the final layer. Setting the dropout argument in the LSTM

layer helps prevent overfitting the model by randomly dropping out (setting to zero)

some of the units in the network during training. First, we applied dropout within

the LSTM layer to regularize the recurrent connections across timesteps, reducing

reliance on specific neurons and improving robustness in temporal feature learning.

Second, we added a separate dropout layer after the LSTM outputs to regularize the

feature representations before passing them to the fully connected layer. By randomly

deactivating a fraction of neurons during training, this dual application of dropout

helps mitigate overfitting, ensuring the model can generalize effectively to unseen

data while maintaining its predictive accuracy.

The final output of the LSTM layer is passed to the fully connected layer without

dropout so that the model can use all of the available information to make a pre-

diction. In the last layer (which is a fully connected one), by using equation 4.1,

the model outputs the forecast of the desired metric (for example, CO2 level) in the

desired time step (in the future). In this formula, the weight vector w contains the

learnable parameters of the fully connected layer and is initialized randomly during

training. The bias vector b is also learnable but is typically initialized to zeros. Vector

x is the input of the fully connected layer (output of the LSTM layer), and y is the

prediction (output). In this final step, the model forecasts the levels of pollutants

(CO2 and TVOC) up to 30 minutes in advance.

In order to further enhance the generalization of the LSTM-based forecasting model
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and reduce the issues of overfitting, we have combined dropout with the L2 reg-

ularization technique. L2 regularization penalizes large weights by adding a term

proportional to the square of the weights to the loss function, thereby encouraging

the model to learn simpler, more robust patterns. These all help the model learn

from rather simple and robust patterns. Specifically, L2 regularization was applied

to the weights of the fully connected layer, which maps the LSTM outputs to the

final forecast. This combination of L2 regularization and dropout provides a com-

plementary approach to controlling overfitting, with dropout addressing neuron-level

over-reliance and L2 regularization constraining the model’s complexity by limiting

excessively large weight magnitudes. Together, these techniques ensure a balance

between model expressiveness and generalization to unseen data.

y = wTx + b (4.1)

The mean absolute error (MAE) is selected as the evaluation metric (loss function) for

evaluating the models (both linear and deep ones) we used. The preliminary results

of feeding our data into both linear (ARMA(3,2)) and deep models showed that we

achieved a lower MAE with the proposed deep model with the MAE of 7.13 ppb for

TVOC predictions and 9.47 ppm for CO2 predictions.

4.4 Summary of contributions

• Comparing the statistical and deep neural network models’ performance in fore-

casting IAQ metrics time series data
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• Forecasting the IAQ metrics for 15 and 30 minutes, looking ahead with the

MAE of 9.87 ppm for CO2 and 7.13 ppb for TVOC forecasting (for 30 minutes

ahead).
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Chapter 5

Enhancing building ventilation

through demand-driven strategies:

balancing indoor air quality and

ventilation rate

5.1 Abstract

Traditional ventilation systems in buildings often consume high levels of energy and

can underperform in maintaining optimal indoor air quality (IAQ), sometimes fail-

ing to adequately keep pollutants like total volatile organic compounds (TVOC) and

carbon dioxide (CO2) within the recommended levels. This study introduces a novel

approach to the operation of building ventilation systems, transitioning from tradi-

tional, schedule-based strategies to dynamic, demand-driven management to enhance

energy efficiency and occupant well-being. By leveraging real-time data on IAQ,

specifically concentrations of TVOC and CO2, alongside occupancy patterns, our

proposed method dynamically adjusts ventilation rates to maintain air quality within

the recommended thresholds while optimizing energy usage. Through a four-month

experimental analysis (two months of dynamic and two months of scheduled opera-
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tion), we compared the performance of dynamic and scheduled ventilation operations

in terms of pollutant levels and ventilation rates. Our findings reveal that dynamic

operation reduces the average concentrations of TVOC and CO2, with mean values

of 128 ppb and 497 ppm under dynamic conditions, respectively, compared to 206

ppb and 544 ppm under scheduled operation. Furthermore, the dynamic approach

achieved a notable decrease in ventilation rates during unoccupied periods, leading

to overall energy savings without compromising IAQ during occupied times. Specifi-

cally, the study observed a reduction in total ventilation rates from 155 CFM under

scheduled operation to 126 CFM under dynamic operation, underscoring the efficacy

of the proposed method in enhancing both energy efficiency and indoor environmental

quality.

5.2 Introduction & background

In response to the escalating energy costs of the 1970s in the United States [43], cou-

pled with the renewed emphasis on energy efficiency sparked by the COP 21 confer-

ence in Paris in 2015 [89], there has been a significant transformation in construction

practices. This evolution, targeting the substantial energy demands of the building

sector—which accounts for 30-40% of total energy consumption—has prompted the

development of buildings with improved air tightness. Notably, ventilation systems

are among the leading contributors to energy consumption in buildings, responsible

for approximately 48% of total building energy use [57]. Therefore, the primary goal of

these design changes is to enhance thermal insulation and reduce energy consumption,

a shift that is clearly reflected in the decreased air exchange rates in contemporary

homes and office buildings [43, 89].
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However, this increased air tightness has reduced opening areas, resulting in inad-

equate air exchange [43]. Moreover, harmful emissions from the insulation materi-

als used in energy-efficient buildings and various other building materials and the

accumulation of pollutants from occupants’ activities have deteriorated indoor en-

vironmental quality. So, such design changes resulted in negative consequences to

indoor air quality and an increase in building-related illnesses and sick building syn-

drome (SBS). These building-related symptoms were initially reported in the 1980s

as the ventilation rate decreased [90]. Consequently, the need for effective ventila-

tion strategies that can efficiently eliminate indoor air pollutants while maintaining

optimal energy consumption has become increasingly critical. Previous research has

shown that different approaches for optimal operations of the ventilation systems can

yield annual energy savings of up to 30% [91, 92, 93].

Toward the goal of developing effective ventilation strategies, there have been several

studies on smart buildings’ ventilation systems and air purifiers to obtain the best IAQ

and highest energy efficiency by adjusting the ventilation actions to the actual needs of

the occupants [94]. This method of need-based control of ventilation actions is called

demand-controlled ventilation (DCV), which should be highly energy efficient. The

CO2-based DCV has been one of the significant approaches followed by researchers

in heating, ventilation, and air-conditioning (HVAC) in both academia and industry

since decades ago [95]. In these studies, CO2 was considered as the main effective

proxy of IAQ and used to automate the ventilation systems.

In the CO2-based DCV management strategy, to maintain decent indoor air qual-

ity and lower the energy consumption of the building HVAC system, the ventilation

rates are modified based on the indoor CO2 concentration [96]. Lu et al. [96] re-

viewed different studies focused on CO2-based DCV systems and discussed the merits
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and demerits of different approaches toward these systems. They summarized these

strategies into three: rule-based control, model-based control, and learning-based con-

trol methods. They discussed that, in the context of CO2-based DCV management

systems, most research focuses on demonstrating the effectiveness of model-based

control strategies. However, these strategies are complex because ventilation systems

are represented as nonlinear equations, and accurately estimating the control model’s

parameters and external inputs is challenging. As a result, implementing model-based

control strategies in a field is challenging. Their other finding was that there exists a

lack of field tests for advanced rule-based CO2-based DCV strategies. They concluded

that although this approach demonstrated its efficacy through simulation-based stud-

ies, there are limited field tests for this strategy in real building operations.

Furthermore, Lu et al. [96] observed that many studies on CO2-based DCV strate-

gies that considered occupancy have used CO2 as the proxy of occupancy status, and

there exists a gap for comparison between these studies and the ones that have used

other sources for occupancy detection. Regarding the occupancy detection method,

they also observed that ventilation reset control, which is a method that dynamically

adjusts the outside air flow rate in a ventilation system, is also used to estimate

real-time occupancy based on steady-state mass balance. Alternatively, transient

equations and data-driven techniques could be used instead of steady-state equa-

tions for occupancy estimation. However, the effectiveness and advantages of these

alternative approaches need to be proven through further testing and demonstration.

In their review paper, Lu et al. [96] concluded that the use of learning-based con-

trollers in DCV systems is not yet fully mature. One major challenge mentioned for

these controllers is the long training time required for reinforcement learning (RL)

agents, which is a well-known issue not only in DCV systems but also in various other
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application domains. This issue also makes it challenging for real-time applications

of these methods [97]. The other issue in many model-based and learning-based con-

trol strategies is that they only considered CO2 for regulating the ventilation rates,

and only a few of them have considered other metrics, such as temperature in their

method. Their review [96] also underscored the significance of defining and adjusting

various design and control parameters in rule-based DCV control strategies. These

parameters include thresholds for outside air flow rates and the timing of system re-

sponses that can be obtained by the experts of the field as well. Further research is

required to gain insights into the most optimal settings for these parameters in order

to enhance ventilation system performance.

In some other studies, the ventilation systems’ automation was implemented by sim-

ulating the occupants’ ventilation behavior [98, 99]. Occupant ventilation behavior

involves air exchange within a building, where occupants open or close windows or

doors in response to changes in indoor environmental quality (IEQ) [89]. Incorpo-

rating the occupants’ ventilation behavior into the building simulation programs can

significantly decrease the discrepancies between simulated and actual energy use. In-

deed, Andersen et al. [100] revealed that differences in occupants’ ventilation behavior

can result in differences in energy consumption of over 300%. These typical behaviors

should be based on the quantification of real occupant behavior to improve the valid-

ity of the simulations’ outcomes. So, one of the main incentives for researchers to do

studies on modeling the occupants’ ventilation behaviors is that it can improve the

validity of the outcomes of energy use simulations. Another incentive of these stud-

ies is that obtaining an ideal indoor comfort level, both thermal comfort and IAQ

comfort, wouldn’t be achieved solely by relying on basic heat exchange principles,

and it depends on how building occupants adjust their behaviors, such as heating,
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cooling, and opening windows or doors [99]. It’s been shown that occupants who

have the possibility to control their indoor environment have been found to be more

satisfied and suffer from fewer building-related symptoms than occupants who occupy

environments in which they have no control [101, 102]. So, one of the incentives of

previous studies that focused on the occupants’ ventilation behavior was that the oc-

cupants’ comfort condition is as important as the existing guidelines [89] and should

be considered in ventilation systems’ automation [89].

Previous studies investigating occupant ventilation behaviors have examined various

IEQ factors, including temperature and IAQ, as well as additional factors like time of

day, outdoor climate conditions, and previous window states. These studies aimed to

develop stochastic models for predicting the likelihood of occupants opening windows

or doors [103, 104, 105, 106]. To achieve this, researchers observed different types

of spaces over various time periods and collected relevant data. This data included

both occupants’ behaviors (considered as the ground truth for the target variable)

and explanatory variables. These datasets were then used to train predictive models

for occupants’ ventilation behavior.

The research conducted by Rijal et al. [103] stands out as one of the studies that

specifically delved into the influence of indoor thermal conditions on occupants’ ven-

tilation behavior. They conducted surveys in 15 office buildings across the UK, gath-

ering data on indoor and outdoor temperatures over time. Notably, they excluded

five air-conditioned (AC) buildings from their analysis, as their findings indicated

that window openings were significantly less frequent in AC buildings compared to

naturally ventilated ones. In these naturally ventilated buildings, windows played a

crucial role in occupants’ ventilation control. Utilizing the collected data, they em-

ployed logistic regression techniques to construct a stochastic model for predicting
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the likelihood of occupants opening windows. Their findings highlighted the poten-

tial benefits of improved building design, which correlated with enhanced comfort,

reduced reliance on adaptive window behaviors, and a decrease in annual heating en-

ergy consumption. Moreover, their study suggested that an adaptive algorithm could

better represent human-driven window control, providing a more accurate evaluation

of human thermal comfort and building performance, including concerns like summer

overheating and annual energy usage [103].

Herkel et al. [104] also developed a stochastic model to predict the likelihood of

window openings in individual offices. Their model was not solely based on indoor

and outdoor temperatures but also considered outdoor humidity. The data used for

their study was gathered from 21 individual offices located within the Fraunhofer

Institute’s building in Freiburg, Germany, spanning from July 2002 to July 2003.

Their findings revealed a robust correlation between the percentage of open windows

and several factors, including the time of year, outdoor temperature, and patterns of

building occupancy. They also observed that a significant portion of window openings

occurred shortly after occupants arrived.

Several researchers have also considered the influence of IAQ factors on occupants’

ventilation behaviors, going beyond the exclusive focus on thermal comfort aspects.

For instance, Anderson et al. [105] conducted a comprehensive study in which

they monitored indoor and outdoor environmental parameters alongside occupants’

ventilation actions in 15 residential buildings located in Denmark. This investiga-

tion spanned from January to August and involved categorizing these buildings into

four groups based on ventilation type (natural/mechanical) and ownership (owner-

occupied/rented), aiming to uncover common trends in occupants’ ventilation behav-

iors. Indoor measurements were collected every 10 minutes and included data on
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dry bulb temperature, relative humidity, illuminance, and CO2 concentration. Occu-

pants’ ventilation behaviors were recorded, primarily noting whether windows were

open or closed in all buildings and, in three dwellings, the actual window opening

angle. Outdoor environmental factors, encompassing air temperature, relative hu-

midity, wind speed, global solar radiation, and sunshine hours, were also assessed.

Utilizing this comprehensive dataset, logistic regression models were developed to

predict the likelihood of window opening and closing. The findings underscored the

significance of two key variables: indoor CO2 concentration, which served as an in-

dicator of indoor air quality, emerged as the most influential factor for predicting

window opening probability, while outdoor temperature played a pivotal role in de-

termining the likelihood of window closure.

In another notable study conducted by Cali et al. [106], IEQ factors were meticulously

measured in 60 apartments in Germany over a span of four years. These factors in-

cluded temperature, relative humidity, CO2 concentration, TVOC, ceiling light levels,

infrared/visible light ratio, and the status of windows (open or closed), with data col-

lected every minute. To assess the likelihood of window state changes, the researchers

applied logistic regression to the extensive dataset they had collected. The analysis

outcomes highlighted the primary factors influencing window openings, with more

than 70% of the modeled windows being affected by the time of day and over 50%

influenced by indoor CO2 concentrations. Conversely, the decision to close windows

was predominantly driven by the daily average outdoor temperature (for nearly 70%

of the modeled windows) and, to a lesser extent, the time of day (for more than 50%

of the modeled windows). Furthermore, examining data across different room types

revealed that occupants’ window-opening behaviors were shaped by various activities

within the home, such as moisture-producing activities like showering and cooking,
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as well as by the presence of indoor pollutants.

Other than CO2, TVOC is another indoor air pollutant that several studies have

shown the importance of monitoring its levels in the indoor environment due to the

effect it has on the occupants’ well-being [107, 108]. Holos et al. [109] reviewed several

studies regarding the impact of ventilation rates on the TVOC emission rates from

the building materials and the TVOC concentration within indoor environments, es-

pecially in newly built or renovated buildings. Their review aimed to address two

key questions: 1. Does an increase in ventilation rates affect the emission rates of

TVOC in indoor environments, especially in newly constructed or renovated build-

ings? 2. Does the ventilation rate influence indoor TVOC concentrations, particu-

larly in newly constructed or renovated buildings? Should these buildings consider

initially boosting ventilation rates during the off-gassing phase to achieve acceptable

IAQ? The findings from their review of relevant studies indicated that ventilation rate

adjustments did not have a discernible impact on TVOC emission rates. Instead, the

primary factor influencing the reduction of TVOC sources was time. These studies

revealed that increasing ventilation rates did not significantly expedite the depletion

of emission sources. Nevertheless, research consistently demonstrates that heightened

ventilation rates play a crucial role in managing TVOC concentrations within indoor

environments.

Research findings have demonstrated that in homes with very low infiltration rates,

turning off ventilation led to a significant increase in indoor TVOC concentrations

[110]. This underscores the crucial need to maintain minimum ventilation rates, even

when there are no occupants present. Noguchi et al. [111] conducted a study mea-

suring TVOC levels in two rooms with varying ventilation rates immediately after

construction and three months later. Their results consistently showed that the room
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with higher ventilation rates maintained lower TVOC concentrations during both

periods. Multiple studies [109] have established that newly constructed or renovated

buildings emit indoor air pollutants at levels significantly higher (by two or more or-

ders of magnitude) than established buildings. Enough ventilation must be provided

in order to guarantee that TVOC concentrations stay within safe limits during occu-

pied periods. Other than newly built buildings, there are various situations, depend-

ing on occupancy patterns and activities, where TVOC levels surpass safe thresholds,

necessitating improved ventilation rates to maintain healthy indoor air quality. Con-

sequently, these studies indicate the importance of adjusting ventilation rates during

occupancy to control TVOC concentrations within safe and comfortable limits. Dur-

ing periods of non-occupancy, ventilation rates can be reduced significantly (though

not completely turned off) as TVOC emission rates do not significantly accelerate

with increased ventilation.

Previous methodologies for managing ventilation systems, while advantageous, ex-

hibit several limitations. Firstly, there is a scarcity of models that concurrently

account for the impact of multiple indoor air pollutants, such as CO2 and TVOC, on

occupants’ ventilation behaviors. Secondly, existing approaches often fail to accom-

modate the diverse thermal sensations and IAQ preferences experienced by individuals

in shared spaces, such as conference rooms, which complicates the prediction of ven-

tilation behavior across occupants with varying comfort requirements. Thirdly, the

primary mechanism by which occupants adjust ventilation rates, namely, the opening

or closing of doors and windows, proves ineffective in environments devoid of windows

or where maintaining an open door is impractical due to noise concerns. Therefore,

there is a pressing need for innovative strategies to dynamically control ventilation

systems that enhance IAQ and energy efficiency without relying on manual interven-
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tions by occupants.

In this experiment, to control the ventilation rates in occupied and unoccupied pe-

riods, we have used IoT devices to collect data on indoor air pollutant levels (CO2

and TVOC) and occupancy numbers. The parameters contributing to determining

the final ventilation rate are the current level of CO2, TVOC, occupancy status, and

future (15 minutes ahead) level of CO2 and TVOC. To control the ventilation rates

on occupied and unoccupied occasions, we defined a ventilation score that can be

obtained using the five mentioned parameters, and then, based on different ranges

of this score, we can switch the ventilation rate. Ventilation rates were determined

in consultation with the facility management staff, who are experts in this domain.

This experiment would overcome the mentioned limitations by considering CO2 and

TVOC at the same time to control the ventilation rate without any need for the oc-

cupants’ interference. This field experiment, in which we integrate our method into

the buildings’ ventilation systems, would also overcome the scarcity of field tests and

low integration of the theoretical methods into the buildings’ systems.

5.3 Methodology

As previously mentioned, IAQ factors, particularly CO2 and TVOC levels, have a sig-

nificant impact on occupants’ well-being and productivity. Conventional ventilation

systems operate on predefined schedules, often without considering current occupancy

and real-time IAQ metrics. Consequently, these systems may occasionally fall short

of maintaining indoor air pollutant levels within the safe limits established by guide-

lines. Conversely, they may run at high rates even when the space is unoccupied,

resulting in unnecessary energy waste. In this section, we outline our methodology for
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implementing a dynamic ventilation system in a conference room at the University

of Virginia’s Living Link Lab (L-LL).

The goal of this dynamic ventilation system is to save energy while simultaneously

enhancing the comfort and health of occupants, allowing them to thrive within the

indoor environment. Our method focuses on monitoring CO2 and TVOC levels, as

existing literature identifies these factors as significant contributors to indoor air

quality and their potential impact on occupants’ well-being and productivity [26, 42,

43]. This section provides an overview of the testbed (L-LL) and sensing system in

the data collection subsection, followed by the data analysis and predictive models

subsection and the experiment subsection, which goes over the methods we evaluated

for dynamically operating the ventilation systems.

Occupancy-counter
sensor

Indoor air quality
sensor

Figure 5.1: Left: sensors arrangement in the conference room. Purple cubes represent
IAQ sensors, the blue cube represents the occupancy counter sensor, the red box is
the selected location of the IAQ sensor for the data collection, and the yellow and
blue arrows represent air inlet and outlet vents, respectively. Right: IAQ sensor and
the occupancy counter sensor

5.3.1 Data Collection

The data for this study was collected in a conference room with a capacity of 20

occupants located in the L-LL at the University of Virginia campus. The L-LL is
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a 17,000 sqft open space office building and is occupied by roughly 150 residents,

including faculty, research scientists, graduate students, and staff. The features and

parameters of the sensors that are utilized in the L-LL for this study are summarized

in Table 5.1. To count the number of occupants in the space, we have used the

SenSource VIDIR series occupancy counter sensor. This sensor uses time-of-flight

technology and counts the number of occupants in the area without invading the

occupants’ privacy. This device emits pulses of invisible infrared light, which bounces

off surfaces beneath and back up to the sensor. The time taken for the pulses to

bounce back allows the device to calculate how high up it is and how far away objects

and people are. Importantly, these devices offer the flexibility to specify a desired

detection height, a feature we found invaluable. It allowed us to adjust the sensor to

disregard the door’s movement as an occupant, ensuring accurate occupancy counts.

Sensor Measurement Value
range

Error Unit

SenSource VIDIR se-
ries

Occupancy
count

- 3% Person

Awair Element CO2 [400, 5000] ±75ppm ppm
TVOC [0, 60000] ±10% ppb

Table 5.1: Characteristics of sensors used

To collect the IAQ-related parameters, we used Awair sensors, which can collect

various parameters, including TVOC, CO2, and light data. To optimize these sensor

placements in the conference room, we initially installed nineteen sensors at various

locations and heights (seating height of 3.94 and standing height of 5.91 ft.) as

shown in Fig. 5.1). This pilot experiment was run during working hours for ten days

(separate from the main study). Upon analyzing the collected data, we observed

that all sensor readings were remarkably consistent, deviating by only 3-5% from

each other. Utilizing both correlation analysis and random forest feature selection
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techniques, we identified one sensor (shown in the red circle in Fig. 5.1) as the

most representative of the collective locations. This particular sensor’s significance

was further underscored by its strategic positioning, away from the direct influence

of any ventilation vents, ensuring that its readings were not artificially impacted.

Consequently, this location was selected for the experiment, balancing both statistical

rigor and practical considerations in environmental monitoring.

 Cloud storage
CO2 TVOC

Real-time data
sequence

IAQ model

Occupancy
model

Occupancy
numbers

Occupancy
status

Current CO2

Current TVOC

Future CO2

Future TVOC

Dynamic
ventilation

actions

Figure 5.2: Proposed dynamic approach for ventilation system’s operation

Figure 5.2 shows our proposed method for dynamically operating the ventilation

systems. The features contributing to the final decision of the system are current

CO2 and TVOC levels, future CO2 and TVOC levels (15 minutes ahead), and the

current occupancy status. To forecast the future levels of these pollutants, we trained

time series models, which use historical IAQ data and the number of occupants in

the space as features. So, by having these pieces of information, we want to design

an experiment in which we automate the ventilation system to: 1) make sure that

the system is not operating at full capacity when it is not necessary (no occupants
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in the room) and 2) it would increase the ventilation rate when needed (high level of

indoor air pollutants). The factors that have been used for controlling the ventilation

systems include:

1. current CO2 data : collected from the IAQ sensors

2. current TVOC data: collected from the IAQ sensors

3. Next 15-min CO2 data: time series model that uses historical data of CO2 levels

and number of occupants in the space

4. Next 15-min TVOC data: time series model that uses historical data of TVOC

levels and number of occupants in the space

5. Occupancy status: retrieved from the occupancy model (trained on the data

collected by the occupancy counter sensor)

In the first phase (study 1) of the data collection, we collected 14 months (from 2022-

06-30 to 2023-08-31) of TVOC, CO2, and occupancy data to train the predictive

models. In the second phase (studies 2 and 3), we collected data for four months

to evaluate the performance of the dynamic operation of the ventilation systems

and fine-tune the predictive models. During the first two months (from 2024-01-12

to 2024-03-12), the ventilation system was operated in dynamic mode, while in the

second two months (from 2024-03-18 to 2024-05-18), it was operated in the default

scheduled mode. Table 5.2 summarizes these studies and their usages.

5.3.2 Data Analysis & Predictive Models

We initially collected 14 months of data, including TVOC, CO2, and the occupancy

level. Utilizing this extensive historical dataset, we developed several predictive mod-

els aimed at different objectives, as depicted in Fig. 5.3. Initially, we trained a variety
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Phase Length of
Study

Period Usage Ventilation
Mode

Study 1 14 months 2022-06-30 to
2023-08-31

Training the pre-
dictive models

Default scheduled
preset

Study 2 2 months 2024-01-11 to
2024-03-11

Implementing the
dynamic operation
of the ventilation
systems and fine-
tuning

Dynamic

Study 3 2 months 2024-03-18 to
2024-05-18

Evaluation and
comparison of dif-
ferent ventilation
modes’ perfor-
mance

Default scheduled
preset

Table 5.2: Summary of study phases with their respective durations, periods, usages,
and ventilation modes.

CO2

TVOC

Data preprocessing

Input Output

.

.

.

.

.

.

x
1

x
2 ... x

N
x

N+i

x
2

x
3 ... x

N+1
x

N+i+1

x
k-N-i+1

x
k-N-i+2 ... x

k-1
x

k

1D convolutional layers

Extracting
local features

Bidirectional LSTM layer

LSTM LSTM LSTM

LSTM LSTM LSTM

. . .

. . .

Outputs

Backward layer

Forward layer h0

Inputs

Fully-connected layer

Output

Occupancy
count

CO2

TVOC

.

.

.

Data preprocessing

Input Output

.

.

.

.

.

.

x
1

x
2 ... x

N
x

N+i

x
2

x
3 ... x

N+1
x

N+i+1

x
k-N-i+1

x
k-N-i+2 ... x

k-1
x

k

Bidirectional LSTM layer

LSTM LSTM LSTM

LSTM LSTM LSTM

. . .

. . .

Outputs

Backward layer

Forward layer h0

Inputs
Occupancy

count

CO2

TVOC
.
.
.

CO2 VOC S1timestep 1

timestep 2

SnCO2timestep n

Input Output

S2CO2 VOC
.
.
.

.

.

.
VOC

.

.

.

Occupancy
status

RFC

LGR KNN
GNB

SVM Occupancy
Models

IAQ Model

+

+

+

OR

Fully-connected layer

Output

Figure 5.3: Predictive models for occupancy and indoor air quality parameters

of machine learning models to predict the binary occupancy status (0 indicating ab-

sence and 1 indicating the presence of at least one individual) using CO2 and TVOC

concentrations as predictive features. During this phase of model development, we

encountered challenges with dataset imbalance, particularly due to the room being
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unoccupied more frequently than not over a 24-hour period. To address this issue,

we narrowed our data selection window to the hours between 7 AM and 9 PM daily

and applied the Synthetic Minority Over-sampling Technique (SMOTE) to achieve a

balanced dataset.

Evaluation
Metric

SVM
(linear)

SVM
(non_linear)

GNB LGR RFC KNN XGBoost

Accuracy 64 70 60 62 94 99 98
Precision 68 77 73 65 96 99 98

Recall 52 57 30 51 93 98 98

Table 5.3: ML models’ performance for occupancy status prediction

To find the best predictive model, we trained and analyzed five different models:

Support Vector Machine (SVM) with both linear and non-linear kernels, Gaussian

Naive Bayes (GNB), Logistic Regression (LGR), Random Forest Classifier (RFC),

K-Nearest Neighbors (k-NN), and eXtreme Gradient Boosting (XGBoost). According

to the performance metrics summarized in Table 5.3, the k-NN model emerged as the

most accurate, achieving a 99% accuracy rate. This result demonstrates how well

the k-NN model can predict occupancy status based on CO2 and TVOC levels with

respect to precision and recall.

For the subsequent phase of predicting room occupancy levels, we employed both

ML models and deep learning networks to ascertain their comparative effectiveness.

Our analysis revealed that the Convolutional Bidirectional Long Short-Term Mem-

ory (CBLSTM) network significantly outperformed the traditional machine learning

models previously utilized for binary occupancy status prediction. This approach

begins with the raw CO2 and TVOC sensor data being input into a convolutional

network, which is structured around a convolutional layer paired with a max pool-

ing layer. The convolutional layer efficiently processes the sequential data through a
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sliding filter window, extracting local features, while the max pooling layer is tasked

with identifying and isolating the most discriminative of these features. This pooling

layer highlights the essential characteristics and streamlines the model by reducing

the overall number of features, consequently decreasing the number of parameters

required [73]. This methodology enhances the model’s efficiency and accuracy in

predicting the precise number of occupants within a room.

Subsequently, the features extracted from the convolution network were input into

a BLSTM network for further analysis. The LSTM network is distinguished by its

proficiency in learning long-term dependencies within the data, a notable advance-

ment over traditional Recurrent Neural Network (RNN) models [74]. Traditional

RNNs, which rely on gradient backpropagation for training, often struggle with gra-

dient vanishing and exploding problems. In contrast, the LSTM architecture incor-

porates specialized gates within its memory cells to regulate the flow of information,

enabling it to preserve long-term dependencies effectively [74]. Our exploration of

both unidirectional and bidirectional LSTM configurations revealed a critical insight

that solely accounting for past temporal dependencies was insufficient for optimal

model performance. The integration of future contextual information significantly

enhanced the model’s performance. Consequently, we opted for the BLSTM network

as our final model due to its dual-direction processing capability, which systemati-

cally incorporates both past and future data contexts, offering a more comprehensive

understanding of temporal dependencies.

Following that, the dense (fully connected) layers get the outputs from the BLSTM

layer. The real occupancy count prediction is made in these layers, which also carry

out the transition of the BLSTM output to the intended output shape. In order to

translate features learned by the BLSTMs to the expected output, the fully connected
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layer mixes those features in nonlinear ways. The occupancy count in the conference

room is derived from the patterns the model has discovered in the CO2 and TVOC

data. We utilized Mean Absolute Error (MAE) as the loss function, and the outcomes

revealed the MAE of .04.

In the final step of the predictive modeling phase, we developed a deep neural network

designed to forecast the levels of pollutants (CO2 and TVOC) up to 30 minutes in

advance. The architecture of this network is similar to the previously mentioned

occupancy counter model, effectively capturing both the short-term and long-term

characteristics inherent to the time series data of indoor air pollutants. The final layer

(which is a fully connected one) forecasts the levels of pollutants (CO2 and TVOC) up

to 30 minutes in advance. This approach yielded an MAE of 9.47 ppm for 30 minutes

ahead of CO2 predictions and 7.13 ppb for 30 minutes ahead of TVOC forecasts,

indicating the model’s precision in predicting pollutant concentrations within indoor

environments.

5.3.3 Experiment

The default scheduled operation of the HVAC systems sets the ventilation rate at 200

CFM from 6 AM to 7 PM and at 100 CFM from 7 PM to 6 AM without considering

the real-time occupancy and IAQ parameters. In order to dynamically control the

ventilation systems’ operation, our study has evaluated two different approaches in

detail: a non-linear approach and a linear approach. By using a linear approach,

a linear ventilation score is created and used as the foundation for calculating the

ventilation rate according to its calculated range. On the other hand, the non-linear

approach uses a machine learning model, utilizing 14 months of historical data (from
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2022-06-30 to 2023-08-31) to predict the optimal ventilation action. Results showed

that the linear approach works better for its reliability and balanced response to CO2

and TVOC levels, ensuring better occupant well-being and energy efficiency. In con-

ditions of elevated CO2 (above 1000 ppm), the linear model consistently increases the

ventilation rates, while the non-linear one is unable to adequately boost ventilation

rates during occupancy when CO2 surpasses 1000 ppm. Additionally, the linear ap-

proach avoids the non-linear model’s excessive sensitivity to TVOC levels, which can

lead to unnecessary energy use. A detailed examination of each approach is given in

the subsequent sections.

Parameter Situation 1 (l1) Situation 2 (l2) Situation 3 (l3)
Current CO2 (s1) [0,1000) [1000, 2500) [2500, ∞)
Current TVOC

(s2)
[0,200) [200, 500) [500, ∞)

Occupancy status
(s3)

0 - 1

Future CO2 (s4) [0,1000) [1000, 2500) [2500, ∞)
Future TVOC (s5) [0,200) [200, 500) [500, ∞)

Table 5.4: Parameters’ situations for ventilation system automation

Linear approach

In the linear approach, we defined a linear ventilation score shown in equation 5.1,

in which si corresponds to the values of contributing parameters and wi is their

associated weights. The contributing parameters and their associated weights are as

follows:

s1 represents the current CO2 level and w1 is its associated weight

s2 represents the current TVOC level and w2 is its associated weight

s3 represents the current occupancy status and w3 is its associated weight
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s4 represents the future CO2 level and w4 is its associated weight

s5 represents the future TVOC level and w5 is its associated weight

Table 5.4 shows different values that each si can take. Different ranges for the indoor

air pollutants levels shown in Table 5.4 are selected based on the literature [43, 51,

42, 52] and their associated impact on the occupants’ well-being. For l1, l2, and l3 in

Table 5.4, we have selected 0, 0.5, and 1, and the ventilation score can range from 0

to 1, accordingly.

SVent = wᵀs = w1s1 + w2s2 + w3s3 + w4s4 + w5s5 (5.1)

We have considered four ventilation ranges (conditions) to switch to them based on

different values of the ventilation score (SVent). The ventilation rates were selected in

consultation with the HVAC facility managers, who are experts in this domain. Here

are the four ranges we have selected:

0 ≤ SVent ≤ 0.25: ventilation system would be set to 100 cfm (will be referred as v1)

0.25 < SVent ≤ 0.5: ventilation system would be set to 200 cfm (will be referred as

v2)

0.5 < SVent ≤ 0.75: ventilation system would be set to 305 cfm (will be referred as

v3)

0.75 < SVent ≤ 1: ventilation system would be set to 460 cfm (will be referred as v4)

The first step toward getting wi values is defining our desired conditions in terms of

inequalities related to the ventilation score and then solving the inequality systems

of our desired conditions to obtain the weights. In the following, we have defined our

desired conditions, followed by their corresponding inequalities:



86

• Condition 1: When there is no occupant in the room and the current and future

CO2 and TVOC levels are in state l1 or l2 (please refer to the Table 5.4 for

different states): We want the ventilation system to be in v1 state (equivalent

to 100 cfm).

– CO2 state: l1, TVOC state: l1, future CO2 state: l1, future TVOC state:

l2 :

0 ≤ 1
2w4 ≤ 0.25

– CO2 state: l1, TVOC state: l1, future CO2 state: l2, future TVOC state:

l1 :

0 ≤ 1
2w3 ≤ 0.25

– CO2 state: l1, TVOC state: l1, future CO2 state: l2, future TVOC state:

l2 :

0 ≤ 1
2w3 +

1
2w4 ≤ 0.25

—————————————————–

– CO2 state: l1, TVOC state: l2, future CO2 state: l1, future TVOC state:

l1 :

0 ≤ 1
2w2 ≤ 0.25

– CO2 state: l1, TVOC state: l2, future CO2 state: l1, future TVOC state:

l2 :

0 ≤ 1
2w2 +

1
2w5 ≤ 0.25

– CO2 state: l1, TVOC state: l2, future CO2 state: l2, future TVOC state:

l1 :
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0 ≤ 1
2w2 +

1
2w4 ≤ 0.25

– CO2 state: l1, TVOC state: l2, future CO2 state: l2, future TVOC state:

l2 :

0 ≤ 1
2w2 +

1
2w4 +

1
2w5 ≤ 0.25

—————————————————–

– CO2 state: l2, TVOC state: l1, future CO2 state: l1, future TVOC state:

l1 :

0 ≤ 1
2w1 ≤ 0.25

– CO2 state: l2, TVOC state: l1, future CO2 state: l1, future TVOC state:

l2 :

0 ≤ 1
2w1 +

1
2w5 ≤ 0.25

– CO2 state: l2, TVOC state: l1, future CO2 state: l2, future TVOC state:

l1 :

0 ≤ 1
2w1 +

1
2w4 ≤ 0.25

– CO2 state: l2, TVOC state: l1, future CO2 state: l2, future TVOC state:

l2 :

0 ≤ 1
2w1 +

1
2w4 +

1
2w5 ≤ 0.25

—————————————————–

– CO2 state: l2, TVOC state: l2, future CO2 state: l1, future TVOC state:

l1 :

0 ≤ 1
2w1 +

1
2w2 ≤ 0.25
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– CO2 state: l2, TVOC state: l2, future CO2 state: l1, future TVOC state:

l2 :

0 ≤ 1
2w1 +

1
2w2 +

1
2w5 ≤ 0.25

– CO2 state: l2, TVOC state: l2, future CO2 state: l2, future TVOC state:

l1 :

0 ≤ 1
2w1 +

1
2w2 +

1
2w4 ≤ 0.25

– CO2 state: l2, TVOC state: l2, future CO2 state: l2, future TVOC state:

l2 :

0 ≤ 1
2w1 +

1
2w2 +

1
2w4 +

1
2w5 ≤ 0.25

—————————————————–

• Condition 2: When there is at least one occupant in the room and the current

and future CO2, and TVOC levels are in state l1: We want the ventilation

system to be in v2 state (equivalent to 200 cfm).

– CO2 state: l1, TVOC state: l1, future CO2 state: l1, future TVOC state:

l1 :

0.25 < 1
2w3 ≤ 0.5

—————————————————–

• Condition 3: When there is at least one occupant in the room and the current

CO2 and TVOC levels are in state l2 and future CO2, and TVOC levels are in

state l1 or l2: We want the ventilation system to be in v3 state (equivalent to

305 cfm).
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– CO2 state: l2, TVOC state: l2, future CO2 state: l1, future TVOC state:

l1 :

0.5 < w3 +
1
2w1 +

1
2w2 ≤ 0.75

– CO2 state: l2, TVOC state: l2, future CO2 state: l1, future TVOC state:

l2 :

0.5 < w3 +
1
2w1 +

1
2w2 +

1
2w5 ≤ 0.75

– CO2 state: l2, TVOC state: l2, future CO2 state: l2, future TVOC state:

l1 :

0.5 < w3 +
1
2w1 +

1
2w2 +

1
2w4 ≤ 0.75

– CO2 state: l2, TVOC state: l2, future CO2 state: l2, future TVOC state:

l2 :

0.5 < w3 +
1
2w1 +

1
2w2 +

1
2w4 +

1
2w5 ≤ 0.75

—————————————————–

• Condition 4: When there is at least one occupant in the room, and the current

CO2 and TVOC levels are in state l2 and future CO2, and TVOC levels are in

state l3: We want the ventilation system to be in v4 state (equivalent to 460

cfm).

– CO2 state: l2, TVOC state: l2, future CO2 state: l3, future TVOC state:

l3 :

0.75 < w3 +
1
2w1 +

1
2w2 + w4 + w5 ≤ 1

—————————————————–
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These are the conditions that we want to be satisfied when we are automating the

ventilation systems. So, we have solved this inequality system to see the solutions for

wis. Solving this inequality system resulted in the following solution:

• When 0 < w1 ≤ 0.25, then:

– 0.25 · (1− 4w1) ≤ w2 ≤ 0.5 · (1− 2w1)

– w3 = 0.5

– w4 ≤ 0.5 · (1− 2w1 − 2w2)

• When 0.25 < w1 < 0.5, then:

– 0 < w2 ≤ 0.5 · (1− 2w1)

– w3 = 0.5

– 0 < w4 < 0.5 · (1− 2w1 − 2w2)

And in both of these cases, w5 = 1− w4 − w3 − w2 − w1 .

In the next step to verify if different values of w1 to w5 within the obtained ranges

in the solution would result in the same (consistent) ventilation actions (v1-v4), we

have tested our approach in the historical data that we have. In this validation step,

we have randomly set different values for w1, w2, and w4 (within the defined ranges

of the solution) to see if they would result in consistent ventilation actions. We

evaluated the parameters and the ventilation ranges on historical data of 14 months,

and the results showed that in 98% of the situations, different values of w1, w2,

and w4 resulted in consistent ventilation range selection. The other 2% showed two

consequent ventilation ranges. So, the following values were selected for the weights

to calculate the ventilation score and select the decent air exchange rate accordingly.
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w1 = 0.15

w2 = 0.25

w3 = 0.5

w4 = 0.05

w5 = 0.05

Machine learning (non-linear) approach

In addition to the linear decision-making approach, we used a machine learning ap-

proach to implement dynamic control of the ventilation systems for comparative

analysis. In supervised machine learning, we needed to define features and targets.

Similar to the previous approach, our features include current CO2 and TVOC levels,

occupancy status, and future CO2 and TVOC levels. As for the feature variables,

we leveraged historical data spanning 14 months, from June 2022 to August 2023.

Notably, in this approach, the target variable is ventilation action, corresponding to

the air exchange rate chosen to control pollutant levels effectively. In line with our

previous approach, we considered the same four ventilation actions, each correspond-

ing to different air exchange rates, denoted as v1, v2, v3, and v4. It’s essential to note

that during the data collection period, the ventilation systems operated according to

a predefined schedule, with only v1 and v2 ventilation actions activated.

To determine the appropriate target variable for each of the feature sets, we adopted

the same predefined boundaries (Table 5.4) as in the previous approach. For instance,

when the room is unoccupied, and both the current and future CO2 or TVOC levels

fall within state l1 or l2 (refer to Table 5.4 for the various states), we assign the target

variable as v1 (defined as condition 1 in the previous approach). As another example,
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when there is at least one occupant in the room, and the current CO2 and TVOC

levels are in state l2, while future CO2 and TVOC levels are in state l1 or l2, we

designate the target variable as v3. For a comprehensive description of the different

conditions used to define the target variables based on the feature range, please refer

to the previous approach for dynamic ventilation system control (conditions 1-4).

After establishing both the feature and target variables, it became evident that the

target variable exhibited a significant imbalance. The majority of instances corre-

sponded to v1, while v4 was the minority class, accounting for less than 1% of the

dataset. To address this issue, we made the decision to exclude instances where v4

was selected as the target variable. Furthermore, we opted to exclude data collected

during the hours of 8 PM to 5 AM, as this timeframe typically corresponds to periods

with no occupants in the area, and as a result, during these times, v1 was predomi-

nantly selected as the ventilation action. Subsequently, we applied SMOTE to rectify

the imbalanced dataset. Before implementing SMOTE, we meticulously divided the

data into separate sets for training, validation, and testing, ensuring no data leakage

between these partitions. In our machine learning model selection, we considered four

different models: LGR, RFC, Gradient Boosting Classifier (GBC), and SVM.

In the training phase of the machine learning models, we employed a comprehensive

hyperparameter tuning approach using GridSearchCV, a method provided by the

scikit-learn library. This technique systematically explores a range of hyperparameter

configurations to identify the combination that yields the best model performance,

as measured by predefined metrics such as accuracy, precision, recall, and F1-score.

Our objective was to optimize the parameters of the classifier. As evident in Table

5.5, the RFC consistently outperforms the other models. In the following sections,

we will delve into the training phase of the models, with a specific focus on RFC due
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to its superior performance and robustness in handling our dataset.

In the hyperparameter tuning phase, the GridSearchCV process was configured with

the RFC as the estimator (for the RFC model). We defined a parameter grid that

specified multiple values for various hyperparameters of interest, including the number

of trees in the forest, the maximum depth of the trees, the minimum number of

samples required to split an internal node, and the minimum number of samples

required at each leaf node. This grid represented the exhaustive combination of

hyperparameters to be evaluated. Also, to ensure the generalizability of the model

and mitigate the risk of overfitting, we implemented a 5-fold cross-validation (CV)

strategy. In this approach, the dataset was randomly divided into five equal parts. In

each CV iteration, four parts were used for training the model, and the remaining part

served as the validation set to assess model performance. This process was repeated

five times, with each of the five parts used exactly once as the validation set. The

cross-validation approach ensures that the assessment of hyperparameter effectiveness

is robust and not overly dependent on a particular partitioning of the data.

Given the computationally intensive nature of performing grid search across multiple

hyperparameter combinations and CV folds for several ML models, we leveraged

parallel processing capabilities by setting n_jobs=-1. This configuration allowed the

process to utilize all available CPU cores, significantly reducing the time required to

complete the grid search. Upon completion of the grid search, GridSearchCV provided

us with the best hyperparameter combination based on the average performance

across all CV folds. The selected hyperparameters for RFC are n_estimators =

300, max_depth = 30, min_samples_split = 2, and min_samples_leaf = 1. We

then evaluated this optimal model configuration on a separate test set to obtain

unbiased estimates of its generalization performance. The metrics reported in Table
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5.5 include precision, recall, F1-score, and support for each class, alongside overall

accuracy, providing a comprehensive view of the model’s predictive capabilities.

Model Class Precision Recall F1-score Support
RFC 0 1 1 1 20754

1 0.95 0.98 0.97 20650
2 0.98 0.95 0.97 20699

Accuracy - - 0.98 62103
Macro avg 0.98 0.98 0.98 62103

Weighted avg 0.98 0.98 0.98 62103
LGR 0 1 1 1 20754

1 0.92 0.92 0.92 20650
2 0.92 0.92 0.92 20699

Accuracy - - 0.95 62103
Macro avg 0.95 0.95 0.95 62103

Weighted avg 0.95 0.95 0.95 62103
GBC 0 1 1 1 20754

1 0.90 0.98 0.94 20650
2 0.98 0.89 0.93 20699

Accuracy - - 0.96 62103
Macro avg 0.96 0.96 0.96 62103

Weighted avg 0.96 0.96 0.96 62103
SVM 0 1 1 1 20754

1 0.91 0.96 0.93 20650
2 0.96 0.90 0.93 20699

Accuracy - - 0.95 62103
Macro avg 0.96 0.95 0.95 62103

Weighted avg 0.96 0.95 0.95 62103

Table 5.5: Model Evaluation Metrics

The performance result of each model is shown in Table 5.5. As mentioned, the RFC

outperformed the other models with an accuracy of 98%. Other performance metrics,

including precision, recall, f1-score, and support, are reported as well. Precision

measures the proportion of correct positive predictions for each class, i.e., among all

instances predicted as a given class, how many are actually of that class. The RFC

model shows perfect precision for class 0 (1.00), which is exceptional. Classes 1 and
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2 also have high precision scores (0.91 and 0.96, respectively), indicating a high level

of reliability in the predictions for these classes. Recall (also known as sensitivity)

measures the ability of the model to detect all actual instances of a given class. RFC

showed perfect recall for class 0 (1.00) and very high recall for classes 1 and 2 (0.96

and 0.90, respectively). This means that this model can identify all instances of class

0 and performs well on classes 1 and 2, too.

F1 score is the harmonic mean of precision and recall, providing a single metric to

assess the balance between them. RFC achieves perfect balance for class 0 (1.00)

and has very high F1 scores for classes 1 and 2 (0.93 for both), indicating a well-

balanced performance between precision and recall. In our project, the F1 score

emerges as the paramount metric for evaluating the performance of our model, given

its critical role in harmonizing precision and recall, which are two metrics of equal

importance to our objectives. Precision (the proportion of true positive results in

all positive predictions) is critical because it reflects the model’s ability to correctly

identify instances that require adjustment in the ventilation system. High precision

means that when the model predicts the need for changes in ventilation settings (e.g.,

to improve air quality or reduce energy consumption), those predictions are likely

correct, minimizing unnecessary adjustments that could waste energy or negatively

impact air quality.

On the other hand, recall (the proportion of true positive results in all actual positives)

is equally important because it measures the model’s ability to detect all instances

that truly need intervention. High recall ensures that the model identifies as many

real situations as possible where adjustments to the ventilation system are needed,

thus maintaining indoor air quality without compromising occupant comfort. The

F1 score harmonizes these two metrics, ensuring that improvements in one do not
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disproportionately come at the expense of the other. In this project, optimizing for

the F1-score means we aim for a ventilation system that responds accurately and

comprehensively to energy efficiency and air quality needs without leaning too much

towards avoiding false alarms (precision) or missing real events (recall).

Support values reported in Table 5.5 refer to the number of actual occurrences of each

class in the dataset. The distribution of instances across the classes is nearly uniform,

which helps in evaluating the model’s performance more evenly. Accuracy gives the

proportion of all predictions (across all classes) that were correct. RFC’s overall

accuracy is 0.95 (or 95%), which is outstanding, especially considering that this is

an average across three classes. Macro Avg and weighted Avg for precision, recall,

and F1-score provide aggregated performance metrics. A macro average computes

the metric independently for each class and then takes the average (hence treating all

classes equally), while a weighted average takes into account the support of each class.

Both averages, being around 0.95 and 0.96, indicate consistently high performance

across all classes, with or without considering the number of instances per class.

The next step of our framework involves a real-world experiment of dynamically

managing the ventilation system in a conference room by using either the linear or

non-linear method. As it is a real-world experiment in a conference room where

occupants have meetings, it is imperative to ensure the chosen approach not only

enhances the ventilation rate in response to suboptimal air quality, as determined

by predefined criteria, but also avoids inefficiencies that could lead to unnecessary

energy consumption. To identify the most effective method that satisfies these crite-

ria, we conducted a preliminary trial. This trial involved simulating adjustments to

the ventilation rates without actual implementation, aiming solely at assessing the

performance of both the linear and non-linear models.
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For the execution of this pilot study, we utilized real-time data on CO2 and TVOC,

applying our predictive model to forecast their values 15 minutes into the future.

Although the forecasting models can accurately predict IAQ parameters up to 30

minutes in advance, consultations with experts led us to select 15 minutes as the

optimal timeframe for making necessary adjustments to the ventilation rates. In ad-

dition to these IAQ-related parameters, by using the occupancy models we’ve trained,

we obtained the occupancy status and level which are essential for both methodologies

to determine the most suitable ventilation rate. Beyond applying these approaches

to data derived from real-world conditions, we created datasets for hypothetical ex-

treme scenarios not encountered during the actual data collection period. Although

the likelihood of such extreme cases is minimal, based on our historical observations,

it was crucial to test the resilience and adaptability of our methods under these hy-

pothetical conditions to ensure their robustness in the face of potential real-world

challenges.

For running the experiment using any of the approaches, we retrieved 10 historical

data points (with 5-minute intervals, which is 50 minutes of data in total) of indoor

air pollutants (CO2 and TVOC) and the occupancy level. Then, we used these data

as the features of our trained forecasting models and predicted 15 minutes ahead

of the indoor air pollutants levels. Then, in the linear approach, based on these

predictions, the obtained parameters (w1 - w5), and the occupancy status of the

space, we calculated the SVent and selected the ventilation state (v1, v2, v3, and v4)

based on the ventilation score. On the other hand, for the non-linear approach, the

retrieved information fitted into the RFC model to predict the best ventilation rate.

The results of the first trial revealed that:

• The non-linear approach demonstrates limitations in its capacity to elevate ven-
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tilation rates to levels above the baseline during periods of occupancy (identified

as v2), particularly when CO2 concentrations exceed 1000 ppm, corresponding

to the l2 and l3 categories as outlined in the Table 5.5. Evaluations conducted

under hypothetical scenarios indicated that this approach fails to adjust the

ventilation to higher levels when CO2 levels fall within the l2 and l3 ranges,

and the TVOC concentration is within the l1 range (below 200 ppb). This sug-

gests that the non-linear system is predominantly responsive to TVOC levels.

The underlying issue is due to the rarity of CO2 levels exceeding 1000 ppm

in this specific setting, according to the historical data used for training the

model. Consequently, the machine learning model, being trained on historical

data, lacks the necessary conditioning for scenarios where CO2 levels exceed

1000 ppm. Despite the infrequency of such occurrences in historical records, it

is critical for the model to possess the capability to escalate ventilation rates

appropriately in response to elevated CO2 levels, considering the potential ad-

verse effects on occupants, especially during prolonged exposure periods. On

the other hand, the linear approach consistently proves to be effective in acti-

vating higher ventilation rates when CO2 concentrations are within the l2 or l3

ranges. This reliability makes the linear method more favorable, as it better

ensures the occupants’ well-being.

• Despite its shortcomings in responding to elevated CO2 levels, the non-linear

model exhibits an overcautious approach to TVOC levels during occupancy in

the conference room. Specifically, it identifies the threshold for TVOC at ap-

proximately 185 ppb and elevates the ventilation rate to a level beyond the

baseline (which is v2) whenever TVOC concentrations exceed this threshold.

While this sensitivity is advantageous for occupant health, it potentially leads
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to unnecessary energy use. Conversely, the linear model adopts a more mea-

sured approach to TVOC management, initiating an increase in ventilation rate

to above the baseline only when current or predicted TVOC levels reach or ex-

ceed 200 ppb. For instance, should the current TVOC concentration be 194 ppb

with a forecasted rise to 201 ppb, the linear model would adjust the ventilation

to a level higher than the baseline. The linear approach, guided by the care-

fully determined thresholds in Table 5.5, is preferred for its balance between

ensuring occupant well-being and optimizing energy use. The linear method’s

strategy underscores the unnecessary extent of the non-linear model’s proactive

measures, which, while well-intentioned, result in energy inefficiency.

• During periods of non-occupancy, when the current and future concentrations

of selected indoor air pollutants are categorized within the l1 and l2 ranges,

both methodologies demonstrated proficiency in adjusting the ventilation sys-

tem to the v1 setting. The performance of both approaches was equivalent and

satisfactory under these conditions.

• During periods of non-occupancy, when both current and future concentrations

of the selected indoor air pollutants reach critical levels (both in the l3 range),

the linear approach proactively adjusts the ventilation system to v2, a level

higher than the baseline (v1) set for non-occupied periods. In contrast, the

non-linear method maintains the ventilation at the minimum level, v1. In such

situations, we prefer the performance of the linear method. This preference

is based on the anticipation that the room might be occupied shortly, and

immediate occupants would be subjected to significantly high levels of indoor

air pollutants until the ventilation system can improve the air quality. Hence,

the linear method’s preemptive adjustment to a higher ventilation rate is crucial
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for ensuring the well-being of future occupants by reducing potential exposure

to harmful pollutants.

Drawing from the outcomes observed during the trial experiment, we have elected

to employ the linear method in the main experiment. This decision is driven by our

objective to simultaneously improve the occupants’ well-being and optimize energy

consumption. To conduct the experiment and dynamically adjust the ventilation

rates in response to occupancy status, as well as current and future levels of CO2 and

TVOC, we partnered with the UVA facility management. This collaboration granted

us control over the operation of the conference room’s ventilation system. Real-time

data and the predefined linear approach were used to change the ventilation rates at

15-minute intervals, which is a frequency determined through consultations with the

facility management team.

As shown in Fig. 5.2, after one month of running the experiment and collecting new

IAQ and occupancy data under the dynamic operations of the ventilation system, we

proceeded to fine-tune both the IAQ forecasting and occupancy prediction models.

The reason for this step is that these models were initially trained on the data that

was collected during the scheduled operation of the ventilation systems, and we want

to make sure that the models are still accurate during the dynamic operation of the

ventilation system. The rest of the experiment was implemented using the updated

models. To maintain model performance and adapt to any further changes in the

data patterns, a final round of fine-tuning was conducted upon the completion of the

entire experiment (two months).
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5.4 Results

In this section, we present findings on the frequency at which the selected indoor

air pollutants (CO2 and TVOC) exceed established thresholds, alongside ventilation

rates observed under various conditions of HVAC operation, both dynamic and static.

By comparing these metrics, we aim to deepen the understanding of the effectiveness

of our proposed method for the dynamic management of ventilation systems. Beyond

aggregate results spanning the entire experimental period (two months), we showcased

the variations in TVOC and CO2 levels and the ventilation rates, comparing instances

of dynamic ventilation system operation to periods of scheduled operation. This

detailed comparison during selected days of the experiment underscores the potential

benefits of our approach.

In the initial phase of our analysis, the main goal is to assess various parameters

derived from IAQ data collected under two different operational modes of the ven-

tilation systems: scheduled and dynamic. The main goal of this evaluation is the

assessment of ventilation rates, TVOC, and CO2 levels. The focus on IAQ is crucial

as it pertains to occupants’ exposure to indoor air pollutants and the subsequent

potential adverse health impacts. Furthermore, a comparison of the ventilation rates

under the two operating situations (dynamic and planned) of the ventilation systems

will make clear how energy-efficient our suggested method is.

Fig. 5.4 presents histograms illustrating the distribution of TVOC during both dy-

namic and scheduled operations of HVAC systems, while Fig. 5.5 depicts the corre-

sponding data for CO2 concentrations. Throughout the observation period, the mean

TVOC concentration was found to be 128 ppb under dynamic operation and 206 ppb

during scheduled operation. Similarly, CO2 concentrations averaged at 497 ppm and
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(a) During dynamic operation of the ventila-
tion systems

(b) During scheduled operation of the venti-
lation systems

Figure 5.4: Histogram of TVOC levels during dynamic and scheduled operation of
the HVAC systems

(a) During dynamic operation of the ventila-
tion systems

(b) During scheduled operation of the venti-
lation systems

Figure 5.5: Histogram of CO2 levels during dynamic and scheduled operation of the
HVAC systems

544 ppm for dynamic and scheduled operations, respectively. Additionally, Table 5.6

shows the average values of TVOC and CO2 concentrations alongside the ventila-

tion rates during periods of occupancy, non-occupancy, and the entire observation

period for both ventilation strategies. It is observed that the mean concentrations

of both TVOC and CO2 are lower under dynamic ventilation compared to scheduled

operation across all periods examined. This lower indoor air pollutant levels during

occupied periods would lead to enhancements in the well-being of the occupants.
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(a) TVOC level of a sample day with dy-
namic operations of the ventilation system

(b) TVOC level of a sample day with sched-
uled operations of the ventilation system

(c) CO2 level of a sample day with dynamic
operations of the ventilation system

(d) CO2 level of a sample day with scheduled
operations of the ventilation system

(e) Dynamic and scheduled ventilation rates

Figure 5.6: IAQ parameters’ level of sample days with different ventilation system
operations
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(a) VOC level of a sample day with dynamic
operations of the ventilation system

(b) TVOC level of a sample day with sched-
uled operations of the ventilation system

(c) CO2 level of a sample day with dynamic
operations of the ventilation system

(d) CO2 level of a sample day with scheduled
operations of the ventilation system

(e) Dynamic and scheduled ventilation rates

Figure 5.7: IAQ parameters’ level of sample days with different ventilation system
operations
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Occupied Unoccupied Overall
Dynamic Scheduled Dynamic Scheduled Dynamic Scheduled

TVOC (ppb) 184 290 116 192 128 206
CO2 (ppm) 628 722 468 514 497 544

Ventilation rate (CFM) 219 191 106 147 126 155

Table 5.6: Mean value of IAQ parameters and ventilation rate during scheduled and
dynamic operation of ventilation systems

The data in Table 5.6 reveal that the average ventilation rate is higher during pe-

riods of occupancy under dynamic operation of the ventilation systems compared

to their operation on a scheduled basis. Conversely, the lower average ventilation

rates observed during unoccupied periods under dynamic operation contribute to a

reduction in the overall average ventilation rates for the entire period of dynamic op-

eration in comparison to scheduled operation (126 vs. 155 CFM). Thus, by optimizing

ventilation rates—increasing them during occupied periods (219 vs. 191 CFM) and

decreasing them during unoccupied periods (106 vs. 147 CFM), dynamic operation

of the ventilation systems achieves a reduction in total ventilation rates (126 vs. 155

CFM), ultimately leading to energy savings. So, the results show that not only did

the dynamic operation of the ventilation systems lead to lower ventilation rates, but

it also resulted in lower TVOC and CO2 levels and fewer instances of these pollutants

exceeding their limit threshold.

To better understand the factors driving increases in ventilation rates to V4, we

analyzed instances where these higher rates were dynamically selected. By calculating

the sum of the parameter scores for all V4 instances, we found that occupancy was the

most significant factor, followed by current TVOC levels, future TVOC levels, current

CO2 levels, and future CO2 levels, in that order. Notably, the higher contribution

of TVOC levels compared to CO2 levels indicates that TVOC concentrations more

frequently exceed acceptable thresholds in the conference room. This finding aligns
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with the results presented in Chapter 1, where we demonstrated that TVOC levels

more often surpassed recommended limits, even when CO2 concentrations remained

within acceptable ranges. These results underscore the importance of monitoring

and dynamically addressing TVOC levels to maintain healthy indoor air quality,

particularly in spaces with fluctuating occupancy.

To further evaluate the energy efficiency of the dynamic mode, we replaced instances

where the system selected 305 CFM with 460 CFM. This adjustment was made to

explore if the dynamic mode would still be the more energy-efficient one. Despite

the increased ventilation rate, analysis shows that dynamic operation would still lead

to energy savings. In particular, if the system had run at 460 CFM in those periods

when it chose 305 CFM— likely resulting in further reductions in air pollutants—

the average ventilation rate in dynamic mode would be 127 CFM, still below the

scheduled mode average of 155 CFM. That means that even if we had chosen higher

ventilation rates during the dynamic mode, it would, overall, be more energy-efficient

given the energy savings during unoccupied periods.

We further investigated the sensitivity of the calculations to the inclusion of TVOC

and/or future CO2 and TVOC levels. We systematically excluded these input pa-

rameters and recalculated ventilation rates, comparing the three different periods of

overall, occupied, and unoccupied. Tables 5.7, 5.8, and 5.9 present the average venti-

lation rates for the three periods under the various input combinations. As we can see

in Table 5.7, during the overall period of the dynamic operation, decreasing the input

parameters has actually resulted in higher ventilation rates, except in the condition

that we only considered current CO2 as the driving factor of the ventilation actions.

As we can see in Tables 5.7, 5.8, and 5.9, when we only consider current CO2 as

the input parameter, the mean ventilation rate is 105 CFM, with the breakdown
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of mean ventilation rate of 116 CFM during occupied periods and 103 CFM during

unoccupied periods (shown in Tables 5.8 and 5.9). This is while if we only consider

TVOC as the input parameter, the overall ventilation rate increases to 164 CFM,

which is higher than the condition we considered all the input parameters. As shown

in Tables 5.8 and 5.9, only considering TVOC as the input parameter would increase

the ventilation rate in unoccupied periods too, which might be unnecessary as no

occupant is being impacted. These findings confirm our findings in Chapter 1 that

it happens more frequently for TVOC to surpass its limit range compared to CO2

exceeding its limit range.
Overall period

Current CO2 Current TVOC Current occupancy Future CO2 Future TVOC Mean ventilation rate (CFM) IAQ Energy
! ! ! ! ! 126 ! !
! ! ! 135 ! ✗
! ! 132 ✗ ✗

! ! 140 ! ✗
! 105 ✗ !

! 146 ! ✗

Table 5.7: Overview of input parameter combinations and their impact on mean
ventilation rates and IAQ detection during dynamic ventilation operation. The first
row serves as the baseline, using all parameters for decision-making. The ”Energy”
column indicates whether a combination uses less energy (!) or more energy (✗)
compared to the baseline, as reflected in the mean ventilation rate (CFM). The ”IAQ”
column assesses the ability of each combination to detect conditions where either
CO2 or TVOC exceeds acceptable limits, with !indicating effective detection and ✗
indicating failure to detect all exceedance scenarios.

Although interpreting the IAQ conditions for each combination requires experimental

validation, we assessed the impact of these combinations by examining the scenarios

in which they lead to increased ventilation rates. It should be noted that all these

combinations for dynamic operation of the ventilation system resulted in better per-

formance regarding IAQ and energy compared to the scheduled operation. In Table

5.7, to compare their performance, the combination in which all the parameters are

considered (Which is the method we used for running the experiment) is used as the

baseline.
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As mentioned, in this table, the evaluation criteria are categorized into two aspects:

Energy and IAQ columns. The meaning of the !and ✗ in each of these columns is as

follows:

1. Energy:

• A checkmark (!) in this column indicates that the combination uses less

energy compared to the baseline method. Energy consumption is rep-

resented by the mean ventilation rate (CFM), so a lower value signifies

better energy efficiency.

• An X mark (✗) signifies that the combination uses more energy than the

baseline, indicated by a higher mean ventilation rate.

2. IAQ:

• A checkmark (!) indicates that the combination successfully detects con-

ditions where either CO2 or TVOC levels exceed their acceptable limits.

This ensures adequate indoor air quality control.

• An X mark (✗) means the combination fails to identify all cases where

either CO2 or TVOC exceeds the acceptable range. For example:

– For example, if only CO2 is considered, the system may miss cases

where TVOC levels are too high. However, if only TVOC is consid-

ered, it may still account for both TVOC and CO2 exceedances due

to their overlap in detection capabilities.

As we can see in Table 5.7, including occupancy as an input variable to TVOC, would

decrease the mean ventilation rate, with an increase in the ventilation rate during

the occupied periods and a decrease in the ventilation rate during the unoccupied
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periods. It shows that considering occupancy would appropriately shift the ventilation

rates from unoccupied periods to occupied ones to improve the occupants’ comfort.

As we can see, by adding the current CO2 level to TVOC and current occupancy

status, we reassigned importance weights between these three parameters (compared

to TVOC and occupancy), which reduced the focus on TVOC and resulted in lower

ventilation rate. As we can see in Table 5.7, the lowest ventilation rate after the

condition in which we only considered current CO2 level is when we considered all

the parameters with their different associated weights. This shows that when we

put the focus on one parameter, it increases the ventilation rate unless it is CO2,

which happens less frequently when it exceeds its limit range. Although this analysis

provides better insight into the inclusion of different parameters, we need to keep in

mind that ventilation rates and IAQ parameters impact each other, and we need to

further establish this sensitivity analysis by running experiments for each different

input parameter combination.

Occupied period
Current CO2 Current TVOC Current occupancy Future CO2 Future TVOC Mean ventilation rate (CFM)

! ! ! ! ! 262
! ! ! 328
! ! 324

! ! 363
! 116

! 164

Table 5.8: Overview of input parameters and mean ventilation rates during the oc-
cupied period of dynamic ventilation operation.

Unoccupied period
Current CO2 Current TVOC Current occupancy Future CO2 Future TVOC Mean ventilation rate (CFM)

! ! ! ! ! 103
! ! ! 103
! ! 100

! ! 103
! 103

! 142

Table 5.9: Overview of input parameters and mean ventilation rates during the un-
occupied period of dynamic ventilation operation.
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Overall period
Current

CO2

Current
TVOC

Current
occupancy

Future
CO2

Future
TVOC

Mean
ventilation
rate (CFM)

v1=100
CFM

v2=200
CFM

v3=305
CFM

v4=460
CFM

! ! ! ! ! 126 83% 10% 5.0% 2.0%
! 105 96% 4.0% - 0.26%

! 146 64% 32% - 4.0%
Occupied period

Current
CO2

Current
TVOC

Current
occupancy

Future
CO2

Future
TVOC

Mean
ventilation
rate (CFM)

v1=100
CFM

v2=200
CFM

v3=305
CFM

v4=460
CFM

! ! ! ! ! 262 - 56% 34% 10%
! 116 88% 11% - 2.0%

! 164 62% 27% - 10%
Unoccupied period

Current
CO2

Current
TVOC

Current
occupancy

Future
CO2

Future
TVOC

Mean
ventilation
rate (CFM)

v1=100
CFM

v2=200
CFM

v3=305
CFM

v4=460
CFM

! ! ! ! ! 103 97& 3.0% - -
! 103 97& 3.0% - 0.4%

! 142 65% 33% - 3.0%

Table 5.10: Overview of the ventilation rates frequencies in percentage during different
combinations of input parameters

Table 5.10 provides a detailed breakdown of ventilation rate distributions across three

combinations of input parameters: (1) all input parameters, (2) only the current CO2

level, and (3) only the current TVOC level. When TVOC levels alone are considered,

the ventilation rate is elevated to 460 CFM during unoccupied periods 3% of the

time. Additionally, 33% of the time, the ventilation rate is set to 200 CFM, which is

significantly higher compared to the case where all input parameters are considered,

where 200 CFM is used only 3% of the time, and the ventilation rate defaults to

100 CFM the rest of the time. Given that the space is unoccupied during these

periods, the frequent elevation of ventilation rates when only TVOC is used as the

input parameter results in unnecessary energy consumption.

In contrast, when the current CO2 level is the sole parameter, the distribution of

ventilation rates during unoccupied periods closely resembles the distribution when

all parameters are considered, with only 0.4% of cases operating at 460 CFM. Dur-

ing occupied periods, however, relying solely on the current CO2 or TVOC levels

results in the system operating at 100 CFM, which is the minimum recommended
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ventilation rate accepted in our case, for 88% and 62% of the time, respectively. This

highlights an inadequacy for occupied periods, where higher ventilation rates are typ-

ically required for acceptable IAQ. It is important to note that the dataset used for

this sensitivity analysis, comprising CO2, TVOC, and occupancy data, was collected

while the ventilation system operated in scheduled mode.

Fig. 5.6 shows the TVOC, CO2, and ventilation rates of sample days with dynamic

and scheduled operation of the ventilation systems. We selected the same day of the

week to keep most of the meetings constant in both of the sample days. On this

day, there were meetings with a high number of occupants that resulted in a higher

mean value of the ventilation rates during the occupied period when the ventilation

systems were operating dynamically compared to their scheduled operation. The

mean value of the ventilation rates during occupied periods is 224 CFM and 200 CFM

during dynamic and scheduled ventilation operations, respectively. These values are

100 and 137 CFM in unoccupied periods during dynamic and scheduled ventilation

operations, respectively. Overall, the mean level of the ventilation rates is lower

during the whole period of dynamic ventilation systems’ operation compared with

the scheduled operation of the ventilation systems (134 CFM vs. 155 CFM) on this

specific day of the week.

Fig. 5.7 displays the TVOC, CO2 concentrations, and ventilation rates for two ad-

ditional sample days. On these days, all meetings had fewer attendees, eliminating

the necessity to elevate ventilation rates during periods of occupancy. Consequently,

for both dynamic and scheduled operations of the ventilation systems, the average

ventilation rate during occupancy was maintained at 200 CFM. The mean value of

the ventilation rates during unoccupied periods is 103 CFM and 143 CFM during

dynamic and scheduled ventilation operations, respectively. As a result, the dynamic
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operation that reduced ventilation rates during unoccupied times led to lower overall

ventilation rates for the entire day compared to the scheduled operation (122 CFM

vs. 155 CFM).

5.5 Conclusions and Discussion

In conclusion, the research presented in this paper offers significant insights into the

benefits of dynamically operating ventilation systems over conventional, schedule-

based operations. Our comprehensive analysis reveals that the dynamic management

of ventilation systems improves IAQ by effectively maintaining lower concentrations

of key pollutants such as TVOC and CO2 and enhances occupant well-being by en-

suring air quality remains within the recommended thresholds more consistently. Im-

portantly, this approach demonstrates a clear advantage in optimizing energy usage,

achieving energy savings without compromising indoor environmental quality.

The findings from our experimental analysis, including the distribution of TVOC and

CO2 concentrations alongside ventilation rates under both dynamic and scheduled op-

erations, underscore the efficacy of the proposed method. Specifically, we observed

lower mean concentrations of TVOC and CO2 under dynamic operation across all

periods examined (occupied and unoccupied periods), highlighting the method’s po-

tential to reduce occupants’ exposure to harmful indoor air pollutants.

Our approach’s ability to dynamically adjust ventilation rates based on real-time

occupancy and pollution levels translates into a more energy-efficient operation, as

evidenced by the reduced overall average ventilation rates during dynamic operation

compared to the scheduled operation. This operational efficiency is achieved without

sacrificing the indoor environmental quality, as indicated by the fewer instances of
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pollutant levels exceeding their limit thresholds and overall lower concentration of

indoor air pollutants under dynamic management.

The research presented here convincingly argues for a shift towards dynamic venti-

lation systems in buildings to achieve a dual goal of energy efficiency and enhanced

IAQ. Such systems represent a forward-looking solution to maintaining healthy in-

door environments, while also meeting the urgent need for energy efficiency in building

operations. As buildings evolve to become more intelligent and responsive, adopting

dynamic ventilation strategies offers a promising pathway for achieving these objec-

tives, holding the potential to make buildings more sustainable and occupant-friendly

through impacts on building design, operation, and management practices.

5.6 Summary of contributions

The contributions of this section are as follows:

• Proposing a model-based and rule-based dynamic operation for the ventilation

systems and comparing their performance

• Operating the ventilation system dynamically and comparing its performance

regarding IAQ metrics and ventilation rate with the traditional, scheduled-based

operation

• Preparing a data frame to fine-tune the predictive models for the situation of

the dynamic operation of the ventilation system
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Chapter 6

Introducing an IAQ index based on

the expected performance loss

according to the indoor

environmental metrics’ levels

6.1 Abstract

The airtight building designs introduced in the 1970s, aimed at reducing energy costs,

have significantly impacted indoor air quality (IAQ), contributing to health issues

such as sick building syndrome (SBS). High concentrations of indoor pollutants, in-

cluding carbon dioxide (CO2), total volatile organic compounds (TVOC), and partic-

ulate matter (PM2.5), alongside poor thermal comfort, have reduced occupant health

and productivity. This chapter introduces a novel performance loss index that in-

tegrates these IAQ metrics, temperature, humidity, and occupancy, to quantify the

impact on occupant well-being and productivity. In this chapter, we have defined

two different indices to evaluate and compare the IAQ and thermal comfort during

dynamic and scheduled operation of the ventilation system. We included temperature

and humidity to define an index to evaluate the impact of thermal comfort on the
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occupants. We call this index the thermal comfort index. For defining the other index

to evaluate the impact of IAQ on the occupants, we included CO2 and TVOC levels.

We call this index IAQ index. We collected the required data to acquire the values of

these indices by using the data collected from a conference room over a four-month

period, which included two months of dynamic HVAC operation and two months of

scheduled operation. Results showed that dynamic ventilation reduced both indices,

with the thermal comfort index decreasing from 0.25 To 0.18 and the IAQ index

from 0.53 to 0.12, demonstrating improvements in IAQ and thermal comfort under

dynamic operation. These results showed the efficacy of dynamic ventilation systems

in reducing pollutant levels and improving occupant productivity.

6.2 Introduction & background

The rise in energy costs during the 1970s prompted a shift in construction methods

across the United States, with buildings being designed to be more energy-efficient

and airtight. This resulted in a decrease in the amount of air exchanged in homes and

office buildings, with the average air exchange rate for homes dropping from around

one air change per hour (ACH) to about 0.5 ACH during this period [112, 113]. Persily

[114] outlines the initial ASHRAE 62 standard, introduced in 1973, and its numerous

subsequent versions (such as ASHRAE 62.1, which pertains to commercial buildings),

highlighting how our knowledge about the correlation between ventilation rates and

acceptable indoor air quality has evolved over time. He also outlined that Similar

to the history of residential ventilation, the requirements for commercial ventilation

were also reduced in the early 1980s, primarily to conserve energy [114].

When buildings are made more air-tight, it can limit the exchange of air between the
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indoor and outdoor environments, which can lead to an accumulation of indoor air

pollutants, such as CO2 and TVOC. This can result in reduced indoor air quality,

leading to various negative health effects, including headaches, fatigue, and respi-

ratory problems. For example, the emergence of building-related illnesses and sick

building syndrome (SBS) can be traced back to the 1980s, when ventilation rates

began to decline, as documented by Riesenberg et al. in 1986, [115]. Also, Fisk et

al. [116] highlighted that this trend has resulted in substantial yearly expenses and

decreased productivity due to health issues associated with indoor environments.

Several indoor air pollutants have major impacts on the occupants’ health and pro-

ductivity. As mentioned in chapter 2, based on the literature, CO2 and TVOC are the

main indoor air pollutants that can adversely impact the occupants’ productivity and

health at their high concentration. Other than these two pollutants, PM2.5 can also

adversely affect the occupants’ health. Most of the studies [117, 118] have focused

on the effect of ambient PM2.5 on the occupants’ health, but in recent years, sev-

eral studies [119] found indoor PM2.5 to have comparable to or even greater adverse

health effects compared with ambient PM2.5. There are different sources of indoor

PM2.5 [120] such as smoking, cooking, human activities, and the ambient PM2.5 that

enter residences through ventilation of buildings and air filtration [121]. Literature

showed that PM2.5 influences health more than it influences productivity. The health

issues caused by PM2.5 can range from respiratory problems, such as coughing and

wheezing, to more serious conditions, such as asthma, heart disease, and stroke [121,

120].

Other than the indoor air quality parameters, temperature also has an impact on the

occupants’ performance. Temperature effects on the occupants can be of different

types, such as occupants’ comfort, energy level, and performance. When the temper-
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ature of an indoor space is too high or too low, it can be difficult for the occupants to

focus well on their work, leading to a decrease in occupants’ productivity level [122].

Akimoto et al. [123] conducted different experiments to investigate the relationship

between thermal comfort and productivity in a task-conditioned office and found that

deviation from thermal neutral conditions led to productivity loss. Also, Lan et al.

[124] investigated the impact of air temperature on office workers’ well-being and

productivity through subjective ratings. They found that high temperatures can neg-

atively affect productivity. On the other side, discomfort and distraction brought on

by low temperatures might reduce productivity, too. According to the authors, keep-

ing a suitable temperature range of 20–26°C can improve employees’ productivity and

well-being. All these studies highlighted the importance of considering the impacts

of indoor temperature on office workers’ productivity and providing an environment

with suitable thermal comfort to increase the occupants’ productivity.

Due to the mentioned importance of IAQ and thermal comfort for the occupants, it

should be noted that the efficient ventilation rates should not reduce the occupants’

comfort (regarding both IAQ and thermal comfort) while reducing energy costs. Re-

garding the importance of considering indoor environmental quality, several studies

defined IAQ indices using different approaches. Some of the different approaches that

were proposed in this regard are [125]: (1) One index per single pollutant, (2) simple

aggregation, and (3) aggregation according to sources of pollutants and/or types of

pollutants. The first method involves creating a dimensionless index by comparing

the concentration of a pollutant to a predetermined reference value that represents a

usual level of health risk. However, other risk indicators, such as odor or irritation

thresholds, can also be used as the reference value. A ratio greater than one in this

method, meaning that the pollutant’s concentration exceeds its reference value, de-
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notes a possible concern about indoor air quality. As an example of this approach,

Teichman et al. [126] defined separate indices for different IAQ metrics such as CO2,

TVOC, and PM2.5. They plotted the concentrations of pollutants against a reference

concentration and determined whether the resulting data fell within or outside of

specified ranges, indicating whether the building was meeting or failing to meet IAQ

targets.

The second method, an individual index is created by combining the indices separately

derived for each pollutant. The aggregation process in this method involves adding

individual indices, taking the maximum index, or using other integration techniques.

As an example of this method, the work by Cohas et al. [127] can be mentioned in

which they chose the highest index among the indices computed for each individual

pollutant to produce a global index that represents the worst-case scenario. As other

examples of this method, Gadeau et al. [128] Castanet et al. [129] a simple algebraic

sum to derive one index. Also, getting an average was used by Chiang et al. [18] to

combine indexes for different contaminants. And finally, in the third approach, pol-

lutants’ indices are aggregated according to their categories or origins. For example,

Quad et al. [130] arranged the pollutants into four different groups based on their

sources. The different groups they considered were human sources, cooking, particles,

and pollutants from the potential sources of gaseous pollutants.

Although previous methods in defining indices for IAQ metrics were useful for in-

corporating them in ventilation management, they have several limitations, such as

considering metrics separately, not including the number of occupants, and only con-

sidering one reference (limit) value for each pollutant or indoor environmental quality

metric. In these methods, the number of occupants was not directly added to the

definition of indices, and they only contributed to the indices by impacting the indoor
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environmental quality metrics. To address these limitations, in this section, we con-

sidered three main indoor pollutants that affect occupants’ health and performance,

which are CO2, TVOC, and PM2.5, and two metrics that contribute to the occu-

pants’ thermal comfort, which temperature and humidity. We also directly input the

number of occupants as a variable to the proposed index.

6.3 Methodology and results

In this section, we will use the data we collected in the conference room in the previous

section to derive an index indicating the impact of IAQ and thermal comfort on the

occupants’ well-being and productivity. The period of data collection, as explained

in chapter 5 in detail, is four months, including two months of data with the dynamic

operation of the ventilation systems and two months with the scheduled operation of

the ventilation systems. The collected data consists of CO2, TVOC, temperature, and

humidity level. The first two were used as the metrics of the IAQ, and temperature

and humidity were used as the proxy of thermal comfort. In the first step, we defined

individual indexes for each of these metrics by considering the performance loss that is

associated with them at their different levels. For this goal, we have not considered one

reference (limit) level for them; instead, we used previous experiments that derived

different levels of performance loss associated with different levels of each of these

metrics.

Research from [43, 42, 131] defined the loss of productivity due to CO2 concentrations,

which was built on a baseline of 600 ppm, with 20% loss at 1000 ppm, 50% loss at

1500 ppm, and 100% loss at 3000 ppm. These data were trend-fitted in Microsoft

Excel to develop the following loss function for CO2:
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yCO2 = (−1.02×10−8xCO2
3+4.27×10−5xCO2

2+1.67×10−3xCO2−14.17)×10−2 (6.1)

The effect of TVOC on productivity was defined using [43, 132, 52], and a curve was

built on a baseline of 200 ppb, 50% loss at 600 ppb, 75% loss at 1000 ppb, and 100%

loss at 2000 ppb. These data were similarly trend-fitted and produced the following

loss function for TVOC:

yTVOC = (2.85×10−8xTV OC
3−1.29×10−4xTVOC

2+0.213xTVOC−37.798)×10−2 (6.2)

The temperature was also included in the model due to its effect on occupant comfort.

The loss function for temperature was based on a “goal zone” between 20 and 22.5

degrees C, with significant losses mounting below 15.5 degrees C and above 26.8

degrees C. The curve had the following equation:

ytemp = (−9.21×10−3xtemp
4+7.79×10−1xtemp

3−22.69xtemp
2+264.32xtemp−960)×10−2

(6.3)

For our model, we also reviewed different studies on the effect of humidity on the

occupants’ comfort, health, productivity, and risk of infection. A study [133] done

in Swedish dwellings observed low relative humidity (below 15%) over two weeks

during the winter season. They found possible correlations between low humidity

and specific health symptoms. Another study [134] evaluated the impact of different

humidity levels on students’ learning performance. Their results showed that the

students’ performance decreased in relative humidity of 20% compared with 40%.

Also, they observed significantly more fatigue and distraction at a relative humidity of
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20% compared with 40%. Furthermore, their study concluded high relative humidity

(above 60%) decreased the students’ productivity.

There are several other studies that showed that occupants would experience lower

stress levels and higher productivity at a relative humidity of above 40% and below

60% [135, 136, 137, 134]. In a study [136], the authors recommended relative humidity

of at least 40% as they observed a significant association between low RH and elevated

prevalence of upper airway symptoms, most clearly at relative humidity levels of below

38%. Another research also observed that office workers who were exposed to relative

humidity levels between 30% and 60% were more likely to experience 25% less stress,

which was measured by lower heart rate variability [137].

Based on these studies and guidelines, we defined specific thresholds for productivity

loss. We considered the ideal humidity range of 40%-60% with no significant adverse

impact on occupants’ productivity and health (0% productivity loss). However, as

humidity levels deviate from this optimal range, discomfort increases, leading to a

decrease in productivity. For our model, we assumed that humidity levels between

30%-40% and 60%-70% result in a 20% reduction in productivity. For more extreme

conditions in which the humidity level is below 30% or above 70%, we considered

50% of productivity loss. For the very extreme cases of humidity levels below 20% or

above 80%, which represents a situation where the environment becomes completely

unsuitable for normal functioning due to extreme discomfort and possible health risks

like mold growth or respiratory distress, we assigned 100% of productivity loss. Based

on these values, the fitted third-degree polynomial that describes the productivity loss

as a function of humidity had the following equation:
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yhumid = (2.60× 10−4xhumid
3 + 5.03× 10−2xhumid

2 − 6.98xhumid + 190.15) (6.4)

In each of these four equations, x is the metric’s level at the time, and y is the expected

performance loss associated with the metric. Then, for the purpose of occupants’

efficiencies, we defined the variable f for each of the metrics derived by subtracting

one from each of the metrics’ y (fi = (1− yi)). Then, to get the total efficiency based

on each fi, I used weighted geometric mean with the following equation:

f̄ =

(
n∏

i=1

fwi
i

)1/
∑n

i=1 wi

= exp
(∑n

i=1 wi ln fi∑n
i=1 wi

)
(6.5)

where f̄ is the total efficiency we get from considering all the metrics, and wi is the

weights associated with each of them. For the weights of CO2, TVOC, PM2.5, and

temperature, which are the metrics that we considered in this section, we used the

suggestion by [138]. In their work, they found the associated weights for different

environmental metrics by asking several experts, and their results indicated 0.209 for

IAQ-related metrics (CO2 and TVOC) weight and 0.208 for thermal comfort-related

metrics (temperature and humidity).

The final total loss can be calculated using equation 6.6, in which N is the number of

occupants that we will get from chapter 3.

Losstotal = (1− f̄)×N (6.6)

The final goal of this section is to obtain an index that is an aggregation of indices
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defined for five different metrics. So, based on the value of each metric, individual

indices will be calculated and aggregated using the geometric mean method. The

final index indicates a quantifiable metric for evaluating the total performance loss

in the space (conference room) based on the concentration of the IAQ metrics and

temperature and humidity in each time step.

The data used in this section comes from the four-month dataset gathered in Chapter

5. This dataset was chosen because it includes two months during which the ven-

tilation system was operated dynamically and two months when it was operated on

a scheduled basis. This comprehensive dataset provides the opportunity to analyze

how the dynamic operation of the ventilation system impacted occupant performance

loss. To achieve this, we considered two sets of metrics for the performance loss index.

The first set includes IAQ-related metrics: CO2 and TVOC. The second set is the

ones related to the occupants’ thermal comfort, which are temperature and humidity.

After preprocessing the data and normalizing the indices for each environmental met-

ric (ensuring that their respective weights determine the extent of their contribution

to the final index), we derived the IAQ and thermal comfort indices. The results

of the analysis showed that the IAQ index for the scheduled period of ventilation

operation was 0.53 and for the dynamic operation of the ventilation system was 0.12.

The thermal comfort index, which reflects the impact of temperature and humidity

levels on occupant performance loss, was 0.25 under scheduled ventilation and 0.18

under dynamic ventilation. These results showed that the dynamic operation of the

ventilation system has not only improved the IAQ-related metrics (TVOC and CO2)

but also has improved the thermal comfort-related metrics (temperature and humid-

ity). So, although temperature and and humidity were not directly considered in our

method for dynamically controlling the ventilation system, the dynamic operation
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still led to improvements in these metrics.

6.4 Summary of contributions

In summary, the contribution of this section is as follows:

• Quantifying the impact of dynamic ventilation system operation on reducing

the overall performance loss of occupants

• Integrating occupant count into the performance loss calculation to provide a

more accurate assessment of IEQ impacts

• Considering more than a single IAQ metric for defining the performance loss

index

• Utilizing multiple reference values to derive individual indices for each metric,

selected based on their specific impact on occupant well-being

• Employing geometric mean for index aggregation, ensuring a more robust and

meaningful representation under extreme conditions of indoor pollutants and

temperature
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Chapter 7

Conclusion

7.1 Thesis overview

This thesis explores the importance of dynamic and comprehensive indoor air qual-

ity (IAQ) management in building ventilation systems, with a focus on optimizing

occupant health, well-being, and energy efficiency. The chapters systematically de-

velop and analyze advanced methods for monitoring and managing IAQ, combining

traditional statistical techniques with cutting-edge machine learning models and in-

troducing novel indices to assess indoor environmental quality based on productivity

loss of the occupants exposed to poor indoor environmental quality (IEQ).

In Chapter 2, the limitations of conventional HVAC systems that rely mainly on car-

bon dioxide (CO2) as the only indicator of IAQ is established. The need for a broader

approach, including other pollutants such as volatile organic compounds (VOCs), is

emphasized to improve IAQ in building environments. This chapter presents a four-

month longitudinal study that evaluates the effectiveness of VOCs and CO2 as IAQ

indicators. This study examines several indoor spaces, such as conference rooms and

single-occupancy offices, identifying instances of poor IAQ despite acceptable CO2

levels and evaluates the occupants’ exposure to these instances. The chapter empha-

sizes the necessity for a dynamic ventilation system that considers a broader spectrum

of indoor air pollutants, beyond solely CO2, to enhance occupant health protection.
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In Chapter 3, we implemented occupancy detection by using IEQ metrics as the

features. By analyzing environmental factors like CO2, VOC, light, temperature, and

humidity, this chapter evaluates which combination of these factors most effectively

detects occupancy in real time. Machine learning models such as Support Vector

Machines (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF) are applied,

demonstrating that TVOC is a valuable indicator for detecting occupancy in some

cases. This chapter’s results recommend integrating TVOC data into the occupancy

detection models to improve their performance and, as a result, improve the HVAC

management systems.

Chapter 4 focuses on forecasting IAQ metrics using statistical models (ARMA) and

deep learning models (LSTM and CNN-LSTM). The research shows that while lin-

ear models like ARMA can provide reasonable accuracy, deep learning models better

capture the complex and nonlinear behavior of indoor air pollutants. A proposed

CNN-LSTM framework, combining convolutional layers with bidirectional LSTM net-

works, improves forecasting accuracy, enabling prediction of pollutant levels up to 30

minutes in advance. This chapter’s results provide us with future values of the in-

door air pollutants that can be helpful information for the dynamic operation of the

ventilation systems.

Finally, Chapter 5 details a four-month field study comparing traditional, schedule-

based ventilation systems with dynamic, demand-driven ventilation operations. The

findings show that the dynamic approach of the ventilation system operation is effec-

tive in reducing the concentration of pollutants while achieving energy savings. The

dynamic approach demonstrated potential for reducing CO2 and TVOC levels (im-

proving IAQ) while lowering ventilation rates during unoccupied periods (enhancing

energy efficiency) by utilizing real-time IAQ and occupancy data.



127

In Chapter 6, the thesis introduces the IAQ productivity loss index and thermal

comfort productivity loss index. IAQ performance loss index incorporates two IAQ

metrics, which are CO2 and VOC, while the thermal comfort performance loss index

incorporates temperature and humidity. Both indices have considered occupancy level

too to quantify the impact of IAQ and thermal comfort on occupant productivity and

well-being. To apply these indices, we used the data that we collected in the previous

chapter, which is a four-month study in a conference room. This dataset includes two

months of dynamic operation and two months of scheduled-based operation of the

ventilation systems. The results showed that using the dynamic approach for oper-

ating the ventilation system has improved both indices, indicating less performance

loss during this period.

7.2 Recommendations and future directions

This thesis provides valuable insights into IAQ and ventilation control; however, sev-

eral areas could be further improved in future research to refine the conclusions and

address limitations observed throughout the study. In the following, I will discuss

the areas that can be improved in future research.

Expansion of Monitoring Duration and Environments: The dynamic ap-

proach proposed in this thesis for operating the ventilation systems has been tested

over four months within a university setting. To generalize the findings more broadly,

future work should aim to extend the data collection period to cover an entire year,

capturing seasonal variations that may impact IAQ and building energy consump-

tion. For example, during winter, occupants’ clothes might impact the TVOC level,

leading to the need for a higher ventilation rate during occupied periods. Addition-
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ally, expanding the test environments to include a wider variety of building types

(e.g., residential, commercial, and industrial) would provide a more comprehensive

understanding of how dynamic ventilation systems perform across different contexts.

It is worth mentioning that the computational cost of dynamic ventilation operation

primarily arises during the training phase of deep learning models, where significant

resources are required to process data and optimize the model parameters. How-

ever, once the model is trained, the inference phase used to make real-time decisions

is computationally lightweight and well-suited for deployment in real-world applica-

tions. Given the energy savings and improved indoor air quality achievable with a

dynamic operation, expanding its implementation across more spaces justifies the

initial computational investment. The benefits in terms of efficiency, sustainability,

and occupant comfort outweigh the relatively minimal ongoing computational costs

associated with inference.

Inclusion of Additional IAQ Metrics: Although this thesis includes a wide range

of environmental factors to define the index that evaluates the performance of dynamic

ventilation systems, the dynamic operation itself only controls CO2 and TVOC levels.

Incorporating a broader range of environmental factors in the dynamic control of the

ventilation system can improve the results and efficacy of the ventilation systems.

Occupant Feedback Incorporation: For defining the performance loss index, this

study uses literature for defining the loss associated with different values of the indoor

environmental metrics. However, a comprehensive feedback system can be employed

in areas of interest, such as conference rooms or single-occupancy offices, to improve

the results. This feedback loop would not only enhance the comfort and satisfaction

of the occupants but also contribute to the optimized performance of the ventilation

systems regarding energy consumption. These feedback systems can be more helpful
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in single-occupancy offices, where the primary resident is a constant person.

7.3 Publications

This research project resulted in a few journal and conference publications. A com-

prehensive list is presented below.

• Varnosfaderani, Mahsa Pahlavikhah, Arsalan Heydarian, and Farrokh Jazizadeh.

”A longitudinal study of IAQ metrics and the efficacy of default HVAC venti-

lation.” Building and Environment 254 (2024): 111353.

Chapter 2 covers the material in this publication [108].

• Varnosfaderani, Mahsa Pahlavikhah, Arsalan Heydarian, and Farrokh Jazizadeh.

”Using Statistical Models to Detect Occupancy in Buildings through Monitoring

VOC, CO2, and Other Environmental Factors.” Computing in Civil Engineer-

ing 2021. 2021. 705-712.

Chapter 3 covers the material in this publication [55].
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Appendix A

VOC and CO2 histograms of

single-occupancy of offices A and B

(a) CO2 concentration (b) VOC concentration

Figure A.1: Histograms of CO2 and TVOC concentration in office A
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(a) CO2 concentration (b) VOC concentration

Figure A.2: Histograms of CO2 and TVOC concentration in office B


